
Memory-Efficient Single Data-Complexity
Attacks on LowMC Using Partial Sets

Subhadeep Banik1, Khashayar Barooti2, Andrea Caforio2, Serge Vaudenay2

1 USI Universitá della Svizzera italiana, Lugano, Switzerland
2 LASEC, Ecole Polytechnique Fédérale de Lausanne, Switzerland
{serge.vaudenay,andrea.caforio,khashayar.barooti}@epfl.ch,

subhadeep.banik@protonmail.com

Abstract. The LowMC family of block ciphers was first proposed by
Albrecht et al. in [ARS+15], specifically targeting adoption in FHE and
MPC applications due to its low multiplicative complexity. The construc-
tion operates a 3-bit S-box as the sole non-linear transformation in the
algorithm. In contrast, both the linear layer and round key generation
are achieved through multiplications of full rank matrices over GF(2).
The cipher is instantiable using a diverse set of default configurations,
some of which have partial non-linear layers i.e., in which the S-boxes
are not applied over the entire internal state of the cipher.
The significance of cryptanalysing LowMC was elevated by its inclusion
into the NIST PQC digital signature scheme PICNIC in which a successful
key recovery using a single plaintext/ciphertext pair is akin to retrieving
the secret signing key. The current state-of-the-art attack in this setting
is due to Dinur [Din21a], in which a novel way of enumerating roots of
a Boolean system of equation is morphed into a key recovery procedure
that undercuts an ordinary exhaustive search in terms of time complexity
for the variants of the cipher up to five rounds.
In this work, we demonstrate that this technique can efficiently be en-
riched with a specific linearization strategy that reduces the algebraic
degree of the non-linear layer as put forward by Banik et al. [BBDV20].
This amalgamation yields a drastic reduction in terms of memory com-
plexity across all instantiations of LowMC up to six rounds with a quasi-
equivalent time complexity.

1 Introduction

The cryptanalysis of LowMC has been pursued with unrelenting fervor since the
algorithm’s inception in 2015 as the straightforward nature of the construction
and its various configurations lend themselves well to a broad range of attack
techniques. The announcement of the LowMC cryptanalysis challenge in 2020
(https://lowmcchallenge.github.io/) further invigorated the efforts across
the cryptographic community with the competition having been renewed twice
since then.

The structure of the lightweight block cipher clearly demarcates itself from
other ciphers in the same category due to its exceedingly simple component func-
tions, solely consisting of a non-linear 3-bit S-box and a matrix multiplication

https://lowmcchallenge.github.io/

over GF(2) that represents the linear layer. Note that, unlike some other es-
tablished block ciphers which apply S-boxes over the entire internal state, some
instances of LowMC allow a partial application of the non-linear layer further
lowering its multiplicative complexity. Henceforth, we will refer to these two
design philosophies as LowMC instances with complete and partial non-linear
layers.

Although the large canon of cryptanalytic results on LowMC is partly due
to its broad range of possible instantiations, it was its integration into the NIST
PQC digital signature scheme PICNIC that made the single plaintext/ciphertext
pair setting an important attack target. This is because a successful key recovery
attack on LowMC using only a single plaintext and ciphertext is equivalent to
retrieving the signing key of PICNIC. Below, we give a brief overview of exist-
ing attacks in the single data-point setting. For a survey of other key recovery
techniques, we refer the reader to [GKRS].

1.1 Previous Work

The first successful key recovery that only relies on a single plaintext/ciphertext
pair was proposed by Banik et al. [BBDV20]. The authors used the fact that
after guessing the value of any balanced quadratic Boolean function on the in-
puts of the LowMC S-box the transformation becomes completely linear. The
authors chose the 3-variable majority function for this purpose, but they show
that any balanced quadratic function can be used. Using this, they demonstrated
various attacks on 2-round LowMC with complete non-linear layer, and 0.8 ·bns c-
round LowMC with partial non-linear layers. Here, n denotes the blocksize of
the LowMC instance, and s denotes the number of S-boxes in each round.

The linearization method was used in [BBVY21] to extend the attack to 3-
round variants with complete non-linear layer and 1 · bns c-round variants with
partial non-linear layers, using two applications of a meet-in-the-middle proce-
dure. Further in [LIM21], the authors proposed a algebraic attack on 3-round
LowMC. The current state-of-the-art method was proposed by Dinur [Din21a] in
which a newly devised scheme of finding roots to Boolean systems of equations
is transformed into a cryptanalytic attack. In fact, given a plaintext/ciphertext
pair, the paper transforms the problem of recovering the secret key into the
problem of finding the common root of a set of n equations in n variables over
GF(2). This attack is particularly well-suited for low-degree systems and thus
was successfully applied to {2, 3, 4, 5}-round versions of LowMC where the S-box
is performed over the entire internal state. However, the method is not suitable
for LowMC instances with partial non-linear layers, since the number of rounds
in such instances is generally considerably higher, and the degree of the internal
state variables (as a function of the key) doubles every round. Another bottleneck
happens to be the memory complexity. Even for smaller variants of the cipher,
for instance n = 129, r = 2, approximately 292 bits of memory is required.

2

1.2 Contributions

In this paper, we combine the linearization techniques of [BBDV20,BBVY21]
and the equation solving methods of [Din21a] to cryptanalyzse LowMC instances
with complete non-linear layers. The principal technique in the attack that we
propose is to use linearization to transform the problem of finding the secret key
into an equivalent problem of finding the common roots of an equation system
with only around 2n/3 variables. Thus, although our method requires time com-
plexity of the same order as reported by [Din21a], we do it with significantly less
memory than reported in [Din21a]. Our method, for all instances of LowMC,
requires around 22n/3 bits of memory, which is roughly the space required to
solve an equation system over GF(2) in 2n/3 variables.

The main idea is as follows: we know that the LowMC S-box can be com-
pletely linearized by guessing the value of any balanced quadratic function in its
input bits. Since the master key (xored with the known plaintext) is directly in-
put to the S-box layer of the first LowMC round, by guessing the values of some
balanced quadratic equation in the key bits we can directly linearize the first
round, which serves to reduce the algebraic degree of the polynomial equations
relating the plaintext and ciphertext. What this also does is partition the key
space (which is {0, 1}n for LowMC instances with blocksize equal to n bits) into
disjoint sets, depending on the value of the guessed function. For example, if the
key space is of size 12 bits and we use the 3-variable majority function (maj) for
linearization, i.e. by guessing the 12/3 = 4 values of gi = maj(k3i, k3i+1, k3i+2)
(for i = 0, 1, 2, 3), then note that we have partitioned the key space into 24 dis-
joint sets, each of which is indexed by the guess vector [g3, g2, g1, g0] ∈ {0, 1}4
and has size 28. Generalizing this, we can say that this process of linearizing,
partitions the key space into 2n/3 disjoint sets each of size 22n/3 (which we call
“partial sets/space” interchangeably throughout the paper).

Much of the technical content in the paper deals with how to perform efficient
arithmetic over these partial sets. It is well known that to evaluate the truth table
of a Boolean function in n variables and algebraic degree d ≤ n, then we need the
evaluation of the function on

∑d
i=0

(
n
i

)
points of its input space. One of the main

results in this paper, is to show that if we needed to evaluate the function on any
one of these partial sets then we need the function evaluation on a much smaller
set of points. Most of the optimizations that we have derived in the paper in
terms of time and space complexity, stems from this key observation. As a result,
we were able to attack some 5 and 6 round instances of LowMC, with essentially
memory less than or around 22n/3 bits. A complete list of results is presented
in Table 1. We also compare our results with that of [BCC+10], which outlines
a method of finding a common root of an equation system in n unknowns and
degree d over GF (2) using a Gray-code based traversal of the solution space, and
requires polynomial memory to execute. This method takes around 2d · log2 n ·2n
bit-operations and nd bits of memory. It can be seen that our method does not
always outperform the Gray-code assisted exhaustive search complexity (e.g.
n = 129, R = 5, 6).

3

Table 1: Summary of results. R denotes the number of rounds. Note the time
complexity (TC) and memory complexity (MC) are given in number of bit oper-
ations and bits respectively. The complexity for exhaustive search is computed
as per Lemma 1. We further compare our results with the Gray code assisted
exhaustive search technique proposed in [BCC+10]. n1 is parameter used in the
attack with N = 4 as explained in Section 5.

R n s n1 TC MC Exh. Search Gray Code Ref.

2 129 43 2107 O(1)∗∗ 2145 2134 [BBDV20]∗

129 43 297 253 [BBVY21]∗

129 43 2118 292 [Din21a]
129 43 18 2125.43 277.4 This Work

2 192 64 2151 O(1) 2209 2197 [BBDV20]
192 64 2139 275 [BBVY21]
192 64 2170 2126 [Din21a]
192 64 30 2181.91 2112.58 This Work

2 255 85 2194 O(1) 2273 2260 [BBDV20]
255 85 2182 297 [BBVY21]
255 85 2222 2173 [Din21a]
255 85 36 2243.03 2152.67 This Work

3 129 43 2140 253 2146 2135 [BBVY21]
129 43 2125 2104 [Din21a]
129 43 15 2129.46 281.5 This Work

3 192 64 2204 275 2210 2198 [BBVY21]
192 64 2180 2150 [Din21a]
192 64 18 2187.88 2118.41 This Work

3 255 85 2267 297 2274 2261 [BBVY21]
255 85 2235 2197 [Din21a]
255 85 30 2247.35 2155.55 This Work

4 129 43 2130 2113 2146 2135 [Din21a]
129 43 9 2132.84 283.6 This Work

4 192 64 2188 2164 2210 2198 [Din21a]
192 64 15 2193.04 2122.36 This Work

4 255 85 2245 2218 2274 2261 [Din21a]
255 85 24 2251.42 2160.2 This Work

5 129 43 6 2134.43 286.46 2146 2136 This Work

5 192 64 2192 2173 2210 2199 [Din21a]
192 64 9 2196.39 2125.38 This Work

5 255 85 2251 2228 2274 2262 [Din21a]
255 85 15 2256.74 2165.52 This Work

6 129 43 3 2135.39 287.8 147 2136 This Work

6 192 64 6 2197.96 2128.4 2211 2199 This Work

6 255 85 12 2259.62 167.28 2275 2262 This Work
*The papers [BBDV20] and [BBVY21] report complexities in number of encryptions,

we recalculate them in terms of number of bit-operations using Lemma 1.
**O(1) refers to constant memory required for only storing intermediate variables and

running loops.

4

b b b b b b

⊕ ⊕ ⊕ ⊕ ⊕b b b⊕ ⊕

S S S S

Affine Layer

Roundkey

Blocksize=n

#S-boxes=s

Fig. 1: LowMC Round Function

1.3 Organization of the Paper

In Section 2, we present some preliminary introduction to the algebraic struc-
ture of LowMC, and the LowMC cryptanalysis challenge. Section 3 presents
some initial ideas about linearization, and how it helps set up the attack on
the various LowMC instances with both even and odd number of rounds. Sec-
tion 4 relates to the problem of efficiently evaluating a Boolean function over any
one of the partial sets defined above. The remaining part of Section 5 presents
the mathematical details of the attack, and explicit derivations of the time and
space complexity. In Section 6 we study generic time-memory trade-offs that
can further decrease the memory complexity. We also compare how these type
of trade-offs affect our attack in comparison with [Din21a]. We conclude the
paper in Section 7.

2 Preliminaries

The LowMC round function is a typical SPN construction given in Fig. 1. It
consists of an n-bit block undergoing either a partial or a complete substitution
layer consisting of s 3-bit S-boxes where 3s ≤ n. It is followed by an affine layer
which consists of multiplication of the block with an invertible n×n matrix over
F2 and addition with an n-bit round constant. Finally, the block is xored with
an n-bit round key. If the master secret key K is of size n-bits (which is true
for all the instances in the LowMC challenge), then each round key is obtained
by multiplication of K with an n× n invertible matrix over GF(2). As in most
SPN constructions, the plaintext is first xored with a whitening key which for
LowMC is simply the secret key K, and the round functions are executed R times
to give the ciphertext. From the point of view of cryptanalysis, we note that the
design is completely known to the attacker, i.e., all the matrices and constants
used in the round function and key update are known. Note that in general

5

instantiations of LowMC, the key size and block size are not the same. The
whitening key and all the round keys are extracted by multiplying the master
key with full rank matrices over GF(2). However for all the instances of LowMC
used in the LowMC challenge the block size and key size are the same. This being
so, the lengths of the master key, whitening key and all the subsequent round
keys are the same. Effectively, this makes all these keys related to each other by
multiplication with an invertible matrix over GF(2). Thus all round keys can be
extracted by multiplying the whitening key with an invertible matrix. So for all
practical purposes used in this paper, the whitening key can also be seen as the
master secret key. This is true since given any candidate whitening key, all round
keys can be generated from it, and thus given any known plaintext-ciphertext
pair, it is possible to verify if that particular candidate key has been used to
generate the corresponding plaintext/ciphertext pair. As such we use the terms
master key/whitening key interchangeably.

The LowMC challenge specifies 9 challenge scenarios for key recovery given
only 1 plaintext-ciphertext pair, i.e., for single data complexity.

• 1. [n = 128, s = 1] 2. [n = 128, s = 10] 3. [n = 129, s = 43]
• 4. [n = 192, s = 1] 5. [n = 192, s = 10] 6. [n = 192, s = 64]
• 7. [n = 256, s = 1] 8. [n = 256, s = 10] 9. [n = 255, s = 85]

The number of rounds R for instances with complete S-box layer is either 2, 3,
or 4 and for instances with a partial S-box layer can vary between 0.8×bns c, bns c
and 1.2 × bns c. When these are not integers, the number of rounds is taken as
the next higher integer. The key length k for all instances is n bits. PICNIC v3.0
[Zav] incidentally uses LowMC instances with the parameter sets [n, s, r] given
by [128, 10, 20], [192, 10, 30], [256, 10, 38] (partial S-box layer) and [129, 43, 4],
[192, 64, 4], [255, 85, 4] (complete S-box layer) for use under different security
levels. It should be noted that our attack only targets the LowMC instances with
complete non-linear layers, since all instances of partial non-linear layer based
constructions have high algebraic degree due to the large number of rounds it
executes.

3 Attack Preliminaries

Before we begin let us establish the number of bit operations required to perform
an exhaustive search on an R-round instance of LowMC with complete non-linear
layers given a single plaintext/ciphertext pair. Note that since the paper focuses
solely on LowMC instances with complete S-box layers, for conciseness we will no
longer use this term, and henceforth any mention of a LowMC instance should
be understood as being with complete non-linear layers. The following lemma
was proven in [BBVY21], but we restate it for completeness.

Lemma 1. [BBVY21] Performing one encryption with any R round instance
of LowMC requires around 2Rn2 bit-operations. And thus the cost of exhaustive
search is around Rn2 · 2n+1 bit-operations.

6

Proof. Although this was shown in [BBVY21], we give a brief proof sketch for
completeness. Any one round of LowMC requires 2 matrix-vector multiplications
(between an n× n matrix and an n× 1 vector) over GF(2): one to perform the
linear layer on the state, and the second to generate the round key from the
master key. This needs n2 bit-operations each. One round key addition takes n
bit-operations. One 3-bit s-box requires around 8 operations (see below) and so
the entire substitution layer needs around 8n/3 operations.

(1) P0=P1*P2, (2) S0=X0+P0, (3) T1=X0+X1, (4) P1=X0*X2.

(5) S1=X1+P1, (6) T2=T1+X2, (7) P2=X0*X1, (8) S2=T2+P2

Thus the total number of bit-operations for R-round LowMC is around R(2n2 +
n + 8n/3) ≈ 2Rn2 bit-operations, and so exhaustive search which requires 2n

encryptions needs Rn2 · 2n+1 bit-operations3. ut

The starting point of the attack in [BBDV20] was the following lemma that
helps linearize the LowMC S-box by guessing only one balanced quadratic ex-
pression on its input bits.

Lemma 2. [BBDV20] Consider the LowMC S-box S defined over the input bits
x0, x1, x2. If we guess the value of any 3-variable quadratic Boolean function f
which is balanced over the input bits of the S-box, then it is possible to re-write
the S-box as affine function of its input bits.

The authors used the majority function f = x0x1 +x1x2 +x0x2 for this purpose
which is both quadratic and balanced. This is true since the the LowMC S-box
output bits can be written as:

s0 = x0 + x1 · x2 = f · (x1 + x2 + 1) + x0,

s1 = x0 + x1 + x0 · x2 = f · (x0 + x2 + 1) + x0 + x1,

s2 = x0 + x1 + x2 + x0 · x1 = f · (x0 + x1 + 1) + x0 + x1 + x2.

Using the above fact, the first attack proposed in [BBDV20] used only the lin-
earization technique to obtain affine equations relating plaintext and ciphertext.
The idea is as follows. The values of the majority function at the input of all the
S-boxes in the encryption circuit were guessed: this made expression relating the
plaintext and ciphertext completely linear in the key variables, i.e., of the form:

A · [k0, k1, . . . , kn−1]T = const, (1)

where A is an n × n matrix over GF(2). Thereafter the key could be found
by using Gaussian elimination. A wrong key found by this method could be

3We only consider memoryless exhaustive search here. Of course exhaustive search
may be accelerated using Gray-code like approaches [BCC+10] or batch polynomial
evaluation as in [Din21a, Appendix B]

7

discarded by recalculating the encryption and checking if the given plaintext
mapped to the given ciphertext.

The above method would work if the total number of S-boxes in the en-
cryption circuit is strictly less than the size of the key in bits. This happens
for a) 2-round LowMC with complete non-linear layers and b) 0.8× bns c-round
LowMC with partial non-linear layers. For higher round instances of LowMC,
this approach obviously takes complexity more than exhaustive search of the
key and so becomes infeasible. In [BBVY21], the authors had shown how to
combine meet-in-the-middle techniques along with linearization to extend the
attack to 3-round LowMC with complete non-linear layers and 1 × bns c-round
LowMC with partial non-linear layers. In this paper, we look to combine lin-
earization with the equation solving techniques suggested by Dinur and show
that we can attack up to 6 round instances of LowMC using essentially similar
time complexity as [Din21a] but much less memory.

⊕
⊕
⊕

⊕
⊕
⊕

⊕
⊕
⊕

b b b

⊕
⊕
⊕

⊕
⊕
⊕

⊕
⊕
⊕

b b b

⊕
⊕
⊕

2 31 ρ+1 ρ+2 ρ+3 2ρ+1

SF SBS1pt ct
d=2ρ d=2ρ

(a) R= 2ρ+1 is odd

⊕
⊕
⊕

⊕
⊕
⊕

b b b

⊕
⊕
⊕

⊕
⊕
⊕

⊕
⊕
⊕

b b b

⊕
⊕
⊕

21 ρ ρ+2 ρ+3 2ρ

SF SBS1pt ct
d=2ρ d=2ρ−1

(b) R= 2ρ is even

ρ+1

⊕
⊕
⊕

Fig. 2: The attack setup for even and odd rounds for LowMC instances. The first
round shown in green is linearized.

3.1 Attack Setup after Linearization

Let us outline the basic steps of the attack. Without loss of generality, consider
the plaintext to be the all zero string, due to which the input to the first round
s-box is the master key itself. We try to guess the values of some balanced
quadratic equation in the keybits before it is input to the first round s-boxes.
As a result of this the first round can be completely linearized, and the output
bits S1 of the first round are essentially affine expressions of the keybits.

8

Odd Number of Rounds: For a random instance of LowMC with R = 2ρ+1,
i.e., odd number of rounds, we can form n equations of degree 2ρ as follows:

1. Consider rounds 2 to ρ+ 1 of LowMC. The function that maps the round 2
input to the ρ + 1-th round output is essentially a map of algebraic degree
2ρ in the key, since there are ρ rounds in the map, each of degree 2.

2. Consider the inverse rounds 2ρ + 1 to ρ + 2 of LowMC. Again, there are ρ
inverse rounds. The function that maps the round 2ρ + 1 output (which is
essentially the ciphertext) to the ρ+2-th round input is also therefore a map
of algebraic degree 2ρ.

3. Since the algebraic degree of S1 is 1, we can get n algebraic equations of
degree 2ρ by executing rounds 2 to ρ + 1 on S1 to get SF (see Figure 2).
Each of the n bits of SF is a Boolean polynomial in the key bits of degree 2ρ.
Similarly by executing the inverse rounds 2ρ+1 to ρ+2 over the ciphertext,
we get the state SB . Each bit of SB gives us another set of n equations of
degree 2ρ. Equating these 2 sets of expressions yields n equations of degree
2ρ each.

Even number of rounds: If the number of rounds R = 2ρ is even, then we
proceed as follows:

1. Consider rounds 2 to ρ of LowMC. The function that maps the round 2 input
to the ρ-th round output is a map of algebraic degree 2ρ−1 in the key, for
obvious reasons.

2. The function that maps the round 2ρ output (which is the ciphertext) to the
ρ+ 2-th round input is also therefore a map of algebraic degree 2ρ−1.

3. We take SF as the state after executing the substitution layer in round ρ+1
(see Figure 2). Since S1 is linear and a total of ρ substitution layers are
executed to get SF , we have that each bit of SF is a Boolean polynomial in
the keybits of degree 2ρ.

4. We take SB as the state just before the affine layer in round ρ+ 1. Again, a
total of ρ− 1 inverse substitution layers are executed to reach SB from the
ciphertext. Hence each bit in SB is of degree 2ρ−1.

5. Equating each bit of SF with the corresponding bit of SB gives us n equations
of degree 2ρ each.

Although each equation is of degree 2ρ, [Din21a] had pointed out an inter-
esting property of these equations. Consider pi(k) to be the Boolean polynomial
representing the ith bit of SB . Similarly let ai(k) represent the Boolean polyno-
mial for the ith bit of the state at the input of round ρ+ 1, i.e., one substitution
layer before SF . Note that, due to the linearization step, each pi, ai have al-
gebraic degree equal to 2ρ−1. It can be seen that the equation obtained after
equating SF and SB , for any 3 consecutive bits aligned under the same S-box
are as follows:

pi(k) + ai(k) + ai+1(k)ai+2(k) = 0

pi+1(k) + ai(k) + ai+1(k) + ai(k)ai+2(k) = 0

pi+2(k) + ai(x) + ai+1(k) + ai+2(k) + ai(k)ai+1(k) = 0

9

If we multiply the polynomials in the left side of three equations together, we
get a polynomial whose degree is 4 · 2ρ−1. This is much lower than 3 · 2ρ which
is the expected degree of the product of 3 degree 2ρ polynomials. We further
observe that if only any 2 of these polynomials are multiplied together then the
algebraic degree of the product is again only 3 · 2ρ−1 which is again much lower
than 2 · 2ρ.

Since in the LowMC instances with complete non-linear layers, the key-
size/blocksize is a multiple of 3, let n = 3t. Let h : {0, 1}3 → {0, 1} be any
3-variable balanced quadratic Boolean function. Note that for all such h, we
can linearize the first round if we guess h(k3i, k3i+1, k3i+2) for all i ∈ [0, t − 1].
We have already seen that after doing this we can derive n algebraic equations
over GF(2) of degree 2ρ each. Cryptanalysis of LowMC would essentially be
equivalent to finding a common root of these equations.

4 Finding roots of an equation system over partial space

We can now solve the n equations so obtained by linearizing the first round of
LowMC, to find its common roots and thus find the key, however with some
caveat. Note that the equations were obtained by initially restricting the value
of the master key to a specific subset of {0, 1}3t. For example let B1 be the set of
four 3-bit vectors over which h is 1, and B0 be the complement of B1. If the initial
guess of h over the 3t bits of the key, is some vector G = [gt−1, gt−2, . . . , g0] ∈
{0, 1}t (i.e., h(k3i, k3i+1, k3i+2) = gi), then it only makes sense if the exhaustive
search is done over the space BG = Bgt−1 ×Bgt−2 × · · ·Bg0 . The latter is a set
of size 4t = 22n/3. Also note that there are exactly 2t = 2n/3 (one for each value
of G) of such sets and these sets partition {0, 1}n.

Consider the function h for which B0 = {000, 010, 100, 111} and B1 =
{001, 011, 101, 110}. It is clear that h is balanced, and it is easily verifiable
that it is also quadratic. For convenience we write B0 = {0, 2, 4, 7} and B1 =
{1, 3, 5, 6}. With this background in hand, we will now discus the finer details
of the attack. Before we describe our technique, it would be instructive (at least
for the completeness of the paper) to look at a few preliminary tools we will use
to perform the attack.

Note that this Section is devoted to the problem of efficiently evaluating a
Boolean function over any one of the partial sets BG defined above. It develops
tools and also establishes bounds with respect to time and space complexity,
that will be used when the attack is finally described in Section 5.

4.1 Evaluating a function over a partial space

So to begin, we guess the values of some balanced quadratic equation in all the
key-triples before it is input to the first round s-boxes, and obtain n equations
of degree d = 2ρ for any R = 2ρ or R = 2ρ + 1-round instance of LowMC, as
explained in the previous section. Since we can choose any balanced quadratic
function for linearizing the s-box, let us choose the function h for which B0 =

10

{0, 2, 4, 7} and B1 = {1, 3, 5, 6}, as defined above. The reason we choose this
function will be clear in a moment. Note that when B0 is expressed as the
following 4× 3 matrix over GF(2),

B0 :

ui ui
00
01
10
11

→
→
→
→

0 0 0
0 1 0
1 0 0
1 1 1

 B1 :

ui ui
00
01
10
11

→
→
→
→

0 0 1
0 1 1
1 0 1
1 1 0

and each column is seen as a truth table of a 2 variable function, then the 3
functions corresponding to each column are given as y1, y0, y0y1. Similarly the
corresponding functions for B1 are y1, y0, y0y1 ⊕ 1.

Theorem 1. Consider the function h described above. For any guess vector G =
[gt−1, gt−2, . . . , g0], consider the following 3t Boolean Functions in 2t variables
y0, y1, . . . , y2t−1.

P3i+2 = y2i+1, P3i+1 = y2i, P3i = y2iy2i+1 ⊕ gi, ∀ i ∈ [0, t− 1]

Then by evaluating these 3t functions over all the points y0, y1, . . . , y2t−1 ∈
{0, 1}2t, one can generate all of the space BG. In other words, the 3t-bit vectors
Vj = P3t−1(vj)||P3t−2(vj)|| . . . ||P0(vj) for j ∈ [0, 4t − 1] are all the vectors in
BG, where vj is just the 2t-bit binary representation of the integer j. Also there
is a one-to-one correspondence between Vj and vj.

Proof. To prove this, we only need to show that for every V ∈ BG there exists a
unique j and therefore vj such that V = P3t−1(vj)||P3t−2(vj)|| . . . ||P0(vj) = Vj .
Let V be a random vector in BG. V is therefore of the form ut−1,ut−2, . . . ,u0
where each ui is any one of the four 3-bit vectors in Bgi . For each ui, it is not
difficult to see that a unique 2-bit vector ui that generates it. For example if
gi = 0, and ui = [1, 0, 0], then it can be easily seen (by looking at the 4 × 3
matrix above) that for ui = [1, 0], we have ui = P3i+2(ui)||P3i+1(ui)||P3i(ui)
(by a slight abuse of notation). This can easily be verified for all other elements
of B0/B1. So the unique vj that generates V is given as ut−1||ut−2|| . . . ||u0 as
described above. ut

4.2 Evaluation over all points of BG

Given an oracle O that given an n-bit input vector X, evaluates an n-variable
Boolean function F over X, and returns F (X), how many accesses to the oracle
is necessary to evaluate the algebraic expression of F . For arbitrary functions,
where we have no prior information about its properties, it is well-known that we
need the evaluate F over all 2n points in its input space. After this, it is equally
well-known that we need to run the Möbius transform on the evaluations of
F to generate the algebraic expression. Note that the Möbius transform is a
completely linear operation which is involutive. Executing the same transform

11

on the vector of coefficients in the algebraic expression, returns back the truth
table of F .

However, if it is known apriori that the algebraic degree of the Boolean
function is some d < n, then it is also well known that only

(
n
↓d
)

=
∑d
i=0

(
n
i

)
evaluations of F are required. Indeed, the algebraic expression of a Boolean
function F is written as

F =
⊕

v∈{0,1}n
avx

v

where if v = [vn−1, vn−2, . . . , v0] then xv implies x
vn−1

n−1 x
vn−2

n−2 · · ·xv00 . Then it is
well known that the coefficient av is computed as av = ⊕u�vF (u). Here u � v,
implies that ui ≤ vi for all i, which also implies that the hamming weight of u is
less than or equal to that of v. Since any degree d coefficient av can be computed
with evaluations of F at points u � v, thus

(
n
↓d
)

accesses to the oracle are
sufficient to compute av and therefore the entire algebraic expression. Thereafter,
one can use the Möbius transform to automatically generate evaluation of F
over all the points of its input space. This is an interesting property of degree d
functions: an evaluation over only

(
n
↓d
)

points is sufficient generate its evaluations
over all of its input space.

The next question is as follows: given oracle access to a random n-variable
Boolean function F of algebraic degree d, where n = 3t is a multiple of 3. For
any G, how many evaluations of F are required to evaluate F over the entire of
BG, where BG is the set defined for the function h in the previous subsection?
Certainly

(
n
↓d
)

evaluations are sufficient, since it allows us to evaluate F over its

entire space and not just BG.

Note that when we are enumerating BG as explained in Theorem 1, i.e., when
the jth vector in BG is generated as Vj = P3t−1(vj)||P3t−2(vj)|| . . . ||P0(vj), and
then evaluating F over these 4t points, we get a list of 4t evaluations of F . This
can also be seen as the truth table of another Boolean function F over 2t = 2n

3
variables. It is not difficult to see that

F(y2t−1, y2t−2, . . . , y0) = F (x3t−1 = P3t−1, x3t−2 = P3t−2, . . . , x0 = P0)

Example 1 Lets say that F is a Boolean function over 9 bits of degree 3 given
as x0x1⊕x2x3⊕x4x5⊕x7x8⊕x0x3x6. If G = [0, 0, 0], then from Theorem 1, we
know that P8 = y5,P7 = y4,P6 = y5y4, P5 = y3,P4 = y2,P3 = y3y2, P2 =
y1,P1 = y0,P0 = y1y0. Thus we can see that

F = y1y0 · y0 ⊕ y1 · y2y3 ⊕ y2 · y3 ⊕ y4 · y5 ⊕ y1y0 · y3y2 · y5y4
= y0y1 ⊕ y1y2y3 ⊕ y2y3 ⊕ y4y5 ⊕ y0y1y2y3y4y5

Note that in this case, F is of degree 3 · 2 = 6, double that of F . However for
any arbitrary choice of F , this is not always so. For the degree of F to be twice
that of F , the algebraic expression of F must contain one term of the form
x3i1 · x3i2 · · ·x3id .

12

Definition 1. Henceforth, we will call FG the associated function of F (or sim-
ply F if BG is clear from the context). Note that given any G, there is a bijection
between the n = 3t-bit vector x = [x3t−1, x3t−2, . . . , x0] and the 2t-bit vector
y = [y2t−1, y2t−2, . . . , y0], such that on BG, we have F (x) = F(y) for all x ∈ BG
and y ∈ {0, 1}2t. We have seen that this map is given by

x3i−1 = y2i−1, x3i−2 = y2i−2, x3i = y2i−1 · y2i−2 ⊕ gi, ∀i ∈ [0, t− 1] (2)

So y is essentially a shorter description of x in BG. Hence, we will call y the
associated vector of x in BG.

Since the Pi’s are at most of degree 2, the above example makes clear that
if F has degree d, then the degree of F can be at most 2d. So one can try to
compute the whole truth table of F, which is equivalent to evaluating F on all of
BG. Since the degree of F is bounded by 2d, from the previous analysis we know
that we need a total of

(
2t
↓2d
)

=
(
2n/3
↓2d
)

evaluations of F for this purpose. We can
use the same F oracle for this purpose: to evaluate F on any point 2t-bit vector
vj , we first map it to the corresponding Vj and then query the oracle with it;

the response is recorded as F(vj). Now
(
2n/3
↓2d
)
<
(
n
↓d
)

does not always hold.

Consider n = 21. When d = 5 say, we have
(
21
↓5
)

= 27896 > 214 >
(
14
↓10
)
.

However when d = 2, we have 232 =
(
21
↓2
)
<
(
14
↓4
)

= 1471. Hence translating
the problem to F does not always yield minimal number of evaluations. However
F has some structure, which can be exploited, as will be seen in the following
example.

Example 2 Lets say that F is a Boolean function over 12 bits of degree 2 given
as x0x1⊕x2x3⊕x4x5⊕x7x8⊕x0x3⊕x9⊕x10x11. If G = [0, 0, 0, 1], we know that
P11 = y7,P10 = y6,P9 = y7y6, P8 = y5,P7 = y4,P6 = y5y4, P5 = y3,P4 =
y2,P3 = y3y2, P2 = y1,P1 = y0,P0 = y1y0 ⊕ 1. Thus we can see that

F = (1⊕ y1y0) · y0 ⊕ y1 · y2y3 ⊕ y2 · y3 ⊕ y4 · y5 ⊕ (1⊕ y1y0) · y3y2 ⊕ y7y6 ⊕ y7y6
= y0 ⊕ y0y1 ⊕ y1y2y3 ⊕ y4y5 ⊕ y0y1y2y3

Note that in this case, F is of degree 4, but has only one degree 4 term, whereas
an arbitrary degree 4 Boolean function in 8-bits can have upto

(
8
4

)
= 70 such

terms.

Although the above is a slightly extreme example of a sparse function, one
can generalize the above example as follows. Note that if F is of degree d, the
corresponding F certainly does not contain all the

(
2n/3
2d

)
terms of degree 2d.

We have seen that only the monomials of form x3i1 · x3i2 · · ·x3id in F lead to
full degree terms in F. This means that the maximum degree terms must be
clustered with respect to the variables, i.e., F can have maximum degree terms
of type y0y1 · y2y3, y0y1 · y4y5 but not y0y1y2y4. Since F can have a maximum
of
(
n/3
d

)
terms of form x3i1 · x3i2 · · ·x3id , this is also the maximum number of

degree 2d terms F can have.

13

Now we make 2 observations. First since av = ⊕u�vF (u), the total number
of evaluations of a function required to interpolate only the coefficient av are
all the binary strings u � v, the total number of which is 2hw(v). This also tells
us that to interpolate some coefficient av∗ such that v∗ � v, we do not need
any additional evaluations. So, for example, if we have the function evaluation
at all the points needed to interpolate the coefficient of y0y1, we do not require
additional points to interpolate the coefficients of y0 or y1 or the constant term,
which are all sub-monomials of y0y1. Secondly consider all the

(
n/3
d

)
possible

maximum degree monomials of F. All other lower degree monomials of F must
also be sub-monomials of at least one of these maximum degree monomials. To
see why this is so, let there be a monomial yj1yj2 · · · yj2d−1

in F of degree 2d− 1
or less that is not a sub-monomial of any of the maximum degree monomials.
Now group the integers ji in the following manner: if two of them are of the form
2k, 2k + 1 put them in the same group or else put them in a different group.
After this if we have m ≤ d such groups, then by definition it is a sub-monomial
of one of the max degree monomials of F. Else if the number m > d, it must have
been produced by a monomial of degree larger than d in F , which contradicts
the fact that the algebraic degree of F is d.

Remark 1. The above observation does not mean that for any arbitrary F , all
lower degree terms of F must be a sub-monomial of some maximum degree
term present in F itself. Instead it means that all lower degree terms are sub-
monomials of the

(
n/3
d

)
max degree terms that could be potentially present in

F. For example, the function F in Example 2 contains y4y5 which is not a sub-
monomial of y0y1y2y3. However, for F of 12 variables and degree 2, there can
be
(
4
2

)
= 6 max degree terms in F, i.e. y0y1y2y3, y0y1y4y5, y0y1y6y7, y2y3y4y5,

y2y3y6y7, y4y5y6y7. It can be seen that y4y5 is a sub-monomial of one of these.

The above two observations tell us that to interpolate F we only need its
evaluations over points that are required to compute the coefficients of its maxi-
mum degree terms. We determine the evaluations of F are necessary to only find
the coefficients of its

(
n/3
d

)
maximum degree terms, in the following theorem.

Theorem 2. Let F be a Boolean function of degree d over n = 3t variables. Let
F be the equivalent algebraic expression in 2t variables obtained by evaluating
F over the set BG for some G. The number of evaluations of F required to
interpolate its complete algebraic expression is given as

J(n, d) =

{∑d
i=0

(
n/3
i

)
· 3i, ∀d ≤ n/3

22n/3 if d > n/3

It also holds that J(n, d) ≤
(
n
↓d
)

and J(n, d) ≤
(
2n/3
↓2d
)

for all n, d.

Proof. We prove this by induction on d. Note that for d = 0, we only need the
evaluation of F at one point 02t. For d = 1, F can only have the maximum terms
of the form y2ky2k+1 for k = 0 to t − 1. There are

(
t
1

)
=
(
n/3
1

)
such terms. For

the y0y1 term for example, along with 02t we need the 3 points 02t−2||p, where

14

p = 01, 10, 11. So for all the
(
n/3
1

)
terms we need 3 ·

(
n/3
1

)
points plus the single

point 02t. Thus the base case d = 1 is proven.
Let the assertion hold for any arbitrary d > 1. For d + 1, consider the

maximum degree term y2i1y2i1+1 · y2i2y2i2+1 · · · y2id+1
y2id+1+1 We certainly need

to evaluate F at the 3d+1 points given by y2ity2it+1 = 10, 01, 11 for each of
t ∈ [1, d+1]. All other points for which one of the y2ity2it+1 = 00 are already in-
cluded in the calculation of J(n, d) i.e. the number of points for degree d. Hence
we have

J(n, d+ 1) = J(n, d) +

(
n

d+ 1

)
3d+1 =

d+1∑
i=0

(
n/3

i

)
· 3i.

This completes the first part of the proof. Note that if d ≥ n/3, then F potentially
can be of full degree and so all the 22t = 22n/3 evaluations are necessary.

Note that all points included in the set of J(n, d) have a special form. Let
L(n, d) be the set of binary strings of length t = n/3 and Hamming weight up
to d. Then by a slight abuse of notation all the strings in the set J(n, d) can
be written as ∪di=0L(n, i) ⊗ {01, 10, 11}i. For example if 1001 ∈ L(12, 2), then
1001⊗ [11, 01] is defined as 11 00 00 01.

The second part of the theorem can be proven thus. Note that for d = 0,
J(n, d) =

(
n
↓d
)

= 1 and for d = 1, J(n, d) =
(
n
↓d
)

= n + 1. For larger d, we have

the ith term of αi of J(n, d) is

αi =

(
n/3

i

)
3i =

(n/3) · (n/3− 1) · · · (n/3− i+ 1)

i!
· 3i

=
(n) · (n− 3) · · · (n− 3i+ 3)

i!

On the other hand the ith term of βi of
(
n
↓d
)

is

βi =

(
n

i

)
=

(n) · (n− 1) · · · (n− i+ 1)

i!

By inspecting αi and βi term by term it is clear that αi < βi and so J(n, d) ≤(
n
↓d
)

follows. For d > n/3, J(n, d) becomes constant whereas
(
n
↓d
)

continues to

increase and so the inequality holds for d > n/3 too. For the second inequality,

note that for d = 0 we have J(n, d) =
(
2n/3
↓2d
)

= 1, and for d ≥ n/3 we have

J(n, d) =
(
2n/3
↓2d
)

= 22n/3. For other values of d, instead of a mathematical

proof, this inequality can be understood intuitively:
(
2n/3
↓2d
)

is the total number

of binary strings of length 2n/3 and Hamming weight up to 2d. Whereas we have
just shown by construction that J(n, d) is just the size of a small subset of all
such strings of length 2n/3 and Hamming weight up to 2d. ut

4.3 Efficient Algorithms for Evaluation

There are two tasks we need to consider here: first given the evaluation on J(n, d)
points, how to evaluate the algebraic normal form (i.e., vector of coefficients of

15

algebraic expression) of F, and second given the algebraic normal form of F how
to evaluate the truth table on all its points. Note that if we had the evaluation of
all the points in the input space of F, then both the above tasks can be achieved
by a simple in place execution of the Möbius transform that requires 22n/3 bits
of space and O(n · 22n/3) bit operations.

The first algorithm requires that the attacker be able to map (a) each of
the J(n, d) vectors v ∈ {0, 1}2t that is into an index j ∈ [0, J(n, d) − 1] and
(b) an operation that computes the inverse map efficiently. Thereafter, each
evaluation F(v) is stored in the array location j. After this we can apply an
algorithm similar to one iteration of the standard Möbius transform a total of
2t = 2n/3 times. We prove in Appendix A, that this takes around 2n

3 · J ′(n, d)

bit-operations, where J ′(n, d) = 2 ·∑d−1
i=0

(
n/3−1
i

)
·3i. The total space required in

this algorithm apart from the J(n, d) bits required to store the evaluation array
are a few pre-computed tables to speedup the routine. In Appendix A, we prove
that the additional space is bounded by

(
2n
3 · log2 J(n, d)

)
· J(n, d) bits.

The second algorithm is the efficient Möbius transform that was already
proposed in [DS11, Sec 3.2]. Specifically, the co-efficients of the algebraic normal
form are redistributed into an array of length 22n/3. Thereafter, at the i-th step
(0 ≤ i < 2n/3), the array is divided into 2i+1 sub-arrays and only the indices
whose hamming weight is ≤ 2d in the least significant g = 2n/3 − i − 1 bits in
one-half of the sub-arrays are updated. In Appendix A, it is shown that the total
time complexity of this step is around O(2d · 22n/3) xor operations.

In Appendix A, we further present complete algorithms for both subroutines.
Note that if Toracle is the time required to evaluate F at one point then the above
operation requires J(n, d) · Toracle bit operations to generate the evaluations.
Furthermore, the two routines to generate the algebraic expression for F and
then its truth table takes

T (n, d) =
2n

3
· J ′(n, d) + 2d · 22n/3 bit operations. (3)

The total space required is around

M(n, d) =
2n

3
· J(n, d) · log2 J(n, d) + 22n/3 ≈ 22n/3 bits. (4)

4.4 Finding F on BG and BG′
Where hw(G ⊕ G′) = 1

Given two guess vectors withG andG′ with Hamming difference one, i.e., hw(G⊕
G′) = 1, we can observe that there is some similarity between FG and FG′ .
Without loss of generality, let G = b0, b1, . . . , bt−1 and G′ = 1⊕ b0, b1, . . . , bt−1,
where all bi ∈ {0, 1}. Let F be the derivative of F over the coordinate x0, i.e.
F = F (. . . , x0) ⊕ F (. . . , x0 ⊕ 1). Consider the associated function of FG of F .
We have

FG = F (. . . , y1, y0, y0y1 ⊕ b0)

= F (. . . , y1, y0, y0y1 ⊕ b0)⊕ F (. . . , y1, y0, y0y1 ⊕ b0 ⊕ 1)

= FG ⊕ FG′ .

16

Thus the difference between FG and FG′ , is equal to the associated function of
the derivative F on BG. Since F is a derivative it is of degree d− 1, and hence
FG is of degree 2d− 2. Since it is an associated function, its algebraic expression
has the same sparse structure. Let us say we have already the truth table for
FG. When trying to evaluate F in the set BG

′
, we can only interpolate up to the

degree 2d−2 terms of FG. This reduces the number of evaluations to J(n, d−1)
in place of J(n, d).

In practice, in order to evaluate FG, we actually need evaluations of both
F (. . . , x0) and F (. . . , x0 ⊕ 1) over J(n, d − 1) points. The former are the eval-
uations of F on BG which are already stored in the truth table of FG. The
latter are the evaluations of F on BG

′
which we additionally need. Thereafter

the difference of the evaluations on these set of J(n, d − 1) points is used to
interpolate the algebraic expression and thereafter the truth table of FG. We
then find FG′ = FG ⊕ FG. This does not require any additional memory except
the space required to store the truth tables of successive FG’s. Thus when we
need the truth tables of F over multiple partial sets BG, if possible it is more
efficient to traverse the guess space in a Gray code like manner, in which each
successive guess vector has a Hamming distance 1 from the immediately previous
guess vector. This way, each successive evaluation takes J(n, d− 1) points. The
algorithm is explained formally in Algorithm 1.

Algorithm 1: Evaluation of FG′ from FG assuming hw(G⊕G′) = 1.

Input: Number of variables n, degree of F = d, iteration number i
Input: Truth table for FG if i 6= 0
Output: Truth table for FG′ if i 6= 0 else FG

if i=0 then1

/* First Iteration*/2

Get J(n, d) evaluations of F on BG
3

Interpolate expression FG using Möbius2(2n/3) in Appendix A;4

Evaluate truth table FG using Möbius3(2n/3, 2d) in Appendix A;5

Store truth table in array Tab;6

end7

else8

Get J(n, d− 1) evaluations of F on BG′ ;9

/* Equivalent to evaluations of FG′ on all y ∈ {0, 1}2n/3*/10

for Each x ∈ set of J(n, d− 1) do11

Find associated vector y of x;12

FG(y) = Tab(y)⊕ FG′(y);13

end14

Interpolate expression FG using Möbius2(2n/3) in Appendix A;15

Evaluate truth table FG using Möbius3(2n/3, 2d− 2) in Appendix A;16

Update Tab(y) = Tab(y)⊕ FG(y), ∀ y;17

/* Truth table of FG′ is in Tab*/18

end19

17

4.5 Cube sum over partial space

We look at one final result connected with partial sets before moving on to the
attack description. Let F be any Boolean function over n variables of degree
d. Partition the n variables x0, x1, . . . , xn−1 into 2 sets X1 = [x0, x1, . . . , xn1−1]
and X2 = [xn1

, xn1+1, . . . , xn−1] of size n1 and n−n1 respectively. We know that
the Boolean function F ′ =

⊕
X1∈{0,1}n1 F (X2, X1) which is a cube sum over the

cube represented by n1 bits, is a function of degree at most d− n1 over n− n1
variables.

Now consider a function F over n = 3t variables of degree d, and the function
h for which we defined the set B0/B1 for a guess vector in the previous sub-
sections. Again partition the n = 3t variables x0, x1, . . . , x3t−1 into 2 sets X1 =
[x0, x1, . . . , x3t1−1] and X2 = [x3t1 , x3t1+1, . . . , x3t−1] of size n1 = 3t1 and n −
n1 = 3t − 3t1 respectively. Now for some guess vector G1 ∈ {0, 1}t1 define the
set BG1 = Bgt1−1 × Bgt1−2 × · · · × Bg0 of size 22t1 . Now consider the Boolean
function F ′′ defined as F ′′ =

⊕
X1∈BG1 F (X2, X1). We will try to determine

algebraic degree of F ′′.

Note that the function h for which B0 = {0, 2, 4, 7} has the algebraic expres-
sion x0 ⊕ x1x2. Let H be any 3-variable Boolean function: the sum of H over
the set B0 can be clearly seen as

⊕
x∈{0,1}3 H(x) · (1⊕ h(x)) and that over B1

is
⊕

x∈{0,1}3 H(x) · h(x). Therefore we have

F ′′ =
⊕

X1∈BG1

F (X1, X2) =
⊕

X1∈{0,1}3t1
F (X1, X2)·

t1−1∏
i=0

(gi⊕1⊕h(x3i, x3i+1, x3i+2))

Since h is quadratic, this is a cube sum over 3t1 bits of a function of degree
d+ 2t1, and so its degree is at most d+ 2t1 − 3t1 = d− t1 = d− n1/3.

Cube Sums over Semi-Partial Spaces Define partitions ofB0/B1 asB0[0] =
{0, 2}, B0[1] = {4, 7} and B1[0] = {1, 3}, B1[1] = {5, 6}. Similarly define
B0[2] = {0, 4}, B0[3] = {1, 7} and B1[2] = {1, 5}, B1[3] = {3, 6} (let us call
them semi-partial sets).

Now for the guess vector G1 ∈ {0, 1}t1 , for any z ∈ {0, 1, 2, 3} define the semi-
partial space S = Bgt1−1×· · ·×Bgi [z]×· · ·×Bg0 , where only the i-th component
is a semi-partial set. The algebraic degree of the Boolean function F ′′′i [z] defined
as F ′′′i [z] =

⊕
X1∈S F (X2, X1) is also at most d − n1/3. This readily follows

from the previous arguments, since the function h[z] which is 1 on the set Bgi [z]
for any gi ∈ {0, 1} and any z ∈ [0, 3] is also quadratic. If F,F′′,F′′′i [z] are the
corresponding associated functions, and Y2||Y1 the associated vector of X2||X1,
the following results can be easily deduced:

18

(1) F′′ =
⊕

Y1∈{0,1}2t1
F(Y2, Y1), (2) F′′′i [0] =

⊕
Y1∈{0,1}

2t1

y2i+1=0

F(Y2, Y1),

(3) F′′′i [2] =
⊕

Y1∈{0,1}
2t1

y2i=0

F(Y2, Y1)
(5)

Given these definitions, we shall shortly see how the semi-partial sums help
recover parts of the key in the attack that we now describe.

5 Details of the attack

After linearizing the first round, the attacker can obtain n equations in the n-
keybit variables of degree d = 2ρ each for any arbitrary instance of 2ρ/2ρ + 1
round LowMC. Let us denote the equations EG,i = 0, ∀ i ∈ [0, n−1], where the
suffix G denotes the guess vector used to linearize and construct the equations.
The central technique of equation solving popularized in [LPT+17,Din21a,Din21b]

is formulating the Boolean polynomial AG =
∏n−1
i=0 (1 +EG,i) in the keybit vari-

ables. Note that if and only if K∗ ∈ BG is a common root of all the EG,i,
then AG evaluates to 1 at the point K∗ (for convenience we will call all points
that evaluate to 1 with AG as its solution space). Note that if the EG,i’s have
a unique/odd number of roots in BG then the sum S =

⊕
x∈BG AG(x) will

return 1. S therefore serves as a decision oracle that returns if an underlying
equation system has a unique or odd number of roots. If on the other hand the
given equation system does have a unique root, and if given Ei’s one can effi-
ciently compute S, then it was shown in [LPT+17], how to query this oracle a
polynomial number of times to recover the unique root.

However each EG,i has potentially
(
n
↓d
)

terms and multiplying n such equa-
tions to get AG is computationally expensive and is unlikely to take time less than
exhaustive search of key, at least for the parameter sets we are interested in. So a
little improvisation is required to compute the polynomial efficiently. Note in all
instances of LowMC with complete non-linear layers the blocksize/keysize n = 3t
is a multiple of 3. So We first partition the key variables k3t−1, k3t−2, . . . , k0 into
two sets K2 = [k3t−1, k3t−2, . . . , k3t1] and K1 = [k3t1−1, k3t1−2, . . . , k0] of size
n − n1 = 3t − 3t1 and n1 = 3t1 each. Since we have used the function h to
linearize the first round, (a) we need to repeat the root finding process a total
of 2t times, once for each G ∈ {0, 1}t, and (b) for any specific G we limit all
the arithmetic in the set BG instead of the whole of {0, 1}n, since we are only
interested to find roots in BG.

As a result of partitioning the key variables into X2, X1, this induces the
natural partition of the bits of G = G2||G1, where G1 = [gt1−1, gt1−2, . . . , g0]
and G2 = [gt−1, gt−2, . . . , gt1]. The next idea is for some key vector in BG2 ,
we perform an exhaustive search in BG1 . First we choose a parameter ` < n.
Next we randomly choose ` out of the n equations and try to find the common

19

roots of these ` equations. Note this induces an underlying random polynomial
ÃG =

∏`−1
i=0

(
1⊕ EG,r(i)

)
, where r(i) is the ith element in the list of ` random

integers chosen in [0, n− 1]. ÃG evaluates to 1 only at the common roots of the
` random equations chosen above. As such ÃG is essentially a noisy version of
AG that is slightly easier to compute. Before we proceed further let us look at
the following lemma.

Lemma 3. Given a single plaintext and ciphertext produced by a LowMC in-
stance, using a key k∗ ∈ BG

∗
for some G∗. After linearizing with the guess

vector G ∈ {0, 1}t, let EG,i, for i ∈ [0, n− 1] be the n equations, so obtained. Let

the product polynomials AG, ÃG be constructed as defined above after making
a random selection of ` equations. Then under the assumption that, for any G,
half the points in BG take EG,i to 0 and the other half to 1, we have

a) For all G 6= G∗, Pr[ÃG(K) = 1] ≈ 2−`, ∀ K ∈ BG.
b) For G = G∗, ÃG(K∗) has to be 1 by construction for any choice of ` equa-

tions. For all other K, we again have Pr[ÃG(K) = 1] ≈ 2−`.

Note that all the above probabilities are computed for all random choices of ` of
the n equations.

Proof. Under the theorem assumption, the probability that any K ∈ BG is a
root of any EG,i can be considered to be around 1

2 . Under the assumption of
independence, the probability that any K ∈ BG is a common root of ` equations

is thus approximately
(
1
2

)`
= 2−`. This argument can also be extended to all

points K 6= K∗, when the guess vector G = G∗ is correct. Since K∗ by construc-
tion has to be the common root of all EG∗,i, we must have ÃG∗(K

∗) = 1, for
all random choices of ` equations. This also tells us that the expected solution
space of ÃG in the set BG, for all choices of G, has cardinality around 22n/3−`.

Note that we assume that EG,i’s are balanced and independent in BG to
arrive at the proof. It is a reasonable assumption to make for large values of n.
We verified by computer simulations for smaller LowMC instances with blocksize
up to 24, that the EG,i’s are close to balanced and independent on the partial
sets. ut
Now the main idea is as follows: we fix some constant u ∈ BG2 , and try to find all
common roots of the reduced equation system EG,r(i)(u,K1), for i ∈ [0, ` − 1].
This is an equation system in only n1 = 3t1 variables, and therefore we can
exhaustively search for common roots of this reduced system.

Data generation In this part we describe how the attacker collects data to
proceed with the attack. The first step is obviously to find a truth table for
ÃG(u,K1) for some fixed u ∈ BG2 . We proceed as follows.

(A) We will not compute the algebraic expression for any equation EG,r(i) for
any G, i. Instead what we do is as follows. Choose any u ∈ BG2 . For all
v ∈ BG1 , for the vector u||v we need to evaluate EG,r(i)(u, v). There are

22n1/3 of such points.

20

(B) For each of the 22n1/3 points (u, v) = k (say), consider k to be the LowMC
key. If R is odd, execute the first ρ+ 1 rounds with k as key with the given
plaintext to get the state SF . Then execute the inverse of last ρ rounds with
k as key on the given ciphertext, to get the state SB. If R is even, then
execute the first ρ rounds and the Substitution layer of the ρ + 1-th round
to get SF (see Fig 2). Then execute the the inverse of the last ρ− 1 rounds
and the inverse round key addition and affine layer of round ρ + 1 to get
SB . If the r(i)-th bits SF and SB are equal, then k is obviously a root of
EG,r(i) i.e. EG,r(i)(u, v) = 0. If not we have EG,r(i)(u, v) = 1. Note that this
also allows us to evaluate EG,i(u, v) for all i ∈ [0, n− 1] by simply checking
whether i-th bits SF and SB are equal.

(C) (u, v) is a common root of the system of equations EG,r(i)(u, v), for i ∈
[0, `− 1] if r(i)-th bits SF and SB are equal for all i.

(D) The method requires 2 · (2ρ + 1)n2 = 2Rn2 operations for each point and
so the total number of bit operations required for this operation for any one
u ∈ BG2 is 2Rn2 · 22n1/3.

It is not too difficult to see that finding the common roots of EG,r(i)(u,K1)
is equivalent to finding the truth-table of the n1-variable Boolean polynomial
ÃG(u,K1) over the points in BG1 . This is true since ÃG(u,K1) evaluates to
1 only at these common roots and 0 otherwise. Define the polynomials FG =⊕

v∈BG1 AG(K2, v) and F̃G =
⊕

v∈BG1 ÃG(K2, v), both of which are of n − n1
variables, and by the arguments in Section 4.5, F̃G has an algebraic degree at
most d` − n1/3. If we now find the sum of all the points in the truth table of
ÃG(u,K1) that we have just found, we will be essentially evaluating F̃G at the
point u ∈ BG2 .

Remark 2. Note that we have seen that the number of operations needed to
evaluate F̃G at the single point u ∈ BG2 is Toracle = 2Rn2 · 22n1/3. And from
the analysis in Section 4.2, we know that we need evaluations of F̃G at J(n −
n1, d` − n1/3) points u to fully find its truth table over BG2 . Note that, as we
will see later, we will need to perform this operation multiple times: each time
for a different combination of ` equations EG,i in [0, n − 1]. Whereas we have
seen that performing the steps (A)-(D) allows us to evaluate EG,i(u, v) for all
i ∈ [0, n−1] for any u and all v ∈ BG1 . Note that for each u, if we store EG,i(u, v)
in a table (for all i ∈ [0, n − 1], v ∈ BG1), this saves us the trouble of having
to re-evaluate these values when we repeat the process for a different set of `
equations in [0, n− 1]. The total memory required for this will be

Meval = J(n− n1, d`− n1/3) · n · 22n1/3 bits. (6)

Since the process is needed to be done once for the J(n− n1, dl− n1/3) points,
the time required is given as

Teval = J(n− n1, d`− n1/3) · Toracle. (7)

21

Faster data generation As we discussed, for a fixed u ∈ BG2 , it is possible to
derive the truth table ÃG(u,K1), (K1 ∈ G1) with 2Rn2 ·22n1/3 bit operation. In
[Din21a], this is done by gray-code assisted exhaustive search algorithm given
in [BCC+10]. In this section we discuss how the same approach can be used to
derive the truth table of ÃG(u,K1) in our algorithm, where u is fixed. To do so
we first store the algebraic formal form of Ei(K), for i ∈ {0, . . . , n− 1}, i.e. the
polynomials that we aim to find the common root of. Having this representation,
for a fixed G and u ∈ BG2 , we proceed as follows:

1. Substitute K2 by u in Ei(K1,K2) .
2. Enumerate over all values of K1 ∈ {0, 1}n1 in a Gray code order .
3. Store the values for K1 values that are in BG1 .

We note that it is not possible to perform the same algorithm only for K1 ∈
BG1 , as it might not be possible to enumerate this set in a gray-code order.
As stated in [BCC+10], Step 2 requires 2d log(n1) · 2n1 bit operations. Now let
us calculate the complexity of step 1. To perform this step one would need to
remove all monomials that contain a variable that is substituted with 0, for each
Ei, i ∈ {0, . . . , n − 1}. This requires (n + d) ·

(
n
↓d
)

bit operations. The last step
does not require any extra computation. Hence, the total time complexity of
deriving the truth table in this manner is given by,

Toracle = (n+ d) ·
(
n

↓ d

)
+ 2d log(n1) · 2n1 .

Depending on the value of n, n1, either the gray-code enumeration or propagation
of the encryption circuit might result in better time complexities, hence, we can
consider the oracle time complexity to be

Toracle = min((n+ d) ·
(
n

↓ d

)
+ 2d log(n1) · 2n1 , 2Rn2 · 22n1/3).

A few observations: Consider the associated functions F̃G. Note that for the
correct guess G = G∗ = G∗2||G∗1, and the correct root K∗ = K∗2 ||K∗1 , we always
have FG∗(K

∗
2) = 1, since of the 22n1/3 terms AG∗(K

∗
2 , v) we use to construct

this sum, the term evaluates to 1 only when v = K∗1 (assuming that there is a
unique solution). If Y ∗ = Y ∗2 ||Y ∗1 is the associated vector of K∗, we also have
FG∗(Y ∗2) = 1 by definition. Similarly (under the same unique root assumption)
we will have FG(u) = 0, for all a) G 6= G∗ and b) G = G∗ and u 6= K∗2 . This
is not difficult to see: since AG evaluates to 1 only at G = G∗,K = K∗, at all
other points it will evaluate to 0, and so the expression for FG(u) for the above
2 cases simply sums evaluations of AG at which it is always 0.

Isolated Solutions: A solution z = z2||z1 is said to be an isolated solution of
a complete equation system with respect to the given partition of bits, if apart

22

from z any other z2||z′1 for z1 6= z′1 is not a solution of the system. Of course
if the system admits a unique solution it is of course also isolated. In [Din21a],
it was proven that if z = z2||z1 is an isolated solution of an equation system
identified by the product polynomial A then z is also an isolated solution of the
noisy equation system Ã, with high probability, provided ` is chosen judiciously.
Define the semi- partial spaces

BG1
i [z] = Bgt1−1 × · · ·Bgi [z]× · · ·Bg0 ,∀i ∈ [0, t1 − 1] and z = {0, 2}.

Consider the semi-partial sums FG,i[z] =
⊕

v∈BG1
i [z]

AG(K2, v) and F̃G,i[z] =⊕
v∈BG1

i [z]
ÃG(K2, v). By the same arguments in Section 4.5, F̃G,i[z] also has an

algebraic degree at most d` − n1/3. Consider the associated functions FG,i[z],

F̃G,i[z]. If Y ∗1 = (y2t1−1, y2t1−2, . . . , y0), and Y ∗2 ||Y ∗1 is an isolated solution, then
we must have FG,i[0](Y ∗2) = y2i+1⊕1 and FG,i[2](Y ∗2) = y2i⊕1. According to the
definition of these functions given in Equation (5), this follows from the nature
of these semi-partial sums proven in [Din21a, Proposition 3.2]. Thus if we are
able to extract the partial solution Y ∗2 , evaluating the 2t1 polynomials FG,i[0]/[2]

at this point gives us the remaining root. The above also holds for F̃G,i[z], i.e. if
the root is isolated and if Y ∗2 is the partial root of the equation system identified
by the product polynomial ÃG, then evaluating the polynomials F̃G,i[0]/[2] at
this point will give us the remaining solution. After this, it is straightforward to
find the actual key K∗ from the Y ∗ vector from Equation (2).

Evaluating F̃G, F̃G,i[z]: Note that F̃G, F̃G,i[z] have the same maximum alge-

braic degree d`− n1/3. So F̃G, F̃G,i[z] can be interpolated using the same set of

J(n−n1, d`−n1/3) evaluations of ÃG, only that to find F̃G,i[z] we have to sum
the evaluations over a slightly reduced space. After this we use use the Möbius
transform algorithm described in Sec 4.3 to evaluate its truth table. For the
(2t1 + 1) = 2n1/3 + 1 functions, this takes time and memory proportional to
(2n1/3 + 1) ·T (n−n1, d`−n1/3) and (2n1/3 + 1) ·M(n−n1, d`−n1/3) for any
random choice of ` equations. Since this algorithm of is probabilistic, we may
need to repeat it N times (for some integer N) to obtain the correct solution
with high probability. Hence the complexities need to be multiplied by N .

However if we went about traversing the guess space in gray code like manner,
i.e. in the i-th step the Guess vector is i⊕ (i� 1), then we have seen that each
additional step takes time and memory proportional to T (n−n1, d`−n1/3− 1)
and M(n−n1, d`−n1/3−1). Thus the total time required to evaluate the truth
tables over all the guess space is

Tint = N ·
(

2n1
3

+ 1

)
·
(
T (n− n1, d`− n1/3) + (2n/3 − 1) · T (n− n1, d`− n1/3− 1)

)
≈ N ·

(
2n1
3

+ 1

)
· 2n/3 · T (n− n1, d`− n1/3− 1)

(8)

23

As we have seen, this does not require additional memory other than the space
required t hold the truth tables of the associated functions. However to take
advantage of this reduction we have use the same set of ` random equations
EG,i (for each of the N instances) over all the guess vectors G.

Calculating probabilities and total complexity: For the attack to work
we need the correct solution K∗ to be isolated in multiple probabilistic equation
systems. The following lemma calculates its probability.

Lemma 4. Assuming that the underlying LowMC encryption admits a unique
root K∗ = K∗2 ||K∗1 ∈ BG

∗
, then we have the probability that the root is isolated

in the system identified by ÃG is around 1− 22n1/3−`.

Proof. From Lemma 3, we have that Pr[ÃG∗(K∗2 , v) = 0] ≈ 1 − 2−` for all
v 6= K∗1 . By union bound over all v ∈ BG1 that are not equal to K∗1 we have the
result. For ` = 2n1/3 + 1, this probability is around 1

2 .

The attacker needs to repeat the procedure multiple times (let’s say N times),
each time for a new set of ` random equations, in order to filter out the root by
some probabilistic analysis. We have already seen in Remark 2 that this does not
cost additionally in terms of evaluations to generate the polynomials F̃G each
time we need to select ` random equations. As in [Din21a], we choose N = 4 and
` = 2n1/3 + 1, so that the correct solution is isolated with probability at least
1/2, and so the the probability that it gets isolated in at least two probabilistic

equation systems is given by
∑4
i=2

(
4
i

)
2−4 = 11

16 . However, as proven in [Din21a,
Proposition A.7], the number of incorrect solutions filtered in this process is
given by 2(2n−4n1)/3.

Testing Solutions: For each G, we get around 22(n−2n1)/3 candidates to test for
correctness on average for the first n−n1 bits of the key. Note that FG,i[0](Y ∗2) =
y2i+1⊕1 and FG,i[2](Y ∗2) = y2i⊕1 allows us to compute the associated vector Y1
for the remaining key, from which the actual key bits can be easily deduced. The
most naive way to do this is to run the encryption algorithm for each solution
with the given pair of plaintext/ciphertext. Testing solutions this way would
require around Ttest = 22(n−2n1)/3 · (2Rn2) bit operations for each guess of G.
The full algorithm in the form of a subroutine is presented in Algorithm 2.

Using the naive approach might result in the test time dominating the solve
time, especially for variants with more rounds. However, one can test the so-
lution in batches, for instance based on their most significant bits as described
in [Din21a, Appendix B] which makes the amortized complexity negligible in
comparison to the solving complexity.

5.1 Time and Space Complexity

Odd rounds: For an odd number of rounds R = 2ρ+ 1, we have d = 2ρ. The
attack needs to be repeated 2n/3 times once for each guess of G, however it is

24

Algorithm 2: The algorithm for solving for the key.

Input: (pt, ct), n1: Internal partition, `: #Equations to construct ÃG

Input: N : #Instances algorithm per guess of G, R: #LowMC rounds.
Output: The key K∗ such that EncK∗(pt) = ct
for i = 0→ N − 1 do20

Populate array ri(·) with ` random integers from [0, n− 1];21

/* For R even, the random list is chosen as per Sec 5.1 */22

end23

Set i← 0;24

for Each guess vector G = G2||G1 = i⊕ i� 1 do25

if i = 0 then26

Set d′ = d`− n1/3 else d′ = d`− n1/3− 1;27

end28

for Each of the J(n− n1, d
′) points u ∈ BG2 do29

for Each of the 22n1/3 points v ∈ BG1 do30

Compute EG,i(u, v) as explained in Remark 2 and store in table;31

end32

end33

/* Evaluation complete */34

for j = 0→ N − 1 do35

for Each of the J(n− n1, d
′) points u ∈ BG2 do36

(U ′, V ′)← Associated vector of (u, v);37

Set F̃G(U ′), F̃G,l[z](U
′)← 0, ∀l ∈ [0, t1 − 1], z = {0, 2}, ;38

Parse V ′ = [y2t1−1,y2t1−2,...,y0];39

for Each of the 22n1/3 points v ∈ BG1 do40

ÃG(u, v)← 1 if all EG,rj(e)(u, v) = 0 else ÃG(u, v)← 0;41

F̃G(U ′)← F̃G(U ′)⊕ ÃG(u, v);42

for l = 0→ t1 − 1 do43

if y2l+1 = 0 F̃G,l[0](U ′)← F̃G[0](U ′)⊕ ÃG(u, v);44

if y2l = 0 F̃G,l[2](U ′)← F̃G[2](U ′)⊕ ÃG(u, v);45

end46

end47

Evaluate F̃G, F̃G,l[z] on all points in BG2 ;48

/* If i=0, we interpolate/evaluate the functions */49

/* If i>0, we interpolate/evaluate the derivatives */50

if F̃G(U) = 1 then51

W ∗ ←52

U ||1⊕ F̃G,t1−1[0](U), 1⊕ F̃G,t1−1[2](U), · · · 1⊕ F̃G,0[2](U);
Add K∗ to a list L;53

end54

end55

end56

/* Now testing of solutions begins */57

for All K∗ ∈ L that appear at least twice do58

if EncK∗(pt) = ct then59

return K∗;60

end61

end62

i← i+ 1;63

end64 25

noteworthy that the memory complexity remains N · (2n1/3+1) ·M(n−n1, d`−
n1/3) + Meval, where M(n, d), Meval are as defined in Equations (4) and (6)
respectively. Add to that the space required to store the list L, which is around
n · 2(2n−4n1)/3 bits. So the memory complexity in terms of number of bits is

MC = N · (2n1/3 + 1) ·M(n− n1, d`− n1/3) +Meval + n · 2(2n−4n1)/3 (9)

Note that even if we need to run the algorithm N times, the time required to
generate the evaluations is still Teval as shown in Remark 2 and Equation (7).

The total time complexity in terms of number of bit operations is given as

TC = 2n/3 · (Teval + Ttest) + Tint, (10)

where Tint is as defined in Equation (8). For n = 255, R = 5, we have d = 4
after linearization. Ttest is often considered to be dominated by Teval. To give an
example, if we choose n1 = 15, ` = 2n1/3 + 1, and N = 4, we get TC ≈ 2256.74

and MC ≈ 2165.5 bits. The brute force complexity for the same is around 2274

bit-operations. Note that [Din21a] had reported TC = 2251 operations with
MC = 2228 bits.

Even rounds: If the number of rounds R = 2ρ is even, we still have d = 2ρ,
but as already pointed out in Section 3.1, we can take advantage of the fact that
the products of the EG,i’s have lower degree if the equations are chosen carefully.
If ` ≡ 0 mod 3, we can choose the ` random equations in sets of 3, such that
in each set the equations are aligned under the same S-box. This reduces the
algebraic degree of ÃG to dÃG

= 4·2ρ−1 · `3 from 2ρ ·`. If ` ≡ 2 mod 3, then we can
again apply the above strategy of grouping the equations in sets of 3. However, we
need to choose one set of cardinality 2, and we can select these which are aligned
under some randomly chosen S-box. In that case, dÃG

= 4 · 2ρ−1 · b `3c+ 3 · 2ρ−1.
If ` ≡ 1 mod 3, then we have to choose one set of cardinality 1, which makes
dÃG

= 4 · 2ρ−1 · b `3c+ 2ρ.

Thus the degree of F̃G can be made to be around dÃG
− n1/3 by judiciously

choosing the random set of equations. In that case we need J(n − n1, dÃG
−

n1/3) points to evaluate F̃G on all points in BG2 . Thus we need the following
adjustments to the time and memory complexity:

1. We need to adjust Meval to J(n − n1, dÃG
− n1/3) · n · 2n1/3 and Teval to

J(n− n1, dÃG
− n1/3) · Toracle.

2. Thus the adjusted memory complexity is given as:

MC = N · (2n1/3+1) ·M(n−n1, dÃG
−n1/3)+Meval+n ·2(2n−4n1)/3 (11)

3. Thus the adjusted time complexity is given as:

TC = 2n/3 · Teval + T ′int + 2n/3 · Ttest. (12)

where T ′int = N ·
(
2n1

3 + 1
)
· 2n/3 · T (n− n1, dÃG

− n1/3− 1)

For n = 255, R = 6, we have d = 8 after linearization. If we choose n1 =
12, ` = 2n1/3 + 1 = 9, we get dÃG

= 44. We get TC ≈ 2260 and MC ≈ 2167

bits.

26

6 Time-Memory Tradeoffs

In this section we will study generic time-memory trade-offs that can be applied
to the algorithm to decrease the memory complexity even further. Moreover we
compare the results to the equation solving algorithm in [Din21a] when the same
tradeoffs are applied.

As mentioned in [Din21a, Section 4.3], a generic time-memory trade-off can be
done by guessing the values of g variables and looking for roots of the equations
for n− g remaining variables in the subset induced by this guess. If T (n, n1, d)
and M(n, n1, d) represent the time and memory complexity of the algorithm,
the complexities obtained by applying this trade-off would be T ′(n, n1, d, g) =
2gT (n− g, n1, d) and M ′(n, n1, d, g) = M(n− n1, n1, d).

In order to apply the same trade-offs for our algorithm there is only one detail
that should be taken care of. As we linearize the S-boxes based on a quadratic
function in the input, guessing some of the bits might induce inconsistencies with
the value guessed for this quadratic function. For instance if x0, x1 are assigned
to be 1, and the quadratic function in question is the majority function,, the
guess maj(x0, x1, x3) = 0 is inconsistent with the assigned values.

Luckily circumventing this issue is quite straight forward. The trick is to
guess the values of the inputs of t S-boxes from the first round (g = 3t guesses),
instead of guessing g variables arbitrarily. The time/memory complexity in this
case would be T ′(n, n1, d, t) = 23tT (n − 3t, n1, d) and M ′(n, n1, d, g) = M(n −
3t, n1, d).

In order to compare our results with the ones given in [Din21a], we have
computed and ploted the time and memory complexities for both the algorithms
with respect to different configurations of g. We compare the complexities for
n = 129, 192, 255 and all variants with R ∈ {2, . . . , 6} rounds. For each of the
instances, based on the value of g, we pick the value of n1 which optimizes the
time and memory complexity. The result attest a significant decrease in memory
complexity, without a significant penalty in terms of time complexity. Fig. 3
demonstrates both time and memory complexities from this work and [Din21a]
side-by-side, for different number of key-bit guesses.

Remark 3. Note that after guessing g key-bits, the underlying system is on
n − g variables. As g grows closer to n however, there is a subtle detail that
requires care. The gray-code enumeration performed to computed the truth ta-
ble of Ã(K1, u), for a bitstring u ∈ Wn−n1

d , contains an extra complexity term
(n + d) ×

(
n
↓d
)
, corresponding to substituting n − n1 variables with bits of u.

When n is large and n1 = Θ(n), this term can be ignored4, as it is a polyno-
mial term dominated by 2n1 , however as g gets closer to n, and thus number of
variables gets smaller, this term dominates 2d log(n1)2n1 and therefore should
be considered in the complexity estimates ploted in Fig. 3.

4It is mentioned in [Din21a, remark 2.2] that n1 = Θ(n) and n � 2n1 , otherwise
the algorithm would not have much advantage compared to exhaustive search.

27

This	Work
r=2,	d=2
r=3,	d=2

r=4,	d=4
r=5,	d=4

n=129

[D21]
r=2,	d=2
r=3,	d=4

r=4,	d=4
r=5,	d=8

lo
g 2
	M
C

0

25

50

75

100

125

g
0 25 50 75 100 125

This	Work
r=2,	d=2
r=3,	d=2

r=4,	d=4
r=5,	d=4

n=129

[D21]
r=2,	d=2
r=3,	d=4
r=4,	d=4
r=5,	d=8

lo
g 2
	T
C

90

100

110

120

130

140

150

160

g
0 25 50 75 100 125

This	Work
r=2,	d=2
r=3,	d=2
r=4,	d=4
r=5,	d=4

n=192

[D21]
r=2,	d=2
r=3,	d=4

r=4,	d=4
r=5,	d=8

lo
g 2
	M
C

0

50

100

150

200

g
0 50 100 150 200

This	Work
r=2,	d=2
r=3,	d=2
r=4,	d=4
r=5,	d=4

n=192

[D21]
r=2,	d=2
r=3,	d=4

r=4,	d=4
r=5,	d=8

lo
g 2
	T
C

150

160

170

180

190

200

210

220

g
0 50 100 150 200

This	Work
r=2,	d=2
r=3,	d=2
r=4,	d=4
r=5,	d=4

n=255

[D21]
r=2,	d=2
r=3,	d=4

r=4,	d=4
r=5,	d=8

lo
g 2
	M
C

0

50

100

150

200

250

g
0 50 100 150 200 250

This	Work
r=2,	d=2
r=3,	d=2
r=4,	d=4
r=5,	d=4

n=255

[D21]
r=2,	d=2
r=3,	d=4

r=4,	d=4
r=5,	d=8

lo
g 2
	T
C

200

220

240

260

280

g
0 50 100 150 200 250

Fig. 3: This figure demonstrates the time and memory complexity of the attacks
presented in this work (solid lines) and [Din21a] (dotted lines) for different num-
ber of key-bits guessed (g), for different variants of the cipher with block sizes
129, 192 and 255 and different number of rounds R = 2, 3, 4, 5, 6. The figures on
the left-hand side present the logarithm of the memory complexities, and the
figures on the right present the logarithm of the time complexity of each attach.

28

Upon the conclusion, we note that there are other generic time/memory
tradeoffs that can be applied to reduce the memory complexity. However, as
the algorithm proposed in this work and the algorithm proposed in [Din21a]
use the same framework, unless a tradeoff is specifincally tailored to one of the
algorithms, it can be applied to the other as well.

7 Conclusion

In this paper we revisit key recovery attacks on the LowMC block cipher given a
single plaintext and ciphertext pair. This attack scenario is important as directly
leads to the retrieval of the signing key in the PICNIC digital signature scheme.
We began the attack by linearizing the first round by guessing the value of a
balanced quadratic equation in the master key bits. This tessellates the keyspace
into numerous partial sets, and by limiting our key search procedure to these
partial sets we can limit the memory complexity of the algorithm to just about
22n/3 bits, while attacking some 5 and 6-round instances of LowMC.

References

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. In Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I, pages 430–454, 2015.

BBDV20. Subhadeep Banik, Khashayar Barooti, F. Betül Durak, and Serge Vaude-
nay. Cryptanalysis of lowmc instances using single plaintext/ciphertext pair.
IACR Trans. Symmetric Cryptol., 2020(4):130–146, 2020.

BBVY21. Subhadeep Banik, Khashayar Barooti, Serge Vaudenay, and Hailun Yan.
New attacks on lowmc instances with a single plaintext/ciphertext pair.
In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology
- ASIACRYPT 2021 - 27th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December
6-10, 2021, Proceedings, Part I, volume 13090 of Lecture Notes in Computer
Science, pages 303–331. Springer, 2021.

BCC+10. Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou,
Ruben Niederhagen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive search
for polynomial systems in F2. In Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA,
USA, August 17-20, 2010. Proceedings, pages 203–218, 2010.

BDF18. Charles Bouillaguet, Claire Delaplace, and Pierre-Alain Fouque. Revisiting
and improving algorithms for the 3xor problem. IACR Trans. Symmetric
Cryptol., 2018(1):254–276, 2018.

Din21a. Itai Dinur. Cryptanalytic applications of the polynomial method for solving
multivariate equation systems over GF(2). In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 -
40th Annual International Conference on the Theory and Applications of

29

Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceed-
ings, Part I, volume 12696 of Lecture Notes in Computer Science, pages
374–403. Springer, 2021.

Din21b. Itai Dinur. Improved algorithms for solving polynomial systems over GF(2)
by multiple parity-counting. In Dániel Marx, editor, Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Con-
ference, January 10 - 13, 2021, pages 2550–2564. SIAM, 2021.

DS11. Itai Dinur and Adi Shamir. An improved algebraic attack on hamsi-256.
In Antoine Joux, editor, Fast Software Encryption, pages 88–106, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

GKRS. Lorenzo Grassi, Daniel Kales, Chistian Rechberger, and Markus
Schofnegger. Survey of key-recovery attacks on lowmc in a sin-
gle plaintext/ciphertext scenario. https://raw.githubusercontent.com/

lowmcchallenge/lowmcchallenge-material/master/docs/survey.pdf.
LIM21. Fukang Liu, Takanori Isobe, and Willi Meier. A simple algebraic attack on

3-round lowmc. IACR Cryptol. ePrint Arch., 2021:255, 2021.
LPT+17. Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams,

and Huacheng Yu. Beating brute force for systems of polynomial equations
over finite fields. In Philip N. Klein, editor, Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2190–2202.
SIAM, 2017.

Zav. Greg Zaverucha. The picnic signaure algorithm specifications, version 3.0,
available at https://github.com/microsoft/Picnic/blob/master/spec/

spec-v3.0.pdf.

30

https://raw.githubusercontent.com/lowmcchallenge/lowmcchallenge-material/master/docs/survey.pdf
https://raw.githubusercontent.com/lowmcchallenge/lowmcchallenge-material/master/docs/survey.pdf
https://github.com/microsoft/Picnic/blob/master/spec/spec-v3.0.pdf
https://github.com/microsoft/Picnic/blob/master/spec/spec-v3.0.pdf

Appendix A: Algorithms for Efficient Möbius Transform

In this section, we present the algorithms for memory efficient Möbius Transform
described in Section 4.3, and analyze its time complexity.

A.1 Algorithm 1

This algorithm interpolates the algebraic form of F given its evaluation on J(n, d)
points of its input space, where n = 3t is a multiple of 3, and d is the degree of
F . The first algorithm requires that the attacker be able to map (a) each of the
J(n, d) vectors v ∈ {0, 1}2t that is into an index j ∈ [0, J(n, d) − 1] and (b) an
operation that computes the inverse map efficiently.

We have already seen that all points included in the set of J(n, d) have
a special form, i.e., if L(n, d) is the set of binary strings of length t = n/3
and hamming weight upto d. Then by a slight abuse of notation all the strings
in the set J(n, d) can be written as ∪di=0L(n, i) ⊗ {01, 10, 11}i. For example if
1001 ∈ L(12, 2), then 1001 ⊗ [11, 01] is defined as 11 00 00 01. Then it can be
seen that the following 32 strings that belong to the set J(12, 2) are contributed
by 1001:

(1) 01 00 00 01 (4) 10 00 00 01 (7) 11 00 00 01

(2) 01 00 00 10 (5) 10 00 00 10 (8) 11 00 00 10

(3) 01 00 00 11 (6) 10 00 00 11 (9) 11 00 00 11

Thus we first find a way to index all length n/3 strings of weight upto d. To do this
we define a function next(u), that returns the smallest integer larger than u that
has the same hamming weight as u (the authors found the subroutine at https:
//stackoverflow.com/questions/13542794/hamming-weight-based-indexing).

next(u)

lo = u & -u; // lowest one bit

int lz = (u + lo) & ~u; // lowest zero bit above lo

u |= lz; // add lz to the set

u &= ~(lz - 1); // reset bits below lz

u |= (lz / lo / 2) - 1; // put back right number of bits at end

return u;

Define 2 arrays Ind and Ind−1 of J(n, d) entries. We index the strings in the
following manner. Note we use Ind−1 as a hash table where the input 2n/3 strings
u are mapped to some value in [0, J(n, d)− 1].

index(n, d)

Ind[0] = 0, Ind−1[0] = 0, loc=1

for i = 1 → d

x = 2i -1 // smallest integer of weight i

31

https://stackoverflow.com/questions/13542794/hamming-weight-based-indexing
https://stackoverflow.com/questions/13542794/hamming-weight-based-indexing

do

for j = 0 → 3d-1

td−1, td−2 . . . t0 ← Ternary representation of j

u = x ⊗ (1 + td−1), (1 + td−2), . . . , (1 + t0)
Ind[loc] = u,

Ind−1[hash(u)] = loc

loc = loc+1

end for j

x= next(x)
while x is of less than n/3 bits

end for i

Note that the runtime of the above algorithm is proportional to J(n, d) and
since it has to be performed only once and not for all G, this results in a small
overhead which is negligible when compared to the total time complexity TC of
the algorithm. We do have to store 2 additional arrays which results in a space
overhead of J(n, d) · [2n/3 + log2 J(n, d)] bits.

Möbius Transform for interpolation: In general the in place Möbius trans-
form has a simple and elegant structure given by Möbius1(m) below, where
A[j] is initially the evaluation of the underlying function at point j. After the
routine is executed A[j] stores the co-efficient of the algebraic expression of the
Boolean function indexed by the bits of j:

Möbius1(m = 2n/3)

for i = 0 to m-1

e = 1 << i

for j = 0 to 2m-1

if j & e != 0

A[j]=A[j]⊕A[j⊕e]
end if

end for j

end for i

Möbius2(m = 2n/3)

for i = 0 to m-1

e = 1 << i

for j = 0 to J(n,d)-1

j’ = Ind[j]
if j’ & e != 0

j’’= j’⊕e
k = Ind−1[hash(j’’)]
A[j]=A[j]⊕A[k]

end if

end for j

end for i

The algorithm Möbius2(m) is what we propose as Algorithm 1. The algorithm
is exactly the same except we account for the fact that A[j] now stores the
evaluation of the function at point Ind[j]. If both Ind[j] and Ind[j]⊕e are points
in J(n, d) we proceed with updating the array. Note that (a) the hash compu-
tations and hence computation of k and, (b) the computation j’ & e can be
performed one time and stored in a table using

(
2n
3 · (1 + log2 J(n, d))

)
·J(n, d) ≈(

2n
3 · log2 J(n, d)

)
· J(n, d) bits of memory (for each j in the set of J(n, d), for

each of the 2n/3 vectors e, we store k i.e log2 J(n, d) bits and the value of j’

32

& e (1 bit)). So these computations add only a small overhead to the time
complexity itself.

Total number of xors: For each e, a location pointed to by j’ is only
overwritten if corresponding it has 1 in the location pointed to by the sin-
gle one in the unit vectore. It can be seen that the number of such strings
is J ′(n, d) = 2 ·∑d−1

i=0

(
n/3−1
i

)
· 3i. Since each such string produced by tensor

multiplication with strings from L(n/3− 1, d− 1) and inserting two of the three
tuples {01, 10, 11} at the location where e is 1. We claim that each such location
pointed to by these strings are overwritten. This is true since each such string s,
has the property that s⊕e belongs to the set of strings produced by tensoring
from L(n/3 − 1, d − 1) and inserting 00, and hence these must be in J(n, d).
Hence the total number of xors used in the algorithm is 2n

3 · J ′(n, d).

A.2 Algorithm 2

This algorithm will find the entire truth table of F given the vector of coefficients
of its algebraic expression. The first step would be to re-index the coefficients
of the algebraic expression into an array A of size 22n/3 according a natural
canonical ordering, i.e. the coefficient of the monomial

∏
xvii is written into the

array index
∑
vi · 2i. If F is of degree d, we have already established that the

associated function F is of degree 2d. Thereafter, at the i-th step (0 ≤ i < 2n/3),
the array is divided into 2i+1 sub-arrays and only the indices whose hamming
weight is ≤ 2d in the least significant g = 2n/3 − i − 1 bits in one-half of
the sub-arrays are updated. Therefore the total number of xor operations for
0 ≤ i < 2n/3−2d is around 2i ·∑2d

l=0

(
2n/3−1−i

l

)
= 2i ·

(
2n/3−1−i
↓2d

)
. For the remain-

ing 2n/3− 2d ≤ i < 2n/3, the figure is exactly 22n/3−2d−1. In [Din21a,DS11], it
was shown that this sum is around 2d·22n/3. The pseudo-code is given as follows:

Möbius3(m = 2n/3, deg = 2d)

ρ← 0; b ← 1� m − 1; // all one string of length m

for i = 0 → m− 1
g ← m− 1− i; e← 1� g;
ρ ← ρ ⊕ e; // cumulative sum of unit vectors

mask ← ∼ ρ & b; // mask set to 0 in i+1 MSBs i.e. 0i+11m−i−1

for j ← 0 → 2g − 1
for k ← 0 → 2i − 1

ind ← j + k ∗ (2g+1);
if hw(ind & mask) ≤ deg

A[ind⊕ e]← A[ind⊕ e]⊕ A[ind];
end if

end for k

end for j

end for i

33

	Memory-Efficient Single Data-Complexity Attacks on LowMC Using Partial Sets
	Subhadeep Banik1, Khashayar Barooti2, Andrea Caforio2, Serge Vaudenay2

