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ABSTRACT
The LESS signature scheme, introduced in 2020, represented a fresh start for code-
based signatures. In this paper we explore advanced functionalities for signature
schemes, stemming from the work of LESS. First, we adapt a recent protocol of
Beullens et al. to obtain a construction for (linkable) ring signatures. Then, we realize
an identity-based signature scheme following the traditional approach by Joye and
Neven. Our performance numbers confirm that signature schemes based on the code
equivalence problem have considerable potential for practical applications.
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1. Introduction

Digital signatures are arguably one of the most important cryptographic primitives
in the modern communication world, providing a powerful means of authentication
in several crucial contexts such as software distribution, blockchain, electronic voting
and many others. It stands to reason, then, that a considerable amount of effort is
being made to establish new designs for digital signature schemes, that are resistant
to quantum attackers. As is well known, in fact, the vast majority of cryptographic
protocols currently in use is threatened by algorithms such as Shor’s [30], which would
render them insecure. As a consequence, important initiatives are taking place, aimed
at creating new standards for so-called Post-Quantum Cryptography (PQC), such as
the one led by the National Institute of Standards and Technology (NIST) [1]. The
process, started in 2017, now arrived to its third round, after which certain designs will
already be standardized; for digital signatures, these are most likely designs based on
hard problems from lattices, such as Dilithium [20] or Falcon [22]. Besides these, NIST
is considering the standardization of alternative schemes, whose hardness relies on
different mathematical assumptions; in this regard, the current range of candidates is
somewhat limited, to the point of NIST announcing a partial reopening of the call [2],
with the goal of attracting new proposals.
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Code-based cryptography is one of the major players in the PQC scenario, with
schemes such as Classic McEliece, based on McEliece’s seminal work from 1978 [25],
being among the most credible candidates for the key establishment functionality. The
history of code-based signatures is somewhat more complicated, with several schemes
being proposed over the years (e.g. [16, 18, 32]), which only recently started to get
closer to a desirable level of performance [5,7,19]. The situation is even more sketchy
when considering advanced functionalities, such as ring signatures, group signatures,
identity-based signatures etc. In this case, only few proposals exist in literature, which
are all based on either Stern’s zero-knowledge identification scheme [32] or the CFS
scheme [18], leading to very impractical solutions. It is therefore of extreme interest
to investigate alternative code-based approaches to achieve such functionalities.

Our Contribution. In this work, we introduce two new designs for code-based
signatures with advanced functionalities. To do so, we leverage the LESS signature
scheme [13], a newcomer in the code-based ecosystem. Indeed, LESS is based on a
security notion, the code equivalence problem, which is only indirectly related to the
hardness of decoding; this makes it possible to exploit the associated group action,
and construct protocols which are substantially different from the rest of the litera-
ture. To be precise, such protocols are similar in spirit to those based, for example, on
the Discrete Logarithm Problem, and this is what makes LESS particularly suitable
to construct the protocols in the first place.

As a first contribution, we give a construction for a ring signature scheme. This kind
of primitive has found increasing importance in recent times, thanks to its anonymity
guarantees. To build our protocol, we leverage the general framework described in [12],
which utilizes a simple cryptographic group action; applying it to our case, we are
able to construct a ring signature scheme whose security relies entirely on the code
equivalence problem. To the best of our knowledge, this is the first time a code-
based ring signature scheme is built using a problem other than Syndrome Decoding
(SDP). The construction incorporates a variety of computational optimizations that
are common in this kind of protocols (but not in syndrome-based schemes), such as
Merkle trees and unbalanced challenge space. We then show how, in principle, it would
be possible to extend our construction to obtain a linkable scheme, by using a pair
of group actions that link nicely with each other. To do so, however, one would need
to rely on a new, untested computational assumption, and we thus feel that, at this
stage, it is best to avoid an explicit construction, until further study is conducted, and
more confidence is acquired.

Our second contribution, is the design of an identity-based signature scheme. Such
schemes have the major benefit of eliminating the need for certificates, and find use
in applications such as smart cars [4] and many others. Our protocol follows the
construction of [23], which utilizes two signature instances “nested” within each other,
where one serves as a certificate for the other. Once more, this is the first such protocol
built on code equivalence, and the construction again features certain computational
optimizations, that bring it to the front of the line when compared to previous code-
based solutions.

In terms of performance, our calculations show how both proposals are at the cut-
ting edge, when compared to the state of the art in code-based cryptography. For
ring signatures, our construction exhibits a signature size that grows only logarithmi-
cally with the number of users in the ring; this allows to outpace existing code-based
solutions and compares very well even with other post-quantum schemes (e.g. [11]).
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For identity-based signatures, our certificate-based protocol is far superior to the al-
ternatives, which are largely based on either CFS or Stern, and thus suffer from the
respective flaws (large keys and signatures). In both cases, we expect the schemes to
provide good timings, as the computational overhead is minimal (essentially, the same
as LESS).

2. Background

2.1. Notation

We will use the following conventions throughout the rest of the paper:

a a scalar
A a set
a a vector
A a matrix
a a protocol object (keys, identities etc.)
A a function or relation
A an algorithm
In the n× n identity matrix
λ a security parameter

We denote with Zq the ring of integers modulo q, and with Fq the finite field of
order q. The multiplicative group of Fq is indicated as F∗

q . We denote with Aut(Fq) the
group of automorphisms of the field Fq. The sets of vectors and matrices with elements
in Zq (resp. Fq) are denoted by Zn

q and Zm×n
q (resp. Fn

q and Fm×n
q ). We also write Zn

q,w

(resp. Fn
q,w) to indicate the set of vectors with components in Zq (resp. Fq) with length

n and Hamming weight w. For our purposes, we will sometimes interpret bit strings as
integers: for instance, an ℓ-bit string, can be seen as an integer between 0 and 2ℓ − 1.
To simplify notation and avoid confusion, we will use boldface to distinguish between
the bit string and the corresponding integer (e.g. writing hi for the bit string, and hi
for the corresponding integer).

We write GLk(q) for the set of invertible k×k matrices with elements in Fq. Let Symn

be the set of permutations over n elements. For a vector x ∈ Fn
q and a permutation

π ∈ Symn, we write the action of π on x as π(x). A permutation can equivalently be
described as an n× n matrix P with exactly one 1 per row and column. Analogously,
for linear isometries, i.e. transformations µ = (v;π) ∈ F∗n

q ⋊Symn, we write the action
on a vector x as µ(x). We can also describe these in matrix form as a product Q = DP
where P is an n×n permutation matrix and D is an n×n diagonal matrix with entries
in F∗

q . We denote with Monon the set of such matrices, usually called monomial.

2.2. Technical Definitions

In this section, we briefly present the technical tools and definitions we need to realize
our constructions for advanced functionalities. We begin with a notion that is central
to this work.

Definition 2.1. Let X be a set and (G, ◦) be a group. A group action is a mapping

⋆ : X ×G → X
(x, g) → x ⋆ g

such that, for all x ∈ X and g1, g2 ∈ G, it holds that (x ⋆ g1) ⋆ g2 = x ⋆ (g1 ◦ g2).
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A group action is usually called cryptographic if it satisfies some additional proper-
ties that make it interesting in a cryptographic context. For instance, in the first place,
and besides efficient sampling, computation, and membership testing, a cryptographic
group action should certainly be one-way, i.e. given randomly chosen x1, x2 ∈ X, it
should be hard to find g ∈ G such that x1 ⋆ g = x2 (if such a g exists).

The first part of this work is about designing ring signature schemes. For this pur-
pose, the authors in [12] define an additional flavor of group action called admissible,
to enable the option of aborting during the signing process. As we will see, our group
action, based on the code equivalence problem and monomial matrices, requires no
rejection sampling, and thus such a notion is not necessary for this work. We instead
proceed to lay out the basic definitions for the schemes that we will define. As the def-
inition of zero-knowledge identification schemes is rather standard, we have chosen to
include it in the appendix (see Appendix A), and thus, the first definition that we will
give is that of ring signature. Note that, from this point onwards, when describing our
schemes, we always assume that any sort of public information (public data, system
parameters, public keys etc.) is available as input to every party, and thus, for ease of
readability, is sometimes omitted from an explicit input definition.

Definition 2.2. A Ring Signature (RS) scheme is a protocol between r + 1 parties:
(potential) signers S1, . . . ,Sr and a verifier V. The protocol is composed of the following
procedures:

I. Setup: on input the public data (including system parameters), output a secret
key ski and a public key pki for each signer Si.

II. Sign: on input a set of public keys R = {pk1, . . . , pkr}, a secret key ski∗ and a
message msg, output a signature σ.

III. Verify: on input a set of public keys R = {pk1, . . . , pkr}, a message msg and a
signature σ, V outputs either 1 (accept) if the signature is valid, or 0 (reject)
otherwise.

Ring signatures owe their name to the fact that the group of people comprising the
set R is usually called a “ring”, even though this may be slightly confusing to the
non-specialist, as it does not correspond to the mathematical understanding of the
word. A crucial feature of such a scheme is that anyone in the ring can produce a valid
signature (on behalf on the entire ring), and the verifier can only check validity but will
not learn who was the signer. This is guaranteed by requiring that the scheme satisfies
the following list of properties. Correctness, as usual, means that honestly generated
signatures are always accepted. More significantly, anonymity captures the idea of
protecting the identity of the signer, i.e. it should be impossible for a verifier to tell
which secret key was used to sign. Finally, unforgeability corresponds to the familiar
security notion for signature schemes, extended to include all ring participants, i.e.
it should be infeasible to forge a valid signature without knowing at least one of the
secret keys in the ring. For further details, we refer the reader to [12].

Linkable ring signature schemes are enhanced with additional security guarantees.
These protocols are composed of the same three procedures described in Definition 2.2,
plus a fourth one, given below:

IV. Link: on input two signatures σ and σ′, outputs either 1 if the signatures were
produced with the same secret key, or 0 otherwise.
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A linkable RS scheme is required to satisfy the following properties, besides correct-
ness. Linkability means that an adversary should not be able to produce more than
r unlinked valid signatures, even if some or all of the r public keys are malformed; in
other words, if such a number of valid signatures is produced, then the Link algorithm
will output 1 on at least two of them. Linkable anonymity is a stronger version of
the anonymity property, so that even if an adversary obtains multiple signatures from
the same signer, it is still unable to determine which secret key was used. Finally,
non-frameability guarantees that an adversary cannot produce a valid signature that
is linked to one produced by an honest party. Note that, as pointed out in [12, Remark
2.4], unforgeability is directly implied by linkability plus non-frameability.

We now recall the basics of identity-based signatures.

Definition 2.3. An Identity-Based Signature (IBS) scheme is a protocol between
three parties: a trusted key generation center C, a signer S corresponding to identity
id and a verifier V. The protocol is composed of the following procedures:

I. Setup: on input the public data (including system parameters), C returns a mas-
ter secret key msk and a master public key mpk.

II. Extract: on input a master secret key msk and a user identity id, C generates and
assigns a user secret key usk to S.

III. Sign: on input a user identity id, a user secret key usk and a message msg, S
outputs a signature σ.

IV. Verify: on input a user identity id, a master public key mpk, a message msg and
a signature σ, V outputs either 1 (accept) if the signature is valid, or 0 (reject)
otherwise.

This definition comes together with the usual correctness requirement. The desirable
security notion for an IBS scheme is Existential Unforgeability under Chosen Message
Attack (EUF-CMA), as is standard for signature schemes, with the exception that, in
addition to signing queries, an adversary has access to extract queries as well, which
return the user secret key for arbitrary identities. The adversary’s goal is to produce a
valid message/signature pair (msg∗, σ∗) for a certain identity id∗. For further details,
including precise definitions, we refer the interested reader to the literature (e.g. [23]).

3. Code Equivalence

An [n, k]-linear code C of length n and dimension k over Fq is a k-dimensional vector
subspace of Fn

q . It can be represented by a matrix G ∈ Fk×n
q , called generator matrix,

whose rows form a basis for the vector space, i.e., C = {uG, u ∈ Fk
q}. There exists

a standard choice of basis, called systematic form, which is given by G = (Ik | M).
This can be obtained by calculating the row-reduced echelon form, starting from any
other generator matrix, and corresponds to the action of multiplying on the left by an
invertible matrix. We denote such a procedure by SF. Finally, we recall the concept
of equivalence between two codes which, in its most general formulation, is defined as
follows.

Definition 3.1 (Code Equivalence). We say that two linear codes C and C′ are
equivalent, and write C ∼ C′, if there exists a field automorphism α ∈ Aut(Fq)
and a linear isometry µ = (v;π) ∈ F∗n

q ⋊ Symn that maps C into C′, i.e. such that
C′ = µ(α(C)) = {y ∈ Fn

q : y = µ(α(x)), x ∈ C}.
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Clearly, if C and C′ are two codes with generator matrices G and G′, it holds that

C ∼ C′ ⇐⇒ ∃(S; (α,Q)) ∈ GLk(q)⋊ (Aut(Fq)×Monon) s.t. G′ = Sα(GQ).

The notion we just presented is usually known as semilinear equivalence and it is
the most generic. If the field automorphism is the trivial one (i.e. α = id), then the
notion is simply known as linear equivalence. If, furthermore, the monomial matrix is
a permutation (i.e. Q = DP with D = In), then the notion is known as permutation
equivalence. Note that in this work, as in previous literature [7, 13], we only consider
the last two notions. Finally, we state the following decisional problem.

Problem 3.2 (Code Equivalence). Let G,G′ ∈ Fk×n
q be two generator matrices for,

respectively, linear codes C and C′. Determine whether the two codes are equivalent,
i.e. if there exist two matrices S ∈ GLk(q) and Q ∈ Monon such that G′ = SGQ.

Note that, although this problem is traditionally formulated as a decisional problem
in literature, for our purposes we will often consider the search version. We will refer,
respectively, to linear or permutation equivalence problem, according to what is the
notion of code equivalence considered, or simply to the code equivalence problem if
such a distinction is not important.

We now present the group action associated to code equivalence, as defined in [7].
First, consider the set X ⊆ Fk×n

q of all full-rank k×n matrices, i.e. the set of generator
matrices of [n, k]-linear codes. Then, let G = GLk(q) ⋊ Monon. Note that this group
is isomorphic to (GLk(q) × (F∗

q)
n) ⋊ Symn if we decompose each monomial matrix

Q ∈ Monon as a product D ·P ∈ (F∗
q)

n ⋊Monon. The group operation ◦ is defined as

((S,D);P) ◦ ((S′,D′);P′) = (SS′,DD′P);PP′).

The group action is given by

⋆ : X ×G → X
(G, (S;Q)) → SGQ

It is easy to see that the action is well-formed, with the identity element being (Ik; In).
The action satisfies the usual computation and samplability requirements, and is also
one-way, based on the hardness of the code equivalence problem.

Remark 1. While the definition above is given in full generality, it makes sense to
consider a simplified version. In fact, to avoid trivial instances, in which the action
returns a different generator matrix for the same code, one can assume that X contains
only the (full-rank) generator matrices in systematic form. Keeping in mind, also, that
the semilinear case is not considered in this (or previous) work, one can then simplify
the group action to the computation of the systematic form SF(SGQ) or, in fact, to
just SF(GQ).

It is worth noting that, unlike other group actions (e.g. based on lattices), our
definition benefits from the fact that, in the group of monomial matrices, it is very
easy to produce uniform random elements. In fact, we have the following trivial result
(the proof is omitted in the interest of space).

Lemma 3.3. Let Monon be the set of monomial matrices as defined in Section 2.
If A ∈ Monon is fixed and B is picked uniformly at random in Monon, then AB is
uniformly distributed over Monon.
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An important consequence of this result is that, as we will see, no rejection sampling
is necessary, which greatly simplifies the protocol definition, and contributes to its
efficiency. In the next section, we will briefly summarize the LESS scheme and its
derivatives, which are based on the group action we just presented.

4. The LESS Signature Scheme

The LESS signature scheme was introduced in [13], where the authors present a zero-
knowledge identification scheme, and then mention how this can be converted to a
full-fledged signature scheme using the Fiat-Shamir transformation. The work was
later revisited in [7], which introduces some protocol variants aimed at optimizing
performance, and reducing signature size. More precisely, two variants are presented:
the -M variant, which exploits the idea of multi-bit challenges using multiple public
keys, and the -F variant, which utilizes challenge strings of fixed Hamming weight.
Below, we recall the description of the LESS-FM scheme, which can be seen as the
most generic, high-level description of the framework, of which the LESS scheme is a
particular case.

Public Data
Parameters q, n, k, λ, ℓ, t, ω ∈ N, with r = 2ℓ − 1. Generator matrix G ∈ Fk×n

q .

Weight-restricted hash function H : {0, 1}∗ → Zt
2ℓ,ω.

I. Setup
Input: -

1. Set Q0 = In and G0 = SF(G).
2. For all i = 1, . . . , r:

i. Select uniformly at random Qi ∈ Monon.
ii. Compute Gi = SF(GQi).

3. Set sk = {Q0, . . . ,Qr}.
4. Set pk = {G0, . . . ,Gr}.
II. Sign
Input: sk and msg.

1. For all i = 1, . . . , t:
i. Select uniformly at random Q̃i ∈ Monon.
ii. Compute G̃i = SF(GQ̃i).

2. Compute h = H(G̃1, . . . , G̃t,msg).
3. Parse h as (h1, . . .ht), for hi ∈ {0, 1}ℓ.
4. For all i = 1, . . . , t:

i. Compute µi = Q−1
hi

Q̃i.

5. Set σ = (µ1, . . . µt,h).

III. Verify
Input: pk,msg and σ.

1. Parse h as (h1, . . .ht), for hi ∈ {0, 1}ℓ.
2. For all i = 1, . . . , t:

i. Compute Ĝi = SF(Ghi
µi).

3. Compute h′ = H(Ĝ1, . . . , Ĝt,msg).
4. Accept if h′ = h or reject otherwise.

Figure 1.: The LESS-FM scheme
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The EUF-CMA security of the scheme was discussed in [7], where the impact of
each variant is analyzed, and proofs are provided. As far as the security of the code
equivalence problem itself, we can say that the problem has been extensively studied
in literature, with different techniques leading to different solvers [10, 24, 29]. A full
analysis of such attacks is out of the scope of this paper, and we refer the reader to [8],
where the subject is given an extensive treatment.

5. Ring Signatures

We present here our construction for an RS scheme. This will rely on a basic building
block, which is closely related to the LESS identification scheme [13]. The scheme
described below is to be intended as a single round (with soundness error equal to
1/2), within the context of an iterated protocol. The scheme makes use of a dedicated
construction called index-hiding Merkle tree [12], which we will recall in Section 7.

Public Data
Parameters q, n, k, λ, r ∈ N. Generator matrix G ∈ Fk×n

q .

Commitment scheme Com : {0, 1}λ × {0, 1}∗ → {0, 1}2λ.
I. Setup
Input: -

1. For all i = 1, . . . , r:
i. Select uniformly at random Qi ∈ Monon.
ii. Compute Gi = SF(GQi).
iii. Set ski = Qi.
iv. Set pki = Gi.

II. Commit
Input: pk1, . . . , pkr.

1. Select uniformly at random Q̃ ∈ Monon.
2. For all i = 1, . . . , r:

i. Sample uniformly at random ri ∈ {0, 1}λ.
ii. Compute G̃i = SF(GiQ̃).

iii. Compute hi = Com(ri, G̃i).

3. Compute root
tree←−− (h1, . . . ,hr).

4. Send root to verifier.

III. Challenge
Input: -

1. Select uniformly at random a bit b ∈ {0, 1}.
2. Send b to prover.

IV. Response
Input: b and ski∗ , for i

∗ ∈ {1, . . . , r}.
1. If b = 0 then:

i. Compute µ = Qi∗Q̃.

ii. Compute path
tree←−− (h1, . . . ,hr, i

∗).
iii. Set bits = ri∗ .
iv. Set rsp = (µ, path, bits).

2. Else:
i. Set µ = Q̃.
ii. Set bits = (r1, . . . , rr).
iii. Set rsp = (µ, bits).

3. Send rsp to verifier.
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V. Verify
Input: pk1, . . . , pkr, root and rsp.

1. If b = 0 then:
i. Compute Ĝ = SF(Gµ).

ii. Compute h′ = Com(bits, Ĝ).

iii. Compute root′
tree←−− (h′, path).

iv. Accept if root′ = root or reject otherwise.
2. Else:

i. For all i = 1, . . . , r:
† Compute Ĝi = SF(GiQ̃).

‡ Compute h′
i = Com(ri, Ĝi).

ii. Compute root′
tree←−− (h′

1, . . . ,h
′
r).

iii. Accept if root′ = root or reject otherwise.

Figure 2.: The basic identification scheme for ring R.

Essentially, the scheme above is a simple variation of LESS, with multiple public
keys (corresponding to each user in the ring) and a single challenge bit. The scheme
already includes some formal modifications: for instance, we have replaced the hash
function H with a commitment scheme, and we utilized a Merkle tree for the protocol
commitments. The latter is not only an optimization, as is commonly treated, but,
due to the index-hiding property, represents a crucial factor in providing anonymity
for the scheme. Note that, as opposed to the original LESS formulation, the scheme
follows what could be seen as a “dual” framework, in which the commitment is formed
from the public key (rather than from the public data G) and the response is of the
form QiQ̃ (rather than Q−1

i Q̃). Moreover, the protocol in [12] swaps the role of the
challenge bit, assigning to the 1 the uniform random response, and to 0 the response
containing the private key. Both modifications, leading to the new formulation, are of
course completely transparent in terms of security.

It is easy to show that the scheme presented above verifies the required security
properties; to be sure, it is possible to reproduce the result given in Theorems 3.2
and 3.3 of [12], since this applies to the generic construction, by simply replacing the
underlying hard problem. Indeed, in our case, the analysis is even simpler, and several
redundant restrictions can be removed, since rejection sampling is not needed (thanks
to Lemma 3.3). This eliminates all notions of aborting, together with the corresponding
steps in the security proofs of the aforementioned theorems. For instance, we do not
need to employ the concepts of relaxed sigma protocol, or an admissible group action.
The identification scheme is then transformed into a full-fledged RS scheme via Fiat-
Shamir in the standard way, incorporating a variety of additional optimizations. We
will present these in Section 7, before discussing parameter choices. Below, then, we
proceed to discuss the variations that would be necessary to build a linkable RS scheme.

The authors in [12] introduce a new object called an admissible pair of group ac-
tions. This gives continuity to the idea of admissible group actions, which, remember,
is designed to allow for rejection sampling (and therefore not needed in our case).
Consider two cryptographic group actions ⋆ : X × G → X and ∗ : Y × G → Y as in
Definition 2.1, and a function Link : Y × Y → {0, 1}. The pair of group actions needs
to satisfy the following properties:
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a) For all y ∈ Y , Link(y, y) = 1.

b) Given (x, y) ∈ X × Y , it is hard to output g, g′ ∈ G with x ⋆ g = x ⋆ g′ and
Link(y ∗ g, y ∗ g′) = 0.

c) Given (x, y) ∈ X ×Y , the pair (x ⋆ g, y ∗ g) is indistinguishable from (x′, y′), where
g and (x′, y′) are sampled uniformly at random from G and X × Y , respectively.

d) Given (x, y) ∈ X ×Y , x′ = x ⋆ g and y′ = y ∗ g, for g sampled uniformly at random
from G, it is hard to output g′ ∈ G with Link(y ∗ g′, y′) = 1.

Note how the last three properties recall the linkability, linkable anonymity and non-
frameability properties given in Section 2, respectively. As noted before, one could
define unforgeability in a manner similar to the last property (by asking to output
g′ ∈ G with x ⋆ g′ = x′) but this is not necessary, since this is a direct consequence
of linkability and non-frameability. Informally, then, one can treat elements y ∈ Y as
“tags”, that can be checked to establish the link.

In [12], for the isogeny-based construction, the second group action is obtained via
composition, i.e. ∗ = ⋆2, so that x ∗ g = x ⋆2 g = (x ⋆ g) ⋆ g. The security then relies
on an ad-hoc problem, named “Squaring Decisional CSIDH” (or sdCSIDH), which
relates to the usual CSIDH in a manner that is similar to the discrete logarithm case;
namely, a variant of the decisional Diffie-Hellman problem, called “Square decisional
Diffie-Hellman”, or SDDH, which is relatively well-known (see for example [6]). In our
case, we could use the same approach, which would yield x ∗ g = SF(GQ2), and an
analogue notion of “Squared Code Equivalence”; however, this definition is not the
best in our case. For example, it is easy to see that, given monomial matrices Q and
Q′, the condition Q2 = (Q′)2 does not imply that Q = Q′; this becomes an issue when
considering the previous properties.

Despite the claim given in [12, Section 2.4], there is no hardness guarantee stemming
from the parallel with discrete logarithms. In fact, as shown in [6], it is in general un-
known whether SDDH is equivalent to DDH, as it is only possible to prove that SDDH
≤ DDH, but not viceversa.With this in mind, one could instead decide to leverage one
of the other variations of Diffie-Hellman. For instance, it would be relatively easy to
define a notion of “Inverse Code Equivalence”, analogue to the InvDDH notion given
in [6], by setting x ∗ g = SF(GQ−1).

Problem 5.1 (Inverse Code Equivalence (ICE)). Let G,G′,G′′ ∈ Fk×n
q be generator

matrices, in systematic form, for, respectively, linear codes C,C′ and C′′. Consider
a matrix Q ∈ Monon sampled uniformly at random. Determine whether (G′,G′′) =
(SF(GQ),SF(GQ−1)).

The above definition would be a better choice from both a complexity theory point
of view, as well as with regards to the previous properties. However, the computational
hardness of this new security notion is still untested. For instance, attacks based on
algebraic systems such as [28] could benefit from the additional equations provided by
the matrix Q−1, and gain a significant advantage. Such an analysis is, at the moment,
beyond the scope of this paper and so, in the interest of preserving the security of
the construction, we choose to not flesh out the details of the linkable scheme. Suffice
to say that, if the ICE problem proved to be safe in practice, it would be possible to
satisfy all the necessary properties, and thus build a linkable ring signature scheme. We
leave this task for future work, and proceed instead to the identity-based construction.
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6. Identity-based Signatures

For our IBS scheme, we follow the generic approach of [23], since this yields the most
efficient instantiation. In a nutshell, this approach uses a canonical signature scheme
nested within itself, where the “inner” instantiation produces an ephemeral keypair,
as well as a signature produced, to be used as a certificate for the public key which
is part of the user’s signing key. The signer can then use the ephemeral secret key to
sign, and includes the public key, along with the certificate, in the scheme’s signature.
In our case, the underlying signature scheme is LESS-FM (Figure 1), to which, for
brevity, we refer as L in the description below.

Public Data
Two sets of parameters q1, n1, k1, ℓ1, t1, ω1 ∈ N and q2, n2, k2, ℓ2, t2, ω2 ∈ N as in L, with
r1 = 2ℓ1 − 1, r2 = 2ℓ2 − 1.
Matrices G′ ∈ Fk1×n1

q and G′′ ∈ Fk2×n2
q .

I. Setup
Input: -

1. Set Q′
0 = In1

and G′
0 = SF(G′).

2. For all i = 1, . . . , r1:
i. Select uniformly at random Q′

i ∈ Monon.
ii. Compute G′

i = SF(G′Q′
i).

3. Set msk = {Q′
0, . . . ,Q

′
r1}.

4. Set mpk = {G′
0, . . . ,G

′
r1}.

II. Extract
Input: msk and id.

1. Set Q′′
0 = In2 and G′′

0 = SF(G′′).
2. For all i = 1, . . . , r2:

i. Select uniformly at random Q′′
i ∈ Monon.

ii. Compute G′′
i = SF(G′′Q′′

i ).
3. Set sk = {Q′′

0 , . . . ,Q
′′
r2}.

4. Set pk = {G′′
0 , . . . ,G

′′
r2}.

5. Run algorithm II. of L on input msk and msg = (pk, id) to get signature σ̄.
6. Set usk = {sk, pk, σ̄}.
III. Sign
Input: id, usk and msg.

1. Parse usk as usk = {sk, pk, σ}.
2. Run algorithm II. of L on input sk and msg to get signature σ̂.
3. Set σ = {pk, σ̄, σ̂}.
IV. Verify
Input: id,mpk,msg and σ.

1. Parse σ as {pk, σ̄, σ̂}.
2. Run algorithm IV. of L on input pk,msg and σ̂. Set b = 1 if the output is “Accept” and

b = 0 if “Reject”.
3. Run algorithm IV. of L on input mpk,msg = (pk, id) and σ̄. Set b′ = 1 if the output is

“Accept” and b′ = 0 if “Reject”.
4. Accept if b⊕ b′ = 1 or reject otherwise.

Figure 3.: Our proposed IBS scheme.
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The correctness of the scheme is immediate. As far as its security argument, note
that this is standard, and follows directly from the EUF-CMA security of the un-
derlying scheme (see for example [9]). It is interesting to note that, thanks to the
inherent flexibility of the LESS-FM scheme, we are able to modulate the framework
to accommodate different needs. In fact, we can use two flavors of LESS-FM for the
nested schemes, corresponding to the parameters r1 and r2 (or actually, ℓ1 and ℓ2).
The choice of these two parameters will be an important factor to optimize the scheme
and obtain the maximum efficiency, as we will discuss in the next section.

7. Performance

7.1. Optimizations

Merkle Trees. Merkle trees [26] are a very well-known cryptographic primitive. In
a nutshell, the goal of a Merkle tree is to provide an efficient way to verify that a
certain element x∗ is part of a list (x0, . . . , xr). To do that, the elements of the list are
assigned to the leaves of a binary tree1, say T , via a hash computation; in other words,
the leaves are set as Td,l = H(xl), for all l = 0, . . . , r, where d = ⌈log(r + 1)⌉ is the
tree depth. Then, the internal nodes are computed, at each level, as the hash digest of
the concatenation of the two children, i.e. Tu,l = H(Tu+1,2l||Tu+1,2l+1), for u = 0, . . . , d
and l = 0, . . . , 2u−1. One then has root = T0,0. To verify that x∗ is part of the list, the
element is matched to a position i ∈ {0, . . . , r} and the root is reconstructed using the
authentication path corresponding to the position. This contains all the “companion”
elements necessary for the computation; thus, path includes the sibling leaf, the sibling
of their parent, etc. A pictorial representation is given below. Obviously, the verification
is successful only if the reconstructed root is equal to the original one.

T0,0

T1,0

T2,0

x0 x1

T2,1

x2 x3

T1,1

T2,2

x4 x5

T2,3

x6 x7

Figure 4.: Example of binary tree for r = 7. The element to verify is in green. The authenti-
cation path consists of the red nodes. The reconstructed nodes are marked in gray. The goal
is to reconstruct the root (thick line).

The advantage of using Merkle trees is evident, as it allows to verify membership
using only a logarithmic number of tree nodes (in exchange for the computational
overhead of recomputing the root). Note that, as we mentioned in Section 5, the con-
struction for a ring signature scheme uses a special variant of Merkle trees that are
index-hiding, that is, they do not reveal the position of the element in the ring; this is
crucial to ensure anonymity. Such a variant can be accomplished by specifying a differ-
ent method to construct the tree, based on an alternative ordering (e.g. lexicographic),
as explained in [12].

1For this reason, one usually has a number of elements equal to a power of two, i.e. r = 2ℓ − 1, which yields

a complete tree.
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Seeds. The idea of generating random objects via a PRNG is staple in cryptography.
In the context of certain protocols, this becomes a tool to optimize communication
cost as well, as is commonly the case with ZKID schemes. Our proposal for a ring
signature scheme makes no exception; in fact, this was already done for the underlying
LESS framework. The thing to observe is that, for a particular type of challenge, the
object transmitted is a purely random monomial matrix Q̃, for which it is sufficient to
transmit the corresponding seed for the PRNG, instead. This was the case b = 0 in the
original LESS, and b = 1 in the new scheme (as we have mentioned before, the roles
are reversed, without impact). The verifier can then regenerate the object himself and
proceed with verification. This alone saves a very significant amount in signature size
(monomial matrices require n(⌈log n⌉ + ⌈log q⌉) bits, whereas a seed is only λ bits).
However, the usage of seeds can lead to further optimizations, as detailed next.

- Since the protocol uses a commitment scheme Com, which requires prefix ran-
domness strings ri, communication can be reduced by having the seed generate
both Q̃ and the ri. Then, it is enough to set rsp = seed, and the verifier can use
seed to regenerate the entire ensemble of objects.

- Given that the difference in cost between the seed and a monomial matrix is
so large, it makes sense to try and minimize the number of the latter over the
span of the protocol repetitions. Thus, instead of iterating the scheme for t = λ
times, in which each b is chosen uniformly at random, it is preferable to use an
“unbalanced” distribution. To be precise, one can set t > λ and then choose a
combination of ω instances to have b = 0. This achieves the same security level
provided that

(
t
ω

)
≥ 2λ, and has the additional advantage of yielding constant

signature size and verification time. Note that this optimization was already
present in [7], for instance.

- Considering that, over the course of the iterations, one needs to send multiple
seeds (in fact, exactly t − ω if using the above optimization), it is possible to
further reduce the space allocated towards seeds. The authors in [12] formalize
the definition of seed tree, which was already informally utilized in literature
(e.g. [11]). The main idea here, is to use but a single “master” seed, to generate
an ensemble of t seeds, via a binary tree, and then reveal only2 the t − ω that
are requested. Unlike Merkle trees, a seed tree is generated in reverse order,
that is from root to leaves; in other words, one sets seed = T0,0, then computes
(Tu+1,2l||Tu+1,2l+1) = PRNG(Tu,l), for 0 ≤ u ≤ d − 1 and 0 ≤ l ≤ 2u − 1, where
d = ⌈log t⌉ as before. Each of the leaves will then constitute a separate seed,
to be utilized in the respective round. To reveal the requested t − ω seeds, it is
then enough to release the appropriate sequence of internal nodes3, as depicted
in Figure 5. For further details, we refer the reader to Section 2.7 of [12].

Remark 2. As suggested in [12], it is recommended to use “salt”, by including a 2λ-
bit prefix string in the random oracle computations. The impact of such a modification
in practice is negligible, but it has the advantage of providing a tighter security proof,
and preventing multi-target attacks.

2In fact, it is crucial that the ω seeds corresponding to instances b = 0 are not revealed, or security would be

compromised.
3This number is variable, and depends on the actual position of the desired leaves.
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T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2

seed4 seed5

T2,3

seed6 seed7

(a)

T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2

seed4 seed5

T2,3

seed6 seed7

(b)

Figure 5.: Example of two binary trees for t = 8, ω = 3. Color codes are similar to Figure 4,
with the transmitted nodes marked in red, the reconstructed ones in gray and the target ones
with the thick line. The green nodes here represent the seeds that should not be revealed. It
is necessary to transmit 4 nodes for tree (a), and only 2 for tree (b).

7.2. Parameter Choice

We begin by providing an estimate of the various costs in the two protocols. As we
will see, there will be very important differences between the two cases, leading to
different priorities in terms of cost optimization.

Ring signatures. The computational costs of our RS schemes are closely related to
those of LESS-FM. Indeed, the public key (per user) consists of exactly one generator
matrix (in systematic form), and thus amounts to k(n − k)⌈log q⌉ bits. Now, when
considering signature size, we have to keep in mind the optimizations described in the
first part of this section. Indeed, the base protocol needs to be repeated t times, out of
which we have ω instances corresponding to the case b = 0. Furthermore, we use a seed
tree to generate all the t seeds necessary for the various instances. Finally, we obtain
our signature via Fiat-Shamir (thus, it is not necessary to transmit the commitments).
In the end, the signature is composed by the following objects:

- the fixed-weight challenge string ch, of length t and Hamming weight t− ω;
- ω responses for the case b = 0, consisting of a monomial matrix µ, an authenti-
cation path, and the randomness bits;

- the internal nodes necessary to reconstruct the t− ω seeds for the case b = 1.

This leads to the following computational cost (in bits):

ω⌈log t⌉
ch

+ω(n⌈log n⌉+ n⌈log q⌉+ 2λ⌈log r⌉+ λ)

{rspi}

+λ⌈log t⌉
{seeds}

(1)

Identity-based signatures. The analysis of the computational costs in the IBS
scheme is quite simple; yet, as we anticipated, it will be important to choose the optimal
values for the LESS-FM instances, depending on their role within the framework. We
begin by calculating the size of the master public key, and user secret key; these
depend on the specific choice of parameters for the two instances, and are given as
follows. The former consists of r1 copies of generator matrices G′

i, and thus amounts
to r1k1(n1−k1)⌈log q1⌉ bits. The latter, contains the ephemeral keys sk and pk as well
as the certificate signature σ̄; thus, the user secret key is given (in bits) by:
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r2n2(⌈log n2⌉+ ⌈log q2⌉)
sk

+ r2k2(n2 − k2)⌈log q2⌉
pk

+

ℓ1t1 + (t1 − ω1)λ+ ω1n1(⌈log n1⌉+ ⌈log q1⌉)
σ̄

. (2)

As far as the signature is concerned, this is composed by the following objects:

- the ephemeral public key pk;
- the certificate signature σ̄;
- the message signature σ̂.

Note that we have already calculated the first two items, as part of usk. This leads
to the following formula for the signature length (in bits):

r2k2(n2 − k2)⌈log q2⌉
pk

+ ℓ1t1 + (t1 − ω1)λ+ ω1n1(⌈log n1⌉+ ⌈log q1⌉)
σ̄

+

ℓ2t2 + (t2 − ω2)λ+ ω2n2(⌈log n2⌉+ ⌈log q2⌉)
σ̂

. (3)

We now proceed to select parameters for our scheme. To do this, we can draw from
the recommendations given in [7] for the underlying LESS-FM scheme, according to
our needs. For instance, for the case of ring signatures, it makes sense to minimize the
size of the signature, and therefore select the scheme version based on the permutation
equivalence problem; this would eliminate the factor of n⌈log q⌉ associated to the
monomial matrices, which is a considerable factor when determining signature size. On
the other hand, the identity-based scheme presents different priorities. In the “outer”
scheme (parameters q1, n1 etc.), the signature should be short, since this is part of
the user secret key, while the size of the (master) public key is not a major concern.
This allows us, for example, to leverage the tradeoff provided by the -M variant, which
yields the shortest signatures. At the contrary, for the “inner” scheme, it is crucial
that the public key is as small as possible, since this will be transmitted as part of the
signature; for this task, using monomial matrices is optimal as it minimizes the size
of the generator matrix. With all this in mind, we choose the appropriate parameter
sets from [7], and report them below.

Set Type q n k t ω r pk sig

I

Perm 127 230 115 233 31

23

11.57

10.76
II 26 13.74
III 212 19.69
IV 221 28.61

Table 1.: Different parameter sets for our RS scheme, corresponding to various ring sizes, for
a security level of λ = 128 classical bits. All sizes in Kilobytes (kB).
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Scheme Type q n k ℓ t ω mpk usk sig

IBS - Outer Perm 251 235 108 4 66 19
205.74 15.43 30.23

IBS - Inner Mono 251 198 94 1 283 28

Table 2.: Sample parameters for our IBS scheme, for a security level of λ = 128 classical bits.
All sizes in Kilobytes (kB).

7.3. Performance Analysis

Ring signatures. We first discuss the RS scheme. In this case, the most important
aspect to discuss is the scalability of the signature size, according to the number of
members of the ring. In fact, due to the construction employed, this size increases only
logarithmically, i.e. proportionally to log r. To be precise, the signature is composed by
a “fixed” part, which amounts to 7.78 kB, plus a “variable” component (that depends
on r), which weighs approximately log r kB. This provides an immediate advantage
when compared with other schemes, as we will explain next.

In terms of code-based constructions for ring signatures, as we suggested in the
beginning of this paper, not many solutions exist. The scheme of [33] is, to the best of
our knowledge, the first to appear in literature; this is a straightforward adaptation of
the CFS scheme, and is thus affected by the usual flaws, namely a very large public
key (in excess of 1MB), and a very slow signing time. Moreover, what is usually a
good feature of CFS, the short signature size, provides little advantage here as the RS
construction scales linearly in r: the authors report a size equal to 144 + 126r bits,
which yields signatures much larger than ours, when the ring includes at least 1000
users. For instance, the signature size for a ring of 212 users is approximately 64 kB.
A follow-up work [17] only realizes a minor improvement, with the signature differing
only by a single syndrome (the constant component 144). In 2018, a construction for
a linkable RS scheme was proposed [14], utilizing Stern’s ZKID, rather than CFS.
Once again, such a scheme inherits the traits of its core component, in this case small
public keys but extremely large signatures. A later work [27] manages to reduce this
number, but the reported figures (nearly 80 kB for r = 26 users) make it clear that the
construction is completely impractical. Note that, while we have not fully fleshed out
our own linkable RS design, this would be obtainable with a relatively small overhead
(a single “tag” element), and still well below the threshold set by the aforementioned
schemes.

Finally, for completeness, we draw a comparison with the Calamari and Falafl
schemes [12]. As expected, the former produces smaller signatures, with a reported
size of approximately log r + 3.5 kB. Also as expected, such a scheme features a very
slow signing time (79s) and moreover, due to the complexity of the class group compu-
tation, we do not believe it will be able to provide security levels higher than the listed
one (NIST Category 1). On the other hand, our scheme compares very favorably with
the lattice-based Falafl, which features larger signatures (in the order of 1/2 log r+29
kB); unfortunately, the lack of an optimized implementation prevents us from a full
comparison, with regards to signing times, as Falafl is able to leverage the pre-existing
Dilithium code. Nevertheless, we expect our scheme to exhibit speeds of the same
order of magnitude.
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Identity-based signatures. The scenario of code-based IBS schemes resembles what
we have just described for ring signatures. The first scheme appeared in literature in
2007 [15], although it seems this was never published in a venue with formal proceed-
ings. The scheme uses a combination of CFS and a variant of Stern, featuring a huge
public key (1 MB) and an even larger signature (1.5 MB), and is thus completely
impractical. This was later improved in [3], using Quasi-Dyadic (QD) codes; despite a
non-trivial reduction in both sizes, this is still very far from being useful in practice:
reported timings are about 5 minutes for producing a single signature, and sizes are
still in the order of hundreds of kilobytes. Note also that the parameters considered
were only designed to achieve 80-bit (classical) security, so that all sizes would sub-
stantially increase if the scheme had to be adapted to fit our intended security target.
Follow-up work (e.g. [31]) was unfortunately only able to yield even bigger sizes (with
signatures as large as 35 MB), due to the concurrent appearance of a Generalized-
Birthday attack by Bleichenbacher (see for example [21]). In the end, it is reasonable
to claim that no efficient code-based solution exists to date.

In stark contrast with the state of the art, our protocol is able to obtain practical
signature sizes, which are of an order of magnitude of just two signatures in the
underlying building block. Using LESS as building block has the noticeable advantage
of relying on just one security assumption, yet allows for additional flexibility in the
choice of parameters, which can be modulated according to the different purposes, as
shown above.

8. Conclusion

Code-based cryptography is one of the main avenues of research to develop quantum-
resistant cryptographic primitives. Yet, the state of the art for code-based signatures
is still not fully satisfactory, and the landscape of advanced signature schemes even
less so. In this context, then, our work represents an important contribution. In fact,
to the best of our knowledge, this is the first instance of code-based constructions
for both ring and identity-based signatures, based on a problem other than syndrome
decoding. More importantly, our construction is the first to offer concretely practical
performance figures.

For ring signatures, our protocol fully exploits the logarithmic nature of the un-
derlying framework, to obtain compact signature sizes that are able to beat those of
other code-based constructions, as soon as the ring size is reasonably large. Further-
more, this comes with contained computational cost, and much smaller public keys.
Remarkably, our protocol compares very well with isogeny-based and lattice-based so-
lutions, providing a credible alternative in both cases. For identity-based signatures,
the comparison swings even more heavily in our favor, given the inadequacy of ex-
isting proposals. The intrinsic flexibility of the LESS-FM scheme is inherited by our
scheme, providing another relevant advantage factor. In conclusion, we see this work
as an important witness towards the practicality of code-equivalence-based protocols
in post-quantum cryptography.
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Appendix A. Zero-Knowledge Identification Schemes

We give a formal definition below, to facilitate the description of the ZKID underlying
our proposed RS scheme.

Definition A.1. A Zero-Knowledge Identification (ZKID) scheme is a protocol be-
tween 2 parties: a prover P and a verifier V. The protocol is composed of the following
procedures:

I. Setup: on input the public data (including system parameters), output a secret
key sk and a public key pk.

II. Commit: on input a public key pk, P computes a commitment c and sends it to
V.

III. Challenge: V selects uniformly at random a challenge b and sends it to P.
IV. Response: on input a challenge b and a private key sk, P computes a response

rsp and sends it to V.
V. Verify: on input a public key pk, a commitment c and a response rsp, V outputs

either 1 (accept) if the response is valid, or 0 (reject) otherwise.

A ZKID scheme should verify the usual, well-known security properties. Correctness
dictates that an honest prover is always accepted. Special soundness defines the success
probability of a cheating prover; typically, this is done by constructing an extractor
algorithm that is capable to recover a “witness” (e.g. a secret key). Finally, Zero-
Knowledge guarantees that there is no information leaked by honest executions.
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