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Abstract. Although the introduction of small errors in the lattice-based
key exchange protocol can increase the strength of the protocol against
quantum computing attacks, it will result in only approximately equal
secret values between the negotiating parties, which cannot be used for
subsequent secure communication. In order to ensure that both commu-
nicating parties reach a consensus, scholars propose to use error reconcil-
iation mechanisms to eliminate errors in key negotiation. In this paper, a
new error reconciliation mechanism, called Speedy Error Reconciliation
(SER), is proposed to efficiently complete key agreement while ensur-
ing the correctness and security of the key. SER can negotiate a two-bit
shared key by simultaneously extracting information from the most and
least significant bits of a coefficient. In particular, SER only needs to
transmit the signal value of the most significant bit to achieve the nego-
tiation of both the most and the least significant bits. By sharing g-bit
auxiliary information between the two parties, SER expands the fault
tolerance interval and reduces the failure rate during reconciliation. We
integrate SER into key exchange protocols based on the learning with er-
rors (LWE), the ring LWE (RLWE) and the module LWE (MLWE) prob-
lems, such as Frodo and NewHope, to test the generality and practical
performance of SER under different difficult problems. By comparing pa-
rameters such as failure rate, security strength, and the number of CPU
cycles required for total and per-bit keys, we find that SER performs well
in various modes, especially in RLWE-based protocol. This is attributed
to the fact that the RLWE-based key exchange scheme reduces the ratio
of the error to the modulus q in SER by choosing a larger parameter q,
which in turn reduces the failure rate. Compared with the original pro-
tocols, after replacing the error reconciliation mechanism with SER, the
negotiation efficiency of the per-bit key in replaced Frodo and Newhope
is increased by 61.6% and 797.6%, respectively.

Keywords: Post Quantum · Key Exchange · Error Reconciliation.

1 Introduction

Two entities, over an insecure channel, expect to leverage ephemeral secret mate-
rials to negotiate a shared session key for the subsequent secure communication.
This process is called the key exchange (KE) protocol. In traditional network
communications, the Diffie-Hellman (DH) key exchange protocol [1] and its vari-
ants are commonly used and embedded in Transport Layer Security (TLS) and
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IP Security (IPSec) to establish secure communications on the Internet. How-
ever, advances in computational efficiency have fundamentally weakened the
security of cryptographic algorithms, allowing potential attackers to use more
powerful computing systems and the best cryptanalysis algorithms to increase
the speed of their attacks. One aspect of this comes from Moore’s Law, which
predicts that computing systems will become more powerful than ever, allowing
ever-larger brute force attacks. Quantum computing [2–4] and its algorithms are
expected to further weaken the strength of existing cryptography and its appli-
cations. Some quantum algorithms are designed to solve the prime factorization
of large prime numbers and the discrete logarithm problem in polynomial time.
In 1999, Shor [5] proposed a quantum algorithm for integer factorization that
runs in polynomial time. This algorithm can be used to break RSA [6] on an ideal
quantum computer as the security of RSA depends on the fact that integer fac-
torization of a large number is hard. Similarly, Grover’s quantum algorithm [7]
can be utilized for searching an unstructured database in polynomial time. Thus,
it is believed that key exchange protocols based on traditional number-theoretic
problems (such as the discrete logarithm problem and the integer factorization
problem) are no longer secure.

In December 2016, National Institute of Standards and Technology (NIST)
[35] issued a standardization call for quantum-resistant public key algorithms,
together with requirements and evaluation criteria. Since computing platforms
have different goals and constraints, this poses a great challenge to design and
implement emerging cryptography standards in a single environment. We see a
variety of computing capabilities in these, ranging from high-performance (real-
time) virtualized environments to highly resource-constrained Internet of Things
platforms. Therefore, as the current mainstream trend in computer technology
and other security fields, it has become an urgent need to strengthen computer
security and also increase the diversity of cryptographic primitives.

At present, there exists several alter techniques including based on hash
function, error correcting code, lattice, multivariate polynomial and supersingu-
lar isogeny to construct post-quantum cryptographic systems. According to [9],
lattice is the most promising and ideal competitive primitives for the construc-
tion of post-quantum KE schemes. In 2005, Regev proposed the learning with
errors (LWE) problem [10], and demonstrated a reduction from the worst-case
generic lattice problem to the LWE problem [10–12]. Subsequently, inspired by
the NTRU protocol, Lyubashevsky et al. presented the ring learning with er-
rors (RLWE) problem [13]. RLWE with additional algebraic structure relies on
the worst-case hardness of problems in ideal lattices. Combining with the ma-
trix format from LWE and the algebraic structure from RLWE [13], Langlois et
al. constructed the module learning with errors (MLWE) problem [14]. In [15–
17], various LWR-based KEMs and Fully Homomorphic Encryption are shown.
Under the pressing requirement of the transition from traditional public-key
cryptography to the post-quantum cryptography, many works proposed simple
and practical post-quantum KE schemes based-on LWE and its variants [18].
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However, small errors introduced in the (R/M)LWE-based KE [19, 20] schemes
and LWR-based KE schemes [21, 22] lead to two approximate negotiated values
generated by communication parties. Accordingly, considerable attention has
been devoted to addressing the question of how to design an error reconcilia-
tion mechanism which makes the communication participants agree on the same
shared-key. As a result, more and more research has been done on error recon-
ciliation, but most have focused on extracting the most or the least significant
bit information to negotiate the same shared-key.

1.1 Related works

Error Reconciliation Mechanism
Lattice-based key exchange protocol introduces errors into the mutual informa-
tion of the two parties, and the calculated similar value has certain errors. There-
fore, researches on error coordination mechanisms (used to eliminate such errors
to negotiate the same shared-key) are particularly important. We first consider
the process of lattice-based key exchange protocols, where the goal is for both
parties need to communicate, after a series of information exchanges, both par-
ties obtain a common key K. In 2012, Ding et al. [23, 24] proposed the first error
reconciliation mechanism which extracts the least-significant bit of negotiated
value as the shared secret bit. Conversely, Peikert et al. [25] designed a radically
different approach which takes advantage of the high-bit information to derive
the same shared-key. Subsequently, based on the mechanism of Peikert, Alkim
et al. [26] designed the D̃4 reconciliation mechanism which is able to negotiate a
one-bit shared-key by four coefficients. Compared to previous mechanisms [23,

25], D̃4 expands the error tolerance interval to 3
4q. Saarinen et al. [27] proposed

an improved Peikert reconciliation mechanism by throwing away the coefficient
with high failure rate in the negotiation process. This method was instantiated
in the RLWE-based post-quantum scheme HILA5 [27], and decreases the fail-
ure rate of HILA5 by sacrificing multiple unsatisfactory coefficients. In [28] Jin
and Zhao formally formulated a universal and convenient error reconciliation
mechanism referred to as optimally-balanced key consensus with noise (OKCN).
Same idea as Peikert reconciliation mechanism [25], OKCN also utilized the most
significant bits of each coefficient to negotiate the shared-key. Moreover, the in-
herent upper-bound analyzed in Jin’s paper guides the parameter selection and
the trade-off between the accuracy and the bandwidth.

In sum, most of the existing error reconciliation mechanisms based on lattices,
such as Peikert [25], HILA5 [27], OKCN [28], etc., are negotiated based on the
most significant bit information; while the error reconciliation mechanism of
Ding is mainly based on the least significant bit information for negotiation.
According to our meticulous observation, the existing works only extract the
most or least significant bits of information to achieve the agreement of both
parties. To some extent, these methods result in the waste of effective information
in the negotiated values. So, in this paper, we propose an error reconciliation
mechanism, which can negotiate the most and least significant bits of information
at the same time.
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Key exchange protocols
In order to complete the task of key exchange between two entities on an insecure
channel, various key exchange protocols have been proposed. In 2012, Ding pro-
posed an error reconciliation mechanism based on the least-significant bit [23],
and designed a key exchange protocol based on RLWE. The Frodo protocol [9]
based on LWE uses Peikert’s error reconciliation to complete the key negotiation.
This work proposes efficient sampleable noise distribution, efficient and dynamic
generation of public parameters. In NewHope[26], a new error reconciliation (on
D̃4 lattice) is proposed. The protocol can greatly reduce the failure rate and
improve post-quantum security. At the same time, it use NTT to accelerate the
operation of polynomial multiplication. Although Kyber’s key exchange proto-
col[29] is based on the RLWE problem, it has additional flexibility and security
advantages. And, Saber[30] is based on the LWR problem. Cleverly[30] designed
how to use the LWR to negotiate the shared-key K. The negotiation efficiency
is greatly improved, and the negotiation information is more flexible and has
higher security strength. In recent years, LWE-based AKEs can be achieved by
instantiating generic constructions from public-key encryption (PKE) or KEMs.
For example, recently quantum-safe AKEs from lattice-based KEMs for the TLS
[31, 32, 1] have been constructed.

Recently, the researches of password authentication key exchange (PAKE)
protocol have been paid more and more attention due to the requirement of re-
mote access to privacy information in the prevalence of mobile devices. For apply-
ing PAKE protocols to establish secure remote communications in the quantum
era, Ding et al. [33] first proposed the parallel extension of PAK and PPK based
on the RLWE problem and proved the theoretical feasibility. To optimize the
efficiency of Ding’s PAK and PPK, Gao et al. [34] reduced the modulus q from
232 − 1 to 1073479681 < 230, for the reason that the new modulus satisfies the
condition of the number theoretic transform (NTT) algorithm to accelerate the
polynomial multiplication. Yang et al. [35] further optimized the implementation
of Ding-PAK by proposing a lightweight parameter set inspired by the scheme
from [26]. Moreover, inspired by the two-party, Liu et al. [36] presented a three-
party RLWE-based PAKE protocol, where two clients aim to agree on a session
key with the help of a trusted server.

1.2 Our Contributions

To ensure that communication is established correctly and efficiently, the er-
ror reconciliation mechanism plays an essential role in the lattice-based post-
quantum key exchange protocol. In this paper, we propose an efficient and uni-
versal reconciliation mechanism Speedy Error Reconciliation (SER) which takes
full advantage of the effective information of each negotiation coefficient. Specif-
ically, SER simultaneously extracts the effective information from the most and
least significant bits of one coefficient to negotiate a two-bit shared-key. In par-
ticular, SER only needs to transmit the signal value of the most significant bit
to achieve the negotiation of both the most and the least significant bits. Our
contribution are listed as follows:
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– SER makes full use of the effective information of the shared secret values
σ1 and σ2 when performing the error reconciliation. By extracting the most
and least significant bits of the secret value, a 2-bit key can be negotiated
in one reconciliation, which improves the efficiency of key negotiation. In
addition, SER expands the fault tolerance interval during key reconciliation
by sharing a g-bit auxiliary signal between two peers. Thus, the improves
the accuracy of negotiation.

– SER only transmits the auxiliary signal of the most significant bit of the
negotiated values. As for the signal value of the least significant bit, it can
be computed from the signal value of the most significant bit. Different from
the current signal mechanism, SER negotiates the most and least significant
bits. And the transmitted signal value proposed in this paper can help both
parties negotiate the most and the least significant bits.

– SER is integrated into key exchange protocols based on LWE, RLWE and
MLWE to evaluate practical performance. After comparing performance in-
dicators such as failure rate, security strength, and CPU cycles, we found
that SER is suitable for various scenarios. Among them, in the LWE-based
key exchange scheme, the average efficiency of SER in negotiating each bit is
61.6% higher than that of Frodo [9]. Compared with NewHope [11], RLWE-
based SER improves the average efficiency of per-bit key negotiation by
797.6%. In the MLWE-based scheme, SER performs well in the proposed
three parameter sets.

We briefly introduce the main contributions of this paper and related works
in Section 1. In Section 2, we review the background knowledge and theory to
be used later, and introduce four most known error reconciliation mechanisms.
Section 3 describes our error reconciliation in detail, along with correctness and
security proofs. Next, Section 4 presents the application of our mechanism to
lattice-based hard problems: LWE, Ring-LWE, Module-LWE, and reports the
test effciency. Section 5 discusses the direction of future experiments and the
accuracy of the coordination mechanism under different parameters. Section 6
concludes the full paper.

2 Preliminaries

In this section, we introduce some essential notations and review the basic back-
ground of the error reconciliation mechanism.

2.1 Notations

Let Z be the ring of rational integers. If x ∈ R, the rounding function ⌊x⌉ =
⌊x+ 1

2⌉ ∈ Z. Lattices are set of points in n dimensional plane. Mathematically,
the definition is as follows: Let Rk be the k dimensional Euclidean space. A
lattice in Rk is the set

L(a1, a2, a3, . . . , an) =
{ n∑

i=1

xiai : xi ∈ Z
}
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of all integral combinations of n linearly independent vectors a1, a2, a3, . . . , an in
Rk where k ≥ n. The integers n and k are called rank and dimension of lattice
respectively. If n = k, then the lattice is called full rank lattice. The sequence
of vectors a1, a2, a3, . . . , an is called lattice basis which can be represented in
matrix form as B = [a1, a2, a3, . . . , an] ∈ Rk×n

The LWE problem focuses on the three parameters: the modulus q, the di-
mension of the matrix n, and the error distribution χ. And we denote sampling

x uniformly at random from S: x
$← S (S is a set). The bold face capital letters

represent matrices. And, the matrix AT denotes the transpose of A. If χ is a

distribution over a set S, we use X
$← χ(Sn×m) to represent generating an n×m

matrix X by sampling each of its entries independently from S according to χ.
In the RLWE problem, let Z be the ring of rational integers. Let Zq, for an

integer q ≥ 1, denote the quotient ring Z/qZ. We define R = Z[X]/(Xn + 1) as
the ring of integer polynomials modulo Xn + 1. By Rq = Zq[X]/(Xn + 1) we
mean the ring of integer polynomials modulo Xn + 1 where each coefficient is

reduced modulo q. If χ is a probability distribution over R, x
$← χ means the

sampling of x ∈ R according to χ. If S is a set, x
$← S means the sampling

of x uniformly at random from S. The distribution χ is typically taken to be
a rounded continuous or discrete Gaussian distribution over Z with center zero
and standard deviation σ.

As for the MLWE problem, we define Rd
q as the vector including d ring

polynomials in Rq = Z[X]/(Xn + 1). Moreover, we define Rk×d
q as the ring

polynomial matrix with rank k and dimension d. The MLWE problem is the
general version of the LWE problem and the RLWE problem: If we set the ring
Rq to Zq, it becomes the LWE problem, and if we set d = k = 1, it becomes
RLWE problem.

In other words, for the RLWE-based KE schemes, the ring polynomial in
Rq is denoted as the bold lowercase such as r ∈ Rq. For the MLWE-based KE
schemes, we use the bold capital letter to denote the polynomial matrix with
m×n entries where each entry is sampled from Rq, such asB ∈ Rm×n

q . Moreover,
the bold lowercase is denoted as the polynomial vector of dimension n, such as
v ∈ Rn

q .

2.2 LWE, RLWE, MLWE Probolems

For lattice-based hard problems, the LWE problem and its variants (RLWE and
MLWE) are widely used to construct post-quantum schemes. In 2005, Regev
proposed the LWE problem [39]. We define the decision LWE problem as follows:

Definition 1 (Decision LWE problem). Let n and q ≥ 2 be the dimension
of a vector and the modulus, respectively. Let χ be an error distribution and
s← χ(Zn

q ). Define Oχ,s as the oracle which does the following:

1. Sample A← Zn
q , e← χ(Zq);

2. Return (A,As+ e) ∈ Zn
q × Zq.
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The decision LWE problem for n, q, χ is to distinguish between polynomial inde-
pendent samples from Oχ,s and the same number of independent samples from
an oracle U that returns uniform random samples from (Zn

q ,Zq).

However, the large computation of the matrix format in the LWE prob-
lem makes it inefficient when designing an LWE-based post-quantum scheme.
In 2012, inspired by the NTRU protocol, Lyubashevsky et al. [24] proposed
the RLWE problem. Compared with the LWE-based scheme, the RLWE-based
scheme introducing the algebraic structure shows more efficient performance.
Here, we define the decision RLWE problem as follows:

Definition 2 (Decision RLWE problem). Let n and q ≥ 2 be the rank of
a polynomial and the modulus, respectively. Let χ be an error distribution and
s← χ. Define Oχ,s as the oracle which does the following:

1. Sample A← Rq, e← χ;
2. Return (A,As+ e) ∈ Rq ×Rq.

The decision RLWE problem for n, q, χ is to distinguish between polynomial in-
dependent samples from Oχ,s and the same number of independent samples from
an oracle U that returns uniform random samples from (Rq, Rq).

In 2014, Langlois and Stehlé proposed the MLWE problem [40]. As a compro-
mise between the LWE problem and the RLWE problem, the MLWE problem
retains the matrix format, and concurrently, introduces the algebraic structure.
Therefore, when designing a lattice-based scheme in multiple security scenarios,
it is more flexible and simple than LWE and RLWE. Here, we define the decision
version of the MLWE problem as follows.

Definition 3 (Decision MLWE problem). Let n, d, k and q ≥ 2 be the rank
of a polynomial, the dimension of an error vector, the dimension of a secret
vector and the modulus, respectively. Let χ be an error distribution and s← χk.
Define Oχ,s as the oracle which does the following:

1. Sample A← Rd×k
q , e← χd;

2. Return (A,As+ e) ∈ Rd×k
q ×Rd

q .

The decision MLWE problem for n, d, q, χ is to distinguish between polynomial
independent samples from Oχ,s and the same number of independent samples
from an oracle U that returns uniform random samples from (Rd×k

q , Rd
q).

2.3 Review of error reconciliation mechanisms

For two approximate values σ1, σ2 held by Alice and Bob respectively, the error
reconciliation mechanism is to assist Alice and Bob to negotiate the same value
k. Usually, a necessary signal value derived from one-side is used for assisting the
negotiation of both parties. Next, we will review four known error reconciliation
methodologies.
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Ding’s Error Reconciliation [23]
Since the relationship of values σ1 ∈ Zq and σ2 ∈ Zq in Ding’s mechanism [23]
is σ1 = σ2 + 2δ, an important observation is that the parity of σ1 and σ2 is
consistent. Thus, Alice and Bob can extract the same least-significant bit of σ
as the final shared-key. In reality, a rewinding problem introduced from the odd
modulus q causes the reverse parity of σ1 and σ2. Thus, the signal function Cha
is responsible for the above consideration.

Let E = {⌊ q4⌋, · · · , ⌊
3q
4 ⌋} be the middle interval of Zq. The signal function

Cha can be defined as follows:

Cha(σ) =

{
0, σ ∈ E;

1, otherwise.

Once Bob sends the signal value b = Cha(σ) to Alice, both parties can utilize
the Mod2 function to agree on the same shared-key k ∈ {0, 1}. The function
Mod2 : Zq × {0, 1} → {0, 1} is defined as follows:

Mod(σ, b) = (σ + b · q − 1

2
) mod q mod 2

Peikert’s Error Reconciliation [25]
Contrary to Ding’s mechanism [23], Peikert et al. made use of the high-bit in-
formation to negotiate the shared-key. Assume that Alice and Bob holds two
approximate values w ∈ Zq and v ∈ Zq, respectively. Bob invokes the modular
rounding function and the cross-rounding function to finish its conciliation pro-
cess where the output of the modular rounding function is the shared-key and
the output of the cross-rounding function is the signal value. These two functions
are defined as follows:

Definition 4. Let q be an even modulus. Define the modular rounding function
is defined as

⌊x⌉q,2 := ⌊2
q
x⌉ mod 2

and, the cross-rounding function is defined as

⟨x⟩q,2 := ⌊4
q
x⌋ mod 2.

Once Alice receives the signal value from Bob, she generates a shared-key in
virtue of the reconciliation function.

Definition 5 (The reconciliation function). Given an element w ∈ Zq and
the cross-rounding value h = ⟨v⟩q,2 of a close element v ∈ Zq. Define the sets
I0 = {0, 1, · · · , ⌊ q4⌉ − 1} and I1 = {−⌊ q4⌋, · · · ,−1}. Let E = [− q

8 ,
q
8 ), the recon-

ciliation function is

rec(w, h) =

{
0, if w ∈ Ih + E mod q,

1, otherwise.
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Once the modulus q is odd, the bit derived by rounding will be biased. Thus,
to avoid the bias in the derived bits, the randomized doubling function is intro-
duced.

dbl(x) = 2x+ ē

where Pr[ē = 0] = 1
2 , Pr[ē = 1] = Pr[ē = −1] = 1

4 .

HILA5’s Error Reconciliation [27]
Similar to Peikert’s mechanism [12], Alice and Bob holds two approximate values
w ∈ Zq and v ∈ Zq, respectively. And use error reconciliation to coordinate and
calculate shared-key.HILA5 greatly improves the fault tolerance interval in the
Peikert protocol, so HILA5 greatly reduces the failure rate of Peikert.

Definition 6. Let q be an even modulus. The rounding function is defined as

⌊x⌋q,2 := ⌊2
q
x⌋ mod 2

and, the cross-rounding function, which comes from the Peikert error coordina-
tion mechanism, is defined as

⟨x⟩q,2 := ⌊4
q
x⌋ mod 2.

In this error reconciliation, Bob chooses a boundary window b, which defines
shared bits to be used, and then sends his binary selection vector d to Alice:

di =

{
1, if yi ∈ [⌊ q4⌉ − b, ⌊ q4⌉+ b] ∪ [⌊ 3q4 ⌉ − b, ⌊ 3q4 ⌉+ b],
0, otherwise.

Fig. 1. Bob’s key generation

Bob uses the rounding function to calculate a shared key k. In Fig. 1, if x
belongs to the region of d = 0, the current value of k is discarded. In the area
of d = 1, keep the current shared-key value, calculate the signal value C, and
send C to Alice. Once Alice receives the signal value C from Bob, she generates
a shared-key in virtue of the reconciliation function.
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Optimal Key Consensus in Presence of Noise [28]
In the OKCN’s machanism [28], it made use of the high-bit information to ne-
gotiate the shared-key. Alice and Bob holds two approximate values σ2 ∈ Zq

and σ1 ∈ Zq, respectively. Bob use the function Con(σ1, params) to finish its
conciliation process. Con(σ1, params) can output the shared-key and the signal
value v. Then Alice made use of σ2 and the signal value v to compute the shared-
key. Alice use Rec(σ2, v, pramas) to achieve that. k1 and k2 are the shared-keys
calculated by both parties in the key negotiation.

Definition 7. params = (q,m, g, d, aux), aux = {q′ = lcm(q,m), α = q′/q, β =
q′/m}. Define the function Con(σ1, params) and the function Rec(σ2, v, parmas)
as:

Algorithm 1 Con(σ1, params) & Rec(σ2, v, parmas)

1: procedure Con(σ1, params) σ1 ∈ [0, q − 1]
2: e← [−⌊(α− 1)/2⌋, ⌊α/2⌋]
3: σA = (ασ1 + e) mod q′

4: k1 = ⌊σA/β⌋ ∈ Zm

5: v′ = σA mod β
6: v = ⌊v′g/β⌋ v ∈ Zg

7: return(k1, v)
8: end procedure
9: procedure Rec(σ2, v, params) σ1 ∈ [0, q − 1]

10: k2 = ⌊ασ2/β = (v + 1/2)/g⌋ mod m
11: return k2
12: end procedure

3 Speedy Error Reconciliation

With the goal of improving the efficiency of error reconciliation and make full use
of shared secret information, we propose the speedy error reconciliation (SER)
mechanism in this section. By simultaneously reconciling the most and least
significant bits of similar secret values, multiple bits can be reconciled in one
negotiation. To keep the parity of the two similarity values σ1 and σ2 consistent,
we make some minor adjustments to the lattice-based key exchange scheme.
Two similar keys σ1 and σ2 computed by two peers should satisfy σ1 mod q =
σ2 mod q + 2δ, where δ ∈ Zq.

3.1 Overall Process of SER

Definition 8. The speedy Error Reconciliation mechanism SER = (params,
Neg, Com), briefly depicted in Fig. 1, is specified as follows.
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Alice Bob
σ1 ≈ σ2

v ← Signal(σ2, params)

k
′
← Neg(σ2, v, params)

v←−
k ← Com(σ1, v, params)

Fig. 2. Brief depiction of SER

– params = (q, g) denotes the system parameters, where q and g are positive
integers satisfying q ≥ 211, 1 ≤ g ≤ log2(q) − 3 (which will influence the
security, correctness and bandwidth of a lattice-based KE scheme).

– v ← Signal(σ2, params): Taking σ2 and params as inputs, the deterministic
polynom-ial-time algorithm Signal(σ2) outputs an auxiliary value v, which
is an indication signal that will be publicly passed to Alice to help both
parties reach a consensus.

– k
′ ← Neg(σ2, v, params): Taking σ2, v and params as inputs, the determin-

istic polynomial-time algorithm Neg(σ2, v) outputs k
′ ∈ Z2

2.
– k ← Com(σ1, v, params): Taking σ1, v and params as inputs, the determin-

istic polynomial-time algorithm Com(σ1, v) outputs k ∈ Z2
2.

3.2 Construction and analysis of SER

As can be seen from Section 3.1, the SER scheme contains three functions, the
signal generation function, the key generation function and the coordination
function. To ensure successful coordination, we also need to determine the fault
tolerance interval. First, we define k to represent the binary representation of

k, then k = khkl, k
′ = k

′
hk

′
l , where kh and kl are the high and low bits of the

2-bit shared key calculated by Alice, and k
′

h and k
′

l also represent the high and
low bits of the 2-bit shared key calculated by Bob. The specific algorithms are
described as follows.

Signal generation
The function Signal(σ) is defined as follows.

v = vg . . . v2v1 = Signal(σ) = ⌊2
g+1

q
· σ⌋ − ⌊2

q
· σ⌋ · 2g+1

where q represents the overall modulus, g reprensents the number of bits to send
the binary signal, and σ reprsents similar public values calculated after the two
parties exchange information. where g represents .

Key negotiation (Neg)
In this phase, Bob calculates k

′

l and k
′

h separately to form k
′
, which is the

key coordinated between Alice and Bob and k′ = k
′
hk

′
l . We define odd q>2,

Zq = {0, · · · , q − 1}, and half of Zq as D = ({⌊ q4⌋, · · · ⌊
3q
4 ⌋ − 1} ∩ Zq.
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To assist in the calculation of k′l, we define the variable v0 as follows.

v0 =

{
0, σ ∈ D
1, else

k′l is the least significant bit of information that Bob obtained through recon-

ciliation. k
′

l generation: To prevent the rewinding problem introduced from the

odd modulus q, we define k
′

l as follows.

k
′

l = (σ + v0 ·
q − 1

2
) mod q mod 2

k
′

h generation: k′h is the most significant bit of information that Bob obtained

through reconciliation. We define k
′

h as follows.

k
′

h = ⌊2σ
q
⌉ mod 2

Key compromise (Com)
In this phase, according to the signal value v passed by Bob, Alice calculates kl
and kh separately to form k, which is the key coordinated between Alice and
Bob and k = khkl.

kl generation: kl is the least significant bit of information that Alice obtained
through reconciliation. we define kl as follows.

kl = (σ + v
′

0 ·
q − 1

2
) mod q mod 2

where σ is Alice’s approximate secret value and v′0 can be calculated according
to the following formula

v′0 =

{
0, (kh ⊕ vg) · q2 + vg · q4 + · · ·+ v1 · q

2g+1 ∈ D
1, else

where kh is the most significant bit of information that Alive obtained through
reconciliation, v1 to vg represent the value of the signal value v in different binary
bits.

kh generation: As we methioned above, kh is the most significant bit of
information that Alice obtained through reconciliation. To eliminate the er-
rors that may be caused by truncation, we define the tolerance interval E =
(− q

4 · (1− ( 12 )
g), q

4 · (1− ( 12 )
g)) ∩ Zq, and define kh as follows.

kh =

{
0, σ ∈ E0

1, σ ∈ E1

where E0 = C0 + E, E1 = C1 + E, C0 and C1 are calculated according to the
function of Coordinate, which will be introduced below.
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Error Tolerance Interval
Since the interval to which σ1 and σ2 belong determines the values of kh and
k′h. In this part, In this part, we identify specific ranges that help Alice and Bob
reach the consensus. Cb is the interval in which σ2 is located and is defined as
follows:

Cb = Coordinate(v, b)

= [(b⊕ vg) ·
q

2
+ vg ·

q

4
+ · · ·+ vg−k ·

q

2k+2
+ · · ·+ v1 ·

q

2g+1
,

(b⊕ vg) ·
q

2
+ vg ·

q

4
+ · · ·+ vg−k ·

q

2k+2
+ · · ·+ v1 ·

q

2g+1
+

q

2g+1
)

b ∈ {0, 1}, k ∈ {1, 2, · · · , g}

When σ1 falls outside of C0 and C1, within a certain fault tolerance, Alice
and Bob can use the reconciliation mechanism to get the same value. We define
this tolerance range as: Eb = Cb + E, where b ∈ {0, 1}.

Fig. 3. An example of error tolerance interval
Fig. 3 shows the relationship between the deterministic interval C0 and C1

and the fault-tolerant interval. C0 and C1 are the intervals to which σ2 belongs. If
σ1 falls within these two intervals, Alice and Bob can deterministically calculate
the same key. Otherwise, if σ1 is not within this range, then within the fault tol-
erance interval, Alice can obtain the same key as Bob through the reconciliation
mechanism.

E0 and E1 are the deterministic interval plus the error tolerance interval
E. We can get C0 and C1 through the function Coordinate(v, b), and then get
E0 and E1, where E0 = C0 + E, E1 = C1 + E, which satisfy the following
relationship: E0 ∩E1 = ∅, E0 ∪E1 = Zq. It is not difficult to see that the spans
of the intervals C0 and C1 are both q/2g+1. Fig. 3 shows that when σ2 falls in
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the C0 interval, as long as σ1 falls in the E0 interval, Alice and Bob can reach
the consensus.

3.3 Correctness of SER

Theorem 1. The SER scheme is correct with the error tolerance:

σ1 − σ2 = d ≤ q

4
· (1− (

1

2
)g)

Remark 1. Theorem 1 reveals the upper limit of the error tolerance.

Proof. Since the ranges of C0 and C1 are both q/2g+1, the range size of the
remaining intervals are q − 2 · q

2g+1 . Dividing these remaining intervals into four
parts, we get the fault tolerance interval d ≤ q

4 · (1− ( 12 )
g).

On the premise that d<q, we divide the proof process into two parts: First
we prove that kl and k′l are equal, and then we prove that kh and k′h are equal.

Lemma 1. The Least significant bit reconciliation mechanism works correctly
with |σ1 − σ2|q ≤ d.

Proof. Suppose |σ1 − σ2|q ≤ q
4 · (1− ( 12 )

g), σ1 mod q = σ2 mod q + 2δ (inZ).
For any σ1, σ2 ∈ Zq such that σ1 − σ2 = 2δ and d ≤ q

4 · (1− ( 12 )
g).

Let D = {⌊ q4⌋, · · · , ⌊
3q
4 ⌋ − 1}. If σ2 ∈ D, v0 ← 0, else v0 ← 1. If σ2 ∈ D,

v0 ← 0, and |σ2 + v0 · q−12 mod q| ∈ D. If σ2 /∈ D, v0 ← 1, it is not hard to see

(σ2 + v0 ·
q − 1

2
) mod q ∈ D.

It can be seen that σ1 and σ2 have the following relationship:

(σ1 + v0 ·
q − 1

2
) mod q = (σ2 + v0 ·

q − 1

2
+ 2δ) mod q

= (σ2 + v0 ·
q − 1

2
) mod q + 2δ,

(1)

Since (σ2 + v0 · q−12 ) mod q ∈ D So, it can be seen:

(σ2 + v0 ·
q − 1

2
) mod q + 2δ ∈ Zq, (2δ ≤

q

4
· (1− (

1

2
)g−1))

This ensures that σ1 and σ2 do not round thus:

kl = (σ1 + v0 ·
q − 1

2
mod q) mod 2

= (σ2 + v0 ·
q − 1

2
mod q) mod 2

= k
′

l .

(2)

The above process shows our error reconciliation mechanism (in generating kl
and k

′

l) is correct.
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Lemma 2. The most significant bit reconciliation mechanism works correctly
with |σ1 − σ2|q ≤ d.

Proof. Let vgvg−2 · · · v1 = Signalh(σ2), where vgvg−2 · · · v1 is a specific descrip-
tion of the g bits of σ2, which is used to help Alice determine the interval to
which σ2 belongs. When σ2 falls into the C0 interval, as long as σ1 falls into the
E0 interval, Alice and Bob can get the same value 0, otherwise when σ2 falls
into the C1 interval, as long as σ1 falls into the E1 interval, both parties can get
the same value 1.

For example, if k
′

h = 0, then σ2 ∈ C0, since |σ1 − σ2|q ≤ q
4 · (1− ( 12 )

g), it can
be inferred that σ1 ∈ E0 and kh = 0. Conversely, if kh = 0, then σ1 ∈ E0, since
|σ1 − σ2|q ≤ q

4 · (1− ( 12 )
g), it can be inferred that σ2 ∈ C0 and k

′

h = 0.

⊓⊔

3.4 Security of SER

Theorem 2 (Security of SER). SER is secure if k and k′ are independent
with v when σ1 and σ2 ← Zq, and k and k′ follow a uniform distribution over
Z2.

We divide the proof process into two parts: First we prove that k′ and v are
independent of each other, and k′ follows a uniform distribution on Z2

2. And
then we prove that k and v are independent of each other, and k follows a
uniform distribution on Z2

2.

Lemma 3. SER is secure if k′ and v are independent of each other, and k′

follows a uniform distribution on Z2
2.

Proof. In generating k′l, we demonstrate that the computation of v0 follows a
uniform distribution on Z2. Consider the map f : Zq → Z2, and

v0 = f(σ) =

{
0, σ ∈ D
1, else

It is easy to see that f is a one-to-one map. If q is even, σ ← Zq is distributed
uniformly on Zq, v0 also follows a uniform distribution. If q is odd, for any σ ∈ Zq,

we define the function Signalb(σ), where b
$← {0, 1} (See Section 4.3 for details).

Since σ ← Zq is ditributed uniformly on Zq, v also follows a uniform distribution.

In the simliar way, we define f
′
: Zq · Z2 → Z2. According to k′l = (σ + v ·

q−1
2 ) mod q mod 2, σ = k′l + δ1q+2δ− q−1

2 v = f
′
(k′l, v). f

′
(k′l, v) is obviously a

one-to-one map. Since σ and v are uniformly distributed on Zq and Z2, k
′
l is also

uniformly distributed on Z2. Furthermore, as k′l and v0 are uniformly distributed
on Z2 × Z2, k

′
l and v are independent.

In generating k′h, We demonstrate that v = Signal(σ) follows a uniform
distribution over Zg

2. Consider the map f : Zq → Zg
2:

f(σ) = Signal(σ) = ⌊2
g + 1

q
· σ⌋ − ⌊2

q
· σ⌋ · 2g+1
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It is easy to see that f is a one-to-one map. Since σ ← Zq follows a uniform
distribution. For every v, σ ← Zq where multiple σ values correspond to one v
value, and the number of σ corresponding to each v is the same. So v follows a
uniform distribution over Zg

2.

And also, we define f
′
: Z2 → Zq. According to k

′

h = ⌊ 2σq ⌉ mod 2, σ =
k′
1q+δq+2δq

2 = f
′
(k′1), and f

′
is obviously a one-to-one map. Since σ is uniformly

distributed on Zq, k
′
l is also uniformly distributed on Z2. ⊓⊔

Lemma 4. SER is secure if k and v are independent of each other, and k follows
a uniform distribution on Z2

2.

Proof. As for generating k: In generating kl, we need v′0 and define:

v′0 =

{
0, (kh ⊕ vg) · q2 + vg · q4 + · · ·+ v1 · q

2g+1 ∈ D
1, else

In the above, v follows a uniform distribution over Zg
2. So, v

′
0 follows a uniform

distribution over Z2. And, kl = (σ + v
′

0 ·
q−1
2 ) mod q mod 2. Similar to generate

k′l and kl also follows a uniform distribution over Z2 and independent with v.
In generating kh, we define:

kh =

{
0, σ ∈ E0

1, σ ∈ E1

The intervals E0 and E1 are depended on v. Because of the lattice problem,
σ follows a uniform distribution over Zq. Thus, it is easy to see kh follows a
uniform distribution over Z2 and independent with v.

Furthermore, as k′l and k′h are uniformly distributed on Z2, k
′
l is independent

with σ. In summary, in SER, k′ and v are independent of each other, and k′ fol-
lows a uniform distribution on Z2

2. Within the allowable error tolerance interval,
k = k′. k also follows a uniform distribution on Z2

2. ⊓⊔

3.5 Special parameters and a simplified version

Since both kh and kl require at least one bit of signal to aid consensus, g(the
number of digits in v) needs to be greater than or equal to 1. If we select g = 1,
it is necessary to strictly control the distribution of e in different protocols, oth-
erwise it will cause excessive errors and consensus failure. After comprehensive
consideration, we choose g = 2 as the simplified version. The following is the
reconciliation process for the case of g = 2.
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Alice Bob
σ1 ≈ σ2

v = v2v1 ← Signal(σ2)
If σ2 ∈ D v0 ← 0, else v0 ← 1

k
′
l = (σ + v0 · q−1

2
) mod q mod 2

k
′
h = ⌊ 2σ

q
⌉ mod 2

k
′
← k

′
hk

′
l

v←−
∆ = (kh ⊕ v2) · q2 + v2 · q4 + v1 · q8
If ∆ ∈ D v

′
0 ← 0, else v

′
0 ← 1

kl = (σ1 + v
′
0 · q−1

2
) mod q mod 2

v2v1 ← v
If σ1 ∈ E0, kh ← 0, else kh ← 1

k ← khkl
k = k

′

Fig. 4. Brief depiction of SER

Alice computes C0 and C1 using the Coordinate function as follows:

v2&v1 C1 E1 C0 E0

0&0 [ q2 ,
5q
8 ) ∩ Z [ 5q16 ,

13q
16 ) ∩ Z [0, q

8 ) ∩ Z [0, 5q
16 ) ∪ [ 13q16 , q − 1] ∩ Z

0&1 [ 5q8 , 3q
4 ) ∩ Z [ 7q16 ,

15q
16 ) ∩ Z [ q8 ,

q
4 ) ∩ Z [0, 7q

16 ) ∪ [ 15q16 , q − 1] ∩ Z

1&0 [ q4 ,
3q
8 ) ∩ Z [ q

16 ,
9q
16 ) ∩ Z [ 3q4 , 7q

8 ) ∩ Z [0, q
16 ) ∪ [ 9q16 , q − 1] ∩ Z

1&1 [ 3q8 , q
4 ) ∩ Z [ 3q16 ,

11q
16 ) ∩ Z [ 7q8 , q − 1) ∩ Z [0, 3q

16 ) ∪ [ 11q16 , q − 1] ∩ Z

In Fig. 4, it shows the flow of coordination between Alice and Bob when the
parameter g = 2. Fig. 5 shows a schematic diagram of Bob’s computation of v1,
v2 and k′h by σ2 in the case of g = 2. Fig. 6 shows the schematic diagram of
Alice’s calculation of kh through the signal values v1 and v2.
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Fig. 5. Bob’s secret value K and signal
v1, v2 in different intervals

Fig. 6. Alice’s secret value K in different
intervals

4 Implementations of SER

In this section, we integrate SER into key exchange protocols based on LWE,
RLWE and MLWE respectively to observe the correctness, security and efficiency
of the SER scheme. By comparing with the original protocol in terms of security,
efficiency, etc., we can tap the advantages of SER and find suitable scenarios for
it. We run these protocols on macOS 11.2.3, Apple clang version 12.0.5 (clang-
1205.0.22.9), Intel Core i5 2.30GHz. Its value represents the maximum value of
the error [14, 42].

4.1 Comparison of three error reconciliation mechanisms

Table 1. Comparison of SER, OKCN, and Peikert in Frodo protocol

q n
l g

DIST.
error probability bw. (kB) —K—

SEROKCN & FrodoSEROKCNFrodo SER OKCN Frodo SER OKCNFrodoSEROKCNFrodo

Challenge 211352 8 8 3 2 1 3 2−22.8 2−80.1 2−41.8 7.75 7.76 7.75 128 64 64

Classical 212592 8 8 3 2 1 4 2−77.6 2−70.3 2−36.214.22 14.22 14.22 128 128 128

Recommended215752 16 8 3 3 1 5 <2−3002−105.92−38.922.58 22.58 22.57 512 256 256

Paranoid 215864 16 8 3 3 1 6 <2−300 2−91.9 2−33.825.94 25.94 25.93 512 256 256

We replace the error reconciliation mechanism in Frodo[9] with SER and
OKCN [28] to compare the performance of the three mechanisms. Table 1 shows
the failure rate, traffic flow and the number of key bits obtained by negotiation
for the three error reconciliation mechanisms in the four scenarios. It can be
seen that in Classical, Recommended and Paranoid, the failure rate of SER is
lower than that of OKCN [28] and Frodo[9]. In Recommended and Paranoid,
the failure rate of SER is less than 2−300, which is much lower than other mech-
anisms. The traffic flow of the three error reconciliation mechanisms is roughly
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equivalent. When comparing the number of key bits generated in Challenge,
Recommended, and Paranoid, SER is twice as high as the other two mech-
anisms. Clearly, SER outperforms the other two schemes in terms of failure
rate and negotiated key bits. The reason for the higher failure rate of SER in
Challenge is that the value of q is too small, and the error distribution Dist. is
too large after doubling, resulting in a higher failure rate. Therefore, in Section
4.2, we propose parameter settings more suitable for SER.

4.2 SER in LWE

To observe the performance of SER in LWE-based protocols, we replace the error
reconciliation mechanism in Frodo[9] with SER and compare the performance of
these two protocols after running. Since we assumed σ1 mod q = σ2 mod q + 2δ
in Section 3, we do some special processing to the Frodo[9] protocol to facilitate
the replacement of the error reconciliation mechanism. In Fig. 7, We show a
specific protocol scheme that replaces Frodo’s error reconciliation mechanism
with SER.

Client C Server S

seedA
$← U({0, 1}s)

A← Gen(seedA)

S,E
$← χ(Zn×n

q )

B ← AS + 2E
seedA,B−−−−−−−−−→

∈{0,1}s×Zn×n
q

A← Gen(seedA)

S
′
, E

′ $←− χ(Zm×n
q )

B
′ ← S

′
A+ 2E

′

E
′′ $←− χ(Zm×n

q )

V ← S
′
B + 2E

′′

C ← Signal(V )
B

′
,C←−−−−−−−−−−

∈Zm×n
q ×Zm×n

q

K ← Com(B
′
S,C) K ← Neg(V, params)

Fig. 7. The LWE-based protocol

Proposed Parameters
Frodo proposes four parameter sets: Challenge, Classical, Recommended

and Paranoid, which also apply to SER. We make some small adjustments to
these parameters to accommodate SER. Under the premise that correctness and
safety are acceptable, we change q to improve the overall efficiency. In Challenge
and Classical we increase the parameter q, in Recommend and Paranoid we
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decrease the parameter q. Table 2 lists the parameter selection and failure rates
of Frodo and SER under the four parameter sets. It can be seen from the table
that after adjusting q, the correct rate of SER has been greatly improved.

Table 2. Parameter selection of Frodo and SER.
Scheme n q g DIST. B ·m2 failure —K—

Challenge(Frodo) 352 211 1 3 1 · 82 2−41.8 64
Classical(Frodo) 592 212 1 4 2 · 82 2−36.2 128

Recommend(Frodo) 752 215 1 5 4 · 82 2−38.9 256
Paranoid(Frodo) 864 215 1 6 4 · 82 2−33.8 256
Challenge(SER) 352 212 3 3 2 · 82 2−86.5 128
Classical(SER) 592 212 3 4 2 · 82 2−77.6 128

Recommend(SER) 752 213 3 5 2 · 162 2−85.8 512
Paranoid(SER) 864 213 3 6 2 · 162 2−75.0 512

Table 3. Security of Frodo under four parameters.
Scheme

Attack
Rounded Gaussian Post-reduction

(Frodo) m b C Q P C Q P

Challenge
Primal 338 266 - - - - - -
Dual 331 263 - - - - - -

Classical
Primal 549 442 138 126 100 132 120 95
Dual 544 438 136 124 99 130 119 94

Recommend
Primal 716 489 151 138 110 145 132 104
Dual 737 485 150 137 109 144 130 103

Paranoid
Primal 793 581 179 163 129 178 162 129
Dual 833 576 177 161 128 177 161 128

Table 4. Security of SER under four parameters.
Scheme

Attack
Rounded Gaussian Post-reduction

(SER) m b C Q P C Q P

Challenge
Primal 338 266 - - - - - -
Dual 331 263 - - - - - -

Classical
Primal 549 442 138 126 100 132 120 95
Dual 544 438 136 124 99 130 119 94

Recommend
Primal 699 582 179 163 129 172 156 123
Dual 706 577 177 162 128 170 155 122

Paranoid
Primal 798 687 210 191 151 209 190 151
Dual 778 682 208 190 150 208 189 150

Performance Comparison
Tables 5 show the number of CPU cycles for Frodo and SER under four-parameter
sets, respectively. The ‘total’ in the table records the average and median of the
total number of CPU runs, and the ‘perbit’ in the table records the average and
median of the number of cycles used by CPU to complete a 1-bit key.
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Table 5. Number of CPU cycles required for Frodo.
Scheme total total perbit perbit

—K—
median average median average

Challenge(Frodo) 826369 859624 12912 13431 64
Classical(Frodo) 1854861 1978352 14491 15455 128

Recommend(Frodo) 2573847 2678434 10054 10462 256
Paranoid(Frodo) 3773053 3973444 14738 15521 256
Challenge (SER) 836789 878876 6537 6866 128
Classical (SER) 1918765 2022579 14990 15801 128
Recommend(SER) 2133762 2202166 4168 4301 512
Paranoid(SER) 3375476 3298573 6593 6443 512

As can be seen from Table 2-5, the key exchange protocol replaced by SER has
a significant improvement in correctness, security and CPU operation efficiency
compared with the traditional Frodo key exchange protocol. Especially in terms
of CPU operation efficiency, it can be seen from Table 4-5 that our scheme
improves the key consensus of each bit key by 61.6%.

4.3 SER in RLWE

We replace the error reconciliation mechanism in the RLWE-based key exchange
protocol NewHope [26] with SER in this section. To accommodate SER, we also
make some adjustments to the NewHope [26] protocol. In Fig. 8, we show a
specific protocol scheme that replaces NewHope’s error reconciliation mechanism
[26] with SER.

Client C Server S

seedA
$← {0, 1}256

a← Parse(SHAKE(seed))

s, e
$← Ψn

16 a← Parse(SHAKE(seed))

b← as + 2e
seed,b−−−−→ u← as

′
+ 2e

′

v ← bs
′
+ 2e

′′

v
′
← us

v,r←−− r
$← Signal(v)

k
′
← Com(v

′
, r) k ← Neg(v, r)

µ← SHA3-256(k
′
) µ← SHA3-256(k)

Fig. 8. The RLWE-based protocol
We know that in the RLWE-based scheme, the value of q must be an odd

number, which results in the number of values in the D interval being one less
than the number of values outside the D interval, resulting in a slightly higher
probability of the signal value v0 taking 0 than taking 1.

To get uniformly distributed 0 and 1 values, we modify the Signal function

as follows. b
$← {0, 1} denotes randomly to choose coins and assigning the output

to b.

v0 = Signalb(σ) =

{
1, σ ∈ {⌊ q4⌋, · · · , ⌊

3q
4 ⌋ − b}

0, else
b

$← {0, 1}
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Proposed Parameters
In NewHope [26], only one set of parameters is given, so we also give a set of

classical parameters accordingly, and test its correctness and safety. The specific
results are shown in Table 6. It is worth mentioning that in NewHope [26], four
approximations are negotiated to obtain a one-bit key, so the failure rate of the
NewHope scheme [26] is very low and can be ignored.

Table 6. Parameters for SER of key exchange from RLWE.
Scheme n q g DIST. failure primal Dual |K|
NewHope 1024 12289 - 4 − 200 199 1024

SER 1024 12289 3 4 2−124.4 198 191 2048

Performance Comparison
Table 7 shows the CPU cycles of the NewHope scheme [26] and our SER

scheme under the classic parameters. Same as Section 4.2, the ‘total’ in the
table records the average and median of the total number of CPU runs, and the
‘perbit’ in the table records the average and median of the number of cycles used
by CPU to complete a one-bit key consensus.

Table 7. Number of CPU cycles required for SER and NewHope [26]
Scheme total total perbit perbit

—K—
median average median average

NewHope 442840 468923 1729 1831 1024
SER 386650 417872 188 204 2048

It can be seen that our proposed error coordination mechanism performs
well in the RLWE-based key exchange protocol. While ensuring accuracy and
security, it also has a significant improvement in efficiency compared to NewHope
[26]. Under the premise of ensuring a lower failure rate, the perbit coordination
efficiency is increased by 797.6%.

4.4 SER in MLWE

Since there is no mature MLWE-based key exchange scheme yet, we construct
a SER-based key exchange protocol to test the correctness, security and opera-
tional efficiency of SER on MLWE. In Fig. 9, We show a specific protocol scheme
based on MLWE with SER.

Client C Server S

ρ ∼ {0, 1}256
A ∼ Rd×d

q := Sam(ρ)

(sc, ec)← βd
η × βd

η

yc = Asc + ec
yc,ρ−−−−−−−−−−→ A ∼ Rd×d

q := Sam(ρ)

(ss, es)← βd
η × βd

η

ys = AT ss + es
eσ ← βη

σs = yc
T ss + eσ

v ← Signal(σs)
ys,v←−−−−−−−−−− kσ = Neg(σs, v)

σc = sTc ys
kσ = Com(σc, v)

Fig. 9. The MLWE-based protocol
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As mentioned in Section 4.3, q in MLWE is also an odd number, and we need
to convert the Signal function to the Signallb function.

Proposed Parameters
In the MLWE-based key exchange protocol designed in this paper, we propose

four sets of parameters: Challenge, Classic, Recommended and Paranoid. For
the four sets of parameters, we calculate the correctness and safety of the scheme
respectively, and the specific results are shown in Table 8.

Table 8. Parameters for SER of key exchange from MLWE.
Scheme n q d g DIST. failure primal Dual —K—

Challenge 256 7681 3 3 3 2−115.5 156 155 512
Classical 256 7681 3 3 4 2−69.0 163 161 512

Recommend 256 7681 4 4 3 2−117.3 221 218 512
Paranoid 256 7681 4 4 4 2−69.4 229 226 512

Performance Comparison
Table 9 shows the number of CPU cycles of our MLWE-based SER scheme

under four sets of parameters. Same as the previous sections, the ’total’ in the
table records the average and median of the total number of CPU runs. The
’perbit’ in the table records the average and median of the number of cycles
used by CPU to complete a one-bit key consensus.

Table 9. Number of CPU cycles required for SER
Scheme total total perbit perbit

—K—
median average median average

Challenge 523856 552900 1023 1079 512
Classical 745658 768838 1456 1501 512

Recommend 1053560 1079795 2057 2108 512
Paranoid 1413004 1438586 2759 2809 512

From the above data, it can be seen that SER also performs well in MLWE-
based key exchange protocols. It not only guarantees the low failure rate and
security under the primal and dual attacks [38, 19], but also significantly im-
proves the efficiency. If a 256-bit key can be negotiated using the traditional
MLWE-based key exchange protocol, then under the same number of CPU cy-
cles, a 512-bit key can be negotiated using SER, which is more efficient.

5 Discussion

As far as SER itself is concerned, it has two significant advantages. First, SER
reconciles the most significant and least significant bits of the secret value, and
a two-bit key can be obtained by coordinating the two coefficients. In Frodo,
only a one-bit key can be obtained by coordinating two coefficients, while in
NewHope, four coefficients are required to negotiate a one-bit key. It can be
seen that the error reconciliation efficiency of SER is much better than other
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schemes. Second, by transmitting the g-bit signal value to the communication
peer, the fault tolerance interval of SER is expanded, thereby reducing the failure
rate of reconciliation.

When applying SER to key exchange schemes for various difficult problems
such as LWE, RLWE, and MLWE, we found that SER is versatile, adaptable to
various scenarios, and compatible with various protocols. From the implementa-
tion part of Section 4, it can be seen that after integrating SER into the above
key exchange protocol, the protocol can meet the requirements of failure rate
and security, and has good performance.

However, it is worth noting that when SER is integrated in an LWE-based
key exchange protocol, such as Frodo, under the Challenge parameter set, the
failure rate of SER is higher than that of the error reconciliation mechanism in
Frodo. There are two main reasons for this phenomenon: First, The size q in
Challenge mode is too small, and the error distribution Dist. is too large after
doubling. Second, SER doubles the error to perform key reconciliation, and the
large matrix operation further magnifies the doubled error. The combination of
these two reasons results in a higher failure rate of SER under Challenge mode.
Fortunately, we can reduce the failure rate by changing the size of q. By changing
q, we reduce the failure rate of SER in Section 4.2.

Observing the experiments in Section 4, we find that SER performs well in all
three implementations, especially in RLWE-based protocol. As we know, SER
doubles the error to reconcile the lowest bit information, which in turn leads to a
large error in SER. The RLWE-based key exchange scheme adopts a polynomial
ring, and by choosing a larger parameter q, the ratio of error to modulus q in
SER can be reduced, thereby reducing the failure rate. In RLWE-based SER,
its failure rate is only 2−124.4, and in the worst case, it can resist 2−198 primary
attacks and 2−191 dual attacks. In addition, it takes an average of 204 CPU
cycles to complete a 1-bit key exchange.

Fig. 10 and Fig. 11 list the relationship between the failure rate and the pa-
rameter g in LWE, RLWE, and MLWE, respectively. It can be seen that in the
three schemes, the failure rate decreases with the increase of the parameter g.
Among them, the failure rate of the protocol constructed based on the RLWE
problem is much smaller than other protocols. The main reason is that g rep-
resents the number of bits of the auxiliary signal value sent by Bob, and the
increase of g indicates that the amount of information sent increases, thereby
reducing the failure rate during reconciliation.

6 Conclusion

With the goal of improving the efficiency and success rate of error coordination,
this paper proposes an efficient and general error reconciliation scheme: Speedy
Error Reconciliation (SER). Compared with other schemes, SER has three no-
table features. First, it is more efficient. The most significant and least significant
bits of each coefficient can be used for reconciliation at the same time, and a two-
bit key can be obtained for one reconciliation. Second, the reconciliation failure
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Fig. 10. The relationship between failure
rate and g in LWE and RLWE schemes

Fig. 11. The relationship between the
failure rate and g in MLWE scheme

rate is lower. By sharing g-bit auxiliary information between two communication
peers, SER expands the fault tolerance interval when negotiating keys, thereby
improving the correct rate of negotiation. Third, it is universal and can be ap-
plied to key exchange protocols based on a variety of difficult problems. By
integrating SER into LWE, RLWE, and MLWE-based key exchange protocols,
we compare the performance of SER in various protocols, such as failure rate,
security strength, and the number of CPU cycles required for total and perbit
keys, and find that SER can be competent in various scenarios, especially in
RLWE. After replacing the error coordination mechanism with SER, compared
with the original protocol, the per-bit key negotiation efficiency of the replaced
Frodo and Newhope is improved by 61.6% and 797.6%, respectively.
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