
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 0, No. 0, pp. 0–0. DOI:10.46586/tosc.v0.i0.0-0

More Inputs Makes Difference:
Implementations of Linear Layers Using Gates

with More Than Two Inputs
Qun Liu1,2, Weijia Wang1,2, Ling Sun1,2, Yanhong Fan1,2, Lixuan Wu1,2 and

Meiqin Wang(B)1,2,3

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,
Shandong University, Jinan, China

2 School of Cyber Science and Technology, Shandong University, Qingdao, China
3 Quan Cheng Shandong Laboratory, Jinan, China

{qunliu,fanyh,lixuanwu}@mail.sdu.edu.cn, {wjwang,lingsun,mqwang}@sdu.edu.cn

Abstract. Lightweight cryptography ensures cryptography applications to devices
with limited resources. Low-area implementations of linear layers usually play an
essential role in lightweight cryptography. The previous works have provided plenty
of methods to generate low-area implementations using 2-input xor gates for various
linear layers. However, it is still challenging to search for smaller implementations
using two or more inputs xor gates. This paper, inspired by Banik et al., proposes a
novel approach to construct a quantity of lower area implementations with (n + 1)-
input gates based on the given implementations with n-input gates. Based on the
novel algorithm, we present the corresponding search algorithms for n = 2 and n = 3,
which means that we can efficiently convert an implementation with 2-input xor
gates and 3-input xor gates to lower-area implementations with 3-input xor gates and
4-input xor gates, respectively.
We improve the previous implementations of linear layers for many block ciphers
according to the area with these search algorithms. For example, we achieve a better
implementation with 4-input xor gates for AES MixColumns, which only requires 243
GE in the STM 130 nm library, while the previous public result is 258.9 GE. Besides,
we obtain better implementations for all 5500 lightweight matrices proposed by Li
et al. at FSE 2019, and the area for them is decreased by about 21% on average.
Keywords: Lightweight Cryptography · Linear Layers · Low Area · AES

1 Introduction
In recent years, lightweight cryptography has been a significant trend in many fields,
such as the Internet of Things (IoTs) and Radio-Frequency IDentification tags (RFID).
Lightweight cryptography means a low-cost implementation, where the cost covers the
circuit area, latency, power consumption, and so on. It extends cryptography applications
to devices with limited resources. Security has been a core area of concern for researchers,
as various limitations have led to new security threats.

Generally speaking, research on lightweight cryptography falls in two directions. The
first direction focuses on designing new ciphers that are assumed to be efficient im-
plementations, such as PRESENT [BKL+07], LED [GPP11], MIDORI [BBI+15], and
SAND [CFS+22]. The second direction tries to optimize the implementations of given
ciphers, which has also drawn much attention. For example, the Advanced Encryption
Standard (AES) [DR20] has been widely used in practice. Its round function has been

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/10.46586/tosc.v0.i0.0-0
mailto:qunliu@mail.sdu.edu.cn, fanyh@mail.sdu.edu.cn, lixuanwu@mail.sdu.edu.cn
mailto:wjwang@sdu.edu.cn, lingsun@sdu.edu.cn, mqwang@sdu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Qun Liu et al. 1

frequently used in designing other cryptographic primitives (e.g., AEGIS [WP13] and
Rocca [SLN+21]). Therefore, an efficient implementation will directly reduce the cost of
deploying AES for primitives using its round function.

In practice, we can build circuit implementations of linear layers using a variety
of heuristics (e.g., [Paa97, BP10, BMP13, KLSW17, LSL+19, TP20, XZL+20, BFI21,
LXZZ21, LWF+22] for an incomplete list) originating in Paar’s work [Paa97]. Most of
those previous works only consider the circuits using 2-input gates. However, most standard
cell libraries of CMOS logic processes have dedicated gates that support 3-input xor gates
or 4-input xor gates ([BPMC18, RMTA20, BFI21, BDK+21]). Meanwhile, it should be
noted that using gates with more than two inputs may give rise to some more efficient
circuits. We first consider the most popular criteria for the lightweight implementation
gate equivalents (GE).1 In this paper, we use two ASIC libraries (see Table 1), adopted
from [BDK+21].

Table 1: Logic libraries with gates and the corresponding costs.

Library
Gate XOR2 XOR3 XOR4

1: STM 90 nm 2 GE 3.25 GE 5 GE
2: STM 130 nm 3.33 GE 4.66 GE 5.99 GE

We give an example with a matrix M1,[
1 1 1 0
0 1 1 1

]
,

the inputs x⃗ = (x0, x1, x2, x3)T , and the outputs y⃗ = (y0, y1)T . The optimal solution
with the minimum number of XOR operations to compute y⃗ = M1x⃗ can be performed by
the procedure described by Figure 1-left, requiring three gates. In STM 130 nm library,
the circuit needs 9.99 GE and cannot be improved by 2-input xor gates. However, if we
construct the circuit with 3-input gates (see Figure 1-right), it only needs 9.32 GE.

t4 = x1 ⊕ x2

y0 = t4 ⊕ x0

y1 = t4 ⊕ x3

y0 = x0 ⊕ x1 ⊕ x2

y1 = x1 ⊕ x2 ⊕ x3

Figure 1: Two implementations of (y0, y1)T = M1 × (x0, x1, x2, x3)T .

Despite the potential advantage of the circuit using gates with more than two inputs,
it is still challenging to design an approach to find suitable circuits. Baksi et al. [BDK+21]
directly searched for the circuits by adopting the BP algorithm proposed in [BP10] with
3-input xor gates. It is the first heuristic method that takes them into account and performs
well in STM 130 nm library. Besides, this approach may significantly increase the searching
space due to the larger amount of gate inputs, leading to a long time to run until a proper
circuit is found. In [BFI21], Banik et al. proposed another strategy that attempts to
convert a circuit with 2-input gates into another one with 3-input gates. This strategy can
benefit from the known heuristic algorithms that produce circuits with 2-input gates. We
call it the BFI algorithm and give a brief introduction. The algorithm starts with the BP
algorithm to generate many circuits with 2-input gates, and then transforms them into
ones with 3-input gates. This intelligent strategy reduces the search space and obtains
many circuits for linear layers with fewer areas than before. Nevertheless, we note that

1The unit of gate size is Gate Equivalent (GE), where one GE equals the area of a 2-input NAND gate.
The cost of other gates in terms of GE is a normalized ratio between their area and one NAND gate area.

2 Implementations of Linear Layers Using Gates with More Than Two Inputs

firstly, it is still unknown whether it can be generalized to gates with more than 3 inputs,
and secondly, the one (with 2-input gates) to one (with 3-input gates) transformation
may reduce too much the search space. It is a bit of waste that a suitable circuit is only
transformed into one circuit with 3-input gates. Therefore, this is an exciting research
direction.

1.1 Our Contributions
In this paper, we follow the line of the work of Banik et al. and propose two algorithms
to provide more generalized and efficient algorithms to reduce the circuit areas of linear
layers. Then, we instantiate them to optimize the existing matrices with 3/4-input xor
gates.

New algorithms to optimize the circuit areas with 3/4-input xor gates. This
paper proposes two novel algorithms that can construct a quantity of lower area imple-
mentations with (n + 1)-input gates based on the given implementations with n-input
gates. The first method is the transform algorithm. It can convert a circuit using gates
with no more than n inputs into a lower area circuit using gates with no more than n + 1
inputs. As a transform framework, we can utilize it to convert circuits using gates with
more inputs. The second method is the graph extending algorithm. It can produce massive
equivalent circuits with low area and depth for a given circuit. The algorithm utilizes more
information hidden in the given circuit and can be applied after any existing algorithms to
optimize the results further.

Based on the novel algorithms, we instantiate the corresponding search algorithms
EGT2 for n = 2 and EGT3 for n = 3, which means that we can efficiently transform an
implementation with 2-input xor gates and 3-input xor gates to lower-area implementations
with 3-input xor gates and 4-input xor gates, respectively.

Application to many linear layers of block ciphers. We apply EGT2 and
EGT3 to several linear layers from the literature, including matrices already used in
different ciphers [DR20, CMR05, JNP15, Ava17, BBI+15, BCG+12, ADK+14, Ava17,
BJK+16, AIK+00]. With the help of these search algorithms, we improve the previous
implementations of linear layers for many block ciphers according to the area. The results
are listed in Table 2 and Table 3, where XZLBZ is a heuristic algorithm proposed in
[XZL+20]. For the thirteen linear layers in the tables below, we optimize eight matrices in
circuit areas and obtain four with the same circuit areas. Notably, for AES MixColumns,
we achieve a circuit with 243 GE, better than the previous best result (258.9 GE) reported
in [BDK+21].

We also apply our algorithms to 5500 lightweight matrices proposed by Li et al. in
[LSL+19] and obtain better circuits for all the matrices than all known state-of-the-art
results. Figure 2 shows the comparison between the GE concerning different algorithms.
On average, for each matrix, the circuit area is decreased by about 21%.

Additionally, we synthesize different implementations of AES MixColumns in hardware
(see Table 4). The results show that our implementation achieves a better area and reduces
power at the cost of slight and reasonable growth of latency.

1.2 Organization
In Section 2, we give some basic notations and definitions. Then, we propose the transform
algorithm in Section 3. In Section 4, we propose the graph extending algorithm and give
some examples. Next, in Section 5, we combine two algorithms and instantiate EGT2 and
EGT3 algorithms. Finally, we conclude and propose future research directions in Section 6.

Qun Liu et al. 3

Table 2: The results of implementation cost of matrices in the library named STM 90 nm.
The results consist of the circuit area (GE) and the gates. We use “(m)” to represent m
2-input xor gates, use “(m, p)” to represent m 2-input xor gates and p 3-input xor gates,
and use “(m, p, q)” to represent m 2-input xor gates and p 3-input xor gates and q 4-input
xor gates.

Matrix XZLBZa [BDK+21]b [BFI21]b XZLBZ+BFIb XZLBZ+EGT2b XZLBZ+EGT3c

AES [DR20] 184 (92) 176.7 (12, 47) 169.0 (39, 28) 169.7 (41, 27) 167.5 (35, 30) 166.5 (31, 26, 4)
ANUBIS [BR00] 198 (99) 187.7 (11, 51) 185.0 (60, 20) 177.2 (35, 33) 177.2 (35, 33) 175.5 (28, 26, 7)
CLEFIA M0 [SSA+07] 196 (98) 185.2 (13, 49) 185.0 (60, 20) 180.7 (40, 31) 178.5 (34, 34) 178.0 (32, 32, 2)
CLEFIA M1 [SSA+07] 206 (103) 207.5 (3, 62) 193.0 (38, 36) 190.2 (48, 29) 186.5 (38, 34) 185.7 (35, 31, 3)
FOX MU4 [JV04] 272 (136) - 231.7 (46, 43) 241.7 (64, 35) 241.7 (64, 35) 239.0 (53, 24, 11)
JOLTIK [JNP15] 88 (44) 83.0 (9, 20) 84.0 (16, 16) 83.5 (19, 14) 82.0 (15, 16) 81.7 (14, 15, 1)
MIDORI [BBI+15] 48 (24) 52.0 (0, 16) 45.0 (16, 4) 48.0 (24, 0) 45.0 (16, 4) 45.0 (16, 4, 0)
PRINCE M0, M1 [BCG+12] 48 (24) 52.0 (0, 16) 45.0 (16, 4) 46.5 (20, 2) 45.0 (16, 4) 45.0 (16, 4, 0)
PRIDE L0 − L3 [ADK+14] 48 (24) 52.0 (0, 16) 45.0 (16, 4) 48.0 (24, 0) 45.0 (16, 4) 45.0 (16, 4, 0)
QARMA128 [Ava17] 96 (48) - 90.7 (34, 7) 90.7 (34, 7) 90.0 (32, 8) 90.0 (32, 8, 0)
QARMA64 [Ava17] 48 (24) 52.0 (0, 16) 45.0 (16, 4) 45.0 (16, 4) 45.0 (16, 4) 45.0 (16, 4)
SMALLSCALE AES [CMR05] 86 (43) 78.0 (0, 24) 80.2 (19, 13) 80.2 (19, 13) 79.5 (17, 14) 79.5 (17, 14, 0)
TWOFISH [SKW+98] 222 (111) 215.5 (20, 54) 222.5 (43, 42) 203.0 (56, 28) 201.0 (55, 28) 199.7 (50, 23, 5)

a Using 2-input xor gates.
b Using 2/3-input xor gates.
c Using 2/3/4-input xor gates.

Table 3: The results of implementation cost of matrices in the library named STM 130 nm.
The results consist of the circuit area (GE) and the gates. We use “(m)” to represent m
2-input xor gates, use “(m, p)” to represent m 2-input xor gates and p 3-input xor gates,
and use “(m, p, q)” to represent m 2-input xor gates and p 3-input xor gates and q 4-input
xor gates.

Matrix XZLBZa [BDK+21]b [BFI21]b XZLBZ+BFIb XZLBZ+EGT2b XZLBZ+EGT3c

AES [DR20] 306.3 (92) 258.9 (12, 47) 260.3 (39, 28) 259.0 (26, 37) 255.0 (29, 34) 243.0 (22, 21, 12)
ANUBIS [BR00] 329.6 (99) 274.2 (11, 51) 293.0 (60, 20) 270.3 (35, 33) 270.3 (35, 33) 253.6 (21, 24, 12)
CLEFIA M0 [SSA+07] 326.3 (98) 271.63 (13, 49) 293.0 (60, 20) 276.3 (34, 35) 270.9 (31, 36) 258.9 (23, 16, 18)
CLEFIA M1 [SSA+07] 342.9 (103) 298.9 (3, 62) 294.3 (38, 36) 292.9 (39, 35) 283.6 (32, 38) 270.2 (20, 27, 13)
FOX MU4 [JV04] 452.8 (136) - 353.5 (46, 43) 374.2 (48, 46) 372.2 (46, 47) 347.5 (32, 26, 20)
JOLTIK [JNP15] 146.5 (44) 122.5 (6, 22) 127.8 (16, 16) 126.5 (10, 20) 123.8 (12, 18) 115.8 (9, 12, 5)
MIDORI [BBI+15] 79.9 (24) 74.5 (0, 16) 71.9 (16, 4) 71.9 (16, 4) 71.9 (16, 4) 71.9 (16, 4, 0)
PRINCE M0, M1 [BCG+12] 79.9 (24) 74.5 (0, 16) 71.9 (16, 4) 71.9 (16, 4) 71.9 (16, 4) 71.9 (16, 4, 0)
PRIDE L0 − L3 [ADK+14] 79.9 (24) 74.5 (0, 16) 71.9 (16, 4) 71.9 (16, 4) 71.9 (16, 4) 71.9 (16, 4, 0)
QARMA128 [Ava17] 159.8 (48) - 145.8 (34, 7) 145.8 (34, 7) 144.5 (28, 11) 144.5 (28, 11, 0)
QARMA64 [Ava17] 79.9 (24) 74.5 (0, 16) 71.9 (16, 4) 71.9 (16, 4) 71.9 (16, 4) 71.9 (16, 4, 0)
SMALLSCALE AES [CMR05] 143.1 (43) 111.8 (0, 24) 123.8 (19, 13) 123.8 (19, 13) 121.8 (17, 14) 118.4 (5, 9, 10)
TWOFISH [SKW+98] 369.6 (111) 317.5 (17, 56) 338.9 (43, 42) 312.9 (31, 45) 306.9 (25, 48) 293.5 (13, 28, 20)

a Using 2-input xor gates.
b Using 2/3-input xor gates.
c Using 2/3/4-input xor gates.

Table 4: The results of AES MixColumns in the UMC 55 nm library. “Ours” is from our
algorithm. “Syn” is from the synthesizer Synopsys Design Compiler version R-2020.09-SP4.

Type Area (GE) Latency (us) Power (uW)
1. [LXZZ21] 227.5 0.52 17.5
2. Ours 220.0 0.65 16.0
3. [LWF+22] 257.5 0.28 15.9
4. Syn 251.0 0.37 15.2

4 Implementations of Linear Layers Using Gates with More Than Two Inputs

150 155 160 165 170

220

240

260

280

300

Hamming weight

G
E

BP
BFI

EGT2
EGT3

Figure 2: The results of lightweight matrices with the Hamming weight from 148 to 172
for STM 130 nm library, where the Hamming weight counts the number of 1’s contained
in the matrix.

2 Preliminaries
2.1 Notations
Let F2 be the finite field with two elements 0 and 1 and Fn

2 be the vector space of all
n-dimensional vectors over F2. Mm×n denotes an m× n matrix over F2. wt(M) denotes
the Hamming weight of a matrix M over Mm×n, which counts the number of 1’s contained
in M .

2.2 gϵ-XOR Metric
For any linear layer of a cipher associated to an m× n binary matrix M , given inputs x⃗ =
(x0, x1, ..., xn−1)T , the outputs y⃗ = (y0, y1, ..., ym−1)T of the linear layer can be computed
by y⃗ = Mx⃗, and yi (0 ≤ i ≤ m− 1) can be computed by

yi = ai0x0 ⊕ ai1x1 ⊕ ...⊕ ai(n−1)xn−1, (1)

where each coefficient aij is the entry of M at i-th row and j-th column.
We first recall some metrics to compute Mx⃗ with less number of 2-input xor gates for

a matrix M over Mm×n.

Definition 1 (d-XOR [KPPY14]). The d-XOR is defined as wt(M)−m, where wt(M) is
the Hamming weight of M , i.e., the number of 1’s in M .

Definition 2 (s-XOR [JPST17]). It is always possible to perform a sequence of XOR
gates xi = xi ⊕ xj with 0 ≤ i, j ≤ n− 1, such that the inputs are updated to the outputs.
The s-XOR count of M is defined as the minimal number of updating operations.

Definition 3 (g-XOR [XZL+20]). The circuit of M can be viewed as a sequence of XOR
gates xi = xj1 ⊕ xj2 where 0 < xj1 , xj2 < i. The g-XOR count is defined as the minimal
number of operations xi = xj1 ⊕ xj2 that compute the m outputs completely.

Since the d-XOR metric is intuitive and easy to compute (i.e., the number of 1’s in M),
it has been adopted to design new lightweight diffusion layers. The s-XOR and g-XOR

Qun Liu et al. 5

metrics are used in evaluating matrices for further optimization. The difference is that
the g-XOR can generate new values while the s-XOR continuously renews original values.
For example, in the procedure of computing x0 ⊕ x1, the s-XOR performs x0 = x0 ⊕ x1 or
x1 = x0 ⊕ x1, while the g-XOR can generate t2 with t2 = x0 ⊕ x1.

Next, we use a new metric for optimization. We define the ϵ-operation (ϵ ∈ N) as an
operation containing ϵ continuous 2-input xor gates. 1-operation represents a 2-input xor
gate, 2-operation represents a 3-input xor gate, 3-operation represents a 4-input xor gate,
and so on. Different operations may have different costs (i.e., GE in hardware). λϵ is
defined as the cost of the ϵ-operation. Then, we expand the definition of g-XOR. Actually,
the definition is similar to [BDK+21].

Definition 4 (gϵ-XOR). Given the cost λi (1 ≤ i ≤ ϵ) of every operation, the gϵ-XOR
metric is defined as

min(λ1e1 + λ2e2 + . . . + λϵeϵ), (2)

where ei counts the number of the i-operation.

If λ1 = 1, g1-XOR is the g-XOR. The gϵ-XOR metric can use 1-operation, 2-operation,. . .,
ϵ-operation to optimize matrices. The circuit with 1-operation, 2-operation,. . ., ϵ-operation
are called the circuit with the gϵ-XOR metric. For convenience, we use XOR2, XOR3, and
XOR4 to represent the 1-operation, 2-operation, and 3-operation, respectively.

Another metric is the circuit depth. The critical path of a circuit is defined as the path
between an input and output involving the maximum number of gates. The circuit depth
is the number of gates involved in the critical path.

2.3 Directed Acyclic Graph
A graph is formed by nodes and by edges connecting pairs of nodes. In the case of a
directed graph, each edge has an orientation from one node to another. A Directed Acyclic
Graph (DAG) is a directed graph that has no cycles. In-degree of a node is defined as the
number of edges that end at this node, and out-degree of a node is defined as the number
of edges whose origin is the node. We use in(u) and out(u) to represent the in-degree and
out-degree of u, respectively. Moreover, the input set I(u) and the output set O(u) are
used to save the nodes relevant to u. If there exists an edge from u to v, we will put v
into O(u) and put u into I(v). We have

|I(v)| = in(v), |O(u)| = out(u).

Definition 5 (Reachability Relation). The reachability relation can be formalized as
a partial order ⪯ on the nodes of the DAG. In this partial order, two nodes u and v are
ordered as u ⪯ v exactly when a directed path exists from u to v in the DAG.

Definition 6 (Reachability Set). Given a directed acyclic graph G, the reachability set
Ru of the node u (u ∈ G) is defined as the set in which each node v satisfies v ∈ G and
u ⪯ v. The reachability set RG of the graph G is defined as the set containing all the Ru.

The definition of the reachability set shows that if one node v ∈ Ru, the path from u
to v must exist. A path consists of multiple consecutive edges. Then, we introduce the
topological ordering, which is used to sort the nodes.

Definition 7 (Topological Ordering). The topological ordering TG of a directed acyclic
graph G is an ordering of its nodes into a sequence. For every edge, the start node of the
edge occurs earlier in the sequence than the ending node.

6 Implementations of Linear Layers Using Gates with More Than Two Inputs

3 Transform Algorithm
In this section, we introduce the generalized algorithm for converting a circuit with gates
up to n inputs into a circuit with gates up to n + 1 inputs. Reducing the number of
XOR2 gates is helpful for linear layers. The circuit area can be reduced by finding the
minimum number of XOR2 gates. However, there is a gap between the above circuit and
the smallest circuit area. For example, the number of XOR2 gates for the matrix used in
AES MixColumns is 92, proposed by Xiang et al. in [XZL+20]. Banik et al. proposed a
new circuit with 39 XOR2 gates and 28 XOR3 gates. In the library named STM 130 nm,
the area of the new circuit is 260.3 GE. In comparison, the area of the 92-gate circuit is
306.3 GE.

To adapt to different situations, we limit the types of gates. If we use gϵ-XOR metric,
only i-input (i ≤ ϵ + 1) xor gates can be used. For example, the g2-XOR metric means
that only 2/3-input xor gates can be used. Transforming circuits with gates from n inputs
into n + 1 inputs means that the metric used in the circuits is changed from gn−1-XOR
metric to gn-XOR metric. The cost of the circuit is changed from

λ1e1 + λ2e2 + ... + λn−1en−1

to
λ1e′

1 + λ2e′
2 + ... + λn−1e′

n−1 + λne′
n,

where ei and e′
i are the number of i-operations before and after the transformation.

Notably, for the AES MixColumns in the library named STM 130 nm, we can decrease
the circuit area to 255 GE with the g2-XOR metric (see Table 5) and to 243 GE with the
g3-XOR metric (see Table 6).

Table 5: An implementation of AES MixColumns with 255 GE for STM 130 nm library.
It uses 29 XOR2 gates and 34 XOR3 gates. t0, t1, . . . , t31 are the input values. The output
values are y0, y1, . . . , y31.

No. Operation No. Operation No. Operation
1 t32 = t7 ⊕ t15 22 t67 = t33 ⊕ t40 ⊕ t38 43 t105 = t35 ⊕ t4 ⊕ t84 //y20
2 t33 = t31 ⊕ t15 23 t69 = t37 ⊕ t14 ⊕ t6 44 t107 = t84 ⊕ t126 //y28
3 t35 = t11 ⊕ t3 ⊕ t32 24 t71 = t33 ⊕ t8 ⊕ t16 45 t108 = t14 ⊕ t43 ⊕ t47 //y30
4 t36 = t17 ⊕ t9 25 t72 = t33 ⊕ t14 ⊕ t41 //y7 46 t110 = t39 ⊕ t71 ⊕ t9
5 t37 = t5 ⊕ t21 26 t73 = t27 ⊕ t35 ⊕ t39 47 t111 = t96 ⊕ t89 ⊕ t45 //y18
6 t38 = t20 ⊕ t12 27 t75 = t33 ⊕ t35 ⊕ t45 48 t112 = t13 ⊕ t38 ⊕ t52 //y13
7 t39 = t31 ⊕ t23 28 t76 = t16 ⊕ t48 49 t113 = t13 ⊕ t38 ⊕ t79 //y21
8 t40 = t11 ⊕ t27 29 t79 = t47 ⊕ t46 50 t114 = t79 ⊕ t56 //y5
9 t41 = t23 ⊕ t6 30 t82 = t36 ⊕ t2 ⊕ t44 //y10 51 t115 = t0 ⊕ t71 ⊕ t32 //y24
10 t43 = t22 ⊕ t6 31 t83 = t33 ⊕ t36 ⊕ t48 52 t116 = t110 ⊕ t96 //y9
11 t44 = t18 ⊕ t26 32 t84 = t19 ⊕ t73 ⊕ t46 53 t117 = t69 ⊕ t125 //y14
12 t45 = t18 ⊕ t2 33 t88 = t19 ⊕ t62 ⊕ t32 //y3 54 t118 = t72 ⊕ t43 ⊕ t32 //y15
13 t46 = t12 ⊕ t28 34 t89 = t63 ⊕ t44 ⊕ t9 //y2 55 t119 = t43 ⊕ t92 ⊕ t39 //y23
14 t47 = t5 ⊕ t29 35 t91 = t0 ⊕ t39 ⊕ t48 //y16 56 t120 = t25 ⊕ t115 ⊕ t76
15 t48 = t8 ⊕ t24 36 t92 = t32 ⊕ t41 ⊕ t30 //y31 57 t121 = t96 ⊕ t120 //y25
16 t51 = t37 ⊕ t13 37 t95 = t44 ⊕ t73 ⊕ t32 //y19 58 t122 = t83 ⊕ t120 //y1
17 t52 = t29 ⊕ t51 38 t96 = t25 ⊕ t36 ⊕ t1 59 t123 = t71 ⊕ t91 //y8
18 t56 = t4 ⊕ t28 ⊕ t51 //y29 39 t97 = t63 ⊕ t25 ⊕ t45 //y26 60 t124 = t116 ⊕ t83 //y17
19 t59 = t35 ⊕ t38 ⊕ t28 //y4 40 t99 = t76 ⊕ t32 //y0 61 t125 = t101 ⊕ t43 ⊕ t52 //y6
20 t62 = t10 ⊕ t40 ⊕ t2 41 t101 = t69 ⊕ t47 ⊕ t30 //y22 62 t126 = t67 ⊕ t105 //y12
21 t63 = t10 ⊕ t1 42 t102 = t19 ⊕ t44 ⊕ t75 //y27 63 t127 = t88 ⊕ t75 ⊕ t39 //y11

3.1 Relationship between Circuit and DAG
We treat the circuit of a matrix as a directed acyclic graph. Given an m×n binary matrix
M , the inputs x⃗ = (x0, x1, ..., xn−1)T , and the outputs y⃗ = (y0, y1, ..., ym−1)T , we call

Qun Liu et al. 7

Table 6: An implementation of AES MixColumns with 243 GE for STM 130 nm library.
It uses 22 XOR2 gates, 21 XOR3 gates, and 12 XOR4 gates. t0, t1, . . . , t31 are the input
values. The output values are y0, y1, . . . , y31.

No. Operation No. Operation No. Operation
1 t32 = t31 ⊕ t23 20 t69 = t11 ⊕ t36 ⊕ t32 ⊕ t45 //y19 38 t108 = t56 ⊕ t40 ⊕ t29 //y29
2 t33 = t32 ⊕ t19 21 t71 = t38 ⊕ t12 ⊕ t40 //y20 39 t110 = t50 ⊕ t56 ⊕ t78 //y30
3 t34 = t31 ⊕ t15 22 t73 = t9 ⊕ t17 40 t111 = t79 ⊕ t43 ⊕ t9 //y17
4 t35 = t12 ⊕ t4 23 t74 = t20 ⊕ t36 ⊕ t39 ⊕ t35 //y28 41 t112 = t79 ⊕ t39 ⊕ t102 //y24
5 t36 = t27 ⊕ t3 24 t75 = t37 ⊕ t8 42 t113 = t37 ⊕ t32 ⊕ t34 ⊕ t16 //y8
6 t37 = t0 ⊕ t24 25 t76 = t28 ⊕ t20 ⊕ t56 ⊕ t21 //y21 43 t114 = t47 ⊕ t32 ⊕ t93 //y31
7 t38 = t27 ⊕ t33 26 t77 = t6 ⊕ t50 ⊕ t21 ⊕ t29 //y22 44 t115 = t47 ⊕ t77 ⊕ t56 //y6
8 t39 = t31 ⊕ t7 27 t78 = t30 ⊕ t47 ⊕ t41 //y14 45 t116 = t81 ⊕ t73 ⊕ t10 //y2
9 t40 = t28 ⊕ t4 28 t79 = t32 ⊕ t16 ⊕ t24 46 t117 = t76 ⊕ t57 ⊕ t40 ⊕ t29 //y13
10 t41 = t13 ⊕ t21 29 t80 = t67 ⊕ t20 //y12 47 t118 = t43 ⊕ t17 ⊕ t75 ⊕ t113 //y9
11 t42 = t2 ⊕ t18 30 t81 = t45 ⊕ t1 ⊕ t17 48 t119 = t114 ⊕ t39 ⊕ t50 //y7
12 t43 = t1 ⊕ t25 31 t86 = t37 ⊕ t39 ⊕ t73 ⊕ t1 //y25 49 t120 = t38 ⊕ t69 ⊕ t39 ⊕ t42 //y27
13 t45 = t26 ⊕ t18 32 t88 = t26 ⊕ t36 ⊕ t10 ⊕ t34 50 t121 = t88 ⊕ t33 ⊕ t45 //y11
14 t47 = t6 ⊕ t22 33 t90 = t26 ⊕ t73 ⊕ t42 //y10 51 t122 = t88 ⊕ t120 //y3
15 t50 = t30 ⊕ t14 34 t93 = t34 ⊕ t51 //y23 52 t123 = t81 ⊕ t96 //y18
16 t51 = t30 ⊕ t7 ⊕ t22 35 t95 = t32 ⊕ t50 ⊕ t51 //y15 53 t125 = t79 ⊕ t86 ⊕ t17 ⊕ t118 //y1
17 t56 = t5 ⊕ t41 ⊕ t29 36 t96 = t43 ⊕ t10 ⊕ t42 //y26 54 t126 = t37 ⊕ t112 ⊕ t34 //y0
18 t57 = t35 ⊕ t41 ⊕ t29 //y5 37 t102 = t32 ⊕ t75 //y16 55 t127 = t67 ⊕ t38 ⊕ t74 //y4
19 t67 = t11 ⊕ t33 ⊕ t34 ⊕ t40

xi (0 ≤ i ≤ n − 1) the unit node and yj (0 ≤ j ≤ m − 1) the target node. Searching for
circuits means finding a DAG from all the unit nodes to all the target nodes. Besides, the
depth of a graph is defined as the number of edges involved in its critical path. According
to Liu et al., every unit node has the in-degree 0, and every non-unit node has the in-degree
n (n ≥ 2) [LWF+22]. The following property shows the features of nodes in DAG.

Property 1. The circuit with gϵ-XOR metric can be converted into a DAG, in which
every unit node has in-degree 0 and every non-unit node has in-degree n (n ≤ ϵ + 1) and
represents an (n + 1)-input xor gate (i.e., n-operation).

3.2 Transforming DAG
Given the available operations, 1-operation, 2-operation, . . ., ϵ-operation, and their cost
λ1, λ2, . . ., λϵ, we can obtain the cost of a DAG:

λ1e1 + λ2e2 + ... + λϵeϵ,

where ei (i ≤ ϵ) counts the number of the nodes with in-degree i + 1. The core idea of the
transform algorithm is how to reduce the cost by removing nodes in the DAG.

Our first concern is what happens when we remove nodes from a DAG. Removing u
means that we delete the edges from u to O(u) and from I(u) to u and add the edges from
every node in I(u) to every node in O(u). Meanwhile, the in-degree of every node in O(u)
increases.

Next, we discuss which nodes can be removed to reduce the cost of the DAG. Suppose
that we have a direct acyclic graph G with gϵ-XOR metric. We define Su as the reduced
cost by removing u from G. Su can be computed by considering the change of in-degree
of the node in O(u) and related to hardware libraries. Thus, Su > 0 means that we can
benefit from removing u.

A general approach is to compute the reduced cost Su of every node in G and choose
the maximum cost. The transformation will stop if every Su is smaller than 0. However,
given two nodes u and v, it is difficult to determine which is better. Different gates and
libraries lead to different costs, and different metrics also influence the comparison. For

8 Implementations of Linear Layers Using Gates with More Than Two Inputs

the case with the fixed library and metric, we can usually find a standard to compare
them. In Section 5, we give the comparisons with g2-XOR and g3-XOR metrics.

Notably, not all the nodes can be removed. We can only use the i-operation (i ≤ ϵ),
which means that the in-degree of a node u is not greater than ϵ + 1. Thus, we have the
following proposition.

Proposition 1. Suppose that the circuit is with the gϵ-XOR metric and in(u) = j. Only
when the in-degree k of every node in O(u) is not greater than ϵ + 2− j, can we remove u.

Proof. Removing u means that we delete the edges from u to O(u) and from I(u) to u
and add the edges from every node in I(u) to every node in O(u). After removing u, the
in-degree of the node in O(u) will increase by j − 1. In the gϵ-XOR metric, the in-degree
of every node is not greater than ϵ + 1. Thus, we have

k + j − 1 ≤ ϵ + 1.

This means
k ≤ ϵ + 2− j.

Therefore, we can propose the generalized transform algorithm.
1. Suppose that we need to transform the graph G from gϵ−1-XOR metric into gϵ-XOR

metric. Initialize the set AG, in which every node u meets that the reduced cost
Su > 0.

2. Compute the reduced cost of Su for every node u ∈ AG and choose the node v with
the maximum value Sv and remove v from AG. If Sv > 0, go to Step 3. Otherwise,
stop the procedures.

3. Check whether v can be removed. If v cannot be removed, go to Step 2. Otherwise,
remove v and corresponding edges, and let I(v) point to O(v). Then, go to Step 2.

Because many operations are related to the specific libraries and gates, we instantiate
two algorithms, EGT2 and EGT3, based on the following graph extending algorithm in
two libraries, STM 90 nm and STM 130 nm. These two instances show that our algorithms
perform well.

4 Graph Extending Algorithm
In this section, we propose the graph extending algorithm, which is a local optimization
algorithm. There are many local techniques based on specific reduction rules (see [TP20,
LXZZ21]). However, these rules cannot cover all the cases. We find some cases in which
no reduction rules are effective. Therefore, we first show an example and propose our
algorithm formally. The new algorithm converts a circuit into many circuits and fully
utilizes the circuit’s information. Note that new circuits may have fewer gates and a
smaller depth.

We take the circuits with XOR2 as an example. The graph extending algorithm also
holds for other operations (e.g., XOR3 and XOR4). For a matrix M over Mm×n, a circuit
of M can be seen as a sequence of l XOR2 gates ti = tj ⊕ tk where i = n, n + 1, ..., n + l− 1
and j, k < i. We use an operation ti,j,k instead of ti = tj ⊕ tk for convenience. We say
that the implementation of ti is (tj , tk) and tj and tk are the predecessor nodes of ti in the
DAG. The circuit is represented as seq = tn,j0,k0 , tn+1,j1,k1 , ..., tn+l−1,jl−1,kl−1 . Next, we
introduce the issue briefly.

Qun Liu et al. 9

4.1 An Issue in Reduction Rules
Although Lin et al. tried to derive all the potential reduction rules in [LXZZ21], we still
find other cases where some nodes can be removed while they are not included in any rules.
Given a matrix MP ,

1 1 0 0 1 1 0 0
0 0 1 1 0 1 1 1
1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1

 ,

and the circuit,

t8,0,1, t9,2,3, t10,4,5, t11,6,7, t12,8,9, t13,9,10, t14,4,11, t15,5,11, t16,12,13, t17,13,14,

in which t0, t1, . . . t7 are the input values. t12,8,9 implies that t12 is the output of the
circuit. Removing that 2-input xor gate will be counter-productive because we will have
lost the output value t12. The operation tuple (t12,8,9, t13,9,10, t16,12,13) satisfies the rules in
[LXZZ21] as t16 = t8 ⊕ t9. However, t12 is the output value and t13 is used in t16,12,13 and
t17,13,14. This means that we cannot remove them. Thus, the circuit needs ten 2-input
xor gates.

If we rearrange the implementation, the new circuit will be

t8,0,1, t9,2,3, t10,4,5, t11,6,7, t12,8,9, t13,9,10, t14,4,11, t15,5,11, t16,8,10, t17,9,15. (3)

The implementations of t16 and t17 are changed. We observe that t13 is not used in any
operations and t13 is not the output value, which is redundant. Thus, we can remove
t13,9,10, and the circuit only needs nine 2-input xor gates.

The example shows that there is still room for further improvements, and it is not
enough to consider whether a node can be removed by checking the out-degree of the node.
We need to explore more features of circuits. Our graph extending algorithm can optimize
a given circuit and generate many equivalent circuits. The algorithm can be used in any
heuristics to optimize the generated circuits. The application to multi-input gates can be
seen in the next section.

4.2 Single Graph and Extended Graph
The reachability set and the topological ordering have been introduced. Our graph extend-
ing algorithm uses them to optimize a given DAG. We give some necessary explanations.

The definition of the reachability set of u shows which nodes are generated by u. Note
that if we have u ⪯ v and v ⪯ w, u ⪯ w holds. This property can help us to find the
reachability set quickly. We initialize two temporary sets temp1 and temp2. For each node
u ∈ G, we execute the following steps.

1. Let Ru = ϕ, temp1 = ϕ, and temp2 = ϕ. Then, put O(u) into temp1.
2. If temp1 = ϕ, return Ru. Otherwise, go to Step 3.
3. For each node v ∈ temp1, we put v into Ru, put O(v) into temp2, and remove v

from temp1. When temp1 = ϕ, we let temp1 = temp2 and temp2 = ϕ. Then, go to
Step 2.

The procedures will be performed iteratively for each node in G and obtain the reachability
set RG. We use GetReachabilitySet() to calculate the reachability set of a graph.

Another definition is the topological ordering. The ordering implies the reachability
relation. If one node a occurs earlier than b in the topological ordering, we can infer that
the relationship b ⪯ a does not hold. The problem of finding a topological ordering can be
solved in linear time by Kahn’s algorithm [Kah62]. The strategy is as follows:

10 Implementations of Linear Layers Using Gates with More Than Two Inputs

1. Suppose that graph G contains n nodes. The topological ordering T is ϕ, and S
contains the nodes with in-degree 0.

2. If S ̸= ϕ, go to Step 3. Otherwise, we stop the search procedures. If T contains n
nodes, return T . If T contains m nodes (m < n), return error.

3. For node v ∈ S, we remove v and corresponding edges from G and let the in-degree
of nodes in O(v) decrease by 1. Next, we recheck all the nodes in G and put the
nodes with in-degree 0 into S. Then, go to Step 2.

We use TopologicalOrdering() to represent the strategy. In Step 2, we have two possible
outputs. If the algorithm returns T , we can get the topological ordering. However, if the
algorithm returns error, there exist cycles in G. The cycle is defined as a path from one
node to this node. The node in the cycle cannot occur in T since its in-degree is always
greater than 0. If a cycle exists in the graph, it will be the wrong circuit for the linear
layer. Because each node has only one implementation in the graph, the nodes in the cycle
cannot be calculated by unit nodes.

We introduce two types of graphs used in the graph extending algorithm. The definitions
of the single graph and extended graph are shown as follows.

Definition 8. The single graph is a directed graph so that each non-unit node has only
an implementation. The extended graph is the directed graph so that each node can have
more than one implementation.

In the single graph, each non-unit node has one implementation. We can add new
implementations to the nodes in the single graph to generate another DAG instance, the
extended graph, in which the in-degree of every non-unit can be more than 2.

4.3 Graph Extending Algorithm
In [LXZZ21], the authors check all the reduction rules and remove some nodes which are
only used once. Our algorithm says that the nodes only have the out-degree 1. If the
out-degree is greater than 1, their rules do not work. However, as is shown in Subsection 4.1,
there still exist redundant nodes hiding in the graph. Our algorithm is performed as
follows:

1. Generate the extended graph from a single graph.
2. Split the extended graph into many single graphs.
3. Remove redundant nodes from every single graph.
4. Delete wrong graphs.
Totally, the goal of our algorithm is to generate many equivalent graphs and optimize

them. The circuit of a linear layer can be treated as a single graph. We generate the
extended graph by adding different implementations. Then, the extended graph can be
split into many single graphs. After removing redundant nodes, we can choose the best
one from proper graphs. We take the XOR2 as an example. Other gates can also be used.
The following section will use XOR3 to generate the extended graph. We explain every
step in detail, introduce complete procedures, and provide an example of the matrix MP

used in Subsection 4.1.

Generate the extended graph with XOR2. From Property 1, we know that the
unit node has the in-degree 0, and the non-unit node has the in-degree 2 and represents
one XOR2 gate. However, in previous work, each node had only one implementation, and
other implementations were ignored. Suppose that we have unit nodes {x0, x1, x2} and
the sequence,

Qun Liu et al. 11

t0 = x0 ⊕ x1

t1 = x1 ⊕ x2.

t2 = t0 ⊕ x2

t2 can also be generated by t2 = t1 ⊕ x0. If out(t0) is 0, we can remove t0 from the circuit.
Note that out(t0) and out(t1) are changed in the above steps. Thus, the transformation
helps consider other implementations in the single graph.

Algorithm 1 gives a method to generate the extended graph. First, for each non-unit
node u, we try to find different implementations of u where some nodes will not be utilized.
For example, we will not use a node to generate its predecessor nodes, i.e., if u = a⊕ b,
we do not use u to generate a or b. It may lead to cycles in the graph. The nodes that
can generate u are called the available nodes. We use the available set Au to save the
available nodes of u. For a node u′ (u′ ̸= u), either u′ ∈ Ru or u′ ∈ Au holds. op in the
algorithm decides which operation can be used. This paper only uses XOR2 and XOR3.
op = 2 means using XOR2 to generate the extended graph. op = 3 means that we use
XOR3. More operations can be used in the algorithm, and we omit them for the sake of
brevity. In this section, we only consider the XOR2 gates. This means that we will try
all the combinations of two nodes in Au to generate u. If we find a new implementation
u = p⊕ q, we will add edges from p to u and from q to u. Thus, the in-degree of every
non-unit is a multiple of 2, which guarantees that the extended graph can be split. Finally,
we get the extended graph Ge.

The matrix MP in 4.1 is taken as an example. Suppose that Gs has the sequence,

t8,0,1, t9,2,3, t10,4,5, t11,6,7, t12,8,9, t13,9,10, t14,4,11, t15,5,11, t16,12,13, t17,13,14.

We can use GetReachabilitySet(Gs) to obtain the reachability set (see Table 7). Then, we
use GenerateExtendedGraph(Gs, 2) to obtain the extended graph Ge,

t8,0,1, t9,2,3, {t10,4,5, t10,14,15}, t11,6,7, t12,8,9, t13,9,10, {t14,4,11, t14,10,15},
{t15,5,11, t15,10,14}, {t16,12,13, t16,8,10}, {t17,13,14, t17,9,15}.

(4)

If a node has different implementations, we use “{}” to represent them. For example,
{t10,4,5, t10,14,15} means that t10 can be generated by (t4, t5) or (t14, t15). We find that five
nodes have different implementations:

t10, t14, t15, t16, t17.

Table 7: The reachability sets

Nodes reachability sets
t0, t1 {t8, t12, t16}
t2, t3 {t9, t12, t13, t16, t17}

t4 {t10, t13, t14, t16, t17}
t5 {t10, t13, t15, t16, t17}

t6, t7 {t11, t14, t15, t17}
t8 {t12, t16}
t9 {t12, t13, t16, t17}
t10 {t13, t16, t17}
t11 {t14, t15, t17}
t12 {t16}
t13 {t16, t17}
t14 {t17}

t15, t16, t17 ϕ

Split the extended graph. In the extended graph Ge, some nodes have many
implementations, i.e., every implementation can generate the corresponding node. Thus,

12 Implementations of Linear Layers Using Gates with More Than Two Inputs

Algorithm 1 GenerateExtendedGraph()
Input: A single graph Gs and the operation op (2 or 3)
Output: An extended graph Ge

RGs
= GetReachabilitySet(Gs)

if TopologicalOrdering(Gs) = error then ▷ Checking the cycles
return error

end if
T = TopologicalOrdering(Gs)
Ge ← Gs

for i from 1 to | T | −1 do ▷ Checking whether two nodes has the same value
u = T [i]
for j from i + 1 to | T | do

v = T [j]
if u = v then

Remove v and let the origin of each edge whose origin is v be u
end if

end for
end for
for each u ∈ Gs do ▷ Generating the extended graph Gc

if u is not unit node then
A ← ϕ ▷ The available set of all the nodes
for each v ∈ Gs/{u} do

if v not in Ru then
A ← A∪ {v}

end if
end for
if (| A |< 2 and op = 2) or (| A |< 3 and op = 3) then

Continue
end if
if op = 2 then

for w, v ∈ A(w ̸= v) do ▷ Using XOR2
if u = w ⊕ v and u has not the implementation (w, v) then

Add (w, v) for u in Ge ▷ Adding a new implementation for u
end if

end for
end if
if op = 3 then

for w, v, p ∈ A(w ̸= v ̸= p) do ▷ Using XOR3
if u = w ⊕ v ⊕ p and u has not the implementation (w, v, p) then

Add (w, v, p) for u in Ge ▷ Adding a new implementation for u
end if

end for
end if

end if
end for
return Ge

Qun Liu et al. 13

a large number of single graphs can be generated by using the property. However, the
complexity increases exponentially as the number of implementations of nodes increases.
Theoretically, it may exceed the existing computing power in generating single graphs
from the Ge. Therefore, we provide two methods to split the extended graph Ge.

We define ni as the number of implementations of each node ti in Ge. Suppose that
there are k nodes in Ge. The number N of single graphs can be computed by:

N =
k−1∏
i=0

ni. (5)

Then, we define the limitation N ′ as the maximum number of single graphs. If N ≤ N ′,
we split the extended graph using the complete split method. If N > N ′, we use the partial
split method.

1. The complete split method. It traverses all the implementations of each node in Gs

and generates corresponding single graphs:

Gs0 , Gs1 , . . . , GsN−1 .

2. The partial split method. Suppose that we add m additional implementations in Ge.
We set Gs0 = Gs. We replace the corresponding original implementation in Gs and
generate a new single graph for each additional implementation. Finally, we will
generate m + 1 single graphs:

Gs0 , Gs1 , . . . , Gsm .

We use a function SplitExtendedGraph() to execute the procedures. It chooses a suitable
method to split the extended graph.

Then, we still take Equation (4) as an example. The total number N is 32. We use the
complete split method to split Ge and generate 32 single graphs:

Gs0 : t8,0,1, t9,2,3, t10,4,5, t11,6,7, t12,8,9, t13,9,10, t14,4,11, t15,5,11, t16,12,13, t17,13,14,
Gs1 : t8,0,1, t9,2,3, t11,6,7, t12,8,9, t13,9,10, t14,4,11, t15,5,11, t10,14,15, t16,12,13, t17,13,14,
Gs2 : t8,0,1, t9,2,3, t10,4,5, t11,6,7, t12,8,9, t13,9,10, t15,5,11, t14,10,15, t16,12,13, t17,13,14,
.
Gs31 : t8,0,1, t9,2,3, t11,6,7, t12,8,9, t13,9,10, t10,14,15, t14,10,15, t15,10,14, t16,8,10, t17,9,15.

Remove redundant nodes. After splitting the extended graph, the nodes in different
single graphs may have different in-degrees and out-degrees. The out-degree 0 means that
the node is not used to generate other nodes. Thus, we use the following property.

Property 2. Given a DAG, if out(u) = 0, u must be the target node or the redundant
node.

If a non-unit node with the out-degree 0 is not the target node, we call it the redundant
node. Removing the redundant nodes from the graph can decrease the number XOR2 gates.
In the example of MP , t13 in Equation (3) is the redundant node and can be removed. We
give the procedures to remove redundant nodes as follows.

1. Suppose that we need to remove redundant nodes in G. We set a variable success = 1.
It implies whether one node is removed.

2. If success = 0, return G. Otherwise, go to Step 3.

14 Implementations of Linear Layers Using Gates with More Than Two Inputs

3. We set success = 0 and check every non-input node in G. If v with out(v) = 0
is not the target node, we remove v and the corresponding edges from G, and set
success = 1. Next, the out-degree of each node in I(v) decreases by 1. Then, go to
Step 2.

We use the function RemovingRedundantNodes() to remove redundant nodes. Note that
there is a loop in the function. When we remove one node, we set success = 1 and recheck
the graph because the out-degree of each node in I(v) changes. New redundant nodes may
occur.

In the example of 32 single graphs, each graph includes 10 non-unit nodes. We apply
the function RemovingRedundantNodes() to all single graphs. 18 graphs still have 10
non-unit nodes, 12 graphs have 9 non-unit nodes, and 2 graphs have 8 non-unit nodes.

Delete wrong graphs. The wrong graph is an incorrect circuit for the corresponding
matrix, which usually contains the cycles in the graph. Unit nodes cannot generate the
nodes in the cycle.

Table 8: The reduced graphs.

Reduced graph 1 t8,0,1, t9,2,3, t10,4,5, t11,6,7, t12,8,9, t14,4,11, t15,5,11, t16,8,10, t17,9,15,
Reduced graph 2 t8,0,1, t9,2,3, t11,6,7, t12,8,9, t14,4,11, t15,5,11, t10,14,15, t16,8,10, t17,9,15,
Reduced graph 3 t8,0,1, t9,2,3, t10,4,5, t11,6,7, t12,8,9, t15,5,11, t14,10,15, t16,8,10, t17,9,15,
Reduced graph 4 t8,0,1, t9,2,3, t10,4,5, t11,6,7, t12,8,9, t14,4,11, t15,10,14, t16,8,10, t17,9,15.

Although we try to avoid this case (e.g., the available set), the cycle may occur in
single graphs. We use the function TopologicalOrdering() to execute the procedure. If
TopologicalOrdering() returns error, cycles must exist in the graph, and we delete the
graph. After the step, we call the left graphs the reduced graphs. They are the results of
our graph extending algorithm. We can choose the best one from all the reduced graphs
or further optimize them with more gates.

In the example of MP , 16 graphs are finally left, in which 12 graphs have 10 non-unit
nodes, and 4 graphs have 9 non-unit nodes. We show the graphs with 9 non-unit nodes in
Table 8.

Now our graph extending algorithm is finished. After the graph extending algorithm,
we obtain different reduced graphs. Some of them have less cost in hardware. If we plan to
optimize a single graph further, the reduced graph will provide more precise information.
In the above example, if we take the number of 2-input xor gates and the depth into
account, we choose the 1-st and 3-rd reduced graphs with depth 3 from Table 8. They
are the best circuits after our graph extending algorithm. The complete algorithm of our
graph extending algorithm is shown in Algorithm 2. We can use other operations (e.g.,
XOR3) to generate the extended graph. We will discuss it in the next section.

5 Applications
In this section, we instantiate the transform algorithms. With the help of the graph
extending algorithm, we propose two algorithms to optimize the given circuit using XOR3
and XOR4 gates, respectively. We start from a circuit with XOR2 gates. For the gϵ-XOR
metric with ϵ ≥ 4, we can follow similar procedures, and thus we do not discuss them in
this section. The source codes are available at https://github.com/QunLiu-sdu/Using-
Gates-with-More-Than-Two-Inputs.

https://github.com/QunLiu-sdu/Using-Gates-with-More-Than-Two-Inputs
https://github.com/QunLiu-sdu/Using-Gates-with-More-Than-Two-Inputs

Qun Liu et al. 15

Algorithm 2 ExtendGraph2()
Input: A single graph Gs

Output: The set G2 containing all the reduced graphs
Ge = GenerateExtendedGraph(Gs, 2) ▷ The extended graph
G2 = SplitExtendedGraph(Ge) ▷ Generating the single graphs
for each Gr ∈ G2 do ▷ Removing additional nodes

Gr = RemovingRedundantNodes(Gr)
end for
for each Gr ∈ G2 do ▷ Deleting wrong graphs

if TopologicalOrdering(Gr) = error then
G2 ← G2/{Gr}

end if
end for
return G2

5.1 Transforming Gates from 2 Inputs into 3 Inputs
We first focus on the g2-XOR metric starting the circuits with XOR2 gates, i.e., we try to
convert gates from 2 inputs into 3 inputs. In the problem, we can use 1-operation and
2-operation. λ1 and λ2 represent the corresponding cost. Our goal is to find

min(λ1e1 + λ2e2). (6)

If v = a⊕ b⊕ c, we say that v has implementation (a, b, c). We consider a case where
the out-degree of one node is 1, which is discussed in [BFI21]. If vi (out(vi) = 1) represents
an XOR2 gate vi = vx ⊕ vy, we merge them to an XOR3 gate, vi,j = vx ⊕ vy ⊕ vz. Note
that if vi is the output value, we will lose the output signal of the circuit after the merge
procedure.

According to our transform algorithm, more nodes can be removed. Suppose that we
have the circuit:

u = a⊕ b

v = u⊕ c

w = u⊕ d

and out(u) is 2. The circuit area is 3λ1. If 3λ1 − 2λ2 > 0 holds, we can remove u and let
I(u) point to O(u) by merging two 3-input xor gates. The new circuit is

v = a⊕ b⊕ c

w = a⊕ b⊕ d

and the area of the new circuit is 2λ2 < 3λ1.
We can remove more nodes based on the above cases to reduce the cost. Thus, we give

the following proposition.

Proposition 2. Let N be the maximum value such that (N +1)λ1−Nλ2 > 0 holds. Given
a circuit with XOR2 gates, it can reduce the cost by removing the nodes with out-degree
n (n ≤ N).

Proof. Suppose that out(u) is n (n ≤ N). There are n + 1 related XOR2 gates. One of
them is used to generate u. Others are used to generate the nodes in O(u). Thus, removing
u will delete (n + 1) XOR2 gates and add n XOR3 gates. If (n + 1)λ1 − nλ2 > 0, the cost
of the circuit is reduced.

Proposition 2 shows which nodes can be removed in g2-XOR metric. For convenience,
the maximum value N is called the upper bound. If one node has the out-degree of

16 Implementations of Linear Layers Using Gates with More Than Two Inputs

n (n ≤ N), we can remove it by deleting n + 1 XOR2 gates and adding n XOR3 gates.
Another problem is if the nodes with different out-degrees can be removed, how to determine
the priority. We provide a proposition to solve the problem.

Proposition 3. Suppose that the upper bound is N . If out(u) = m and out(v) = n
(n < m ≤ N), removing v will reduce more cost than u. That is, Sv > Su.

Proof. We can remove u by deleting m + 1 XOR2 gates and adding m XOR3 gates. The
saved cost Su is (m + 1)λ1 −mλ2. We can also remove v by deleting n + 1 XOR2 gates
and adding n XOR3 gates. The saved cost Sv is (n + 1)λ1 − nλ2. We have

Sv − Su = (m− n)(λ2 − λ1) > 0 (7)
Thus, Sv > Su holds.

We propose our algorithm using graph extending algorithm called EGT2 (see Algo-
rithm 3). ExtendGraph2() is used to obtain the set G2 that contains many reduced graphs.
For each graph Gr in G2, we execute the following procedures:

1. Compute the upper bound N . We use U to save the nodes that can not be removed.
u ∈ U means that u is the target node or u represents the XOR3 gate.

2. Set n = 1. Then, Step 3 is recursively executed. Each time we finish Step 3, we
set n = n + 1. If n ≤ N , we continue to execute Step 3. Otherwise, we stop the
procedures and put the new graph Gr into G3.

3. Check the nodes in the topological ordering. O(u) ∩ U ̸= ϕ means that at least one
node in O(u) has been optimized by the XOR3 gate and cannot be merged again. If
the out-degree of one node is n and the node is not the target node, we will remove
u by adding n XOR3 gates and deleting n + 1 XOR2 gates based on Proposition 2.
Then, we put the nodes in O(u) into U .

We explain why O(u) ∩ U = ϕ in Step 3 is necessary. Suppose that we have the circuit:

tu,a,b, tv,c,d, tw,u,v, ty,p,u,

in which out(v) = 1 and out(u) = 2. When n = 1, we can remove v and have the new
circuit:

tu,a,b, t3
w,u,c,d, ty,p,u.

Next, we have U = U ∪ {v}. Then, we set n = 2. However, we cannot remove u since
O(u) = {w, y} and w represents an XOR3 gate. Thus, only when O(u) ∩ U = ϕ holds, can
u be removed.

Because of the topological ordering property, in Step 3, the next node that needs to
be checked can always be generated by the checked nodes. If we combine all the checked
nodes to a new graph, a path must exist from unit nodes to every non-unit node, and no
nodes can be removed with the current upper bound n. Every non-unit node u in the new
graph may have three states:

• out(u) is greater than the current upper bound n. We cannot remove u in the current
state based on the Proposition 2.

• out(u) is m (m < n). Based on the Proposition 3, we have checked the u in the
previous procedures. If u has been left, we must have O(u) ∩ U ̸= ϕ or u ∩ U ̸= ϕ.

• out(u) is n. We have checked u in Step 3 and cannot remove u.
In addition, according to Proposition 3, we first check the nodes with out-degree 1.

When we have checked all the nodes, Step 3 is finished, and we set n = n + 1. If we match
the condition when we check one node, we will remove the node, delete corresponding
edges, and add corresponding edges to the graph. We use n XOR3 gates to replace n + 1

Qun Liu et al. 17

Algorithm 3 EGT2()
Input: A single graph Gs

Output: A set G3 containing all the reduced graphs with 2/3-input xor gates
G2 = ExtendGraph2(Gs) ▷ Containing the reduced graphs with XOR2 gates
N ← 0 ▷ The upper bound
while ((N + 1) + 1)λ1 − (N + 1)λ2 > 0 do

N ← N + 1
end while
for each Gr ∈ G2 do ▷ Removing nodes
T = TopologicalOrdering(Gr)
The set U containing all the target nodes in Gr

n← 1
while n ≤ N do

for each node u in T do
if u /∈ U , out(u) = n, and O(u) ∩ U = ϕ then

We remove u, delete corresponding edges, and add n operations in Gr

Put the nodes in O(u) into U
end if

end for
n← n + 1

end while
G3 ← G3 ∪ {Gr}

end for
return G3

XOR2 gates. The saved cost is Sv is (n + 1)λ1 − nλ2. We set the upper bound N = 0 if
2λ1 < λ2 because the cost of two XOR2 gates is less than one XOR3 gate. Not all the
libraries can apply our algorithm. We only take the libraries with 2λ1 > λ2 into account.

We also take the matrix in Subsection 4.1 as an example. Using the BFI algorithm, the
reduced circuit area is 6× 3.33 + 2× 4.66 = 29.3 GE (six 2-input xor gates and two 3-input
xor gates). The initial sequence is shown in Subsection 4.1. We first run Algorithm 2 and
get the G2. From G2, we choose one graph Gr with the circuit:

t8,0,1, t9,2,3, t10,4,5, t11,6,7, t12,8,9, t14,4,11, t15,5,11, t16,8,10, t17,9,15.

Then, we get the upper bound N = 2 ((2 + 1)× 3.33− 2× 4.66 > 0). We set n = 1 and
find that t10 can be removed. The left circuit is:

t8,0,1, t9,2,3, t11,6,7, t12,8,9, t14,4,11, t15,5,11, t3
16,4,5,8, t17,9,15.

Next, we set n = 1 + 1 = 2 and find that t9 and t11 can be removed. The left circuit is:

t8,0,1, t3
12,2,3,8, t3

14,4,6,7, t3
15,5,6,7, t3

16,4,5,8, t3
17,2,3,15. (8)

The new circuit area is only 26.6 GE (one XOR2 gate and five XOR3 gates).

5.2 Transforming Gates from 3 Inputs into 4 Inputs
Then, we focus on the g3-XOR metric starting the circuits with 2/3-input xor gates, i.e.,
we try to convert gates from 2/3 inputs into 4 inputs. The operations we can use are
1-operation, 2-operation, and 3-operation. The corresponding costs are λ1, λ2, and λ3.
Our goal is to find

min(λ1e1 + λ2e2 + λ3e3). (9)

18 Implementations of Linear Layers Using Gates with More Than Two Inputs

For a given circuit with XOR2 gates, we use Algorithm 3 to convert the initial graph
into many graphs with 2/3-input xor gates and save them in G3. For each Gr in G3, we use a
new function ExtendGraph3() to generate the extended graph Ge with 2/3-input xor gates.
The new function is similar to ExtendGraph2() and use GenerateExtendedGraph(Gr, 3)
instead of GenerateExtendedGraph(Gr, 2). Then, we split Ge into many single graphs.
For each new single graph, we optimize it with XOR4 gates.

Similar to the above section, we discuss which nodes can be removed. In our algorithm,
t4
u,a,b,c,d represents an XOR4 gate. We propose three circuit types, which can be transformed

into 4-input xor gates.

Type 1. If tu,p,q and t3
p,a,b,c are contained in the circuit, we can obtain t4

u,q,a,b,c by
removing p. We say that p matches Type 1 (see Figure 4-left).

Type 2. If t3
u,p,q,w and tp,a,b, are contained in the circuit, we can obtain t4

u,a,b,q,w by
removing p. We say that p matches Type 2 (see Figure 4-middle).

Type 3. If tu,p,q, tp,a,b, and tq,c,d are contained in the circuit, we can obtain t4
u,a,b,c,d

by removing p and q. p and q are called the nodes in Type 3 (see Figure 4-right).

u

p q

u

p q w

a bba c

u

p q

dcba

u

p q

ba c

v

w

v

a b c w

u

a b c q

u

p q w

a b

v

z

v

u

a b q w

ba z

u

p q w

a b

v

y
u

a b q w

v

a b x y
x

Figure 3: The different circuit types.

We take Type 1 and Type 2 into account because the nodes in Type 3 can be transformed
into Type 2. The following observations can help us to simplify the the analysis procedures.

Observation 1. If p matches Type 1, in(p) = 3. If p matches Type 2, in(p) = 2. Thus,
if p matches one type, it never matches another type.

Observation 2. Suppose that we have a node p and its output set O(p). For any node
q ∈ O(p), if p matches one type, other nodes in I(q) will never match another type.

The above types only consider the case where the out-degree of a node is 1. Next, we
discuss the case in which the out-degree is greater than 1. Suppose that p matches Type 1
or Type 2 and O(p) = {u1, u2, . . . un} (n ≥ 2). If p matches Type 1, we can use n XOR4
gates instead of an XOR3 gate and n XOR2 gates. Figure 4-left shows the case where
out(p) is 2. If p matches Type 2, there exist two cases:

• ui (1 ≤ i ≤ n) has the in-degree 2;
• ui (1 ≤ i ≤ n) has the in-degree 3.

For the first case, we use an XOR3 gate instead of an XOR2 gate additionally (see Figure 4-
middle). For the second case, we use an XOR4 gate instead of an XOR3 gate additionally
(see Figure 4-right). To decide which nodes can be removed, we can obtain following
proposition by extending Proposition 2.

Proposition 4. Let N1 be the maximum value such that λ2 + N1(λ1 − λ3) > 0 holds and
N2 be the maximum value such that λ1 + λ2−λ3− (N2− 1) ·min((λ2−λ1), (λ3−λ2)) > 0
holds. It can reduce the cost if

• the node matches Type 1 and has the out-degree m (m ≤ N1), or

• the node matches Type 2 and has the out-degree n (n ≤ N2).

Qun Liu et al. 19

u

p q

u

p q w

a bba c

u

p q

dcba

u

p q

ba c

v

w

v

a b c w

u

a b c q

u

p q w

a b

v

z

v

u

a b q w

ba z

u

p q w

a b

v

y
u

a b q w

v

a b x y
x

Figure 4: The cases that the out(p) is 2.

Proof. Suppose that p matches Type 1 and out(p) is m (m ≤ N1). There are m related
XOR2 gates and a related XOR3 gate. The XOR3 gate is used to generate p. Other gates
are used to generate new nodes by p. Thus, we can remove p by adding m XOR4 gates
and deleting m XOR2 gates and an XOR3 gate. If λ2 + m(λ1 − λ3) > 0, the circuit area
decreases.

Suppose that p matches Type 2 and out(p) is n (n ≤ N2). If n = 1, We can use an
XOR4 gate instead of an XOR2 gate and an XOR3 gate. Then, the circuit area decreases
by λ1 + λ2 − λ3 > 0. If p is also used to generate new node u, there are two different
cases. If in(u) = 2 (u ∈ O(p)), we will use an XOR3 gate instead of an XOR2 gate. If
in(u) = 3 (u ∈ O(p)), we will use an XOR4 gate instead of an XOR3 gate. Thus, we
choose min((λ2 − λ1), (λ3 − λ2)). The remained proof is similar to Proposition 2. We do
not repeat it.

Another question is if the nodes with different out-degrees can be removed, how to
determine the priority. Proposition 3 provides a solution. If the nodes with different out-
degrees can be removed, we discuss how to determine the priority of each node. Suppose
that we have two nodes u and v, and out(u) = m, out(v) = n (m < n). We discuss this on
a case-by-case basis.

• If u and v are not the same types, we just deal with them in order. Based on
Observation (2), we have O(u) ∩ O(v) = ϕ. The operations between u and v are
independent.

• If two nodes u and v match the same type, we will have Su > Sv because of m < n.
The proof is similar to Proposition 3.

Thus, we can search for two types separately. We provide an algorithm called EGT3
(see Algorithm 4). The procedures are as follows.

1. Run Algorithm 3 to obtain G3 containing different graphs with 2/3-input xor gates.
2. For each graph Gr in G3, run the function GenerateExtendedGraph(Gr, 3) to obtain

the extended graph Ge, split it into different single graphs, and put all the single
graphs into G4.

3. Compute N1 and N2. Let n1 = 1 and n2 = 1. We use U to save the nodes that can
not be optimized. u ∈ U means that u is the target node or u represents the XOR4
gate.

4. If n1 > N1 and n2 > N2, we stop the procedures. Otherwise, go to Step 5.
5. Check the nodes in the topological ordering. If u matches Type 1, out(u) = n1

(n1 ≤ N1), O(u) ∩ U = ϕ, and u /∈ U , we can remove u by adding n1 XOR4 gates
and deleting an XOR2 gate and n1 XOR3 gates. Then, we let n1 = n1 + 1 and go to
Step 6.

6. Check the nodes in the topological ordering. If u matches Type 2, out(u) = n2
(n2 ≤ N2), O(u) ∩ U = ϕ, and u /∈ U , we can remove u. We check O(u) and for each
node ui ∈ O(u),

– add an XOR3 gate and delete an XOR2 gate (ui is the first case in Type 2);

20 Implementations of Linear Layers Using Gates with More Than Two Inputs

– add an XOR4 gate and delete an XOR3 gate (ui is the second case in Type 2).

Then, we let n2 = n2 + 1 and go to Step 4.
Note that we will stop the algorithm when n1 > N1 and n2 > N2. For example, if

n1 < N1 and n2 > N2, we can optimize the nodes which match Type 1. We can search the
types sequentially based on Observation (2). When we finish one search, we set n1 = n1 +1
and n2 = n2 + 1. Through the algorithm, we can further optimize the circuit with XOR4
gates.

We still take the circuit in Subsection 4.1 as an example. We have N1 = 1 and N2 = 2.
Finally, we can find the circuit with 24.6 GE. The circuit requires four XOR3 gates and
one XOR4 gate. Note that only the target nodes are left. Other nodes have been removed.
Thus, we cannot find a better circuit with less area. The sequence is:

t4
12,0,1,2,3, t3

14,4,6,7, t3
15,5,6,7, t3

17,2,3,15, t3
16,12,14,17. (10)

5.3 Experiments
We apply our algorithms to many lightweight matrices. The circuits are generated by the
algorithm proposed by Xiang et al. in [XZL+20], which is called the XZLBZ algorithm.
The metrics are g2-XOR and g3-XOR.

5.3.1 XZLBZ Algorithm

In FSE 2020, Xiang et al. proposed a new heuristic based on the matrix decomposi-
tion [XZL+20]. Given an invertible matrix, the author first decomposed it as a product
of elementary matrices. The original problem is converted into the problem of finding
a better decomposition. Note that XZLBZ algorithm uses s-XOR. It updates original
values and cannot be used in our algorithm directly. We use a method converting the
s-XOR results into g-XOR results. Given a sequence of s-XOR operations, we execute the
following procedures:

1. Suppose that the input values are {x0, x1, . . . xm−1}. Put each input value into a set
S in order. That is to say, we have S[i] = xi.

2. We set a variable n = 0 and a set C = ϕ. For each operation xi = xi ⊕ xj , we
transform it in Step 3.

3. We generate a new value tn = xi, and set n = n + 1. The new operation op is
tn = S[i]⊕ S[j]. Then, we set S[i] = tn and put op into C.

4. Finally, C contains all the new sequence.
We give an example to illustrate the method. Suppose that the input values are

{x0, x1, x2, x3} and the initial sequence is

x0 = x0 ⊕ x1

x0 = x0 ⊕ x2.

x0 = x0 ⊕ x3

After transforming the operations, we have the new sequence,

t0 = x0 ⊕ x1

t1 = t0 ⊕ x2.

t2 = t1 ⊕ x3

Qun Liu et al. 21

Algorithm 4 EGT3()
Input: A single graph Gs

Output: A set G4 containing all the reduced graphs with 2/3/4-input gates
G4 ← ϕ
G3 ← ϕ
G2 = EGT2(Gs)
for each graph Gr in G2 do
G′ = EGT3(Gr)
for each graph G in G′ do
G3 ← G3 ∪ {G}

end for
end for
N1 ← 0
N2 ← 0
while λ2 + (N1 + 1)(λ1 − λ3) > 0 do

N1 ← N1 + 1
end while
while λ1 + λ2 − λ3 −N2 ·min((λ2 − λ1), (λ3 − λ2)) > 0 do

N2 ← N2 + 1
end while
for each Gr ∈ G3 do ▷ Removing nodes
T = TopologicalOrdering(Gr)
The set U containing all the target nodes in Gr

n1, n2 ← 1
while n1 ≤ N1 or n2 ≤ N2 do

for each node u in T do
if n1 ≤ N1, u matches Type 1, O(u) ∩ U = ϕ, and u /∈ U then

Remove u, delete corresponding edges, and add edges from I(u) to O(u)
Put the nodes in O(u) into U

end if
if n2 ≤ N2, u matches Type 2, O(u) ∩ U = ϕ, and u /∈ U then

Remove u, delete corresponding edges, and add edges from I(u) to O(u)
Put the nodes in O(u) into U

end if
end for
n1 ← n1 + 1
n2 ← n2 + 1

end while
G4 ← G4 ∪ {G4}

end for
return G4

22 Implementations of Linear Layers Using Gates with More Than Two Inputs

5.3.2 Applying Our Algorithms to Many Proposed Matrices

In this section, we apply EGT2 and EGT3 to several linear layers from the literature,
including matrices used in many ciphers [DR20, CMR05, JNP15, Ava17, BBI+15, BCG+12,
ADK+14, Ava17, BJK+16, AIK+00]. The results in ASIC1 are shown in Table 2 and the
results in ASIC2 are shown in Table 3. We list the results in [XZL+20], [BDK+21], and
[BFI21]. Note that [XZL+20] only searches for circuits with the g1-XOR metric. Then,
we run the XZLBZ algorithm and optimize the circuits using the BFI, EGT2, and EGT3
algorithms.

It is worthy to say that the circuit with the minimum number of 2-input xor gates may
have the worse performance with gi-XOR metric (i > 1). For example, in Table 3, we use
an circuit for AES MixColumns with 96 XOR2 gates instead of 92 gates. The area of the
96-gate circuit can be reduced to 255 GE by EGT2, while the 92-gate circuit cannot.

As the procedures of splitting the matrix into elementary matrices and generating
s-XOR sequences are randomized, recalling the computations at different times would lead
to different results. Hence, it is difficult to determine how long we wait to achieve the best
solution. We execute the XZLBZ algorithm in a limited and reasonable time (e.g., 24 hours)
to collect many implementations and select the best one among them. This strategy is quite
similar to many previous search approaches in, e.g., [KLSW17, TP20, XZL+20, BFI21].

In our experiments, many previous results can be optimized. Notably, for the matrix
used in AES MixColumns, we achieve the circuit with 255 GE in ASIC2, while the best
previous result is 258.9 GE [BDK+21] in the same library. Moreover, we can decrease the
circuit area to 243 GE with the help of XOR4 gates. This shows the effectiveness of our
strategy.

Table 9: The results of implementation cost of matrices from [LSL+19] for STM 90 nm
library.

HW Num best of BFI best of EGT2 BP (GE) BP+BFI (GE) BP+EGT2 (GE) BP+EGT3 (GE)
148 18 11/18 18/18 160.0 145.0 144.5 144.2
149 48 23/48 48/48 160.0 145.3 144.6 144.3
150 72 27/72 72/72 162.0 147.0 146.3 145.9
151 48 25/48 48/48 166.4 149.8 149.3 148.6
152 60 43/60 60/60 167.3 149.9 149.6 148.9
153 72 33/72 72/72 164.3 148.2 147.6 147.1
154 84 45/84 84/84 165.1 149.3 148.8 148.2
155 24 20/24 24/24 172.8 153.2 153.1 151.9
156 72 28/72 72/72 172.4 154.4 153.8 152.8
157 96 34/96 96/96 165.8 149.6 148.9 148.3
158 156 76/156 156/156 171.2 153.4 152.9 152.0
160 210 93/210 210/210 168.8 152.6 151.7 150.7
161 144 37/144 144/144 162.9 148.1 146.8 146.4
162 204 78/204 204/204 167.9 151.4 150.4 149.7
163 192 78/192 192/192 170.4 153.8 152.6 151.7
164 300 116/300 300/300 172.7 155.0 154.0 153.2
165 312 84/312 312/312 164.8 149.4 148.0 147.5
166 324 63/324 324/324 167.0 151.2 149.8 149.2
167 336 121/336 336/336 173.6 155.9 155.0 154.1
168 600 314/600 600/600 173.4 155.7 155.2 154.4
169 380 146/384 384/384 172.1 154.1 153.3 152.6
170 504 204/504 504/504 176.7 159.1 158.2 157.4
171 528 172/528 528/528 177.9 160.4 159.5 158.6
172 762 283/762 762/762 177.8 160.1 159.4 158.5

5.3.3 Applying Our Algorithms to More Lightweight Matrices

In FSE 2019, Li et al. proposed 5500 lightweight matrices [LSL+19] and applied the BP
algorithm to optimize them. We also apply our algorithms to these matrices for comparison.
We run the BP, BFI, EGT2, and EGT3 in two libraries for each matrix and then compare
the obtained circuit areas. The results are listed in Table 9 and Table 10. “HW” is
the Hamming weight of matrices. “num” is the number of the matrices with the same

Qun Liu et al. 23

Table 10: The results of implementation cost of matrices from [LSL+19] for STM 130 nm
library.

HW Num best of BFI best of EGT2 BP (GE) BP+BFI (GE) BP+EGT2 (GE) BP+EGT3 (GE)
148 18 0/18 18/18 266.4 226.4 222.7 214.4
149 48 0/48 48/48 266.4 227.2 223.5 214.1
150 72 0/72 72/72 269.7 229.7 226.5 216.1
151 48 0/48 48/48 277.1 232.8 230.4 218.5
152 60 6/60 60/60 278.6 232.1 229.8 217.9
153 72 0/72 72/72 273.5 230.6 226.9 217.5
154 84 0/84 84/84 275.0 232.8 229.3 219.1
155 24 0/24 24/24 287.8 235.4 233.2 220.9
156 72 0/72 72/72 287.1 239.1 235.6 223.6
157 96 0/96 96/96 276.1 232.7 229.3 219.0
158 156 6/156 156/156 285.1 237.6 234.4 223.0
160 210 12/210 210/210 281.1 237.7 234.0 222.4
161 144 0/144 144/144 271.2 232.0 226.5 218.2
162 204 10/204 204/204 279.5 235.8 231.2 221.2
163 192 1/192 192/192 283.7 239.4 234.6 223.6
164 300 6/300 300/300 287.6 240.4 235.0 224.8
165 312 0/312 312/312 274.5 233.7 227.5 218.8
166 324 0/324 324/324 278.0 236.5 230.2 221.0
167 336 0/336 336/336 289.0 241.8 237.6 226.6
168 600 32/600 600/600 288.7 241.7 238.0 228.0
169 384 0/384 384/384 286.5 239.2 234.8 224.9
170 504 0/504 504/504 294.2 247.9 242.7 231.4
171 528 2/528 528/528 296.3 249.7 244.9 233.4
172 762 3/762 762/762 296.0 249.1 244.6 233.6

Hamming weight. “best of BFI” represents the proportion that BFI algorithm can obtain
the best results and “best of EGT2” represents the proportion that our EGT2 can obtain
the best results. “BP”, “BP+BFI”, “BP+EGT2”, and “BP+EGT3” represent the circuit
area of a matrix on average. Note that the BP algorithm uses g1-XOR metric, both BFI
algorithm and EGT2 use the g2-XOR metric, and EGT3 uses the g3-XOR metric.

From the results, there exists significant room for improvement. On the one hand, the
method using XOR3 gates can optimize all the circuits generated by the BP algorithm.
On the other hand, our algorithms have better performance. In ASIC1, BFI can obtain
about 35% matrices with the best results. In ASIC2, the proportion decreases to 1.3%.
EGT2 and EGT3 can always obtain the best results.

5.3.4 Hardware Implementations

Our algorithms aim at searching for low-area circuits. It is insufficient for other hardware
metrics (e.g., latency and power consumption) to simply conduct the estimation based
on the every single gate. These criteria are closely related to the standard cell library
[BFI21, BDK+21]. In this respect, we synthesize the implementations with UMC 55 nm
library (λ1 = 2.5 GE, λ2 = 4.5 GE). The logic synthesis is performed with Synopsys
Design Compiler version R-2020.09-SP4 (using the compile ultra and compile ultra -
no autoungroup commands), and simulation is done in Mentor Graphics ModelSim SE
v10.2c. All the results are shown in Table 4. We give some explanations. There are four
different circuits to implement AES MixColumns, which are from different tools based on
different metrics.

Type 1 is from [LXZZ21] and is the best result with g1-metric. It only needs 91 XOR2
gates with depth 7.

Type 2 is the circuit found by our algorithms based on Type 1. We always focus on
the area and generate an optimized circuit with 61 XOR2 gates and 15 XOR3 gates.

Type 3 is from [LWF+22] and is one of the best results with respect to the minimum
depth (another best result is from [BFI21]). It needs 103 XOR2 gates with depth 3. We
provide it to show the comparison in latency.

Type 4 is from the synthesizer starting from Type 1. The synthesizer takes a trade-
off between multiple metrics. We provide it to show the comparison with the previous

24 Implementations of Linear Layers Using Gates with More Than Two Inputs

synthesizers.
For the AES MixColumns, our implementation achieves the best area and the reduction

of energy consumption (1.49 uW) at the cost of slight and reasonable growth of latency
(0.13 ns). The goal of our algorithms is to achieve implementations with the smallest area,
and our results show that considering gates with more input bits offers more possibilities.

6 Conclusion
In this paper, we propose the transform algorithm and the graph extending algorithm,
and then combine the two algorithms to instantiate EGT2 and EGT3 with g2-XOR and
g3-XOR metrics, respectively. The two instantiated algorithms can be used to further
optimize the circuit area of matrices in hardware. Our methods contribute to

• better circuits of AES MixColumns with 243 GE (with g3-XOR in ASIC2), which is
the best result than ever before;

• better circuits of several linear layers from the literature;
• better circuits for 100% of matrices proposed in [LSL+19].
Though our algorithms can reduce the circuit area easily with local optimization,

it is still important to perform the procedures with the global optimization based on
heuristics like [BDK+21]. In addition, our research provides a new tool for the construction
of lightweight matrices. There should exist some matrices more compatible with our
algorithms and thus have better circuits with gϵ-XOR metric, which we leave as future
work.

Acknowledgements
The authors would like to thank the anonymous reviewers for their valuable comments
and suggestions to improve the quality of the paper. The research leading to these results
has received funding from the National Natural Science Foundation of China (Grant No.
62032014, Grant No. 62002201, Grant No. 62002204), the National Key Research and
Development Program of China (Grant No. 2018YFA0704702, Grant No. 2021YFA1000600),
the Major Basic Research Project of Natural Science Foundation of Shandong Province,
China (Grant No. ZR202010220025), and the Program of Qilu Young Scholars (Grant No.
61580082063088) of Shandong University.

References
[ADK+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander,

Christof Paar, and Tolga Yalçin. Block ciphers - focus on the linear layer
(feat. PRIDE). In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of
Lecture Notes in Computer Science, pages 57–76. Springer, 2014.

[AIK+00] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho
Moriai, Junko Nakajima, and Toshio Tokita. Camellia: A 128-bit block cipher
suitable for multiple platforms - design and analysis. In Douglas R. Stinson
and Stafford E. Tavares, editors, Selected Areas in Cryptography, 7th Annual
International Workshop, SAC 2000, Waterloo, Ontario, Canada, August 14-15,
2000, Proceedings, volume 2012 of Lecture Notes in Computer Science, pages
39–56. Springer, 2000.

Qun Liu et al. 25

[Ava17] Roberto Avanzi. The QARMA block cipher family. almost MDS matrices over
rings with zero divisors, nearly symmetric even-mansour constructions with
non-involutory central rounds, and search heuristics for low-latency s-boxes.
IACR Trans. Symmetric Cryptol., 2017(1):4–44, 2017.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume
9453 of Lecture Notes in Computer Science, pages 411–436. Springer, 2015.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications
- extended abstract. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer
Science, pages 208–225. Springer, 2012.

[BDK+21] Anubhab Baksi, Vishnu Asutosh Dasu, Banashri Karmakar, Anupam Chat-
topadhyay, and Takanori Isobe. Three input exclusive-or gate support for
boyar-peralta’s algorithm. In Avishek Adhikari, Ralf Küsters, and Bart Pre-
neel, editors, Progress in Cryptology - INDOCRYPT 2021 - 22nd International
Conference on Cryptology in India, Jaipur, India, December 12-15, 2021, Pro-
ceedings, volume 13143 of Lecture Notes in Computer Science, pages 141–158.
Springer, 2021.

[BFI21] Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. Further results on
efficient implementations of block cipher linear layers. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., 104-A(1):213–225, 2021.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes
in Computer Science, pages 123–153. Springer, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques
with applications to cryptology. J. Cryptol., 26(2):280–312, 2013.

[BP10] Joan Boyar and René Peralta. A new combinational logic minimization tech-
nique with applications to cryptology. In Paola Festa, editor, Experimental

26 Implementations of Linear Layers Using Gates with More Than Two Inputs

Algorithms, 9th International Symposium, SEA 2010, Ischia Island, Naples,
Italy, May 20-22, 2010. Proceedings, volume 6049 of Lecture Notes in Computer
Science, pages 178–189. Springer, 2010.

[BPMC18] Anubhab Baksi, Vikramkumar Pudi, Swagata Mandal, and Anupam Chat-
topadhyay. Lightweight asic implementation of aegis-128. In 2018 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pages 251–256, 2018.

[BR00] Paulo S.L.M. Barreto and Vincent Rijmen. The anubis block cipher. First
Open NESSIE Workshop, 2000.

[CFS+22] Shiyao Chen, Yanhong Fan, Ling Sun, Yong Fu, Haibo Zhou, Yongqing Li,
Meiqin Wang, Weijia Wang, and Chun Guo. SAND: an AND-RX feistel
lightweight block cipher supporting s-box-based security evaluations. Des.
Codes Cryptogr., 90(1):155–198, 2022.

[CMR05] Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. Small scale variants
of the AES. In Henri Gilbert and Helena Handschuh, editors, Fast Software
Encryption: 12th International Workshop, FSE 2005, Paris, France, February
21-23, 2005, Revised Selected Papers, volume 3557 of Lecture Notes in Computer
Science, pages 145–162. Springer, 2005.

[DR20] Joan Daemen and Vincent Rijmen. The Design of Rijndael - The Advanced
Encryption Standard (AES), Second Edition. Information Security and Cryp-
tography. Springer, 2020.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of
lightweight hash functions. In Phillip Rogaway, editor, Advances in Cryptology -
CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer
Science, pages 222–239. Springer, 2011.

[JNP15] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik v1. 3. CAESAR Round,
2, 2015.

[JPST17] Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade Tourteaux. Optimiz-
ing implementations of lightweight building blocks. IACR Trans. Symmetric
Cryptol., 2017(4):130–168, 2017.

[JV04] Pascal Junod and Serge Vaudenay. FOX : A new family of block ciphers. In
Helena Handschuh and M. Anwar Hasan, editors, Selected Areas in Cryptog-
raphy, 11th International Workshop, SAC 2004, Waterloo, Canada, August
9-10, 2004, Revised Selected Papers, volume 3357 of Lecture Notes in Computer
Science, pages 114–129. Springer, 2004.

[Kah62] Arthur B Kahn. Topological sorting of large networks. Communications of the
ACM, 5(11):558–562, 1962.

[KLSW17] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer. Shorter
linear straight-line programs for MDS matrices. IACR Trans. Symmetric
Cryptol., 2017(4):188–211, 2017.

[KPPY14] Khoongming Khoo, Thomas Peyrin, Axel York Poschmann, and Huihui Yap.
FOAM: searching for hardware-optimal SPN structures and components with a
fair comparison. In Lejla Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems - CHES 2014 - 16th International Workshop,
Busan, South Korea, September 23-26, 2014. Proceedings, volume 8731 of
Lecture Notes in Computer Science, pages 433–450. Springer, 2014.

Qun Liu et al. 27

[LSL+19] Shun Li, Siwei Sun, Chaoyun Li, Zihao Wei, and Lei Hu. Constructing
low-latency involutory MDS matrices with lightweight circuits. IACR Trans.
Symmetric Cryptol., 2019(1):84–117, 2019.

[LWF+22] Qun Liu, Weijia Wang, Yanhong Fan, Lixuan Wu, Ling Sun, and Meiqin Wang.
Towards low-latency implementation of linear layers. IACR Transactions on
Symmetric Cryptology, pages 158–182, 2022.

[LXZZ21] Da Lin, Zejun Xiang, Xiangyong Zeng, and Shasha Zhang. A framework to
optimize implementations of matrices. In Kenneth G. Paterson, editor, Topics
in Cryptology - CT-RSA 2021 - Cryptographers’ Track at the RSA Conference
2021, Virtual Event, May 17-20, 2021, Proceedings, volume 12704 of Lecture
Notes in Computer Science, pages 609–632. Springer, 2021.

[Paa97] Christof Paar. Optimized arithmetic for reed-solomon encoders. In Proceedings
of IEEE International Symposium on Information Theory, page 250. IEEE,
1997.

[RMTA20] Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy. New low-area
designs for the aes forward, inverse and combined s-boxes. IEEE Transactions
on Computers, 69(12):1757–1773, 2020.

[SKW+98] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and
Niels Ferguson. Two sh: A 128-bit block cipher. AES submission, 1998.

[SLN+21] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and Takanori
Isobe. Rocca: An efficient aes-based encryption scheme for beyond 5g. IACR
Transactions on Symmetric Cryptology, 2021(2):1–30, Jun. 2021.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
The 128-bit blockcipher CLEFIA (extended abstract). In Alex Biryukov,
editor, Fast Software Encryption, 14th International Workshop, FSE 2007,
Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers, volume
4593 of Lecture Notes in Computer Science, pages 181–195. Springer, 2007.

[TP20] Quan Quan Tan and Thomas Peyrin. Improved heuristics for short linear
programs. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 203–230, 2020.

[WP13] Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption
algorithm. In Tanja Lange, Kristin E. Lauter, and Petr Lisonek, editors,
Selected Areas in Cryptography - SAC 2013 - 20th International Conference,
Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume
8282 of Lecture Notes in Computer Science, pages 185–201. Springer, 2013.

[XZL+20] Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao, and Shasha Zhang.
Optimizing implementations of linear layers. IACR Trans. Symmetric Cryptol.,
2020(2):120–145, 2020.

	Introduction
	Our Contributions
	Organization

	Preliminaries
	Notations
	g-XOR Metric
	Directed Acyclic Graph

	Transform Algorithm
	Relationship between Circuit and DAG
	Transforming DAG

	Graph Extending Algorithm
	An Issue in Reduction Rules
	Single Graph and Extended Graph
	Graph Extending Algorithm

	Applications
	Transforming Gates from 2 Inputs into 3 Inputs
	Transforming Gates from 3 Inputs into 4 Inputs
	Experiments

	Conclusion

