
An Efficient Threshold Access-Structure for
RLWE-Based Multiparty Homomorphic

Encryption

Christian Mouchet1, Elliott Bertrand2, and Jean-Pierre Hubaux1

1 École polytechnique fédérale de Lausanne
{christian.mouchet,jean-pierre.hubaux}@epfl.ch

2 Effixis SA
elliott.bertrand@gmail.com

Abstract. We propose and implement a multiparty homomorphic en-
cryption (MHE) scheme with a t-out-of-N -threshold access-structure
that is efficient and does not require a trusted dealer in the common
random-string model. We construct this scheme from the ring-learning-
with-error (RLWE) assumptions, and as an extension of the MHE scheme
of Mouchet et al. (PETS 21). By means of a specially adapted share
re-sharing procedure, this extension can be used to relax the N -out-of-
N -threshold access structure of the original scheme into a t-out-of-N -
threshold one. This procedure introduces only a single round of commu-
nication during the setup phase, after which any set of at least t parties
can compute a t-out-of-t additive sharing of the secret key with no inter-
action; this new sharing can be used directly in the scheme of Mouchet
et al. We show that, by performing Shamir re-sharing over the MHE
ciphertext-space ring with a carefully chosen exceptional set, this re-
construction procedure can be made secure and has negligible overhead.
Moreover, it only requires the parties to store a constant-size state after
its setup phase. Hence, in addition to fault tolerance, lowering the corrup-
tion threshold also yields considerable efficiency benefits, by enabling the
distribution of batched secret-key operations among the online parties.
We implemented and open-sourced our scheme in the Lattigo library.

1 Introduction

Multiparty Homomorphic Encryption (MHE) enables computations to be carried
out on encrypted data provided by multiple users, without requiring decryption.
By generalizing traditional single-party homomorphic encryption (HE) to mul-
tiple users, MHE techniques constitute a promising family of solutions for the
secure multiparty computation setting (MPC), where N parties aim to compute
a function value over their joint inputs while keeping these inputs private. No-
tably, these MHE-based solutions are characterized by their low communication

This is the author version of the article published in the Journal of Cryptology,
Volume 36, accessible at https://doi.org/10.1007/s00145-023-09452-8

https://doi.org/10.1007/s00145-023-09452-8

complexity [3] as well as their amenability to the paradigms of cloud-computing
such as light-client/powerful-server types of architecture [14].

Several generations of MHE schemes were proposed over the years, generally
following the advances of single-party HE constructions. As the most recent gen-
eration of HE schemes based on ring-learning-with-errors (RLWE) is now being
implemented, used and standardized, recent works have also introduced multi-
party variants of these schemes [14]. Among these multiparty schemes, threshold
schemes [14] have been demonstrated as particularly efficient due to their com-
pactness, and are already included in some open-source libraries [13], [15].

MHE-based MPC. Multiparty homomorphic encryption techniques can be
used to construct efficient secure multiparty computation protocols, commonly
referred to as two-round MPC. These MHE-based MPC protocols consist in a
one-time Setup phase, after which any number of function evaluations can be
performed in a two-round online phase [3].

In the Setup phase, the parties make use of a special-purpose multiparty pro-
tocol in order to generate a collective public key that supports encryption and
homomorphic evaluation, and for which the corresponding secret-key is securely
distributed among the parties. The online, input-dependent phase consists in
three steps: Input, Evaluation, and Output. During the Input phase (round one),
the parties use the collective public encryption key to encrypt their inputs and
disclose the resulting ciphertexts to the other parties. Then, the desired compu-
tation is carried out, by using the homomorphic operations of the HE scheme.
Finally, the parties take part in a multiparty protocol to decrypt the result ci-
phertext(s) in the Output phase (round two). Contrary to their counterparts
based on linear secret-sharing schemes (LSSS) or garbled circuits, the offline
Setup phase of MHE-based MPC solutions produces public keys that can be
reused for an unlimited number of function evaluations.

Mouchet et al. propose a RLWE-based MHE scheme in which the secret key
is additively shared between the parties and for which the threshold-decryption
protocol requires a single round of interaction [14]. They show that, as for its
precursor based on learning-with-errors (LWE) [3], this scheme has a fully public
transcript and can support MPC tasks over any public authenticated channel. As
a result, this scheme can support computation among a large number of resource-
limited parties by using a third-party honest-but-curious cloud provider that acts
as a share aggregator (for the setup and output protocols) and homomorphic
evaluator (for the input and evaluation phases).

Access Structures. For a secret-sharing scheme over a set of parties P, we refer
to a subset S ⊂ P of parties that can reconstruct the secret as a qualifying set
and to the set A ⊂ Powerset(P) of all qualifying sets as the access structure of the
scheme. The access structure to the secret key of an MHE scheme determines the
access structure to the encrypted inputs which, in turn, determines the security
properties of the corresponding MPC protocol instance. The scheme of Mouchet

2

et al. uses an additive structure for its secret key, which instantiates an N -out-of-
N -threshold access-structure: all parties have to collaborate for the decryption
protocol to succeed. Although this enforces the strictest access-structure (only
one qualifying set) hence provides strong security guarantees, this also requires
more stringent availability requirements on the protocol participants. In practical
systems involving many parties, we would typically want to extend the semi-
honest model with the case of parties going offline for an undetermined amount
of time (e.g., due to technical issues). For scenarios in which a fraction t

N of
honest participants can be guaranteed, t-out-of-N -threshold access-structures
can relax this requirement by enabling decryption (and other types of secret-key
operations) to be performed among subgroups of at least t parties.

Boneh et al. proposed an MHE scheme with t-out-of-N -threshold access-
structure [5], but their construction requires to choose between non-compact
party-states or non-compact ciphertexts, with both options resulting in a sig-
nificant overhead in practice. However, their scheme targets the strong asyn-
chronous setting, where parties do not need to synchronize with each other
during the protocol execution. While this is necessary for their end result (of
building a universal thresholdizer for non-threshold cryptographic primitive), it
might be an overkill for many end-user MPC scenarios (e.g., encrypted federated
learning) which are primarily concerned with computation and communication
efficiency. Hence, this raises the question of whether there exist a scheme, in the
synchronous setting, that is simpler and more efficient.

1.1 Our Results

In this work, we introduce an efficient t-out-of-N -threshold MHE scheme for
the synchronous setting. We contribute our scheme as a simple extension to the
N -out-of-N -threshold scheme of Mouchet et al. [14] that relaxes its access struc-
ture to a t-out-of-N -threshold one. We also contribute its implementation in the
Lattigo library [12], [13] and evaluate its performance through microbenchmarks
and an application case-study.

The t-out-of-N-Threshold Scheme. We propose a set of procedures that
extend, in a natural and efficient way, the scheme of Mouchet et al. to a t-out-of-
N -threshold access structure. We follow the known approach of re-sharing the
additive secret-key shares with the Shamir secret-sharing scheme [17], but with
a specially adapted instance of the Shamir secret-sharing that we define over the
ciphertext-space ring. Then, thanks to the linearity of the N -out-of-N -threshold
scheme’s secret-key operations (e.g., threshold decryption), we obtain a compact
and efficient scheme. Notably, we show that the re-shares can be pre-aggregated,
resulting in a constant-size state party state, and that the t-out-of-N secret-key-
reconstruction can be performed efficiently within the secret-key operation itself.
We show that, in the synchronous setting, this requires a simple non-interactive
pre-computation to the corresponding operation in the N -out-of-N scheme, yet
performed among N = t parties. Our construction is generic and can be used to
instantiate multiparty variants of the BGV, BFV and CKKS schemes.

3

Implementation and Benchmarks. We implemented our constructions in
Lattigo [13], an open-source library for multiparty homomorphic encryption.
We report on the benchmark performance for our implementation and analyze
the results in the context of MHE-based MPC. Furthermore, we show how to
harness the t-out-of-N -threshold access-structure to accelerate the execution of
batches of secret-key operations in both the offline-setup and online phases. We
exemplify this through an application case-study: the end-to-end-encrypted fed-
erated neural network training of Sav et al. [16].

The remainder of this paper is organized as follows: We review the exist-
ing works on threshold encryption for lattice-based construction in Section 1.2,
and provide the necessary background in RLWE-based MHE and secret-sharing
techniques in Section 2. Then, we develop the main technique, in Section 3, and
its implementation and evaluation, in Section 4.

1.2 Related Work

Bendlin and Damgård considered the case where the parties obtain Shamir
secret-shares of a secret-key by means of pseudo-random secret sharing (PRSS)
techniques [4]. This results in a non-interactive secret-key-generation procedure,
but it is non-compact as it requires one key per possible subset of adversarial
parties. Due to this factorial expansion, this scheme would not be practical for
large number of parties.

Asharov et al. noticed that share-re-sharing could be used to achieve a t-
out-of-N -threshold access structure in (the extended version of) their seminal
work on LWE-based multiparty homomorphic encryption [3]. However, they did
not specify the concrete secret-sharing scheme and assumed an extra round of
interaction, prior to the decryption round, to reconstruct a failing party’s share.
Additionally, directly reconstructing the shares is undesirable in practice, as
it would reveal the failing party’s share to the parties. We show that this is
not needed in practice, as reconstruction can be performed within the secure
decryption protocol directly.

Boneh et al. proposed a t-out-of-N -threshold HE scheme based on learning-
with-errors that also relies on re-sharing the secret-key shares, yet in a stronger
asynchronous setting where parties are unable to determine which other parties
are online at the time of generating their decryption shares [5]. This additional
constraint is necessary for the composability of their scheme, that they use as a
building-block for higher-level cryptographic primitives in their work. However,
it comes with a significant complexity and performance overhead, and their setup
phase requires a trusted dealer to perform the sharing. Yet, Boneh et al. observe
that enabling the parties to determine which other parties are online before the
decryption phase would lead to a simpler scheme. We confirm this observation
by showing that, in the semi-honest model with failures, there indeed exists a
simpler, more compact and more efficient scheme that does not require a trusted
dealer. We elaborate on these differences in Section 4.1, where we provide a
comparison between their construction and our scheme.

4

Concurrently to our work, Urban and Rambaud proposed an alternative
MHE-based MPC approach that provides guaranteed output delivery while min-
imizing the number of synchronous rounds needed in the setup phase and requir-
ing no synchronous communication during the evaluation phase. Their approach
is also based on a linear secret-sharing scheme over RLWE rings [18], but their
construction targets generality rather than efficiency as it allows the FHE coeffi-
cient modulus to be a composite with factors that are smaller than the number of
parties. Our construction targets efficiency for the parameterization supported
by the current FHE implementation, for which the structure of the coefficient
modulus is already constrained for efficiency reasons.

2 Preliminaries

We first present our system and adversary model, as well as the main system
goals. Then, we present the main building blocks of our solution.

2.1 Adversary Model and System Goals

We consider a set P of N parties {P1, ..., PN} (the system) in a secure-multiparty-
computation setting, where an adversary A is able to corrupt up to t−1 parties.
We assume that the adversary is static and passive, yet we further enable the ad-
versary to take the corrupted parties offline for an arbitrary amount of time. The
parties can communicate through private authenticated channels and through a
public, synchronous, authenticated channel. Finally, we assume that the parties
have access to a public common random string (CRS).

System Goals. Let xi be the private input of party Pi in some message space
M, let f :MN → M be a public arithmetic function over the message space,
and let λ be a security parameter. We formulate the following system goals:

– Functionality. The system must compute y = f(x1, ..., xN) through a multi-
party protocol.

– Privacy. There must exist a simulator program SIMf that can simulate all the
interactions between the parties (the transcript), when provided only with
the output y and the inputs from the adversary. For an attacker to distinguish
between the real and simulated interaction, the success probability must be
a negligible function in λ.

– Fault Tolerance. After the inputs are received for all parties, the output y
should be delivered to the honest parties as long as at least t parties are
online and active.

Informally, the protocol execution should not reveal anything more about the
inputs than that which can be deduced from the output y alone. We also observe
that the fault-tolerance requirement, guaranteed output-delivery, is limited to
the case where faulty parties provided their inputs before going offline. This is
because not all functions can be successfully computed under partial inputs.

5

We now briefly introduce the building blocks of our construction: the scheme
of Mouchet et al. [14], its instantiation as an MPC protocol, and the secret-
sharing scheme of Shamir [17].

2.2 N-out-of-N-Threshold Encryption for RLWE

We recall the notation and core procedures of the RLWE N -out-of-N -threshold
Encryption scheme (MHE Scheme) [14] that we extend in Section 3. Its ciphertext
space is a polynomial quotient ring Rq = Zq[X]/(Xn +1) where the polynomial
degree n is a power of two and where the polynomial-coefficient modulus q is a
product of L different primes q1, ..., qL. Hence, we can use the isomorphism Rq

∼=
Rq1×...×RqL provided by the Chinese remainder theorem (CRT) to perform the
operations in the residue rings, without resorting to arbitrary-precision integer
arithmetic. Moreover, we chose each qi such that qi≡1 mod 2n, which enables
the representation of Rqi elements under the number-theoretic transform domain
(NTT), under which both ring operations are performed coefficient-wise. We
denote a← D the sampling of a according to a distribution D. We simplify this
notation for the case of uniform sampling of a ring element that we denote a←
Rq. Let Key(Rq) be a secret-key distribution over Rq for which the coefficients
are sampled uniformly in {−1, 0, 1} mod q, let Err(Rq) be an error distribution
where the coefficients are sampled from a discrete Gaussian distribution of small
variance σ2, and let Smudge(Rq) be a suitable smudging distribution for the
noise flooding technique [3], [14] (typically, a discrete Gaussian distribution of
large variance). Finally, let CRS(Rq) be the uniform distribution in Rq according
to the common reference string (i.e., elements sampled from this distribution are
the same for all parties).

Scheme: MHE

– MHE.Setup: The parties agree on the public parameters (n, q, σ,Key,Err).
– MHE.SecKeyGen: Each party Pi samples si←Key(Rq).
– MHE.PubKeyGen(s1, ..., sN):

1. Each party Pi samples p1←CRS(Rq), e←Err(Rq) and discloses:
p0,i=−sip1+ e.

2. Each party computes p0 =
∑

p0,i and sets pk = (p0, p1).
– MHE.Encrypt(pk, m): Sample u← Key(Rq), e0, e1 ← Err(Rq) and output:

ct = (c0, c1) = (m+ up0 + e0, up1 + e1).
– MHE.Decrypt(ct, s1, ..., sN):

1. Each party Pi samples ei ← Smudge(Rq) and discloses hi = c1si + ei.
2. Each party can then compute m ≈ c0 +

∑
hi.

We refer to s =
∑N

i=1 si as the ideal secret-key for the scheme. As the full
collective knowledge of s is required to decrypt ciphertexts, the MHE scheme
implements an N -out-of-N -threshold access-structure over its ciphertexts. More
generally, we refer to the secret-key-dependent operations of the scheme as secret-
key operations. Note that we omitted the MHE.Eval procedure as it depends on

6

the specific plaintext-encoding strategy of the RLWE scheme in use but does
not depend on the access structure for threshold schemes (we briefly discuss the
encoding strategy below).

Plaintext Encoding and Homomorphic Evaluation. Due to the error that
is inherent to the encryption scheme, the MHE.Decrypt procedure outputs an
approximate message, and users need to rely on plaintext encoding techniques
The way to encode a plaintext into a message m and to decode it back after
decryption is specific to the scheme in use. Common strategies include scaling
the plaintext up by a factor ∆ and rely on quantization and rounding for the
decoding [9], [11]. Furthermore, it is common to apply FFT-like transforms to the
plaintext polynomials in order to enable coefficient-wise encrypted arithmetic.
Such techniques, often referred to as packed encoding, enable users to encode up
to n Zq messages in n independent ciphertext slots, where n is the polynomial
degree. The chosen encoding strategy defines how the homomorphic operations
are performed (i.e., the specific Eval algorithm). Yet, these considerations are
independent of the secret key and the core MHE scheme can be used to instantiate
multiparty variants of the BFV [7], [11], CKKS [9] or BGV schemes [8]. Our t-
out-of-N -threshold access-structure will preserve this property.

Evaluation Keys Some homomorphic operations require the evaluator to be
provided with operation-specific public-keys, often referred to as evaluation keys.
For example, compact multiplication involves a relinearization operation [11]
which requires a so-called relinearization key. Likewise, plaintext slots rotation
by k slots can be operated as an homomorphic automorphism which requires
rotation-specific rotation-keys (i.e., a key for each needed rotation parameter k).
Although generating a single key for a one-slot rotation (k = 1) would suffice
to operate any rotation in theory, it is more efficient to generate keys for all
(or most) of the rotations required by the circuit, in order to operate all (or
most) rotations in constant-time. We refer the reader to the original scheme
[14] for details about the generation of evaluation keys (they are straightforward
adaptation of the MHE.PubKeyGen procedure). In the scope of this work, suffice
to observe that these procedures are secret-key operations and that generating
many rotation-keys (e.g., as required by the bootstrapping operation [6]) repre-
sents a significant cost. In Section 3.5, we observe that this cost can be efficiently
distributed among the parties by taking advantage of the t-out-of-N -threshold
access-structure.

Secure Multiparty Computation. The MHE scheme directly yields a generic
secure multiparty computation protocol in the two-rounds MPC model; we refer
to this protocol as the MHE-MPC protocol. This model comprises two phases,
the first being input-independent and optional in the PKI setting (hence is not
counted as one of the two rounds).

In the offline Setup phase, the parties run the MHE.Setup, MHE.SecKeyGen
and MHE.PubKeyGen procedures. The output of this phase are the parties’ indi-

7

vidual secret-keys and a set of collective public encryption- and evaluation-keys
that can be used for an unlimited number of iterations of the second phase.

In the Online phase, the parties use the MHE.Encrypt procedure to encrypt
their private inputs to the computation and send the resulting ciphertexts to the
other parties. Then, the function evaluation is performed under encryption by
using the Eval algorithm of the scheme. Finally, the parties use the MHE.Decrypt
procedure to output the final result.

Within our system model, the MHE-based MPC protocol satisfies the func-
tionality and privacy system goals of Section 2.1, but it does not satisfy the fault
tolerance one.

Fault Tolerance. The MHE-MPC protocol naturally provides some fault tol-
erance against parties going offline for a finite amount of time. As opposed to
its LSSS-based counterparts, a party that goes offline after providing its inputs
does not prevent the computation from making progress, as the homomorphic
evaluation can be performed non-interactively. The same is true for a party that
momentarily goes offline after the Setup phase, except that, similarly to the
plaintext case, the party’s input will not be available to the computation. In
both cases, the main drawback is that all parties need to connect eventually (to
participate in the decryption protocol of the output phase) for the output to be
delivered. This might be problematic in settings where a group of parties seek to
tolerate a fraction of them going offline for an undetermined amount of time. In
our construction, we use the Shamir secret-sharing scheme to solve this problem.

2.3 Shamir Secret-Sharing

We recall the secret-sharing scheme of Shamir that implements a t-out-of-N -
threshold access-structure on its secrets, based on polynomial interpolation in a
finite field [17]. For the sake of notation, we consider the reconstruction from the
first t shares. Indeed, the procedure generalizes to any set of at least t shares.

– Shamir.Setup: The parties agree on a field K and each party Pi ∈ P is
associated with a non-zero element αi ∈ K such that for i ̸= j then αi ̸= αj .

– Shamir.Share(s, t, α1, ..., αN): To share a message s ∈ K among N parties
such that t shares are needed to reconstruct s, sample c1, ..., ct−1 ← K and
send si = s+

∑t−1
k=1 ckα

k
i to party Pi.

– Shamir.Combine(s1, ..., st, α1, ..., αt): To reconstruct a message s from shares
s1, ..., st, compute

s =

t∑
i=1

si

t∏
j=1,j ̸=i

αj

αj − αi
. (1)

We observe that the Shamir.Share procedure samples a degree-(t−1) polyno-
mial S(X) ∈ K[X] such that S(0) = s and distributes S(αi) to party Pi, and the
Shamir.Combine procedure computes the Lagrange interpolation at point X = 0
to reconstruct the secret. We refer to the sequence of public points (α1, ..., αN)
as the Shamir public-points.

8

3 t-out-of-N -Threshold Encryption for RLWE

We now present our main contribution. We provide an overview of the main
ideas behind the scheme in Section 3.1. Then, we present the secret-sharing
scheme that we use for the share re-sharing in Section 3.2. Finally, we present
our t-out-of-N -Threshold Encryption for RLWE in Section 3.3.

3.1 Overview

We start from the well-known share re-sharing approach, which is to apply
the Shamir secret-sharing scheme to the additive shares of the ideal secret-key
s of the MHE scheme. Intuitively, this technique enables any set of at least t
parties to reconstruct the shares of the missing parties and to take their place
in the decryption procedure. However, a naive instantiation of this idea over
an arbitrary secret-sharing space would be inefficient: It would require the non-
failing parties to either reconstruct the shares of the failing parties (which would
forever remove them from the access structure and add a communication round)
or to compute their shares by running a secure computation over the secret-
sharing space (which would require costly Rq arithmetic emulation over this
space). Also, it would require each party to store all N re-shares throughout the
entire protocol, whereas we require a constant-size state.

Instead, we perform Shamir re-sharing directly over the ring Rq. In this way,
we can exploit the linearity of both the ideal secret-key and the re-sharing scheme
to obtain a more compact and communication-efficient scheme. More specifi-
cally, assuming Rq is our Shamir secret-sharing space, we denote Si ∈ Rq[X]
the secret degree-(t−1) polynomial sampled by party Pi during the Shamir.Share
procedure, and λi =

∏t
j=1,j ̸=i

αj

αj−αi
be the i-th Lagrange coefficient in the re-

construction using the Shamir public-points α1, ..., αt. Then, we observe that the
Shamir.Combine operation commutes with the ideal-secret-key reconstruction:

s =

N∑
i=1

si =

N∑
i=1

t∑
j=1

Si(αj)λj =

t∑
j=1

λj

N∑
i=1

Si(αj) =

t∑
j=1

s′j . (2)

This presents several opportunities for our construction, which we outline below
as Remarks 1 to 3.

Remark 1. The Shamir secret-sharing scheme is usually defined over an arbitrary
field, which guarantees the correctness and security of the Lagrange interpolation
for enforcing the access structure. However, there are no such guarantees over
arbitrary rings. For Eq. (2) to be correct and the resulting scheme to be secure,
we need to show that these properties hold in the ring Rq.

Remark 2. From Eq. (2), we observe that the new sharing over t parties has an
additive structure for which the j-th term can be locally (pre-)computed by each
Pj ∈ Pt, if the set of parties that are participating to the secret-key operation
is known.

9

Remark 3. The newly computed t-out-of-N share s′i can be seen as a new ad-
ditive sharing of s and can simply be used by the parties instead of si (their
N -out-of-N counterpart) in the usual MHE decryption protocol.

We present the concrete Shamir secret-sharing scheme in Section 3.2 and
show that it satisfies the requirements of a secret-sharing scheme (as per Re-
mark 1). Then, we present our t-out-of-N -threshold scheme; we can formulate it
as a direct extension of the N -out-of-N -threshold MHE scheme for RLWE (due
to Remarks 2 and 3).

3.2 Shamir Secret-Sharing in Rq

The usual Shamir secret-sharing scheme is instantiated over a field. This guaran-
tees that all non-zero elements are units hence that Lagrange coefficients exist.
Indeed, computing a Lagrange coefficient requires inverting elements of the form
αi − αj where αi and αj are the Shamir public-points. However, working in a
field is not a requirement. In fact, it is a known result that using a ring is possi-
ble, as long as the set of Shamir public-points form an exceptional sequence [1],
[10]. We now briefly present this result in our notation and terminology.

Definition 1. (From [1]) For a ring R, the sequence α1, ..., αN of elements of
R is an exceptional sequence if αi − αj is a unit in R for all i ̸= j.

Theorem 1. (From [1]) Let R be a commutative ring and α1, ..., αN be an ex-
ceptional sequence in R. Then, a Shamir secret-sharing scheme instantiated in
R with Shamir public-points, α1, ..., αN , is correct and secure.

Let us assume that α1, ..., αN is an exceptional sequence for Rq. Then, by
instantiating a t-out-of-N Shamir secret-sharing scheme that uses the elements of
this exceptional sequence as the Shamir public-points, we obtain from Theorem 1
that our secret-sharing scheme for Rq is correct and secure for a threshold access-
structure. Hence, we now define how to choose our Shamir public-points from
Rq in such a way that guarantees an exceptional sequence and enables an highly
efficient implementation.

Choice of Shamir public-points. We first observe that checking whether
an arbitrary sequence of Rq elements form an exceptional sequence is easy: For
each non-zero pairwise differences, it suffices to check that all coefficients of
the difference polynomial under the CRT and NTT representation is non-zero.
This holds because the inverse of each non-zero coefficient can be computed
individually by the little Fermat theorem. However, computing these inverses for
arbitrary elements of Rq would represent a costly operation that would result in
an inefficient Combine operation.

Instead, we propose to restrict the choice of Shamir public-points to constant
polynomials in Rq = Zq[X]/(Xn + 1) (i.e., polynomials of the form αX0 for
α ∈ Z∗

q). On the one hand, it yields a significant performance boost as computing

10

the Lagrange coefficient now only require scalar multiplications in Zq. On the
other hand, this provides us with a simple procedure for choosing Shamir public-
points that guarantee an exceptional sequence: Let qmin = min(q1, ..., qL) with
q1, ..., qL the prime factors of q. We observe that for N < qmin, choosing N
distinct values in Zqmin

as the Shamir public-points will guarantee an exceptional
sequence. Indeed, for any i ̸= j, −qmin < αi − αj < qmin, αi − αj ̸= 0 and
the residue mod qk is non-zero for any prime factor qk of q. Then, a simple
application of the CRT on Rq is enough to prove that αi − αj is a unit in Rq.
Therefore, any mapping from P onto Zqmin can be used, including the textbook
one that commonly uses i for party Pi, if i is a positive integer. We observe that
it is critical for implementations to check that Shamir public-points are non-zero.

Choosing the Shamir public points from the restricted set has the side effect
of limiting the number of parties to qmin − 1. But this is not an issue in most
cases, because the factors of q are already constrained by the encryption scheme’s
requirement. More precisely, they have to be primes congruent to 1 mod 2n
where n is the degree of the ring (which is typically larger than 211 in the
FHE setting). However, this could be a limitation in a setting where parties
independently and randomly sample their own public points, as the probability of
a collision would be too high. For such use-cases it might be preferable to sample
points in Zq where the probability of collision is negligible, then check that the
sequence forms an exceptional sequence, which occurs with high probability.

3.3 Scheme Extension

We present our t-out-of-N -threshold scheme for RLWE, which we formulate as
an extension of the N -out-of-N -threshold scheme of Mouchet et al. [14].

Share Re-sharing Scheme. For a set of parties P in the MHE scheme where
Pi ∈ P holds secret-key share si, we define our re-sharing scheme as the three-
tuple of procedures T = (Setup,Thresholdize,Combine). Intuitively, Scheme T
applies the Shamir secret-sharing scheme over Rq introduced in Section 3.2 to the
parties’ key, which relaxes the N -out-of-N access-structure of the MHE scheme
of Section 2.2 to a t-out-of-N -threshold one.

Scheme: T

– T.Setup: Each party Pi ∈ P is associated with a public point αi ∈ Rq

such that αi − αj is a unit for all i, j, i ̸= j.
– T.Thresholdize(t, s1, ..., sN , α1, ..., αN):

1. Each party Pi samples ci,1, ..., ci,t−1 ← Rq.
2. Each party Pi sends s̃i,j = si +

∑t−1
k=1 ci,kα

k
j to each party Pj .

3. Each party Pi receives s̃j,i from each party Pj and computes:
s̃i =

∑N
j=1 s̃j,i.

– T.Combine(s̃1, ..., s̃t, α1, ..., αt): For P ′⊆P, |P ′| ≥ t, each party Pi∈P ′

computes s′i = s̃i
∏t

j=1,i ̸=j

αj

αj−αi
.

11

We observe that the output of the T.Thresholdize is only one ring element per
party, due to the re-share being aggregatable. This is because the summation
in N on the right-hand side of Eq. (2) does not depend on which t of the N
parties participate in the reconstruction and can be pre-computed by each party
Pi, after it receives all the Sj(αi) from its peers.

We also observe that only the T.Thresholdize procedure is interactive and
that it requires a single round of pairwise interactions between the parties over
confidential channels. Once performed, the parties have access to Shamir shares
(s̃1, ..., s̃N), from which each party Pi can locally compute its share s′i in an
additive sharing (s′1, ...s

′
t) of s among any subgroup of at least t parties in P

(as per remark 2). Consequently, each party Pi can simply use its new share s′i
directly in the MHE procedures. This is the main idea for our next construction.

t-out-of-N-Threshold MHE scheme. We propose our construction as the
union tuple MHE∪T, which provides a t-out-of-N -threshold encryption scheme.
We detail this construction as Scheme TMHE. As per Remark 2, the T.Combine
procedure requires the parties to obtain the set of participating parties from
the environment. We formalize this requirement by providing the parties with
an oracle access to the set of online parties. We denote Ponline ← Env such
an oracle query where Ponline ⊆ P is the set of online parties at the time the
environment is queried. We assume that the oracle returns the same set to all
parties for a given secret-key operation. However, we do not assume this across
different secret-key operations, and the set of parties performing the setup might
differ from the set performing decryption. Indeed, as per Equation 2, any set of at
least t parties can reconstruct s. In our (synchronous) model, this oracle can be
realized with a simple broadcast round of communication to gather the identities
of online parties, yet with the small caveat that, after this broadcast round, the
parties might fail. In Section 3.4, we discuss how to deal with faulty oracles that
return an incorrect set of online parties.

Scheme: TMHE

– TMHE.Setup: run the MHE.Setup and T.Setup procedures.
– TMHE.SecKeyGen:

1. run (s1, ..., sN)← MHE.SecKeyGen.
2. run T.Thresholdize(t, s1, ..., sN , α1, ..., αN).

– TMHE.PubKeyGen(s̃1, ..., s̃t):
1. obtain Ponline ← Env
2. if |Ponline| < t, return ⊥
3. choose t parties Ponline and run (s′1, ..., s

′
t)← T.Combine

4. execute the MHE.PubKeyGen(s′1, ..., s′t) protocol.
– TMHE.Encrypt(pk, m): run the MHE.Encrypt procedure.
– TMHE.Decrypt(ct, s̃1, ..., s̃t):

1. obtain Ponline ← Env
2. if |Ponline| < t, return ⊥
3. choose t parties Ponline and run (s′1, ..., s

′
t)← T.Combine

4. execute the MHE.Decrypt(ct, s′1, ..., s′t) protocol.

12

TMHE-based MPC protocol. The instantiation of an MPC protocol from our
scheme is the same as for the MHE scheme of Mouchet et al., yet it satisfies the
fault tolerance requirement of Section 2.1. This is, it tolerates up to N−t parties
going offline for an undetermined amount of time, as long as the failing parties
completed the TMHE.SecKeyGen procedure and provided their encrypted inputs
to the computation. We elaborate on the differences between the TMHE and
MHE instantiations in Section 4.1.

3.4 Dealing with Faulty Oracles

Our model does not exclude the possibility of a party crashing after the oracle
response. In such a case, step 4 of the TMHE.Decrypt cannot be completed due to
missing share(s) in the disclose phase of the MHE.Decrypt protocol. In practice,
such a failure is generally detected and resolved by setting a time limit (timeout)
for the parties to provide their decryption shares, and by defining the parties’
behaviour in the case of such timeouts. Whereas the exact values for the timeout
are indeed application dependant, we now discuss how parties can react to such
timeouts to guarantee the eventual decryption of a ciphertext in a secure way.

Let Ptimeout be the set of parties which did not provide their share in time
during a secret-key operation; a partial yet insecure solution is to repeat steps 3
and 4 of the operation, with P ′

online ← Ponline \Ptimeout where \ denotes the set
difference. As such, this solution is insecure because the underlying MHE.Decrypt
procedure is not secure under the composition of several decryptions of the same
ciphertext ct = (c0, c1) (informally, (sc1 + e1, sc1 + e2) leaks information about
sc1 when e1 and e2 are sampled independently). However, the key observation
is that obtaining a new ciphertext ct′ such that Dec(ct) = Dec(ct′) is easy with
any asymmetric additive HE scheme. Hence, our solution consists in adding a re-
randomization step, by adding a fresh encryption of zero to the target ciphertext
before repeating the MHE.Decrypt step.

3.5 Accelerating Batched Multiparty Secret-Key Operations

The t-out-of-N -Threshold access-structure also enables the group of key-share
holders to efficiently parallelize batches of secret-key operations, when more than
t participants are online. Performing batches of secret-key operations is common
in MHE-based MPC protocols:

– At the Setup phase - when the parties have to generate a number of key-
switching keys (often referred to as evaluation key) to support non-linear
operations such as ciphertext-ciphertext multiplication and ciphertext-slot
rotations.

– At the Evaluation phase - if the parties rely on interactive protocols to reduce
the noise or to raise the level of ciphertexts as a part of the circuit in order
to avoid the overhead of using bootstrapping [14], [16]. These protocols can
be abstracted as performing a masked decryption and a re-encryption, hence
are secret-key operations.

13

– At the Output phase - when the function’s output consists in multiple ci-
phertexts. This could be by design (of the ideal functionality), or because
the encryption parameters do not enable packing enough values in one ci-
phertext.

Let k be the number of secret-key operations to be performed (e.g., the
number of rotation keys to be generated), and let Ponline be the set of online
parties. The parties in Ponline can be organized into k subgroups of t distinct
parties, and the work can be distributed among the subgroups. Mouchet et
al. show that the overhead of running one MHE secret-key operation protocols
within each subgroup of size t can be made constant for each party, by relying
on tree-based share aggregation patterns [14]. Hence, the total overhead for each
party in performing the k secret-key operations can be reduced to (kt)/|Ponline|,
which is t/|Ponline| times the overhead of performing these same k operations in
the N -out-of-N -threshold scheme. In Section 4.3, we evaluate the effect of using
this technique in the setup and in the evaluation phase of a concrete instance of
the MHE-MPC protocol: the federated neural network training algorithm of Sav
et al. [16].

4 Evaluation

We now discuss our proposed construction from the theoretical and practical
standpoints.

4.1 Theoretical Evaluation

We first study the overhead and additional assumptions of the threshold scheme,
with respect to the original MHE scheme. Then, we discuss the main differences
between the threshold scheme of Boneh et al. and our proposed construction.

Comparison with the Base MHE Scheme. From the system-model stand-
point, the main difference between the TMHE scheme, and the base MHE scheme
of Mouchet et al. [14] is indeed that our construction enables t-out-of-N access
structures. Hence, instantiating the MHE-based MPC protocol with our scheme
satisfies the fault tolerance requirement of Section 2.1. Moreover, the TMHE-
based instantiation retains most of the features from the MHE-based one: (a)
Its offline phase is re-usable and has to be performed only once for a given
set of parties and encryption parameters. (b) Its online phase has a fully pub-
lic transcript and consists in only two rounds of interaction among the parties.
However, the TMHE.SecKeyGen relies on confidential communication channels
between the parties (to execute the T.Thresholdize re-sharing procedure), which
is not the case for the original MHE.SecKeyGen procedure. In other words, the
TMHE-based MHE-MPC protocol does not have a fully public transcript in its
offline phase, whereas the MHE-based one does. However, private communica-
tion is required for only a single round of communication and is not a major
obstacle in many peer-to-peer and cloud-assisted models.

14

Table 1. Threshold extension costs, measured in number of Rq elements per-party
for the internal state and network communication, and in asymptotic function of
N and t for the per-party computational cost. We distinguish between the costs
associated with the generation (SecKeyGen) operation and the usage (SecKeyOp ∈
{PubKeyGen,Decrypt}) of the secret-key.

Party’s state Network cost per party Comp. cost
SecKeyGen SecKeyOp SecKeyGen SecKeyOp SecKeyGen SecKeyOp

MHE 1 1 0 1 O(1) O(1)
TMHE t 1 2(N − 1) 1 O(t+Nt+N) O(t)

From the computational-cost standpoint, the threshold extension requires
additional state to be stored and exchanged by each party. We summarize the
related costs in Table 1. The TMHE.SecKeyGen is the only operation where
this overhead is not negligible: It requires each party to store a degree-(t−1)
polynomial in Rq[X], to evaluate this polynomial N times (for X a degree-0
polynomial), and to send and receive N − 1 Shamir secret shares. Whereas, the
base scheme does not require any interaction to generate the secret-key. The fact
that the key-generation phase is only a one-time offline phase that is re-usable
for any number of circuit-evaluation enables the amortization of this step in
many applications. Regarding secret-key operations (PubKeyGen and Decrypt),
the only overhead is the local computation of the Combine procedure that is
O(t). This overhead, however, is close to negligible in practice. This is because
the computation of the Lagrange coefficient, which is done over Zq thanks to
the compact Shamir public-points selection of Section 3.3, is the only part of
this computation that depends on t. We demonstrate this by benchmarking our
implementation, in Section 4.2.

Comparison with the Scheme of Boneh et al. Boneh et al. proposed a
t-out-of-N -threshold scheme as an essential building block to their universal
thresholdizer for cryptographic primitives [5]. However, they consider a stronger
asynchronous setting, where parties are unable to determine (or optimistically
guess) the set of online other parties when performing secret-key operations.
Essentially, their solution is to perform the Lagrange interpolation homomor-
phically, when aggregating the shares. But such an aggregation can only be
performed when the Lagrange coefficients are small with respect to q. Therefore,
their first solution consists in using a {0, 1}-LSSS to share the secret key of the
scheme. For t-out-of-N -threshold access-structure, this implies a per-party state
in O

(
N4.2

)
to store the secret-key shares. Their second solution consists in us-

ing Shamir secret-sharing, which requires only a O(1) storage for the secret-key
shares (assuming a trusted setup). However, this requires increasing the size of
the modulus q by a O

(
N !3

)
multiplicative factor, thus rendering the encryption

scheme non-compact and more difficult to parametrize (increasing the coeffi-
cient modulus while keeping the other parameters fixed reduces the security of
RLWE). In contrast, our scheme targets the synchronous setting, yet is much

15

Table 2. Benchmarked HE Parameters. The polynomial degree n and coefficient mod-
ulus q size in bits are taken from the standardization document [2]. L is the number of
prime factors of q.

Set Pol. deg. (n) Coeff. size (L) Coeff. size (log2 q)
I 213 4 218
II 214 8 438
III 215 15 881

Table 3. Threshold extension T benchmarks (with per-step breakdown for Thresh-
oldize, see Section 3.3) for N = 20 parties and threshold t = 7, 14, 19. These values
represent the per-party CPU time in milliseconds.

Param. I II III
t 7 14 19 7 14 19 7 14 19

Thresholdize

Step 1 6.0 13.0 17.9 26.2 56.8 78.7 91.7 198.2 275.6
Step 2 4.2 8.8 12.3 16.6 35.6 50.0 67.3 146.9 202.1
Step 3 0.2 0.9 3.4
Total 10.4 22.0 30.4 43.7 93.2 129.5 162.4 348.5 481.2

Combine <0.1 <0.1 <0.1 0.1 0.1 0.1 0.3 0.4 0.4

Table 4. Threshold scheme TMHE benchmarks in milliseconds for N = 20 parties and
threshold t = 7, 14, 19. These values represent the per-party CPU time in milliseconds.

Param. I II III
t 7 14 19 7 14 19 7 14 19

SecKeyGen
MHE.SecKeyGen 0.5 2.1 7.4
T.Thresholdize 10.4 22.0 30.4 43.7 93.2 129.5 162.4 348.5 481.2
Total 10.9 22.5 30.9 45.8 95.3 131.6 169.8 355.9 488.6

Decrypt
T.Combine <0.1 <0.1 <0.1 0.1 0.1 0.1 0.3 0.4 0.4
MHE.Decrypt 0.8 2.8 11.6
Total 0.8 0.8 0.9 2.9 2.9 2.9 11.9 12.0 12.0

simpler and more efficient, which enabled its implementation and its integration
in an existing library. Notably, it can be seen as an extension of an existing
scheme, requires a O(1) storage for the secret-key shares, and has negligible
online overhead. Moreover, it does not require a trusted dealer.

4.2 Basic Operations Benchmarks

We implemented the scheme extension T in the Lattigo library [13] (that already
implements the MHE scheme) and benchmarked its performance on an AMD
Ryzen 9 5900X CPU (3.7GHz clock, 6M of L2-cache) for several common choices
of encryption parameters (summarized in Table 2) and several values of the
threshold t. Note that our implementation itself uses no parallelization, but its
interface allows a party to generate the shares for each other party separately
in the step 2 of the Thresholdize operation. Hence, this step can be parallelized
and the actual latency divided by min(N,C) where C is the number of cores

16

available. In the scope of this micro-benchmark, we report the total CPU time
to abstract this setting-dependant variable and to show the actual cost of the
computation (the latency being relatively low in the context of a networked
system). We report the results for the threshold extension T in Table 3 and for
the relevant operations of the TMHE scheme in Table 4.

We observe that the Thresholdize algorithm is the most expensive operation,
with a consistently higher network cost. We also observe that the cost of the
procedure grows in O(Nt) as expected. Hence, for adversarial models admitting
a fixed fraction (t − 1)/N of dishonest parties, the per-party CPU-cost of the
setup will be quadratic in the number of participants. Due to the compact Shamir
public-point technique described in Section 3, the Combine step is very efficient
and its cost is significantly lower than the operations of the MHE scheme to which
it is a pre-processing (in the TMHE scheme). For example, the cost of generating
a party’s decryption share in the TMHE scheme for parameter set III with N =
20, t = 7 is 12.0 ms, only 0.4 ms of which are spent on the Combine operation.
We conclude that, from a CPU-time perspective, the threshold access-structure
comes at an almost negligible cost with respect to the non-threshold scheme.
Consequently, the main overhead of the scheme remains the pairwise exchange
of Shamir secret-shares during the one-time key-generation phase.

4.3 Case-study: Encrypted Federated Neural Network Training

The main application of our TMHE scheme is the MHE-MPC protocol, which is
a generic MPC protocol. To further demonstrate the effects of using our con-
struction in a concrete application of this protocol, we now consider a federated
learning scenario in which multiple parties seek to train a neural network model
on their joint datasets, under encryption.

Sav et al. used the MHE-MPC protocol to perform federated neural network
training and inference under N -out-of-N -threshold encryption [16]. Their ap-
proach relies on the CKKS variant of the MHE scheme and faces two important
challenges: First, it relies heavily on ciphertext-slots rotations for many different
rotation values (mostly for the matrix operations), hence requires many rotation-
keys to be generated in the offline setup phase (see Section 2.2). Second, the high
multiplicative depth of the training algorithm requires the parties to refresh the
ciphertexts during the computation, by means of an interactive refresh protocol
(to circumvent the high cost of a local bootstrapping), which can be seen as a
masked decryption and a re-encryption of the ciphertext. The use of secret-key
operations in the training phase has two consequences: it limits the system to
synchronous learning scenarios (where all parties have to be online for the whole
training phase) and it introduces a significant communication overhead which
constitutes the system’s main bottleneck.

We now describe the effect of using the CKKS variant of our TMHE scheme
in Sav et al.’s system, assuming a t-out-of-N -threshold setting. In the scope of
this case-study, we focus on their MNIST instantiation where N = 10 parties
train a 3-layer neural network to perform handwritten digit recognition. This
scenario uses a polynomial degree n = 214, a coefficient modulus of log2 q = 438

17

bits with L = 9 primes, and requires 623 rotation keys to be generated3 along
with the public encryption- and relinearization-keys.

Setup phase. To generate the public encryption-, relinearization- and rotation-
keys, we propose to equally distribute the set of keys to be generated among the
online parties (up to a difference of 1 key per party). Each party then picks a ran-
dom set of t−1 other parties per key it is responsible for, queries these other par-
ties for their shares and aggregates the them (as defined in the TMHE scheme).
Finally, each party retrieves the aggregated share of the keys it is not responsible
for (from the designated party for that key).

We implemented a proof of concept Go application for this setup procedure
based on our open-source TMHE scheme implementation in Lattigo. The protocol
interactions were implemented as a client-server application enabling the parties
to query each other for their respective shares as well as for the aggregated shares
they are responsible for. The application performs all queries to the other parties
in parallel, to estimate the minimum wall-time latency of the setup phase. We
benchmarked this implementation on a network of 10 machines equipped with
an Intel Xeon E5-2680 v3 CPU (2.5 GHz, 30 MB cache) and 256 GB of RAM.
To simulate a realistic WAN-like network, we limited the network’s bitrate to 1
Gbits/sec and introduced a 10 ms latency. We instrumented our code to report
the total amount of data sent and received for each party, as well as the total
wall time for the execution of the setup phase, and we extracted the CPU time
from the operating system’s metric. Our experiment assumes that all parties are
online to perform the setup.

The results for the MNIST setup are summarized in Table 5. Our experimen-
tal result confirm that the use of our TMHE scheme reduces the per-party cost
when more than t parties are participating to the setup. We do not observe a
factor t

N reduction with respect to the t = N case (which uses the MHE scheme
directly). This is because the final phase (query of the aggregated shares) still
depends on N when all parties are online. But the cost reduction remains signifi-
cant, hence motivating the t-out-of-N -threshold scheme when the threat models
allows it. We also observe a larger gap between the CPU and wall times for
t = 3, as the parallelization of batched secret-key operation described in Sec-
tion 3.5 starts being effective. We note that this effect should be observed also
for t = 5, but is not. This suggests that more engineering would be needed. For
example by partitioning the set of parties into two groups operating individually
for the share generation and aggregation phase.

Online phase. The training algorithm used by Sav et al. is an iterative dis-
tributed gradient descent with two phases per iteration. The first phase is a local
gradient descent, where each party computes its local gradients through forward-
backward propagation. The second phase is a global model update where a des-
ignated party aggregates all the gradients and updates the model weights. The
3 The work of Sav et al. actually abstracts the setup phase and their code is closed-

source. This value was obtained through communication with the authors.

18

Table 5. Threshold MHE Setup cost for N = 10 parties, t = 8, 6, 4, 623 rotation keys.
The values are the largest measured per-party costs among all parties along with their
ratio with respect to the t = N case.

Scheme MHE TMHE
t 10 7 5 3

Time [s] CPU time 149.9 (100%) 120.1 (80.1%) 108.6 (72.4%) 88.7 (59.1%)
Wall time 67.1 (100%) 53.7 (80.0%) 48.6 (72.4%) 35.1 (52.3%)

Network [GB] Sent 5.3 (100%) 4.5 (84.9%) 3.9 (73.6%) 3.3 (62.2%)
Received 5.3 (100%) 4.4 (83.01%) 3.8 (71.7%) 3.2 (60.4%)

model weights and the gradients are encrypted throughout the whole process
and the number of iterations is a parameter of the system. The source code of
their system being closed-source, we study its online phase from a theoretical
perspective. More precisely, we focus on its communication complexity because
it constitutes the main bottleneck of the algorithm.

This bottleneck is caused by the use of the interactive refresh protocol for
ciphertext that have reached a certain level Lref (the smallest level at which
the refresh protocol is correct and secure, see Section 5.F of [16]). In phase 1,
each party requires β refresh where β is a function of model size and encryption
parameters (also see Section 5.F of [16]). In phase 2, the designated party requires
l refreshes (one per non-input layer). A single instance of the refresh protocol
requires the initiator to broadcast the level-Lref ciphertext to be refreshed and
to collect one share per party. The ciphertext consists of two ring elements at
level Lref and each share consists of one ring element at level Lref and one ring
element at the largest level L. Assuming 8-bytes encoding for the coefficients,
the transcript of a single refresh protocol is of size E = 8n(3Lref + L) bytes
per party assisting the initiator in the protocol. In the N -out-of-N -threshold
model, this represents a total communication of Nβ(N − 1)E bytes for the first
phase and of l(N − 1)E in the second. For the MNIST instance, this represents
a communication of 644.1 MB per iteration (β = 4, l = 2, L = 7 and Lref).

We propose the following modification to the framework of Sav et al., which
is again a straightforward application of the TMHE scheme: In the local gradient
descent phase (1), each party picks a random subgroup of t − 1 other parties
in the set of online parties and performs all refresh protocols among this group.
In the global-model update phase (2), the aggregator randomly partitions the
set of online parties into ⌊ |Ponline|

t ⌋ groups, and distributes the batch of l refresh
protocols among the groups. The proposed changes extend the framework to the
asynchronous learning scenario (with a tolerance of N − t offline parties). In the
case where all parties are online, it reduces the communication complexity for
phase 1 and 2 to respectively Nβ(t− 1)E and l(t− 1)E, which corresponds to a
total of 286.3 MB per iteration for the MNIST instance. Additionally, it divides
the latency of step 2 by ⌊ |Ponline|

t ⌋. Hence, as for the setup phase, the use of our
fault-tolerant scheme also comes with a general reduction of the online phase
costs, especially when it relies on the refresh protocol.

19

5 Conclusion

In this work, we have extended the multiparty-homomorphic encryption scheme
of Mouchet et al. [14] with a t-out-of-N -threshold access-structure. We have
demonstrated that the approach of re-sharing the secret-key shares composes
well with their approach, and that this yields an elegant and efficient solution.
Notably, the extension introduces additional interaction at the key-generation
phase only and, due to our technique for compact Shamir public-points, has only
a negligible memory and CPU-time overhead with respect to the base scheme.
As a result, not only does our scheme provide fault-tolerance to the MHE-based
MPC protocol, but it also reduces the per-party costs and overall latency when
the number of online parties is above the threshold. We implemented our scheme
and open-sourced it in the Lattigo library.

References

[1] M. Abspoel, R. Cramer, I. Damgård, D. Escudero, and C. Yuan, “Efficient
information-theoretic secure multiparty computation over Z/pkZ via galois
rings,” in Theory of Cryptography Conference, Springer, 2019, pp. 471–501.

[2] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio, D.
Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan, “Homomorphic en-
cryption security standard,” HomomorphicEncryption.org, Toronto, Canada,
Tech. Rep., Nov. 2018.

[3] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and
D. Wichs, “Multiparty computation with low communication, computation
and interaction via threshold FHE,” in Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Springer,
2012, pp. 483–501.

[4] R. Bendlin and I. Damgård, “Threshold decryption and zero-knowledge
proofs for lattice-based cryptosystems,” in Theory of Cryptography Con-
ference, Springer, 2010, pp. 201–218.

[5] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. Rasmussen,
and A. Sahai, “Threshold cryptosystems from threshold fully homomorphic
encryption,” in Annual International Cryptology Conference, Springer, 2018,
pp. 565–596.

[6] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux, “Ef-
ficient bootstrapping for approximate homomorphic encryption with non-
sparse keys,” in Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Springer, 2021, pp. 587–617.

[7] Z. Brakerski, “Fully homomorphic encryption without modulus switching
from classical GapSVP,” in Annual Cryptology Conference, Springer, 2012,
pp. 868–886.

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homo-
morphic encryption without bootstrapping,” ACM Transactions on Com-
putation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

20

[9] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for
arithmetic of approximate numbers,” in International Conference on the
Theory and Application of Cryptology and Information Security, Springer,
2017, pp. 409–437.

[10] R. Cramer, I. B. Damgård, and J. B. Nielsen, “Secure multiparty com-
putation and secret sharing,” in Secure Multiparty Computation and Se-
cret Sharing. Cambridge University Press, 2015, 236–298. doi: 10.1017/
CBO9781107337756.012.

[11] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic en-
cryption.,” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

[12] Lattigo v3, Online: https://github.com/tuneinsight/lattigo, EPFL-
LDS, Tune Insight SA, Aug. 2022.

[13] C. Mouchet, J.-P. Bossuat, J. Troncoso-Pastoriza, and J Hubaux, “Lattigo:
A multiparty homomorphic encryption library in Go,” in WAHC 2020–8th
Workshop on Encrypted Computing & Applied Homomorphic Cryptogra-
phy, vol. 15, 2020.

[14] C. Mouchet, J. Troncoso-Pastoriza, J.-P. Bossuat, and J.-P. Hubaux, “Mul-
tiparty homomorphic encryption from ring-learning-with-errors,” Proceed-
ings on Privacy Enhancing Technologies, vol. 2021, no. 4, pp. 291–311,
2021.

[15] Palisade homomorphic encryption software library, Online: https://palisade-
crypto.org/.

[16] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher, J.-P. Bossuat,
J. S. Sousa, and J.-P. Hubaux, “Poseidon: Privacy-preserving federated
neural network learning,” 28th Annual Network and Distributed System
Security Symposium, 2021.

[17] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,
no. 11, pp. 612–613, 1979.

[18] A. Urban and M. Rambaud, Share and shrink: Ad-hoc threshold fhe with
short ciphertexts and its application to almost-asynchronous mpc, Cryptol-
ogy ePrint Archive, Paper 2022/378, https://eprint.iacr.org/2022/
378, 2022. [Online]. Available: https://eprint.iacr.org/2022/378.

21

https://doi.org/10.1017/CBO9781107337756.012
https://doi.org/10.1017/CBO9781107337756.012
https://github.com/tuneinsight/lattigo
https://palisade-crypto.org/
https://palisade-crypto.org/
https://eprint.iacr.org/2022/378
https://eprint.iacr.org/2022/378
https://eprint.iacr.org/2022/378

	An Efficient Threshold Access-Structure for RLWE-Based Multiparty Homomorphic Encryption

