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Abstract

In the last few years, the efficiency of secure multi-party computation (MPC) in the dishonest majority
setting has increased by several orders of magnitudes starting with the SPDZ protocol family which
offers a speedy information-theoretic online phase in the prepossessing model. However, state-of-the-art
n-party MPC protocols in the dishonest majority setting incur online communication complexity per
multiplication gate which is linear in the number of parties, i.e. O(n), per gate across all parties. In this
work, we construct the first MPC protocols in the preprocessing model for dishonest majority with sub-
linear communication complexity per gate in the number of parties n. To achieve our results, we extend
the use of packed secret sharing to the dishonest majority setting. For a constant fraction of corrupted
parties (i.e. if 99 percent of the parties are corrupt), we can achieve a communication complexity of O(1)
field elements per multiplication gate across all parties.

At the crux of our techniques lies a new technique called sharing transformation. The sharing trans-
formation technique allows us to transform shares under one type of linear secret sharing scheme into
another, and even perform arbitrary linear maps on the secrets of (packed) secret sharing schemes with
optimal communication complexity. This technique can be of independent interest since transferring
shares from one type of scheme into another (e.g., for degree reduction) is ubiquitous in MPC. Further-
more, we introduce what we call sparsely packed Shamir sharing which allows us to address the issue of
network routing efficiently, and packed Beaver triples which is an extension of the widely used technique
of Beaver triples for packed secret sharing (for dishonest majority).

1 Introduction
In this work we initiate the study of sharing transformations which allow us to perform arbitrary linear
maps on the secrets of (possibly packed) secret-sharing schemes. More specifically, suppose Σ and Σ′ are
two linear secret sharing schemes over a finite field F. A set of n parties {P1, P2, . . . , Pn} start with holding
a Σ-sharing X. Here X could be the sharing of a single field element or a vector of field elements (e.g.,
as in packed secret sharing where multiple secrets are stored within a single sharing). The parties wish to
compute a Σ′-sharing Y whose secret is a linear map of the secret of X. Here a linear map means that each
output secret is a linear combination of the input secrets (recall that the secret can be a vector in F). We
refer to this problem as sharing transformation.

Restricted cases of sharing transformations occur frequently in the construction of secure computation
protocols based on secret sharing. For example,

• In the well-known BGW protocol [BOGW88] and DN protocol [DN07] and their followups (see [CGH+18,
BGIN20, GLO+21] and the citations therein), when evaluating a multiplication gate, all parties first
locally compute a Shamir secret sharing of the result with a larger degree. To proceed the computation,
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all parties wish to transform it to a Shamir secret sharing of the result with a smaller degree. Here the
two linear secret sharing schemes Σ,Σ′ are both the Shamir secret sharing schemes but with different
degrees.

• A recent line of works [CCXY18, PS21, CRX21] use the notion of reverse multiplication-friendly em-
beddings (RMFE) to construct efficient information-theoretic MPC protocols over small fields or rings
Z/p`Z. This technique requires all parties to transform a secret sharing of a vector of secrets that are
encoded by an encoding scheme to another secret sharing of the same secrets that are encoded by a
different encoding scheme.

• A line of works [DIK10, GIP15, GSY21, BGJK21, GPS21] focus on the strong honest majority setting
(i.e., t = (1/2− ε) ·n) and use the packed secret-sharing technique [FY92] to construct MPC protocols
with sub-linear communication complexity in the number of parties. The main technical difficulty is
to perform a linear map on the secrets of a single packed secret sharing (e.g., permutation or fan-out).
In particular, depending on the circuit, each time the linear map we need to perform can be different.

Unlike the above results, our sharing transformation protocol (1) can perform arbitrary linear maps (2)
is not restricted to a specific secret-sharing scheme and (3) can achieve optimal communication complexity1.
Our transformation can find applications to different protocols based on different secret sharing schemes. In
this work we focus on applications to information-theoretic (IT) MPC protocols. Furthermore, since we can
handle any linear secret sharing scheme, our sharing transformation works for an arbitrary packing factor k
as long as t ≤ n− 2k + 1 where n is the number of participants and t is the number of corrupted parties by
the adversary. This allows us to present the first IT MPC protocols with online communication complexity
per gate sub-linear in the number of parties in the circuit-independent prepossessing model for a variety of
corruption thresholds based on packed secret sharing. That said, we are able to extend the use of packed
secret sharing beyond the strong honest majority setting.

For the case where t = n− 1, any function can be computed with IT security in the preprocessing model
with online communication complexity of O(n) field elements per gate across all parties [DPSZ12]. Existing
protocols in the literature even for t ∈ [(n − 1)/2, n − 1] still required communication complexity of O(n)
elements per gate. We note that most of these protocols follow the “gate-by-gate” design pattern described
in [DNPR16]. In particular, the work [DNPR16] shows that any information-theoretic protocol that works
in this design pattern must communicate Ω(n) for every multiplication gate. However, recent protocols in
the strong honest majority setting, based on packed secret-sharing [FY92], where the number of corrupted
parties t = (1/2 − ε) · n and ε ∈ (0, 1/2) [GPS21] do achieve O(1/ε) communication complexity per gate
among all parties. Note that the packed secret sharing technique evaluates a batch of multiplication gates
in parallel, which differs from the above “gate-by-gate” design pattern in [DNPR16], and therefore does not
contradict with the result in [DNPR16]. Our result closes the gap in achieving sub-linear communication
complexity per gate in the number of parties for the more popular settings of standard honest majority and
dishonest majority.

1.1 Our Contributions
Sharing Transformation. For our arbitrary linear-map transformation on (packed) linear secret sharing
schemes we obtain the following informal result focusing on share size 1 (i.e., each share is a single field
element).

Theorem 1 (Informal). Let k = (n − t + 1)/2. For all k tuples of {(Σi,Σ′i, fi)}ki=1 linear secret sharing
schemes with injective sharing functions and for all Σi-sharings {Xi}ki=1, there is an information-theoretic

1To be more precise, our protocol achieves linear communication complexity in the summation of the sharing sizes of the
two secret sharing schemes in the transformation. This is optimal (up to a constant factor) since it matches the communication
complexity of using an ideal functionality to do sharing transformation: the size of the input is the sharing size of the first
secret sharing scheme, the size of the output is the sharing size of the second secret sharing scheme, and the communication
complexity is the size of the input and output.
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MPC protocol with semi-honest security against t corrupted parties that transforms Xi to a Σ′i-sharing Yi
such that the secret of Yi is equal to the result of applying a linear map fi on the secret of Xi for all
i ∈ {1, . . . , k} (Here the secrets of Xi and Yi can be vectors). The cost of the protocol is O(n3/k2) elements
of communication per sharing in a (sharing independent) preprocessing stage leading to preprocessed data of
size O(n2/k), and O(n2/k) elements of communication per sharing in the online phase. When t = (1− ε) ·n
for a positive constant ε, the overall communication complexity is O(n) elements per sharing transformation.

The formal theorem is stated in Theorem 3. In Section 4, we show that our sharing transformation
works for any share size ` (with an increase in the communication complexity by a factor `), and is naturally
extended to any finite fields and rings Z/p`Z. The main application of our sharing transformation technique
is to construct MPC protocols. And we achieve malicious security by directly compiling our semi-honest
MPC protocol instead of relying on a maliciously secure sharing transformation protocol. Therefore, in this
work, we do not attempt to achieve malicious security for our sharing transformation technique.

We now turn our attention to constructing general MPC using our sharing transformation technique.

Dishonest majority. In the setting of dishonest majority where the number of corrupted parties t =
(1− ε) · n for a positive constant ε, our MPC protocol achieves the cost of O(1/ε2) elements of (the size of)
preprocessing data, and O(1/ε) elements of communication per gate among all parties. Thus when ε is a
constant (e.g., up to 99 percent of all parties may be corrupted), the achieved communication complexity in
the online phase is O(1) elements per gate.

Honest Majority. As a corollary of our results in the dishonest majority setting, we can achieve O(1)
elements per gate of online communication and O(1) elements of preprocessing data per gate across all parties
in the standard honest majority setting (i.e., where the number of corrupted parties t is (n− 1)/2).

Our main results are summarized below. Note that we have omitted the additive terms of the overhead of
the communication complexity in the informal theorems below. The formal theorems are stated in Theorem 4
and Theorem 5, respectively, where the additive terms are dependent on n and the depth of the evaluated
circuit. Our first theorem is for the semi-honest setting:

Theorem 2 (Informal). For an arithmetic circuit C over a finite field F of size |F| ≥ |C|+ n, there exists
an information-theoretic MPC protocol in the preprocessing model which securely computes the arithmetic
circuit C in the presence of a semi-honest adversary controlling up to t parties. The cost of the protocol is
O(|C| ·n2/k2) elements of preprocessing data, and O(|C| ·n/k) elements of communication where k = n−t+1

2
is the packing parameter. For the case where k = O(n), the achieved communication complexity in the online
phase is O(1) elements per gate.

Our theorem also holds in the presence of a malicious adversary for all 1 ≤ k ≤ [n+2
3 ]. Moreover, using

our sharing transformation based on the construction of [GPS21], we can also achieve online communication
complexity of O(1) elements per gate for small finite fields of size |F| ≥ 2n. See discussion at the end of
section 2.2 and Section 7 for more details.

1.2 Related Works
Sharing Transformation and Sharing Conversion. In this work, we study the problem of sharing
transformation, where we want to transform the shares of one or multiple secrets under one secret sharing
scheme into shares of another secret sharing scheme and apply a function on the secrets. In particular, we
require the two secret sharing schemes as well as the function to be linear in the same finite commutative
ring.

On the other hand, a line of works [DSZ15, HLOWI16, MR18, RW19, EGK+20, BCG+20, PSSY21,
AGJ+21] study the problem of sharing conversion where they focus on the identity function (i.e., keep the
secret unchanged) but two secret sharing schemes that are not in the same finite commutative ring, e.g.,
converting a secret sharing in the binary field to a secret sharing in a prime field. The problem of sharing
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conversion appears to be much difficult than the problem of sharing transformation since we need to handle
two different rings or fields. In particular, our technique does not work for the problem of sharing conversion.

Sharing Transformation via Pseudo-Random Secret Sharing [BBG+21]. The work [BBG+21]
also studies the problem of sharing transformation relying on the technique of PRSS (Pseudo-Random
Secret Sharing) initially studied in [CDI05]. At a high level, the idea is to first prepare replicated secret
sharings and then transform them to correlated random packed Shamir sharings, which are used for sharing
transformations.

The main advantage of this approach is that, after some initial setup, replicated secret sharings can
be prepared without interaction relying on pseudo-random generators. Relying on this technique, the
work [BBG+21] can realize network routing, a key step of using the packed secret sharing technique in
MPC, with no extra cost.

However, both the communication complexity for the setup and the computation complexity for gener-
ating each replicated secret sharing grows exponentially with the number of corrupted parties. It restricts
the technique in [BBG+21] to be only practical for a small constant number of parties.

Comparison with Techniques in [GPS21]. In [GPS21], the authors obtain an information-theoretic
MPC protocol in the strong honest majority setting (i.e., the corruption threshold t = (1/2− ε) · n), which
achieves O(|C|) total communication. Despite that [GPS21] focuses on the strong honest majority setting,
we note that we can extend their techniques for network routing to the dishonest majority setting. Together
with our techniques of packed Beaver triples and adjustment of the packing size, we can obtain a similar
result to our main proposal.

On the other hand, our techniques for network routing have the following advantages compared with
those in [GPS21].

1. First, we do not need to do circuit preprocessing. In [GPS21], the circuit preprocessing may increase
the circuit size by a factor of 2 in the worst case.

2. Second, we provide a general sharing transformation protocol which is simpler and more efficient than
that in [GPS21], which only works for restricted classes of sharing transformations. Also, the approach
in [GPS21] would require O(|C| ·n2/k2) communication complexity in the online phase, which is worse
than ours O(|C| · n/k).

Relying on the general sharing transformation protocol, our techniques for network routing are con-
ceptually simple and more efficient for a large enough finite field: The techniques in [GPS21] require
6 sharing transformations per group of gates while our techniques only require 3 sharing transforma-
tions. We note that we can instantiate the sharing transformations in [GPS21] by our general sharing
transformation protocol. Even with this optimization, the techniques in [GPS21] still require 4 sharing
transformations per group of gates.

3. Third, our approach is not based on the Hall’s Marriage Theorem. The techniques in [GPS21] require
transforming the circuit to a bipartite graph and finding perfect matchings (whose existence is due to
the Hall’s Marriage Theorem). Finding these linear maps require O(|C| · log |C|) computation. These
steps are not needed in our approach.

The only drawback of our approach is the requirement of a large finite field (|F| ≥ |C| + n) while the
techniques in [GPS21] works for a small finite field (|F| ≥ 2n). Thus, when the finite field is large enough,
our main proposal is more efficient. We refer the readers to Section 7 for how our technique for sharing
transformation can be used to simplify the protocol in [GPS21] and how to extend their protocol to the
dishonest majority setting using our techniques.
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Information-Theoretic MPC with Dishonest Majority. In [DPSZ12], Damgård et al. introduced
the well-known protocol SPDZ in the all-but-one corruption setting, i.e., the number of corrupted par-
ties is t = n − 1. The online phase of SPDZ is information-theoretic and therefore can be viewed as an
information-theoretic protocol in the preprocessing model. The cost of the SPDZ protocol is O(n) elements
of preprocessing data and O(n) elements of communication per multiplication gate among all parties. Also in
the all-but-one corruption setting, a recent breakthrough [Cou19] shows that information-theoretic protocols
in the preprocessing model are possible to achieve with sublinear communication complexity in the circuit size
at a cost of a large amount of preprocessing data. Concretely, Couteau presents an MPC protocol for layered
circuits in the preprocessing model, which achieves communication complexity of O(n · |C|/ log log log |C|)
elements, at the cost of O(|C|2/ log log log |C|) elements of preprocessing data. We note that, however, the
communication complexity of the protocol in [Cou19] is still linear in the number of parties and the protocol
is impractical for a large circuit due to the amount of preprocessing data.

Compared with [DPSZ12, Cou19], we focus on a general corruption threshold where the number of
corrupted parties t = (1 − ε) · n for a positive constant ε. Our protocol achieves the cost of O(1) elements
of preprocessing data and O(1) elements of communication per gate among all parties. One advantage of
our protocol is that one may trade the corruption threshold with the real speed-up in the protocol, which is
otherwise not possible in [DPSZ12, Cou19].

We note that a folklore solution in our setting is to choose a random small committee and then evaluate
the circuit among parties in the small committee. Since there are ε · n honest parties, if each time we
add a random party into the committee, the probability of selecting an honest party is ε. Let κ be the
security parameter. To ensure that with probability 1 − 2−κ, there is at least one honest party in the
committee, the size of the committee should be at least O(κ). If parties in the selected committee run
the protocol in [DPSZ12], the achieved cost is O(κ) elements of preprocessing data and O(κ) elements of
communication per gate among all parties, which is κ times of the cost of our construction. If parties
run the protocol in [Cou19], the achieved cost is O(|C|/ log log log |C|) elements of preprocessing data and
O(κ/(ε · log log log |C|)) elements of communication per gate among all parties. Note that, however, the
circuit size is bounded by a polynomial of the security parameter κ, which means the term log log log |C| is
much smaller than κ. Therefore, no matter which protocols are used in the folklore solution, our protocol is
always o(κ) times faster.

Information-Theoretic MPC with Strong Honest Majority. In the setting of strong honest major-
ity setting where the number of corrupted parties t = (1/2 − ε) · n for a positive constant ε, a rich line of
works [DIK10, GIP15, IKP+16, GSY21, BGJK21, GPS21, BBG+21] makes use of the packed secret sharing
technique to construct efficient multiparty computation protocols. In particular, the recent work [GPS21]
gives the first information-theoretic MPC protocol in this setting which achieves O(1) communication com-
plexity per gate among all parties.

Information-Theoretic MPC with Standard Honest Majority. In the setting of the standard hon-
est majority setting where the number of corrupted parties t = (n − 1)/2, a rich line of works [DN07,
GIP+14, CGH+18, NV18, BBCG+19, GSZ20, BGIN20, GLO+21] focus on malicious security-with-abort
and improving the communication efficiency. When assuming the existence of a broadcast channel, the
works [BSFO12, GSZ20] have shown that guaranteed output delivery can also be achieved efficiently. The
achieved communication complexity in this line of works is O(n) per gate among all parties.

2 Technical Overview
In this section, we give an overview of our techniques. We use bold letters to represent vectors.

Reducing Sharing Transformation to Random Sharing Preparation. Usually, sharing transforma-
tion is solved by using a pair of random sharings (R,R′) such that R is a random Σ-sharing and R′ is a
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random Σ′-sharing which satisfies that the secret of R′ is equal to the result of applying f on the secret of
R, where f is the desired linear map. Then all parties can run the following steps to efficiently transform
X to Y .

1. All parties locally compute X +R and send their shares to the first party P1.

2. P1 reconstructs the secret ofX+R, denoted by w. Then P1 computes f(w) and generates a Σ′-sharing
of f(w), denoted by W . Finally, P1 distributes the shares of W to all parties.

3. All parties locally compute Y = W −R′.

If we use rec, rec′ to denote the reconstruction maps of Σ and Σ′ (which are linear by definition) respectively,
the correctness follows from that

rec′(Y ) = rec′(W )− rec′(R′) = f(w)− f(rec(R)) = f(rec(X +R)− rec(R)) = f(rec(X)).

And the security follows from the fact that X +R is a random Σ-sharing and thus reveals no information
about the secret of X. Therefore, the problem of sharing transformation is reduced to preparing a pair of
random sharings (R,R′). Let Σ̃ = Σ̃(Σ,Σ′, f) be the secret sharing scheme which satisfies that a Σ̃-sharing
of a secret x consists of X which is a Σ-sharing of x, and Y which is a Σ′-sharing of f(x). Then, the goal
becomes to prepare a random Σ̃-sharing.

The generic approach of preparing random sharings of a linear secret sharing scheme over F is as follows:

1. Each party Pi first samples a random sharing Ri and distributes the shares to all other parties.

2. All parties use a linear randomness extractor over F to extract a batch of random sharings such that
they remain uniformly random even given the random sharings sampled by corrupted parties. For a
large finite field, we can use the transpose of a Vandermonde matrix [DN07] as a linear randomness
extractor. The use of a randomness extractor is to reduce the communication complexity per random
sharing. Alternatively, we can simply add all random sharings {Ri}ni=1 and output a single random
sharing, which results in quadratic communication complexity in the number of parties.

If t is the number of corrupted parties, all parties can extract n − t random sharings when using a large
finite field. Then, the amortized communication cost per sharing is n2/(n− t) field elements (assuming each
share is a single field element). When n − t = O(n), e.g., the honest majority setting, the amortized cost
becomes n2/(n− t) = O(n), which is generally good enough since it matches the communication complexity
of delivering a random sharing by a trusted party, which seems like the best we can hope, up to a constant
factor.

Thus when we need to prepare many random sharings for the same linear secret sharing scheme, the
generic approach is already good enough. And in particular, it is good enough for random Σ̃-sharings which
are used for the same sharing transformation defined by Σ̃ = Σ̃(Σ,Σ′, f), since Σ̃ is also a linear secret
sharing scheme. This is exactly the case when we need to do degree reduction in [BOGW88, DN07] and
change the encoding of the secrets in [CCXY18, PS21, CRX21]. However, it is a different story if we need
to prepare random sharings for different linear secret sharing schemes: If only a constant number of random
sharings are needed for each linear secret sharing scheme, the amortized cost per sharing becomes O(n2)
field elements. This is exactly the case when we need to perform permutation on the secrets of a packed
secret sharing in [DIK10, GIP15, BGJK21, GPS21]. In their setting, the permutations are determined by
the circuit structure. In particular, these permutations can all be distinct in the worst case. As a result, the
cost of preparing random sharings becomes the dominating term in the communication complexity in the
MPC protocols. To avoid it, previous works either restrict the number of different secret sharing schemes
they need to prepare random sharings for [DIK10, GIP15, GPS21] or restrict the types of circuits [BGJK21].

This leads to the following fundamental question: Can we prepare random sharings (used for sharing
transformations) for different linear secret sharing schemes with amortized communication complexity O(n)?
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2.1 Preparing Random Sharings for Different Linear Secret Sharing Schemes
To better expose our idea, we focus on a large finite field F. In the following, we use n for the number of
parties, and t for the number of corrupted parties. We assume semi-honest security in the technical overview.

Linear Secret Sharing Scheme over F. For a linear secret sharing scheme Σ over F, we use Z = Fk̃
to denote the secret space. k̃ is also referred to as the secret size of Σ. For simplicity, we focus on the
linear secret sharing schemes that have share size 1 (i.e., each share is a single field element even though
the secret is a vector of k̃ elements). Let share : Z × Fr̃ → Fn be the deterministic sharing map which
takes as input a secret x and r̃ random field elements, and outputs a Σ-sharing of x. We focus on linear
secret sharing schemes whose sharing maps are injective, which implies that k̃ + r̃ ≤ n. Let rec : Fn → Z
be the reconstruction map which takes as input a Σ-sharing and outputs the secret of the input sharing.
As discussed above, we have shown that preparing many random sharings for the same linear secret sharing
scheme can be efficiently achieved.

We use the standard Shamir secret sharing scheme over F, and use [x]t to denote a degree-t Shamir
sharing of x. A degree-t Shamir sharing requires t+ 1 shares to reconstruct the secret. And any t shares of
a degree-t Shamir sharing are independent of the secret.

2.1.1 Starting Point - Preparing a Random Sharing for a Single Linear Secret Sharing Scheme

Let Σ be an arbitrary linear secret sharing scheme. Although we have already shown how to prepare a
random sharing for a single linear secret sharing scheme Σ, we consider the following process which is easy
to be extended (discussed later).

1. All parties prepare k̃+ r̃ random degree-t Shamir sharings. Let τ be the secrets of the first k̃ sharings,
and ρ be the secrets of the last r̃ sharings. Our goal is to compute a random Σ-sharing of τ with
random tape ρ, i.e., share(τ ,ρ).

2. Since share is F-linear, for all j ∈ {1, 2, . . . , n}, the j-th share of share(τ ,ρ) is a linear combination
of the values in τ and ρ. Thus, all parties can locally compute a degree-t Shamir sharing of the j-th
share of share(τ ,ρ) by using the degree-t Shamir sharings of the values in τ and ρ prepared in Step
1 and applying linear combinations on their local shares. Let [Xj ]t denote the resulting sharing.

3. For all j ∈ {1, 2, . . . , n}, all parties send their shares of [Xj ]t to Pj to let Pj reconstruct Xj . All parties
take X = (X1, . . . , Xn) as output.

Note that τ and ρ are all uniform field elements, and X = share(τ ,ρ). Therefore, the output X is a
random Σ-sharing.

We note that this approach requires to prepare k̃ + r̃ = O(n) random degree-t Shamir sharings and
communicate n2 field elements in order to prepare a random Σ-sharing, which is far from O(n). To improve
the efficiency, we try to prepare random sharings for a batch of (potentially different) secret sharing schemes
each time.

2.1.2 Preparing Random Sharings for a Batch of Different Linear Secret Sharing Schemes

We note that the above vanilla process can be viewed as all parties securely evaluating a circuit for the
sharing map share of Σ. In particular, (1) the circuit only involves linear operations, and (2) circuits for
different secret sharing schemes (i.e., share1, share2, . . . , sharek) all satisfy that each output value is a linear
combination of all input values with different coefficients. When we want to prepare random sharings for a
batch of different secret sharing schemes, the joint circuit is very similar to a SIMD circuit (which is a circuit
that contains many copies of the same sub-circuit). The only difference is that, in our case, each sub-circuit
corresponds to a different secret sharing scheme, and therefore the coefficients used in different sub-circuits
are distinct. On the other hand, a SIMD circuit would use the same coefficients in all sub-circuits. Thus, it
motivates us to explore the packed secret-sharing technique in [FY92], which is originally used to evaluate a
SIMD circuit.
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Starting Idea. Suppose Σ1,Σ2, . . . ,Σk are k arbitrary linear secret sharing schemes (Recall that we want
to prepare random sharings for different sharing transformations, and every different sharing transformation
requires to prepare a random sharing of a different secret sharing scheme). We assume that they all have
share size 1 (i.e., each share is a single field element) for simplicity. We consider to use a packed secret
sharing scheme that can store k secrets in each sharing. Our attempt is as follows:

1. All parties first prepare n random packed secret sharings (Our construction will use the packed Shamir
secret sharings introduced below). The secrets are denoted by r1, r2, . . . , rn, where each secret rj is a
vector of k random elements in F.

2. For all i ∈ {1, 2, . . . , k}, we want to use the i-th values of all secret vectors to prepare a random
sharing of Σi. With more details, suppose Σi has secret space Zi = Fk̃i , and the sharing map of Σi
is sharei : Zi × Fr̃i → Fn. Consider the vector (r1,i, r2,i, . . . , rn,i) which contains the i-th values of
all secret vectors. We plan to use the first k̃i values as the secret τi, and the next r̃i values as the
random tape ρi. Recall that we require sharei to be injective. We have k̃i + r̃i ≤ n. Therefore, there
are enough values for τi and ρi. The goal is to compute a random Σi-sharing Xi of the secret τi with
random tape ρi, i.e., Xi = sharei(τi,ρi).

3. For each party Pj , let uj denote the j-th shares of X1, . . . ,Xk. We want to use the packed secret
sharings of r1, . . . , rn to compute a single packed secret sharing of uj .

4. After obtaining a packed secret sharing of uj , we can reconstruct the sharing to Pj so that he learns
the j-th share of each of X1, . . . ,Xk. Thus, we start with n packed secret sharings (of r1, . . . , rn) of
the same secret sharing scheme and end with k sharings X1, . . . ,Xk of k potentially different secret
sharing schemes.

Clearly, the main question is how to realize Step 3. We observe that, since Σi is a linear secret sharing
scheme, the j-th share ofXi can be written as a linear combination of the values in τi and ρi. Therefore, the
j-th share ofXi is a linear combination of the values (r1,i, r2,i, . . . , rn,i). Since it holds for all i ∈ {1, 2, . . . , k},
there exists constant vectors c1, . . . , cn ∈ Fk such that

uj := c1 ∗ r1 + . . .+ cn ∗ rn,

where ∗ denotes the coordinate-wise multiplication operation. Thus, what we need is a packed secret sharing
scheme that supports efficient coordinate-wise multiplication with a constant vector. We note that the packed
Shamir secret sharing scheme fits our need as we show next.

Packed Shamir Secret Sharing Scheme and Multiplication-Friendliness. The packed Shamir se-
cret sharing scheme [FY92] is a natural generalization of the standard Shamir secret sharing scheme [Sha79].
It allows to secret-share a batch of secrets within a single Shamir sharing. For a vector x ∈ Fk, we use [x]d
to denote a degree-d packed Shamir sharing, where k− 1 ≤ d ≤ n− 1. It requires d+ 1 shares to reconstruct
the whole sharing, and any d−k+1 shares are independent of the secrets. The packed Shamir secret sharing
scheme has the following nice properties:

• Linear Homomorphism: For all d ≥ k − 1 and x,y ∈ Fk, [x+ y]d = [x]d + [y]d.

• Multiplicative: For all d1, d2 ≥ k − 1 subject to d1 + d2 < n, and for all x,y ∈ Fk, [x ∗ y]d1+d2 =
[x]d1 · [y]d2 , where the multiplications are performed on the corresponding shares.

Note that when d ≤ n− k, all parties can locally multiply a public vector c ∈ Fk with a degree-d packed
Shamir sharing [x]d:

1. All parties first locally compute a degree-(k − 1) packed Shamir sharing of c, denoted by [c]k−1. Note
that for a degree-(k − 1) packed Shamir sharing, all shares are determined by the secret c.
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2. All parties then locally compute [c ∗ x]n−1 = [c]k−1 · [x]n−k.

We simply write [c∗x]n−1 = c·[x]n−k to denote the above process. We refer to this property as multiplication-
friendliness.

To make sure that the packed Shamir secret sharing scheme is secure against t corrupted parties, we also
require d ≥ t+k−1. When d = n−k and k = (n− t+1)/2, the degree-(n−k) packed Shamir secret sharing
scheme is both multiplication-friendly and secure against t corrupted parties.

Observe that when we use the degree-(n − k) packed Shamir secret sharing scheme in our attempt, all
parties can locally compute a degree-(n− 1) packed Shamir sharing of uj by

[uj ]n−1 = c1 · [r1]n−k + . . .+ cn · [rn]n−k,

which solves the problem.

Summary of Our Construction. In summary, all parties run the following steps to prepare random
sharings for k different linear secret sharing schemes Σ1,Σ2, . . . ,Σk.

1. Prepare Packed Shamir Sharings: All parties prepare n random degree-(n−k) packed Shamir sharings,
denoted by [r1]n−k, . . . , [rn]n−k.

2. Use Packed Secrets as Randomness for Target LSSS: For all i ∈ {1, 2, . . . , k}, let τi = (r1,i, . . . , rk̃i,i)
and ρi = (rk̃i+1,i, . . . , rk̃i+r̃i,i). Let Xi = sharei(τi,ρi).

3. Compute a Single Packed Shamir Sharing for All j-th Shares of Target LSSS via Local Operations:
For all j ∈ {1, 2, . . . , n}, let uj be the j-th shares of (X1, . . . ,Xk). All parties locally compute a
degree-(n − 1) packed Shamir sharing of uj by using [r1]n−k, . . . , [rn]n−k. The resulting sharing is
denoted by [uj ]n−1.

4. Reconstruct the Single Packed Shamir Sharing of All j-th Shares to Pj : For all j ∈ {1, 2, . . . , n}, all
parties reconstruct the sharing [uj ]n−1 to Pj to let him learn uj = (u

(1)
j , . . . , u

(k)
j ). Then all parties

take {Xi = (u
(i)
1 , . . . , u

(i)
n )}ki=1 as output.

We note that in Step 4, [uj ]n−1 is not a random degree-(n − 1) packed Shamir sharing of uj . Directly
sending the shares of [uj ]n−1 to Pj may leak the information about honest parties’ shares. To solve it, all par-
ties also prepare n random degree-(n−1) packed Shamir sharings of 0 ∈ Fk, denoted by [o1]n−1, . . . , [on]n−1.
Then all parties use [oj ]n−1 to refresh the shares of [uj ]n−1 by computing [uj ]n−1 := [uj ]n−1 +[oj ]n−1. Now
[uj ]n−1 is a random degree-(n− 1) packed Shamir sharing of uj . All parties send their shares of [uj ]n−1 to
Pj to let him reconstruct uj .

Communication Complexity. Thus, to prepare random sharings for k linear secret sharing schemes, our
construction requires to prepare n random degree-(n−k) packed Shamir sharings and n random degree-(n−1)
packed Shamir sharings of 0 ∈ Fk. And the communication complexity is n2 field elements. On average,
each random sharing costs 2n/k packed Shamir sharings and n2/k elements of communication. When we
use the generic approach to prepare random packed Shamir sharings, the total communication complexity
per random sharing is O(n2/k) elements.

Recall that k = (n−t+1)/2. When t = (1−ε) ·n for a positive constant ε, the communication complexity
per random sharing is O(n) elements, which matches the communication complexity of delivering a random
sharing by a trusted party up to a constant factor. In Section 4, we show that our technique works for any
share size ` (with an increase in the communication complexity by a factor `), and is naturally extended to
any finite fields and rings Z/p`Z.
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Efficient Sharing Transformation. Recall that in the problem of sharing transformation, all parties
start with holding a sharing X of a linear secret sharing scheme Σ. They want to compute a sharing Y of
another linear secret sharing scheme Σ′ such that the secret of Y is a linear map of the secret of X.

As we discussed above, sharing transformation can be achieved efficiently with the help of a pair of
random sharings (R,R′) such that R is a random Σ-sharing and R′ is a random Σ′-sharing which satisfies
that the secret of R′ is equal to the result of applying the desired linear map on the secret of R. A key
insight is that (R,R′) can just be seen as a linear secret sharing on its own. With our technique of preparing
random sharings for different linear secret sharing schemes, we can efficiently prepare a pair of random
sharings (R,R′), allowing efficient sharing transformation from X to Y .

When t = (1−ε)·n for a positive constant ε, each sharing transformation only requires O(n) field elements
of communication.

2.2 Application: MPC via Packed Shamir Secret Sharing Schemes
In this section, we show that our technique for sharing transformation allows us to design an efficient
MPC protocol via packed Shamir secret sharing schemes. We focus on the dishonest majority setting and
information-theoretic setting in the circuit-independent preprocessing model. In the preprocessing model, all
parties receive correlated randomness from a trusted party before the computation. The preprocessing model
enables the possibility of an information-theoretic protocol in the dishonest majority setting, which otherwise
cannot exist in the plain model. The cost of a protocol in the preprocessing model is measured by both the
amount of preprocessing data prepared in the preprocessing phase and the amount of communication in the
online phase [Cou19, BGIN21].

Let n be the number of parties, and t be the number of corrupted parties. For any positive constant
ε, we show that there is an information-theoretic MPC protocol in the circuit-independent preprocessing
model with semi-honest security (or malicious security) that computes an arithmetic circuit C over a large
finite field F (with |F| ≥ |C| + n) against t = (1 − ε) · n corrupted parties with O(|C|) field elements of
preprocessing data and O(|C|) field elements of communication. Compared with the recent work [GPS21]
that achieves O(|C|) communication complexity in the strong honest majority setting (i.e., t = (1/2− ε) ·n),
our construction has the following advantages:

1. Our protocol works in the dishonest majority setting.

2. With our new technique for sharing transformation, we avoid the heavy machinery in [GPS21] for the
network routing (see more discussion in Section 1.2).

On the other hand, we note that the protocol in [GPS21] works for a finite field of size 2n while our protocol
requires the field size to be |C| + n. We will discuss how our technique for sharing transformation can be
used to simplify the protocol in [GPS21] and how to extend their protocol to the dishonest majority setting
using our techniques in Section 7. We refer the readers to Section 1.2 for a more detailed comparison with
[GPS21] and other related works.

Review the Packed Shamir Secret Sharing Scheme. We recall the notion of the packed Shamir
secret sharing scheme. Let α1, . . . , αn be n distinct elements in F and pos = (p1, p2, . . . , pk) be another k
distinct elements in F. A degree-d (d ≥ k − 1) packed Shamir sharing of x = (x1, . . . , xk) ∈ Fk is a vector
(w1, . . . , wn) for which there exists a polynomial f(·) ∈ F[X] of degree at most d such that f(pi) = xi for all
i ∈ {1, 2, . . . , k}, and f(αi) = wi for all i ∈ {1, 2, . . . , n}. The i-th share wi is held by party Pi.

In our protocol, we will always use the same elements α1, . . . , αn for the positions of the shares of all
parties. However, we may use different elements pos for the secrets. We will use [x‖pos]d to denote a
degree-d packed Shamir sharing of x ∈ Fk stored at positions pos. Let β = (β1, . . . , βk) be distinct field
elements in F that are different from α1, . . . , αn. We will use β as the default positions for the secrets, and
simply write [x]d = [x‖β]d.
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Recall that t is the number of corrupted parties. Let k = (n− t+ 1)/2 and d = n− k. As we have shown
in Section 2.1, all parties can locally multiply a public vector with a degree-(n− k) packed Shamir sharing,
and a degree-(n− k) packed Shamir sharing is secure against t corrupted parties.

An Overview of Our Construction. At a high-level,

1. All parties start with sharing their input values by using packed Shamir sharings.

2. In each layer, addition gates and multiplication gates are divided into groups of size k. Each time we
will evaluate a group of k gates:

(a) For each group of k gates, all parties prepare two packed Shamir sharings, one for the first inputs
of all gates, and the other one for the second inputs of all gates. Note that the secrets we want
to be in a single sharing can be scattered in different output sharings from previous layers. This
step is referred to as network routing. Relying on our technique of sharing transformation, we can
use a much simpler approach to handle network routing than that in [GPS21].

(b) After preparing the two input sharings, all parties evaluate these k gates. Addition gates can
be locally computed since the packed Shamir secret sharing scheme is linearly homomorphic.
For multiplication gates, we extend the technique of Beaver triples [Bea91] to our setting, which
we refer to as packed Beaver triples. All parties need to prepare packed Beaver triples in the
preprocessing phase.

3. After evaluating the whole circuit, all parties reconstruct the sharings they hold to the parties who
should receive the result.

Sparsely Packed Shamir Sharings. Our idea is to use a different position to store the output value of
each gate. Recall that |F| ≥ |C| + n. Let β1, β2, . . . , β|C| be |C| distinct field elements that are different
from α1, α2, . . . , αn. (Recall that we have already defined β = (β1, . . . , βk), which are used as the default
positions for a packed Shamir sharing.) We associate the field element βi with the i-th gate in C. We will
use βi as the position to store the output value of the i-th gate in a degree-(n − k) packed Shamir sharing
(see an example below).

Concretely, for each group of k gates, all parties will compute a degree-(n − k) packed Shamir sharing
such that the results are stored at the positions associated with these k gates respectively. For example,
when k = 3, for a batch of 3 gates which are associated with the positions β1, β3, β6 respectively, all parties
will compute a degree-(n − k) packed Shamir sharing [(z1, z3, z6)‖(β1, β3, β6)]n−k for this batch of gates,
where z1, z3, z6 are the output wires of these 3 gates.

As we will see later, it greatly simplifies the protocol for network routing.

2.2.1 Network Routing

In each intermediate layer, for every group of k gates, suppose x are the first inputs of these k gates, and y
are the second inputs of these k gates. All parties will prepare two degree-(n − k) packed Shamir sharings
[x]n−k and [y]n−k stored at the default positions using the following approach. The reason of choosing the
default positions is to use the packed Beaver triples, which use the default positions since the preprocessing
phase is circuit-independent (discussed later). We focus on how to obtain [x]n−k.

Let x = (x1, x2, . . . , xk). For simplicity, we assume that x1, x2, . . . , xk are output wires from k distinct
gates. Later on, we will show how to handle the scenario where the same output wire is used multiple times
by using fan-out operations. Since we use a different position to store the output of each gate, the positions
of these k gates are all different. Let p1, . . . , pk denote the positions of these k gates and pos = (p1, . . . , pk).
We first show that all parties can locally compute a degree-(n− 1) packed Shamir sharing [x‖pos]n−1.
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Selecting the Correct Secrets. For all i ∈ {1, 2, . . . , k}, let [x(i)‖pos(i)]n−k be the degree-(n−k) packed
Shamir sharing that contains the secret xi at position pi from some previous layer. Let ei be the i-th unit
vector in Fk (i.e., only the i-th term is 1 and all other terms are 0). All parties locally compute a degree-(k−1)
packed Shamir sharing [ei‖pos]k−1. Consider the following degree-(n− 1) packed Shamir sharing:

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k.

We claim that, the resulting sharing satisfies that the value stored at position pi is xi and the values stored
at other positions in pos are all 0. To see this, recall that each packed Shamir sharing corresponds to a
polynomial. Let f be the polynomial corresponding to [ei‖pos]k−1, and g be the polynomial corresponding
to [x(i)‖pos(i)]n−k. Then f satisfies that f(pi) = 1 and f(pj) = 0 for all j 6= i, and g satisfies that g(pi) = xi.
Note that h = f · g is the polynomial corresponding to the resulting sharing [ei‖pos]k−1 · [x(i)‖pos(i)]n−k,
which satisfies that h(pi) = f(pi) · g(pi) = 1 · xi = xi, and h(pj) = f(pj) · g(pj) = 0 · g(pj) = 0 for all j 6= i.
Thus, the resulting sharing has value xi in the position pi and 0 in all other positions in pos. Effectively, we
select the secret xi from [x(i)‖pos(i)]n−k at position pi and zero-out the values stored at other positions in
pos.

Getting all Secrets into a Single Packed Shamir Sharing. Thus, for the following degree-(n − 1)
packed Shamir sharing

k∑
i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k,

it has value xi stored in the position pi for all i ∈ {1, 2, . . . , k}, which means that it is a degree-(n−1) packed
Shamir sharing [x‖pos]n−1. Therefore, all parties can locally compute [x‖pos]n−1 =

∑k
i=1[ei‖pos]k−1 ·

[x(i)‖pos(i)]n−k.

Applying Sharing Transformation. Finally, to obtain [x]n−k = [x‖β]n−k, all parties only need to do
a sharing transformation from [x‖pos]n−1 to [x]n−k. Relying on our technique for sharing transformation,
we can achieve this step with O(n) field elements of communication.

Therefore, our protocol for network routing only requires a local computation for [x‖pos]n−1 and an
efficient sharing transformation for [x]n−k with O(n) field elements of communication.

Handling Fan-out Operations. The above solution only works when all the wire values of x come from
different gates. In a general case, x may contain many wire values from the same gate. We modify the above
protocol as follows:

1. Suppose x′1, . . . , x′k′ are the different values in x. Let x′ = (x′1, . . . , x
′
k′ , 0, . . . , 0) ∈ Fk. For all i ∈

{1, 2, . . . , k′}, let pi be the position associated with the gate that outputs x′i. We choose pk′+1, . . . , pk
to be the first (k − k′) unused positions and set pos = (p1, . . . , pk). Then, all parties follow a similar
approach to locally compute a degree-(n− 1) packed Shamir sharing of [x′‖pos]n−1.

2. Note that x′ contains all different values in x. Thus, there is a linear map f : Fk → Fk such that
x = f(x′). Therefore, relying on our technique for sharing transformation, all parties transform
[x′‖pos]n−1 to [x]n−k.

The communication complexity remains O(n) field elements.

2.2.2 Evaluating Multiplication Gates Using Packed Beaver Triples

For a group of k multiplication gates, suppose all parties have prepared two degree-(n − k) packed Shamir
sharings [x]n−k and [y]n−k. Let pos be the positions associated with these k gates. The goal is to compute a
degree-(n− k) packed Shamir sharing of x ∗ y stored at positions pos. To this end, we extend the technique
of Beaver triples [Bea91] to our setting, which we refer to as packed Beaver triples. We make use of a random

12



packed Beaver triple ([a]n−k, [b]n−k, [c]n−k), where a, b are random vectors in Fk and c = a ∗ b. All parties
run the following steps:

1. All parties locally compute [x+ a]n−k = [x]n−k + [a]n−k and [y + b]n−k = [y]n−k + [b]n−k.

2. The first party P1 collects the whole sharings [x + a]n−k, [y + b]n−k and reconstructs the secrets
x+ a,y + b. Recall that x = (x1, . . . , xk) and a = (a1, . . . , ak) are vectors in Fk, and x+ a = (x1 +
a1, . . . , xk+ak). Similarly, y+b = (y1 +b1, . . . , yk+bk). P1 computes the sharings [x+a]k−1, [y+b]k−1

and distributes the shares to other parties.

3. All parties locally compute

[z]n−1 := [x+ a]k−1 · [y + b]k−1 − [x+ a]k−1 · [b]n−k − [y + b]k−1 · [a]n−k + [c]n−k.

Here the resulting sharing [z]n−1 has degree n− 1 due to the second term and the third term.

4. Finally, all parties transform the sharing [z]n−1 to [z‖pos]n−k. Relying on our technique of sharing
transformation, this can be done with O(n) field elements of communication.

Note that in the above steps, all parties only reveal [x+a]n−k and [y+ b]n−k to P1. Recall that [a]n−k and
[b]n−k are random degree-(n − k) packed Shamir sharings. Therefore, [x + a]n−k and [y + b]n−k are also
random degree-(n− k) packed Shamir sharings, which leak no information about x and y to P1. Thus, the
security follows.

Therefore, to evaluate a group of k multiplication gates, all parties need to prepare a random packed
Beaver triple ([a]n−k, [b]n−k, [c]n−k), which is of size O(n) field elements. The communication complexity is
O(n) field elements.

2.2.3 Summary

In summary, our protocol works as follows. All parties first prepare enough packed Beaver triples stored at
the default positions in the preprocessing phase. Then in the online phase, all parties evaluate the circuit
layer by layer. For each layer, all parties first use the protocol for network routing to prepare degree-(n− k)
packed Shamir sharings for the inputs of this layer. Then, for every group of addition gates, all parties can
compute them locally due to the linear homomorhpism of the packed Shamir secret sharing scheme. For
every group of multiplication gates, we use the technique of packed Beaver triple to evaluate these gates.
In particular, evaluating each group of multiplication gates will consume one fresh packed Beaver triple
prepared in the preprocessing phase.

When t = (1 − ε) · n for a positive constant ε, we have k = (n − t + 1)/2 = O(n). For the amount of
preprocessing data, we need to prepare a packed Beaver triple for each group of k multiplication gates. Thus,
the amount of preprocessing data is bounded by O( |C|k · n) = O(|C|). For the amount of communication,
note that all parties need to communicate during the network routing and the evaluation of multiplication
gates. Both protocols require O(n) elements of communication to process k secrets. Thus, the amount of
communication complexity is also bounded by O( |C|k · n) = O(|C|).

Therefore, we obtain an information-theoretic MPC protocol in the circuit-independent preprocessing
model with semi-honest security that computes an arithmetic circuit C over a large finite field F (with
|F| ≥ |C|+ n) against t = (1− ε) · n corrupted parties with O(|C|) field elements of preprocessing data and
O(|C|) field elements of communication.

2.2.4 Other Results

Malicious Security of the Online Protocol. To achieve malicious security, we extend the idea of using
information-theoretic MACs introduced in [BDOZ11, DPSZ12] to authenticate packed Shamir sharings.
Concretely, at the beginning of the computation, all parties will prepare a random degree-(n − k) packed
Shamir sharing [γ]n−k, where γ = (γ, γ, . . . , γ) ∈ Fk and γ is a random field element. The secrets γ serve
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as the MAC key. To authenticate the secrets of a degree-(n − k) packed Shamir sharing [x]n−k, all parties
will compute a degree-(n − k) packed Shamir sharing [γ ∗ x]n−k. We will show that almost all malicious
behaviors of corrupted parties can be transformed to additive attacks, i.e., adding errors to the secrets of
degree-(n− k) packed Shamir sharings.

Note that if the corrupted parties change the secrets x to x + δ1, they also need to change the secrets
γ ∗x to γ ∗x+δ2 such that δ2 = γ ∗δ1. However, since γ is a uniform value in F, the probability of a success
attack is at most 1/|F|. When the field size is large enough, we can detect such an attack with overwhelming
probability. See more details in Section 6.

Using the Result of [GPS21] for Small Finite Fields. Recall that our protocol requires the field size
to be at least |C| + n. On the other hand, the protocol in [GPS21] can use a finite field of size 2n. This is
due to the use of different approaches to handle network routing.

When using a small finite field, we can use the technique in [GPS21] to handle network routing. Our
technique for sharing transformation also improves the concrete efficiency of computing fan-out gates and
performing permutations in [GPS21]. More details can be found in Section 7.

3 Preliminaries
In this work, we use the client-server model for the secure multi-party computation. In the client-server
model, clients provide inputs to the functionality and receive outputs, and servers can participate in the
computation but do not have inputs nor get outputs. Each party may have different roles in the computation.
Note that, if every party plays a single client and a single server, this corresponds to a protocol in the standard
MPC model. Let c denote the number of clients and n denote the number of servers. For all clients and
servers, we assume that every two of them are connected via a secure (private and authentic) synchronous
channel so that they can directly send messages to each other.

We focus on functions that can be represented as arithmetic circuits over a finite field F with input,
addition, multiplication, and output gates.2 We use κ to denote the security parameter, C to denote the
circuit, and |C| for the size of the circuit. In this work, we assume that the field size is |F| ≥ 2κ. Note that
it implies |F| ≥ |C|+ n since both the number of parties and the circuit size are bounded by poly(κ).

We are interested in the information-theoretic setting in the (circuit-independent) preprocessing model.
The preprocessing model assumes that there is an ideal functionality which can prepare circuit-independent
correlated randomness before the computation. Then the correlated randomness is used in a lightweight and
fast online protocol. In particular, the preprocessing model enables the possibility of an information-theoretic
protocol in the dishonest majority setting, which otherwise cannot exist in the plain model. The cost of a
protocol in the preprocessing model is measured by both the amount of communication via private channels in
the online phase and the amount of preprocessing data prepared in the preprocessing phase [Cou19, BGIN21].

3.1 Security Definition
Let F be a secure function evaluation functionality. An adversary A can corrupt at most c clients and t
servers, provide inputs to corrupted clients, and receive all messages sent to corrupted clients and servers.
In this work, we consider both semi-honest adversaries and fully malicious adversaries.

• If A is semi-honest, then corrupted clients and servers honestly follow the protocol.

• If A is fully malicious, then corrupted clients and servers can deviate from the protocol arbitrarily.
2In this work, we only focus on deterministic functions. A randomized function can be transformed to a deterministic

function by taking as input an additional random tape from each party. The XOR of the input random tapes of all parties is
used as the randomness of the randomized function.
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Real-World Execution. In the real world, at the beginning of the protocol, all clients and servers receive
circuit-independent correlated randomness specified by the protocol from an ideal functionality. Then, the
adversary A controlling corrupted clients and servers interacts with honest clients and servers. At the end
of the protocol, the output of the real-world execution includes the inputs and outputs of honest clients and
servers and the view of the adversary.

Ideal-World Execution. In the ideal world, a simulator Sim emulates the ideal functionality that pro-
vides circuit-independent correlated randomness, simulates honest clients and servers, and interacts with
the adversary A. Furthermore, Sim has one-time access to F , which includes providing inputs of corrupted
clients and servers to F , receiving the outputs of corrupted clients and servers, and sending instructions
specified in F (e.g., asking F to abort). The output of the ideal-world execution includes the inputs and
outputs of honest clients and servers and the view of the adversary.

We say that a protocol π securely computes F in the preprocessing model if there exists a simulator
Sim, such that for all adversary A, the distribution of the output of the real-world execution is statistically
indistinguishable from the distribution of the output of the ideal-world execution.

3.2 Benefits of the Client-Server Model
In our construction, the clients only participate in the input phase and the output phase. The main com-
putation is conducted by the servers. For simplicity, we use {P1, . . . , Pn} to denote the n servers, and refer
to the servers as parties. Let Corr denote the set of all corrupted parties and H denote the set of all honest
parties. One benefit of the client-server model is that it is sufficient to only consider maximum adversaries,
i.e., adversaries which corrupt t parties. At a high-level, for an adversary A which controls t′ < t parties, we
may construct another adversary A′ which controls additional t− t′ parties and behaves as follows:

• For a party corrupted by A, A′ follows the instructions of A. This is achieved by passing messages
between this party and other n− t honest parties.

• For a party which is not corrupted by A, but controlled by A′, A′ honestly follows the protocol.

Note that, if a protocol is secure against A′, then this protocol is also secure against A since the additional
t − t′ parties controlled by A′ honestly follow the protocol in both cases. Thus, we only need to focus on
A′ instead of A. Note that in the regular model, each honest party may have input. The same argument
does not hold since the input of honest parties controlled by A′ may be compromised. In the following, we
assume that there are exactly t corrupted parties.

4 Preparing Random Sharings for Different Arithmetic Secret Shar-
ing Schemes

4.1 Arithmetic Secret Sharing Schemes
Let R be a finite commutative ring. In this work, we consider the following arithmetic secret sharing schemes
from [ACD+20] (with slight modifications).

Definition 1 (Arithmetic Secret Sharing Schemes). The syntax of an R-arithmetic secret sharing scheme
Σ consists of the following data:

• A set of parties I = {1, . . . , n}.

• A secret space Z = Rk. k is also denoted as the number of secrets packed within Σ.

• A share space U = R`. ` is also denoted as the share size.

• A sharing space C ⊂ UI , where UI denotes the indexed Cartesian product
∏
i∈I U .
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• An injective R-module homomorphism: share : Z×Rr → C, which maps a secret x ∈ Z and a random
tape ρ ∈ Rr, to a sharing X ∈ C. share is also denoted as the sharing map of Σ.

• A surjective R-module homomorphism: rec : C → Z, which takes as input a sharing X ∈ C and
outputs a secret x ∈ Z. rec is also denoted as the reconstruction map of Σ.

The scheme Σ satisfies that for all x ∈ Z and ρ ∈ Rr, rec(share(x,ρ)) = x. We may refer to Σ as the
6-tuple (n,Z, U,C, share, rec).

For a non-empty set A ⊂ I, the natural projection πA maps a tuple u = (ui)i∈I ∈ UI to the tuple
(ui)i∈A ∈ UA.

Definition 2 (Privacy Set and Reconstruction Set). Suppose A ⊂ I is nonempty. We say A is a privacy
set if for all x0,x1 ∈ Z, and for all vector v ∈ UA,

Pr
ρ

[πA(share(x0,ρ)) = v] = Pr
ρ

[πA(share(x1,ρ)) = v].

We say A is a reconstruction set if there is an R-module homomorphism recA : πA(C) → Z, such that
for all X ∈ C,

recA(πA(X)) = rec(X).

Intuitively, for a privacy set A, the shares of parties in A are independent of the secret. For a reconstruc-
tion set A, the shares of parties in A fully determine the secret.

Threshold Linear Secret Sharing Schemes and Multiplication-friendly Property. In this work,
we are interested in threshold arithmetic secret sharing schemes. Concretely, for a positive integer t < n, a
threshold-t arithmetic secret sharing scheme satisfies that for all A ⊂ I with |A| ≤ t, A is a privacy set.

We are interested in the following property.

Property 1 (Multiplication-Friendliness). We say Σ = (n,Z = Rk, U, C, share, rec) is multiplication-
friendly if there is an R-arithmetic secret sharing scheme Σ′ = (n,Z = Rk, U ′, C ′, share′, rec′) and n
functions {fi : Rk × U → U ′}ni=1 such that for all c ∈ Rk and for all X ∈ C,

• Y = (f1(c, X1), f2(c, X2), . . . , fn(c, Xn)) is in C ′, i.e., a sharing in Σ′. We will use Y = c ·X to
represent the computation process from c and X to Y .

• rec′(Y ) = c ∗ rec(X), where ∗ is the coordinate-wise multiplication operation.

Intuitively, for a multiplication-friendly scheme Σ, if all parties hold a Σ-sharing of a secret x ∈ Z and
a public vector c ∈ Rk, they can locally compute a Σ′-sharing of the secret c ∗ x, where ∗ denotes the
coordinate-wise multiplication operation.

Lemma 1. If Σ is a multiplication-friendly threshold-t R-arithmetic secret sharing scheme, and Σ′ be the
R-arithmetic secret sharing scheme defined in Property 1, then Σ′ has threshold t.

Proof. We will prove that for all set A of t parties, for all x0,x1 ∈ Z, and for all vector v′ ∈ (U ′)A,

Pr
ρ′

[πA(share′(x0,ρ
′)) = v′] = Pr

ρ′
[πA(share′(x1,ρ

′)) = v′].

Since Σ has threshold t, for all v ∈ UA, we have

Pr
ρ

[πA(share(x0,ρ)) = v] = Pr
ρ

[πA(share(x1,ρ)) = v].

Let 1 denote the vector (1, 1, . . . , 1) ∈ Z and 0 denote the vector (0, 0, . . . , 0) ∈ Z. Then, for all v′ ∈ (U ′)A,

Pr
ρ,ρ′

[πA(1 · share(x0,ρ) + share′(0,ρ′)) = v′] = Pr
ρ,ρ′

[πA(1 · share(x1,ρ) + share′(0,ρ′)) = v′].
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It is sufficient to show that, for all x ∈ Z, 1·share(x,ρ)+share′(0,ρ′) is a random Σ′-sharing of x. Note
that, 1 · share(x,ρ) is a Σ′-sharing of x. Then there exists ρ′′ such that share′(x,ρ′′) = 1 · share(x,ρ).
Thus 1 · share(x,ρ) + share′(0,ρ′) = share′(x,ρ′′) + share′(0,ρ′) = share′(x,ρ′ + ρ′′). The last step
follows from the fact that share′ is an R-module homomorphism. When ρ′ is uniformly random, ρ′ + ρ′′ is
also uniformly random. Thus share′(x,ρ′ + ρ′′) is a random Σ′-sharing of x.

4.2 Packed Shamir Secret Sharing Scheme
In our work, we are interested in the packed Shamir secret sharing scheme. We use the packed secret-sharing
technique introduced by Franklin and Yung [FY92]. This is a generalization of the standard Shamir secret
sharing scheme [Sha79]. Let F be a finite field of size |F| ≥ 2n. Let n be the number of parties and k
be the number of secrets that are packed in one sharing. Let α1, . . . , αn be n distinct elements in F and
pos = (p1, p2, . . . , pk) be another k distinct elements in F. A degree-d (d ≥ k − 1) packed Shamir sharing of
x = (x1, . . . , xk) ∈ Fk is a vector (w1, . . . , wn) for which there exists a polynomial f(·) ∈ F[X] of degree at
most d such that f(pi) = xi for all i ∈ {1, 2, . . . , k}, and f(αi) = wi for all i ∈ {1, 2, . . . , n}. The i-th share
wi is held by party Pi. Reconstructing a degree-d packed Shamir sharing requires d + 1 shares and can be
done by Lagrange interpolation. For a random degree-d packed Shamir sharing of x, any d − k + 1 shares
are independent of the secret x.

In our work, we will always use the same elements α1, . . . , αn for the shares of all parties. However, we
may use different elements pos for the secrets. We will use [x‖pos]d to denote a degree-d packed Shamir
sharing of x ∈ Fk stored at positions pos. In the following, operations (addition and multiplication) between
two packed Shamir sharings are coordinate-wise. We recall two properties of the packed Shamir sharing
scheme:

• Linear Homomorphism: For all d ≥ k − 1 and x,y ∈ Fk, [x+ y‖pos]d = [x‖pos]d + [y‖pos]d.

• Multiplicative: Let ∗ denote the coordinate-wise multiplication operation. For all d1, d2 ≥ k−1 subject
to d1 + d2 < n, and for all x,y ∈ Fk, [x ∗ y‖pos]d1+d2 = [x‖pos]d1 · [y‖pos]d2 .

These two properties directly follow from the computation of the underlying polynomials.
Note that the second property implies that, for all k − 1 ≤ d ≤ n − k, a degree-d packed Shamir secret

sharing scheme is multiplication-friendly (defined in Property 1). Concretely, for all x, c ∈ Fk, all parties
can locally compute [c ∗ x‖pos]d+k−1 from [x‖pos]d and the public vector c. To see this, all parties can
locally transform c to a degree-(k − 1) packed Shamir sharing [c‖pos]k−1. Then, they can use the property
of the packed Shamir sharing scheme to compute [c ∗ x‖pos]d+k−1 = [c‖pos]k−1 · [x‖pos]d.

Recall that t is the number of corrupted parties. Also recall that a degree-d packed Shamir secret sharing
scheme is of threshold d − k + 1. To ensure that the packed Shamir secret sharing scheme has threshold t
and is multiplication-friendly, we choose k such that t ≤ d − k + 1 and d ≤ n − k. When d = n − k and
k = (n− t+ 1)/2, both requirements hold and k is maximal.

4.3 Preparing Random Sharings for Different Arithmetic Secret Sharing Schemes
In this part, we introduce our main contribution: an efficient protocol that prepares random sharings for
a batch of different arithmetic secret sharing schemes. Let R be a finite commutative ring. Let Π =
(n, Z̃, Ũ , C̃, shareΠ, recΠ) be an R-arithmetic secret sharing scheme. Our goal is to realize the functionality
Frand-sharing presented in Functionality 1.

Initialization. Let Σ = (n,Z = Rk, U, C, share, rec) be a multiplication-friendly threshold-tR-arithmetic
secret sharing scheme. In the following, we will use [x] to denote a Σ-sharing of x ∈ Rk. Let Σ′ = (n,Z ′ =
Rk, U ′, C ′, share′, rec′) be the R-arithmetic secret sharing scheme in Property 1. By Lemma 1, Σ′ has
threshold t. We use 〈y〉 to denote a Σ′-sharing of y ∈ Rk. For all c ∈ Rk, we will write

〈c ∗ x〉 = c · [x]
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Functionality 1: Frand-sharing(Π)

1. Frand-sharing receives the set of corrupted parties, denoted by Corr.

2. Frand-sharing receives from the adversary a set of shares {uj}j∈Corr where uj ∈ Ũ for all j ∈ Corr.

3. Frand-sharing samples a random Π-sharing X such that the shares of X held by corrupted parties
are identical to those received from the adversary, i.e., πCorr(X) = (uj)j∈Corr. If such a sharing
does not exist, Frand-sharing sends abort to all honest parties and halts.

4. Otherwise, Frand-sharing distributes the shares of X to honest parties.

to represent the computation process from c and [x] to 〈c ∗ x〉 in Property 1.
Our construction will use the ideal functionality Frand = Frand-sharing(Σ) that prepares a random Σ-

sharing, and the ideal functionality FrandZero (Functionality 2) that prepares a random Σ′-sharing of 0 ∈ Rk.

Functionality 2: FrandZero

1. Let Σ′ = (n,Z ′ = Rk, U ′, C ′, share′, rec′). FrandZero receives the set of corrupted parties, denoted
by Corr.

2. FrandZero receives from the adversary a set of shares {u′j}j∈Corr, where u′j ∈ U ′ for all Pj ∈ Corr.

3. FrandZero samples a random Σ′-sharing of 0 ∈ Rk, 〈0〉, such that the shares of corrupted parties
are identical to those received from the adversary, i.e., πCorr(〈0〉) = (u′j)j∈Corr. If such a sharing
does not exist, FrandZero sends abort to all honest parties and halts.

4. Otherwise, FrandZero distributes the shares of 〈0〉 to honest parties.

Let Π1,Π2, . . . ,Πk be k arbitraryR-arithmetic secret sharing schemes with the restriction that all schemes
have the same share size, i.e., the share space Ũ = R˜̀. Let Z̃i = Rk̃i be the secret space of Πi and
sharei : Z̃i ×Rr̃i → C̃i be the sharing map. Since sharei is injective, and C̃i ⊂ ŨI , we have k̃i + r̃i ≤ n · ˜̀.

The goal is to prepare k random sharings X1,X2, . . . ,Xk such that Xi is a random Πi-sharing, i.e.,
realizing {Frand-sharing(Πi)}ki=1.

Protocol Description. The construction of our protocol Rand-Sharing appears in Protocol 3. Protocol
Rand-Sharing requires n2 · ˜̀ · (` + `′) ring elements of preprocessing data and n2 · ˜̀ · `′ ring elements of
communication to prepare k random sharings for Π1,Π2, . . . ,Πk, one for each secret sharing scheme. The
detailed cost analysis can be found below.

Lemma 2. For any k R-arithmetic secret sharing schemes {Πi}ki=1 such that they have the same share size,
Protocol Rand-Sharing securely computes {Frand-sharing(Πi)}ki=1 in the {Frand,FrandZero}-hybrid model
against a semi-honest adversary who controls t parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote the set
of corrupted parties and H denote the set of honest parties.

The simulator S works as follows.

1. In Step 2, S emulates the functionality Frand: For all v ∈ {1, 2, . . . , n · ˜̀}, S receives the shares of [rv]
held by corrupted parties.
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Protocol 3: Rand-Sharing

1. Let Π1,Π2, . . . ,Πk be k arbitrary R-arithmetic secret sharing schemes such that they have the
same share size. Let Ũ = R˜̀ denote the share space. For all i ∈ {1, 2, . . . , k}, let Z̃i = Rk̃i be the
secret space of Πi, and sharei : Z̃i ×Rr̃i → C̃i be the sharing map of Πi. We have k̃i + r̃i ≤ n · ˜̀.

2. All parties invoke Frand n·˜̀times and obtain n·˜̀random Σ-sharings, denoted by [r1], [r2], . . . , [rn·˜̀].
For all i ∈ {1, 2, . . . , k}, let τi = (r1,i, r2,i, . . . , rk̃i,i) ∈ R

k̃i , and ρi = (rk̃i+1,i, rk̃i+2,i, . . . , rk̃i+r̃i,i) ∈
Rr̃i . The goal of this protocol is to compute the Πi-sharing Xi = sharei(τi,ρi).

3. All parties invoke FrandZero n · ˜̀ times and obtain n · ˜̀ random Σ′-sharings of 0 ∈ Rk, denoted by
{〈o(1)

j 〉, 〈o
(2)
j 〉, . . . , 〈o

(˜̀)
j 〉}nj=1.

4. For all i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , n}, and m ∈ {1, 2, . . . , ˜̀}, let L(i,m)
j : Z̃i ×Rr̃i → R denote

the R-module homomorphism such that for all τ ∈ Z̃i and ρ ∈ Rr̃i , L(i,m)
j (τ ,ρ) outputs the m-th

element of the j-th share of the Πi-sharing sharei(τ ,ρ). Then there exist c(i,m)
j,1 , . . . , c

(i,m)

j,k̃i+r̃i
∈ R

such that

L(i,m)
j (τ ,ρ) =

k̃i∑
v=1

c
(i,m)
j,v · τv +

r̃i∑
v=1

c
(i,m)

j,k̃i+v
· ρv.

For all j ∈ {1, 2, . . . , n}, m ∈ {1, 2, . . . , ˜̀}, and v ∈ {1, . . . , n · ˜̀}, let

c
(?,m)
j,v = (c

(1,m)
j,v , c

(2,m)
j,v , . . . , c

(k,m)
j,v ) ∈ Rk,

where c(i,m)
j,v = 0 for all v > k̃i + r̃i.

5. For all i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , n}, and m ∈ {1, 2, . . . , ˜̀}, let u(i,m)
j = L(i,m)

j (τi,ρi). Let
u

(?,m)
j = (u

(1,m)
j , u

(2,m)
j , . . . , u

(k,m)
j ). For all j ∈ {1, 2, . . . , n} and m ∈ {1, 2, . . . , ˜̀}, all parties

locally compute a Σ′-sharing

〈u(?,m)
j 〉 = 〈o(m)

j 〉+

n·˜̀∑
v=1

c
(?,m)
j,v · [rv].

Then, all parties send their shares of 〈u(?,m)
j 〉 to Pj .

6. For all j ∈ {1, 2, . . . , n} and m ∈ {1, 2, . . . , ˜̀}, Pj reconstructs the Σ′-sharing 〈u(?,m)
j 〉 and learns

u
(?,m)
j = (u

(1,m)
j , u

(2,m)
j , . . . , u

(k,m)
j ). Then for all i ∈ {1, 2, . . . , k}, Pj sets his share of the Πi-

sharing, Xi, to be u(i)
j = (u

(i,1)
j , u

(i,2)
j , . . . , u

(i,˜̀)
j ). All parties take X1,X2, . . . ,Xk as output.

2. In Step 3, S emulates the functionality FrandZero: For all j ∈ {1, 2, . . . , n} and m ∈ {1, 2, . . . , ˜̀}, S
receives the shares of 〈o(m)

j 〉 held by corrupted parties.

3. In Step 4, for all j ∈ {1, 2, . . . , n}, m ∈ {1, 2, . . . , ˜̀}, and v ∈ {1, . . . , n · ˜̀}, S locally compute c(?,m)
j,v by

following the protocol.

4. In Step 5, for all j ∈ {1, 2, . . . , n} and m ∈ {1, 2, . . . , ˜̀}, S follows the protocol and computes the
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shares of 〈u(?,m)
j 〉 held by corrupted parties. S simulates the shares that are sent from honest parties

to corrupted parties as follows:

(a) For all i ∈ {1, 2, . . . , k}, S samples a random Πi-sharing and obtains the shares of corrupted
parties {u(i)

j }j∈Corr, where u
(i)
j = (u

(i,1)
j , u

(i,2)
j , . . . , u

(i,˜̀)
j ) ∈ R˜̀.

(b) Then for all j ∈ {1, 2, . . . , n} and m ∈ {1, 2, . . . , ˜̀}, S computes u(?,m)
j .

(c) According to Lemma 1, Σ′ has threshold t. Therefore, the shares of a random Σ′-sharing are
independent of its secret. For all j ∈ Corr and m ∈ {1, 2, . . . , ˜̀}, S samples a random Σ′-sharing
〈u(?,m)

j 〉 based on the secret u(?,m)
j and the shares of 〈u(?,m)

j 〉 held by corrupted parties computed
by S.

(d) Finally, S sends the shares of 〈u(?,m)
j 〉 held by honest parties to the adversary.

5. In Step 6, for all i ∈ {1, 2, . . . , k}, S sends the shares {u(i)
j }j∈Corr to Frand-sharing(Πi).

This completes the description of the simulator. We show that the simulator S perfectly simulates the
behaviors of honest parties. Note that all parties only communicate with other parties in Step 5.

• We first show that the shares of corrupted parties, {u(i)
j }j∈Corr, sampled by S have the same distri-

bution as those in the real world. In the ideal world, S randomly samples the shares of corrupted
parties by first sampling random sharings of Π1,Π2, . . . ,Πk and then obtaining the shares of corrupted
parties. In the real world, the shares of corrupted parties are computed by following sharei(τi,ρi) for
all i ∈ {1, 2, . . . , k}. Recall that τi,ρi are generated by Frand. And Σ has threshold t. Therefore, τi
and ρi are uniformly random. Thus, {u(i)

j }j∈Corr have the same distribution in both the ideal world
and the real world.

• Then, we show that for all j ∈ Corr and m ∈ {1, 2, . . . , ˜̀}, the shares of 〈u(?,m)
j 〉 held by honest

parties (which are supposed to send to corrupted parties) generated by S have the same distribution
as those in the real world. Recall that 〈o(m)

j 〉 is a random Σ′-sharing of 0. Therefore, in the real world,
〈u(?,m)

j 〉 is a random Σ′-sharing of u(?,m)
j given the secret and the shares of corrupted parties. Since

u
(?,m)
j is determined by {τi,ρi}ki=1, which are independent of the shares of {[rv]}n·

˜̀
v=1 and 〈o(m)

j 〉 held
by corrupted parties, u(?,m)

j is independent of the shares of 〈u(?,m)
j 〉 held by corrupted parties.

In the ideal world, recall that S learns the shares of {[rv]}n·
˜̀

v=1 held by corrupted parties in Step 2. And
S learns the shares of 〈o(m)

j 〉 held by corrupted parties in Step 3. Therefore, S can compute the shares
of 〈u(?,m)

j 〉 held by corrupted parties. Also recall that we have shown that the secret, u(?,m)
j , which

is a part of {u(i)
j }j∈Corr,i∈{1,...,k}, has the same distribution as that in the real world. Therefore, the

secret u(?,m)
j and the shares of 〈u(?,m)

j 〉 held by corrupted parties have the same distribution in both
the ideal world and the real world. Finally, note that S samples a random Σ′-sharing 〈u(?,m)

j 〉 based
on the secret u(?,m)

j simulated by S and the shares of 〈u(?,m)
j 〉 held by corrupted parties computed by

S. Thus, the shares of honest parties simulated by S have the same distribution as those in the real
world.

Recall that all parties only communicate with other parties in Step 5. Therefore, the joint view of
corrupted parties in the ideal world is identical to that in the real world.

• Finally, we show that the output of honest parties given the joint view of corrupted parties in the ideal
world has the same distribution as that in the real world.

Note that the joint view of corrupted parties is determined by (1) the shares of [rv] held by corrupted
parties for all v ∈ {1, 2, . . . , n · ˜̀}, (2) the shares of 〈o(m)

j 〉 held by corrupted parties for all j ∈
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{1, 2, . . . , n} and m ∈ {1, 2, . . . , ˜̀}, and (3) the shares of 〈u(?,m)
j 〉 held by honest parties for all j ∈ Corr

and m ∈ {1, 2, . . . , ˜̀}. In the real world, (1) and (2) are independent of {τi,ρi}ki=1 since Σ has
threshold t. And (3) only depends on the shares {u(i)

j }j∈Corr,i∈{1,...,k}. Thus, in the real world, for
all i ∈ {1, 2, . . . , k}, Xi = sharei(τi,ρi) is a random Πi-sharing given the shares of corrupted parties.
And honest parties simply output their shares of Xi.
In the ideal world, S perfectly simulates the shares of Xi = sharei(τi,ρi) held by corrupted parties
and sends them to Frand-sharing(Πi). Then Frand-sharing(Πi) samples a random Πi-sharing based on the
shares of corrupted parties. The output of honest parties is their shares of Xi for all i ∈ {1, 2, . . . , k}.
Therefore, the output of honest parties given the joint view of corrupted parties in the ideal world has
the same distribution as that in the real world.

We conclude that Protocol Rand-Sharing securely computes {Frand-sharing(Πi)}ki=1 in the {Frand,FrandZero}-
hybrid model against a semi-honest adversary who controls t parties.

Cost of Protocol 3. We measure the amount of the preprocessing data and the ring elements that all
parties need to send.

For the amount of preprocessing data, all parties need to prepare n · ˜̀ random Σ-sharings. Let ` be the
share size of Σ, i.e., the share space of Σ is U = R`. Thus, all Σ-sharings are of size n2 · ˜̀· ` ring elements.
All parties also need to prepare n · ˜̀ random Σ′-sharings of 0 ∈ Rk. Let `′ be the share size of Σ′, i.e., the
share space of Σ′ is U ′ = R`′ . Thus all Σ′-sharings are of size n2 · ˜̀· `′ ring elements. In total, the amount
of preprocessing data is n2 · ˜̀· (`+ `′) ring elements.

For the communication complexity, all parties only need to communicate in Step 5 of Protocol 3. The
communication complexity is n2 · ˜̀· `′ ring elements.

4.4 Instantiating Protocol Rand-Sharing via Packed Shamir Secret Sharing
Scheme

For Large Finite Fields F. Recall that when k = (n − t + 1)/2, a degree-(n − k) packed Shamir secret
sharing has threshold t and is multiplication-friendly. Therefore, we use a degree-(n − k) packed Shamir
secret sharing scheme to instantiate Σ in Protocol Rand-Sharing. Then Σ′ is a degree-(n − 1) packed
Shamir secret sharing scheme. For Σ and Σ′,

• The secret space is Fk, where k = (n− t+ 1)/2.

• The share space is F, i.e., each share is a single field element. Therefore ` = `′ = 1.

Thus, we obtain a protocol that prepares random sharings for Π1,Π2, . . . ,Πk with 2 · n2 · ˜̀ = O(n2 · ˜̀)
field elements of preprocessing data and n2 · ˜̀ field elements of communication. On average, the cost per
random sharing is O( n2

n−t+1 · ˜̀) field elements of both preprocessing data and communication. Note that
when t = (1−ε) ·n for a positive constant ε, the achieved amortized cost per sharing is O(n · ˜̀) field elements.
In particular, n · ˜̀ is the sharing size of Πi for all i ∈ {1, 2, . . . , k}. Essentially, it costs the same as letting a
trusted party generate a random Πi-sharing and distribute to all parties.

For Small Fields Fq and Rings Z/p`Z. For a small field Fq, we can use a large extension field of Fq so
that the packed Shamir secret sharing scheme is available. For a ring Z/p`Z, we can similarly use a large
Galois ring of Z/p`Z so that the packed Shamir secret sharing scheme is available [ACD+19].

However, the approach of using a large extension field (or a large Galois ring) leads to a loss in the
extension factor: While the share size grows up by the extension factor, the number of secrets that can be
packed is still k. To resolve this issue, we can use the notion of reverse multiplication-friendly embedding
(RMFE), which is first introduced in [CCXY18] for finite fields, and then extended to rings Z/p`Z in [CRX21].

We take an RMFE over a finite field Fq as example, where q is an exponential of a prime. Informally,
a pair of Fq-linear maps (φ, ψ) is a (r,m)q-reverse multiplication-friendly embedding if φ : Frq → Fqm and
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ψ : Fqm → Frq satisfy that for all x,y ∈ Frq, x ∗y = ψ(φ(x) ·φ(y)). Intuitively, instead of doing a coordinate-
wise multiplication over Fq, an RMFE allows us to first map each vector (by φ) to an element in the extension
field Fqm and then perform a field multiplication over Fqm . The result can finally be transformed (by ψ) to
the coordinate-wise multiplication between the input two vectors.

Now consider an arithmetic secret sharing scheme Σ over Fq:

• The secret space is Z = Fk·rq .

• The share space is U = Fqm , which can be viewed as Fmq .

• For x ∈ Z, the sharing of x is computed as follows: We first divide x into k vectors of dimension r.
Then we map each vector to a field element in Fqm by using φ. Next we use a degree-(n − k) packed
Shamir secret sharing scheme over Fqm to store the k elements in Fqm .

• For a sharing X, we first view it as a degree-(n− k) packed Shamir sharing over Fqm and reconstruct
its secret s ∈ Fkqm . To recover the secret, we apply φ−1 on each element in s. (See [PS21] for an explicit
construction of φ−1.)

Note that Σ have threshold t due to the use of the degree-(n − k) packed Shamir secret sharing scheme.
Also note that Σ is still multiplication-friendly: To multiply a constant vector c ∈ Fk·rq with a Σ-sharing of
x, we first transform c to a degree-(k − 1) packed Shamir sharing over Fqm similarly as above. Then after
multiplying the two packed Shamir sharings, we can reconstruct the secret c ∗ x by using ψ to decode the
secrets of the resulting packed Shamir sharing.

Therefore, relying on packed Shamir secret sharing schemes and RMFEs, we can use Σ to instantiate
Protocol Rand-Sharing for a small field Fq. For both Σ and Σ′,

• The secret space is Fk·rq , where k = (n− t+ 1)/2.

• The share space is Fmq , i.e., each share is m field elements. Therefore ` = `′ = m.

Note that, while the share size of Σ and Σ′ grows up by a factor of m, the number of secrets that can be
packed becomes k · r, which grows up by a factor of r. Thus, we obtain a protocol that prepares random
sharings for arbitrary Fq-arithmetic secret sharing schemes Π1,Π2, . . . ,Πk·r with 2 · n2 · ˜̀·m = O(n2 · ˜̀·m)

field elements of preprocessing data, and n2 · ˜̀·m field elements of communication. On average, the cost per
random sharing is O( n2

n−t+1 · ˜̀·
m
r ) field elements of both preprocessing data and communication.

In [CCXY18], Cascudo, et al show that for all Fq, there exists a family of RMFEs with r slowly grows
to infinity and m/r is bounded by a constant. Thus, the amortized cost per random sharing becomes
O( n2

n−t+1 · ˜̀) field elements, which is the same as that for a large finite field.
A similar result for rings Z/p`Z can be achieved by using RMFEs over rings Z/p`Z constructed in [CRX21].

4.5 Application of Frand-sharing

Let Σ and Σ′ be two threshold-t R-arithmetic secret sharing schemes. Let f : Z → Z ′ be an R-module
homomorphism, where Z and Z ′ are the secret spaces of Σ and Σ′ respectively. Suppose given a Σ-sharing,
X, all parties want to compute a Σ′-sharing, Y , subject to rec′(Y ) = f(rec(X)), where rec and rec′ are
reconstruction maps of Σ and Σ′, respectively. We refer to this problem as sharing transformation.

As discussed in Section 2, sharing transformation can be efficiently solved with the help of a pair of
random sharings (R,R′), where R is a Σ-sharing, and R′ is a Σ′-sharing subject to rec′(R′) = f(rec(R)).
Consider the following R-arithmetic secret sharing scheme Σ̃ = Σ̃(Σ,Σ′, f):

• The secret space is Z, the same as that of Σ.

• The share space is U × U ′, where U is the share space of Σ and U ′ is the share space of Σ′.

• For a secret x ∈ Z, the sharing of x is the concatenation of a Σ-sharing of x and a Σ′-sharing of f(x).

22



• For a sharing X, recall that each share of Σ̃ consists of one share of Σ and one share of Σ′. The secret
of X can be recovered by applying rec of Σ on the sharing which consists of the shares of Σ in X.

Then, (R,R′) is a random Σ̃-sharing. The problem is reduced to prepare a random Σ̃-sharing, which can
be done by Frand-sharing(Σ̃).

We summarize the functionality Ftran in Functionality 4 and the protocol Tran for Ftran in Protocol 5.

Functionality 4: Ftran

1. Ftran receives the set of corrupted parties, denoted by Corr. Ftran also receives two threshold-t
R-arithmetic secret sharing schemes Σ,Σ′ and an R-module homomorphism f : Z → Z ′.

2. Ftran receives a Σ-sharing X from all parties and computes f(rec(X)).

3. Ftran receives from the adversary a set of shares {u′j}j∈Corr, where u′j ∈ U ′ for all Pj ∈ Corr.

4. Ftran samples a random Σ′-sharing, Y , such that rec′(Y ) = f(rec(X)) and the shares of corrupted
parties are identical to those received from the adversary, i.e., πCorr(Y ) = (u′j)j∈Corr. If such a
sharing does not exist, Ftran sends abort to honest parties and halts.

5. Otherwise, Ftran distributes the shares of Y to honest parties.

Protocol 5: Tran

1. Let Σ,Σ′ be two threhsold-t R-arithmetic secret sharing schemes and f : Z → Z ′ be an R-module
homomorphism. All parties hold a Σ-sharing, X, at the beginning of the protocol.

2. Let Σ̃ = Σ̃(Σ,Σ′, f) be the threshold-t R-arithmetic secret sharing scheme defined above. All
parties invoke Frand-sharing(Σ̃) and obtain a Σ̃-sharing (R,R′).

3. All parties locally compute X +R and send their shares to the first party P1.

4. P1 reconstructs the secret of X + R, denoted by w. Then P1 computes f(w) and generates a
Σ′-sharing of f(w), denoted by W . Finally, P1 distributes the shares of W to all parties.

5. All parties locally compute Y = W −R′.

Lemma 3. For all threshold-t R-arithmetic secret sharing schemes Σ,Σ′ and for all R-module homomor-
phism f : Z → Z ′, Protocol Tran securely computes Ftran in the Frand-sharing-hybrid model against a
semi-honest adversary who controls t parties.

We obtain the following theorem for our sharing transformation protocol.

Theorem 3. Let n be the number of parties, t be the number of corrupted parties, and k = (n− t+1)/2. Let
F be a finite field of size 2n. Let `1, `2 be two positive integers. For all k tuples {(Σi,Σ′i, fi)}ki=1 and for all
{Xi}ki=1 such that Σi,Σ

′
i are F-linear secret sharing schemes with injective sharing functions and with share

size `1, `2, fi is a linear map from the secret space of Σi to that of Σ′i, and Xi is a Σi-sharing held by all
parties, there is an information-theoretic MPC protocol with semi-honest security against t corrupted parties
that transforms Xi to a Σ′-sharing Yi such that the secret of Yi is equal to the result of applying fi on the
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secret of Xi. The cost of the protocol is O(n2 · (`1 + `2)) elements of preprocessing data and O(n2 · (`1 + `2))
elements of communication.

Remark 1. We note that the preprocessing phase only prepares random degree-(n−k) packed Shamir sharings
and random degree-(n− 1) packed Shamir sharings of 0 ∈ Fk. With a variant of the protocol in [DN07] that
prepares random degree-t Shamir sharings, the preprocessing can be done with communication complexity
O(n

3

k · (`1 + `2)) field elements for k sharing transformations.

Improvement of Protocol Rand-Sharing for a Concrete Sharing Transformation. Our MPC
protocol needs to perform the following sharing transformation. Let F be a large finite field. Recall that
for a packed Shamir secret sharing scheme over F, we use fixed α1, . . . , αn for shares of all parties. For two
(potentially different) vectors of field elements pos = (p1, . . . , pk) and pos′ = (p′1, . . . , p

′
k) such that they are

disjoint with {α1, . . . , αn}, all parties start with a degree-(n− 1) packed Shamir sharing [x‖pos]n−1. They
want to compute a degree-(n− k) packed Shamir sharing [y‖pos′]n−k such that for all i ∈ {1, 2, . . . , k}, yi is
equal to xj for some j. In particular, it is possible that for two different indices i and i′, yi and yi′ are equal
to the same xj .

Let f : Fk → Fk be an F-linear map which satisfies that y = f(x). Then, we need to prepare a pair
of random sharings ([r‖pos]n−1, [f(r)‖pos′]n−k). In particular, we can view it as a random sharing of the
following F-arithmetic secret sharing scheme Π:

• The secret space Z = Fk.

• The share space U = F2.

• For a secret x ∈ Z, the sharing of x is ([x‖pos]n−1, [f(x)‖pos′]n−k).

• For a sharing X = (X1,X2), we view X1 as a degree-(n − 1) packed Shamir secret sharing scheme
and reconstruct the secret x.

We note that when directly using Rand-Sharing (instantiated by packed Shamir secret sharing schemes,
see Section 4.4) to prepare a random Π-sharing, the communication complexity per sharing is 2n2

k elements.
This is because in Step 5 of Rand-Sharing, we need to compute ˜̀ = 2 Σ′-sharings for the shares of each
party, where ˜̀ is the share size of Π. These sharings are then reconstructed to their corresponding holders,
which incurs 2n2 elements of communication for k sharings.

We observe that a random degree-d packed Shamir secret sharing scheme has the following nice properties:

• The shares of the first d+ 1 parties are uniformly random.

• The secret and the shares of the rest of n− d− 1 parties are determined by the shares of the first d+ 1
parties.

When the secret of a random degree-d packed Shamir sharing is given,

• The shares of the first d− k + 1 parties are uniformly random.

• The shares of the rest of n− d+ k − 1 parties are determined by the secret and the shares of the first
d+ 1 parties.

Thus, when preparing a random degree-d packed Shamir sharing, we can view the shares of the first d+1
parties as the random tape for generating the whole sharing. In particular, the secret will be determined by
the shares of the first d+ 1 parties. In Protocol Rand-Sharing, all parties invoke Frand to obtain random
Σ-sharings for the random tapes. The secrets of these Σ-sharings can directly be viewed as the shares of
the first d + 1 parties. Thus, we can let the first d + 1 parties reconstruct their shares in the preprocessing
phase. In this way, we only need to reconstruct shares for the rest of n− d− 1 parties in the online phase.
Similarly, when preparing a random degree-d packed Shamir sharing for a given input x, we can view the
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shares of the first d− k+ 1 parties as the random tape for generating the whole sharing. We can let the first
d−k+ 1 parties reconstruct their shares in the preprocessing phase. In this way we only need to reconstruct
shares for the rest of n− d+ k − 1 parties in the online phase.

For the sharing transformation we are interested in, we need to prepare random sharings in the form of
([r‖pos]n−1, [f(r)‖pos′]n−k). For the first sharing, it is a random degree-(n − 1) packed Shamir sharing.
We can let all parties reconstruct their shares in the preprocessing phase. For the second sharing, it is a
random degree-(n−k) packed Shamir sharing given the secret f(r). We can let n−2k+1 parties reconstruct
their shares in the preprocessing phase. Thus, in the online phase, we only need to reconstruct the shares of
[f(r)‖pos′]n−k of the last 2k − 1 parties.

Concretely, in the preprocessing phase, all parties prepare n random Σ-sharings. The i-th sharing is
reconstructed to Pi, and Pi takes the secret as its shares of the degree-(n − 1) packed Shamir sharings in
Π1, . . . ,Πk. (Recall that each time we prepare random sharings for k arithmetic secret sharing schemes.
Here we assume that Π1, . . . ,Πk are all in the form of Π constructed above.) Then, all parties prepare
n− 2k + 1 random Σ-sharings. The i-th sharing is reconstructed to Pi, and Pi takes the secret as its shares
of the degree-(n− k) packed Shamir sharings in Π1, . . . ,Πk. After that, all parties prepare 2k− 1 Σ′-sharing
of 0 ∈ Fk. Thus, the preprocessing data consists of 2n− 2k + 1 random Σ sharings and 2k − 1 random Σ′-
sharings of 0 ∈ Fk. Since each Σ-sharing is also reconstructed to a single party, the amount of preprocessing
data is 2(2n− 2k + 1) · n+ (2k − 1) · n < 4n2 field elements.

In the online phase, all parties use the 2n − 2k + 1 random Σ-sharings to compute Σ′-sharings of the
shares of the last 2k − 1 parties of the degree-(n − k) packed Shamir sharings in Π1, . . . ,Πk. Then they
use random Σ′-sharings of 0 to mask these sharings and let the last 2k − 1 parties reconstruct their shares.
Thus, the communication complexity is (2k − 1) · n < 2k · n field elements.

Thus, with this improvement, we obtain a protocol that prepares a random sharing for Π with 4n2/k field
elements of preprocessing data, and 2n field elements of communication. When we use Tran to perform
the above sharing transformation, the amortized cost of Tran is 4n2/k field elements of preprocessing data
and 4n elements of communication.

5 Semi-Honest Protocol
In this section, we focus on the semi-honest security. We show how to use packed Shamir sharing schemes
and Ftran (introduced in Section 4.5) to evaluate a circuit against a semi-honest adversary who controls t
parties. Let k = (n− t+ 1)/2.

Recall that we use [x‖pos]d to represent a degree-d packed Shamir sharing of x ∈ Fk stored at positions
pos = (p1, p2, . . . , pk). Also recall that the shares of a degree-d packed Shamir sharing are at evaluation points
α1, α2, . . . , αn. Let β = (β1, β2, . . . , βk) be k distinct elements in F that are different from (α1, α2, . . . , αn).
We use β as the default positions for a degree-d packed Shamir sharing, and simply write [x]d = [x‖β]d.

5.1 Circuit-Independent Preprocessing Phase
In the circuit-independent preprocessing phase, all parties need to prepare packed Beaver triples. For every
group of k multiplication gates, all parties prepare a packed Beaver triple ([a]n−k, [b]n−k, [c]n−k) where a, b
are random vectors in Fk and c = a ∗ b. We will use the technique of packed Beaver triples to compute
multiplication gates in the online phase. The functionality Fprep for the circuit independent preprocessing
phase appears in Functionality 6.

5.2 Online Computation Phase
Recall that for the field size it holds that |F| ≥ |C| + n, where |C| is the circuit size. Let β1, β2, . . . , β|C|
be |C| distinct field elements that are different from α1, α2, . . . , αn. (Recall that we have already defined
β = (β1, . . . , βk), which are used as the default positions for a packed Shamir sharing.) We associate the
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Functionality 6: Fprep

For every group of k multiplication gates:

1. Fprep receives the set of corrupted parties, denoted by Corr.

2. Fprep receives from the adversary a set of shares {(aj , bj , cj)}j∈Corr. Fprep samples two random
vectors a, b ∈ Fk and computes c = a∗b. Then Fprep computes three degree-(n−k) packed Shamir
sharings [a]n−k, [b]n−k, [c]n−k such that for all Pj ∈ Corr, the j-th share of ([a]n−k, [b]n−k, [c]n−k)
is (aj , bj , cj).

3. Fprep distributes the shares of ([a]n−k, [b]n−k, [c]n−k) to honest parties.

field element βi with the i-th gate in C. We will use βi as the position to store the output value of the i-th
gate in a degree-(n− k) packed Shamir sharing.

Concretely, for each layer, gates that have the same type are divided into groups of size k. For each group
of k gates, all parties will compute a degree-(n− k) packed Shamir sharing such that the results are stored
at the positions associated with these k gates respectively.

5.2.1 Input Layer

In the input layer, input gates are divided into groups of size k based on the input holders. For a group
of k input gates belonging to the same client, suppose x are the inputs, and pos = (p1, p2, . . . , pk) are the
positions associated with these k gates. The client generates a random degree-(n−k) packed Shamir sharing
[x‖pos]n−k and distributes the shares to all parties.

5.2.2 Network Routing

In each intermediate layer, all gates are divided into groups of size k based on their types (i.e., multiplication
gates or addition gates). For a group of k gates, all parties prepare two degree-(n − k) packed Shamir
sharings, one for the first inputs of all gates, and the other one for the second inputs of all gates.

Concretely, for a group k gates in the current layer, suppose x are the first inputs of these k gates, and
y are the second inputs of these k gates. All parties will prepare two degree-(n− k) packed Shamir sharings
[x]n−k and [y]n−k stored at the default positions. The reason of choosing the default positions is to use the
packed Beaver triples all parties have prepared in the preprocessing phase. Recall that the packed Beaver
triples all use the default positions. In the following, we focus on inputs x.

Collecting Secrets from Previous Layers. Let x′1, x′2, . . . , x′`1 be the different values in x from previous
layers. Let c1, c2, . . . , c`2 be the constant values in x. Then `1 + `2 ≤ k. For each of the rest of k − `1 − `2
values in x, it is the same as x′i for some i ∈ {1, 2, . . . , `1}. In this step, we will prepare a degree-(n − 1)
packed Shamir sharing that contains the secrets x′1, x′2, . . . , x′`1 and c1, c2, . . . , c`2 .

Note that {x′i}
`1
i=1 are the output values of `1 different gates in previous layers. Let p1, p2, . . . , p`1 be the

positions associated with these `1 gates. We choose another arbitrary k− `1 different positions p`1+1, . . . , pk
which are also different from α1, α2, . . . , αn, and set pos = (p1, p2, . . . , pk). Suppose for all 1 ≤ i ≤ `1,
[x(i)‖pos(i)]n−k is the degree-(n − k) packed Shamir sharing from some previous layer that contains the
secret x′i stored at position pi.

Let ei be the i-th unit vector in Fk (i.e., only the i-th term is 1 and all other terms are 0). All parties locally
compute a degree-(k − 1) packed Shamir sharing [ei‖pos]k−1. Let x′ = (x′1, . . . , x

′
`1
, c1, . . . , c`2 , 0, . . . , 0) be
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a vector in Fk. Then all parties locally compute

`1∑
i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k +

`2∑
i=1

ci · [e`1+i‖pos]k−1.

We show that this is a degree-(n − 1) packed Shamir sharing of x′ stored at positions pos. It is clear that
the resulting sharing has degree n− 1. We only need to show the following three points:

• For all 1 ≤ j ≤ `1, the secret stored at position pj is equal to x′j .

• For all `1 + 1 ≤ j ≤ `1 + `2, the secret stored at position pj is equal to cj−`1 .

• For all `1 + `2 + 1 ≤ j ≤ k, the secret stored at position pj is equal to 0.

For all 1 ≤ i ≤ `1 + `2, let fi be the polynomial corresponding to [ei‖pos]k−1. For all 1 ≤ i ≤ `1, let gi
be the polynomial corresponding to [x(i)‖pos(i)]n−k. Then the polynomial corresponding to the resulting
sharing is h =

∑`1
i=1 fi · gi +

∑`2
i=1 ci · f`1+i.

Note that fi satisfies that fi(pi) = 1 and fi(pj) = 0 for all j 6= i. And gi satisfies that gi(pi) = x′i.
Therefore, for all 1 ≤ j ≤ `1,

h(pj) =

`1∑
i=1

fi(pj) · gi(pj) +

`2∑
i=1

ci · f`1+i(pj) = fj(pj) · gj(pj) = x′j .

For all `1 + 1 ≤ j ≤ `2,

h(pj) =

`1∑
i=1

fi(pj) · gi(pj) +

`2∑
i=1

ci · f`1+i(pj) = cj−`1 · fj(pj) = cj−`1 .

For all `1 + `2 + 1 ≤ j ≤ k,

h(pj) =

`1∑
i=1

fi(pj) · gi(pj) +

`2∑
i=1

ci · f`1+i(pj) = 0.

Thus, the resulting sharing is a degree-(n− 1) packed Shamir sharing of x′ stored at positions pos, denoted
by [x′‖pos]n−1.

Transforming to the Desired Sharing. Now all parties hold a degree-(n − 1) packed Shamir sharing
[x′‖pos]n−1. Recall that x′ contains all different values in x from previous layers and all constant values.
For each of the rest of values in x, it is the same as x′i for some i ∈ {1, 2, . . . , `1}. Then there is a linear
map f : Fk → Fk such that x = f(x′). Recall that β = (β1, . . . , βk) are the default positions. Let Σ be
the degree-(n − 1) packed Shamir secret sharing scheme that stores secrets at positions pos. Let Σ′ be the
degree-(n− k) packed Shamir secret sharing scheme that stores secrets at positions β. Then [x′‖pos]n−1 is
a Σ-sharing, and the sharing we want to prepare, [x]n−k = [x‖β]n−k, is a Σ′-sharing with x = f(x′).

All parties invoke Ftran with (Σ,Σ′, f) and [x′‖pos]n−1, and obtain [x]n−k.

Summary of Network Routing. We describe the protocol Network of preparing an input degree-
(n− k) packed Shamir sharing [x]n−k in Protocol 7.

5.2.3 Evaluating Addition Gates and Multiplication Gates

Addition Gates. For a group of k addition gates, recall that all parties have prepared two degree-(n− k)
packed Shamir sharings [x]n−k, [y]n−k where x are the first inputs of these k gates, and y are the second
inputs of these k gates. The description of Add appears in Protocol 8. Note that in Step 3 of Protocol
Add, we use the fact that a degree-(n− k) packed Shamir sharing can be viewed as a degree-(n− 1) packed
Shamir sharing.
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Protocol 7: Network

1. Suppose all parties want to prepare a degree-(n − k) packed Shamir sharing of x stored at the
default positions β.

2. Let x′1, x′2, . . . , x′`1 be the different wire values in x from previous layers. Let c1, c2, . . . , c`2 be the
constant values in x. Let x′ = (x′1, . . . , x

′
`1
, c1, . . . , c`2 , 0, . . . , 0) ∈ Fk.

3. For all 1 ≤ i ≤ `1, let [x(i)‖pos(i)]n−k be the degree-(n − k) packed Shamir sharing from some
previous layer that contains the secret x′i stored at position pi. Let p`1+1, . . . , pk be the first k− `1
distinct positions that are different from p1, . . . , p`1 and α1, . . . , αn. Let pos = (p1, . . . , pk).

4. Let ei be the i-th unit vector in Fk (i.e., only the i-th term is 1 and all other terms are 0). All
parties locally compute a degree-(k − 1) packed Shamir sharing [ei‖pos]k−1.

5. All parties locally compute

[x′‖pos]n−1 =

`1∑
i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k +

`2∑
i=1

ci · [e`1+i‖pos]k−1.

6. Let f : Fk → Fk be a linear map such that x = f(x′). Let Σ be the degree-(n− 1) packed Shamir
secret sharing scheme that stores secrets at positions pos. Let Σ′ be the degree-(n − k) packed
Shamir secret sharing scheme that stores secrets at positions β.

All parties invoke Ftran with (Σ,Σ′, f) and [x′‖pos]n−1, and output [x]n−k.

Protocol 8: Add

1. Suppose [x]n−k, [y]n−k are the input packed Shamir sharings of the addition gates.

2. All parties locally compute [z]n−k = [x]n−k + [y]n−k.

3. Suppose pos = (p1, p2, . . . , pk) are the positions associated with these k addition gates. Recall
that β = (β1, . . . , βk) are the default positions. Let Σ be the degree-(n− 1) packed Shamir secret
sharing scheme that stores secrets at positions β. Let Σ′ be the degree-(n − k) packed Shamir
secret sharing scheme that stores secrets at positions pos. Let I : Fk → Fk be the identity map.

All parties invoke Ftran with (Σ,Σ′, I) and [z]n−k, and output [z‖pos]n−k.

Multiplication Gates. For a group of k multiplication gates, recall that all parties have prepared two
degree-(n − k) packed Shamir sharings [x]n−k, [y]n−k where x are the first inputs of these k gates, and y
are the second inputs of these k gates. Let ([a]n−k, [b]n−k, [c]n−k) be the packed Beaver triple prepared in
the preprocessing phase. We will use the technique of packed Beaver triples to evaluate multiplication gates.
The description of Mult appears in Protocol 9.

5.2.4 Output Layer

In the output layer, output gates are divided into groups of size k based on the output receivers. For a group
of k output gates belonging to the same client, suppose x are the inputs. All parties invoke the protocol
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Protocol 9: Mult

1. Suppose [x]n−k, [y]n−k are the input packed Shamir sharings of the multiplication gates. All parties
will use a fresh random packed Beaver triple ([a]n−k, [b]n−k, [c]n−k) prepared in the preprocessing
phase.

2. All parties locally compute [x+ a]n−k = [x]n−k + [a]n−k and [y + b]n−k = [y]n−k + [b]n−k.

3. The first party P1 collects the whole sharings [x+ a]n−k, [y + b]n−k and reconstructs the secrets
x+ a,y + b. Then, P1 computes the sharings [x+ a]k−1, [y + b]k−1 and distributes the shares to
other parties.

4. All parties locally compute

[z]n−1 := [x+ a]k−1 · [y + b]k−1 − [x+ a]k−1 · [b]n−k − [y + b]k−1 · [a]n−k + [c]n−k.

5. Suppose pos = (p1, p2, . . . , pk) are the positions associated with these k multiplication gates. Recall
that β = (β1, . . . , βk) are the default positions. Let Σ be the degree-(n− 1) packed Shamir secret
sharing scheme that stores secrets at positions β. Let Σ′ be the degree-(n − k) packed Shamir
secret sharing scheme that stores secrets at positions pos. Let I : Fk → Fk be the identity map.

All parties invoke Ftran with (Σ,Σ′, I) and [z]n−1, and output [z‖pos]n−k.

Network to prepare [x]n−k. Then, all parties send their shares to the client to allow him to reconstruct
the output.

5.2.5 Main Protocol

Given the above protocols the main semi-honest protocol follows in a straightforward way. The ideal func-
tionality Fmain-semi appears in Functionality 10 and the main protocol is introduced in Protocol 11.

Functionality 10: Fmain-semi

1. Fmain-semi receives the input from all clients. Let x denote the input and C denote the circuit.

2. Fmain-semi computes C(x) and distributes the output to all clients.

Lemma 4. Protocol Main-Semi securely computes Fmain-semi in the (Fprep,Ftran)-hybrid model against a
semi-honest adversary who controls t parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let Corr denote the set of corrupted parties and H denote the set of honest parties.

The correctness of Main-Semi follows from (1) the correctness of the protocol Network for network
routing, and (2) the correctness of the protocols Add and Mult for addition gates and multiplication gates
respectively.

We now describe the construction of the simulator S.

1. In Step 1, S emulates the functionality Fprep and receives the shares of corrupted parties.
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Protocol 11: Main

1. Preprocessing Phase. All parties invoke Fprep to prepare enough packed Beaver triples in the
form of ([a]n−k, [b]n−k, [c]n−k), where a, b are random vectors in Fk and c = a ∗ b.

2. Initialization. Let α1, α2, . . . , αn be distinct field elements in F which are used for the shares
of all parties in packed Shamir secret sharing schemes. Let β1, β2, . . . , β|C| be |C| distinct field
elements that are different from α1, α2, . . . , αn. Let β = (β1, β2, . . . , βk) be the default positions
for the packed Shamir secret sharing schemes. We associate the field element βi with the i-th gate
in C.

3. Input Phase. Let Client1,Client2, . . . ,Clientc denote the clients who provide inputs. All input
gates are divided into groups of size k based on the input holders. For every group of k input gates
of Clienti, suppose x are the inputs, and pos = (p1, p2, . . . , pk) are the positions associated with
these k gates. Clienti generates a random degree-(n − k) packed Shamir sharing [x‖pos]n−k and
distributes the shares to all parties.

4. Evaluation Phase. All parties evaluate the circuit layer by layer as follows:

(a) For the current layer, all gates are divided into groups of size k based on their types (i.e.,
multiplication gates or addition gates). For each group of k gates, let x be the first inputs
of all gates, and y the second inputs of all gates. All parties invoke Network to prepare
[x]n−k and [y]n−k.

(b) For each group of k gates, let pos be the positions associated with these k gates.

• If they are addition gates, all parties invoke Add on ([x]n−k, [y]n−k), and obtain
[z‖pos]n−k.

• If they are multiplication gates, all parties invoke Mult on ([x]n−k, [y]n−k) with a fresh
packed Beaver triple ([a]n−k, [b]n−k, [c]n−k), and obtain [z‖pos]n−k.

5. Output Phase. All output gates are divided into groups of size k based on the output receiver.
For every group of k output gates of Clienti, suppose x are the inputs. All parties invoke the
protocol Network to prepare [x]n−k. Then, all parties send their shares to Clienti to let him
reconstruct the result x.

2. In Step 2, S follows the protocol.

3. In Step 3, for every group of k input gates of Clienti, if Clienti is honest, S samples random elements as
the shares of corrupted parties. If Clienti is corrupted, S learns the inputs x and the shares of corrupted
parties (since S can access to the inputs and random tapes of corrupted clients and corrupted parties).
Note that in both cases, S learns the shares of corrupted parties.

4. In Step 4.(a), S simulates Network. Note that Network only involves local computation and an
invocation of Ftran. S follows the protocol in Network and computes the shares of corrupted parties.
Then S emulates Ftran and receives the shares of corrupted parties. At the end of Network, S learns
the shares of [x]n−k and [y]n−k held by corrupted parties.

In Step 4.(b), for each group of addition gates with input sharings [x]n−k and [y]n−k, S simulates Add.
Note that Add only involves local computation and an invocation of Ftran. S follows the protocol in
Add and computes the shares of corrupted parties. Then S emulates Ftran and receives the shares of
corrupted parties. At the end of Add, S learns the shares of [z]n−k held by corrupted parties.

In Step 4.(b), for each group of multiplication gates with input sharings [x]n−k and [y]n−k, S simulates
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Mult as follows:

(a) The protocol Mult consumes a fresh random packed Beaver triple ([a]n−k, [b]n−k, [c]n−k). Re-
call that S learns the shares of these sharings held by corrupted parties when emulating the
functionality Fprep.

(b) In Step 2 of Mult, S computes the shares of [x+a]n−k and [y+b]n−k held by corrupted parties.
Then S generates two random degree-(n−k) packed Shamir sharings as [x+a]n−k and [y+b]n−k
based on the shares of corrupted parties.

(c) Since the whole sharings [x+a]n−k and [y+ b]n−k have been generated by S, S honestly follows
the protocol in Step 3 of Mult. S learns the shares of [x + a]k−1 and [y + b]k−1 of corrupted
parties at the end of this step.

(d) In Step 4 of Mult, S computes the shares of [z]n−1 held by corrupted parties.
(e) In Step 5 of Mult, S emulates Ftran and receives the shares of corrupted parties. At the end of

this step, S learns the shares of [z]n−k held by corrupted parties.

5. In Step 5, S simulates Network in the same way as that for Step 4.(a). S invokes Fmain-semi with
the input of corrupted clients, and receives the output of corrupted clients. For each group of output
gates of Clienti, S has learned the shares of the input sharing [x]n−k held by corrupted parties. If
Clienti is honest, S does nothing. If Clienti is corrupted, S also learns the secret x. S uses x and the
shares of [x]n−k held by corrupted parties, which are together k + (n − t) = n − k + 1 values (recall
that t = n− 2k + 1), to reconstruct the whole sharing [x]n−k and finally sends the shares of [x]n−k of
honest parties to Clienti.

This completes the description of S.
We show that S perfectly simulates the behaviors of honest parties. It is sufficient to focus on the places

where honest parties and clients need to communicate with corrupted parties and clients:

• In Step 3, honest clients need to share its input. In the real world, an honest client will generate
a random degree-(n − k) packed Shamir sharing and distribute the shares to other parties. By the
property of the degree-(n − k) packed Shamir secret sharing scheme, the shares of corrupted parties
are uniformly random. Therefore S perfectly simulates the behaviors of honest clients.

• In Step 4.(b), honest parties need to communicate with corrupted parties when running Mult. In
Step 3 of Mult, all parties need to send their shares of [x+ a]n−k, [y + b]n−k to P1. And Pi needs to
distribute [x+ a]k−1 and [y + b]k−1 to all parties.
Note that [x+a]n−k = [x]n−k + [a]n−k, and [a]n−k is a random degree-(n− k) packed Shamir sharing
given the shares of corrupted parties. Therefore [x + a]n−k is also a random degree-(n − k) packed
Shamir sharing given the shares of corrupted parties. Similarly, [y+ b]n−k is a random degree-(n− k)
packed Shamir sharing given the shares of corrupted parties. Also note that [x+a]k−1 and [y+ b]k−1

are fully determined by the secrets x+ a and y + b.
In the ideal world, S generates two random degree-(n − k) packed Shamir sharings as [x + a]n−k
and [y + b]n−k based on the shares of corrupted parties. Then, the distribution of these two random
degree-(n− k) packed Shamir sharings is identical to that in the real world. Note that it also implies
that the distribution of the two secrets x + a and y + b is identical to that in the real world. After
sampling [x+ a]n−k and [y + b]n−k, S honestly follows Step 3 of Mult. Thus, S perfectly simulates
the behaviors of honest parties.

• Finally, in Step 5, for each group of output gates of a corrupted client, honest parties need to send
their shares of the sharing associated with these gates to corrupted clients. Note that a degree-(n− k)
packed Shamir sharing is determined by its secret and the shares of corrupted parties. Since S learns
the output of corrupted clients from Fmain-semi and the shares of corrupted parties, S can compute the
shares of honest parties and perfectly simulate the behaviors of honest parties.
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Analysis of the Communication Complexity. We assume that the number of multiplication gates is
the same as the number of addition gates. We also assume that the number of input gates and output gates
is much smaller than the number of addition gates and multiplication gates. Let C denote the circuit and
Depth denote the circuit depth. We use I to denote the input size, G to denote the number of gates, and
O to denote the output size. Then |C| ≥ I +G+O.

• Cost of the Circuit Independent Preprocessing Phase: The size of the preprocessing data per packed
Beaver triple is 3n field elements. Therefore, the total size of the preprocessing data for multiplication
gates is ( G2k + Depth) · 3n. Here G

2 is the estimated number of multiplication gates, and G
2k + Depth is

the number of packed Beaver triples required for multiplication gates. The reason of adding Depth is
because the multiplication gates are grouped layer by layer. In each layer, if there are m multiplication
gates, then we need to prepare dm/ke < m/k + 1 packed Beaver triples.

• Cost of the Online Phase:

– Input Phase: For every group of k input gates, the communication complexity is n field elements.
Let I denote the size of input. Then the cost of the input phase is ( Ik + c) · n field elements of
communication. The reason of adding c is because the input gates are grouped based on the input
holders.

– Evaluation Phase: For every group of k (addition or multiplication) gates, all parties invoke Net-
work to prepare the two input sharings. Each invocation of Network involves one invocation
of Ftran.
For addition gates, each invocation of Add involves one invocation of Ftran.
For multiplication gates, each invocation of Mult involves 4n elements of communication and
one invocation of Ftran.
Thus, the evaluation phase cost ( G2k +Depth) ·4n elements of communication and (Gk +2 ·Depth) ·3
invocations of Ftran. When using Tran to instantiate Ftran, (Gk + 2 · Depth) · 3 invocations of
Ftran requires 12(Gk + 2 ·Depth) · n

2

k field elements of preprocessing data, and 12(Gk + 2 ·Depth) ·n
field elements of communication.
In total, the cost of the evaluation phase is 12(Gk + 2 · Depth) · n

2

k field elements of preprocessing
data, and 14(Gk + 2 · Depth) · n field elements of communication.

– Output Phase: For every group of k output gates, all parties invoke Network to prepare the
input sharing. Then all parties send their shares to the client who should receive the result. Recall
that each invocation of Network involves one invocation of Ftran. Thus, the output phase cost
(Ok + c) · n field elements of communication and O

k + c invocations of Ftran.

With a similar analysis, the cost of the output phase is 4(Ok +c) · n
2

k field elements of preprocessing
data, and 5(Ok + c) · n field elements of communication.

In summary, the total cost of the online phase is ( 12G
k + 4O

k +24·Depth+4c)· n
2

k elements of preprocessing
data, and ( Ik + 14G

k + 5O
k + 28 · Depth + 6c) · n elements of communication.

Thus, our semi-honest protocol requires 12|C| · n
2

k2 +O((Depth + c) · n
2

k ) elements of preprocessing data,
and 14|C| · nk +O((Depth + c) · n) elements of communication.

Theorem 4. In the client-server model, let c denote the number of clients, n denote the number of parties
(servers), and t denote the number of corrupted parties (servers). Let F be a finite field of size |F| ≥ |C|+n.
For an arithmetic circuit C over F, there exists an information-theoretic MPC protocol in the preprocessing
model which securely computes the arithmetic circuit C in the presence of a semi-honest adversary controlling
up to c clients and t parties. The cost of the protocol is O(|C| · n

2

k2 + (Depth + c) · n
2

k ) field elements of
preprocessing data and O(|C| · nk + (Depth + c) · n) field elements of communication, where k = n−t+1

2 and
Depth is the circuit depth.
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6 Maliciously Secure Protocol
In this section, we discuss how to achieve malicious security. One difficulty is that corrupted parties can
change the secret of a degree-(n−k) packed Shamir sharing by changing their own shares locally. We extend
the idea of using information-theoretic MACs introduced in [BDOZ11, DPSZ12] to authenticate packed
Shamir sharings.

Concretely, all parties will prepare a random degree-(n − k) packed Shamir sharing [γ]n−k, where γ =
(γ, γ, . . . , γ) ∈ Fk and γ is a random field element in F, in the preprocessing phase (using the default
positions). During the computation, a degree-(n − k) packed Shamir sharing [x‖pos]n−k is authenticated
by computing a degree-(n − k) packed Shamir sharing [γ ∗ x‖pos]n−k. We use [[x‖pos]]n−k to denote the
pair ([x‖pos]n−k, [γ ∗ x‖pos]n−k). Note that if corrupted parties change the secret x to x′, they also need
to change the secret γ ∗ x to γ ∗ x′. However, since γ is a uniform vector in Fk, the probability of a success
attack is at most 1/|F|. When the field size is large enough, we can detect such an attack with overwhelming
probability. Therefore in the following, we assume |F| ≥ 2κ, where κ is the security parameter.

Recall that t is the number of corrupted parties, and k = (n − t + 1)/2. Then the number of honest
parties is n− t = 2k− 1. We focus on n−1

3 ≤ t ≤ n− 1. Then k satisfies that 2k− 2 ≤ n− k. The benefit is
that for any 2k− 1 field elements in F, there is a degree-(n− k) packed Shamir sharing such that the shares
of honest parties are these 2k− 1 elements. In this way, we can transform any attack that adds errors to the
shares of honest parties to an attack that adds errors to the secrets.

6.1 Performing Sharing Transformation with Malicious Security
We will only focus on the sharing transformation we use in our semi-honest protocol: For two (potentially
different) vectors of field elements pos = (p1, . . . , pk) and pos′ = (p′1, . . . , p

′
k) such that they are disjoint

with {α1, . . . , αn}, all parties start with a degree-(n− 1) packed Shamir sharing [x‖pos]n−1. They want to
compute a degree-(n − k) packed Shamir sharing [y‖pos′]n−k such that for all i ∈ {1, 2, . . . , k}, yi is equal
to xj for some j.

We first construct a protocol that allows all parties to prepare a pair of random sharings for the above
transformation. It follows from Protocol Rand-Sharing with the concrete improvement discussed in Sec-
tion 4.5.

6.1.1 Preparing Random Sharings for Sharing Transformations

Let Π = Π(pos, pos′, f) be the F-linear secret sharing scheme defined as follows:

• The secret space Z = Fk.

• The share space U = F2.

• For a secret x ∈ Z, the sharing of x is ([x‖pos]n−1, [f(x)‖pos′]n−k).

• For a sharing X = (X1,X2), we view X1 as a degree-(n − 1) packed Shamir secret sharing scheme
and reconstruct the secret x.

Our goal is to prepare a pair of random sharings ([r‖pos]n−1, [f(r)‖pos′]n−k) where r is a random vector
in Fk. In the malicious security setting, we allow an adversary to add a constant vector to the secret of the
second sharing. We summarize the functionality Frand-sharing-mal in Functionality 12.

Let Π1,Π2, . . . ,Πk be k F-linear secret sharing schemes in the above form. We will prepare k random
sharings, one for each secret sharing scheme. Our protocol will use Frand to prepare random degree-(n− k)
packed Shamir sharings, and FrandZero to prepare random degree-(n− 1) packed Shamir sharings of 0. The
description of Protocol Rand-Sharing-Mal appears in Protocol 13.

Lemma 5. For all k ≤ (n+ 2)/3, Protocol Rand-Sharing-Mal securely computes Frand-sharing-mal in the
{Frand,FrandZero}-hybrid model against a fully malicious adversary who controls t = n− 2k + 1 parties.
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Functionality 12: Frand-sharing-mal

1. Frand-sharing-mal receives the set of corrupted parties, denoted by Corr. Frand-sharing-mal also receives
Π = Π(pos, pos′, f).

2. Frand-sharing-mal receives from the adversary a set of shares {(uj , vj)}j∈Corr, and a constant vector
d ∈ Fk.

3. Frand-sharing-mal samples a random vector r ∈ Fk and computes f(r) + d.

4. Frand-sharing-mal samples a pair of random sharings ([r‖pos]n−1, [f(r) + d‖pos′]n−k) such that for
all Pj ∈ Corr, the j-th share of ([r‖pos]n−1, [f(r) + d‖pos′]n−k) is (uj , vj).

5. Frand-sharing-mal distributes the shares of ([r‖pos]n−1, [f(r) + d‖pos′]n−k) to honest parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote the set
of corrupted parties and H denote the set of honest parties.

The simulator S works as follows.

1. In Step 2, S emulates the functionality FrandZero and receives the shares of [o1]n−1, . . . , [o2k−1]n−1 held
by corrupted parties.

2. In Step 3, S emulates the functionality Frand and receives the shares of each [rj ]n−k held by corrupted
parties.

• For all corrupted party Pj , S generates a random degree-(n − k) packed Shamir sharing [rj ]n−k
based on the shares held by corrupted parties. Then S sends the shares held by honest parties to
Pj .

• For all honest party Pj , S receives from corrupted parties their shares of [rj ]n−k. Then S sets a
degree-(n− 1) packed Shamir sharing [δj ]n−1 as follows:

(a) The share of each honest party is set to be 0.
(b) The share of each corrupted party is set to be the share of [rj ]n−k received from this corrupted

party minus the same share that this corrupted party should hold.

S reconstructs δj and views it as an additive attack towards Pj ’s shares.

3. In Step 4, S follows the same strategy as that in Step 3 but only for the first n− 2k + 1 parties. For
each honest party Pj , S extracts the additive attack towards Pj ’s shares, denoted by δ′j .

4. In Step 7, for all j ∈ {n − 2k + 2, . . . , n}, S computes the shares of [rn+j ]n−1 that corrupted parties
should hold. Then, for each Pj ∈ {Pn−2k+2, . . . , Pn},

• If Pj is corrupted, S samples a random vector in Fk as rn+j . Based on rn+j and the shares of
[rn+j ]n−1 that corrupted parties should hold, S randomly samples the shares of honest parties.
Finally, S sends the shares of rn+j held by honest parties to Pj .

• If Pj is honest, S receives from corrupted parties their shares of [rn+j ]n−1. Then S sets a degree-
(n− 1) packed Shamir sharing [δ′j ]n−1 as follows:

(a) The share of each honest party is set to be 0.
(b) The share of each corrupted party is set to be the share of [rn+j ]n−1 received from this

corrupted party minus the same share that this corrupted party should hold.

S reconstructs δ′j and views it as an additive attack towards Pj ’s shares.
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Protocol 13: Rand-Sharing-Mal

1. For all i ∈ {1, 2, . . . , k}, let Πi = Σ(posi, pos
′
i, fi).

2. All parties invoke FrandZero 2k−1 times and obtain (2k−1) random degree-(n−1) packed Shamir
sharings of 0, denoted by [o1]n−1, . . . , [o2k−1]n−1.

3. For all j ∈ {1, 2, . . . , n}, all parties invoke Frand and obtain a random degree-(n−k) packed Shamir
sharing [rj ]n−k. Then all parties send their shares to Pj . Pj views it as a degree-(n − 1) packed
Shamir sharing and reconstructs rj . Pj will use rj as his shares of the degree-(n − 1) packed
Shamir sharings in Π1, . . . ,Πk.

4. For all j ∈ {1, 2, . . . , n−2k+1}, all parties invoke Frand and obtain a random degree-(n−k) packed
Shamir sharing [rn+j ]n−k. Then all parties send their shares to Pj . Pj views it as a degree-(n− 1)
packed Shamir sharing and reconstructs rn+j . Pj will use the secret rn+j as his shares of the
degree-(n− k) packed Shamir sharings in Π1, . . . ,Πk.

5. For all i ∈ {1, 2, . . . , k}, the shares of the degree-(n−1) packed Shamir sharing in Πi, [τi‖posi]n−1,
are set to be (r1,i, r2,i, . . . , rn,i). And the first n−2k+1 shares of the degree-(n−k) packed Shamir
sharing in Πi, [fi(τi)‖pos′i]n−k, are set to be (rn+1,i, . . . , r2n−2k+1,i).

6. Note that each value in τi is a linear combination of (r1,i, r2,i, . . . , rn,i). Each value in fi(τi) is
a linear combination of the values in τi. And for all j ∈ {n − 2k + 2, . . . , n}, the j-th share
of [fi(τi)‖pos′i]n−k is a linear combination of its first n − 2k + 1 shares (rn+1,i, . . . , r2n−2k+1,i)
and the secret fi(τi). Thus, the j-th share of [fi(τi)‖pos′i]n−k is a linear combination of
(r1,i, r2,i, . . . , r2n−2k+1,i). Let c(i)j,1, . . . , c

(j)
j,2n−2k+1 be the coefficient such that the j-th share of

[fi(τi)‖pos′i]n−k

rn+j,i =

2n−2k+1∑
v=1

c
(i)
j,v · rv,i.

For all j ∈ {n− 2k + 2, . . . , n} and v ∈ {1, 2, . . . , 2n− 2k + 1}, let cj,v = (c
(1)
j,v , . . . , c

(k)
j,v ).

7. For all j ∈ {n− 2k + 2, . . . , n}, all parties locally compute

[rn+j ]n−1 = [oj−n+2k−1]n−1 +

2n−2k+1∑
v=1

cj,v · [rv]n−k.

Then, all parties send their shares of [rn+j ]n−1 to Pj .

8. For all j ∈ {n − 2k + 2, . . . , n}, Pj reconstructs [rn+j ]n−1 and learns rn+j . Then, for all
i ∈ {1, 2, . . . , k}, all parties output [τi‖posi]n−1 = (r1,i, . . . , rn,i) and [fi(τi)‖pos′i]n−k =
(rn+1,i, . . . , r2n,i).

Now S transforms the additive attacks towards the shares of honest parties to an additive attack
towards the secret of the second sharing in each Πi. For all i ∈ {1, 2, . . . , k},

• S computes a degree-(2k−2) packed Shamir sharing [d
(i)
1 ‖posi]2k−2 which is determined by using

(δj,i)j∈H as the shares of honest parties. d(i)
1 is viewed as an additive attack towards the secret

of the first sharing in Πi.

35



• S computes a degree-(2k−2) packed Shamir sharing [d
(i)
2 ‖pos′i]2k−2 which is determined by using

(δ′j,i)j∈H as the shares of honest parties. d(i)
2 is viewed as an additive attack towards the secret

of the second sharing in Πi.

S computes d(i) = d
(i)
2 − fi(d

(i)
1 ).

5. Recall that S has computed rj and rn+j for all corrupted party Pj . Let shj([d
(i)
1 ‖posi]2k−2) denote

the j-th share of [d
(i)
1 ‖posi]2k−2, and shj([d

(i)
2 ‖pos′i]2k−2) denote the j-th share of [d

(i)
2 ‖pos′i]2k−2. For

all i ∈ {1, 2, . . . , k}, S sends {rj,i + shj([d
(i)
1 ‖posi]2k−2), rn+j,i + shj([d

(i)
2 ‖pos′i]2k−2)}j∈Corr and d(i)

to Frand-sharing-mal(Πi).

This completes the description of the simulator. Now, we show that the simulator we constructed above
perfectly simulate the behaviors of honest parties.

We first show that the messages that honest parties send to corrupted parties have the same distribution
in both worlds. In Step 3, for each corrupted party Pj , honest parties need to send their shares of [rj ]n−k to
Pj . Recall that [rj ]n−k is a random degree-(n− k) packed Shamir sharing generated by Frand. In the ideal
world, S honestly follows Frand to compute the shares of honest parties. Therefore, the shares of [rj ]n−k held
by honest parties have the same distribution in both worlds. Similarly, in Step 4, for each corrupted party
Pj of the first n− 2k + 1 parties, the shares of [rn+j ]n−k held by honest parties have the same distribution
in both worlds.

In Step 7, for each corrupted party Pj ∈∈ {Pn−2k+2, . . . , Pn}, honest parties need to send their shares of
[rn+j ]n−1 to Pj . Recall that rn+j are used as the j-th shares of the degree-(n− k) packed Shamir sharings
in Π1, . . . ,Πk. Since the degree-(n− k) packed Shamir secret sharing scheme has threshold t, the shares of
corrupted parties are uniformly random. Therefore rn+j is uniformly distributed in Fk. Since all parties use
a random degree-(n − 1) packed Shamir sharing [oj−n+2k−1]n−1 as a random mask, [rn+j ]n−1 is a random
degree-(n− 1) packed Shamir sharing of rn+j given the secret rn+j and the shares of corrupted parties. In
the ideal world, S randomly samples the secret rn+j and randomly samples the shares of honest parties in
[rn+j ]n−1 based on the secret rn+j and the shares of corrupted parties. Thus, the shares of [rn+j ]n−1 held
by honest parties have the same distribution in both worlds.

Now it is sufficient to show that the shares of the output sharings held by honest parties have the same
distribution in both worlds. We note that the only thing that corrupted parties can do is to send incorrect
shares to honest parties.

• In the real world, in Step 3 for each honest party Pj , Pj uses the shares he received as a degree-
(n− 1) packed Shamir sharing and reconstructs r̃j (Here we use the tilde notation to distinguish from
the correct secret rj that Pj should obtain.) Compared with the shares that Pj should received, the
difference is the degree-(n−1) packed Shamir sharing [δj ]n−1 we constructed above. Thus, δj = r̃j−rj .
In the ideal world, S can compute [δj ]n−1 as described above. Similarly, in Step 4 and Step 7, S can
extract δ′j = r̃n+j − rn+j .

• Now for all i ∈ {1, 2, . . . , k} and for each honest party Pj , the j-th share of the first sharing in Πi

is deviated by δj,i due to the malicious behaviors of corrupted parties. Let [τi‖posi]n−1 denote the
first sharing that all parties should obtain. Then the shares that honest parties actually obtain are
equal to the shares of [τi‖posi]n−1 + [d

(i)
1 ‖posi]2k−2, where recall that [d

(i)
1 ‖posi]2k−2 is the degree-

(2k − 2) packed Shamir sharing determined by using (δj,i)j∈H as the shares of honest parties. Note
that when k ≤ (n + 2)/3, we have 2k − 2 ≤ n − 1. Therefore [τi‖posi]n−1 + [d

(i)
1 ‖posi]2k−2 =

[τi + d
(i)
1 ‖posi]n−1. Since [τi‖posi]n−1 is a random degree-(n − 1) packed Shamir sharing given the

shares of corrupted parties, [τi + d
(i)
1 ‖posi]n−1 is also a random degree-(n− 1) packed Shamir sharing

given the shares of corrupted parties. Thus, by sending the shares of [τi + d
(i)
1 ‖posi]n−1 of corrupted

parties to Frand-sharing-mal, Frand-sharing-mal generates the shares of [τi +d
(i)
1 ‖posi]n−1 of honest parties

with the same distribution as that in the real world.
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Similarly, for the second sharing [fi(τi)‖pos′i]n−k and for each honest party Pj , the j-th share is deviated
by δ′j,i due to the malicious behaviors of corrupted parties. Then the shares that honest parties actually
obtain are equal to the shares of [fi(τi)‖pos′i]n−k + [d

(i)
2 ‖pos′i]2k−2, where recall that [d

(i)
2 ‖pos′i]2k−2 is

the degree-(2k−2) packed Shamir sharing determined by using (δ′j,i)j∈H as the shares of honest parties.
Note that when k ≤ (n+ 2)/3, we have 2k− 2 ≤ n− k. Therefore [fi(τi)‖pos′i]n−k + [d

(i)
2 ‖pos′i]2k−2 =

[fi(τi)+d
(i)
2 ‖pos′i]n−k. Note that a degree-(n−k) packed Shamir sharing is determined by the secret and

the shares of corrupted parties. Since we have provided the shares of [τi + d
(i)
1 ‖posi]n−1 of corrupted

parties to Frand-sharing-mal, the secret generated by Frand-sharing-mal would correspond to τi + d
(i)
1 .

Then the additive errors to the secret becomes (fi(τi) + d
(i)
2 ) − fi(τi + d

(i)
1 ) = d

(i)
2 − fi(d

(i)
1 ) = d(i).

Thus, by sending the shares of [fi(τi) + d
(i)
2 ‖pos′i]n−k of corrupted parties and the additive errors

d(i), Frand-sharing-mal generates the shares of [fi(τi) + d
(i)
2 ‖pos′i]n−k of honest parties with the same

distribution as that in the real world.

We conclude that when k ≤ (n+2)/3, Protocol Rand-Sharing-Mal securely computes Frand-sharing-mal
in the {Frand,FrandZero}-hybrid model against a fully malicious adversary who controls t = n − 2k + 1
parties.

6.1.2 Performing Sharing Transformation

Now we present the concrete protocol for performing the sharing transformation that we are interested in.
We modify the protocol Tran by requiring that P1 distributes a degree-(2k − 2) packed Shamir sharing of
the reconstruction result. In this way, the whole sharing is determined by the shares of honest parties. Note
that when k ≤ (n+ 2)/3, we have 2k− 2 ≤ n− k. Thus, all parties can still obtain a degree-(n− k) Shamir
sharing at the end.

The description of the protocol Tran-Mal appears in Protocol 14.

Protocol 14: Tran-Mal

1. All parties agree on the tuple (pos, pos′, f) where pos, pos′ are two vectors of field elements in Fk
and f : Fk → Fk is a linear map. All parties start with a degree-(n − 1) packed Shamir sharing
[x‖pos]n−1. The goal is to compute [f(x)‖pos′]n−k.

2. Let Π = Π(pos, pos′, f) defined in Section 6.1.1. All parties invoke Frand-sharing-mal(Π) to prepare
a random Π-sharing ([r‖pos]n−1, [f(r)‖pos′]n−k).

3. All parties locally compute [x + r‖pos]n−1 = [x‖pos]n−1 + [r‖pos]n−1 and send their shares to
the first party P1.

4. P1 reconstructs the secret x+r. Then P1 computes f(x+r) and generates a degree-(2k−2) packed
Shamir sharing [f(x + r)‖pos′]2k−2. Finally, P1 distributes the shares of [f(x + r)‖pos′]2k−2 to
all parties.

5. All parties locally compute [f(x)‖pos′]n−k = [f(x+ r)‖pos′]2k−2 − [f(r)‖pos′]n−k.

6.2 Circuit-Independent Preprocessing Phase
In the circuit independent preprocessing phase, all parties prepare the following correlated random sharings:

• All parties prepare a random degree-(n−k) packed Shamir sharing [γ]n−k, where γ = (γ, γ, . . . , γ) ∈ Fk
and γ is a random field element, which is served as the MAC key.
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• For every group of k input gates and output gates:

1. All parties prepare an authenticated random degree-(n − k) packed Shamir sharings [[r]]n−k =
([r]n−k, [γ ∗r]n−k). In addition, all parties prepare another random degree-(n−k) packed Shamir
sharing [∆]n−k and compute the sharing [∆ ∗ r]n−k. Note that ([r]n−k, [∆ ∗ r]n−k) can be seen
as an authentication of the sharing [r]n−k under the MAC key [∆]n−k. We will use ([r]n−k, [∆ ∗
r]n−k) to allow a client to verify the correctness of the secret r in the input protocol and the
output protocol.

2. For every group of k output gates, all parties also prepare a random degree-(n−1) packed Shamir
sharing of 0, denoted by [o]n−1. We will use [o]n−1 to protect the shares of honest parties.

• For every group of k multiplication gates:

1. All parties prepare an authenticated packed Beaver triple ([[a]]n−k, [[b]]n−k, [[c]]n−k) where a, b are
random vectors in Fk and c = a ∗ b.

2. All parties prepare two random degree-(n− 1) packed Shamir sharings of 0, denoted by [o(1)]n−1,
[o(2)]n−1. In the multiplication protocol, these sharings are used as random masks to protect the
shares of honest parties.

• All parties also prepare the following sharings for the verification of the computation:

1. All parties prepare two random degree-(n− 1) packed Shamir sharings of 0, denoted by [o(1)]n−1

and [o(2)]n−1. These two sharings are used to protect the shares of honest parties when checking
the correctness of multiplications.

2. All parties prepare a pair of two random additive sharings (〈r〉, 〈γ · r〉), where r is a random
element in F and γ is the authentication key.

The functionality Fprep-mal for the circuit independent preprocessing phase appears in Functionality 15.
The size of the preprocessing data among all parties in Fprep-mal is summarized as follows:

• The sharing of the MAC key [γ]n−k: n elements.

• Per input gate: 4n/k elements.

• Per output gate: 5n/k elements.

• Per multiplication gate: 8n/k elements.

• For the verification of the computation: 4 · n elements.

6.3 Online Computation Phase
6.3.1 Input Layer

For a group of k input gates belonging to the same client, let x be the values associated with these k
input gates. Suppose pos are the positions associated with these k gates. The goal is to compute an
authenticated sharing [[x‖pos]]n−k. Recall that for every group of k input gates, all parties have prepared
the random sharings [[r]]n−k, [∆]n−k, [∆ ∗r]n−k in Fprep-mal, where [[r]]n−k = ([r]n−k, [γ ∗r]n−k). At a high-
level, all parties first send the random sharing [r]n−k to the client, and make use of the random sharings
[∆]n−k, [∆ ∗ r]n−k to allow the client to verify the correctness of the secret r. Then, the client samples a
random degree-(k − 1) packed Shamir sharing [x + r]k−1 and distributes the shares to all parties. In this
way, all parties can compute

[x]n−k = [x+ r]k−1 − [r]n−k

[γ ∗ x]n−1 = [x+ r]k−1 · [γ]n−k − [γ ∗ r]n−k

which is [[x]]n−1 = ([x]n−k, [γ ∗ x]n−1). Finally, all parties apply two times of Tran-Mal to transform
[[x]]n−1 to [[x‖pos]]n−k. The description of Input-Mal appears in Protocol 16.
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Functionality 15: Fprep-mal

Fprep-mal receives the set of corrupted parties, denoted by Corr. Fprep-mal samples a random field element
γ ∈ F and sets γ = (γ, γ, . . . , γ) ∈ Fk. Let d ∈ {n− k, n− 1}. We define the following two procedures.

• RandSharing(r, d): Fprep-mal receives from the adversary a set of shares {rj}j∈Corr. Then
Fprep-mal samples a random degree-d packed Shamir sharing [r]d such that for all Pj ∈ Corr, the
j-th share of [r]d is rj . Finally, Fprep-mal distributes the shares of [r]d to honest parties.

• AuthSharing(r): Fprep-mal receives from the adversary a set of shares {(rj , uj)}j∈Corr. Then
Fprep-mal computes two degree-(n − k) packed Shamir sharings ([r]n−k, [γ ∗ r]n−k) such that for
all Pj ∈ Corr, the j-th shares of ([r]n−k, [γ ∗ r]n−k) are rj , uj respectively. Finally, Fprep-mal
distributes the shares of [[r]]n−k = ([r]n−k, [γ ∗ r]n−k) to honest parties.

The ideal functionality Fprep-mal runs the following steps.

1. Fprep-mal invokes RandSharing(γ, n− k) to prepare [γ]n−k.

2. For every group of k input gates and output gates:

(a) Fprep-mal samples a random vector r ∈ Fk and invokes AuthSharing(r) to prepare [[r]]n−k.

(b) Fprep-mal samples a random vector ∆ ∈ Fk and invokes RandSharing(∆, n−k) and Rand-
Sharing(∆ ∗ r, n− k) to prepare ([∆]n−k, [∆ ∗ r]n−k).

(c) For every group of k output gates, Fprep-mal invokes RandSharing(0, n − 1) to prepare
[o]n−1, where o = 0.

3. For every group of k multiplication gates:

(a) Fprep-mal samples two random vectors a, b ∈ Fk and computes c = a ∗ b. Then,
Fprep-mal invokes AuthSharing(a), AuthSharing(b), and AuthSharing(c) to prepare
([[a]]n−k, [[b]]n−k, [[c]]n−k).

(b) Fprep-mal invokes two times of RandSharing(0, n− 1) to prepare [o(1)]n−1, [o(2)]n−1, where
o(1) = o(2) = 0.

4. All parties prepare the following random sharings for the verification of the computation:

(a) All parties invoke two times of RandSharing(0, n−1) to prepare [o(1)]n−1, [o
(2)]n−1, where

o(1) = o(2) = 0.

(b) Fprep-mal receives from the adversary a set of shares {(rj , r′j)}j∈Corr. Then Fprep-mal samples
a random field element r and computes γ · r. Fprep-mal randomly generates a pair of additive
sharings (〈r〉, 〈γ · r〉) such that for all Pj ∈ Corr, the j-th shares of (〈r〉, 〈γ · r〉) are rj , r′j
respectively. Finally, Fprep-mal distributes the shares of (〈r〉, 〈γ · r〉) to honest parties.

6.3.2 Network Routing

We follow the same approach as that in our semi-honest protocol to realize network routing. To obtain an
authenticated degree-(n− k) packed Shamir sharing [[x]]n−k, we will apply the network routing protocol to
compute each of ([x]n−k, [γ ∗ x]n−k). The description of Network-Mal appears in Protocol 17.
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Protocol 16: Input-Mal

1. Suppose x ∈ Fk is the input associated with the input gates which belongs to Client. Also suppose
pos are the positions associated with these gates. Let [[r]]n−k, [∆]n−k, [∆ ∗ r]n−k be the random
sharings prepared for these input gates in Fprep-mal. Recall that [[r]]n−k = ([r]n−k, [γ ∗ r]n−k).

2. All parties send their shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k to Client.

3. Client checks whether the shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k form valid degree-(n − k) packed
Shamir sharings. If not, Client aborts. Otherwise, Client reconstructs the secret r,∆,∆ ∗ r and
checks the MAC of r, i.e., whether the third secret is equal to the coordinate-wise multiplication
of the first two secrets. If not, Client aborts.

4. If both checks pass, Client generates a random degree-(k − 1) packed Shamir sharing of x + r,
denoted by [x+ r]k−1, and distributes the shares to all parties.

5. All parties locally compute

[x]n−k = [x+ r]k−1 − [r]n−k

[γ ∗ x]n−1 = [x+ r]k−1 · [γ]n−k − [γ ∗ r]n−k

and set [[x]]n−1 = ([x]n−k, [γ ∗ x]n−1).

6. Recall that β are the default positions for the packed Shamir secret sharing scheme. All parties
invoke Tran-Mal on [x]n−k with (β, pos, I), where I is the identity map, and obtain [x‖pos]n−k.
All parties invoke Tran-Mal on [γ ∗ x]n−1 with (β, pos, I) and obtain [γ ∗ x‖pos]n−k.

7. All parties take [[x‖pos]]n−k = ([x‖pos]n−k, [γ ∗ x‖pos]n−k) as output.

6.3.3 Evaluating Addition Gates and Multiplication Gates

Addition Gates. We follow the same approach as that in our semi-honest protocol to evaluate addition
gates. To obtain an authenticated degree-(n − k) packed Shamir sharing [[z‖pos]]n−k (the output sharing),
we will invoke Tran-Mal two times to transform [[z]]n−k to [[z‖pos]]n−k. The description of Add-Mal
appears in Protocol 18.

Multiplication Gates. For a group of k multiplication gates, let [[x]]n−k, [[y]]n−k be the input sharings.
Recall that all parties have prepared the following random sharings in Fprep-mal:

• An authenticated packed Beaver triple: ([[a]]n−k, [[b]]n−k, [[c]]n−k).

• Three degree-(n− 1) packed Shamir sharings of 0: [o(1)]n−1, [o
(2)]n−1.

The goal is to compute an authenticated output sharing [[z‖pos]]n−k = [[x ∗ y‖pos]]n−k, where pos are the
positions associated with these k gates. We follow a similar approach as that in our semi-honest protocol.
The first difference is that, all parties will use [o(1)]n−1, [o

(2)]n−1 to refresh their shares when letting P1

reconstructs x + a and y + b. The second difference is that P1 not only needs to distribute degree-(k − 1)
packed Shamir sharings of x+a,y+b, but also a degree-(k−1) packed Shamir sharing of (x+a) ·(y+b). In
this way, all parties can locally compute an authenticated degree-(n−1) packed Shamir sharing of z = x∗y.
The correctness of the sharings distributed by P1 will be checked later. Finally, we will invoke Tran-Mal
two times to transform [[z]]n−1 to [[z‖pos]]n−k.

The description of Mult-Mal appears in Protocol 19.
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Protocol 17: Network-Mal

1. Suppose all parties want to prepare an authenticated degree-(n − k) packed Shamir sharing of x
stored at the default positions β.

2. Let x′1, x′2, . . . , x′`1 be the different wire values in x from previous layers. Let c1, c2, . . . , c`2 be the
constant values in x. Let x′ = (x′1, . . . , x

′
`1
, c1, . . . , c`2 , 0, . . . , 0) ∈ Fk.

3. For all 1 ≤ i ≤ `1, let [[x(i)‖pos(i)]]n−k be the degree-(n − k) packed Shamir sharing from some
previous layer that contains the secret x′i stored at position pi. Let p`1+1, . . . , pk be the first
k − `1 distinct positions that are different from p1, . . . , p`1 and α1, . . . , αn. (In particular, pi ∈
{β1, . . . , βk} for all i ∈ {`1 + 1, . . . , k}.) Let pos = (p1, . . . , pk).

4. Let ei be the i-th unit vector in Fk (i.e., only the i-th term is 1 and all other terms are 0). All
parties locally compute a degree-(k − 1) packed Shamir sharing [ei‖pos]k−1.

5. All parties locally compute

[x′‖pos]n−1 =

`1∑
i=1

[ei‖pos]k−1 · [x(i)‖pos(i)]n−k +

`2∑
i=1

ci · [e`1+i‖pos]k−1

[γ ∗ x′‖pos]n−1 =

`1∑
i=1

[ei‖pos]k−1 · [γ ∗ x(i)‖pos(i)]n−k

+

`2∑
i=1

ci · [e`1+i‖pos]k−1 · [γ]n−k

6. Let f : Fk → Fk be a linear map such that x = f(x′). Recall that β are the default positions
for the packed Shamir secret sharing scheme. All parties invoke Tran-Mal on [x′‖pos]n−1 with
(pos,β, f) and obtain [x]n−k. All parties invoke Tran-Mal on [γ ∗ x′‖pos]n−1 with (pos,β, f)
and obtain [γ ∗ x]n−k.

7. All parties take [[x]]n−k = ([x]n−k, [γ ∗ x]n−k) as output.

Protocol 18: Add-Mal

1. Suppose [[x]]n−k, [[y]]n−k are the input packed Shamir sharings of the addition gates.

2. All parties locally compute [[z]]n−k = [[x]]n−k + [[y]]n−k.

3. Suppose pos are the positions associated with these k addition gates. Recall that β are the default
positions. All parties invoke Tran-Mal on [z]n−k with (β, pos, I), where I is the identity map,
and obtain [z‖pos]n−k. All parties invoke Tran-Mal on [γ ∗ z]n−1 with (β, pos, I) and obtain
[γ ∗ z‖pos]n−k.

4. All parties take [[z‖pos]]n−k = ([z‖pos]n−k, [γ ∗ z‖pos]n−k) as output.
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Protocol 19: Mult-Mal

1. Suppose [[x]]n−k, [[y]]n−k are the input packed Shamir sharings of the multiplication gates. All
parties will use the following random sahrings prepared in the preprocessing phase

• An authenticated packed Beaver triple: ([[a]]n−k, [[b]]n−k, [[c]]n−k).

• Three degree-(n− 1) packed Shamir sharings of 0: [o(1)]n−1, [o
(2)]n−1.

2. All parties locally compute [x+ a]n−1 = [o(1)]n−1 + [x]n−k + [a]n−k and [y + b]n−1 = [o(2)]n−1 +
[y]n−k + [b]n−k.

3. The first party P1 collects the whole sharings [x + a]n−1, [y + b]n−1 and reconstructs the secrets
x + a,y + b. Then, P1 computes (x + a) · (y + b) and the sharings [x + a]k−1, [y + b]k−1, [(x +
a) · (y + b)]k−1. Finally, P1 distributes the shares to other parties.

4. All parties locally compute

[z]n−1 = [(x+ a) · (y + b)]k−1 − [x+ a]k−1 · [b]n−k
−[y + b]k−1 · [a]n−k + [c]n−k

[γ ∗ z]n−1 = [γ]n−k · [(x+ a) · (y + b)]k−1 − [x+ a]k−1 · [γ ∗ b]n−k
−[y + b]k−1 · [γ ∗ a]n−k + [γ ∗ c]n−k

and set [[z]]n−1 = ([z]n−1, [γ ∗ z]n−1).

5. Suppose pos are the positions associated with these k multiplication gates. Recall that β are the
default positions. All parties invoke Tran-Mal on [z]n−1 with (β, pos, I), where I is the identity
map, and obtain [z‖pos]n−k. All parties invoke Tran-Mal on [γ ∗ z]n−1 with (β, pos, I) and
obtain [γ ∗ z‖pos]n−k.

6. All parties take [[z‖pos]]n−k = ([z‖pos]n−k, [γ ∗ z‖pos]n−k) as output.

6.3.4 Output Layer

For a group of k output gates belonging to the same client, let x ∈ Fk be the values associated with these
k output gates. All parties hold [[x]]n−k. Let [[r]]n−k, ([∆]n−k, [∆ ∗ r]n−k), [o]n−1 be the random sharings
prepared for these k output gates in Fprep-mal. To reconstruct the secret x to the client:

1. All parties send to P1 their shares of [x+ r]n−1 := [o]n−1 + [x]n−k + [r]n−k.

2. P1 reconstructs x+ r and distributes a degree-(2k − 2) packed Shamir sharing [x+ r]2k−2.

Before reconstructing the secret to the client, all parties verify the correctness of the computation.

Verification of the Computation. To check the correctness of the computation, it is sufficient to verify
the following points:

1. For Input Phase:

• Each degree-(k− 1) packed Shamir sharing distributed by a client is a valid degree-(k− 1) packed
Shamir sharing.

• All parties obtain correct [[x‖pos]]n−k from [[x]]n−1 when using Tran.
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2. For Network Routing: All parties obtain correct [[x]]n−k from [[x′‖pos]]n−1 when using Tran.

3. For Addition Gates: All parties obtain a correct output sharing [[z‖pos]]n−k from [[z]]n−k when using
Tran.

4. For Multiplication Gates:

• [x+a]k−1, [y+ b]k−1, [(x+a) · (y+ b)]k−1 are valid degree-(k− 1) packed Shamir sharings. The
first two secrets are identical to the secrets of [[x + a]]n−k = [[x]]n−k + [[a]]n−k and [[y + b]]n−k =
[[y]]n−k + [[b]]n−k, and the third secret is equal to the coordinate-wise multiplication between the
first two secrets.

• All parties obtain a correct output sharing [[z‖pos]]n−k from [[z]]n−1 when using Tran.

5. For Output Gates: The secret of [x+a]2k−2 is identical to the secret of [[x+r]]n−k = [[x]]n−k+[[r]]n−k.

We will use an ideal functionality Fcom that allows all parties to commit their values. The description of
Fcom appears in Functionality 20. It has been shown in [DPSZ12] that Fcom can be realized with the cost
of 2n2 + n elements of preprocessing data and 4n2 elements of communication.

Functionality 20: Fcom

1. On input (Commit, v, i, τv) by Pi, Fcom stores (v, i, τv) and outputs (i, τv) to all parties, where τv
represents a handle for the commitment.

2. On input (Open, i, τv) by Pi, Fcom outputs (v, i, τv) to all parties if exists, or abort otherwise.

We will first verify that all degree-(k − 1) packed Shamir sharings are valid.

Verification of Degree-(k − 1) Packed Shamir Sharings. The verification is done by computing a
random linear combination of all degree-(k− 1) packed Shamir sharings and checking the correctness of the
resulting degree-(k−1) packed Shamir sharing by each party. Note that we do not need to protect the secrecy
of these sharings since they are generated by P1 or a client, who can be corrupted. The description of Check-
Consistency appears in Protocol 21. Recall that the cost of Fcom is 2n2 + n elements of preprocessing
data and 4n2 elements of communication. The total cost of Check-Consistency is 2n3 + n2 elements of
preprocessing data and 4n3 + n2 elements of communication.

Lemma 6. If there exists i ∈ {1, 2, . . . ,m} such that the shares of [x(i)]k−1 of honest parties do not corre-
spond to a valid degree-(k − 1) packed Shamir sharing, with probability at least 1−m/|F|, all honest parties
abort in Check-Consistency.

Proof. By Fcom, all parties obtain a uniform element λ in Step 3. Consider the polynomial

[F (λ)]k−1 = [x(1)]k−1 + [x(2)]k−1 · λ+ . . .+ [x(m)]k−1 · λm−1.

By Lagrange interpolation, for any m different points λ(1), λ(2), . . . , λ(m), there is a one-to-one linear map
from {[F (λ(i))]k−1}mi=1 to {[x(i)]k−1}mi=1. Thus, if there exists i ∈ {1, 2, . . . ,m} such that the shares of
[x(i)]k−1 of honest parties do not correspond to a valid degree-(k − 1) packed Shamir sharing, then the
number of λ ∈ F such that the shares of [F (λ)]k−1 of honest parties correspond to a valid degree-(k − 1)
packed Shamir sharing is bounded by m− 1. Since λ is a uniform element in F, the probability of sampling
such a λ is bounded by (m− 1)/|F| ≤ m/|F|. Note that for every λ where the shares of [F (λ)]k−1 of honest
parties do not correspond to a valid degree-(k− 1) packed Shamir sharing, all honest parties will abort since
they will always receive the correct shares of honest parties. Thus, the lemma holds.
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Protocol 21: Check-Consistency

1. Let m be the number of degree-(k − 1) packed Shamir sharings that all parties need to check.
These m sharings are denoted by

[x(1)]k−1, [x
(2)]k−1, . . . , [x

(m)]k−1.

2. Each party Pi samples a random field element λi ∈ F and invokes Fcom with (Commit, λi, i, τλi
).

3. Each party Pi invokes Fcom with (Open, i, τλi
). All parties set λ = λ1 + λ2 + . . .+ λn.

4. All parties locally compute

[x]k−1 = [x(1)]k−1 + [x(2)]k−1 · λ+ . . .+ [x(m)]k−1 · λm−1.

5. All parties send their shares of [x]k−1 to all other parties. Then each party Pi checks whether the
shares of [x]k−1 form a valid degree-(k − 1) packed Shamir sharing. If not, Pi aborts. Otherwise,
Pi accepts.

Verification of the Secrets of Degree-(2k − 2) Packed Shamir Sharings. In this part, for a pair of
sharings ([x]2k−2, [[x]]n−k), we want to verify that the secret of [x]2k−2 is identical to that authenticated in
[[x]]n−k. We assume that we do not need to protect the privacy of the secret.

This can be used to verify the secrets of [x + a]k−1, [y + b]k−1 for multiplication gates (note that we
can always view a degree-(k − 1) packed Shamir sharing as a degree-(2k − 2) packed Shamir sharing), and
the secret of [x + r]2k−2 for output gates. Also for the correctness of [(x + a) · (y + b)]k−1, note that
[(x+ a) · (y + b)]k−1 − [x+ a]k−1 · [y + b]k−1 should be a degree-(2k − 2) packed Shamir sharing of 0. We
can also verify the secret of [(x+ a) · (y + b)]k−1.

At a high-level, we simply compute a random linear combination of all pairs of random sharings and then
reconstruct the resulting pair of sharings. The verification protocol will use the two degree-(n − 1) packed
Shamir sharings of 0, [o(1)]n−1 and [o(2)]n−1, prepared in Fprep-mal. The description of Check-Secret
appears in Protocol 22. Recall that the cost of Fcom is 2n2 + n elements of preprocessing data and 4n2

elements of communication. The total cost of Check-Secret is 8n3 + 4n2 elements of preprocessing data
and 16n3 + n2 elements of communication.

Informally, the effectiveness of Check-Secret comes from the following two points:

• For all i ∈ {1, 2, . . . ,m}, corrupted parties cannot change the secret of [u(i)]2k−2 and the secret authen-
ticated by [[u(i)]]n−k. The former is because the secret of a degree-(2k − 2) packed Shamir sharing is
determined by the shares of honest parties. The latter is due to the security of the information-theoretic
MAC.

• If there exists i ∈ {1, 2, . . . ,m} such that the secret of [u(i)]2k−2 is different from the secret authenti-
cated by [[u(i)]]n−k, with overwhelming probability (when the underlying field F is large enough), the
secret of [u]2k−2 is different from the secret authenticated by [[u]]n−1 = ([u]n−1, [γ ∗ u]n−1).

The formal argument is deferred to the final proof of the whole protocol.

Security of Tran. In the final proof of the whole protocol, we will show that what an adversary can do
in Tran is to insert an additive error to the secret of the resulting sharing. Since we obtain [[f(x)‖pos]]n−k
from [[x‖pos]]n−1 by invoking Tran on [x‖pos]n−1 and [γ ∗ x‖pos]n−1 separately, by the security of the
information-theoretic MAC, any additive errors inserted by the adversary will lead to an invalid authenticated
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Protocol 22: Check-Secret

1. Let {([u(i)]2k−2, [[u
(i)]]n−k)}mi=1 be the m pairs of sharings that all parties want to check. Let

[o(1)]n−1, [o
(2)]n−1 be the random degree-(n−1) packed Shamir sharings of 0 prepared in Fprep-mal,

and [γ]n−k be the degree-(n − k) packed Shamir sharing of the authentication key prepared in
Fprep-mal.

2. Each party Pi samples a random field element λi ∈ F and invokes Fcom with (Commit, λi, i, τλi).

3. Each party Pi invokes Fcom with (Open, i, τλi
). All parties set λ = λ1 + λ2 + . . .+ λn.

4. All parties locally compute

[u]2k−2 = [u(1)]2k−2 + [u(2)]2k−2 · λ+ . . .+ [u(m)]2k−2 · λm−1,

[u]n−1 = [o(1)]n−1 + [u(1)]n−k + [u(2)]n−k · λ+ . . .+ [u(m)]n−k · λm−1,

[γ ∗ u]n−1 = [o(2)]n−1 + [γ ∗ u(1)]n−k + [γ ∗ u(2)]n−k · λ+ . . .

+[γ ∗ u(m)]n−k · λm−1.

5. All parties send their shares of [u]2k−2 to all other parties. All parties also commit their shares of
[u]n−1, [γ ∗ u]n−1, [γ]n−k using Fcom.

6. All parties open their shares of [u]n−1, [γ ∗ u]n−1, [γ]n−k using Fcom. Then each party Pi checks
the following:

(a) The shares of [u]2k−2 form a valid degree-(2k − 2) packed Shamir sharing.

(b) The shares of [γ]n−k form a valid degree-(n − k) packed Shamir sharing and the secret γ is
in the form of (γ, γ, . . . , γ) ∈ Fk.

(c) The secrets of [u]n−1, [γ∗u]n−1, [γ]n−k satisfy that the second secret is equal to the coordinate-
wise multiplication of the first secret and the third secret.

(d) The secret of [u]2k−2 is the same as the secret of [u]n−1.

If all checks pass, Pi accepts. Otherwise, Pi aborts.

degree-(n − k) packed Shamir sharing [[f(x)‖pos]]n−k with overwhelming probability. Such attacks can be
detected when verifying that the reconstruction of the authenticated sharings when evaluating multiplication
gates and output gates are correct, which is covered by Protocol Check-Secret.

Reconstructing the Output. After all parties verify the computation, they reconstruct the function
output to the clients. For a group of k output gates belonging to the same client, let x ∈ Fk be the values
associated with these k output gates. All parties hold [[x]]n−k. Let [[r]]n−k, ([∆]n−k, [∆ ∗ r]n−k), [o]n−1 be
the random sharings prepared for these k output gates in Fprep-mal. Recall that all parties have obtained a
degree-(2k − 2) packed Shamir sharing [x+ r]2k−2. To reconstruct the secret x to the client:

1. All parties send their shares of [x+ r]2k−2 to the client to allow him to reconstruct the secret x+ r.

2. All parties send their shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k to the client to allow him to reconstruct and
verify the secret r.

Finally, the client can compute x = (x+ r)− r. The description of Output-Mal appears in Protocol 23.
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Protocol 23: Output-Mal

1. Suppose x ∈ Fk is the output associated with the output gates which belongs to Client. Let
[[r]]n−k, ([∆]n−k, [∆ ∗ r]n−k), [o]n−1 be the random sharings prepared for these output gates in
Fprep-mal. Recall that [[r]]n−k = ([r]n−k, [γ ∗ r]n−k). All parties hold [x+ r]2k−2 at the beginning
of the protocol.

2. All parties send their shares of [x+ r]2k−2, [r]n−k, [∆]n−k, [∆ ∗ r]n−k to Client.

3. Client checks whether the shares of [x+r]2k−2 form a valid degree-(2k−2) packed Shamir sharing.
If not, Client aborts. Otherwise, Client reconstructs the secret x+ r.

4. Client checks whether the shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k form valid degree-(n − k) packed
Shamir sharings. If not, Client aborts. Otherwise, Client reconstructs the secret r,∆,∆ ∗ r and
checks the MAC of r, i.e., whether the third secret is equal to the coordinate-wise multiplication
of the first two secrets. If not, Client aborts.

5. If all checks pass, Client computes x = (x+ r)− r.

6.4 Main Protocol
Now we are ready to introduce the main protocol. The ideal functionality Fmain-mal appears in Functional-
ity 24. The description of Main-Mal appears in Protocol 25.

Functionality 24: Fmain-mal

1. Fmain-mal receives the input from all clients. Let x denote the input and C denote the circuit.

2. Fmain-mal computes C(x) and sends the output of corrupted clients to the adversary. Fmain-mal
waits for the response of the adversary.

• If the adversary replies abort, Fmain-mal sends abort to all clients.

• If the adversary replies continue, Fmain-mal distributes the output to all clients.

Lemma 7. For all k ≤ (n + 2)/3, Protocol Main-Mal securely computes Fmain-mal in the {Fprep-mal,
Frand-sharing-mal,Fcom}-hybrid model against a fully malicious adversary who controls t = n− 2k+ 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let Corr denote the set of corrupted parties and H denote the set of honest parties.

Throughout the simulator, S will keep tracking the shares that should be held by corrupted parties. We
will maintain the invariant that for all degree-(2k − 2) packed Shamir sharings (including degree-(k − 1)
packed Shamir sharings), S will learn the whole sharings and their secrets. For every authenticated degree-
(n− k) packed Shamir sharing [[x‖pos]]n−k, S will compute a pair of vectors, which are the additive errors
to the secret and its MAC due to the behaviors of corrupted parties.

Simulation of Main-Mal. In the preprocessing phase, S emulates the functionality Fprep-mal and
receives the shares of corrupted parties.
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Protocol 25: Main-Mal

1. Preprocessing Phase. All parties invoke Fprep-mal to prepare correlated randomness for the
online phase.

2. Initialization. Let α1, α2, . . . , αn be distinct field elements in F which are used for the shares
of all parties in packed Shamir secret sharing schemes. Let β1, β2, . . . , β|C| be |C| distinct field
elements that are different from α1, α2, . . . , αn. Let β = (β1, β2, . . . , βk) be the default positions
for the packed Shamir secret sharing schemes. We associate the field element βi with the i-th gate
in C.

3. Input Phase. Let Client1,Client2, . . . ,Clientc denote the clients who provide inputs. All input
gates are divided into groups of size k based on the input holders. For every group of k input gates
of Clienti, suppose x are the inputs, and pos = (p1, p2, . . . , pk) are the positions associated with
these k gates. All parties and Clienti invokes Input-Mal to obtain [[x‖pos]]n−k.

4. Evaluation Phase. All parties evaluate the circuit layer by layer as follows:

(a) For the current layer, all gates are divided into groups of size k based on their types (i.e.,
multiplication gates or addition gates). For each group of k gates, let x be the first inputs of
all gates, and y the second inputs of all gates. All parties invoke Network-Mal to prepare
[[x]]n−k and [[y]]n−k.

(b) For each group of k gates, let pos be the positions associated with these k gates.

• If they are addition gates, all parties invoke Add-Mal on ([[x]]n−k, [[y]]n−k), and obtain
[[z‖pos]]n−k.

• If they are multiplication gates, all parties invoke Mult-Mal on ([[x]]n−k, [[y]]n−k) and
obtain [[z‖pos]]n−k.

5. Output Phase. All output gates are divided into groups of size k based on the output receiver.
For every group of k output gates of Clienti, suppose x are the inputs. All parties invoke the
protocol Network-Mal to prepare [[x]]n−k. Then, all parties run the following steps.

(a) Let [[r]]n−k, ([∆]n−k, [∆ ∗ r]n−k), [o]n−1 be the random sharings prepared for these k output
gates in Fprep-mal. All parties send to P1 their shares of [x+r]n−1 := [o]n−1 +[x]n−k+[r]n−k.

(b) P1 reconstructs x+ r and distributes a degree-(2k − 2) packed Shamir sharing [x+ r]2k−2.

Now all parties verify the computation. (1) All parties invoke Check-Consistency to check the
correctness of all degree-(k − 1) packed Shamir sharings. (2) All parties invoke Check-Secret
to check the correctness of the secrets of the degree-(2k − 2) (including degree-(k − 1)) packed
Shamir sharings generated by P1. (3) All parties invoke Check-MAC to check the correctness
of the authentications. In particular (2) and (3) are invoked in parallel. The authentication key
is only revealed after all parties commit their shares in Step 5 of Check-Secret and Step 5 of
Check-MAC.

If all parties accept the verification, all parties and Clienti invoke Output to reconstruct the
output x to Clienti.

Simulating the Input Phase. In Step 3, for every group of k input gates of Clienti, S simulates
Input-Mal. In Step 1 of Input-Mal, recall that S has learnt the shares of [[r]]n−k, ([∆]n−k, [∆ ∗ r]n−k) of
corrupted parties when emulating Fprep-mal. Starting from Step 2 of Input-Mal, there are two cases:
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• If Clienti is honest, in Step 2, S receives the shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k of corrupted parties.

In Step 3, for each sharing [p]n−k ∈ {[r]n−k, [∆]n−k, [∆∗r]n−k}, S computes a sharing [δ(p)]n−k which
is defined as follows:

1. The shares of all honest parties are set to be 0.

2. For each corrupted party Pj , the j-th share is equal to the j-th share of [p]n−k received from Pj
minus the same share that Pj should hold.

S checks whether [δ(p)]n−k is a valid degree-(n − k) packed Shamir sharing of 0. If not, S aborts on
behalf of Clienti.

Otherwise, in Step 4, S generates a random vector as x + r and honestly follows the protocol by
generating a random degree-(k − 1) packed Shamir sharing [x + r]k−1 and distributing the shares to
corrupted parties.

In Step 5, S computes the shares of [[x]]n−1 held by corrupted parties.

• If Clienti is corrupted, in Step 2, S samples two random vectors r,∆ and computes the whole sharings
[r]n−k, [∆]n−k, [∆ ∗ r]n−k. Then S sends the shares of honest parties to Clienti on behalf of honest
parties.

In Step 4, S receives from Clienti the shares of [x + r]k−1 of honest parties. S checks whether the
shares of [x + r]k−1 held by honest parties form a valid degree-(k − 1) packed Shamir sharing. If
true, S recovers the whole sharing [x + r]k−1, reconstructs the secret of [x + r]2k−2, and computes
x = (x + r) − r. Otherwise, S sets the shares of [x + r]k−1 of corrupted parties to be all 0 and sets
x = 0. In this case, S will abort during the verification of degree-(k − 1) packed Shamir sharings.

In Step 5, S computes the shares of [[x]]n−1 held by corrupted parties.

In Step 6 of Input Mal, S simulates Tran-Mal. The simulation is done as follows:

1. In Step 2, S emulates the ideal functionality Frand-sharing-mal and receives the shares of corrupted parties
and the additive error d. Suppose these two sharings are denoted by ([r‖pos]n−1, [f(r) +d‖pos′]n−k).

2. In Step 3, S generates a random degree-(n− 1) packed Shamir sharing as [x+ r‖pos]n−1 based on the
shares held by corrupted parties. S reconstructs the secret x+ r and computes f(x+ r).

3. In Step 4, S honestly follows the protocol and learns the shares of [f(x+r)‖pos′]2k−2 of honest parties.
Since it is a degree-(2k−2) packed Shamir sharing, S recovers the whole sharing by using honest parties’
shares. Then S reconstructs the secret f(x+ r) (to distinguish from the correct secret).

4. In Step 5, S computes the shares of the resulting sharing held by corrupted parties. Note that the
resulting sharing has secret f(x+ r) − (f(r) + d). On the other hand, the correct secret should be
f(x). Therefore, effectively, the adversary inserts an additive error

δ = (f(x+ r)− (f(r) + d))− f(x) = f(x+ r)− f(x+ r)− d.

Note that S learns f(x+ r), f(x+ r),d. S computes the error δ.

Let δ1, δ2 be the additive errors in the invocation of Tran-Mal on [x]n−1 and the invocation of Tran-Mal
on [γ ∗ x]n−1. We associate (δ1, δ2) with the authenticated sharing [[x‖pos]]n−k.
S invokes the ideal functionality Fmain-mal and sends to Fmain-mal the input of corrupted parties extracted

above. Then S receives the output of corrupted parties from Fmain-mal.
Simulating the Evaluation Phase. In Step 4.(a), S simulates Network-Mal.
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1. The first 5 steps only involve local computation. S computes the shares of ([x′‖pos]n−1, [γ∗x′‖pos]n−1)
held by corrupted parties. For all i ∈ {1, 2, . . . , `1}, each value x′i is in the authenticated degree-(n−k)
packed Shamir sharing [[x(i)‖pos(i)]]n−k. Recall that for every authenticated degree-(n − k) packed
Shamir sharing, S has computed a pair of vectors, which are the additive errors to the secret and its
MAC due to the behaviors of corrupted parties. S extracts the errors associated with the value x′i and
its MAC for all i ∈ {1, 2, . . . , `1}. Then, for all i > `1, S sets the errors associated with the value x′i
and its MAC to be 0. In this way, S obtains two vectors (δ′1, δ

′
2), which are the additive errors to the

secrets of ([x′‖pos]n−1, [γ ∗ x′‖pos]n−1).

2. In Step 6, S simulates Tran-Mal as described above, and extracts the additive errors δ′′1 , δ′′2 in the
invocation of Tran-Mal on [x′‖pos]n−1 and the invocation of Tran-Mal on [γ ∗ x′‖pos]n−1. Then
the additive errors associated with the authenticated sharing [[x]]n−k are (f(δ′1) + δ′′1 , f(δ′2) + δ′′2 ).

In Step 4.(b), for each group of addition gates with input sharings [[x]]n−k and [[y]]n−k, S simulates
Add-Mal.

1. In Step 2, S computes the shares of [[z]]n−k held by corrupted parties. The vector of additive errors
associated with [[z]]n−k are the sum of the vectors of additive errors associated with [[x]]n−k and [[y]]n−k.
Suppose the vector of additive errors associated with [[z]]n−k is denoted by (δ′1, δ

′
2).

2. In Step 3, S simulates Tran-Mal as described above, and extracts the additive errors δ′′1 , δ′′2 in the
invocation of Tran-Mal on [z]n−k and the invocation of Tran-Mal on [γ ∗z]n−k. Then the additive
errors associated with the authenticated sharing [[z‖pos]]n−k are (δ′1 + δ′′1 , δ

′
2 + δ′′2 ).

For each group of multiplication gates with input sharings [[x]]n−k and [[y]]n−k, S simulates Mult-Mal.

1. In Step 2 of Mult-Mal, S computes the shares of [x+a]n−1, [y+ b]n−1 of corrupted parties and sets
the shares of [x+a]n−1, [y+ b]n−1 of honest parties to be uniform elements. Then S reconstructs the
secrets x+ a and y + b.

2. In Step 3 of Mult-Mal, since the whole sharings [x+a]n−1, [y+b]n−1 have been generated, S honestly
follows the protocol. At the end of Step 3 of Mult-Mal, S receives the shares of [x + a]k−1, [y +
b]k−1, [(x + a) · (y + b)]k−1 of honest parties from P1 (which is either honestly simulated by S or
controlled by the adversary). S checks whether the shares of [x+a]k−1, [y+b]k−1, [(x+a) ·(y+b)]k−1

of honest parties form valid degree-(k − 1) packed Shamir sharings.

• If true, S recovers the whole sharings [x+a]k−1, [y+b]k−1, [(x+a) ·(y+b)]k−1 using the shares of
honest parties and then reconstructs the secrets x+ a,y + b, (x+ a) · (y + b). Then S computes
three vectors

η(1) = (x+ a)− (x+ a)

η(2) = (y + b)− (y + b)

η(3) = (x+ a) · (y + b)− (x+ a)) · (y + b)

• Otherwise, S sets the shares of [x+a]k−1, [y+b]k−1 of corrupted parties to be all 0. In this case,
S will abort during the verification of degree-(k − 1) packed Shamir sharings.

3. In Step 4 of Mult-Mal, S computes the shares of [z]n−1, [γ ∗ z]n−1 of corrupted parties.

4. In Step 5, S simulates Tran-Mal as described above, and extracts the additive errors δ1, δ2 in the
invocation of Tran-Mal on [z]n−1 and the invocation of Tran-Mal on [γ ∗z]n−1. Then the additive
errors associated with the authenticated sharing [[z‖pos]]n−k are (δ1, δ2).

Simulating the Output Phase. For every group of k output gates of Clienti, suppose x are the inputs.
S first simulates Network-Mal as described above and compute the additive errors associated with the
authenticated degree-(n− k) Shamir sharing [[x]]n−k.
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In Step 5.(a), S computes the shares of [x+ r]n−1 of corrupted parties and sets the shares of [x+ r]n−1

of honest parties to be uniform elements. Then S reconstructs the secrets x+ r.
In Step 5.(b), S honestly follows the protocol and learns the shares of [x+ r]2k−2 held by honest parties.

S recovers the whole sharings [x+r]2k−2 using the shares of honest parties and then reconstructs the secrets
x+ r. Then S computes η = x+ r − (x+ r).

Then S simulates the verification process. For Check-Consistency,

1. In Step 2, for each honest party Pi, S emulates Fcom by outputting (i, τλi) to all parties. For each
corrupted party Pi, S honestly emulates Fcom and learns λi.

2. In Step 3, without loss of generality, assume that Pn is an honest party. S samples a random element
as λ. For each honest party Pi 6= Pn, S samples a random element as λi. Then λn is set to be
λ−

∑n−1
i=1 λi. For each honest party Pi, S emulates Fcom by outputting (λi, i, τλi). For each corrupted

party Pi, S honestly emulates Fcom.

3. Recall that for all degree-(k−1) packed Shamir sharings generated in Mult-Mal, S has already learnt
the shares of honest parties. Therefore, S honestly follows the rest of steps in Check-Consistency.
If no party aborts at the end of Mult-Mal but there exists a degree-(k − 1) packed Shamir sharing
such that the shares of honest parties do not form a valid degree-(k − 1) packed Shamir sharing, S
aborts.

For Check-Secret,

1. In Step 1, a pair of sharings ([u(i)]2k−2, [[u
(i)]]n−k) may come from three places:

• It may be ([x + a]k−1, [[x + a]]n−k) in Mult-Mal. In this case, S has computed the error η(1)

which is the secret of [x+ a]k−1 minus the secret of [[x+ a]]n−k. Note that, S learns the secrets
of both sharings.

• It may be ([(x + a) · (y + b)]k−1 − [x + a]k−1 · [y + b]k−1, 0) in Mult-Mal, where the second
sharing is all-0 sharing. In this case, S has computed the error η(3), which is the secret of
[(x+ a) · (y + b)]k−1 − [x+ a]k−1 · [y + b]k−1. Note that, S learns the secrets of both sharings.

• It may be ([x + r]k−1, [[x + r]]n−k) in Step 5 of Main-Mal. In this case, S has computed the
error η which is the secret of [x+ r]k−1 minus the secret of [[x+ r]]n−k. Note that, S learns the
secrets of both sharings.

Thus, in any case, S learns the secrets of both sharings. S also learns the shares held by corrupted
parties, and the additive errors associated with [[u(i)]]n−k.

2. In Step 2 and Step 3, S emulates the ideal functionality Fcom in the same way as that in Check-
Consistency.

3. In Step 4,

• S computes the whole sharing [u]2k−2 and the secret u

• S computes the shares of [u]n−1 held by corrupted parties, and the secret u. Then S randomly
samples the shares of honest parties based on the secret u and the shares of corrupted parties.

• S samples a random element as γ and sets γ = (γ, γ, . . . , γ) ∈ Fk. Then S computes the shares
of [γ]n−k based on the secret γ and the shares of corrupted parties.

• S computes the shares of [γ ∗ u]n−1 held by corrupted parties. Recall that S has computed
a vector of additive errors for each [[u(i)]]n−k, denoted by (δ

(i)
1 , δ

(i)
2 ). S computes the additive

errors to ([u]n−1, [γ ∗ u]n−1), denoted by (δ1, δ2). Then S computes the secret of [γ ∗ u]n−1 by
γ ∗ u = γ ∗ u+ δ2 − γ ∗ δ1. S randomly samples the shares of [γ ∗ u]n−1 of honest parties based
on the secret γ ∗ u and the shares of corrupted parties.
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4. In Step 5 and Step 6, since the whole sharings [u]2k−2, [u]n−1, [γ ∗ u]n−1, [γ]n−k have been generated,
S honestly follows the protocol and honestly emulates Fcom. If no party aborts at the end of Check-
Secret but the following case occurs, S aborts.

• There exists ([u(i)]2k−2, [[u
(i)]]n−k) such that their secrets do not satisfy

ū(i) = u(i) − δ(i)
1 .

After the verification, S simulates Output-Mal.

1. If Clienti is corrupted, S learns the output x from Fmain-mal. Recall that S learns the whole sharing
of [x+ r]2k−2 and the secret x+ r. S computes r = (x+ r)− x. Then S recovers the whole sharing
[r]n−k using the secret r and the shares of corrupted parties. S samples a random vector as ∆ and
computes ∆ ∗ r. Then S recovers the whole sharings [∆]n−k, [∆ ∗ r]n−k using the secrets ∆,∆ ∗ r
and the shares of corrupted parties.

Since the whole sharings [x+r]2k−2, [r]n−k, [∆]n−k, [∆∗r]n−k have been generated, S honestly follows
the protocol.

2. If Clienti is honest, S receives the shares of [x+r]2k−2, [r]n−k, [∆]n−k, [∆ ∗r]n−k of corrupted parties.
For [x+r]2k−2, if the shares received from corrupted parties are not equal to the shares that corrupted
parties should hold, S aborts on behalf of Clienti.

For each sharing [p]n−k ∈ {[r]n−k, [∆]n−k, [∆∗r]n−k}, S computes a sharing [δ(p)]n−k which is defined
as follows:

(a) The shares of all honest parties are set to be 0.

(b) For each corrupted party Pj , the j-th share is equal to the j-th share of [p]n−k received from Pj
minus the same share that Pj should hold.

S checks whether [δ(p)]n−k is a valid degree-(n − k) packed Shamir sharing of 0. If not, S aborts on
behalf of Clienti.

This completes the description of the simulator S.

Hybrid Argument. Now we show that S perfectly simulates the behaviors of honest parties with over-
whelming probability. Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S simulates Check-Consistency. Compared with Hybrid0, there are two

changes:

• The functionality Fcom is emulated by S and the random element λ is chosen by S. Note that in
Hybrid0, corrupted parties only receive from Fcom (i, τλi

) for each honest party in Step 2 of Check-
Consistency. Therefore, for each corrupted party Pi, the value λi is independent of the values of
honest parties. It means that the element λ computed in Step 3 of Check-Consistency is uniformly
random. In Hybrid1, S simply outputs (i, τλi) on behalf of Fcom for each honest party in Step 2 of
Check-Consistency. Then S samples a random element λ and then samples the value λi for each
honest party such that the summation of all λi’s is λ. Therefore, the distribution of these two steps is
identical to that in Hybrid0.

• S will abort if no party aborts in Check-Consistency but there exists a degree-(k−1) packed Shamir
sharing such that the shares of honest parties do not form a valid degree-(k−1) packed Shamir sharing.
By Lemma 6, it happens with probability at most m/|F|.
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Recall that |F| ≥ 2κ, where κ is the security parameter. Therefore, the distribution ofHybrid1 is statistically
close to the distribution of Hybrid0.

Hybrid2: In this hybrid, S computes the shares that corrupted parties should hold as described above.
For each authenticated degree-(n− k) packed Shamir sharing, S also computes a pair of vectors, which are
the additive errors to the secret and its MAC. For each degree-(2k − 2) (including degree-(k − 1)) packed
Shamir sharing, S computes the whole sharing by using the shares of honest parties. Note that we do not
change the way that S simulates the behaviors of honest parties. Therefore the distribution of Hybrid2 is
identical to the distribution of Hybrid1.

Hybrid3: In this hybrid, S simulates Check-Secret (including the simulation of the authentication
key). Compared with Hybrid2, there are three changes:

• The functionality Fcom is simulated by S and the random element λ is chosen by S. Following the
same argument as that in Hybrid1, the distribution of these two steps is identical to that in Hybrid2.

• S samples a random element as γ and sets γ = (γ, γ, . . . , γ). Then S computes the shares of [γ]n−k of
honest parties based on the secret and the shares of corrupted parties.

In Hybrid2, we argue that the messages that honest parties send to corrupted parties before Check-
Secret are independent of the shares of [γ]n−k held by honest parties. The messages sent from honest
parties to corrupted parties have 3 different kinds:

– The shares of a random degree-(n − k) packed Shamir sharing of honest parties directly learnt
from Fprep-mal. This kind includes Step 2 of Input-Mal.

– The shares of a random degree-(n−1) packed Shamir sharing of honest parties, which are uniformly
random field elements. This kind includes Step 3 of Tran-Mal, the first half of Step 3 of Mult-
Mal, and Step 5.(a) of Main-Mal.

– The degree-(2k−2) (including degree-(k−1)) packed Shamir sharings whose secrets are uniformly
random. This kind includes Step 4 of Tran-Mal, Step 4 of Input-Mal, the second half of Step
3 of Mult-Mal, and Step 5.(b) of Main-Mal.

– The linear combinations of shares of degree-(k − 1) packed Shamir sharings that are directly
received from other parties. This kind includes Step 5 of Check-Consistency.

One can verify that all above messages are independent of the shares of [γ]n−k held by honest parties.
Since γ is uniformly random given the shares of [γ]n−k held by corrupted parties, the distribution of
the shares of [γ]n−k held by honest parties is identical in both Hybrid2 and Hybrid3.

• For [u]2k−2, S has already computed the whole sharing. Let ū denote the secret of [u]2k−2. For
([u]n−1, [γ ∗ u]n−1), the secrets can be computed from the secrets and the MACs of {[[u(i)]]n−k}mi=1.
For each [[u(i)]]n−k, S computes the secret by using the shares that corrupted parties should hold and the
shares of honest parties. Later on, we will show that S can compute the secret u(i) without the shares
of honest parties. Note that S also computes a pair of vectors (δ

(i)
1 , δ

(i)
2 ) which are additive errors to

the secret and its MAC of [[u(i)]]n−k. Then, the secret of [γ∗u(i)]n−k is γ ∗ u(i) = γ∗u(i)+δ
(i)
2 −γ∗δ

(i)
1 .

S computes the secret of [γ ∗ u(i)]n−k. Now S can compute the secrets of ([u]n−1, [γ ∗ u]n−1). Given
the secrets of [u]n−1, [γ ∗u]n−1 and the shares of corrupted parties, S randomly samples the shares of
honest parties.

InHybrid2, for [u]n−1, [γ∗u]n−1, since all parties use random degree-(n−1) packed Shamir sharings of
0, [o(1)]n−1, [o

(2)]n−1, as random masks, they are random degree-(n− 1) packed Shamir sharings given
the secrets u,γ ∗ u and the shares of corrupted parties. Note that u is identical to that in Hybrid3,
and γ ∗ u is determined by u and the pair of additive errors. Therefore, u,γ ∗ u are identical to those
in Hybrid3. The shares of [u]n−1, [γ ∗ u]n−1 of honest parties have the same distribution in both
Hybrid2 and Hybrid3.

• If no party aborts at the end of Check-Secret but the following case occurs, S aborts.
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– There exists ([u(i)]2k−2, [[u
(i)]]n−k) such that their secrets do not satisfy

ū(i) = u(i) − δ(i)
1 .

Let (δ1, δ2) be the pair of additive errors to [u]n−1, [γ ∗ u]n−1 computed from {(δ(i)
1 , δ

(i)
2 )}mi=1. Note

that

– Following the same argument as that in Lemma 6, if there exists a pair ([u(i)]2k−2, [[u
(i)]]n−k) such

that ū(i) 6= u(i) − δ(i)
1 , then with overwhelming probability, for the final pair ([u]2k−2, [[u]]n−1),

ū 6= u− δ1.

– Corrupted parties cannot change their shares of [u]2k−2 without being detected since the whole
sharing is determined by the shares of honest parties.

– While corrupted parties may change their shares of [u]n−1, [γ ∗ u]n−1, [γ]n−k, any change of the
shares of corrupted parties either will be detected or is equivalent to additive errors to the secrets
u,γ ∗ u,γ. To see this, for each of the sharing [u]n−1, [γ ∗ u]n−1, [γ]n−k, we may compute the
difference between the sharing that uses the shares that corrupted parties commit and the sharing
that uses the shares that corrupted parties should hold. For [u]n−1 or [γ ∗ u]n−1, the difference
corresponds to a degree-(n − 1) packed Shamir sharing of the additive error. For [γ]n−k, the
difference is either not a valid degree-(n− k) packed Shamir sharing, which will be detected when
checking [γ]n−k, or a degree-(n − k) packed Shamir sharing of the additive error. Note that the
additive errors are independent of γ,γ ∗ u since the adversary needs to decide the additive errors
before reconstructing [γ ∗ u]n−1, [γ]n−k.
When u 6= u − δ1, the only possibility that no party aborts at the end of Check-Secret is
that the adversary adds ε0, ε1, ε2 to u,γ ∗ u,γ respectively such that (1) u = u + ε0, and (2)
(γ + ε2) ∗ (u + ε0) = γ ∗ u + ε1. Recall that γ ∗ u = γ ∗ u + δ2 − γ ∗ δ1. From (1), ε0 6= −δ1.
From (2), γ ∗ (ε0 + δ1) = δ2 + ε1 − u ∗ ε2 − ε0 ∗ ε2. Since γ is a random field element and
γ = (γ, γ, . . . , γ) ∈ Fk, the probability that the adversary can find ε0, ε1, ε2 that satisfy (1) and
(2) is negligible.

In Summary, the distribution of Hybrid3 is statistically close to the distribution of Hybrid2. Note that in
Hybrid3, S will always abort if the computation is incorrect.

Hybrid4: In this hybrid, S extracts the input of corrupted parties as described above. Then S invokes
Fmain-mal and sends the input of corrupted parties to Fmain-mal. S simulates Output. We first consider the
case that the output gates belong to an honest client. Compared with Hybrid3, the change is the following:

• In Hybrid4, after S receives the shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k of corrupted parties, for each
sharing, S computes the difference of the sharing that uses the shares that corrupted send to S and
the sharing that uses the shares that corrupted parties should hold. S aborts if the difference is not a
valid degree-(n− k) packed Shamir sharing of 0.

• In Hybrid3, Client reconstructs the secret of [r]n−k, [∆]n−k, [∆ ∗ r]n−k and checks whether the third
secret is equal to the coordinate-wise multiplication of the first two secrets. Following the same argu-
ment as that in Hybrid3, the change of the shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k of corrupted parties
either will lead to invalid degree-(n− k) packed Shamir sharings or is equivalent to additive errors to
the secrets r,∆,∆ ∗ r. If the adversary changes the shares of corrupted parties but Client does not
abort, the only possibility is that the adversary adds ε0, ε1, ε2 to r,∆,∆ ∗ r respectively such that
(∆ + ε1) ∗ (r + ε0) = ∆ ∗ r + ε2. It means that ∆ ∗ ε0 + ε1 ∗ r + ε1 ∗ ε0 = ε2. If ε0 = ε1 = ε2 = 0,
then in both Hybrid3 and Hybrid4, Client (or S) accepts. If ε0 = 0 but ε1 6= 0 or ε2 6= 0, then ε1

and ε2 should satisfy that ε1 ∗ r = ε2. Since r is a random vector, the probability that the adversary
can find such ε1 and ε2 is negligible. Similarly, if ε0 6= 0, since ∆ is a random vector, the probability
that the adversary can find ε0, ε1, ε2 that satisfy the above requirement is negligible.
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Thus, when the client is honest, the distribution of Hybrid4 is statistically close to Hybrid3.
Now we consider the case that the output gates belong to a corrupted client. Compared with Hybrid3,

the change is that S computes r from x + r and x, and S samples a random vector as ∆. Then based on
the secrets and the shares of corrupted parties, S recovers the whole sharings [r]n−k, [∆]n−k, [∆ ∗ r]n−k.
Note that Output is only invoked after Check-Consistency and Check-Secret. Recall that we have
changed these protocols by the simulation of S, which will abort if the computation is incorrect. Thus, x
received from Fmain-mal is the same as x in Hybrid3. Therefore, the vector r,∆ computed by S have the
same distribution as those in Hybrid3. Since the sharings [r]n−k, [∆]n−k, [∆ ∗ r]n−k are determined by the
secrets and the shares of corrupted parties, the distribution of Hybrid4 is identical to Hybrid3 when the
client is corrupted.

In summary, the distribution of Hybrid4 is statistically close to the distribution of Hybrid3.
Hybrid5: In this hybrid, S simulates Tran-Mal, Mult-Mal, Add-Mal, and Step 5.(a), 5.(b) of

Mult-Mal. The only difference is that when all parties need to send a degree-(n − 1) packed Shamir
sharing to P1, S samples random elements as the shares of honest parties. Recall that we either use a
random degree-(n−1) packed Shamir sharing [r]n−1, or use a pair of random sharings ([r]n−k, [o]n−1) where
o = 0, as a random mask. Note that [r]n−k + [o]n−1 has the same distribution as [r]n−1. Therefore, the
sharings that P1 collects from all parties are always random degree-(n− 1) packed Shamir sharings. Given
the shares of corrupted parties, the shares of a random degree-(n−1) packed Shamir sharing of honest parties
are uniformly random. Thus, the distribution of Hybrid5 is identical to the distribution of Hybrid4. Note
that the shares generated for honest parties together with the shares of corrupted parties can be used to
compute the secret of [[u(i)]]n−k in Check-Secret.

Hybrid6: In this hybrid, S simulates Input. We first consider the case that the input gates belong to
an honest client. Compared with Hybrid5, the difference is the following:

• In Hybrid6, after S receives the shares of [r]n−k, [∆]n−k, [∆ ∗ r]n−k of corrupted parties, for each
sharing, S computes the difference of the sharing that uses the shares that corrupted parties send to
S and the sharing that uses the shares that corrupted parties should hold. If the difference is not a
valid degree-(n− k) packed Shamir sharing of 0, S aborts. Otherwise S generates a random vector as
x+ r and honestly follows the protocol by generating a random degree-(k− 1) packed Shamir sharing
[x+ r]k−1 and distributing the shares to corrupted parties.

• In Hybrid5, Client reconstructs the secret of [r]n−k, [∆]n−k, [∆ ∗ r]n−k and checks whether the third
secret is equal to the coordinate-wise multiplication of the first two secrets. Following the same argu-
ment as that in Hybrid5, if corrupted parties change their shares of an authenticated sharing (which
causes the the change of the secret), with overwhelming probability, the change will be detected and
Client will abort. If Client accepts, Client will generate and distribute a random degree-(k − 1) packed
Shamir sharing of x+ r. Since r is a random vector, x+ r is also a random vector.

Thus, when the client is honest, the distribution of Hybrid6 is statistically close to Hybrid5.
Now we consider the case that the input gates belong to a corrupted client. Compared withHybrid5, the

change is that S samples two random vector as r,∆. Then based on the secrets and the shares of corrupted
parties, S recovers the whole sharings [r]n−k, [∆]n−k, [∆ ∗ r]n−k. Note that r,∆ are indeed random vectors
in Hybrid5. Since the sharings [r]n−k, [∆]n−k, [∆ ∗ r]n−k are determined by the secrets and the shares of
corrupted parties, the distribution of Hybrid6 is identical to Hybrid5 when the client is corrupted.

In summary, the distribution of Hybrid6 is statistically close to the distribution of Hybrid5.
Note that Hybrid6 is the execution in the ideal world, and the distribution of Hybrid6 is statistically

close to the distribution of Hybrid0, the execution in the real world.

Theorem 5. In the client-server model, let c denote the number of clients, n denote the number of parties
(servers), and t denote the number of corrupted parties (servers). Let κ be the security parameter and F
be a finite field of size |F| ≥ 2κ. For an arithmetic circuit C over F and for all n−1

3 ≤ t ≤ n − 1, there
exists an information-theoretic MPC protocol in the circuit-independent preprocessing model which securely
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computes the arithmetic circuit C in the presence of a fully malicious adversary controlling up to c clients
and t parties. The cost of the protocol is O(|C| · n

2

k2 + poly(Depth, c, n)) field elements of preprocessing data
and O(|C| · nk +poly(Depth, c, n)) field elements of communication, where k = n−t+1

2 and Depth is the circuit
depth.

7 Using [GPS21] for Small Finite Fields
In this section, we discuss how to use the technique in [GPS21] to relax the requirement of the field size.

In essence, we will always use the default positions for the packed Shamir secret sharing scheme in our
construction. Then, for network routing, we will use the technique in [GPS21] instead of our approach. We
describe the technique in [GPS21] as follows.

Approach in [GPS21] for the Network Routing. The work [GPS21] focuses on the strong honest
majority setting, where the number of corrupted parties is bounded by t = n/2 − k, and shows how to
use packed Shamir sharings to evaluate a single circuit with O(n/k) communication per gate. While the
corruption threshold of this work is different from that in [GPS21], we note that their method can be extended
to our setting. In [GPS21], the network routing is done by two steps:

1. For each input sharing that we want to prepare, all parties first prepare a degree-(n−1) packed Shamir
sharing such that it contains all the secrets we need but the order may be incorrect.

2. To obtain the input sharing we need, all parties perform a permutation on the secrets of the sharing
that all parties have prepared in the first step.

Note that the second step can be simply achieved by using our technique for sharing transformation since
a permutation is a linear map over Fk → Fk. For the first step, the main observation in [GPS21] is that, if
the secrets we need are coming from different positions of the output sharings from previous layers, then all
parties can locally obtain a degree-(n− 1) packed Shamir sharing that contains the secrets we want.

Concretely, suppose [x(1)]n−k, . . . , [x
(k)]n−k are k degree-(n − k) packed Shamir sharings from previous

layers (which do not need to be distinct) and all parties want to prepare a sharing that contains the ij-th
secret of x(j) for all j ∈ {1, 2, . . . , k}. If i1, i2, . . . , ik are distinct, then all parties can locally compute a
degree-(n− 1) packed Shamir sharing that contains the secrets we want as follows:

1. For all j ∈ {1, 2, . . . , k}, let ej denote a vector in Fk where all entries of ej are 0 except the ij-th entry
is 1. All parties locally transform ej to a degree-(k − 1) packed Shamir sharing [ej ]k−1.

2. All parties locally compute

[x]n−1 =

k∑
j=1

[ej ]k−1 · [x(j)]n−k.

The correctness follows from the facts that [ej ]k−1 · [x(j)]n−k = [ej ∗ x(j)]n−1 and ej ∗ x(j) is a vector in Fk

where all entries are 0 except the ij-th entry is x(j)
ij

.
Following from this observation, Goyal, et al. [GPS21] consider the so-called non-collision property.

Property 2 (Non-collision [GPS21]). For each input sharing of each layer, the secrets of this input sharing
come from different positions in the output sharings of previous layers.

The non-collision property can be achieved by the following two steps:

1. For each of input gates, addition gates, and multiplication gates, we insert a fan-out gate that copies
the output wire the number of times it is used in later layers. In this way, every output wire of the
input layer and all intermediate layers is used exactly once as an input wire of a later layer (which
may not be the next layer). Note that this step has not achieved the non-collision property yet: If
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the original circuit has already satisfied that for each of input gates, addition gates, and multiplication
gates, the output wire is just used once in later layers, then this step essentially does nothing. It is still
possible, for example, that the secrets that need to be in a single input sharing are all coming from the
first position of k different sharings.

2. Let m denote the number of output packed Shamir sharings of the input layer and all intermediate
layers in the circuit after the introduction of the fan-out gate in Step 1. Then the number of input
packed Shamir sharings of the output layer and all intermediate layers is also m. A collision refers
to the scenario that two secrets that are in the same position of two different output sharings want
to go to the same input sharing. One way to remove a collision is to perform a permutation on one
of the output sharing so that these two secrets are in different positions. The non-collision property
requires us to remove all collisions at the same time. In [GPS21], Goyal, et al. show that there exists m
permutations, such that all collisions can be removed by applying the i-th permutation to the secrets
of the i-th output packed Shamir sharing for all i ∈ {1, 2, . . . ,m}.
Specifically, consider a matrix N ∈ {1, 2, . . . ,m}m×k where Ni,j is the index of the input sharing that
the j-th secret of the i-th output sharing wants to go to. We have the following theorem from [GPS21].

Theorem 6. Let m ≥ 1, k ≥ 1 be integers. Let N be a matrix of dimension m×k in {1, 2, . . . ,m}m×k
such that there are exactly k entries that are equal to ` for all ` ∈ {1, 2, . . . ,m} (Here an entry Ni,j = `
means that the the j-th secret of the i-th output sharing wants to go to the `-th input sharing). Then,
there exists m permutations p1, p2, . . . , pm over {1, 2, . . . , k} such that after performing the permutation
pi on the i-th row of N , the new matrix N ′ satisfies that each column of N ′ is a permutation over
(1, 2, . . . ,m). Furthermore, the permutations p1, p2, . . . , pm can be found within polynomial time.

Note that after applying the permutation pi to the i-th output sharing for all i ∈ {1, 2, . . . ,m}, for all
j ∈ {1, 2, . . . , k}, the secrets in the j-th column want to go to different input sharings. I.e., for each
input sharing, the secrets come from different positions in the output sharings of previous layers.

Relying Sharing Transformation to Perform Linear Maps. To achieve the non-collision property,
after evaluating a group of k (input, addition, or multiplication) gates, we first copy each output wire the
number of times that it is used in the later layers. Let [x]n−k denote the output packed Shamir sharing, and
let ni denote the number of times that the i-th secret xi is used in later layers for all i ∈ {1, 2, . . . , k}. We
first transform x to m = dn1+n2+...+nk

k e vectors x(1),x(2), . . . ,x(m) in Fk such that they contain ni copies of
the value xi for all i ∈ {1, 2, . . . , k}. All parties use the following algorithm to locally determine what values
should be in each of these m vectors.

1. All parties locally initiate an empty list L. From i = 1 to k, all parties locally insert ni times of xi
into L.

2. From i = 1 to m, all parties locally set x(i) to be the vector of the first k elements in L, and then
remove these elements from L. In this way, all parties determine the values that should be in the m
vectors x(1),x(2), . . . ,x(m).

For each x(i) ∈ {x(1),x(2), . . . ,x(m)}, to obtain [x(i)]n−k from [x]n−k, all parties set L′i to be the F-linear
map that maps x to x(i), and then perform a sharing transformation to transform [x]n−k to [L′i(x)]n−k.
To achieve the non-collision property, we need to perform the permutation computed from the algorithm in
Theorem 6 on x(i). Let L′′i denote this permutation. Then, all parties can achieve the non-collision property
by performing a sharing transformation from [x(i)]n−k to [L′′i (x(i))]n−k.

We note that all parties can obtain [L′′i (x(i))]n−k directly from [x]n−k: Since L′i,L′′i are linear maps,
Li = L′i ◦ L′′i is also a linear map. Thus, all parties can perform a single sharing transformation from [x]n−k
to [Li(x)]n−k.
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Summary. By using the technique in [GPS21], we only need to use the default positions for the packed
Shamir secret sharing scheme. Therefore, the protocol works for any finite field F of size |F| ≥ 2n.

Theorem 7. In the client-server model, let c denote the number of clients, n denote the number of parties
(servers), and t denote the number of corrupted parties (servers). Let F be a finite field of size |F| ≥ 2n. For
an arithmetic circuit C over F, there exists an information-theoretic MPC protocol in the preprocessing model
which securely computes the arithmetic circuit C in the presence of a semi-honest adversary controlling up to
c clients and t parties. The cost of the protocol is O(|C| · n

2

k2 +(Depth+ c) · n
2

k ) field elements of preprocessing
data and O(|C| · nk + (Depth + c) · n) field elements of communication, where k = n−t+1

2 and Depth is the
circuit depth.
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