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Abstract. Cryptanalysis is to infer the secret key of a cryptography
algorithm. There are brute-force attacks, differential attacks, and linear
attacks. With the development of artificial intelligence, deep learning-
based cryptanalysis has been actively studied. There are works in which
known-plaintext attacks against lightweight block ciphers, such as S-
DES, have been performed. In this paper, we propose a cryptanalysis
method based on state-of-art deep learning technologies (e.g. residual
connections and gated linear units) for lightweight block ciphers (e.g.
S-DES, S-AES, and S-SPECK). The number of parameters required for
training is significantly reduced by 93.16 % and the average of bit ac-
curacy probability increased by about 5.3 %, compared with previous
the-state-of-art work. Cryptanalysis for S-AES and S-SPECK was possi-
ble up to 12-bit and 6-bit keys, respectively. Through this, we confirmed
that deep learning-based key recovery of modern ciphers with the full
round and the full key is practically impossible.

Keywords: Cryptanalysis · Deep Learning · Lightweight Block Ciphers
· S-DES · S-AES · S-SPECK.

1 Introduction

Cryptanalysis for block ciphers has been studied and is still receiving high
attention. Cryptanalysis is an attack that infers key of cryptographic al-
gorithms. In cryptanalysis, there are various methods, such as ciphertext
only attack, chosen-plaintext attack, chosen-ciphertext attack, known-
plaintext attack, differential analysis, and side-channel analysis. A ciphertext-
only attack is a technique that decrypts the ciphertext by examining the
statistical characteristics of the ciphertext or performing a brute-force
attack while the attacker has only the ciphertext. The chosen-plaintext
attack is performed in a state, where an attacker can encrypt a large
number of random plaintext. In other words, the key can be inferred by



comparing the ciphertexts generated by encrypting the random plain-
text. The known-plaintext attack is a cryptanalysis technique that uses
a number of known plaintext and ciphertext pairs to infer key. Linear
attack is a cryptanalysis technique developed by [15] in 1993. This is a
known-plaintext attack, and it is a method of finding a key by linearizing
the non-linear structure inside the cryptographic algorithm. Differential
analysis [3] is an attack technique that can be used in chosen-plaintext
attacks. After the plaintext is divided into smaller units, substitution,
and permutation are repeatedly applied for security. In the case of the
substitution process, it is non-linear. It is difficult to find out the key
unless a brute-force attack. If the substitution is not designed with a
high-security level, the key can be inferred through differential analysis
using the property that the differential is maintained. There are variants
of differential analysis, such as higher-order differential cryptanalysis and
truncated differential cryptanalysis.

In this paper, we present deep learning-based cryptanalysis for lightweight
block ciphers including Simplified DES (S-DES), Simplified AES (S-AES),
and Simplified SPECK (S-SPECK). In the case of cryptanalysis for S-
DES, it was first performed in [22] but it has still room to improve with
the state-of-art deep learning techniques. We performed the attack with
fewer parameters ensuring higher accuracy by applying the-state-of-art
deep learning technology. Furthermore, to the best of our knowledge, this
work is the first key recovery attack based on deep learning for S-AES.

1.1 Contribution

The following are the major contributions of this work.

Designing artificial neural networks considering the character-
istics of cryptographic algorithms In order to design an optimal ar-
tificial neural network for cryptanalysis, we constructed a neural network
considering the characteristics of the cryptographic algorithm. Various
types and options of neural networks were tested, and we selected the
neural network structure with the best performance.

Improving performance for S-DES cryptanalysis We applied the-
state-of-art artificial neural network techniques that were not applied
in the previous work for deep learning-based cryptanalysis. The neural
network implemented in our work achieved 5.3 % higher accuracy with
93.16 % fewer parameters compared to previous work in cryptanalysis for
S-DES.



The first key recovery (random bit key) based on deep learn-
ing for S-AES and S-SPECK We are the first to attempt a known-
plaintext attack (for random bit key) against S-AES and S-SPECK, to
the best of our knowledge. We confirmed that cryptanalysis is possible
for S-AES and S-SPECK up to 12-bit and 6-bit key spaces. Finally, we
compared the results of cryptanalysis for S-DES, S-AES, and S-SPECK.

The remainder of this paper is organized as follows. In Section 2, re-
lated technologies, such as artificial neural networks, deep learning-based
cryptanalysis, and previous work, are presented. In Section 3, the pro-
posed cryptanalysis based on an artificial neural network is introduced. In
Section 4, the evaluation of our deep learning-based advanced cryptanal-
ysis technique implementation is discussed. Finally, Section 5 concludes
the paper.

2 Related Works

2.1 Artificial Neural Network

Artificial neural networks [9] are learning algorithms inspired by neural
networks in biology. As shown in Figure 1, a neural network is constructed
in the form of stacked layers of multiple nodes. As shown on the right of
Figure 1, neurons (i.e. nodes) in each layer perform a multiplication and
sum operation using the node values (x) and weights (w) of the previ-
ous layer connected to them and add a bias [14]. Then, it is input to
the non-linear activation function [6], and computed as a single value. In
this way, the loss value is obtained after passing through all the layers.
Then, the weights inside the neural network are updated to minimize the
loss through the backpropagation process. By repeating this process, a
neural network that guarantees generalization performance for untrained
data is constructed. When the trained model is used for actual infer-
ence, the inference proceeds by inputting data with the weights of the
fixed neural network. Through this, it is possible to learn, classify, and
predict by extracting features of input data (e.g. image, time series, lan-
guage, and graph). The type of neural network is appropriately selected
according to the characteristics of the input data. There is the most basic
network which is Multi-Layer Perceptron (MLP), Convolutional Neural
Networks (CNN) [1] which is good for image learning, and Recurrent
Neural Network (RNN) [19] which is effective for time series data predic-
tion. There are also Generative Adversarial Networks (GANs) [8], which
are used for tasks that generate data, and techniques such as Reinforce-
ment learning [23], which allow the optimal action to be selected based



Fig. 1: Architecture of artificial neural networks.

on the concept of a reward. A loss function and an optimization function
are used in the training process for an artificial neural network. The loss
function calculates the loss, which is the difference between the actual an-
swer and the predicted value. Loss function includes binary cross-entropy,
categorical cross-entropy, mean squared error, etc., and are selected ac-
cording to the problem to be solved (e.g. Binary cross-entropy is used
for binary classification). The neural network needs to minimize the loss
calculated in this way, and an optimization function is used for this. Opti-
mizer [20](e.g. Stochastic gradient descent (SGD), RMSprop, and Adam)
is used to effectively find the minimum.

Residual Connection in Neural Network Figure 2 shows residual
connection (i.e. skip connection) [10] in an artificial neural network. As
shown in Figure 2, a residual connection has a structure in which the
output of the previous layer is added to the input of the next layer after
skipping several layers. This structure allows us data to go deeper into
the neural network by following skip connections instead of following the
main path where data flows by default. In other words, the skip connection
means skipping layers to propagate information to a deeper layer. If the
network gets deeper, the gradient may vanish as the gradient converges to
0 as it goes to the input layer in the backpropagation process. The residual
connection can solve this gradient vanishing problem. Larger gradients
can be propagated to the initial layer, and the initial layers are trained
as fast as the output layer. This structure allows deeper networks to
be trained. Additional information can be learned and the overfitting of
neural networks can be prevented.



Fig. 2: Skip connection for the residual network.

Fig. 3: Gated Linear Units(GLU).

Gated Linear Units Figure 3 shows gated linear units (GLU) [5]. GLU
controls the input data like a gate. In each layer, a matrix multiplication
operation of input data and weights is performed, and then it is input
to the activation function. In the case of GLU, A and B are constructed
as shown in Figure 3 before input to the activation function. After that,
the B part is input to the sigmoid activation function. Since the sigmoid
function is a bipolar function, important data survives in the multiplica-
tion process. Conversely, insignificant data with a generally small value
has smaller values. Finally, a point-wise multiplication on A and B is
performed. In other words, GLU allows us to focus on more important
information and enables faster and more stable training.

2.2 Artificial Neural Network-based Cryptanalysis

The development of artificial intelligence technology could provide a new
approach for cryptanalysis [4]. In the artificial neural network-based crypt-
analysis, known-plaintext attacks, ciphertext-only attacks, and differen-
tial attacks against Caesar cipher, Vigenere cipher, Simplified-DES, round-



reduced SPECK, and round-reduced SIMON were mainly performed [7,
?,?,?,?]. In addition, the work of predicting the number of active S-
boxes required for cryptanalysis was also studied [11]. There are mainly
two types of cryptanalysis using artificial neural networks (i.e. known-
plaintext attack and differential attack). For known-plaintext attacks, S-
DES, SPECK, and SIMON block cipher algorithms are targeted [22].
They performed cryptanalysis on text-based keys and random bit keys.
However, in both cases, only S-DES could be attacked, and SPECK and
SIMON could only analyze text-based keys. In [13], a known-plaintext
attack on Caesar cipher was performed using quantum support vector
machine (QSVM) [12] through quantum machine learning. QSVM has a
feature map of the existing support vector machine (SVM) [17] designed
as a quantum circuit on a quantum computer, and like SVM, it is a ma-
chine learning technique that finds the optimal boundary between data
points through a hyperplane. They performed cryptanalysis for 2-bit and
3-bit plaintext and ciphertext pairs and keys as resource and memory
problems such as qubits required for the quantum circuits.

2.3 Previous Work

As mentioned above, known-plaintext attacks for S-DES, Speck, and Si-
mon have been proposed in [22]. In this approach, plaintext and ciphertext
pairs are expressed as bits, concatenated, and then input into a neural
network. Then, the neural network predicts the key corresponding to the
pair of plaintext and ciphertext by comparing it with the real key. Fi-
nally, it calculates the loss through the MSE loss function. Training is
carried out to minimize the loss to predict the correct key corresponding
to the pair of plaintext and ciphertext. The weights of the neural net-
work trained to achieve sufficient performance through this process are
fixed. In the inference phase, the key can be predicted using a trained
neural network. The number of pairs of plaintext and ciphertext used for
training and validation of S-DES is 50,000 and 10,000, respectively. The
number of pairs of plaintext and ciphertext used in Speck and Simon’s
training and validation is 500,000 and 1 million. In their experiment, they
used the random bit key and text key. The random bit key has the same
probability of occurrence of all bits, the key space for n-bit is 2n, and the
text-based key uses only 64 ASCII codes. The probability of occurrence
of all bits is not the same. That is, the text key is easier to predict be-
cause text-based keys have a different probability of occurrence for each
bit, and the key space is smaller than for random-bit keys. Bit Accuracy
Probability (BAP) and Deviation were used to evaluate the performance



of the previous work. If the probability of occurrence for each bit is dif-
ferent, it is easier to predict. For example, if the first bit is 1 with a
probability of 1.0, the neural network can predict the first bit as 1 with-
out difficulty. In other words, the difference between the BAP and the
probability of occurrence is calculated to fairly evaluate the performance
when the probability of occurrence of the key for each bit is different.
The difference between the two values is calculated, and if the value is
a positive number, it is determined that cryptanalysis is possible. In the
case of the random bit key, since the key has the same probability of
occurrence for all bits, the deviation is the value obtained by subtracting
0.5 from BAP.

As a result of the experiment, in the case of S-DES, cryptanalysis was
possible for both the random bit key and the text key. In addition, the 5-
th and 8-th bits in the random bit key and the text key were vulnerable to
attack. And the 6-th bit was relatively safe in cryptanalysis. Next, Speck
and Simon achieved an average prediction probability of 0.5 for the case
of using a random bit key, and there were bits with a negative deviation.
Cryptanalysis is failed for random bit keys and succeeded for text keys
(keyspace is 248 and key occurrences are different).

In this paper, the performance of cryptanalysis is improved by ap-
plying the-state-of-art artificial neural network structure and technology
with well selected parameters.

3 Proposed Method

In this paper, we propose an advanced cryptanalysis technique based on
deep learning for S-DES. Several deep learning technologies that can im-
prove performance compared to previous work was applied. We also try
cryptanalysis for S-AES and S-SPECK with the random-bit key. Figure
4 shows the system diagram for the proposed method. First, a crypto-
graphic algorithm is used to obtain a pair of ciphertexts and plaintext.
The real key used is called k. The real key k is used as a label for the data
to be trained on. Next, we concatenate plaintext and ciphertext, which
are then inputted to an artificial neural network for supervised learning.
The neural network learns the characteristics of the input data. It can
predict the correct label. The output of the neural network is k̂, which
is the predicted key, and it is input to the loss function to compare with
the real key k. As the real key and the predicted key become similar, the
loss becomes minimized, and the neural network updates the weight to



minimize the loss. The neural network is trained by repeating this process
to make correct predictions.

Fig. 4: System diagram for the proposed method.

3.1 Data Generation

Figure 5 shows the data set for training and test, and Table 1 shows
details of data set for S-DES [18], S-AES [16], S-SPECK [2]. The data
type is bits. Plaintext and ciphertext pairs and keys are expressed as bits.
When saving these as a CSV file format for training, one bit is inputted
per one column. When the length of the plaintext is m, the data has a
length of 2m, and when input to the neural network, one bit is assigned
to each neuron. The key bit of l-bit is used as a label. In other words, it
is not a classifier classified as a value from 0 to 2l−1, but predicting each
bit of the key.

We sampled plaintext and keys, randomly. In the case of S-DES, an
8-bit block and a 10-bit key are randomly selected and then encrypted
to make a data set. S-AES randomly samples 16-bit plaintext and 16-bit
key, then encrypts it to form a dataset. S-SPECK has 32-bit plaintext and
a 64-bit key. They are randomly chosen. The probability of occurrence
of all bits is the same because we generate the random number in the
range of 2n. Let the number of dataset for training be Ntr, the number
of dataset for validation as Nval, and the number of datasets for testing
as Nts. In addition, S-AES and S-SPECK have a longer plaintext and a
longer key length than S-DES. So, they require a large number of data.



Fig. 5: Dataset.

Table 1: Details of dataset.
Algorithm Ntr Nval Nts m(bit), l(bit) Rounds

S-DES 55,000 30,000 15,000 8, 10 2

S-AES 900,000 500,000 200,000 16, 16 2

S-SPECK 10,000,000 2,000,000 100,000 32, 64 22

3.2 Neural Network Structure for Cryptanalysis

There are various types of neural networks that can be used for cryptanal-
ysis, such as MLP, CNN, and RNN. Among them, we use a fully-connected
neural network to design an effective artificial neural network for crypt-
analysis. The reason has to do with the properties of a cryptographic
algorithm. A cryptographic algorithm has a property that most or all
bits are affected when a single bit is changed, and half of the ciphertext is
statistically changed when a single bit of the plaintext is changed [21]. In
other words, the first bit of the plaintext can affect all bits of the cipher-
text. Therefore, it is difficult for data for learning to have a locality in
which adjacent features have similar values, and it is not temporal data
having time information. Therefore, instead of CNN and RNN, which
are effective for training data with temporal locality, a fully-connected
network suitable for considering global information of data is used.

Structure of Neural Network for Cryptanalysis for S-DES Figure
6 is the neural network structure for S-DES cryptanalysis. We designed a
neural network by applying the residual connection and GLU described
above. Input data is 16-bit because each bit of the data set concatenated
8-bit plaintext and 8-bit ciphertext. The number of neurons in the input
layer was set to 16. That is, each bit is input to each neuron. Also, the
same number of neurons was used in all hidden layers to minimize infor-
mation loss. Finally, it goes through GLU which enables stable learning
by controlling the information. The number of neurons in the output layer



is 10 equal to the number of key bits. That is, each neuron in the output
layer predicts each bit of the key.

Fig. 6: The neural network structure for cryptanalysis for S-DES.

Structure of Neural Network for Cryptanalysis for S-AES Figure
7 shows the structure of the neural network for cryptanalysis for S-AES.
For S-AES, we set the number of input neurons to be the same as the
number of bits of input data in the same way as S-DES. In addition, 5
residual blocks and 1 GLU are applied, and the number of neurons in
each hidden layer is larger than that of S-DES. In other words, it has
a structure similar to the neural network used for S-DES, but it uses a
deeper and larger neural network.

Structure of Neural Network for Cryptanalysis for S-SPECK
Figure 8 shows the architecture of the neural network for key recovery
attack for S-SPECK. The model for S-SPECK is much deeper and larger
than the neural networks for S-DES and S-AES. The hidden layer consists
of 25 residual blocks (including linear, batch normalization, and Relu).
The units of the linear layer of each block are 256. Unlike the previous two
models, the output layer has k neurons. Since the key length of SPECK
is 64, the number of output units should originally be 64. But then the
size of the model becomes too large. So, the number of output neurons
was reduced to predict only the reduced key bits.



Fig. 7: The neural network structure for cryptanalysis for S-AES.

Fig. 8: The neural network structure for cryptanalysis for S-SPECK.

3.3 Training and Testing

Training Training and testing are performed using a neural network
designed for cryptanalysis and the prepared data. First, for training, a
training data set is input to a neural network, and the neural network
outputs predicted values. The output value and the real key are input to
the loss function, and the loss represents the difference between the two
values (predicted value (k̂i,j) of the j − th bit of the i − th and real key
(k)) is calculated. The loss function used is Mean Squared Error (MSE),
which is shown in Equation 1. N is the number of data samples (Ntr or
Nval), and L is the number of key bits. In order to minimize the loss, the
training is performed while repeating the process of updating the weights
of the neural network. If the training is not performed properly, the neural



network will output a predicted value of about 0.5 or an incorrect value.
If the training is performed properly, the neural network will predict the
output values similar to the real key value.

1
N ·L ·

∑N
i=1

∑L
l=1 (k̂i,l − ki,l)

2
(1)

Testing In the inference phase, a trained neural network that has fixed
weights is used. This neural network outputs predicted values (k̂) when
inputting test data. This value is a real number. We need to compare k̂
with the real key (bit) for the test. In other words, k̂ must be converted
to 0 or 1, because it needs to be compared in the form of a bitstring.
For this, the predicted key value (kpred(i,l)) is calculated as in Equation 2

using the predicted value (k̂i,l) of the l− th bit of the i− th data sample
in the test data set. In addition, BAP (the accuracy of each key bit for
the entire data set) is calculated using the transformed predicted key and
the real key as in Equation 3. If the training is poorly performed, BAP is
less than 0.5. That is, the neural network just guesses the result with one
of two. With the proper training, the BAP will be greater than or equal
to 0.5. If the result is 0.5 or greater, the neural network can predict the
corresponding key bit.

kpred(i,l) =

{
0 k̂i,l < 0.5,

1 k̂i,l ≥ 0.5.
(2)

BAPl =
1

Nts
·
∑Nts

i=1XNOR(kpred(i,l), k(i,l)) (3)

4 Evaluation

4.1 Experiment Environment

For the experiment, Google Co-laboratory PRO PLUS (commercial li-
cense), a cloud-based service, was utilized. It ran on Ubuntu 18.04.5 LTS
and consists of an Nvidia GPU (Tesla T4) with 50GB RAM. In terms
of the programming environment, Python 3.7.13, TensorFlow 2.8.0 and
Keras 2.8.0 version were used. Due to the large amount of data and the
growing size of the neural network, it took about 10 hours to train one
time.



4.2 Experiments on S-DES

Training Result We performed training on S-DES using the data, and
the structure of the neural network proposed in Section 3. We only show
the results on our best neural network model. The loss function, optimizer,
and epoch used for training are as follows.

– Epoch: As a result of 100 epochs in the network that both techniques
are applied, the loss was sufficiently reduced. The network that is ap-
plied skip connection requires 150 epochs. In the case of the previous
work, 5,000 epochs were performed. Since GLU and residual connec-
tion technology were added in this work, stable and fast training was
possible compared to the basic network.

– Loss: We used MSE loss function. As a result of training a neural
network to which residual connection is applied, the training loss is
0.1656 and the validation loss achieves 0.1660. The result of training a
neural network to both residual connection and GLU are applied. The
training loss achieves 0.1774 and the validation loss achieves 0.1767.

– Optimizer: We used Adam optimizer. The optimizer is a function
that finds the minimum value of the loss function (to minimize the
loss). When the optimizer moves toward the minimum, its stride is
called the learning rate. The learning rate of the optimizer is set as
the learning rate exponential decay method. The range of learning
rate from 0.001 to 0.1. Learning rate decay use the large learning rate
value at first, and then the value gradually decreases. This allows the
neural network to achieve optimal training result faster.

These results show that the neural network to which GLU is applied
can converge more stably and faster than when it is not applied.

Bit Accuracy Probability We performed inference using a trained
neural network. Table 2 shows the result of inference for cryptanalysis.
For comparison of the number of parameters with the previous work, the
neural network described in [22] was implemented identically, and similar
performance was obtained. However, for the BAP values excluding the
number of parameters, the values written in the paper were used.

The 7-th bit achieves less than 60 % accuracy. They are relatively safe
for cryptanalysis. However, the 6-th, 9-th, and 10-th bits exceed 80 % in
accuracy. These bits are vulnerable to cryptanalysis attacks. A similar
pattern to ours can be seen in previous work as well. The proposed method



Table 2: Comparison with previous work (BAP and the number of pa-
rameters for S-DES).

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Parameters

[22] 0.64 0.74 0.71 0.58 0.64 0.8 0.54 0.6 0.84 0.8 805,930

This work (Res) 0.72 0.77 0.75 0.6 0.76 0.8 0.59 0.68 0.85 0.83 53,802

This work (Res+GLU) 0.72 0.79 0.77 0.62 0.75 0.81 0.59 0.66 0.87 0.85 55,092

with both residual connection and GLU achieved higher overall accuracy.
As a result of calculating the average over all bits, the accuracy is 5.3 %
higher. A slightly higher BAP was achieved than previous works when
the only residual connection was applied, and the BAP for the 4-th bit
exceeded 60 %. Therefore, we can see that the neural network to which
both techniques are applied is more effective for cryptanalysis.

Finally, with our neural network applying both techniques, we reduced
the number of parameters by 93.16 % compared to the previous work.
As with the neural networks in the previous work, all layers of the neural
network are fully connected layers. However, these are the results obtained
by reducing the number of neurons in each layer from 512 to 128 and
applying residual connection and GLU. In other words, by applying this
new deep learning technique, it was possible to achieve higher accuracy
with a smaller neural network.

Bit Accuracy Probability by Epoch Table 3 shows the BAP by
Epoch. In every epoch, bits 4 and 7 are safe. In other words, it is a bit
difficult to predict because the accuracy is low even if it is sufficiently
trained. In addition, since the 6-th and 9-th bits in all epochs are vul-
nerable bits, they can be easily inferred even with little training. Also,
as the epoch increases, the number of safe bits are decreased. That is,
as the training progresses further, the accuracy of them increases so that
they are no longer safe bits. The 1-st and 2-nd bits are dropped from the
safe bit from 20 epochs. Finally, after training with 100 epochs, the 10-th
bit, which was not vulnerable, is detected as a vulnerable bit. This result
shows that the 6-th and 9-th bits are the most vulnerable, and the 4-th
and 7-th bits are the most secure.

4.3 Experiments on S-AES

Training Result S-AES data was learned using the neural network
structure proposed in Section 3. The loss function, optimizer, and epoch
are as follows.



Table 3: Bit accuracy probability by epoch for S-DES (V : vulnerable bit,
S : safe bit).

Epoch 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

15 S S S S V S S V

25 S S V S S V

35 S S V S S V

95 S S V S S V

100 S V S V V

– Parameters: Cryptanalysis for S-AES requires much larger param-
eters than S-DES. The number of parameters for S-AES with 12-bit
key space is 5,326,944. And, the number of parameters for S-AES with
12-bit key space is 11,636,832. When the key space is increased by 1
bit, the number of parameters increases significantly compared to S-
DES.

– Loss: In S-AES, the MSE loss function is also used. As a result of
training, a training loss of 0.1826 and a validation loss of 0.1923 were
achieved.

– Optimizer: We use Adam optimizer [20], and it was also set to the
learning rate exponential decay method (The range of learning rate is
0.001 to 0.1).

– Epoch: The epoch was set to 150. There was no decrease in loss even
after training more than 150 epochs.

Bit Accuracy Probability Table 4 shows the result of cryptanalysis
for S-AES. We trained from 9-bit to 12-bit key spaces. For proper train-
ing, the capacity of the neural network must be large enough according
to the complexity of the data. In case of the 12-bit key space, even if
the network is scaled as large as possible to accommodate the increased
data complexity, training is hardly performed. In addition, training on
very large neural networks and the large dataset was not possible due to
the constraints of the environment. This shows that deep learning-based
cryptanalysis requires a large data set, GPU, and memory environments.
Through this experiment, we show that cryptanalysis of S-AES is possi-



Table 4: BAP for S-AES (9∼12-bit key space).
Key 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11st 12nd 13rd 14th 15th 16th

9-bit - - - - - - - 0.7 0.7 0.69 0.69 0.7 0.69 0.69 0.7 0.69

10-bit - - - - - - 0.63 0.63 0.63 0.64 0.63 0.63 0.6 0.6 0.6 0.6

11-bit - - - - - 0.52 0.53 0.52 0.53 0.52 0.52 0.53 0.52 0.51 0.52 0.52

12-bit - - - - 0.51 0.51 0.5 0.5 0.5 0.5 0.5 0.51 0.5 0.5 0.5 0.5

ble up to an 11-bit key space. In the case of S-AES, unlike S-DES, the
BAP of all bits is a similar value. When the key is increased by 1-bit,
the accuracy tends to decrease by about 10 % even if the capacity of the
network sufficiently increases.

4.4 Experiments on S-SPECK

Training Result In S-SPECK, the loss function, optimizer, and epoch
are as follows.

– Parameters: The number of parameters of our model is 3,333,894.
When a network smaller than this was used, there were cases where
the BAP was less than 0.5. Also, since the size of the dataset is large,
out-of-memory (OOM) occurs. Therefore the size of the model cannot
be increased any further.

– Loss: We used the MSE loss function. The loss decreased to 0.2499.
This result shows that it is barely trained considering the initial loss
of 0.2548.

– Optimizer: We used the Adam optimizer with a cyclic learning rate
(The range of learning rate is 0.001 to 0.002).

– Epoch: We set the number of epochs to 20. In order to the limitations
of the experiment environment, we cannot use larger neural networks.
Therefore, the accuracy did not improve even after learning more than
20 epochs.

Bit Accuracy Probability Table 5 shows the result of cryptanalysis
for S-SPECK. In this experiment, more than 10,000,000 data were used.
And to analyze more than a 6-bit key, more data must be required. How-
ever, we can’t use more data because of environmental constraints. To



Table 5: BAP for S-SPECK (4∼6-bit key space).

Key 1st 2nd 3rd 4th 5th 6th

4-bit - - 0.54 0.53 0.53 0.53

5-bit - 0.52 0.51 0.51 0.52 0.52

6-bit 0.51 0.51 0.51 0.51 0.50 0.51

overcome this, we tried different methods (increasing the capacity of the
neural network and trying several methods to solve underfitting). How-
ever, analysis was not possible because the number of data was too small
compared to the complexity of the data. In previous work, key recovery
was possible because certain bits were determined with high probability
when the text-based key was used. However, they failed analysis when
they use random key bits. As shown by our results and previous work,
it is difficult to infer a key when all key bits have a random probability.
Therefore, if these resource and time limitations are not addressed, deep
learning-based key recovery is inevitably difficult.

4.5 Comparison of Cryptanalysis for S-DES, S-AES and
S-SPECK

We obtained the following results through the experiments described
above. First, S-DES has a specific vulnerability pattern compared to S-
AES. In addition, S-AES has similar accuracy for all bits. As shown in
Figure 9, the number of parameters required for cryptanalysis for S-AES
is much larger and increases, significantly. In S-DES, when the key space
increases by 1-bit, the number of parameters increases by about 1.5 times,
but in case of S-AES, it increases by about 2 to 3 times. Considering that
the accuracy is lower and network requires much more parameters than
that of S-DES when using the same key space as S-DES, it can be seen
that S-AES is more difficult for neural networks to learn and is designed
to be more secure than S-DES. S-DES consists of initial permutation,
expansion/permutation, key addition, s-box (i.e. substitution), and swap
operations. In addition, S-AES is composed of substitution nibbles, shift
rows, mixcolumns, and key addition, and the key space is larger than that
of S-DES. This result seems to have been derived because the S-box of
S-AES is designed to be more confused than S-DES, so the relationship
between the key and the ciphertext is not well revealed, and diffusion is
better achieved through mixcolumns and permutation. That is, S-DES
uses less key space and has poor diffusion and confusion characteristics
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Fig. 9: Parameters of neural network for cryptanalysis (left: S-DES, right:
S-AES).

than S-AES. Some key bits can be inferred. These results also apply to
S-SPECK. It has a larger block size and key size than S-DES and S-AES,
and is designed with a much more complex structure. Therefore, even
attacks on small key bits are not easy. That is, the larger the block and
key size and the more complex the structure, the more difficult it is to
infer the key using plaintext and ciphertext.

Finally, many parameters are required for cryptanalysis of the Sim-
plified cipher as shown in Figure 9, and many resources are required for
training. Therefore, there is a limit to analyzing cryptographic algorithms
such as AES with the current deep learning-based technology, and it can
be seen that text key-based cryptanalysis is possible as in the previous
work.

5 Conclusion

In this paper, we proposed an improved deep learning-based cryptanal-
ysis. In this improved model, skip connection and gated linear units are
applied to the basic neural network structure, enabling more stable learn-
ing. As a result, 5.3 % higher accuracy was achieved on average and the
number of parameters was reduced by 93.16 % compared to previous
work in S-DES. We also performed deep learning-based cryptanalysis for
S-AES and S-SPECK. Key recovery was possible up to a 12-bit key for
S-AES and a 6-bit key space for S-SPECK. Through two experiments,
we confirmed that it is practically impossible to recover the entire key
for a modern cipher. In future work, we will apply deep learning-based
cryptanalysis for other block ciphers.
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