
This article is a merge of [WHL22] and [CAL22].
© IACR 2022. This is the full version of an article that will be published in the proceedings of CRYPTO 2022.

PI-Cut-Choo and Friends: Compact Blind Signatures
via Parallel Instance Cut-and-Choose and More
Rutchathon Chairattana-Apirom∗2 Lucjan Hanzlik 1 Julian Loss 1

Anna Lysyanskaya 2 Benedikt Wagner∗ 1

July 23, 2022

11 CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

{hanzlik,loss,benedikt.wagner}@cispa.de
12 Brown University

Providence RI 02906, USA
rutchathon_chairattana-apirom@alumni.brown.edu,anna_lysyanskaya@brown.edu

Abstract
Blind signature schemes are one of the best-studied tools for privacy-preserving authentication.

Unfortunately, known constructions of provably secure blind signatures either rely on non-standard
hardness assumptions, or require parameters that grow linearly with the number of concurrently issued
signatures, or involve prohibitively inefficient general techniques such as general secure two-party
computation.

Recently, Katz, Loss and Rosenberg (ASIACRYPT’21) gave a technique that, for the security
parameter n, transforms blind signature schemes secure for O(logn) concurrent executions of the
blind signing protocol into ones that are secure for any poly(n) concurrent executions.

This transform has two drawbacks that we eliminate in this paper: 1) the communication
complexity of the resulting blind signing protocol grows linearly with the number of signing interactions;
2) the resulting schemes inherit a very loose security bound from the underlying scheme and, as a
result, require impractical parameter sizes.

In this work, we give an improved transform for obtaining a secure blind signing protocol
tolerating any poly(n) concurrent executions from one that is secure for O(logn) concurrent executions.
While preserving the advantages of the original transform, the communication complexity of our
new transform only grows logarithmically with the number of interactions. Under the CDH and RSA
assumptions, we improve on this generic transform in terms of concrete efficiency and give (1) a BLS-
based blind signature scheme over a standard-sized group where signatures are of size roughly 3 KB
and communication per signature is roughly 120 KB; and (2) an Okamoto-Guillou-Quisquater-based
blind signature scheme with signatures and communication of roughly 9 KB and 8 KB, respectively.

Keywords: Blind Signatures, Standard Assumptions, Random Oracle Model, Cut-and-Choose.

1 Introduction
In 1982, David Chaum introduced blind signature schemes in the context of electronic cash [Cha82]. A
blind signature scheme is a cryptographic primitive in which a signer can interactively sign a message held
by a user. Informally, a blind signature scheme must satisfy two security requirements [JLO97, PS00].
Blindness: the signer should not be able to see what message is being signed. Unforgeability: The user
should only be able to obtain valid signatures by interacting with the signer. Classical applications
of blind signature schemes include e-cash [Cha82, OO92], anonymous credentials [CG08, CL01] and
e-voting [GPZZ19]. Recently, blind signatures have also been used to add privacy features to blockchain-
based systems [HBG16]. Despite this variety of promising applications, the current state-of-the art is

∗Main authors, contributed equally.

https://orcid.org/0000-0002-7979-3810
https://orcid.org/0000-0002-3567-3550
https://orcid.org/0000-0002-4620-7264

unsatisfactory. This is because even in the random oracle model, schemes with reasonable efficiency are
either based on non-standard assumptions [Bol03, BNPS03, FHS15] or have parameters that grow linearly
in the number of concurrent signing interactions [PS00, HKL19, BLL+21, KLR21]. The main goal of this
work is to construct blind signature schemes from well-established assumptions with concurrent security
and practically efficient parameter sizes.

State-of-the-Art. Juels, Luby and Ostrovsky showed that blind signature schemes can be built generically
from any secure signature scheme using secure two-party computation [JLO97]. Their construction was
only shown secure when signatures were issued sequentially. However, typically one aims for the stronger
notion of concurrent security. Fischlin [Fis06] achieved this by giving universally composable blind
signatures from commitment schemes and UC zero-knowledge proofs; but it is not clear how to instantiate
these generic constructions efficiently. While it is tempting to instantiate these schemes with efficient
signature schemes in the random oracle model, the security implications of such an instantiation are
unclear. This is because such an instantiation would imply the use of the random oracle as a circuit, which
constitutes a non-standard use of the random oracle model. We refer to the recent work of [AKSY21]
which discusses these issues in more detail.

In the standard model, a variety of blind signature schemes have been proposed. These schemes are
either inefficient as they rely on complexity leveraging [GG14] or rely on strong q-type or non-interactive
assumptions [Oka06, GRS+11, FHS15, Gha17].

Unfortunately, even in the random oracle model, the situation does not improve much. While there are
simple constructions [Bol03, BNPS03, PS00, HKL19, HKLN20], they either require similar non-standard
assumptions as their standard model counterparts [Bol03, BNPS03] or support only a very small number
of signatures per public key [PS00, HKL19, HKLN20, BLL+21].

As a first step to overcome these limitations, Katz, Loss, and Rosenberg (KLR) [KLR21] showed how
to use a cut-and-choose technique to boost the security of these blind signature schemes in the random
oracle model. Their approach is based on an early work by Pointcheval [Poi98]. The resulting schemes
support polynomially many concurrent signature interactions and are based on standard assumptions.
However, the communication between the signer and the user still grows linearly with the number of
signature interactions, which renders the scheme impractical.

We note that relying on the algebraic or generic group model [FKL18, Sho97] yields better composition
and efficiency, as recent works [FPS20, KLX22, TZ22] show. However, these models are best avoided as
they are non-standard.

Our Goal. In this work, we advance the state of the art by giving the first blind signature schemes
in the random oracle model that do not suffer from any of the above drawbacks. Our main research
question can be summarized as follows:

Are there practical and concurrently secure blind signatures from well-established hardness assumptions
which support polynomially many signatures?

1.1 Starting Point: The Basic Boosting Transform
We answer this question in the affirmative. We propose several new techniques which reduce the size and
communication complexity of blind signatures in the random-oracle model.

Before we explain our techniques, we briefly recall the KLR transform [KLR21], which will serve as
our starting point. The KLR transform can be applied to a blind signature scheme BS in which the user
sends a single message and which supports a logarithmic number of signing sessions. The transformed
scheme CCBS supports polynomially many signing sessions and achieves the same notion of blindness as
BS. We briefly recall the main ideas of CCBS before explaining our improved version:

• In the N th signing interaction, the Signer and the User initiate N sessions of the underlying scheme
BS. In the ith session, a commitment µi of the actual message is signed.

• The User commits to its randomness ρi for the ith session using a commitment comi = H(ρi), where
H is a hash function (modeled as a random oracle). It sends comi together with its (only) message
in the ith session of BS.

2

• The Signer picks a session J ∈ [N] uniformly at random and has the User open the randomness to
all commitments comi, i ∈ [N] \ {J}.

• If the User cannot open one of these commitments, the Signer aborts. Otherwise, the Signer and
User complete the J th session as in BS.

The proof of one-more unforgeability for CCBS is by reduction to the one-more unforgeability of BS.
The reduction’s goal is to turn a one-more forgery against CCBS into a one-more forgery against BS. To
do so, the reduction must answer all signing queries of the User without knowing the secret key sk of the
Signer in BS. It is further restricted by the fact that it may invoke the Signing oracle in the underlying
security game for BS only logarithmically many times.

To bypass these restrictions, the reduction heavily relies on its capability of observing the inputs
to the random oracle and programming it accordingly. Suppose that the the User behaves honestly in
Session J , i.e., it uses the randomness in comJ to compute its message in the J th session of BS. Then the
reduction can extract the random coins from the commitments and use random oracle programming to
complete this session without knowing sk. If, on the other hand, the User cheats, then the reduction can
not use this technique and must ask the Signing oracle in BS for help.

KLR’s key observation is that the probability of such a (successful) cheat is at most 1/N in the
N th signing session. Thus, the expected number of successful cheats in p interactions is at most∑
N≤p+1 1/N < ln(p+ 1). Using the Chernoff bound, one can show that with overwhelming probability,

the number of successful cheats is reasonably close to this expectation. Hence, the signing oracle in the
underlying OMUF game of BS needs to be invoked only a logarithmic number of times.

Limitations. Although CCBS exponentially increases the security of the underlying blind signature
scheme BS, this comes at a steep price in terms of efficiency: the communication in the resulting scheme
grows linearly with the number N of issued signatures. This arguably renders CCBS impractical. In
addition, the number of times that the reduction from one-more unforgeability of BS requires invoking
the underlying signing oracle behaves as ln(1/ε). Here, ε is the advantage of the adversary in breaking
one-more unforgeability of CCBS. For small sizes of ε (say, 2−128), this leads to impractical parameter
sizes for BS. As an example, if CCBS is applied to the Schnorr blind signature scheme, our calculations
show that the resulting scheme will require groups with a 12000 bit representation.

1.2 Our Contribution: Improved Boosting Transforms
As our first contribution, we present a new generic transform to boost the security of blind signature
schemes fitting the linear function family framework of Hauck, Kiltz and Loss (HKL) [HKL19]. This is
based on three insights, as follows. (1) In the N th signing session, the User can derive the random coins
for the ith instance via ρi := PRF(k, i), where PRF denotes a puncturable pseudorandom function [SW14]1.
The User can now commit to all its randomness as in CCBS. To open the commitments comi, i ∈ [N]\{J},
the User provides the punctured key kJ . From this key, the Signer can deterministically recompute all the
commitments, save for comJ . (2) We use a randomness homomorphic commitment scheme to construct
the µi as rerandomizations of one initial commitment µ0 that is sent to the signer. The rerandomization
is also determined by PRF, which implies that kJ also reveals µi for i 6= J without revealing µJ . (3) To
compress the N messages from the Signer to the User, we use the homomorphic properties of HKL blind
signatures and derive N first messages of the underlying blind signature from logN randomly chosen
ones. These insights allow us to lower the communication complexity of the resulting blind signature
scheme from linear to logarithmic in the number N of signing sessions2.

Our results have better blindness guarantees than schemes from the KLR transform. A KLR-
transformed blind signature scheme has the same blindness as its underlying scheme; for many of the
schemes underlying it, only so-called honest signer blindness was known [HKL19], where the Signer’s
public key is generated honestly. A much more desirable notion is malicious signer blindness, in which
the Signer is free to pick his public key adversarially. We show how to achieve this notion using a three
step approach. First, we show that the schemes in [HKL19] satisfy a slightly stronger (artificial) notion
of blindness without any modification. In this intermediate notion (called semi-honest signer blindness),

1We instantiate PRF efficiently using random oracles [GGM84].
2In a different context, namely secure multi-party computation, the combination of puncturable pseudorandom functions

and cut-and-choose has been used before

3

the Signer provides the random coins to generate the public key to the experiment. Next, we show that
our improved boosting transform preserves any notion of blindness, including the new one. We then
show that by having the signer prove knowledge of the random coins we can transform any scheme that
satisfies the intermediate notion into a scheme that satisfies malicious signer blindness.

Practical Schemes from CDH and RSA. Even though our generic transform is an exponential
improvement over the state-of-the-art, it still results in schemes that require mega bytes of communication
when the number of signatures becomes large (say 230). On top of this, our generic transform would
require large (to the point of being currently impractical) group sizes. To overcome these limitations,
we give concrete, 128-bit secure, practical blind signature schemes that satisfy concurrent one-more
unforgeability under the CDH and RSA assumptions. We summarize the parameter sizes in Table 1.

Scheme Nr. of Signatures |pk| |σ| a b Max
BSRSA (Section 5) 220 18.37 7.91 0.02 7.11 7.51
BSRSA (Section 5) 230 18.74 8.66 0.02 7.48 8.08

PIKACDH (Section 4) 220 10.81 3.16 3.05 26.50 87.50
PIKACDH (Section 4) 230 11.49 3.16 3.05 26.73 118.20

Table 1: Concrete efficiency of our schemes supporting a given number of signatures and 128 bit security.
Here, communication complexity is given as a · log(N) + b, where N is the number of issued signatures so
far. Column Max shows the communication complexity for the maximum N . All sizes are in KiloBytes.

Our scheme from CDH is statistically malicious signer blind and builds on Boldyreva’s blind version
of the BLS signature scheme [Bol03] (which is secure under a one-more version of CDH). We observe
that by running our boosting transform for several independent keys in parallel, we can ensure that with
overwhelming probability, there will be at least one key for which the User is never able to cheat the
Signer. We can leverage this into a reduction that embeds the challenge key pk randomly into one of
these keys. Then, with high probability, no cheat ever occurs for pk and the reduction can carry out the
simulation without having to ever invoke the signing oracle from the underlying one-more unforgeability
experiment. This makes it possible to run the scheme with a standard sized group and assuming no
more than hardness of the CDH problem. To reduce the size of our resulting signatures, we can use the
aggregatability of the BLS scheme. Overall, our scheme from CDH supports 230 signatures at a size of
3KB and 120KB communication per signature.

Our scheme from RSA does not use parallel repetitions to reduce parameter sizes. Instead, we use the
trapdoor provided by the RSA system to improve communication complexity of the generic transform.
In this way, the Signer can send a single seed from which the User can deterministically derive several
values. The Signer, who needs to know the preimages of these values, can then simply use its trapdoor to
learn these preimages and proceed with the remainder of the signing protocol. Overall, our scheme from
RSA is statistically semi-honest signer blind and supports 230 signatures at a more balanced size of 9KB
per signature and 8KB communication per signature. To upgrade it to malicious signer blindness we can
either rely on generic proof systems, or on more efficient ones based on quadratic residuosity [GRSB19]
or discrete logarithms [CM99].3 We emphasize, however, that using proofs from general complexity
assumptions may be sufficiently efficient in our context, as the proofs only have to be generated and
verified once upon registering the Signer’s public key. Therefore, they do not affect the complexity of the
signing protocol or the size of our signatures.

Outline. After recalling the necessary preliminaries in Section 2, we present our generic improved
boosting transform in Section 3. Then, we show our concrete schemes from CDH and RSA in Sections 4
and 5. Finally, we show our construction from semi-honest signer blindness to malicious signer blindness
in Section 6.

3If we rely on these proof systems, our scheme can be proven secure assuming that both the RSA assumption and either
of these assumptions hold.

4

2 Preliminaries
The security parameter is n ∈ N. All algorithms get 1n implicitly as input. For a finite set S, we write
x←$S if x is sampled uniformly at random from S. For a distribution D, we write x← D if x is sampled
according to D. For a (probabilistic) algorithm A, we write y ← A(x), if y is output from A on input x
with uniformly sampled random coins. We write y = A(x; ρ) to make the random coins ρ explicit, and
y ∈ A(x) means that y is a possible output of A(x). An algorithm is said to be PPT if its running time
can be bounded by a polynomial in its input size. We say that a function f : N→ R+ is negligible in its
input n, if f ∈ n−ω(1). For a security game G, we write G⇒ b to indicate that G outputs b. We denote
the first K natural numbers by [K] := {1, . . . ,K}, Euler’s totient function by ϕ and the group of units in
ZN by Z∗N .

Next, we introduce the cryptographic primitives that we need. We recall the well-known computational
assumptions in Supplementary Material Section A. For the definition of puncturable pseudorandom
functions, we follow [SW14].

Definition 2.1 (Puncturable Pseudorandom Function). A puncturable pseudorandom function (PPRF)
is defined to be a triple of PPT algorithms PRF = (Gen,Puncture,Eval) with the following syntax:

• Gen(1n, 1d(n)) takes as input the security parameter 1n, an input length 1d(n) and outputs a key k.

• Puncture(k,X) takes as input a key k and a polynomial size set ∅ 6= X ⊆ D = {0, 1}d(n) and outputs
a punctured key kX .

• Eval(k, x) is deterministic, takes a key k and an element x ∈ D as input and outputs an element
r ∈ R = {0, 1}r(n)

.

Further, the following security and completeness properties should hold:

• Completeness of Puncturing. For any d(n) = poly(n), X ⊆ {0, 1}d(n), any k ∈ Gen(1n, 1d(n)),
any kX ∈ Puncture(k,X) and any x′ /∈ X we have Eval(k, x′) = Eval(kX , x′).

• Pseudorandomness. For any d(n) = poly(n) and any PPT algorithm A the following is negligible:

|Pr

A(St, kX , (rx)x∈X) = 1

∣∣∣∣∣∣
(X,St)← A(1n), k ← Gen(1n, 1d(n)),
kX ← Puncture(k,X),
rx := Eval(k, x) for x ∈ X

−Pr

A(St, kX , (rx)x∈X) = 1

∣∣∣∣∣∣
(X,St)← A(1n), k ← Gen(1n, 1d(n)),
kX ← Puncture(k,X),
rx←$ {0, 1}r(n) for x ∈ X

 |.
We define a special type of perfectly hiding commitment scheme in which the randomness can be

rerandomized publicly. Such commitment schemes can be easily constructed from standard assumptions,
see Supplementary Material Section C.

Definition 2.2 (Randomness Homomorphic Commitment Scheme). A randomness homomorphic com-
mitment scheme is a tuple of PPT algorithms CMT = (Gen,Com,Translate) with the following syntax:

• Gen(1n) takes as input the security parameter 1n and outputs a commitment key ck. We assume
that ck implicitly defines a message spaceMck and a randomness space Rck. Further, we assume
that Rck is a group with respect to an efficiently computable group operation +.

• Com(ck, x; r) takes as input a key ck, an element x ∈ Mck, a randomness r ∈ Rck and outputs a
commitment µ ∈ {0, 1}∗.

• Translate(ck, µ, r) is deterministic, takes a key ck, a commitment µ ∈ {0, 1}∗, and a randomness
r ∈ Rck as input and outputs a commitment µ′.

Further, the following security and completeness properties should hold:

5

• Completeness of Translation. For any ck ∈ Gen(1n), and x ∈Mck and any r, r′ ∈ Rck, we have

Translate(ck,Com(ck, x; r), r′) = Com(ck, x; r + r′).

• Perfectly Hiding. For any key ck and any x0, x1 ∈Mck, the following distributions are identical:

{(ck, x0, x1, µ) | r←$Rck, µ := Com(ck, x0; r)} and
{(ck, x0, x1, µ) | r←$Rck, µ := Com(ck, x1; r)} .

• Computationally Binding. For any PPT algorithm A, the following is negligible:

Pr
[

Com(ck, x0; r0) = Com(ck, x1; r1) ∧ x0 6= x1

∣∣∣∣ ck← Gen(1n),
(x0, r0, x1, r1)← A(ck)

]
.

Next, we define the primitive of interest, namely blind signature scheme.

Definition 2.3 (Blind Signature Scheme). A blind signature scheme BS = (Gen, S,U,Ver) is a quadruple
of PPT algorithms, where

• Gen(1n) takes as input the security parameter 1n and outputs a pair of keys (pk, sk). We assume
that the public key pk defines a message spaceM =Mpk implicitly.

• S and U are interactive algorithms, where S takes as input a secret key sk and U takes as input
a key pk and a message m ∈ M. After the execution, U returns a signature σ and we write
(⊥, σ)← 〈S(sk),U(pk,m)〉.

• Ver(pk,m, σ) is deterministic and takes as input public key pk, message m ∈M, and a signature σ,
and returns b ∈ {0, 1}.

We say that BS is complete if for all (pk, sk) ∈ Gen(1n) and all m ∈Mpk it holds that

Pr [Ver(pk,m, σ) = 1 | (⊥, σ)← 〈S(sk),U(pk,m)〉] = 1.

Definition 2.4 (One-More Unforgeability). Let BS = (Gen,S,U,Ver) be a blind signature scheme and
` : N→ N. For an algorithm A, we consider the following game `-OMUFABS(n):

1. Sample keys (pk, sk)← Gen(1n).

2. Let O be an interactive oracle simulating S(sk). Run

((m1, σ1), . . . , (mk, σk))← AO(pk),

where A can query O in an arbitrarily interleaved way and complete at most ` = `(n) of the
interactions with O.

3. Output 1 if and only if all mi, i ∈ [k] are distinct, A completed at most k − 1 interactions with O
and for each i ∈ [k] it holds that Ver(pk,mi, σi) = 1.

We say that BS is `-one-more unforgeable (`-OMUF), if for every PPT algorithm A the following advantage
is negligible:

Pr
[
`-OMUFABS(n)⇒ 1

]
.

Further, we say that BS is one-more unforgeable (OMUF), if it is `-OMUF for all polynomial `.

We note that from a practical perspective, it is sufficient to focus on `-OMUF for some large but a
priori bounded ` (e.g. ` = 230), while full OMUF is more of theoretical interest.

Definition 2.5 (Blindness). Consider a blind signature scheme BS = (Gen, S,U,Ver). For an algorithm
A and bit b ∈ {0, 1}, consider the following game BLINDAb,BS(n):

1. Sample (pk, sk)← Gen(1n) and run (m0,m1, St)← A(pk, sk).

6

2. Let O0 be an interactive oracle simulating U(pk,mb) and O1 be an interactive oracle simulating
U(pk,m1−b). Run A on input St with arbitrary interleaved one-time access to each of these oracles,
i.e. St′ ← AO0,O1(St).

3. Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or σ1 = ⊥, then run
b′ ← A(St′,⊥,⊥). Else, obtain a bit b′ from A on input σ0, σ1, i.e. run b′ ← A(St′, σ0, σ1).

4. Output b′.

We say that BS satisfies honest signer blindness, if for every PPT algorithm A the following advantage is
negligible: ∣∣∣Pr

[
BLINDA0,BS(n)⇒ 1

]
− Pr

[
BLINDA1,BS(n)⇒ 1

]∣∣∣ .
We also consider semi-honest and malicious signer blindness, where we modify the game in the following
way:

• For semi-honest signer blindness, (pk, sk) is not sampled by the game, but A outputs random coins
ρ in addition to m0,m1. Then, the game defines (pk, sk) via (pk, sk) := Gen(1n; ρ).

• For malicious signer blindness, (pk, sk) is not sampled by the game, but A outputs pk in addition
to m0,m1.

Semi-honest signer blindness is a non-standard notion and lies inbetween honest and malicious signer
blindness. We claim that any semi-honest signer blind scheme can be transformed into a malicious
signer blind scheme while preserving one-more unforgeability. The high-level idea is to append a non-
interactive zero-knowledge proof-of-knowledge to the public key. This proof shows that the signer knows
corresponding random coins that generate the key. The rest of the scheme does not change, and thus the
transformation is very efficient. For details, see Section 6.

We will now introduce linear function families, following [HKL19].

Definition 2.6 (Linear Function Family). A linear function family LF is a given by a tuple of algorithms
LF = (PGen,F,Ψ) with the following properties:

• PGen(1n) returns system parameters par which define abelian groups S,D,R with |S|, |R| ≥ 2n and
there exists scalar multiplication · : S × D → D with s · (x+ x′) = s · x+ s · x′ for all s ∈ S and
x, x′ ∈ D. The same applies for R. Note that it is not necessarily true that (s+ s′) ·x = s ·x+ s′ ·x.

• Fpar(x) is deterministic, takes as input an element x ∈ D, and returns an element in y ∈ R. We
require that:

– For all s ∈ S, x, y ∈ D, Fpar(s · x+ y) = s · Fpar(x) + Fpar(y).
– Fpar has a pseudo torsion-free element in the kernel, i.e. there exists z∗ ∈ D such that

Fpar(z∗) = 0 and for all distinct s, s′ ∈ S, s · z∗ 6= s′ · z∗.
– Fpar is smooth, i.e. if x← D is sampled uniformly, Fpar(x) has uniform distribution in R.

• Ψpar(y, s, s′) is deterministic, takes as inputs y ∈ R, and s, s′ ∈ S, and returns a value x ∈ D. The
function satisfies for all y in the range of Fpar and s, s′ ∈ S,

(s+ s′) · y = s · y + s′ · y + Fpar(Ψpar(y, s, s′)).

Intuitively, the function Ψpar corrects for the fact that the group operation in S may not distribute
over R. When it is clear from the context, we will omit the subscript par.

As in [KLR21], we define preimage resistance for a linear function family. For the related notion of
collision resistence, we refer to Supplementary Material Section B.

Definition 2.7 (Preimage Resistance). A linear function family LF is preimage resistant if for any
adversary A, the following advantage is negligible:

Pr [F(x) = F(x′) | x← D, x′ ← A(par,F(x))] .

7

3 An Improved Boosting Transform
Hauck, Kiltz, and Loss [HKL19] introduced a generic construction of a three-move blind signature scheme
BS[LF] from any linear function family LF and a hash function H modeled as a random-oracle. The
main result of [HKL19] is that the linear blind signature scheme BS[LF] is `-one-more unforgeable for
` = O(logn). Building on that, Katz, Loss, and Rosenberg [KLR21] presented a boosting transform
CCBS[LF] that turns this logarithmic security into polynomial security. In this section, we introduce an
improved boosting transform CCCBS[LF] that eliminates the drawback of linearly growing communication
complexity.

3.1 Overview
We recall the main idea of the boosting transform [KLR21] that turns a linear blind signature scheme
BS[LF] into a boosted blind signature scheme CCBS[LF].

In the scheme CCBS[LF], at the onset of the N th interaction, the signer sends the current value of the
counter N to the user. Then, user and signer proceed as follows.

1. The user chooses N random strings urj , j ∈ [N] and N random strings ϕj , j ∈ [N]. It prepares N
commitments µj = H(m, ϕj), where H is a random oracle and m is the message to be signed. It also
prepares commitments comj = H(urj , µj). Then it sends the commitments comj to the signer.

2. The user and the signer run N independent sessions of the underlying linear blind signature scheme
BS[LF], where the user inputs µj , urj in the jth session. Recall that the scheme BS[LF] contains
three messages R, c, s.

3. Before the signer sends the last message sj of the underlying scheme, it chooses a cut-and-choose
index J ∈ [N] at random and asks the user to open all commitments comj with j 6= J .

4. Once the signer knows the values µj and randomness urj , it runs the user algorithm U to check if
the user behaved honestly so far, at least for the sessions j 6= J . If there is some session for which
this check fails, the signer aborts.

5. The signer sends only sJ to the user. That is, signer and user only complete the J th session. The
final signature consists of a signature on µJ from the underlying scheme BS[LF] as well as the
randomness ϕJ which binds m to µJ .

We highlight that the communication now grows linearly with the number of issued signatures.
a) In the second message, the user sends N commitments comj .

b) In the third message, the signer sends N commitments Rj .

c) In the fourth message, the user sends N challenges cj .

d) In the sixth message, the user opens N − 1 of the commitments comj .
Our goal is to eliminate these linear dependencies on N and improve them by an at most logarithmic
dependency.

First, we eliminate the linear dependency a) by replacing the commitments comj = H(urj , µj) by a
single commitment comr, which commits to (salted) hashes of all urj , µj at once. By sending all urj for
j 6= J and the hash of urJ , the user can still open this commitment without revealing urJ .

Next, we focus on d). Here, we let the user generate the randomness (urj , ϕj) used for each session
using the puncturable pseudorandom function PRF. We replace the unstructured commitment with a
randomness homomorphic commitment scheme. This allows us to let the user derive the commitments µi
as rerandomizations Com(m, ϕ0 + ϕj) of one single commitment µ0 = Com(m, ϕ0) with randomness ϕj .
The user sends commitment µ0 together with comr. Now, the user can open the commitment comr by
sending only a punctured key kJ . Intuitively, this preserves blindness, as the punctured key does not
reveal anything about the randomness urJ , ϕJ . Using similar tricks, we eliminate c).

To tackle b), we compute the N values Ri of the underlying linear scheme BS[LF] as subset sums of a
logarithmic number of such values. Then, only these basis values have to be sent.

We end up with a scheme with logarithmic communication complexity, for which the ideas that
underlie the original boosting transform still apply.

8

3.2 Blind Signatures from Linear Function Families
We briefly recall the blind signature scheme BS[LF] from a linear function family LF. For more details,
we refer the reader to [HKL19] or Supplementary Material Section B. For key generation of the blind
signature scheme BS[LF], parameters par← LF.PGen(1n) are generated. Then, a secret key and public key
are sampled via sk←$D and pk := F(sk), assuming pk implicitly contains par. We present the signature
issuing protocol formally in Figure 1. Signatures σ = (c′, s′) for a message m are verified by checking if
c′ = H(m,F(s′)− c′ · pk) holds.

S(sk) U(pk,m)

r←$D, R := F(r) R α←$D, β←$S, R′ := R+ F(α) + β · pk

s := r + c · sk c c′ := H(m, R′), c := c′ + β

s if F(s) 6= R+ c · pk : abort

s′ := s+ α+ Ψ(pk, c,−c′)
return σ := (c′, s′)

Figure 1: The signature issuing protocol of the linear blind signature scheme BS[LF] for a linear function
family LF and a random oracle H : {0, 1}∗ → S [HKL19].

3.3 Construction
In this section, we define our Compact Cut-and-Choose blind signature scheme for a linear function
family LF, abbreviated as CCCBS[LF]. To this end, let LF = (PGen,F,Ψ) be a linear function family,
CMT be a randomness homomorphic commitment scheme, and PRF be a puncturable pseudorandom
function. For efficient instantiations of CMT and PRF, see Supplementary Material Section C and
Supplementary Material Section D. Further, let H : {0, 1}∗ → S,Hr : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ →
D × S × Rck × {0, 1}nPRF ,Hc : {0, 1}∗ → {0, 1}n be random oracles, where nPRF = Θ(n) is a security
parameter used for the pseudorandom function.

Key Generation. Algorithm CCCBS[LF].Gen(1n) is as follows:

1. Sample ck← CMT.Gen(1n) and par← LF.PGen(1n).

2. Sample sk′←$D, and let sk := sk′, pk = (par, ck, pk′ := F(sk′)).

3. Return the public key pk and the secret key sk.

Signature Issuing. The signer and user algorithms S,U are given in Figures 2 and 3, where the S
keeps a state (N, ctr) which is initialized as N := 2 = 22 − 2, ctr := 0. In each interaction, S atomically
increments ctr and, if ctr = N, sets N := 2N + 2, ctr := 0.

Verification. Algorithm CCCBS[LF].Ver(pk,m, σ = (c, s, ϕ)) runs BS[LF].Ver(pk′,Com(ck,m;ϕ), (c, s))
and returns its output.

3.4 Security Analysis
Completeness of CCCBS[LF] follows by inspection. We show blindness and one-more unforgeability.

Theorem 3.1 Let PRF be a puncturable pseudorandom function, LF be a linear function family, and
CMT be a randomness homomorphic commitment scheme. Let Hr : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ →
D× S ×Rck × {0, 1}nPRF be random oracles. If BS[LF] satisfies honest, semi-honest, or malicious signer
blindness, then CCCBS[LF] satisfies honest, semi-honest, or malicious signer blindness, respectively.

9

Check(pk, N, µ0, comr, {Ri}i, comc, J, kJ , cJ , hJ)
1 : for j ∈ [N] \ {J} :
2 : prerj := PRF.Eval(kJ , j), rj := Hx(prerj)
3 : parse rj = (αj , βj , ϕj , γj) ∈ D × S ×Rck × {0, 1}nPRF

4 : R̃j :=
∑
i∈Sj

Rj , µj := Translate(ck, µ0, ϕj)

5 : cj := H(µj , R̃j + F(αj) + βj · pk′) + βj

6 : if comr 6= Hr(Hr(r1), . . . ,Hr(rJ−1), hJ ,Hr(rJ+1), . . . ,Hr(rN)) : return 0
7 : if comc 6= Hc(c1, . . . , cN) : return 0
8 : return 1

Figure 2: The algorithm Check used in the issuing protocol of CCCBS[LF], where H : {0, 1}∗ → S,Hr,Hc :
{0, 1}∗ → {0, 1}n, and Hx : {0, 1}∗ → D×S ×Rck × {0, 1}nPRF are random oracles. The set Sj is defined
as {i ∈ [l] : ith-bit of j is 1}.

S(sk = sk′); state N, ctr U(pk = (par, ck, pk′),m)
ctr := ctr + 1
if ctr = N :
N := 2N + 2, ctr := 0 ϕ0←$Rck, µ0 := Com(ck,m;ϕ0)

l := log(N + 2) N k ← PRF.Gen(1nPRF , 1log(N))
for j ∈ [N] :

prerj := PRF.Eval(k, j)
rj := Hx(prerj)
parse rj = (αj , βj , ϕj , γj)
µj := Translate(ck, µ0, ϕj)
hj := Hr(rj)

for i ∈ [l] : comr, µ0 comr := Hr(h1, . . . , hN)

ri←$D, Ri := F(ri) R1, . . . , Rl for j ∈ [N] :

R̃j :=
∑
i∈Sj

Ri

R̃′j := R̃j + F(αj) + βj · pk′

c′j := H(µj , R̃′j), cj := c′j + βj

comc comc := Hc(c1, . . . , cN)

J←$ [N] J kJ ← PRF.Puncture(k, J)

if Check = 0 : abort kJ , cJ , hJ

sJ :=
∑
i∈SJ

ri + cJ · sk′ sJ s′J := sJ + αJ + Ψ(pk, cJ ,−c′J)

return σ = (c′J , s′J , ϕ0 + ϕJ)

Figure 3: The signature issuing protocol of the blind signature scheme CCCBS[LF], where H : {0, 1}∗ →
S,Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → D × S ×Rck × {0, 1}nPRF are random oracles. The algorithm
Check is defined in Figure 2. The set Sj is defined as {i ∈ [l] : ith-bit of j is 1}. The states ctr and N are
incremented atomically.

10

Concretely, for any adversary that uses NL and NR as the counters in its executions with the user,
runs in time t, has advantage ε in the blindness game and makes at most QHx , QHr queries to Hx,Hr
respectively, there exists an adversary against blindness of BS[LF] running in time t with advantage εBS[LF]
such that

ε ≤ NLNR

(
4(QHx +QHr)

2nPRF
+ 4εPRF + εBS[LF]

)
,

where εPRF is the advantage of an adversary against the security of PRF puncturing at one point with
input length max{log(NL), log(NR)}.

We give a intuition of the proof and postpone details to Supplementary Material Section F.1. The
strategy is to apply a sequence of changes to the user oracles, such that final game is independent of bit
b. In a first step, we guess the cut-and-choose index J . Then, we compute the commitment µJ directly
instead of deriving it from the commitment µ0. Next, we use the security of PRF and generate rJ for
session J at random instead of using the key k. Now, we observe that the randomness ϕ0 is hidden in the
final signature, and we can switch µ0 to a commitment of a random message. Finally, we see that the
only dependency on the message is in session J and we can reduce from the blindness of BS[LF].

Theorem 3.2 Let PRF be a puncturable pseudorandom function, LF be a linear function family, and
CMT be a randomness homomorphic commitment scheme. Let H : {0, 1}∗ → S,Hr,Hc : {0, 1}∗ → {0, 1}n
be random oracles. If BS[LF] satisfies `-one-more unforgeability for any ` = O(log(n)), then CCCBS[LF]
satisfies `-one-more unforgeability for any ` = poly(n).

Concretely, suppose there exists an adversary with advantage ε against the `-one-more unforgeability
of CCCBS[LF], that runs in time t, starts at most p interactions with his signer oracle, and makes at most
QH, QHr , QHc queries to H,Hr,Hc respectively. Then, there exists an adversary against the λ-one-more
unforegability BS[LF], where λ = 3dlog pe+ log(2/ε), that runs in time t, starts at most p interactions
with his signer oracle, makes at most QH queries to H, and has advantage εBS[LF], such that

ε ≤ 2
(
εBS[LF] + p · εLF + εCMT +

Q2
Hr

+Q2
Hc + pQHr + pQHc

2n + p2(p2 +QH)
|R|

)
,

where εLF is the advantage of an adversary with running time t against the preimage resistance of LF and
εCMT is the advantage of an adversary with running time t against the binding property of CMT.

The proof is very similar to the proof for the original boosting transform [KLR21]. Thus, we postpone
it to Supplementary Material Section F.2.

Remark 3.3 As an asymptotic result, we are satisfied with our improved boosting transform with
logarithmic communication complexity. However, similar to the original boosting transform, we rely
on the very loose security bound of the underlying linear blind signature scheme BS[LF]. For concrete
efficiency, this is prohibitive, as we require that BS[LF] supports a non-trivial number λ of signatures.
Also, the logarithmic term of the communication complexity depends on computational assumptions.
Thus, the loose bound will also have a negative impact on communication complexity.

To highlight this, we computed the parameter sizes for the instantiations of the boosting transform
based on the discrete logarithm problem. Our calculations show that in order to support 230 signatures, the
scheme requires a 12035 bit group. It is apparent that this group size is impractical, and no standardized
elliptic curve groups of this size exist. We remark that Katz et al. [KLR21] also provide a parameter
estimate, but this holds only for a very specific choice of signing queries, random oracle queries and
advantage. For a detailed explanation of our calculations, see Supplementary Material Section I.

In the following, we will see how to augment the ideas of this section to construct schemes which
eliminate aforementioned drawbacks and come with practical concrete parameters.

4 A Concrete Scheme based on CDH
Here, we construct a concrete blind signature scheme PIKACDH based on the CDH assumption. While
the construction in the previous section was generic, we aim for a scheme with concrete efficiency in this
section.

11

4.1 Overview
As discussed in Remark 3.3, our improved boosting transform inherits the loose security bound of the
underlying linear blind signature scheme. To see how we can circumvent this, let us first recall the
reduction idea of the boosting transform. The main challenge is that the underlying scheme BS[LF]
allows for a logarithmic number of signing interactions, while the reduction has to simulate an arbitrary
polynomial number of signing interactions for the adversary. This is solved as follows. First, note that
whenever the adversary honestly commits to urj , µj , the reduction can extract these values from the
commitments comr by observing the random oracle queries. Then, an important property of linear blind
signature schemes comes into play: If one knows the randomness and the message that is input into
the user algorithm BS[LF].U and controls the random oracle, one can simulate the signer algorithm
without knowing the secret key. Thus, the reduction only needs to access the signer oracle of BS[LF] if the
adversary cheats (i.e., it malforms the commitment for the J th session in the first step and is not caught).
Fortunately, the probability of such a (successful) cheat is at most 1/N in the N th signing session. Thus,
the expected number of successful cheats in p interactions is at most logarithmic in p. Using the Chernoff
bound, one can show that with overwhelming probability, the number of successful cheats is reasonably
close to this expectation.

We observe that by letting the cut-and-choose parameter grow slightly faster than before and scaling
appropriately, the expected number of successful cheats can be bounded to be less than 1. Unfortunately,
we can not just use the Chernoff bound, if we want to argue that this also holds with overwhelming
probability. We can, however, use the Chernoff bound to show that exceeding a single cheat happens with
some constant probability less than 1. Then, we play our next card, which is parallel repetition. Namely,
we run K independent instances of our scheme so far, where each instance is relative to a separate key
pair. We show that with high probability, in one randomly chosen instance, there is no cheat at all. Using
this observation, we can give a reduction from the key-only security of the underlying blind signature
scheme to finish our proof.

We do not apply this overall strategy to a linear blind signature scheme, but instead to the BLS blind
signature scheme [Bol03]. We notice that the approach also works for this scheme and observe additional
benefits: First, the BLS scheme allows to aggregate signatures. Hence, it is easy to merge the resulting
signatures from the K instances for a significant efficiency improvement. Second, the scheme has two
rounds and thus the logarithmic term in the communication complexity is independent of computational
assumptions (cf. Remark 3.3). We emphasize that the original BLS blind signature scheme is secure
under a one-more variant of the CDH assumption. Fortunately, we only need key-only security here,
which is implied by CDH. Also, the concrete security loss of our scheme is as for the standard BLS digital
signature scheme [BLS01], which means that it can be used over the same groups as BLS.

Finally, we introduce further minor optimizations such as making the signer commit to its cut-and-
choose indices in its message. In this way, the reduction in the blindness proof can extract these indices
rather than guessing them. This leads to more efficient statistical security parameters 4.

4.2 Construction
Let PGGen(1n) be a bilinear group generation algorithm that outputs a cyclic group G of prime order
p with generator g, and a pairing e : G × G → GT into some target group GT . We assume that these
system parameters are known to all algorithms. Note that their correctness can be verified efficiently.
Our scheme makes use of a randomness homomorphic commitment scheme CMT with randomness space
Rck and a puncturable pseudorandom function PRF. We can instantiate PRF using random oracles (cf.
Supplementary Material Section D) and CMT tightly based on the DLOG assumption (cf. Supplementary
Material Section C.2). We also need random oracles H : {0, 1}∗ → Zp,H′ : {0, 1}∗ → {0, 1}n and
Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → Zp ×Rck × {0, 1}nPRF , where nPRF is a security parameter used
for PRF.

Our scheme makes use of a parameter K ∈ N, which defines how many instances of the underlying
boosting transform are executed in parallel, and a function f : N→ N, which determines how fast the
cut-and-choose parameter N grows. In Section 4.4, we will discuss how to set these parameters efficiently.

Key Generation. To generate keys algorithm PIKACDH.Gen(1n) does the following:
4Note that without this optimization, the security loss would be exponential in K.

12

1. For each instance i ∈ [K], sample ski←$ Zp and set pki := gski .

2. Sample a commitment key ck← CMT.Gen(1n).

3. Return public key pk := (pk1, . . . , pkK , ck) and secret key sk := (sk1, . . . , skK).

Signature Issuing. The algorithms S,U and their interaction are formally given in Figures 4 and 5.
Here, S keeps a state ctr, which is inititalized as ctr := 1 and incremented in every interaction.

Verification. The resulting signature σ = (σ̄, ϕ1, . . . , ϕK) for a message m is verified by algorithm
PIKACDH.Ver(pk,m, σ) as follows:

1. For each instance i ∈ [K], compute the commitment µi := Com(ck,m;ϕi).

2. Return 1 if and only if

e (σ̄, g) =
K∏
i=1

e (H(pki, µi), pki) .

Check(pk, N, µ0, comr, comc, seedJ, kJ, {ci,Ji}i, {ηi}i)
1 : J = (H′(seedJ, 1), . . . ,H′(seedJ,K)) ∈ [N]K

2 : for i ∈ [K] :
3 : for j ∈ [N] \ {Ji} :
4 : preri,j := PRF.Eval(kJ, (i, j)), ri,j := Hx(preri,j)
5 : parse ri,j = (αi,j , ϕi,j , γi,j) ∈ Zp ×Rck × {0, 1}n

6 : µi,j := Translate(ck, µ0, ϕi,j)
7 : ci,j := H(pki, µi,j) · g

αi,j

8 : comr,i := Hr(Hr(ri,1), . . . ,Hr(ri,Ji−1), ηi,Hr(ri,Ji+1), . . . ,Hr(ri,N))
9 : if comr 6= Hr(comr,1, . . . , comr,K) : return 0

10 : if comc 6= Hc(c1,1, . . . , cK,N) : return 0
11 : return 1

Figure 4: The algorithm Check used in the issuing protocol of blind signature scheme PIKACDH, where
H : {0, 1}∗ → G,H′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → Zp ×Rck × {0, 1}nPRF

are random oracles.

4.3 Security Analysis
Completeness of the scheme follows by inspection. We show blindness and one-more unforgeability. For
one-more unforgeability, we show qmax-OMUF, where qmax is a parameter that can be set freely (e.g.
qmax = 230) and has influence the function f . We note that making f grow quadratically, one could show
full OMUF using a similar proof.

Theorem 4.1 Let PRF be a puncturable pseudorandom function and CMT be a randomness homomorphic
commitment scheme. Let H′ : {0, 1}∗ → {0, 1}n and Hr : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → Zp × Rck ×
{0, 1}nPRF be random oracles. Then PIKACDH satisfies malicious signer blindness.

In particular, for any adversary who uses NL and NR as the counters in its executions with the user
and queries H′,Hr,Hx at most QH′ , QHr , QHx times, respectively, the malicious signer blindness advantage
can be bounded by

4εPRF + Q2
H′

2n−1 + QH′

2n−2 + KQHx
2nPRF−2 + KQHr

2nPRF−2 ,

where εPRF is the advantage of an adversary against the security of PRF when puncturing at K points
with input length max{log(NL), log(NR)}.

13

S(sk); state ctr U(pk,m)

ctr := ctr + 1, N := f(ctr) k ← PRF.Gen(1nPRF , 1log(KN))
seedJ, salt←$ {0, 1}n ϕ0←$Rck, µ0 := Com(ck,m;ϕ0)

comJ := H′(seedJ, salt) N, comJ for (i, j) ∈ [K]× [N] :

preri,j := PRF.Eval(k, (i, j))
ri,j := Hx(preri,j)
parse ri,j = (αi,j , ϕi,j , γi,j)
µi,j := Translate(ck, µ0, ϕi,j)
ci,j := H(pki, µi,j) · g

αi,j

for i ∈ [K] :
comr,i := Hr(Hr(ri,1), . . . ,Hr(ri,N))

comr := Hr(comr,1, . . . , comr,K)
µ0, comr, comc comc := Hc(c1,1, . . . , cK,N)

seedJ, salt if comJ 6= H′(seedJ, salt) : abort

for i ∈ [K] : for i ∈ [K] : Ji := H′(seedJ, i)
Ji := H′(seedJ, i) J = (J1, . . . ,JK)

J = (J1, . . . ,JK) J := {(i,Ji) | i ∈ [K]}
kJ ← PRF.Puncture(k,J)

if Check = 0 : abort kJ, {ci,Ji , ηi}i for i ∈ [K] : ηi := Hr(ri,Ji)

for i ∈ [K] : si,Ji := cski
i,Ji

s̄ :=
K∏
i=1

si,Ji
s̄ σ̄ := s̄ ·

K∏
i=1

pk−αi,Jii

if
K∏
i=1

e (H(pki, µi,Ji), pki)

6= e (σ̄, g) : abort
for i ∈ [K] : ϕi := ϕ0 + ϕi,Ji

return σ := (σ̄, ϕ1, . . . , ϕK)

Figure 5: The signature issuing protocol of the blind signature scheme PIKACDH, where H : {0, 1}∗ →
Zp,H′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → Zp ×Rck × {0, 1}nPRF are random
oracles. The algorithm Check is defined in Figure 4. The state ctr of S is incremented atomically.

We postpone the proof to Supplementary Material Section G.

Theorem 4.2 Let CMT be a randomness homomorphic commitment scheme and PRF be a puncturable
pseudorandom function. Let PGGen(1n) be a bilinear group generation algorithm. Further, let H : {0, 1}∗ →
Zp,H′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ → {0, 1}n be random oracles. Also, assume that there is a
ϑ > 0 and f is such that

f(ctr) = d3ϑ ln(qmax + 1) · ctre .

Then PIKACDH satisfies qmax-one-more unforgeability, under the CDH assumption relative to PGGen.
Specifically, assume the existence of an adversary against the OMUF security of PIKACDH that has

advantage ε, runs in time t, makes at most QHr , QHc , QH′ , QH queries to oracles Hr,Hc,H′,H, respectively,
and starts at most q ≤ qmax interactions with his signer oracle. Let δ > 0 such that (1− δ)ϑ > 1. Then

14

there exists an adversary against the CDH problem relative to PGGen with advantage εCDH and running
time t and an adversary against the binding property of CMT with advantage εCMT and running time t
such that

ε− e−δK ≤ εCMT + K

p
+ 4qKεCDH + stat

where

stat =
Q2

Hr

2n +
Q2

Hc
2n + qQHr

2n + qKQHr

2n + qQHc
2n + qQH′

2n−1 .

Proof. Set BS := PIKACDH. Let A be an adversary against the OMUF security of BS. We prove the
statement via a sequence of games.

Game G0: We start with game G0 := qmax-OMUFABS, which is the one-more unforgeability game. We
briefly recall this game. A key pair (pk, sk)← Gen(1n) is sampled, A is run with concurrent access to an
interactive oracle O simulating the signer S(sk). Assume that A completes ` interactions with O. Further,
A gets access to random oracles H,H′,Hr and Hc, which are provided by the game in the standard lazy
manner. When A finishes its execution, it outputs tuples (m1, σ1), . . . , (mk, σk) and wins, if all mi are
distinct, k > ` and all signatures σi verify with respect to pk and mi.

Game G1: In game G1, we add an additional abort. The game aborts if in the end A’s output contains
two pairs (m(0), σ(0)), (m(1), σ(1)) such that m(0) 6= m(1) but there exists i(0), i(1) ∈ [K] such that

Com(ck,m(0);ϕ(0)
i(0)) = Com(ck,m(1);ϕ(1)

i(1)).

As CMT is computationally binding, a straight-forward reduction with advantage εCMT and running time
t shows that

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ εCMT.

Game G2: This game is as G1, but we rule out collisions for oracles Ht, t ∈ {r, c}. To be more precise, we
change the simulation of oracles Ht, t ∈ {r, c} in the following way. If A queries Ht(x) and this value is not
yet defined, the game samples an image y←$ {0, 1}n. However, if there exists an x′ 6= x with Ht(x′) = y,
the game returns ⊥. Otherwise it behaves as before. Note that A can only distinguish between G1 and
G2 if such a collision happens, i.e. Ht returns ⊥. We can apply a union bound over all Q2

Ht pairs of
random oracle queries and obtain

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤
Q2

Hr

2n +
Q2

Hc
2n .

Note that the change in G2 implies that at each point of the execution of the game and for each image
y ∈ {0, 1}n, there is at most one preimage H−1

t (y) under Ht. By looking at the random oracle queries of
A, the game can extract preimages of given images y, and we know that for each y at most one preimage
can be extracted. We will make use of such an extraction in the following games.

Game G3: We change the way the signer oracle is executed. In particular, when A sends µ0, comr, comc

as its first message, the game tries to extract values ¯comr,i such that comr = Hr(¯comr,1, . . . , ¯comr,K)
by searching through random oracle queries. If the game can not extract such a preimage, we write

¯comr,i = ⊥ for all i ∈ [K]. Then, the game aborts if it can not extract such a preimage , i.e. ¯comr,i = ⊥,
but later algorithm Check outputs 1. Recall that algorithm Check verifies that

comr = Hr(comr,1, . . . , comr,K).

Thus, for every fixed interaction, we can bound the probability of such an abort by QHr/2n. Indeed, once
comr is sent by A and thus fixed, and the game can not extract, we know that there is no bitstring x such
that Hr(x) = comr. Also, if algorithm Check outputs 1, we know that A was able to find a preimage of

15

comr after this was fixed. This can happen with probability at most 1/2n for each random oracle query.
Using a union bound over all interactions we obtain

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ qQHr

2n .

Game G4: We introduce another abort in the signer oracle. In this game, after the extraction of
(¯comr,1, . . . , ¯comr,K) from comr we introduced before, the game extracts (̄ri,1, . . . , r̄i,N) from ¯comr,i for
every i ∈ [K] for which ¯comr,i 6= ⊥, such that

¯comr,i = Hr(Hr(̄ri,1), . . . ,Hr (̄ri,N)).

Again, the game does this by looking at the random oracle queries of A and we write r̄i,j = ⊥ if the game
can not extract the value r̄i,j . If there is an instance i ∈ [K] and a session j ∈ [N] such that ¯comr,i 6= ⊥
but r̄i,j = ⊥ and later in that execution Ji 6= j but algorithm Check outputs 1, the game aborts.

To analyze the probability of this abort, fix an interaction and an instance i ∈ [K]. Assume that
¯comr,i 6= ⊥ and there is a session j ∈ [N] such that r̄i,j = ⊥ and later in that interaction Ji 6= j. Then,

after ¯comr,i is fixed, we consider two cases. In the first case, the game could not extract h1, . . . , hN such
that ¯comr,i = Hr(h1, . . . , hN). Clearly, once ¯comr,i is fixed, the probability that one of the hash queries of
A evaluates to ¯comr,i is at most 1/2n. Thus, the probability that Check outputs 1, i.e. A is able to open

¯comr,i in this case, is at most QHr/2n. Similarly, in the case where the game could extract h1, . . . , hN ,
but could not extract r̄i,j such that Hr(̄ri,j) = hj , the probability that one of A’s hash queries evaluates
to hj is at most 1/2n. Thus, the probability that Check outputs 1, i.e. A is able to open hj in this case,
is at most QHr/2n. Note that here we needed that j 6= Ji, as the definition of Check does not require A
to open hJi .

Applying a union bound over the interactions and instances we get

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ qKQHr

2n .

Game G5: We introduce another abort: Whenever A sends µ0, comr, comc as its first message, the game
behaves as before, but additionally the game extracts values c̄1,1, . . . , c̄K,N from comc such that

comc = Hc(c̄1,1, . . . , c̄K,N).

If the game can not extract, but later algorithm Check outputs 1, the game aborts. Note that algorithm
Check internally checks if

comc = Hc(c1,1, . . . , cK,N).

Thus, for each fixed interaction it is possible to argue as in the previous games to bound the probability
of such an abort and hence we obtain

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ qQHc
2n .

Game G6: In G6, the signer oracle sends a random comJ in the beginning of each interaction. Later,
before it has to send seedJ, salt, it samples salt←$ {0, 1}n and aborts if H′(seedJ, salt) is already defined.
If it is not yet defined, it defines it as H′(seedJ, salt) := comJ. The adversary A can only distinguish
between G5 and G6 if H′(seedJ, salt) is already defined. By a union bound over all QH′ hash queries and
q interactions we obtain

|Pr [G5 ⇒ 1]− Pr [G6 ⇒ 1]| ≤ qQH′

2n .

Game G7: In G7, the game aborts if in some interaction there exists an i ∈ [K] such that H′(seedJ, i)
has already been queried before the signing oracle sends seedJ to A. Clearly, A obtains no information
about seedJ before the potential abort, see G6. Further, seedJ is sampled uniformly at random. A union
bound over all QH′ queries and q interactions shows that

|Pr [G6 ⇒ 1]− Pr [G7 ⇒ 1]| ≤ qQH′

2n .

16

Now, fix an interaction in G7 and assume that Check returns 1 and the game does not abort due to any
of the reasons we introduced so far. Note that this means that for all instances i ∈ [K] the value ¯comr,i
could be extracted. Furthermore, this means that if there exists i ∈ [K], j0 ∈ [N] such that r̄i,j0 = ⊥
then later Ji = j0. Also, note that if Check does not abort, then we have ¯comr,i = comr,i, r̄i,j = ri,j
and c̄i,j = ci,j for all (i, j) ∈ [K]× [N] for which these values are defined. This is because we ruled out
collisions for oracles Hr,Hc. Now, we define an indicator random variable cheati,ctr for the event that in
the ctrth interaction, the signer oracle does not abort and there exists i ∈ [K], j ∈ [N] such that r̄i,j = ⊥
or r̄i,j = (α,ϕ, γ) such that

ci,j 6= H(pki,Translate(ck, µ0, ϕ)) · gα.

We say that A successfully cheats in instance i ∈ [K] and interaction ctr if cheati,ctr = 1. We also define
the number of interactions in which A successfully cheats in instance i as cheat∗i :=

∑q+1
ctr=2 cheati,ctr.

By the above discussion, we have that cheati,ctr = 1 implies that Ji = j0 and thus

Pr [cheati,ctr = 1] ≤ 1
N
.

Therefore, we can bound the expectation of cheat∗i using

E [cheat∗i] ≤
1

3ϑ ln(qmax + 1)

q+1∑
ctr=2

1
ctr ≤

ln(q + 1)
3ϑ ln(qmax + 1) ≤

1
3ϑ.

Now, if we plug X := cheat∗i and s := 3E [cheat∗i] + δ = 1/ϑ+ δ into the Chernoff bound (Lemma E.1),
we get that for all i ∈ [K]

Pr
[
cheat∗i ≥

1
ϑ

+ δ

]
≤ e−δ.

We note that the entire calculation of this probability also holds if we fix the random coins of the adversary.

Game G8: Game G8 is defined as G7, but additionally aborts if for all i ∈ [K] we have cheat∗i ≥ δ+ 1/ϑ.
In particular, if G8 does not abort, then there is some instance i for which A does not successfully cheat
at all, which follows from the assumption (1− δ)ϑ > 1.

We can now bound the distinguishing advantage of A between G7 and G8 as follows. We denote the
random coins of A by ρA and the random coins of the experiment (excluding ρA) by ρ. Let bad be the
event that for all i ∈ [K] we have cheat∗i ≥ δ + 1/ϑ. We note that the coins ρ that the experiment uses
for the K instances are independent. Thus we have

Pr
ρ,ρA

[bad] =
∑
ρ̄A

Pr
ρA

[ρA = ρ̄A] · Pr
ρ,ρA

[bad | ρA = ρ̄A]

=
∑
ρ̄A

Pr
ρA

[ρA = ρ̄A] ·
∏
i∈[K]

Pr
ρ,ρA

[
cheat∗i ≥

1
ϑ

+ δ

∣∣∣∣ ρA = ρ̄A

]
≤
∑
ρ̄A

Pr
ρA

[ρA = ρ̄A] · e−δK = e−δK ,

which implies

|Pr [G7 ⇒ 1]− Pr [G8 ⇒ 1]| ≤ Pr
ρ,ρA

[bad] ≤ e−δK .

Game G9: In game G9, we sample a random instance i∗←$ [K] at the beginning of the game. In the
end, the game aborts if cheat∗i∗ ≥ δ + 1/ϑ. In particular, if this game does not abort, then A does not

17

successfully cheat in instance i∗ at all. As A’s view is independent from i∗, we have

Pr [G9 ⇒ 1] = Pr
[
G8 ⇒ 1 ∧ cheat∗i∗ <

1
ϑ

+ δ

]
= Pr [G8 ⇒ 1] · Pr

[
cheat∗i∗ <

1
ϑ

+ δ

∣∣∣∣ G8 ⇒ 1
]

≥ Pr [G8 ⇒ 1] · Pr
[
cheat∗i∗ <

1
ϑ

+ δ

∣∣∣∣ ∃i ∈ [K] : cheat∗i <
1
ϑ

+ δ

]
≥ Pr [G8 ⇒ 1] · 1

K
,

where the first inequality follows from the fact that the event G8 ⇒ 1 implies the event ∃i ∈ [K] :
cheat∗i < δ + 1/ϑ.

We note that from now on, our proof follows the proof strategy of the BLS signature scheme [BLS01].

Game G10: In game G10, we introduce an initially empty set L and a new abort. We highlight that we
treat L as a set and therefore every bitstring is in L only once. Recall that when A sends µ0, comr, comc

to the signer oracle, the game tries to extract values r̄i,j for (i, j) ∈ [K]× [N]. Then the game samples
seedJ and computes J accordingly. In particular, due to the changes in the previous games we know that
the game extracts r̄i∗,Ji∗ = (α,ϕ, γ) unless the experiment will abort anyways. Then, in game G10, the
game will insert Translate(ck, µ0, ϕ) into L as soon as it needs to compute si∗,Ji∗ . This means that the
list L contains at most as many entries as the number of completed interactions.

Fix the first pair (m, σ) in A’s final output such that for σ = (σ̄, ϕ1, . . . , ϕK) and µ∗ := Com(ck,m;ϕi∗)
we have µ∗ /∈ L. Such a pair must exists if A is successful, see game G1. Then game G10 aborts if
H(pki∗ , µ∗) is not defined yet. Note that A’s success probability in such a case can be at most 1/p and
hence

|Pr [G9 ⇒ 1]− Pr [G10 ⇒ 1]| ≤ 1
p
.

Game G11: In game G11, we change how the random oracle H is simulated and add a new abort. For
every query of the form H(pki∗ , µ) the game independently samples a bit b[µ] ∈ {0, 1} such that the
probability that b[µ] = 1 is 1/(q+ 1). Whenever the game adds a value µ to the set L, it aborts if b[µ] = 1.
Then, after A returns its final output, the game determines µ∗ as in G10, adds arbitrary values to L such
that all values in L ∪ {µ∗} are distinct and |L| = q and aborts if b[µ∗] = 0 or there is a µ ∈ L such that
b[µ] = 1. Otherwise it continues as before. Note that unless the game aborts, A’s view does not change.
As all bits b[µ] are independent, we derive

Pr [G11 ⇒ 1] = Pr [G10 ⇒ 1] · Pr [b[µ∗] = 1 ∧ ∀µ ∈ L : b[µ] = 0]

= Pr [G10 ⇒ 1] · 1
q + 1

(
1− 1

q + 1

)q
= Pr [G10 ⇒ 1] · 1

q

(
1− 1

q + 1

)q+1

≥ Pr [G10 ⇒ 1] · 1
4q ,

where the last inequality follows from (1− 1/x)x ≥ 1/4 for all x ≥ 2.
Finally, we construct a reduction B that solves CDH with running time t and advantage εCDH such

that
Pr [G11 ⇒ 1] ≤ εCDH.

Then, the statement follows by an easy calculation. Reduction B works as follows:
• B gets as input bilinear group parameters G, g, p, e and group elements X = gx, Y = gy. The goal

of B is to compute gxy. First, B samples i∗←$ [K]. Then, it defines pki∗ := X (which implicitly
defines ski∗ := x) and ski←$ Zp, pki := gski for i ∈ [K] \ {i∗}.

• B runs adversary A on input G, g, p, e, pk := (pk1, . . . , pkK , ck) with oracle access to a signer oracle
and random oracles H,Hr,Hc,H′. To do so, it simulates oracles Hr,Hc,H′ exactly as in G11. The
other oracles are provided as follows:

18

– For a query of the form H(pki∗ , µ) for which the hash value is not yet defined, it samples a
bit b[µ] ∈ {0, 1} such that the probability that b[µ] = 1 is 1/(q + 1). Then, it defines the
hash value as Y b[µ] · gt[i∗,µ] for a randomly sampled t[i∗, µ]←$ Zp. For a query of the form
H(pki, µ), i 6= i∗ for which the hash value is not yet defined it defines the hash value as gt[i,µ]

for a randomly sampled t[i, µ]←$ Zp. For all other queries it simulates H honestly.
– When A starts an interaction with the signer oracle, B sends N to B as in the protocol. When
B sends its first message µ0, comr, comc as its first message, B behaves as G11. In particular,
it tries to extract r̄i,j , c̄i,j for (i, j) ∈ [K]× [N]. It then sends seedJ to A.

– When A sends its second message kJ, {ci,Ji , ηi}i∈[K], B aborts under the same conditions
as G11 does. In particular, if B does not abort and the signer oracle does not abort then
r̄i∗,Ji∗ = (α,ϕ, γ) is defined and B for µ := Translate(ck, µ0, ϕ), B sets si∗,Ji∗ := Xt[i∗,µ]+α. As
defined in G11, B also inserts µ into the set L. It computes si,Ji for i 6= i∗ as game G11 does,
which is possible as B holds the corresponding ski. Then, B sends s̄ :=

∏K
i=1 si,Ji to A.

• When A returns its final output, B performs all verification steps inG11. In particular, it searches for
the first pair (m, σ) in A’s final output such that for σ = (σ̄, ϕ1, . . . , ϕK) and µ∗ := Com(ck,m;ϕi∗)
we have µ∗ /∈ L. As defined in G11, B aborts if b[µ∗] = 0. Finally, B defines µi := Com(ck,m;ϕi)
and returns

Z := σ̄ ·X−t[i
∗,µ∗] · g−

∑
i∈[K]\{i∗}

t[i,µi]ski

to its challenger.

We first argue that B perfectly simulates G11 for A. To see that, note that as the t[i, µ] are sampled
uniformly at random, the random oracle is simulated perfectly. To see that si∗,Ji∗ is distributed correctly,
note that if the signing oracle and G11 do not abort, then we have

cski∗
i∗,Ji∗ = (H(pki∗ , µ) · gα)ski∗ =

(
Y b[µ] · gt[i

∗,µ] · gα
)x

= Xt[i∗,µ]+α,

where the last equality follows from b[µ] = 0, as otherwise G11 would have aborted.
It remains to show that if G11 outputs 1, then we have Z = gxy. This follows directly from the

verification equation and b[µ∗] = 1. To see this, note that

K∏
i=1

e (H(pki, µi), pki) = e
(
Y b[µ

∗] · gt[i
∗,µ∗], X

)
·

∏
i∈[K]\{i∗}

e
(
gt[i,µi], gski

)
= e (g, g)xy+t[i∗,µ∗]x · e (g, g)

∑
i∈[K]\{i∗}

t[i,µi]ski
.

Using the verification equation, this implies that

gxy = σ̄ · g
−
(
t[i∗,µ∗]x+

∑
i∈[K]\{i∗}

t[i,µi]ski
)

Concluded.

We note that instead of giving games G10,G11 and the reduction from CDH explicitly, one can also
directly reduce from the security of the BLS signature scheme to G9, leading to the very same bound in
total. This tells us that one can use (up to losing log(K) bits 5 of security) the same curves as for BLS.

Corollary 4.3 (Informal). Under the same conditions as in Theorem 4.2, the scheme PIKACDH satisfies
qmax-one-more unforgeability, if the BLS signature scheme [BLS01] is unforgeable under chosen message
attacks relative to PGGen, where the concrete security loss is (up to statistically negligible terms) given by
K.

5In our concrete instantiation, log(K) ≈ 6.5.

19

4.4 Concrete Parameters and Efficiency
Let us now discuss concrete parameters for our scheme PIKACDH based on the CDH assumption. Recall
that the scheme uses parameters K,ϑ and p. Instantiating the commitment scheme CMT with a Pedersen
commitment we also have to set a value for the order p′ of the group that is used in this commitment
scheme. Say that we aim for κ bits of security. In particular, we want to find appropriate values for
K,ϑ, |p| and |p′|. Consider an adversary with running time t and advantage ε against the OMUF security
of the scheme. If ε/t < 2−κ we are done. Otherwise we have ε/t ≥ 2−κ and ε ≥ 2−κ, as t ≥ 1. Now, we
want to use Theorem 4.2 to end up with a contradiction. If we use Theorem 4.2 with δ := − ln(ε/2)/K,
then e−δK = ε/2 and the security bound becomes

ε ≤ 2
(
εCMT + K

p
+ 4qKεCDH + stat

)
.

Assuming κCDH bits of security for the CDH instance and κCMT bits of security for the commitment
scheme CMT we obtain

ε ≤ 2
(

2−κCMT · t+ K

p
+ 4qK · 2−κCDH · t+ stat

)
.

We can now increase κCDH and κCMT (for a fixed combination of ε and t) until this inequality does not
hold anymore. Then the adversary could not have existed in the first place. Using κCDH and κCMT, we
can then determine an appropriate choice for |p| = 2κCDH + 1 and |p′| = 2κCMT + 1, see [Pol78].

However, note that we can only apply this approach, if (1−δ)ϑ > 1, due to Theorem 4.2. By our choice
of δ it is therefore sufficient to guarantee that

(
1− ln(2κ+1)/K

)
ϑ > 1. It is clear that for a decreasing K,

we have to increase ϑ to satisfy this constraint. Thus, our approach is as follows: For a few choices of
K, we determine the minimum ϑ > 0, such that the constraint holds. If there is no such ϑ, we throw
away this particular K. Then, we proceed as discussed above to find security levels for the underlying
instances and compute the signature sizes and key sizes6.

Next, we focus on blindness. For simplicity, assume that NL = NR =: N . We instantiate PRF using
a GGM construction with a random oracle HPRF (cf. Supplementary Material Section D) and know that
εPRF ≤ (2 log(NK)− 1)KQHPRF/2nPRF , where nPRF is the output length of the pseudorandom function. By
applying Theorem 4.1 we obtain the security bound

(2 log(N) + 2 log(K)− 1)KQHPRF

2nPRF−2 + Q2
H′

2n−1 + QH′

2n−2 + QHx
2nPRF−2 + KQHr

2nPRF−2 ,

where nPRF denotes the output length of PRF. Thus, we only have to increase nPRF until the security
bound guarantees κ bit of security.

We implemented the approach discussed above in Python script, see Supplementary Material Section J.2.
To simplify a bit, we made the conservative assumption that the number of hash queries for each random
oracle is equal to the running time of the adversary and set NL and NR in the blindness bound to be
equal to the maximum number q of signatures interactions that the adversary starts. Results can be
found in Table 1.

5 A Concrete Scheme based on RSA
In addition to our concrete scheme from CDH, we also construct a concrete scheme BSRSA based on the
RSA assumption.

5.1 Overview
Our scheme is based on the Okamoto-Guillou-Quisquater (OGQ) [Oka93] linear function. That is, we
start with this function in our generic transformation from Section 3. Informally, the function has domain
D := Zλ × Z∗N , scalar space S := Zλ and range Z∗N , where N is an RSA modulus and λ is a prime

6In practice, we would use an asymmetric pairing for efficiency. This means that we have to increase the size of a public
key accordingly. Our concrete parameter computations take this into account.

20

with gcd(N,λ) = gcd(ϕ(N), λ) = 1. As we can not aggregate signatures efficiently, we can not mimic
the K-repetition technique from our CDH-based scheme. Thus, we still rely on the loose bound of the
underlying linear blind signature scheme. To solve this issue and obtain practical parameter sizes, we
note that the bound becomes acceptable, once we increase the parameter λ. Our insight is that this can
be done independently from the modulus N .

Although this improves the bound and thus concrete parameters, we still have a rather large communi-
cation complexity, due to the logarithmic number of Ri ∈ Z∗N that are sent in our generic transformation.
Here, our solution is to send a short random seed (e.g. 128 bit) and derive the values Ri using a random
oracle. Now, the signer has to recover the preimages of the Ri to continue the protocol. We show that the
OGQ linear function admits a trapdoor, that allows to sample preimages, solving this problem as well.

5.2 The OGQ Linear Function
Our scheme is based on the Okamoto-Guillou-Quisquater (OGQ) [Oka93] linear function. The function
is specified by public parameters par = (N, a, λ) where p and q are distinct n-bit primes and N = pq,
a←$ Z∗N is sampled uniformly at random, and λ is a prime with gcd(N,λ) = gcd(ϕ(N), λ) = 1. Further,
define a trapdoor td := (p, q). Throughout this section, we assume that these parameters are output by
some setup algorithm RSAGen.

Let D := Zλ×Z∗N . It can be shown [HKL19] that D forms a group with respect to the group operation

(x1, y1) ◦ (x2, y2) :=
(
x1 + x2 mod λ, y1 · y2 · ab

x1+x2
λ c mod N

)
.

We specify a linear function F as follows:

F : D → Z∗N , (x, y) 7→ axyλ mod N.

In addition, we specify a function

Ψ : Z∗N × Zλ × Zλ → D, (x, s, s′) 7→ (0, xb−
s+s′
λ c mod N).

These funcions satisfy

∀x, y ∈ D, s ∈ Zλ : F(xs ◦ y) = F(x)s · F(y),

∀y ∈ Z∗N , s, s′ ∈ Zλ : ys+s
′

= ys · ys
′
· F(Ψ(y, s, s′)).

The collision resistance and one-wayness of the function F is tightly implied by the RSA assumption.
For more details, see [HKL19]. We argue that the trapdoor can be used to sample uniform preimages for
F. To this end, we specify an algorithm Invert(td, z) for z ∈ Z∗N , which works as follows:

• Use p and q to compute ρ ∈ Z such that ρλ mod ϕ(N) = 1.

• Sample x←$ Zλ and set y := (za−x)ρ mod N . Return (x, y).

In the following, we argue that Invert outputs properly distributed preimages.
It is clear that for (x, y)← Invert(td, z) we have

F(x, y) = axyλ = ax(za−x)λρ mod ϕ(N) = z (mod N).

Thus, it remains to show that the distributions

D1 :=
{

((x, y), z)
∣∣(x, y)←$ Zλ × Z∗N , z := axyλ mod N

}
and

D2 :=
{

((x, y), z)
∣∣z←$ Z∗N , x←$ Zλ, y := (za−x)ρ mod N

}
are the same. Fix (x0, y0, z0) ∈ Zλ × Z∗N × Z∗N . As a is invertible and y 7→ yλ defines a permutation on
Z∗N , we have

Pr
(x,y,z)←D1

[z = z0] = 1
ϕ(N) = Pr

(x,y,z)←D2
[z = z0].

21

By conditioning on z = z0 we see that it remains to show that

Pr
(x,y,z)←D1

[(x, y) = (x0, y0) | z = z0] = Pr
(x,y,z)←D2

[(x, y) = (x0, y0) | z = z0].

Here, the left-hand side is equal to 1/λ if z0 = ax0yλ0 mod N and 0 otherwise. The right-hand side is equal
to 1/λ if y0 = (z0a

−x0)ρ mod N and 0 otherwise. As both conditions are equivalent, we can conclude the
analysis.

5.3 The Underlying Boosting Transform
We revisit the boosting transform introduced in [KLR21] for the special case of the OGQ linear function.
The boosting transform defines a blind signature scheme CCBS as follows.

Key Generation. Algorithm CCBS.Gen(1n) generates keys as:
1. Generate parameters par = (N, a, λ) as above.

2. Sample sk′←$D, set pk′ := F(sk′).

3. Return the public key pk := (par, pk′) and the secret key sk := sk′.

Signature Issuing. The signature issuing protocol of the scheme is presented in Figure 6. Here, the
signer is stateful and its state ctr is intitialized as ctr := 1.

Verification. A signature σ = (c′, s′, ϕ∗) is verified with respect to a message m via algorithm
CCBS.Ver(pk = (par, pk′),m, σ), which is as follows:

1. Compute the commitment µ∗ := Ĥ(m, ϕ∗)

2. Return 1 if c′ = H(µ∗,F(s′) · pk′−c
′
). Otherwise return 0.

We highlight that for the proof of one-more unforgeability in [KLR21] it is not important that the
commitments µi are computed using a random oracle. In fact, what it needed is only that this commitment
is binding. Indeed, it is easy to see that the proof goes through using any binding commitment scheme.
We denote this modified scheme using a commitment scheme CMT by CCBS[CMT]. We summarize the
one-more unforgeability bounds of the scheme CCBS[CMT] in the following theorem. The concrete bounds
can easily be derived from [HKL19, KLR21].
Theorem 5.1 Let CMT be a randomness homomorphic commitment scheme. Further, let H : {0, 1}∗ →
Zλ, Ĥ : {0, 1}∗ → {0, 1}n be random oracles. Then CCBS[CMT] satisfies one-more unforgeability, if the
RSA assumption holds relative to RSAGen.

Precisely, for every adversary against the OMUF security of CCBS[CMT] that has advantage ε and
makes at most QH, QĤ queries to oracles H, Ĥ, respectively, starts at most p interactions with his signer
oracle, and runs in time t, there exists an adversary against the binding property of CMT with running
time t and success probability εCMT and two algorithms solving the RSA assumptions in time 2t, t with
success probability εRSA, εRSA′ , respectively, such that

εRSA ≥
1

Q2
H`

3

(
ε

4 −
stat
2 − εCMT

2 − pεRSA′

2 − (QH(p− `))`+1

λ

)3

,

where stat =
(
Q2

Ĥ + pQĤ + p4 + p2QH

)
/2n and ` = 3 ln(p+ 1) + ln(2/ε).

5.4 Construction
Next, we present our construction BSRSA, which makes use of a randomness homomorphic commitment
scheme CMT with randomness space Rck and a puncturable pseudorandom function PRF. It should be
mentioned that we can instantiate PRF using random oracles (cf. Supplementary Material Section D) and
CMT tightly based on the RSA assumption (cf. Supplementary Material Section C.1). Furthermore, we
need random oracles H : {0, 1}∗ → Zλ,H′ : {0, 1}∗ → Z∗N ,H′′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ →
{0, 1}n,Hx : {0, 1}∗ → D × Zλ ×Rck × {0, 1}nPRF , where nPRF is a security parameter used for PRF.

22

S(sk); state ctr U(pk,m)

ctr := ctr + 1, N := ctr N for j ∈ [N] :

αj←$D, βj←$ Z∗N
γj←$ {0, 1}n

ϕj←$ {0, 1}n

µj := Ĥ(m, ϕj)
ϕj←$Rck

µj := Com(m;ϕj)

for j ∈ [N] : com1, . . . , comN comj := Ĥ(αj , βj , µj , γj)

rj←$D, Rj := F(rj) R1, . . . , RN for i ∈ [N] :

R′j := Rj · F(αj) · pk′βj

c′j := H(µj , R′j)

J←$ [N] c1, . . . , cN cj := c′j + βj

for j ∈ [N] \ {J} : J

if comj 6= Ĥ(αj , βj , µj , γj) : {(αj , βj , µj , γj)}j 6=J

abort

R′j := Rj · F(αj) · pk′βj

if cj 6= H(µj , R′j) + βj :
abort

sJ := rJ ◦ sk′cJ sJ if F(sJ) 6= RJ · pk′cJ :

abort
s′J := sJ ◦ αJ

◦Ψ(pk′, cJ ,−c′J)
return σ := (c′J , s′J , ϕJ)

Figure 6: The signature issuing protocol of the blind signature scheme CCBS obtained via the boosting
construction, where H : {0, 1}∗ → Zλ, Ĥ : {0, 1}∗ → {0, 1}n are random oracles. The state ctr of S is
atomically incremented at the beginning of every interaction. Instead of generating the commitments µi
via a random oracle, we can also generate it via a commitment scheme (highlighted line). As long as it is
binding, one can easily verify that the proof goes through.

Key Generation. Algorithm BSRSA.Gen(1n) generates keys as follows:

1. Generate parameters par = (N, a, λ) and a trapdoor td = (p, q) as above.

2. Sample sk′←$D, set pk′ := F(sk′).

3. Generate a commitment key ck← CMT.Gen(1n).

4. Set the state of S to ctr := 1.

5. Return the public key pk := (par, pk′, ck) and the secret key sk := (td, sk′).

Signature Issuing. The algorithms S,U of the signature issuing protocol are formally presented in
Figures 7 and 8. We note that S keeps a state ctr, which is inititalized as ctr := 1.

23

Verification. A signature σ = (c′, s′, ϕ∗) is verified with respect to a message m via algorithm
BSRSA.Ver(pk = (par, pk′, ck),m, σ), which is as follows:

1. Compute the commitment µ∗ := Com(ck,m;ϕ∗)

2. Return 1 if c′ = H(µ∗,F(s′) · pk′−c
′
). Otherwise return 0.

Check(pk, N, seed, µ0, comr, comc, J, kJ , cJ , η)
1 : for j ∈ [N] \ {J} :
2 : prerj := PRF.Eval(kJ , j), rj := Hx(prerj)
3 : parse rj = (αj , βj , ϕj , γj) ∈ D × Zλ ×Rck × {0, 1}nPRF

4 : Rj := H′(seed, j)
5 : µj := Translate(ck, µ0, ϕj)

6 : cj := H(µj , Rj · F(αj) · ·pk′βj) + βj

7 : if comr 6= Hr(Hr(r1), . . . ,Hr(rJ−1), η,Hr(rJ+1), . . . ,Hr(rN)) : return 0
8 : if comc 6= Hc(c1, . . . , cN) : return 0
9 : return 1

Figure 7: The algorithm Check used in the issuing protocol of blind signature scheme BSRSA, where
H : {0, 1}∗ → Zλ,H′ : {0, 1}∗ → Z∗N and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → D×Zλ×Rck×{0, 1}nPRF

are random oracles.

5.5 Security Analysis
Completeness of the scheme is immediate. We show blindness and one-more unforgeability. The proof of
blindness can be found in Supplementary Material Section H.2. The proof of one-more unforgeability is
given in Supplementary Material Section H.1.

Theorem 5.2 Let PRF be a puncturable pseudorandom function, CMT be a randomness homomor-
phic commitment scheme. Further, let H : {0, 1}∗ → Zλ,H′′ : {0, 1}∗ → {0, 1}n and Hr : {0, 1}∗ →
{0, 1}n,Hx : {0, 1}∗ → D × Zλ ×Rck × {0, 1}nPRF be random oracles. Then BSRSA satisfies semi-honest
signer blindness.

In particular, for any adversary that uses NL and NR as the counters in its executions with the user
and queries H,Hr,Hx,H′′ at most QH, QHr , QHx , QH′′ times, respectively, the semi-honest signer blindness
advantage can be bounded by

4εPRF + Q2
H′′

2n−1 + QH′′

2n−2 + QHx
2nPRF−2 + QHr

2nPRF−2 + 4QH
|Z∗N |

,

where εPRF is the advantage of an adversary against the security of PRF puncturing at one point with
input length max{log(NL), log(NR)}.

Theorem 5.3 Let PRF be a puncturable pseudorandom function and CMT be a randomness homomorphic
commitment scheme. Further, let H′ : {0, 1}∗ → Z∗N ,H′′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ →
{0, 1}n be random oracles. Then BSRSA satisfies one-more unforgeability, assuming that CCBS[CMT] (cf.
Section 5.3) does.

Specifically, for any adversary against the OMUF security of BSRSA that has advantage ε and makes
at most QHr , QHc , QH′ , QH′′ , QH queries to oracles Hr,Hc,H′,H′′,H, respectively, and starts at most p
interactions with his signer oracle and runs in time t, there exists an adversary against the OMUF security
of CCBS[CMT] that makes at most QH queries to H, starts at most p interactions with his signer oracle,
makes at most p2 queries to his oracle Ĥ, runs in time t and has advantage εCCBS[CMT] such that

ε ≤
Q2

Hr

2n +
Q2

Hc
2n + pQHr

2n + pQHc
2n + pQH′

2n + pQH′′

2n + εCCBS[CMT].

24

S(sk = (td, sk′)); state ctr U(pk = (par, pk′, ck),m)

ctr := ctr + 1, N := ctr k ← PRF.Gen(1nPRF , 1log(N))
J←$ [N], salt←$ {0, 1}n ϕ0←$Rck

comJ := H′′(J, salt) N, comJ µ0 := Com(ck,m;ϕ0)

for j ∈ [N] :
prerj := PRF.Eval(k, j)
rj := Hx(prerj)
parse rj = (αj , βj , ϕj , γj)

seed←$ {0, 1}n µj := Translate(ck, µ0, ϕj)
for j ∈ [N] : comr := Hr(Hr(r1), . . . ,Hr(rN))

Rj := H′(seed, j) comr, µ0

rj ← LF.Invert(td, Rj) seed for j ∈ [N] :

Rj := H′(seed, j)

R′j := Rj · F(αj) · pk′βj

c′j := H(µj , R′j)
cj := c′j + βj

comc comc := Hc(c1, . . . , cN)

J, salt if comJ 6= H′′(J, salt) : abort

kJ ← PRF.Puncture(k, J)

kJ , cJ , η η := Hr(rJ)

if Check = 0 : abort

sJ := rJ ◦ sk′cJ sJ if F(sJ) 6= RJ · pk′cJ : abort

s′J := sJ ◦ αJ ◦Ψ(pk′, cJ ,−c′J)
ϕ∗ := ϕ0 + ϕJ

return σ := (c′J , s′J , ϕ∗)

Figure 8: The signature issuing protocol of the blind signature scheme BSRSA, where H : {0, 1}∗ → Zλ,H′ :
{0, 1}∗ → Z∗N ,H′′ : {0, 1}∗ → {0, 1}n and Hr,Hc : {0, 1}∗ → {0, 1}n,Hx : {0, 1}∗ → D × Zλ × Rck ×
{0, 1}nPRF are random oracles. The algorithm Check is defined in Figure 7. The state ctr of S is atomically
incremented at the beginning of every interaction.

5.6 Concrete Parameters and Efficiency
To derive concrete parameters for our scheme BSRSA based on the RSA assumption in a theoretically sound
way, we recall the concrete security bounds from Theorems 5.1 and 5.3. Let ε, t denote the advantage
and running time of an adversary against the one-more unforgeability of BSRSA initiating at most p
interactions with the signing oracle and querying the random oracle at most QH many times. Then
there is an adversary against the one-more unforgeability CCBS[CMT] with advantage εCCBS and running
time t. Also, there are three algorithms solving two instances of the RSA problem with probability
εRSA, εRSA′ , εRSA′′ and running time 2t, t, t, respectively. Here, the third adversary against RSA comes from
the binding property of the commitment scheme we use.

25

Concretely, by combining the concrete bounds given in Theorems 5.1 and 5.3 we obtain that

ε ≤ 2 3
√
Q2

H`
3εRSA + (QH(p− `))`+1

λ
+ 2εRSA′′ + 2pεRSA′ + 2T1 + T2,

where T1, T2 are statistically negligible terms and ` = 3 ln(p+ 1) + ln(2/εCCBS). To simplify further, we
assume κ bit of security for the instance related to εRSA and εRSA′ and κ′′ bit of security for the instance
related to εRSA′′ . By definition, this means that

εRSA < 2 · t · 2−κ, εRSA′ < t · 2−κ, εRSA′′ < t · 2−κ
′′
.

Next, we use

` = 3 ln(p+ 1) + ln
(

2
εCCBS

)
≤ 3 ln(p+ 1) + ln

(
2

ε− T2

)
=: `ε.

Pluggin in, we get

ε ≤ 2 3
√
Q2

H`
3
ε · 2 · t · 2−κ + (QHp)`ε+1

λ
+ 2t · 2−κ

′′
+ 2pt · 2−κ + 2T1 + T2,

which must hold for any adversary with running time t and advantage ε and any λ we choose. Note that
we can set the bitlength of the prime λ independently of the RSA modulus length.

To get k bit of security for BSRSA, we consider any fix choice of ε, t such that t/ε = 2k and increase
κ, κ′′ until the above inequality leads to a contradiction. Then, we choose the maximum values for κ, κ′′.
We note that we have to take this two-step approach and iterate over all combinations of ε, t, as `ε
depends on ε which leads to a non-linear inequality. Also, we note that we can set κ′′ to be much less
than κ as the relation between k and κ′′ is tight. Once the appropriate security levels κ and κ′′ are found,
we determine the modulus lengths len, len′′ following an estimation for the sub-exponential complexity of
the general number field sieve algorithm [CP06], which is similar to [HKL19]. Using the modulus length
and the bitlength of λ, we can compute the sizes of signatures and keys.

Next, we consider blindness. For simplicity, assume that NL = NR =: N . Also, we can make the
assumption7 that |Z∗N | ≥ 2n. If we want to achieve blindness with k bits of security, we have to make
sure that the blindness advantage is at most 2−k · t. As for our CDH-based scheme, we instantiate PRF
using the GGM construction (cf. Supplementary Material Section D). Using Theorem 5.2, the blindness
advantage can be upper bounded by

(2 log(N)− 1)QHPRF

2nPRF−2 + Q2
H′′

2n−1 + QH′′

2n−2 + QHx
2nPRF−2 + QHr

2nPRF−2 + QH
2n−2 .

Thus, we only have to choose nPRF large enough.
We implemented the approach in a simple Python script (cf. Supplementary Material Section J.1).

Example instantiations of our parameters can be found in Table 1.

6 Addendum: From Semi-Honest to Malicious Blindness
Here we show how to transform any blind signature scheme with semi-honest signer blindness into a
scheme that satisfies malicious signer blindness. In summary, we show the following lemma.

Lemma 6.1 (Informal). Let BS be a blind signature scheme that satisfies semi-honest signer blindness.
Then, using a non-interactive zero-knowledge proof-of-knowledge, BS can be transformed into a blind
signature scheme BS′ that satisfies malicious signer blindness. Furthermore, the schemes BS and BS′ are
identical except for public keys pk. Finally, for any ` : N→ N, it holds that if BS satisfies `-OMUF, then
BS′ satisfies `-OMUF and the security proofs of this transformation are tight.

7This is without loss of generality, as we have to choose a security level larger than n for the underlying RSA levels.

26

6.1 Non-Interactive Proof Systems
Before we describe our transformation, we recall the definition of non-interactive proof systems. For
simplicity of exposition, we focus on online-extractable proof systems in the random oracle model as
defined in [Fis05]. However, we note that different notions of non-interactive proofs are also applicable
here.

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation. We define the associated language LR ⊆ {0, 1}∗ via

x ∈ LR ⇐⇒ (x,w) ∈ R for some w ∈ {0, 1}∗,

for all x ∈ {0, 1}∗. Here, we call x the statement and w the witness. In the following, we focus on NP
relations, which means that R is efficiently decidable and the length of the witness w is bounded by a
polynomial in the length of the statement x. Relations can implicitly depend on the security parameter,
with the restriction that the length of statments is polynomially bounded in the security parameter.

Definition 6.2 (Non-interactive Proofs). Let R be an NP relation and H be a random oracle. A
non-interactive zero-knowledge proof-of-knowledge (NIZKPOK) for R is a tuple PS = (PProve,PVer)
such that

• PProveH(x,w) takes as input a statement x and a witness w and outputs a proof π.

• PVerH(x, π) is deterministic, takes as input a statement x and a proof π and outputs a bit b ∈ {0, 1}.

Further, the following completeness and security properties should hold:

• Completeness. For all (x,w) ∈ R we have

Pr
[
PVerH(x, π) = 1 | π ← PProveH(x,w)

]
= 1.

• Zero-Knowledge. There exists a PPT algorithm Sim such that for any PPT algorithm D the
following advantage is negligible:

|Pr
[
DH(St, π) = 1

∣∣ (St, x, w)← DH(1n), π ← PProveH(x,w)
]

−Pr
[
DH1(St, π) = 1

∣∣∣∣ (StSim ,H0)← Sim(1n),
(St, x, w)← DH0(1n), (H1, π)← Sim(StSim , x)

]
|.

• Proof-of-Knowledge. There exists a PPT algorithm Ext such that for any algorithm A the
following advantage is negligible:

Pr
[
(x,w) /∈ R ∧ PVerH(x, π) = 1

∣∣∣ (x, π)← AH(1n), w ← Ext(x, π,Q)
]
,

where Q denotes the list of queries of A to oracle H and the respective answers.

6.2 Construction
We describe how we turn any blind signature scheme satisfying semi-honest signer blindness into a
blind signature scheme satisfying malicious signer blindness. Our transformation preserves one-more
unforgeability.

Let BS = (Gen, S,U,Ver) be a blind signature scheme. Consider the relation of public keys and random
coins

R = {(pk, ρ) | ∃sk : (pk, sk) = Gen(1n; ρ)} ,

where pk is the statement and ρ is the witness. Further, let PS = (PProve,PVer) be a NIZKPOK for R
using random oracle H.

We transform BS into a new blind signature scheme BS′ = (Gen′, S,U′,Ver), where algorithms S and
Ver stay the same. Algorithm Gen′ is as follows:

1. Sample random coins ρ for algorithm Gen.

27

2. Generate (pk0, sk)← Gen(1n; ρ).

3. Compute a proof π ← PProveH(pk0, ρ) using pk0 as the statement and ρ as the witness.

4. Return the public key pk := (pk0, π) and the secret key sk.

Further, algorithm U′ is as algorithm U, but additionally checks the correctness of the public key pk first.
That is, U′ parses pk = (pk0, π) and runs b := PVerH(pk0, π). Then, if b = 0, it aborts the interaction. If
b = 1, it behaves as U does.

6.3 Analysis
We now show that one-more unforgeability is preserved and we achieve malicious signer blindness.

Lemma 6.3 Let BS be a blind signature scheme and PS be a NIZKPOK for the relation R using random
oracle H. Then, BS′ satisfies malicious signer blindness assuming that BS satisfies semi-honest signer
blindness.

Concretely, let tExt denote the running time of the extractor algorithm Ext given by the proof-of-
knowledge property of PS. Then, for any adversary against the malicious signer blindness of BS′ with
advantage ε and running time t, there exist adversaries against the proof-of-knowledge property of PS and
against the semi-honest signer blindness of BS with running time tPS = t, tBS ≤ t+ tExt and advantage
εPS, εBS, respectively, such that ε ≤ εBS + εPS.

Proof. Let A be an adversary against malicious signer blindness of BS′. We denote its advantage by ε.
First, we can assume that A outputs a key pk = (pk0, π) such that PVerH(pk0, π) = 1. This is because
otherwise, user oracles of scheme BS′ abort and leak no information about the message that is used.

With this assumption in mind, we build a reduction B against semi-honest signer blindness of BS.
The reduction uses A as a subroutine. It also makes use of the extractor Ext that exists due to the
proof-of-knowledge property of PS. Reduction B is as follows:

• B simulates the random oracle H for A, keeping track of the list Q of random oracle queries and
answers.

• B obtains a key pk and messages m0,m1 from A. It parses pk = (pk0, π) and runs ρ← Ext(x, π,Q).
If (pk0, ρ) /∈ R, B sets bad = 1 and simulates random oracles O′0,O′1 to adversary A by aborting
each interaction. Later it returns σ0 = ⊥, σ1 = ⊥ to A. Otherwise, if (pk0, ρ) ∈ R, B outputs
the random coins ρ and the messages m0,m1 to its blindness game. Note that this implies that its
blindness game will use the public key pk0.

• B gets access to oracles O0,O1. It provides oracles O′0,O′1 to adversary A. By our assumption, we
have PVerH(pk0, π) = 1. Reduction B simulates O′0 as O′0 and O′1 as O′1.

• It runs A with one-time access to oracles O′0,O′1. Then, it obtains signatures σ0, σ1 from its
blindness game and forwards them to A.

• When A outputs a bit b′, B forwards this bit to its blindness game.

It is clear that the running time of B is dominated by the running time of A and the running time of
Ext. Further, assuming that bad is never set to 1, B perfectly simulates the malicious signer blindness
game BLINDb,BS′ for A if it runs in semi-honest signer blindness game BLINDb,BS. Also, note that the
probability of bad = 1 is bounded by the knowledge error of PS, which is εPS by assumption. Further,
the probability of bad = 1 is independent of the bit b. To conclude the proof, we define the event
Wb :=

(
BLINDAb,BS′(n)⇒ 1

)
. We obtain

ε = |Pr [W0]− Pr [W1]|
≤ |Pr [W0 | bad = 0] · Pr [bad = 0] + Pr [W0 | bad = 1] · Pr [bad = 1]

−Pr [W1 | bad = 0] · Pr [bad = 0] + Pr [W1 ⇒ 1 | bad = 1] · Pr [bad = 1]|
≤ |Pr [W0 | bad = 0]− Pr [W1 | bad = 0]| · Pr [bad = 0]

+|Pr [W0 | bad = 1]− Pr [W1 | bad = 1]| · Pr [bad = 1]
≤ |Pr [W0 | bad = 0]− Pr [W1 | bad = 0]|+ Pr [bad = 1] ≤ εBS + εPS.

28

Lemma 6.4 Let BS be a blind signature scheme, PS be a NIZKPOK for the relation R using random
oracle H, and ` : N→ N be a function. Then, BS′ satisfies `-one-more unforgeability assuming that BS
satisfies `-one-more unforgeability.

Concretely, let tSim denote the running time of the simulator algorithm Sim given by the zero-knowledge
property of PS. Then, for any adversary against the `-one-more unforgeabilit of BS′ with advantage
ε and running time t, there exist adversaries against the zero-knowledge property of PS and against
the `-one-more unforgeabilit of BS with running time tPS = t, tBS ≤ t + tSim and advantage εPS, εBS,
respectively, such that ε ≤ εBS + εPS.

Proof. Let A be an adversary against the `-OMUF security of BS′. We show the statement via a reduction
from the `-OMUF security of BS.

Game G0: We start with game G0 := `-OMUFABS′ , which is the one-more unforgeability game. First,
a key pair (pk, sk) is sampled by the game. Recall that pk is of the form pk = (pk0, π), where π ←
PProveH(pk0, ρ) and ρ are the random coins used to generate pk0. Then, A is executed with input pk
and oracle access to random oracle H and a signer oracle O′. In the end, A outputs pairs of signatures
and messages and the game outputs 1 if these are all valid, the messages are distinct and there are more
such pairs than the number of completed interactions with oracle O′.

Game G1: We change the way the proof π contained in pk is generated. Namely, we use the simulator
Sim that exists by the zero-knowledge property of PS to generate π. Note that this simulator may
program the random oracle H. Clearly, we can bound the difference between G0 and G1 by the advantage
εPS of a reduction against the zero-knowledge property of PS. Thus, we have

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ εPS.

We will now bound the probability that G1 outputs 1 by a reduction B from the `-OMUF security of
BS. We denote the advantage of B by εBS. The reduction is as follows:

• B gets as input a public key pk0 for scheme BS. Also, B gets oracle access to a signer oracle O for
scheme BS. It generates a proof π for the statement pk0 using the zero-knowledge simulator Sim
and defines pk := (pk0, π).

• B runs algorithm A on input pk by providing random oracle H and a signer oracle O′, which is
simulated using O.

• B forwards the outputs of A to its own game.

It is easy to see that the reduction perfectly simulates G1 for A. Also, as verification for BS is the same
as for BS′, any valid forgery of A leads to a valid forgery of B. Thus, we have

Pr [G1 ⇒ 1] ≤ εBS.

6.4 Applicability to Our Schemes
Let us discuss how to apply the transformation that we presented in this section to our schemes. We focus
on the schemes resulting from the generic construction in Section 3 and the concrete scheme from RSA.

Using Generic Proofs. We can use a generic zero-knowledge proof-of-knowledge for NP to apply the
transformation to any blind signature scheme that satisfies semi-honest signer blindness. While this is an
inefficient solution in general, we argue that it is acceptable here. First, such proofs are allowed to use
random oracles in our setting. Second, the proof only needs to be generated once, and verified once by
each user. Therefore, this will only induce a one-time overhead, which is independent of the complexity
of the actual signing protocol.

More Efficient Solutions. Taking into account the concrete structure of the schemes we construct,
more efficient solutions are possible. For example, the relation between a public and a secret key (which is

29

part of the random coins used for key generation) in our protocols is given by a linear function. Therefore,
simple Schnorr-style Fiat-Shamir [FS87] proofs can be used. In an RSA-based setting, one also needs to
prove knowledge of the coins needed for the generation of parameters.

As an example, consider our RSA-based scheme from the OGQ linear function family, as presented
in Section 5. Here, the random coins used for key generation are given by p, q, a, λ, sk′ and the random
coins used to generate ck. First, one can show that N is the product of two primes p, q using techniques
from [GRSB19] or [CM99]. Here, one needs resort to the quadratic residuosity assumption [GRSB19] or
the discrete logarithm assumption [CM99]. Also, using [GRSB19], one can show that gcd(ϕ(N), λ) = 1.
We can then turn this into a proof-of-knowledge by running a non-interactive version of the Fiat-Shamir
identification scheme [FS87] on random public keys (e.g. sampled via the random oracle). This proves
knowledge of the factorization of N , i.e. of p and q. Similar techniques can be used to prove knowledge
of the random coins used to generate ck.

References
[AKSY21] Shweta Agrawal, Elena Kirshanova, Damien Stehlé, and Anshu Yadav. Can round-optimal

lattice-based blind signatures be practical? Cryptology ePrint Archive, Report 2021/1565,
2021. https://eprint.iacr.org/2021/1565. (Cited on page 2.)

[BLL+21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On
the (in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors, Advances
in Cryptology – EUROCRYPT 2021, Part I, volume 12696 of Lecture Notes in Computer
Science, pages 33–53, Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg, Germany.
(Cited on page 2.)

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin
Boyd, editor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes
in Computer Science, pages 514–532, Gold Coast, Australia, December 9–13, 2001. Springer,
Heidelberg, Germany. (Cited on page 12, 18, 19, 46.)

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-
more-RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal
of Cryptology, 16(3):185–215, June 2003. (Cited on page 2.)

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003: 6th
International Workshop on Theory and Practice in Public Key Cryptography, volume 2567
of Lecture Notes in Computer Science, pages 31–46, Miami, FL, USA, January 6–8, 2003.
Springer, Heidelberg, Germany. (Cited on page 2, 4, 12, 46, 49.)

[CAL22] Rutchathon Chairattana-Apirom and Anna Lysyanskaya. Compact cut-and-choose: Boosting
the security of blind signature schemes, compactly. Cryptology ePrint Archive, Report
2022/003, 2022. https://eprint.iacr.org/2022/003. (Cited on page 1.)

[CG08] Jan Camenisch and Thomas Groß. Efficient attributes for anonymous credentials. In Peng Ning,
Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008: 15th Conference on Computer
and Communications Security, pages 345–356, Alexandria, Virginia, USA, October 27–31,
2008. ACM Press. (Cited on page 1.)

[Cha82] David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest,
and Alan T. Sherman, editors, Advances in Cryptology – CRYPTO’82, pages 199–203, Santa
Barbara, CA, USA, 1982. Plenum Press, New York, USA. (Cited on page 1.)

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In Birgit Pfitzmann, editor, Advances in
Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages
93–118, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany. (Cited on
page 1.)

30

https://eprint.iacr.org/2021/1565
https://eprint.iacr.org/2022/003

[CM99] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is the product
of two safe primes. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99,
volume 1592 of Lecture Notes in Computer Science, pages 107–122, Prague, Czech Republic,
May 2–6, 1999. Springer, Heidelberg, Germany. (Cited on page 4, 30.)

[CP06] Richard Crandall and Carl B Pomerance. Prime numbers: a computational perspective, volume
182. Springer Science & Business Media, 2006. (Cited on page 26.)

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal blind
signatures in the standard model. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer
Science, pages 233–253, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg,
Germany. (Cited on page 2.)

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online
extractors. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 152–168, Santa Barbara, CA, USA, August 14–18,
2005. Springer, Heidelberg, Germany. (Cited on page 27.)

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference string
model. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of
Lecture Notes in Computer Science, pages 60–77, Santa Barbara, CA, USA, August 20–24,
2006. Springer, Heidelberg, Germany. (Cited on page 2.)

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part II, volume 10992 of Lecture Notes in Computer Science, pages 33–62, Santa Barbara,
CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany. (Cited on page 2.)

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed
ElGamal encryption in the algebraic group model. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology – EUROCRYPT 2020, Part II, volume 12106 of Lecture Notes in
Computer Science, pages 63–95, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg,
Germany. (Cited on page 2.)

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology – CRYPTO’86,
volume 263 of Lecture Notes in Computer Science, pages 186–194, Santa Barbara, CA, USA,
August 1987. Springer, Heidelberg, Germany. (Cited on page 30.)

[GG14] Sanjam Garg and Divya Gupta. Efficient round optimal blind signatures. In Phong Q. Nguyen
and Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of
Lecture Notes in Computer Science, pages 477–495, Copenhagen, Denmark, May 11–15, 2014.
Springer, Heidelberg, Germany. (Cited on page 2.)

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In 25th Annual Symposium on Foundations of Computer Science, pages
464–479, Singer Island, Florida, October 24–26, 1984. IEEE Computer Society Press. (Cited
on page 3, 36.)

[Gha17] Essam Ghadafi. Efficient round-optimal blind signatures in the standard model. In Aggelos
Kiayias, editor, FC 2017: 21st International Conference on Financial Cryptography and Data
Security, volume 10322 of Lecture Notes in Computer Science, pages 455–473, Sliema, Malta,
April 3–7, 2017. Springer, Heidelberg, Germany. (Cited on page 2.)

[GPZZ19] Panagiotis Grontas, Aris Pagourtzis, Alexandros Zacharakis, and Bingsheng Zhang. Towards
everlasting privacy and efficient coercion resistance in remote electronic voting. In Aviv
Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali, Federico Pintore, and
Massimiliano Sala, editors, FC 2018 Workshops, volume 10958 of Lecture Notes in Computer
Science, pages 210–231, Nieuwpoort, Curaçao, March 2, 2019. Springer, Heidelberg, Germany.
(Cited on page 1.)

31

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based signature
scheme resulting from zero-knowledge. In Shafi Goldwasser, editor, Advances in Cryptology –
CRYPTO’88, volume 403 of Lecture Notes in Computer Science, pages 216–231, Santa Barbara,
CA, USA, August 21–25, 1990. Springer, Heidelberg, Germany. (Cited on page 35.)

[GRS+11] Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schröder, and Dominique Unruh. Round
optimal blind signatures. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science, pages 630–648, Santa Barbara, CA, USA,
August 14–18, 2011. Springer, Heidelberg, Germany. (Cited on page 2.)

[GRSB19] Sharon Goldberg, Leonid Reyzin, Omar Sagga, and Foteini Baldimtsi. Efficient noninteractive
certification of RSA moduli and beyond. In Steven D. Galbraith and Shiho Moriai, editors,
Advances in Cryptology – ASIACRYPT 2019, Part III, volume 11923 of Lecture Notes in
Computer Science, pages 700–727, Kobe, Japan, December 8–12, 2019. Springer, Heidelberg,
Germany. (Cited on page 4, 30.)

[HBG16] Ethan Heilman, Foteini Baldimtsi, and Sharon Goldberg. Blindly signed contracts: Anonymous
on-blockchain and off-blockchain bitcoin transactions. In Jeremy Clark, Sarah Meiklejohn,
Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner, and Kurt Rohloff, editors, FC 2016
Workshops, volume 9604 of Lecture Notes in Computer Science, pages 43–60, Christ Church,
Barbados, February 26, 2016. Springer, Heidelberg, Germany. (Cited on page 1.)

[HKL19] Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from
identification schemes. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2019, Part III, volume 11478 of Lecture Notes in Computer Science, pages
345–375, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany. (Cited on
page 2, 3, 7, 8, 9, 21, 22, 26, 34, 35, 51.)

[HKLN20] Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-based blind
signatures, revisited. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in
Cryptology – CRYPTO 2020, Part II, volume 12171 of Lecture Notes in Computer Science,
pages 500–529, Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.
(Cited on page 2.)

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures (extended
abstract). In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume 1294
of Lecture Notes in Computer Science, pages 150–164, Santa Barbara, CA, USA, August 17–21,
1997. Springer, Heidelberg, Germany. (Cited on page 1, 2.)

[KLR21] Jonathan Katz, Julian Loss, and Michael Rosenberg. Boosting the security of blind signature
schemes. In Advances in Cryptology – ASIACRYPT 2021, volume 13093 of Lecture Notes in
Computer Science, pages 468–492, Cham, 2021. Springer International Publishing. (Cited on
page 2, 7, 8, 11, 22, 37, 55.)

[KLX22] Julia Kastner, Julian Loss, and Jiayu Xu. On pairing-free blind signature schemes in the
algebraic group model. In PKC 2022 (to appear), Lecture Notes in Computer Science. Springer,
Heidelberg, Germany, 2022. (Cited on page 2.)

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding
signature schemes. In Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92,
volume 740 of Lecture Notes in Computer Science, pages 31–53, Santa Barbara, CA, USA,
August 16–20, 1993. Springer, Heidelberg, Germany. (Cited on page 20, 21, 55.)

[Oka06] Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles.
In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptography Conference,
volume 3876 of Lecture Notes in Computer Science, pages 80–99, New York, NY, USA,
March 4–7, 2006. Springer, Heidelberg, Germany. (Cited on page 2.)

32

[OO92] Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In Joan Feigenbaum, editor,
Advances in Cryptology – CRYPTO’91, volume 576 of Lecture Notes in Computer Science,
pages 324–337, Santa Barbara, CA, USA, August 11–15, 1992. Springer, Heidelberg, Germany.
(Cited on page 1.)

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91, volume 576 of Lecture
Notes in Computer Science, pages 129–140, Santa Barbara, CA, USA, August 11–15, 1992.
Springer, Heidelberg, Germany. (Cited on page 36.)

[Poi98] David Pointcheval. Strengthened security for blind signatures. In Kaisa Nyberg, editor,
Advances in Cryptology – EUROCRYPT’98, volume 1403 of Lecture Notes in Computer
Science, pages 391–405, Espoo, Finland, May 31 – June 4, 1998. Springer, Heidelberg,
Germany. (Cited on page 2.)

[Pol78] John M Pollard. Monte carlo methods for index computation mod p. Mathematics of
computation, 32(143):918–924, 1978. (Cited on page 20.)

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, June 2000. (Cited on page 1, 2.)

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Computer
Science, pages 256–266, Konstanz, Germany, May 11–15, 1997. Springer, Heidelberg, Germany.
(Cited on page 2.)

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory of Computing,
pages 475–484, New York, NY, USA, May 31 – June 3, 2014. ACM Press. (Cited on page 3,
5.)

[TZ22] Stefano Tessaro and Chenzhi Zhu. Short pairing-free blind signatures with exponential security.
Cryptology ePrint Archive, Report 2022/047, 2022. https://eprint.iacr.org/2022/047.
(Cited on page 2.)

[WHL22] Benedikt Wagner, Lucjan Hanzlik, and Julian Loss. PI-cut-choo! Parallel instance cut and
choose for practical blind signatures. Cryptology ePrint Archive, Report 2022/007, 2022.
https://eprint.iacr.org/archive/2022/007/20220107:165256. (Cited on page 1.)

¸

33

https://eprint.iacr.org/2022/047
https://eprint.iacr.org/archive/2022/007/20220107:165256

Supplementary Material

A Standard Computational Assumptions
Definition A.1 (RSA assumption). Let RSAGen be an algorithm that on input 1n outputs (N, p, q, e),
where N = pq for distinct n-bit primes p, q and e ∈ N such that gcd(e, ϕ(N)) = 1.

We say that the RSA assumption holds relative to RSAGen if for all PPT algorithms A the following
advantage is negligible:

Pr [xe = y | (N, p, q, e)← RSAGen(1n), x̄←$ Z∗N , y := x̄e, x← A(N, e, y)] .

Definition A.2 (CDH assumption). Let PGGen be an algorithm that on input 1n outputs (G, g, p, e),
where G is the description of a cyclic group with generator g and prime order p, and e : G×G→ GT is a
non-degenerate bilinear map into some target group GT .

We say that the CDH assumption holds relative to PGGen if for all PPT algorithms A the following
advantage is negligible:

Pr [z = xy | (G, g, p, e)← PGGen(1n), x, y←$ Zp, gz ← A(G, g, p, e, gx, gy)] .

B Blind Signature Schemes from Linear Function Families
Here, we give the concrete security theorem from [HKL19]. It states that for a collision resistant linear
function family with pseudo torsion-free element in the kernel, the linear blind signature scheme BS[LF]
is secure, as long as only logarithmically many signatures are issued.

Definition B.1 (Collision Resistance). A linear function family LF is collision resistant if for any
adversary A, the following probability is negligible:

Pr [F(x) = F(x′) ∧ x 6= x′|(x, x′)← A(par)]

Theorem B.2 ([HKL19]). Let LF be a linear function family and H : {0, 1}∗ → S be a random oracle.
If LF is collision resistant and has a pseudo torsion-free element in the kernel, then BS[LF] is ` for
` = O(logn).

Concretely, for any adversary A that has success probability ε in the `-one-more unforgeability game
against BS[LF] and runs in time t, initiates at most p protocol execution, and makes at most QH queries to
H, there exists an algorithm against the collision resistance of LF with running time t′ = 2t and advantage
ε′, where

ε′ = Ω

(ε
2 −

(Q · (p− `))`+1

22n

)3
1

Q2`3

and Q = QH + `+ 1.

Next, we show semi-honest signer blindness of BS[LF]. We note that [HKL19] only claim honest signer
blindness, but their proof carries over to semi-honest signer blindness.

Theorem B.3 Let LF be a linear function family and H : {0, 1}∗ → S. Then BS[LF] satisfies semi-honest
signer blindness.

Concretely, every adversary against the semi-honest signer blindness of BS[LF] that queries H at most
QH times has advantage at most 4QH/|R|.

Proof. We follow the proof given in [HKL19]. Consider an adversary A against the semi-honest signer
blindness of BS[LF]. In the game Gb := BLINDb,BS[LF] for bit b ∈ {0, 1}, A first outputs random coins
ρ, and two messages m0,m1. The random coins define a public key pk and a secret key sk. We write
pk = F(sk), keeping in mind that pk also contains parameters par specifying F. Note that these parameters
are the output of the key generation algorithm and therefore well-formed. Then, A can interact with
two user oracles O0,O1. We denote the randomness that is used by these oracles by (α0, β0), (α1, β1),
respectively. Further, we denote the transcripts that A learns during this interaction by T0 = (R0, c0, s0)
and T1 = (R1, c1, s1), respectively. After the interaction, A obtains signatures σ0 for m0 and σ1 for m1.

34

In a first step of our proof, we rule out the bad event that A queries H(mb, R
′
0) or H(m1−b, R

′
1), where

R′0 = R0 + F(α0) + β0 · pk and R′1 = R1 + F(α1) + β1 · pk before A obtains the signatures σ0, σ1. As F is
smooth and α0, α1 are chosen uniformly at random from D, this bad event occurs with probability at
most 2QH/|R|. We call the resulting game G′b.

Now, we argue that the view of A in game G′0 is the same as the view of A in game G′1. Then, the
claim follows from

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤
∣∣Pr [G0 ⇒ 1]− Pr

[
G′0 ⇒ 1

]∣∣
+
∣∣Pr
[
G′0 ⇒ 1

]
− Pr

[
G′1 ⇒ 1

]∣∣
+
∣∣Pr
[
G′1 ⇒ 1

]
− Pr [G1 ⇒ 1]

∣∣ ≤ 4QH
|R|

.

We argue that for all combinations of i ∈ {0, 1} and j ∈ {0, 1}, there are values (αi,j , βi,j) that explain
that mj was used in oracle Oi and have the same distribution before A obtains the signatures. To this
end, we look at the experiment before A obtains signatures σ0, σ1. Here, define the values

αi,j := s′j − si −Ψ(pk,−c′j , ci), βi,j = ci − c′j

for i, j ∈ {0, 1}. We see that for all i, j ∈ {0, 1} the value βi,j is distributed uniformly conditioned on
the view of A before learning the signatures. This is because the value c′j = H(mj , R

′
j⊕b) is uniform

as we ruled out that A queries the random oracle at that position. Also, the distribution of αi,j =
sj + αj + Ψ(pk,−c′j , cj⊕b)− si −Ψ(pk,−c′j , ci) is uniform, due to the uniform choice of αj .

Further, the values (αi,j , βi,j) satisfy c′j = H(mj , Ri + βi,jpk + F(αi,j)) for all i, j ∈ {0, 1}, which can
be verified by an easy calculation using pk = F(sk), see [HKL19].

Thus, the view of A before and after it obtains the signatures σ0, σ1 is independent of the bit b, which
finishes the proof.

C Randomness Homomorphic Commitments
Here, we show how randomness homomorphic commitment schemes can be obtained from standard
assumptions, such as RSA and DLOG. Before we give concrete schemes from these assumptions, we
introduce a generic way of obtaining such commitment schemes from linear function families.

To this end, let LF = (PGen,F,Ψ) be a linear function family. For par ← PGen(1n), a commitment
key ck is a random element ck←$R in the range of the linear function. We assume that ck implicitly
contains par. We the define a commitment for element x ∈ S and randomness r ∈ D, and a translation of
a commitment µ ∈ R by r as follows:

Com(ck, x; r) := F(r)− x · ck, Translate(ck, µ, r) := µ+ F(r).

By smoothness of the linear function F, we see that this is perfectly hiding. Completeness of translation
follows by linearity of F. In most cases, the binding property follows from the preimage resistance of LF
and8

Com(ck, x0; r0) = Com(ck, x1; r1)⇒ F(r0 − r1) = (x0 − x1) · ck.

C.1 Randomness Homomorphic Commitment from RSA
To instantiate the randomness homomorphic commitment scheme, we show that a folklore commitment
scheme based on the RSA assumption is randomness homomorphic. From another point of view, this
scheme can be obtained from the Guillou-Quisquater identification scheme [GQ90]. The commitment
key ck contains public parameters (N, e) such that N = pq for two distinct n-bit primes, e is prime and
gcd(e, ϕ(N)) = 1 as well as an element y := xe mod N , where x←$ Z∗N . Commitment and translation
algorithms for m ∈ Ze, r ∈ Z∗N , µ ∈ Z∗N are defined as follows:

Com(ck,m; r) := reym mod N

Translate(ck, µ, r) := reµ mod N.

8This corresponds to special soundness if the linear identification scheme derived from LF. Note that this is always given
if the set of scalars is a field. In other cases, one may still be able to show special soundness, e.g. using Shamir’s trick.

35

It is easy to observe that translation is complete and the commitment is perfectly hiding. To see that it
is computationally binding, note that given two pairs (m0, r0), (m1, r1) ∈ Ze × Z∗N with m0 6= m1 and
Com(ck,m0; r0) = Com(ck,m1; r1) we have

re0y
m0 ≡ re1ym1 (mod N).

Without loss of generality we have m0 > m1 and as e is prime we have gcd(e,m0 −m1) = 1. Thus, we
can apply Shamir’s trick to

(r−1
0 r1)e ≡ ym0−m1 (mod N)

and derive an eth root of y.

C.2 Randomness Homomorphic Commitment from DLOG
We also show that the standard Pedersen commitment scheme [Ped92] is randomness homomorphic. Recall
that in this scheme, the commitment key is a pair of group elements g, h, where (G, g, p)← GGen(1n).
Commitment and translation algorithms for m ∈ Zp, r ∈ Zp, µ ∈ G are defined as follows:

Com(ck,m; r) := grhm

Translate(ck, µ, r) := grµ.

It is well-known (and easy to see) that the scheme is perfectly hiding and computationally binding under
the DLOG assumption relative to GGen. Also, completeness of translation is easy to see.

D Puncturable Pseudorandom Function
We instantiate the puncturable pseudorandom function PRF using the classical GGM construction
[GGM84]. As our framework is defined in the random oracle model, we also instantiate the GGM
construction using random oracles. The construction is as follows. Let H : {0, 1}∗ → {0, 1}2n be a random
oracle. For simplicity, we write H(x) = (H0(x),H1(x)) for any x to separate the output of H into two
n-bit strings. Keys are random strings of length n and for ` ∈ N, x ∈ {0, 1}`, k ∈ {0, 1}n we define

GGM0,k() := k, GGM`,k(b ‖ x) := GGM`−1,Hb(k)(x)

Then the evaluation of the pseudorandom function with key k ∈ {0, 1}n on input x ∈ {0, 1}d(n) is
PRF.Eval(k, x) := GGMd(n),k(x). We also define an algorithm Puncture`(k,X) to puncture keys at a set
of points ∅ 6= X ⊆ {0, 1}` as follows: We set Puncture0(k,X) := ∅ and

• Set kX := ∅ and (k0, k1) := H(k).

• Define sets Xb := {x | (x1, x) ∈ X ∧ x1 = b} for b ∈ {0, 1}.

• If X0 = ∅, set kX := kX ∪ {k0}. Else set kX := kX ∪ {Puncture`−1(k0, X0)}.

• If X1 = ∅, set kX := kX ∪ {k1}. Else set kX := kX ∪ {Puncture`−1(k1, X1)}.

• Return kX .

Note that this algorithm always terminates. We set PRF.Puncture(k,X) := Punctured(n)(k,X). Also,
note that punctured a punctured key contains all information needed to evaluate the pseudorandom
function at inputs that are not in X. Using a proof by induction over d(n) and |X|, one can easily show
that the number of elements in kX is at most (d(n)− 1)|X|+ 1.

It remains to show pseudorandomness on punctured points.

Lemma D.1 Let H : {0, 1}∗ → {0, 1}2n be a random oracle and consider the puncturable pseudorandom
function PRF as defined above. Let A be a PPT algorithm that makes at most Q queries to H. Then the
advantage of A in the pseudorandomness game for PRF is at most

(2d(n)− 1)Q|X|
2n

where X is the set of points that A outputs and d(n) is the input length.

36

Proof. A simple hybrid argument shows that we only have to argue that we have pseudorandomness for
keys which are punctured at one point. Then we can show the claim by induction over the input length
d = d(n). In particular, we show that for any PPT algorithm making at most Q random oracle queries the
advantage can be bounded by (2d− 1)Q/2n. We start with the case of d = 1. Let A be a PPT algorithm
and assume it outputs X ⊆ {0, 1}, |X| = 1. Let k←$ {0, 1}n be a random key. Let X = {x}. Conditioned
on kX = {H1−x(k)} the value PRF.Eval(k, x) = Hx(k) is uniformly random unless A queries H(k). As k
is sampled uniformly at random and A can only make a polynomial number of random oracle queries, a
union bound shows that the probability that this happens is negligible. In more detail the distinguishing
advantage can be upper bounded by Q/2n. Now consider d > 1, let k←$ {0, 1}n be a random key and let
X = {x}, x ∈ {0, 1}d be A’s initial output. Let kX , r be the values that A gets as input after outputting
X. Write x = x1 ‖ x̄ for x1 ∈ {0, 1}, x̄ ∈ {0, 1}d−1. We show indistinguishability via a sequence of four
games. In the first game, we let kX be the honestly punctured key kX = {s1−x1 = H1−x1(k), k{x̄}} and
r = Eval(k, x) be the real evaluation at input x. In the second game, we set s1−x1←$ {0, 1}n. Note that
similarly to the argument for d = 1, the adversary A can only distinguish between these two games, if it
queries H(k), which happens with probability at most Q/2n. In the third game, we sample r←$ {0, 1}n.
Note that any distinguisher between the second and the third game can be turned into a distinguisher
for input length d − 1 with the same advantage by a straight forward reduction. Hence, using the
induction hypothesis, the advantage of A in distinguishing the second and the third game can be upper
bounded by (2(d− 1)− 1)Q/2n. Finally, we undo the change we did in the second game. That is, we
set s1−x1 = H1−x1(k). Again, the advantage of distinguishing between the third and fourth game is at
most Q/2n. In total, we obtain that the advantage of A in distinguishing between the real value of the
pseudorandom function at input x and a random string is at most (2d− 1)Q/2n.

E Ommitted Chernoff Bound
Lemma E.1 For a sum X of independent {0, 1}-random variables and any s > E [X] it holds that

Pr [X ≥ s] ≤ exp(3E [X]− s).

Proof. The proof is similar to [KLR21]. Recall the standard Chernoff bound for all δ > 0:

Pr [X ≥ (1 + δ) · E [X]] ≤ exp
(
−E [X] δ2

2 + δ

)
.

Using x2 > (x+ 2)(x− 2) for all x ≥ 0 we obtain

Pr [X ≥ s] = Pr
[
X ≥

(
1 +

(
s

E [X] − 1
))
· E [X]

]
≤ exp

(
−E [X] (s/E [X]− 1)2

2 + (s/E [X]− 1)

)
≤ exp

(
−E [X]

(
s

E [X] − 3
))

= exp (3E [X]− s) .

F Omitted Analysis of Our Generic Construction
We give the security analysis of our generic construction, which we omitted in the main body.

F.1 Blindness
Proof of Theorem 3.1. We note that we prove the theorem using the notion of malicious signer blindness.
However, the proof also applies for both honest signer blindness and semi-honest signer blindness, where
the only change is the way the final reduction passes keys between its own game and the adversary.

37

Let BS := CCCBS[LF] and A be an algorithm with blindness advantage ε. That is,

ε :=
∣∣∣Pr
[
BLINDA0,BS(n)⇒ 1

]
− Pr

[
BLINDA1,BS(n)⇒ 1

]∣∣∣ .
We will bound this advantage via a sequence of games, changing how the oracles O0,O1 behave. To

be precise, we present games Gi,b for i ∈ {0, . . . , 8} and b ∈ {0, 1} such that G0,b = BLINDAb,BS and the
games Gi,b and Gi−1,b are close for all b ∈ {0, 1}. Finally, we show via a reduction from the blindness of
BS[LF] that G8,0 and G8,1 are close. Unless otherwise stated, random oracles are simulated honestly.
Game G0,b: This game is defined as the blindness game BLINDAb,BS. We briefly recall this game and fix
some notation for the rest of the proof. First, A outputs a public key pk and messages m0,m1. Then, it
gets access to oracles O0,O1, that simulate a user with input mb,m1−b, respectively. After the interaction
with these oracles, A gets the resulting signatures σ0, σ1 for the messages m0,m1, respectively.

Throughout the proof, we will distinguish the variables used in the oracles O0,O1 by superscripts
{L,R}. For example, by NL we denote the cut-and-choose parameter that A sends in its first message to
oracle O0. If we omit the superscript, our desciption should be understood to apply for both oracles.

By how we defined G0,b, we have

ε = |Pr [G0,0 ⇒ 1]− Pr [G0,1 ⇒ 1]| .

Game G1,b: This game is identical to G0,b, except after the adversary sends the first message N in each
oracle O0,O1, the game uniformly samples Ĵ←$ [N]. Later, if Ĵ 6= J , the game aborts. If the game
guesses J correctly for both oracles, then the game is still identical to G0,b. Furthermore, the view of A
is independent of Ĵ before the potential abort. Hence, we have

Pr[G1,b ⇒ 1] = 1
NLNR

Pr[G0,b ⇒ 1].

In the following, we will assume that Ĵ is guessed correctly for both oracles, i.e. ĴL = JL and ĴR = JR.
Game G2,b: This game is identical to G1,b, except that the we change how the game generates the values
prerj , j ∈ [N]. Namely, the game computes a punctured key kĴ ← PRF.Puncture(k, Ĵ) and sets

prerĴ := PRF.Eval(k, Ĵ) and prerj := PRF.Eval(kĴ , j) for all j ∈ [N] \ {Ĵ}.

Later, it returns kĴ as its punctured key as part of the sixth message of the interaction, where we use the
assumption that Ĵ = J . By the completeness of PRF, this does not change the view of the adversary.
Thus, we have

Pr[G2,b ⇒ 1] = Pr[G1,b ⇒ 1].

Game G3,b: This game is identical to G2,b except that the value prerL
ĴL

is sampled at random as
prerL

ĴL
←$ {0, 1}nPRF instead of using prerL

ĴL
:= PRF.Eval(kL, ĴL). The probability difference between G2,b

and G3,b can be bounded by the pseudorandomness property of the puncturable pseudorandom function
PRF. This can be seen with the following reduction B.

• Get a key and messages from the adversary, i.e. (pk,m0,m1, St)← A(1n).

• Run A on input St with access to random oracles and interactive oracles O0,O1, i.e. St′ ←
AO0,O1(St). The oracle O1 is provided as in game G2,b and oracle O0 is provided as follows:

– When A sends NL, guess ĴL←$ [NL] as in game G2,b and output ĴL to the PRF challenger.
Obtain the punctured key kĴL and value prerL

ĴL
.

– Use kĴL to sample prerLj for j ∈ [NL] \ {ĴL} as in G3,b. Continue the oracle simulation as
in G2,b. According to this, if the simulation does not abort, send the key kĴL in the sixth
message of the interaction.

• Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or σ1 = ⊥, then run
b′ ← A(St′,⊥,⊥). Else, run b′ ← A(St′, σ0, σ1) and output b′.

38

In the case that prerL
ĴL

is uniformly sampled from {0, 1}nPRF , B perfectly simulates G3,b. While if prerL
ĴL

is generated from PRF, B perfectly simulates G2,b. Using the security of PRF with input length log(NL),
we get

|Pr[G2,b ⇒ 1]− Pr[G3,b ⇒ 1]| ≤ εPRF.

Game G4,b: This game is identical to G3,b except that prerR
ĴR
←$ {0, 1}nPRF is sampled at random instead

of generated using PRF. Similar to our previous step, we can construct a reduction against the security
of PRF with input length log(NR) with advantage at most εPRF and obtain

|Pr[G3,b ⇒ 1]− Pr[G4,b ⇒ 1]| ≤ εPRF.

Game G5,b: This game is identical to G4,b except that we sample the value rĴ uniformly at random
instead of generating it using Hx(prerĴ). That is, the game samples

rĴ = (αĴ , βĴ , ϕĴ , γĴ)←$D × S ×Rck × {0, 1}nPRF .

It is clear that A can only distinguish this from G4,b if Hx(prerĴ) is queried. Due to the previous change,
prerĴ uniformly sampled over {0, 1}nPRF and the only information that A gets about prerĴ is given by its
hash value. Thus, we can apply union bound over the two user oracles and all queries to Hx to obtain

|Pr[G4,b ⇒ 1]− Pr[G5,b ⇒ 1]| ≤ 2QHx
2nPRF

.

Game G6,b: This game is identical to G5,b except that comr is computed differently. Concretely, the
game samples hĴ←$ {0, 1}n and computes the comr as

comr := Hr(Hr(r1), . . . ,Hr(rĴ−1), hĴ ,Hr(rĴ+1), . . . ,Hr(rN))

Later it returns hĴ as part of its third message. It is clear that A’s view does not change unless it queries
Hr(rXĴX) for X ∈ {L,R}. Note that A obtains no information about γĴ and γĴ is sampled uniformly at
random. Thus, we can apply a union bound over all QHr random oracle queries and X ∈ {L,R} and
obtain

|Pr [G6,b ⇒ 1]− Pr [G7,b ⇒ 1]| ≤ 2QHr

2nPRF
.

Game G7,b: This game is identical to G6,b, except that we change how the commitment µĴ is computed.
In previous games, the commitment was computed as

µĴ := Translate(ck, µ0, ϕĴ) = Com(ck,m;ϕ0 + ϕĴ).

Instead, the game now samples ϕ∗←$Rck and computes

µĴ := Com(ck,m;ϕ∗).

When outputting the signatures, the game uses ϕ∗ instead of ϕ0 +ϕĴ . Here, we again use our assumption
that Ĵ = J . According to the aborts previously introduced, A has no information regarding ϕĴ . Hence,
the distribution of ϕ0 +ϕĴ conditioned on kĴ , (ϕ0 +ϕj)j 6=Ĵ and ϕ0 is uniformly random as ϕĴ is uniformly
random and independent of all the other values. Therefore, the view of A in G7,b is the same as in G6,b,
which implies that

Pr[G7,b ⇒ 1] = Pr[G6,b ⇒ 1].

Game G8,b: This game is identical to G7,b except that the game now computes µ0 := Com(ck, m̄, ϕ0)
for arbitrary (say random) message m̄. We claim that A’s view in this game is identical to its view in
G7,b. This is because in our previous changes, we established that the only information that A gets
about ϕ0 is the commitment µ0 itself. In particular, the signatures that A gets are independent of ϕL0
and ϕR0 . Therefore, we can use that CMT is perfectly hiding, i.e. Com(ck, m̄, ϕ0) and Com(ck,m, ϕ0) are
identically distributed given ck. Therefore, the view of A does not change and we have

Pr[G8,b ⇒ 1] = Pr[G7,b ⇒ 1].

39

To summarize, so far we established the bound

ε ≤ NLNR

(
4(QHx +QHr)

2nPRF
+ 4εPRF + |Pr[G8,0 ⇒ 1]− Pr[G8,1 ⇒ 1]|

)
.

Lastly, we construct a reduction B′ distinguishing between the two blindness games of BS[LF] using A
as a subroutine. This allows us to bound the advantage of A in distinguishing the games G8,0,G8,1.
Reduction B′, which runs either in game BLIND0,BS[LF] or game BLIND1,BS[LF], is as follows.

• B′ runs9 (pk,m0,m1, St)← A(A), and commits to messages m0,m1 via µ∗b := Com(ck,mb;ϕ∗b) for
ϕ∗b←$Rck for both b ∈ {0, 1}. Then, B′ forwards the public key pk (after removing ck), and the
messages µ∗0, µ∗1 to its game.

• B′ is executed with access to oracles O′0,O′1. In this step, B′ runs the adversary with access to
oracles O0,O1 and random oracles on input St. Thereby, it provides the random oracles honestly
via lazy sampling, except random oracle H, for which it forwards queries from A to its own game.
In both oracles O0,O1 interacting with A, B′ simulates the user protocol as follows.

– When A sends its first message with N , first sample Ĵ←$ [N]. Then, generate keys k ←
PRF.Gen(1nPRF , 1logN) and kĴ ← PRF.Puncture(k, Ĵ). Set prerj := PRF.Eval(kĴ , j) and set
rj := Hx(prerj) for all j ∈ [N] \ {Ĵ}. Then, set the commitment µ0 := Com(ck, m̄, ϕ0) for
an arbitrary message m̄ and ϕ0←$Rck. Sample the value hĴ←$ {0, 1}n. Other values are
calculated based on the original protocol with these changes. Then, µ0, comr to A.

– Upon receiving, R1, . . . , Rl where l = logN , calculate R̃Ĵ as in the protocol and forward that
to the corresponding oracle (O′b for Ob). Then set cĴ as the response from this oracle. For
other sessions j ∈ [N] \ {Ĵ}, run the user protocol honestly.

– Follow the protocol until receiving J . If J 6= Ĵ , abort the entire execution. Else, follow the
protocol honestly until receiving sĴ from A. Then, forward this value to the corresponding
oracle (O′b for Ob).

• B′ receives signatures (c′0, s′0), (c′1, s′1) from its own game. It runs the adversary A on input
σ0 := (s′0, c′0, ϕ∗0) and σ1 := (s′1, c′1, ϕ∗1) and gets a bit b′ ∈ {0, 1} in return. B outputs this bit b′.

We can easily see that if B′ runs in BLIND0,BS[LF], B′ perfectly simulates G8,0 for A. Vice versa, if the
underlying game is BLIND1,BS[LF], B′ perfectly simulates G8,1. Hence, denoting the advantage of B′ by
εBS[LF], we get

|Pr[G8,0 ⇒ 1]− Pr[G8,1 ⇒ 1]| ≤ εBS[LF].

F.2 One-More Unforgeability
Proof of Theorem 3.2. Let A be an adversary in the one-more unforgeability game of CCCBS[LF]. Suppose
that A runs in in time t, initiates the protocol at most p times, makes at most QH, QHr , QHc queries to
H,Hr,Hc respectively, and has success probability ε.
Game G0: We start with G0, which is the `-one-more unforgeability game, i.e. G0 = `-OMUFACCCBS[LF].
The success probability of A in this game is ε. Recall that in this game, keys (pk, sk) ← Gen(1n) are
sampled and pk is given to A. Then, A gets access to an oracle O that simulates the signer algorithm
S(sk). In the end, A outputs messages and signatures (mi, σi) and the game outputs 1 if these are valid
signatures on distinct messages, and there are more pairs in the output than the number of completed
interactions with oracle O.

For t ∈ {r, c}, we say that a value y is extractable (at some point of the execution) from a random
oracle Ht if there is a query v to Ht such that Ht(v) = y (and the query happened before that point). In
this case, note that whenever A sends a value y that is extractable, the game can find such a query v by
searching in the list of random oracle queries. We also say that y is extractable to v.
Game G1: This game is identical to G0, except the game aborts when at least one of the following bad
events occurs:

9Note that this step is where we have to slightly modify B′ for the proof of honest signer blindness or semi-honest signer
blindness.

40

(1) There are collisions in Hr,Hc i.e. there exists two queries x 6= x′ to Ht such that Ht(x) = Ht(x′) for
t ∈ {r, c}. Clearly, the probability of this happening is at most (Q2

Hr
+Q2

Hc)/2
n.

(2) When comr is sent by A in an interaction, comr is not extractable from Hr or it is extractable to
hj ’s, but there exists some j such that hj is not extractable from Hr, and later even with j 6= J ,
the signer does not abort (i.e. algorithm Check outputs 1). In other words, this event occurs if the
game can not find values r̄i in the list of random oracle queries such that

¯comr = Hr(Hr (̄r1), . . . ,Hr (̄rN)).

Clearly, once comr is fixed, this event can only happen when the adversary finds the correct
(h1, . . . , hN) or rj such that Hr outputs comr or hj , respectively. Since the adversary makes at most
QHr queries to Hr, the probability of this happening is QHr/2n in a protocol execution. Hence, by
union bound, the probability of this event is pQHr/2n.

(3) When comc is sent by A in an interaction, comc is not extractable from Hc when received, but the
signer does not abort later. Note that algorithm Check verifies that comc = Hc(c1, . . . , cN). Thus,
this event can only occur if A finds preimages of comc after comc is fixed. Using a union bound over
the p interactions and QHc hash queries we can bound the probability of this event by pQHc/2n.

(4) The final output of A contains two pairs (m0, σ0 = (c′0, s′0, ϕ0)), (m1, σ1 = (c′1, s′1, ϕ1)) such that
m0 6= m1 but Com(ck,m0;ϕ0) = Com(ck,m1;ϕ1). We can construct a straight-forward reduction
BCMT against the binding property of CMT with εCMT advantage to bound the probability of this
event.

In summary, we obtain

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤
Q2

Hr
+Q2

Hc + p ·QHr + p ·QHc
2n + εCMT.

The purpose of the introduced aborts is to (1) ensure that each hash value corresponds to a unique
query, (2 and 3) rule out that the adversary cheats by not sending correct hashes and still providing valid
preimages later, and (4) prohibit the adversary in outputting two distinct message-signature pairs for
which the commitments of the messages are identical.

We emphasize that due to (1), we can assume that if the game can extract comc or comr, the values
that are sent later by A (i.e. values c1, . . . , cN and r1, . . . , rN) are the ones that the game could extract
before.

Now, we define the notion of successful cheating. Namely, we say that the adversary A successfully
cheats in a signing interaction, if neither the signer nor the game abort, but one of the following occurs:

(1) comr, when received, is extractable from Hr into h1, . . . , hN , but for some j ∈ [N], hj is not
extractable from Hr into rj , or

(2) Although comr is extractable from Hr into rj = (αj , βj , ϕj , γj) and comc is extractable from Hc into
cj ’s, we have

cj 6= H
(
µj , R̃j + F(αj) + βj · pk′

)
+ βj

for µj = Translate(ck, µ0, ϕj).

In G1, A can successfully cheat only if it guesses J correctly. Hence, in a signing interaction, the
probability that A successfully cheats is at most 1/N .

Next, we will upper-bound the expected number of times A successfully cheats in G1. Consider an
integer k such that at protocol execution p, N = 2k − 2. By how the protocol increments N and for large
k,

p ≥
k−1∑
i=2

2i − 2 = 2k − 2k ≥ 2k−1

so k ≤ dlog pe+ 1. Thus, the expected number of cheating in G1 is at most

k∑
i=2

2i−2∑
j=1

1
2i − 2 ≤

dlog pe+1∑
i=2

2i−2∑
j=1

1
2i − 2 = dlog pe.

41

Game G2: This game is identical to G1, except that the game aborts when the adversary successfully
cheats more than λ = 3dlog pe+ log(2/ε) times. We can upper-bound the probability that A cheats more
than λ times in G1 by ε/2 as follows.

Let X be a random variable for the number of times A successfully cheats in G1 and k be the value
such that at protocol execution p, N = 2k − 2. By the analysis above, k ≤ dlog pe + 1. Denoting by
Bernoulli(φ) a random variable with Bernoulli distribution and parameter φ, we can bound the random
variable X by a sum of independent identically distributed Bernoulli random variables. Precisely, we have

X ≤
dlog pe+1∑
i=2

2i−2∑
j=1

Bernoulli
(

1
2i − 2

)
.

Let Y be this sum of Bernoulli random variables. We can now use Lemma E.1 with E[Y] = dlog pe and
s = λ and get

Pr[X ≥ λ] ≤ Pr[Y ≥ λ] ≤ exp (3E[Y]− λ) = ε

2 .

Thus, the probability of the abort we introduced is at most ε/2, which implies that

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ ε

2 .

Game G3: This game is identical to G2 except that, after the signer oracle receives comr in each protocol
execution, the game does the following:

1. Sample a random session ĵ←$ [N].

2. If comr or hĵ is not extractable from Hr, set Cĵ := ⊥. Otherwise, if comr is extractable from Hr to
(h1, . . . , hN) and hĵ is extractable from Hr to rĵ , do the following:

(a) Sample a random scalar Cĵ←$S.

(b) Pick an index i′ ∈ Sĵ = {i ∈ [l] : ith-bit of ĵ is 1}.

(c) Sample ri′←$D and set Ri′ := F(ri′) + Cĵ · (−pk′).

(d) After initializing Ri for i ∈ [l] \ {i′} as in the signing protocol, calculate R̃′
ĵ
(as the user does

in the protocol) using the extracted randomness rĵ .
Then, if the hash value H(µĵ , R̃′ĵ) is already defined, the game aborts. If not, set H(µĵ , R̃′ĵ) :=
Cĵ − βĵ .

(e) Later when sJ needs to be calculated and i′ ∈ SJ = {i ∈ [l] : ith-bit of J is 1}, use ri′+Cĵ ·(−sk)
as the preimage of Ri′ .

Terminology: We call the above session ĵ that has H defined in this way as a programmed session.

3. For each j ∈ [N]\{ĵ}, if comr is not extractable from Hr, or it is extractable from Hr to (h1, . . . , hN),
but hj is not extractable from Hr, set Cj := ⊥.
Otherwise, hj is extractable into rj . After initializing Ri for each i ∈ [l] as in the signing protocol
except for Ri′ if i′ is defined in the case above, compute R̃′j (as the user does in the protocol) and
check if H(µj , R̃′j) is already defined. If it is, the game aborts. Else, set H(µj , R̃′j) uniformly at
random and let Cj := H(µj , R̃′j) + βj .

4. Send R1, . . . , Rl to A after all of the above is done.

Assuming none of the aborts that we introduced occurs, we can show that the view of A does not
change. To see this, first, the outputs of the random oracle H are still uniformly distributed in S. Moreover,
the distribution of R1, . . . , Rl stays the same because the distribution of Ri′ = F(ri′) + Cĵ · (−pk′) =
F(ri′ + Cĵ · (−sk′)) is the same as F(ri′) given that ri′ is uniformly generated. Furthermore, for the
programmed session ĵ, the joint distribution of (R̃′

ĵ
, cĵ , sĵ) remains the same because R̃′

ĵ
= F(sĵ) + cĵ · pk′

in both games.

42

In this game, the change of A’s success probability only comes from aborts when the game cannot
program the oracle H at some (µ,R). For H to be already defined at some (µ,R) point, it needs to be
queried from A or programmed by the game. Hence, we can consider the following three cases where the
hash value of (µ,R) has been already defined:

(1) (µ,R) has been queried by A. The game tries to program the oracle with R =
∑
i∈Sj Ri + F(αj) +

βj · pk′ for some j ∈ [N], and Ri = F(ri) is uniform in R as ri is uniform in D and the linear
function is smooth. Also, the value of R that A queried the random oracle is independent of Ri
because Ri was not revealed to the adversary yet. Thus, this happens with probability at most
1/|R|.

(2) (µ,R) has been programmed in another protocol execution. The same argument from above applies
as Ri is independent from other values in a different protocol execution. Hence, this happens with
probability at most 1/|R|.

(3) (µ,R) has been programmed in the same protocol execution. Let the two sessions be j1, j2 ∈ [N]
and j1 6= j2. Then,

R =
∑
i∈Sj1

Ri + F(αj1) + βj1 · pk′ =
∑
i∈Sj2

Ri + F(αj2) + βj2 · pk′.

Since j1 6= j2, we know that Sj1 6= Sj2 . Thus, there is some i which is in only one of Sj1 , Sj2 . Thus,
Ri is independent from any other values involved in the event. Then the above probability can
happen with probability at most 1/|R|.

Thus, A’s success probability is reduced by at most p2(p2 + QH)/|R| where p2 upper-bounds the
number of times the game tries to program H (in each signing protocol execution, the game tries to
programs H N ≤ p times, so over all executions the game tries to program H at most p2 times) and
p2 +QH upper-bounds the number of times H is programmed or queried. Therefore, we have

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ p2(p2 +QH)
|R|

.

Game G4: This game is identical to G3, except how the signer generates random cut-and-choose index
J . Concretely, after receiving comc, if comc is extractable from Hc into c1, . . . , cN and for all j ∈ [N],
cj = Cj i.e. there is no cheating from the adversary, set J := ĵ where ĵ is the programmed session defined
in G3. Otherwise, if comc is not extractable or extractable from Hc into c1, . . . , cN , but cj 6= Cj for some
j ∈ [N], set J := (N + 1)⊕ ĵ = (2l − 1)⊕ ĵ which is the bit-wise complement of ĵ.

Since ĵ is uniformly randomly generated from [N], J ’s distribution remains uniform in both cases as
N = 2l − 2. Hence, the success probability of A remains the same as G3, i.e.

Pr [G4 ⇒ 1] = Pr [G3 ⇒ 1].

Next, we define new nomenclature regarding the programmed sessions and the signatures related to
them. We call a programmed session ĵ, a completed programmed session, if J = ĵ and the signer does not
abort the signing protocol. Also, we call a valid signature σ = (c′, s′, ϕ′) for a message m, a fake signature,
if with R′ := F(s′)− c′ · pk′ and µ := Com(ck,m;ϕ′), there is a programmed session (not necessarily a
completed one) that programs H at (µ,R′).
Game G5: This game is identical to G4 except that, after the adversary outputs the signatures, the
game aborts if there are more fake signatures than the number of completed programmed sessions. We
can bound the probability that this bad event occurs, using the following claim:

Claim F.1 There is a reduction B′ against the preimage-resistance of LF with running time t and
advantage εLF such that Pr[E] ≤ p · εLF, where E denotes the event that G4 outputs 1 and adversary A
outputs more fake signatures than the number of completed programmed sessions.

To prove the claim, we first observe that by the changes we introduced inG1, A cannot output two pairs
(m0, σ0 = (c′0, s′0, ϕ0)), (m1, σ1 = (c′1, s′1, ϕ1)) such that m0 6= m1 but Com(ck,m0;ϕ0) = Com(ck,m1;ϕ1).
This means that any message-signature pair that A outputs will correspond to distinct random oracle

43

query. Hence, if A outputs more fake signatures than completed programmed sessions, then there will be
fake signatures that does not correspond to any completed programmed sessions. In other words, there
will be a fake signature that corresponds to a programmed session that is not completed.

Then, we will construct a reduction B′ using A as a subroutine to break preimage resistance of LF.

1. B′ receives the input (par, R) from the game of preimage resistant game for LF. B′ then picks a
random k←$ [p]. B′ simulates all interactions ofA with the signer oracle O as inG4, except execution
k. In the kth execution, instead of setting (with the notation of G3) Ri′ := F(ri′) + Cĵ · (−pk′), it
sets Ri′ := R+ Cĵ · (−pk′). Recall that i′th bit of ĵ is 1, so

R̃ĵ =
∑
i∈Sĵ

Ri = R+ Cĵ · (−pk′) +
∑

i∈Sĵ\{i′}

Ri.

If B′ needs to calculate sĵ , i.e. it has to complete the programmed session, it aborts.

2. Later, if A succeeds and outputs more fake signatures than the number of completed programmed
sessions, and the first fake signature σ for a message m which does not correspond to a completed
programmed session is from the kth execution, B′ can compute the preimage of R as follows. Let
the signature be σ = (c′, s′, ϕ). Further, define R′ := F(s′)− c′ · pk′, and r′ :=

∑
i∈Sĵ\{i′}

ri. Then,
we have

R′ = R̃′
ĵ

= F(αĵ) + βĵ · pk′ + R̃ĵ
= F(αĵ) + βĵ · pk′ +R+ Cĵ · (−pk′) +

∑
i∈Sĵ\{i′}

Ri

= F(αĵ) + βĵ · pk′ +R+ Cĵ · (−pk′) + F(r′).

Using F(s′)− c′ · pk′ and rearranging terms, we get

R = F(s′)− c′ · pk′ − F(αĵ)− βĵ · pk′ + Cĵ · pk′ − F(r′)
= F(s′ − αĵ − r′)− βĵ · pk′ + Cĵ · pk′ − c′ · pk′
= F(s′ − αĵ − r′ −Ψ(pk′, Cĵ ,−c′)),

where we used βĵ = Cĵ−c′. Note that in the equation above, B′ knows the values s′, αĵ , r′, pk′, Cĵ ,−c′.
Therefore, B′ can return the value

s′ − αĵ − r
′ −Ψ(pk′, Cĵ ,−c

′)

as a preimage of R.

Therefore, B′ can find the preimage of R if it guesses the execution that corresponds to the first fake
signature in the output of A. Note that until an abort happens, the execution k is hidden from A. Thus,
εLF ≥ Pr [E]/p and we get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ Pr[E] ≤ p · εLF.

Lastly, we will construct a reduction B against the λ-one-more unforgeability of BS[LF] where
λ = 3dlog pe+ log(2/ε), simulating G5, and using adversary A as a subroutine. Reduction B is defined as
follows:

1. B simulates all random oracles exept H honestly via lazy sampling. For queries to H, B forwards
the query to its challenger and sends back the output to A. However, on the programmed sessions,
B will answer A’s queries for the programmed sessions by itself by how it programs H in G3.

2. To start the game, B receives the public key pk′, generates other parameters used in CCCBS[LF]
and forwards them to A.

3. To simulate the signer oracle, B works as follows. For each signing protocol execution that is
initiated by A, B replicates G5 and additionally does the following:

44

• After A initiates a protocol execution, B starts a signing interaction for scheme BS[LF] with
its own game and receives R∗. After initializing ĵ←$ [N] and Ri′ according to G5, it picks
another i′′ such that i′′th bit of ĵ is 0 and sets Ri′′ := R∗.
Then, B interacts with A by following the specification of G5.

• When the protocol requires B to send sJ to A, B’s behavior will depend on the value of J .
If J = ĵ, B sends sJ :=

∑
i∈SJ ri =

∑
i∈SJ ri + CJ · (−sk′) + cJ · sk′. This doesn’t require B

to know the secret key sk′ because cJ = CJ by how H is programmed in G3 and how J is
selected in G4.
If J = (N + 1) ⊕ ĵ, B forwards cJ to its own game. Upon receiving s∗, B sends sJ :=
s∗ +

∑
i∈SJ\{i′′} ri to A.

4. After A sends `+ 1 valid pairs of the form (mi, σi = (c′i, s′i, ϕi)) to B, B identifies and removes all
the fake signatures. Then, B outputs the remaining signatures on the induced commitments, i.e. it
outputs the (µi, σ̃i) where

µi := Com(ck,mi;ϕi), σ̃i := (c′i, s′i).

We see that B perfectly simulates G5 for A. Further, using the analysis above (see G1), we know that
the `+ 1 pairs of the form (m, σ = (c′, s′, ϕ)) that A outputs contain no two pairs leading to the same
commitment µ = Com(ck,m;ϕ). Therefore, all committed messages µi that B outputs are distinct. Also,
the number of fake signatures is at most the number of completed programmed sessions which is at most
`− cheat, where cheat is the number of times A successfully cheats. Therefore, the number of remaining
non-fake signatures is at least cheat + 1. As the number of executions that B completes with its own
game is equal to the number of times A successfully cheats, B outputs enough signatures.

Since B is simulating G5, the the number of times A successfully cheats is upper-bounded by
λ = dlog pe + log(2/ε). Therefore, B successfully breaks λ-one-more unforgeability of BS[LF] with the
same probability as A’s success probability in G5, proving the theorem.

G Ommitted Analysis of Our Scheme from CDH
Here, we give the remaining parts of the formal analysis of our scheme from CDH. In particular, we show
blindness. To do so, we first introduce a lemma that will be useful for our blindness proof.

Lemma G.1 For any algorithm A, parameters par := (G, g, p, e)← PGGen(1n), and bit b ∈ {0, 1}, we
consider the following game Gb:

1. Let H : {0, 1}∗ → G10. Run ((pki,mi,0,mi,1)i∈[K], St)← AH(par).

2. Let Ob′ for b′ ∈ {0, 1} be an interactive oracle. Upon termination, it locally outputs σb⊕b′ to the
game. The oracle is defined as follows:

(a) Upon a query from A, sample αi←$ Zp and set ci := H(pki,mi,b⊕b′) · gαi for all i ∈ [K]. Send
c1, . . . , cK to A.

(b) Receive s̄ from A and set

σ̄ := s̄ ·
K∏
i=1

pk−αii .

If
e (σ̄, g) 6=

∏
i∈[K]

e (H(pki,mi,b⊕b′), pki) ,

define the local output of this oracle to be σb⊕b′ := ⊥. Otherwise, define the local output of
this oracle to be σb⊕b′ := σ̄.

10We do not need to model H as a random oracle here.

45

3. Run A on input St with arbitrary interleaved one-time access to each of these oracles, i.e.

St′ ← AO0,O1,H(St).

4. If σ0 = ⊥ or σ1 = ⊥, run b∗ ← A(St′,⊥,⊥). Else, run b∗ ← A(St′, σ0, σ1). Output b∗.

Then, for each algorithm A, we have Pr [G0 ⇒ 1] = Pr [G1 ⇒ 1].

Proof. We show the claim via a statistical argument. To this end, recall that the exponentiation map
Zp → G, x 7→ gx is a bijection. Thus, for each public key pki output by A, we can write pki = gski . For
now, we denote the discrete logarithm of an element h ∈ G with respect to g by dlog(h). With this
notation, we have ski = dlog(pki) for all i ∈ [K]. After the adversary outputs (pki,mi,0,mi,1)i∈[K], we
consider the rest of the experiment in two phases.

First, we consider the view of A before it receives σ0 and σ1. Here, it is clear that A’s view in Gb is
the same for both b = 0 and b = 1. Indeed, in both games, A obtains from both oracles K independent
and uniform group elements ci, as the values αi act as a one-time pad, hiding H(pki,mi,b⊕b′) and thus b.

Next, we consider the view of A after it receives σ0 and σ1. If σ0 = ⊥ or σ1 = ⊥, then A obtains
no new information about b. On the other hand, if σ0 6= ⊥ and σ1 6= ⊥ we know that, by definition of
game Gb, we have

e (σj , g) =
∏
i∈[K]

e (H(pki,mi,j), pki)

⇐⇒ e (g, g)dlogg(σj) = e (g, g)
∑

i∈[K]
dlog(H(pki,mi,j))ski

⇐⇒ σj =
∏
i∈[K]

H(pki,mi,j)ski .

for each j ∈ {0, 1}, where the last equivalence follows from the non-degeneracy of the pairing. Thus,
for each j ∈ {0, 1}, the element σj is completely determined by (pki,mi,j)i∈[K]. This implies that after
learning σ0 and σ1, A obtains no additional information about bit b. Therefore, the claim follows.

of Theorem 4.1. This can be proven in an analogous way to Theorem 5.2. The only difference is that we
puncture the key at K points (one per instance) and apply the perfect blindness of the underlying blind
signature scheme [Bol03, BLS01] K times.

We now present the details. Let BS := PIKACDH and A be an algorithm with blindness advantage ε.
That is,

ε :=
∣∣∣Pr
[
BLINDA0,BS(n)⇒ 1

]
− Pr

[
BLINDA1,BS(n)⇒ 1

]∣∣∣ .
We show that claimed uppor bound on ε via a sequence of games, where all random oracles are simulated
honestly via lazy sampling unless otherwise specified.

Game G0,b: Game G0,b is defined as the real blindness game BLINDAb,BS. Let us recall this game. First,
A outputs a public key pk and messages m0,m1. Then, the game provides two interactive oracles O0,O1
to A, which simulate the user algorithm U(pk,mb),U(pk,m1−b), respectively. Throughout the proof, we
will reference to the variables used in these executions using superscripts L and R, respectively. For
example, comL

J refers to the commitment on the seed of the cut-and-choose index sent by A as part of
the first message in the interaction with oracle O0. If we omit the superscript, our description applies to
both oracles. According to this, NL and NR denote the cut-and-choose parameters sent by A in the first
message of the interaction with oracles O0,O1, respectively. It follows that

ε = |Pr [G0,0 ⇒ 1]− Pr [G0,1 ⇒ 1]| .

Game G1,b: Game G1,b is exactly as game G0,b, but whenever there are queries H′(x) = H′(x′) for
x 6= x′, the game aborts. Clearly, the probability of such a collision is at most Q2

H′/2n, which leads to

|Pr [G0,b ⇒ 1]− Pr [G1,b ⇒ 1]| ≤ Q2
H′

2n .

46

Game G2,b: Game G2,b is exactly as game G1,b, but we introduce another abort. Namely, the game
aborts if the adversary sends N, comJ as its first message, but at that point the game can not find a
query H′(ˆseedJ, ˆsalt) = comJ and later the user algorithm does not abort, i.e. A is able to successfully
open comJ by sending seedJ, salt. Note that there is at most one query that the game can find, as we
ruled out collisions for oracle H′ in the previous change. Clearly, the probability that the adversary can
successfully open a commitment for which the game can not find a query is at most QH′/2n. A union
bound over oracles O0 and O1 shows that

|Pr [G1,b ⇒ 1]− Pr [G2,b ⇒ 1]| ≤ QH′

2n−1 .

Note that if the user oracle aborts, then the adversary gets (⊥,⊥) in the end of the game and learns
nothing about the bit b as CMT is perfectly hiding and no information about the randomness ϕ0 is ever
revealed to A. Thus, from now on, we can focus on the case where the user oracle does not abort. By the
change we introduced here, we can thus assume that the game is able to extract ˆseedJ from comJ and
that later ˆseedJ = seedJ. For the extracted seed ˆseedJ, we also define the cut-and-choose vector Ĵ and
the set Ĵ as

∀i ∈ [K] : Ĵi := H′(ˆseedJ, i), Ĵ = (Ĵ1, . . . , ĴK), Ĵ := {(i, Ĵi) | i ∈ [K]}.

As ˆseedJ = seedJ, we also have Ĵ = J and Ĵ = J .

Game G3,b: Game G3,b is defined exactly as G2,b, except that we change the way the randomness seeds
preri,j are generated. We recall that in previous games, these values were generated as in the real scheme,
i.e.

preri,j := PRF.Eval(k, (i, j)) for all (i, j) ∈ [K]× [N].

Instead, we now generate these values using a punctured key kĴ for (i, j) ∈ [K]× [N]\ Ĵ , and as before for
(i, j) ∈ Ĵ . Concretely, at the beginning of the interaction, the game samples k ← PRF.Gen(1nPRF , 1log(KN))
as before, extracts ˆseedJ and computes Ĵ as described in G2,b, and additionally generates kĴ ←
PRF.Puncture(k, Ĵ). Then it sets

preri,Ĵi := PRF.Eval(k, (i, Ĵi)) for all i ∈ [K]

and
preri,j := PRF.Eval(kĴ, (i, j)) for all (i, j) ∈ [K]× [N] \ Ĵ .

By the completeness of PRF this is only a syntactical change, and hence

Pr [G3,b ⇒ 1] = Pr [G2,b ⇒ 1].

Game G4,b: In game G4,b, we change the way we generate the randomness seeds prerL
i,ĴL

i

for i ∈ [K].
Concretely, we sample them at random from {0, 1}nPRF. We can bound the distinguishing advantage
between games G3,b and G4,b using a reduction B from the security of PRF. The reduction B is as follows:

• Run A to get a public key and messages, i.e. (pk,m0,m1, St)← A(1n).

• Run A on input St with access to random oracles and interactive oracles O0,O1, i.e. St′ ←
AO0,O1(St). The oracle O1 is provided as in game G3,b and oracle O0 is provided as follows:

– When A sends NL, comL
J , extract ĴL, Ĵ L from comL

J as game G3,b does and output Ĵ L to
the PRF challenger. Obtain the punctured key kĴL and values {prerL

i,ĴL
i

}i∈[K].

– Use kĴL to sample prerLi,j for (i, j) ∈ [K]× [NL]\Ĵ L as in G3,b. Continue the oracle simulation
as in G3,b. According to this, if the simulation does not abort, send the key kĴL in the fourth
message of the interaction.

• Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or σ1 = ⊥, then run
b′ ← A(St′,⊥,⊥). Else, run b′ ← A(St′, σ0, σ1) and output b′.

47

Note that if the values prerL
i,ĴL

i

are random, then B perfectly simulates G4,b, whereas if they are the
outputs of the pseudorandom function, B perfectly simulates G3,b. By the security of PRF with input
length log(KNL) we obtain

|Pr [G3,b ⇒ 1]− Pr [G4,b ⇒ 1]| ≤ εPRF.

Game G5,b: In game G5,b, we change the way we generate the randomness seeds prerR
i,ĴR

i

for i ∈ [K].
Concretely, we sample them at random from {0, 1}nPRF. Anologously to the previous change, a reduction
from the security of PRF shows that

|Pr [G4,b ⇒ 1]− Pr [G5,b ⇒ 1]| ≤ εPRF.

Game G6,b: In game G6,b, we change the way we compute the values ri,Ĵi for i ∈ [K]. Note that in G5,b
these were computed as ri,Ĵi := Hx(preri,Ĵi). Now, we sample them randomly as

ri,Ĵi = (αi,Ĵi , ϕi,Ĵi , γi,Ĵi)←$ Zp ×Rck × {0, 1}nPRF .

Note that A can only distinguish between games G5,b and G6,b if it queries Hx(preri,Ĵi) for some i ∈ [K].
However, A obtains no information about preri,Ĵi , which is sampled uniformly at random. By a union
bound over all hash queries, i ∈ [K] and {L,R} we obtain

|Pr [G5,b ⇒ 1]− Pr [G6,b ⇒ 1]| ≤ 2KQHx
2nPRF

.

Game G7,b: Game G7,b is as G6,b, except that it computes the values comr,i, i ∈ [K] in a different way.
Concretely, for all i ∈ [K], it samples ηi←$ {0, 1}n and computes the comr,i as

comr,i := Hr(Hr(ri,1), . . . ,Hr(ri,Ĵi−1), ηi,Hr(ri,Ĵi+1), . . . ,Hr(ri,N)).

Later it returns the ηi as part of its second message. Note that A can only see the difference between G6,b
and G7,b if it queries Hr(rXi,ĴX

i

) for an i ∈ [K] and X ∈ {L,R}. It is clear that A obtains no information
about γi,Ĵi and γi,Ĵi is sampled uniformly at random. Thus, a union bound over all QHr random oracle
queries, i ∈ [K], and X ∈ {L,R} yields

|Pr [G6,b ⇒ 1]− Pr [G7,b ⇒ 1]| ≤ 2KQHr

2nPRF
.

Game G8,b: In game G8,b we change the way the commitments µi,Ĵi , i ∈ [K] are generated. Recall that
before, these were generated as

µi,Ĵi := Translate(ck, µ0, ϕi,Ĵi) = Com(ck,m;ϕ0 + ϕi,Ĵi).

Note that if the game does not stop, then especially Ĵ = J and ϕi = ϕ0 + ϕi,Ĵi . In game G8,b, we sample
ϕi←$Rck and set µi,Ĵi := Com(ck,m;ϕi) for all i ∈ [K]. We claim that the view of A is unchanged. This
is because, due to the previous changes, A gets no information about ϕi,Ĵi . Thus, we have to consider the
distribution of the values ϕi = ϕ0 + ϕi,Ĵi conditioned on kĴ, (ϕ0 + ϕi,j)j 6=Ĵi and ϕ0. This distribution is
uniformly random as ϕi,Ĵi is uniformly random. Hence we have

Pr [G8,b ⇒ 1] = Pr [G7,b ⇒ 1].

Game G9,b: In game G9,b, we change the way µ0 is generated, using that CMT is perfectly hiding.
Concretely, we sample a random message m̄L (resp. m̄R) and set µ0 := Com(ck, m̄;ϕ0). Note that in G9,b
the value ϕ0 is only needed to compute µ0. Especially, it is not needed to compute the values ϕi which
are part of the final signatures due to the previous changes. It follows from the security of CMT that
Com(ck, m̄;ϕ0) and Com(ck,m;ϕ0) are identically distributed given ck. Therefore, the view of A is not
changed and we get

Pr [G9,b ⇒ 1] = Pr [G8,b ⇒ 1].

48

Let us take a closer look at game G9,b. Here, for each instance i ∈ [K], the only part that depends on
message m (and hence bit b) is the Jth

i session. All other sessions only depend on µ0, which does not
depend on m anymore. Now, our final claim is that we can bound the difference between G9,0 and G9,1
using the perfect blindness under maliciously generated keys of the well-known BLS blind signatures
scheme [Bol03]. Concretely, we can now apply a straight-forward reduction from the game in Lemma G.1
and obtain

Pr [G9,0 ⇒ 1] = Pr [G9,1 ⇒ 1].

In summary, we showed that G0,0 is close to G9,0, G9,0 is close to G9,1, and G9,1 is close to G0,1.
Thus, G0,0 is close to G0,1, which is what we had to show.

H Ommitted Analysis of Our Scheme from RSA
In this section we formaly analyze our scheme BSRSA based on RSA, which we ommitted in the main
body.

H.1 One-More Unforgeability
Proof of Theorem 5.3. Set BS := BSRSA. Let A be an adversary against the OMUF security of BS. We
denote its advantage in the one-more unforgeability game by ε. We prove the statement via a sequence of
games. Parts of the proof are taken verbatim from the proof of Theorem 4.2. Fix an arbitrary polynomial
`.

Game G0: We start with game G0 := `-OMUFABS, which is the one-more unforgeability game. We
briefly recall this game. First, a key pair (pk, sk) ← Gen(1n) is sampled and A is run with concurrent
access to an interactive oracle O simulating the signer S(sk). We denote the number of completed
interactions between A and O after A’s execution by `. As we consider the random oracle model, A also
gets access to random oracles, which are provided by the game in the standard lazy manner. When A
finishes its execution, it outputs tuples (m1, σ1), . . . , (mk, σk) and wins, if all mi are distinct, k > ` and
all signatures σi verify with respect to pk and mi.

Game G1: This game is as G0, but we rule out collisions for oracles Ht, t ∈ {r, c}. To be more precise, we
change the simulation of oracles Ht, t ∈ {r, c} in the following way. If A queries Ht(x) and this value is not
yet defined, the game samples an image y←$ {0, 1}n. However, if there exists an x′ 6= x with Ht(x′) = y,
the game returns ⊥. Otherwise it behaves as before. Note that A can only distinguish between G0 and
G1 if such a collision happens, i.e. Ht returns ⊥. We can apply a union bound over all Q2

Ht pairs of
random oracle queries and obtain

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤
Q2

Hr

2n +
Q2

Hc
2n .

In particular, the previous change implies that at each point of the execution of the game and for each
image y ∈ {0, 1}n, there is at most one preimage H−1

t (y) under Ht. Thus, from a given image y ∈ {0, 1}n,
the game can extract at most one preimage x ∈ {0, 1}∗ such that Ht(x) = y. We will use this in the
following games.

Game G2: In game G2, we change the way the signing oracle is executed. Whenever A sends comr, µ0
as its first message, the game tries to extract the messages from this commitment. To do so, the game
goes through all the random oracle queries to Hr and tries to find a preimage of comr. Then, it parses this
bitstring as N hashes h1, . . . , hN and tries to find preimages of these in the same way. As a result of this
extraction, the game will end up with values r̄1, . . . , r̄N , where we write r̄j = ⊥ if the game was not able
to extract the jth value. If there is a session j ∈ [N] such that r̄j = ⊥, i.e. the game could not extract
the randomness for that session, and later in that execution J 6= j but algorithm Check outputs 1, the
game aborts. Denote this event by bad1. The probability of bad1 is an upper bound on the distinguishing
advantage of A between G1 and G2. For each fixed interaction, we can bound the probability of this
event (with respect to that interaction) by QHr/2n. To see this, consider the case where the game could
not extract the values h1, . . . , hN . Then, once comr is fixed, the probability that one of the hash queries

49

of A evaluates to comr is at most 1/2n. Similarly, in the case where the game could extract hj but could
not extract a value r̄j from hj for J 6= j, the probability that one of the hash queries of A evaluates to
the fixed hj is at most 1/2n. By a union bound over all interactions we obtain

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ Pr [bad1] ≤ pQHr

2n .

Game G3: Again, we change the signing oracle by introducing an additional abort. Namely, whenever
the adversary sends the commitment comc as its second message, the game extracts values c̄1, . . . , c̄N
such that Hc(c̄1, . . . , c̄N) = comc by going through all random oracle queries of A. If the game is not able
to extract, but later algorithm Check outputs 1, the game aborts and we say that the event bad2 occurs.
Note that algorithm Check internally checks if

comc 6= Hc(c1, . . . , cN).

Thus, the probability of bad2 in a fixed interaction and hence the distinguishing advantage of A between
G2 and G3 is bounded by QHc/2n, using a similar argument as in the previous game. We obtain

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1]| ≤ Pr [bad2] ≤ pQHc
2n .

Game G4: This game aborts whenever the following bad event occurs. The event is defined as follows:
The game samples seed after A sends its first message of an interaction with the signer oracle and at this
point there exists an index j ∈ [N] such that H′(seed, j) is already defined. As seed is sampled uniformly
at random from {0, 1}n and hidden from A until the point of the potential abort, a union bound over all
hash queries and interactions shows that

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ pQH′

2n .

Game G5: In G5, the signer oracle sends a random comJ in the beginning of each interaction. Later,
before it has to send J, salt, it samples J←$ [N] and salt←$ {0, 1}n and aborts if H′′(J, salt) is already
defined. If it is not yet defined, it defines it as H′′(J, salt) := comJ . The adversary A can only distinguish
between G4 and G5 if H′′(J, salt) is already defined. By a union bound over all QH′′ hash queries and p
interactions we obtain

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ pQH′′

2n .

Let us summarize what we have so far. We changed the game step by step and ruled out the following
types of bad events:

1. The adversary sends some commitment for which the game can not extract some of the committed
values, but later the adversary can open it successfully.

2. The game samples a random seed such that the random oracle values of interest are already defined
for that seed.

In particular, from the first property we can derive that whenever the game does not abort, it could
successfully extract values all of the values c̄1, . . . , c̄N . Additionally, we know by the collision freeness
of Hc that we must have cj = c̄j for all j ∈ [N]. A similar statement holds for the r̄j . Here, it can only
be the case that the game can not extract a single r̄j but later J = j. On the other hand, the second
property tells us that a potential reduction simulating G5 can program the random oracle before sending
the seed or the cut-and-choose index J to the adversary. We will use these properties to construct a (tight)
reduction B that breaks the one-more unforgeability of CCBS[CMT] whenever G5 outputs 1. Reduction
B works as follows:

• B gets as input pk = (par, pk′, ck) and oracle access to a signer oracle Ô and random oracles H, Ĥ for
blind signature scheme CCBS[CMT]. It runs A with input pk and oracle access to random oracles
H,H′,H′′,Hr and Hc and a signer oracle O. The oracles H′,H′′ are simulated honestly by B and
oracles Hr,Hc are simulated exactly as in game G5.

50

• When adversary A queries oracle O to start an interaction, the reduction B behaves as follows:

– It starts an interaction with oracle Ô and obtains a parameter N as the first message. It
forwards N, comJ to A, where comJ←$ {0, 1}n.

– When A sends its first message comr, µ0, B extracts (̄r1, . . . , r̄N) as in game G5 (cf. G2).
For each such j ∈ [N] for which r̄j is defined, it parses r̄j = (ᾱj , β̄j , ϕ̄j , γ̄j) and sets µ̄j :=
Translate(ck, µ0, ϕ̄j). Then it defines comj := Ĥ(ᾱj , β̄j , µ̄j , γ̄j). For the remaining j, it samples
comj←$ {0, 1}n. Finally, it sends com1, . . . , comN to its oracle Ô.

– The oracle Ô returns R1, . . . , RN . Then, B samples seed←$ {0, 1}n. It aborts, if there exists an
index j ∈ [N] such that H′(seed, j) is already defined. Otherwise, it programs H′(seedR, j) := Rj
for all j ∈ [N] and sends seed to A.

– When A sends its second message comc, the game extracts values c̄i from comc. If this
extraction is successful, i.e. c̄j is defined, it sets c′j := c̄j . Otherwise, it sets c′j←$S. It sends
c′1, . . . , c

′
N to Ô.

– The oracle Ô returns an index J ∈ [N], whereupon reduction B samples salt←$ {0, 1}n and
aborts if H′′(J, salt) is already defined. Otherwise it sets H′′(J, salt) := comJ and sends J, salt
to A.

– When adversary sends its third message kJ , cJ , η, algorithm B runs algorithm Check. If this
algorithm returns 0, B aborts this interaction. If it outputs 1 it aborts the entire execution if
one of the following two conditions hold

∗ There is some index j ∈ [N] such that cj = ⊥.
∗ There is some index j ∈ [N] such that j 6= J and r̄j = ⊥.

Otherwise, B sends {(ᾱj , β̄j , µ̄j , γ̄j)}j 6=J to Ô. Note that these values are defined by the second
condition that has been checked before.

– The oracle Ô returns sJ and B forwards it to A.

• When A outputs (m1, σ1), . . . , (mk, σk), B outputs (m1, σ1), . . . , (mk, σk).

It is easy to see that the values R1, . . . , RN are distributed uniformly over Z∗N 11 and therefore the
programming of the random oracle H′ is done correctly. Further, we claim that whenever B does not
abort during the interaction, the signing oracle Ô will also not abort. From this claim it follows that
the simulation provided by B is perfect. To see that the claim is true, note that Ô could abort the
signing interaction for two reasons: First, it may abort as there exists some j ∈ [N] such that j 6= J

and comj 6= Ĥ(ᾱj , β̄j , µ̄j , γ̄j). However, this can not happen due to the way B defines comj . The second
reason for an abort is that there exists a j ∈ [N] such that j 6= J and c′j 6= H(µ̄j , Rj · F(ᾱj) · pk′β̄j) + β̄j .
However, as we already noticed above, if G6 does not abort, then we have c′j = cj , µ̄j = µj , ᾱj = αj and
β̄j = βj and thus the B itself would have aborted as Check returns 0. Finally, it is clear that B wins the
one-more unforgeability game whenever G6 outputs 1, as B outputs A’s output and completes as many
interactions with oracle Ô as A completes with O. The statement follows by an easy calculation.

H.2 Blindness
For blindness, we will use the following lemma, stating that even with a trapdoor, the linear blind
signature scheme from the OGQ linear function satisfies blindness.

Lemma H.1 For any algorithm A and bit b ∈ {0, 1}, we consider the following game Gb:

1. Let H : {0, 1}∗ → Zλ be a random oracle. Run

(ρ,m0,m1, St)← AH(1n).

Use ρ as random coins to compute values N, p, q, λ, a, sk′, pk′ as in the key generation of the scheme
BSRSA.

11This property is called smoothness in [HKL19].

51

2. Let Ob′ for b′ ∈ {0, 1} be an interactive oracle. Upon termination, it locally outputs σb⊕b′ to the
game. The oracle is defined as follows:

(a) Receive R from A, sample (α, β)←$D × Zλ, set R′ := R · F(α) · pk′β. Set c′ := H(mb⊕b′ , R
′)

and c := c′ + β. Send c to A.
(b) Receive s from A. If F(s) 6= R · pk′c, define the local output of this oracle to be σb⊕b′ := ⊥.

Otherwise, set s′ := s ◦ α ◦ Ψ(pk′, c,−c′) and define the local output of this oracle to be
σb⊕b′ := (c′, s′).

3. Run A on input St with arbitrary interleaved one-time access to each of these oracles, i.e.

St′ ← AO0,O1,H(St).

4. If σ0 = ⊥ or σ1 = ⊥, run b∗ ← A(St′,⊥,⊥). Else, run b∗ ← A(St′, σ0, σ1). Output b∗.

Then, for each algorithm A that makes at most QH many queries to H we have

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ 4QH
|Z∗N |

.

Proof. This is a direct application of Theorem B.3 for the OGQ linear function family.

Proof of Theorem 5.2. Set BS := BSRSA. Let A be a PPT algorithm and denote its advantage with
respect to blindness by ε. In terms

ε :=
∣∣∣Pr
[
BLINDA0,BS(n)⇒ 1

]
− Pr

[
BLINDA1,BS(n)⇒ 1

]∣∣∣ .
We will show the statement via a sequence of games. Unless otherwise stated, random oracles are
simulated honestly via lazy sampling. We note that this proof is very similar to the proof of Theorem 3.1,
except for the first two game hops.

Game G0,b: Game G0,b is defined as the real blindness game BLINDAb,BS. Recall that the game first
obtains random coins ρ and two messages m0,m1 from the adversary A. It computes a public key pk as
the output of Gen on random coins ρ. Afterwards, A will interact with two oracles O0 and O1, simulating
U(pk,mb) and U(pk,m1−b), respectively. We will reference to the variables used in these executions using
superscripts L and R, respectively. For example, JL refers to the index J sent by A in the interaction with
oracle O0. If we omit the superscript, we mean that our description applies to both oracles. According to
this, NL and NR denote the cut-and-choose parameters sent by A in the first message of the interaction
with oracles O0,O1, respectively. By definition, we have

ε = |Pr [G0,0 ⇒ 1]− Pr [G0,1 ⇒ 1]| .

Game G1,b: Game G1,b is exactly as game G0,b, except that it aborts whenever there is a collision
for random oracle H′′. That is, whenever there are queries H′′(x) = H′′(x′) for x 6= x′. Clearly, the
distinguishing advantage between games G1,b and G0,b can be bounded by the probability of such a
collision, which leads to

|Pr [G0,b ⇒ 1]− Pr [G1,b ⇒ 1]| ≤ Q2
H′′

2n .

Game G2,b: Game G2,b is exactly as game G1,b, except that we introduce another abort. In this game,
whenever the adversary sends N, comJ as its first message, the game searches for a query H′′(Ĵ , ˆsalt) =
comJ . Note that the game can find at most one such query due to the previous change. If the game does
not find such a query, but later the user does not abort, as the adversary successfully opens comJ by
sending J, salt, the game aborts. It is easy to see that the probability of this event is at most QH′′/2n for
fixed comJ and thus a union bound over {L,R} leads to

|Pr [G1,b ⇒ 1]− Pr [G2,b ⇒ 1]| ≤ QH′′

2n−1 .

52

Note that from now on, we can focus on the case where the game is able to find the query H′′(Ĵ , ˆsalt) =
comJ , as otherwise the user oracle does abort. In particular, this implies that Ĵ = J . If the user oracle
does abort, the adversary does not learn anything about the bit b as CMT is perfectly hiding and no
information about the randomness ϕ0 is ever revealed to A. For the rest of the proof, Ĵ denotes the cut-
and-choose index that is extracted by the game from the commitment comJ and J is the cut-and-choose
index that is later sent by A to open comJ . As said, we focus on the case where these are equal.

Game G3,b: Game G3,b is defined exactly as G2,b, except that we change the way the randomness seeds
prerj are generated. Recall that before, these values were generated as in the real scheme, i.e.

prerj := PRF.Eval(k, j) for all j ∈ [N].

Instead, we now generate these values using a punctured key kĴ for j 6= Ĵ , and as before for j = Ĵ . To
be precise, at the beginning of the interaction, we sample k ← PRF.Gen(1nPRF , 1log(N)) as before, but
additionally generate kĴ ← PRF.Puncture(k, Ĵ). Then we sample

prerĴ := PRF.Eval(k, Ĵ)

and
prerj := PRF.Eval(kĴ , j) for all j ∈ [N] \ {Ĵ}.

Clearly, by the completeness of PRF this is only a syntactical change, and hence

Pr [G3,b ⇒ 1] = Pr [G2,b ⇒ 1].

Game G4,b: In game G4,b, we change the way we generate the values prerL
ĴL

. Namely, we sample
prerL

ĴL
←$ {0, 1}nPRF. The difference between G3,b and G4,b can now be bounded using the security of the

puncturable pseudorandom function PRF. To be precise, we construct a reduction B as follows:

• Run (ρ,m0,m1, St)← A(1n) and set (pk, sk) := Gen(1n; ρ).

• Run A on input St with access to random oracles and interactive oracles O0,O1, i.e. St′ ←
AO0,O1(St). The oracle O1 is provided as in game G3,b and oracle O0 is provided as follows:

– When A sends NL, comL
J , extract ĴL from comL

J as game G3,b does and output ĴL to the
PRF challenger. Obtain the punctured key kĴL and value prerL

ĴL
.

– Use kĴL to sample prerLj for j ∈ [NL] \ {ĴL} as in G3,b. Continue the oracle simulation as
in G3,b. According to this, if the simulation does not abort, send the key kĴL in the sixth
message of the interaction.

• Let σb, σ1−b be the local outputs of O0,O1, respectively. If σ0 = ⊥ or σ1 = ⊥, then run
b′ ← A(St′,⊥,⊥). Else, run b′ ← A(St′, σ0, σ1) and output b′.

Note that if prerL
ĴL
i

is random, then B perfectly simulates G4,b, whereas if prerL
ĴL
i

= Eval(k, Ĵ), B perfectly
simulates G3,b. By the security of PRF with input length log(NL) we obtain

|Pr [G3,b ⇒ 1]− Pr [G4,b ⇒ 1]| ≤ εPRF.

Game G5,b: In gameG5,b, we change the way we generate prerR
ĴR

. Namely, we sample prerR
ĴR
←$ {0, 1}nPRF .

Note that we can repeat the argument we used from G3,b to G4,b and obtain

|Pr [G4,b ⇒ 1]− Pr [G5,b ⇒ 1]| ≤ εPRF.

Game G6,b: In game G6,b, we change the way we compute rĴ . Note that in G5,b this was computed as
rĴ := Hx(prerĴ). Now, we sample it randomly as

rĴ = (αĴ , βĴ , ϕĴ , γĴ)←$D × Zλ ×Rck × {0, 1}nPRF .

53

Note that the adversary can only distinguish between games G5,b and G6,b if it queries Hx(prerĴ).
However, A obtains no information about prerĴ , which is sampled uniformly at random. By a union
bound over all hash queries and {L,R} we obtain

|Pr [G5,b ⇒ 1]− Pr [G6,b ⇒ 1]| ≤ 2QHx
2nPRF

.

Game G7,b: Game G7,b is as G6,b, except that it computes comr in a different way. In detail, it samples
η←$ {0, 1}n and computes the comr as

comr := Hr(Hr(r1), . . . ,Hr(rĴ−1), η,Hr(rĴ+1), . . . ,Hr(rN))

Later it returns η as part of its third message. Note that A can only see the difference between G6,b
and G7,b if it queries Hr(rXĴX) for an X ∈ {L,R}. Note that A obtains no information about γĴ and γĴ
is sampled uniformly at random. We can apply a union bound over all QHr random oracle queries and
X ∈ {L,R} and obtain

|Pr [G6,b ⇒ 1]− Pr [G7,b ⇒ 1]| ≤ 2QHr

2nPRF
.

Game G8,b: In game G8,b we change the way the commitment µĴ is generated. Recall that in G7,b, this
is generated as

µĴ := Translate(ck, µ0, ϕĴ) = Com(ck,m;ϕ0 + ϕĴ).

Note that if the game does not stop, then especially Ĵ = J and ϕ∗ = ϕ0 + ϕĴ . In game G8,b, we sample
ϕ∗←$Rck and set µĴ := Com(ck,m;ϕ∗). We can argue that the view of A is unchanged as follows.
Note that due to the previous changes, A gets no information about ϕĴ . Thus, we have to consider the
distribution of the value ϕ∗ = ϕ0 + ϕĴ conditioned on kĴ , (ϕ0 + ϕj)j 6=Ĵ and ϕ0. This distribution is
uniformly random as ϕĴ is uniformly random. Hence we have

Pr [G8,b ⇒ 1] = Pr [G7,b ⇒ 1].

Game G9,b: In game G9,b, we change the way µ0 is generated. In particular, we sample a random
message m̄L (resp. m̄R) and set µ0 := Com(ck, m̄;ϕ0). Note that in G9,b the value ϕ0 is only needed to
compute µ0. Especially, it is not needed to compute the value ϕ∗ due to the previous changes. It follows
from the security of CMT that Com(ck, m̄;ϕ0) and Com(ck,m;ϕ0) are identically distributed given ck.
Therefore, the view of A is not affected by this change and we obtain

Pr [G9,b ⇒ 1] = Pr [G8,b ⇒ 1].

Note that in G9,b, the only part of the oracles O0,O1 that depends on bit b is the Ĵ th session. Also,
note that each session by itself corresponds to the user algorithm of the linear blind signature scheme
from the OGQ linear function family, which is statistically blind. We show this in Lemma H.1. Thus, we
can reduce from the games in Lemma H.1 to bound A’s advantage in distinguishing between G9,0 and
G9,1. To do so, we construct a reduction B′ as follows:

• B′ runs A and gets random coins ρ and messages m0,m1, i.e. (ρ,m0,m1, St)← A(1n). B′ partitions
these coins into ρck and ρLF, where ρck are the coins that determine ck and ρLF are the coins that
determine the other parts of the key, i,e. par, pk′ and td, sk′. It computes these values from the
coins. Then, B′ samples ϕ∗0, ϕ∗1←$Rck and sets

µ∗0 := Com(ck,m0;ϕ∗0), µ∗1 := Com(ck,m1;ϕ∗1).

It outputs ρLF, µ
∗
0, µ
∗
1 and its state to its challenger.

• B′ is executed with access to oracles O′0 and O′1. Also, B′ has access to a random oracle H. B′
simulates all random oracles except H′′ honestly for A, which involves appropriately forwarding
queries from A to its challenger for oracle H. Oracle H′′ is simulated as in game G9,b, b ∈ {0, 1}, i.e.
it is simulated honestly but the simulation is aborted whenever a collision occurs. It runs A on
input St with access to random oracles and interactive oracles O0,O1, i.e. St′ ← AO0,O1(St). We
describe the simulation of oracle O0. Oracle O1 is simulated analogously by using O′1 instead of O′0:

54

– When A sends N, comJ , extract Ĵ from comJ as G9,b, b ∈ {0, 1} does. Sample keys k ←
PRF.Gen(1nPRF , 1log(N)), kĴ ← PRF.Puncture(k, Ĵ). Set prerj := PRF.Eval(kĴ , j) and set rj :=
Hx(prerj) for all j ∈ [N] \ {Ĵ}. Sample ϕ0←$Rck and a random message m̄ and set µ0 :=
Com(ck, m̄;ϕ0). Set µj := Translate(ck, µ0, ϕj) for j ∈ [N] \ {Ĵ}. . Sample η←$ {0, 1}n and
compute comr := Hr(Hr(r1), . . . ,Hr(rĴ−1), η,Hr(rĴ+1), . . . ,Hr(rN)). Send µ0 and comr to A.

– Obtain seed from adversary and compute all cj for j ∈ [N] \ {Ĵ} as in the scheme using the
values µj . For session Ĵ , compute RĴ := H′(seed, Ĵ) and send RĴ to oracle O′0. Obtain a value
cĴ and compute comc := Hc(c1, . . . , cN). Send comc to A.

– Obtain J, salt from A. If comJ 6= H′′(J, salt) abort the execution of this oracle. Otherwise it
must holds that Ĵ = J . Continue by sending kĴ , cĴ and η to A.

– Obtain sJ from A and forward it to oracle O′0.

• B′ obtains signatures σ′0 = (c′0, s′0) and σ′1 = (c′1, s′1) from its challenger and sets

σ0 := (c′0, s′0, ϕ∗0), σ1 := (c′1, s′1, ϕ∗1).

It runs b′ ← A(St′, σ0, σ1) and returns b′ to the challenger.
It is easy to see that if B′ runs in game G0 from Lemma H.1, then it perfectly simulates game G9,0 for

A, and if it runs in game G1 from Lemma H.1 it perfectly simulates game G9,1 for A. Also, B′’s output
is the output of A and B′ makes as many random oracle queries as A does (with respect to random oracle
H). We know by Lemma H.1 that B′ has advantage in distinguishing the games G0 and G1 at most
4QH/|Z∗N |. Hence we have

|Pr [G9,0 ⇒ 1]− Pr [G9,1 ⇒ 1]| ≤ 4QH
|Z∗N |

.

The statement follows from an easy calculation.

I Concrete Parameters of the Original Boosting Transform
Here we explain how we estimated the concrete efficiency for the boosting transform [KLR21]. Concretely,
we consider the Okamoto-Schnorr instantiation [Oka93] of it. For simplicity, we ignore statistically
negligible terms in the security loss. Also, we only focus on one-more unforgeability and not on blindness.
In comparison with our schemes, this clearly favors [KLR21].

With this in mind, we combine the concrete bounds given in [KLR21] and obtain the following. For
each adversary against the one-more unforgeability of the scheme that runs in time t, initiates at most q
signature interactions, makes at most QH hash queries, and has success probability ε, there are algorithms
solving the discrete logarithm problem in time 2t, t with success probability εDLOG, ε

′
DLOG such that

ε ≤ 4
(

3
√
εDLOGQ2

H`
3 + q

2ε
′
DLOG + q`+1

|Zp|

)
,

where p is the order of the group and ` = 3 ln(q + 1) + ln(2/ε). Assuming κ bits of security for the
underlying discrete logarithm problem, this becomes

ε ≤ 4
(

3
√

2t2−κQ2
H`

3 + q

2 t2
−κ + q`+1

2κ

)
.

To compute a sufficiently large level κ, we consider every combination of ε and t such that ε/t = 2128 and
find the minimum κ such that the above inequality leads to a contradiction. Then, we take the maximal
of these.

We implemented the approach in a Python script, see Supplementary Material Section J.3.

J Scripts for Parameter Computation
Here, we present three Python scripts computing paramters of our schemes and a scheme obtained from
the boosting transform. The scripts follow the high level approaches outlined in Sections 4.4 and 5.6
and Supplementary Material Section I.

55

J.1 Parameter Script for Our RSA-based Scheme

Listing 1: Python Script to compute the parameters for our RSA-based scheme. A discussion can be
found in Section 5.6.
#!/ usr/bin/env python

import math
from tabulate import tabulate

##
Functions to determine the RSA modulus length for a
given hardness , Formulas are taken from
eprint .iacr.org /2019/260 , Section 8.1
##
def heuristic_nfs_complexity (n, c, a):

exponent = a*(math.log(n)**c)*((math.log(math.log(n)))**(1.0 -c))
return math.exp(exponent)

def tau(kappa):
t = 1
while 2** kappa > heuristic_nfs_complexity (2**(2* kappa *t), 1.0/3.0 , (64/9.0) **(1.0/3.0)):

t = t+1
return t

def security_level_to_RSA_modulus_length (level):
return 2* level *tau(level)

##
Functions to compute the bit sizes of signatures ,
keys and communication for given modulus , scalar space ,
commitment modulus and statistical security parameters
##

def size_pk (main_modulus_length , commitment_modulus_length , plambda_length):
#size of parameters : main_modulus ,
invertible element modulo main_modulus , plambda
par_size = main_modulus_length + main_modulus_length + plambda_length

#size of pk ’: range element , where range is Z_N^x
#and N is the main_modulus
pk_prime_size = main_modulus_length

#size of commitment key: commitment_modulus ,
element modulo commitment modulus , prime e
we assume e = 2^16+1
ck_size = commitment_modulus_length + commitment_modulus_length + 17

return par_size + pk_prime_size + ck_size

def size_sig (main_modulus_length , commitment_modulus_length , plambda_length):
signature consists of scalar , domain element and commitment randomness
return plambda_length + (plambda_length + main_modulus_length) + commitment_modulus_length

#this returns coefficient of log(N) in the part of
#the communication that grows with log(N).
def size_communication_growing (main_modulus_length , commitment_modulus_length , plambda_length , secpar , secpar_prf):

return 2 + secpar_prf

#this returns the part of
#the communication that does not grow with log(N).
def size_communication_constant (main_modulus_length , commitment_modulus_length , plambda_length , secpar , secpar_prf):

return 4* secpar + plambda_length + main_modulus_length + commitment_modulus_length

###
Main part of the script , computes level of RSA
needed to satisfy a given security level for
the scheme for a given number of signatures
###

Notation :
epsilon : Success probability of adversary
t : running time of adversary
p : number of initiated interactions with signer oracle
q_hash , q_hash_r , ... : number of queries for the respective hash function
plambda_length : minumum bitlength of the prime lambda
defining the scalar space of the underlying linear function
level_main_rsa : security level of the main RSA instance
level_commitment_rsa : security level of the RSA instance used for the commitment scheme

Compute the right -hand side of the inequality upper bounding the success probability
for an adversary against the omuf security of the scheme
def success_probability_upper_bound_omuf (log_epsilon , log_t , secpar , log_p , log_q_hash , log_q_hash_r , log_q_hash_c , log_q_hash_prime ,

↪→ log_q_hash_prime_prime ,plambda_length , level_main_rsa , level_commitment_rsa):

p = 2** log_p
q_hash = 2** log_q_hash
q_hash_r = 2** log_q_hash_r
q_hash_c = 2** log_q_hash_c
q_hash_prime = 2** log_q_hash_prime

statistical terms in the reductions from BS to CCBS and from CCBS to EBS
stat_term_1 = 2**(4* log_p - secpar) + 2**(3* log_p - secpar) + 2**(4* log_p - secpar) + 2**(3* log_p - secpar)
stat_term_2 = 2**(2* log_q_hash_r - secpar) + 2**(2* log_q_hash_c - secpar) + 2**(log_p + log_q_hash_r - secpar) + 2**(log_p + log_q_hash_c - secpar

↪→) + 2**(log_p + log_q_hash_prime - secpar) + 2**(log_p + log_q_hash_prime_prime - secpar)

ell_BS : upper bound on the number of finished signature interactions of the linear BS scheme
ell_BS = 3* math.log(p+1) + math.log (2) - math.log (2** log_epsilon - stat_term_2)
log_ell_BS = math.log(ell_BS ,2)

56

log_term_a = 1+(2* log_q_hash +3* log_ell_BS +1+ log_t - level_main_rsa)/3.0
log_term_b = 1+(1+ ell_BS)*(log_p + log_q_hash)-plambda_length
log_term_c = 1+ log_t - level_commitment_rsa
log_term_d = 1+ log_p +log_t - level_main_rsa

total = 2** log_term_a + 2** log_term_b + 2** log_term_c + 2** log_term_d + 2* stat_term_1 + stat_term_2
return total

Compute an RSA level large enough such that
epsilon <= success_probabilty_upper_bound_omuf ... leads to contradiction .
def rsa_level_from_epsilon_t_combination (level , log_epsilon , secpar , log_p , plambda_length):

log_t = level + log_epsilon
epsilon = 2** log_epsilon

rhs = epsilon
level_main_rsa = level
level_commitment_rsa = level +10
while rhs >= epsilon :

level_main_rsa = level_main_rsa + 1
#for simplicity , we set all hash query parameters to be the running time
rhs = success_probability_upper_bound_omuf (log_epsilon , log_t , secpar , log_p , log_t , log_t , log_t , log_t , log_t ,

↪→ plambda_length , level_main_rsa , level_commitment_rsa)

return level_main_rsa

Compute an RSA level large enough s.t. level bits of security are provided for omuf
def rsa_level_from_security_level (level , secpar , log_p , plambda_length):

level_main_rsa = level

we consider every possible combination of epsilon and t and use the highest rsa level .
for minus_log_epsilon in range (level +1):

log_epsilon = -minus_log_epsilon
l = rsa_level_from_epsilon_t_combination (level , log_epsilon , secpar , log_p , plambda_length)
if l > level_main_rsa :

level_main_rsa = l

return level_main_rsa

Compute a secpar for prf large enough such that the blindness security bound leads to a contradiction .
def secpar_prf_from_epsilon_t_combination (level , log_epsilon , main_modulus_length , commitment_modulus_length ,log_N_LR , secpar):

log_t = level + log_epsilon
epsilon = 2** log_epsilon

rhs = epsilon
secpar_prf = level
while rhs >= epsilon :

secpar_prf = secpar_prf + 1
#for simplicity , we set all hash query parameters to be the running time
rhs_term_1 = (2* log_N_LR -1)* 2**(log_t - secpar_prf +2)
rhs_term_2 = 2**(2* log_t - secpar +1)
rhs_term_3 = 2**(log_t - secpar +2)
rhs_term_4 = 2**(log_t - secpar_prf +2)
rhs_term_5 = 2**(log_t - secpar_prf +2)
rhs_term_6 = 2**(log_t - secpar +2)
rhs = rhs_term_1 + rhs_term_2 + rhs_term_3 + rhs_term_4 + rhs_term_5 + rhs_term_6

return secpar_prf

Compute a secpar for prf large enough s.t. level bits of security are provided for blindness
def secpar_prf_from_security_level (level , main_modulus_length , commitment_modulus_length ,log_N_LR , secpar):

secpar_prf = level

we consider every possible combination of epsilon and t and use the highest secpar_prf .
for minus_log_epsilon in range (level +1):

log_epsilon = -minus_log_epsilon
l = secpar_prf_from_epsilon_t_combination (level , log_epsilon , main_modulus_length , commitment_modulus_length ,log_N_LR , secpar)
if l > secpar_prf :

secpar_prf = l

return secpar_prf

returns one row of the final table
def table_row (level ,log_p , plambda_length):

secpar = 3* level
compute the level of RSA we need for omuf
level_main_rsa = rsa_level_from_security_level (level ,secpar ,log_p , plambda_length)
level_commitment_rsa = level +10

compute the modulus lengths for this level
main_modulus_length = security_level_to_RSA_modulus_length (level_main_rsa)
commitment_modulus_length = security_level_to_RSA_modulus_length (level_commitment_rsa)

compute the PRF security parameter we need for blindness
for simplicity , we upper bound N^L and N^R by the number of interactions p
secpar_prf = secpar_prf_from_security_level (level , main_modulus_length , commitment_modulus_length ,log_p , secpar)

compute key sizes , signature sizes and communication complexity
pk = size_pk (main_modulus_length , commitment_modulus_length , plambda_length)
sigma = size_sig (main_modulus_length , commitment_modulus_length , plambda_length)
comm_grow = size_communication_growing (main_modulus_length , commitment_modulus_length , plambda_length , secpar , secpar_prf)
comm_const = size_communication_constant (main_modulus_length , commitment_modulus_length , plambda_length , secpar , secpar_prf)

add this set of parameters to the table
row = [level ,log_p ,secpar , secpar_prf , plambda_length , level_main_rsa , level_commitment_rsa ,pk /8000.0 , sigma /8000.0 , comm_grow /8000.0 ,

↪→ comm_const /8000.0]
return row

57

tabulate preparation
data = [[" Level ", "log p", "n", " n_PRF ", "| lambda |", " Level RSA (main)", " Level RSA (com)", "|pk|", "| sigma |", "Comm. a", "Comm. b"]]

#HERE you can insert the combinations you want to try.
levels = [80 ,128]
log_ps_class_a = [9]
plambda_lengths_class_a = [5000]
log_ps_class_b = [20]
plambda_lengths_class_b = [8000]
log_ps_class_c = [30]
plambda_lengths_class_c = [11000]

for level in levels :
for log_p in log_ps_class_a :

for plambda_length in plambda_lengths_class_a :
row = table_row (level ,log_p , plambda_length)
data. append (row)

for log_p in log_ps_class_b :
for plambda_length in plambda_lengths_class_b :

row = table_row (level ,log_p , plambda_length)
data. append (row)

for log_p in log_ps_class_c :
for plambda_length in plambda_lengths_class_c :

row = table_row (level ,log_p , plambda_length)
data. append (row)

print (tabulate (data , headers =’firstrow ’,tablefmt =’fancy_grid ’))

J.2 Parameter Script for Our CDH-based Scheme

Listing 2: Python Script to compute the parameters for our CDH-based scheme. A discussion can be
found in Section 4.4.
#!/ usr/bin/env python

import math
from tabulate import tabulate

###
Functions to determine the (log of) group size for given hardness
Formulas are taken from eprint .iacr.org /2019/260 , Section 8.1
###

def security_level_to_group_size_length (level):
return 2* level +1

##
Functions to compute the bit sizes of signatures and keys and
communication complexity for given group size , repetition parameter
K, commitment group size and statistical security parameters
##

def size_pk (K, main_group_size_length , main_group_size_length_pk , commitment_group_size_length):
group generator , K public keys (group elements), 2 group elements for the commitment
return main_group_size_length + K* main_group_size_length_pk + 2* commitment_group_size_length

def size_sig (K, main_group_size_length , commitment_group_size_length):
signature contains one aggregated group element and K times a commitment randomness
return main_group_size_length + K * commitment_group_size_length

#this returns coefficient of log(N) in the part of the communication that grows with log(N).
def size_communication_growing (K, main_group_size_length , commitment_group_size_length , secpar , secpar_prf):

return (1+K* secpar_prf)

#this returns the part of the communication that does not grow with log(N).
def size_communication_constant (K, main_group_size_length , commitment_group_size_length , secpar , secpar_prf):

return (K+5)* secpar + (K+1)* main_group_size_length + commitment_group_size_length + (K*math.log(K ,2) +1-K)* secpar_prf

###
Main part of the script , computes level of security for DLOG needed
to satisfy a given security level for the scheme for a given number
of signatures
###

Notation :
epsilon : Success probability of adversary
t : running time of adversary
q : number of initiated interactions with signer oracle
q_hash , q_hash_r , ... : number of queries for the respective hash function
level_main_dlog : security level of the main DLOG/CDH instance
level_commitment_dlog : security level of the DLOG/CDH instance used for the commitment scheme

Compute the right -hand side of the inequality upper bounding the success probability
for an adversary against the omuf security of the scheme
def success_probability_upper_bound (log_t , secpar , K, log_q , log_q_hash , log_q_hash_r , log_q_hash_c , log_q_hash_prime , level_main_dlog ,

↪→ level_commitment_dlog):

statistical term

58

stat_term_a = 2**(2* log_q_hash_r - secpar)
stat_term_b = 2**(2* log_q_hash_c - secpar)
stat_term_c = 2**(log_q + log_q_hash_r - secpar)
stat_term_d = K* 2**(log_q + log_q_hash_r - secpar)
stat_term_e = 2**(log_q + log_q_hash_c - secpar)
stat_term_f = 2**(log_q + log_q_hash_prime - secpar +1)
stat_term = stat_term_a + stat_term_b + stat_term_c + stat_term_d + stat_term_e + stat_term_f

term_a = 2**(- level_commitment_dlog + log_t)
term_b = K*2**(-(2* level_main_dlog +1))
term_c = 4*K *2**(log_q - level_main_dlog + log_t)
term_d = stat_term

total = 2*(term_a + term_b + term_c + term_d)
return total

Compute an dlog level large enough such that
epsilon <= success_probability_upper_bound_ ... leads to contradiction .
def dlog_level_from_epsilon_t_combination (level , log_epsilon , secpar , log_q , K):

log_t = level + log_epsilon
epsilon = 2** log_epsilon

rhs = epsilon
level_main_dlog = level +10
level_commitment_dlog = level +10
while rhs >= epsilon :

level_main_dlog = level_main_dlog + 1
#for simplicity , we set all hash query parameters to be the running time
rhs = success_probability_upper_bound (log_t , secpar , K, log_q , log_t , log_t , log_t , log_t , level_main_dlog ,

↪→ level_commitment_dlog)

return level_main_dlog

Compute an DLOG level large enough s.t. level bits of security are provided
def dlog_level_from_security_level (level , secpar , log_q , K):

level_main_dlog = level

we consider every possible combination of epsilon and t and use the highest dlog level .
for minus_log_epsilon in range (level +1):

log_epsilon = -minus_log_epsilon
l = dlog_level_from_epsilon_t_combination (level , log_epsilon , secpar , log_q , K)
if l > level_main_dlog :

level_main_dlog = l

return level_main_dlog

Compute a secpar for prf large enough such that the
blindness security bound leads to a contradiction .
def secpar_prf_from_epsilon_t_combination (level , log_epsilon ,log_N_LR ,K, secpar):

log_t = level + log_epsilon
epsilon = 2** log_epsilon

rhs = epsilon
secpar_prf = level
while rhs *2**(log_t) >= epsilon :

secpar_prf = secpar_prf + 1
#for simplicity , we set all hash query parameters to be the running time
rhs_term_1 = (2* log_N_LR + 2* math.log(K ,2) -1)*K *2**(log_t - secpar_prf +2)
rhs_term_2 = 2**(2* log_t - secpar +1)
rhs_term_3 = 2**(log_t - secpar +2)
rhs_term_4 = K* 2**(log_t - secpar_prf +2)
rhs_term_5 = K* 2**(log_t - secpar_prf +2)
rhs = rhs_term_1 + rhs_term_2 + rhs_term_3 + rhs_term_4 + rhs_term_5

return secpar_prf

Compute a secpar for prf large enough s.t. level bits of security are provided for blindness
def secpar_prf_from_security_level (level ,log_N_LR ,K, secpar):

secpar_prf = level

we consider every possible combination of epsilon and t and use the highest secpar_prf .
for minus_log_epsilon in range (level +1):

log_epsilon = -minus_log_epsilon
l = secpar_prf_from_epsilon_t_combination (level , log_epsilon ,log_N_LR ,K, secpar)
if l > secpar_prf :

secpar_prf = l

return secpar_prf

checks the condition that vartheta and K have to satisfy in order to apply the OMUF theorem
for the security level we aim to achieve
def vartheta_from_constraint (level ,K):

denom = 1.0 - (math.log (2**(level +1))/ float (K))
return (1.0/ denom) + 0.1

returns the minimum integer K such that there even exists a positive vartheta
def minimum_plausible_K (level):

return int(math.log (2**(level +1))+1)
return int(math.log (2**(level +1)) /2.0+1)

returns one row of the final table
def table_row (level ,log_q ,K):

secpar = 4* level

compute the vartheta we need to satisfy the constraint
vartheta = vartheta_from_constraint (level ,K)
if vartheta <= 0:

return []

59

compute the level of DLOG we need
level_main_dlog = dlog_level_from_security_level (level ,secpar ,log_q ,K)
level_commitment_dlog = level +10

compute the group elements lengths for this level
main_group_size_length = security_level_to_group_size_length (level_main_dlog)
public key is in G_2 , so it is bigger
main_group_size_length_pk = main_group_size_length *3
commitment_group_size_length = security_level_to_group_size_length (level_commitment_dlog)

compute the PRF security parameter we need for blindness
for simplicity , we upper bound N^L and N^R by the number of interactions q
secpar_prf = secpar_prf_from_security_level (level ,log_q ,K, secpar)

compute key sizes , signature sizes and communication complexity
pk = size_pk (K, main_group_size_length , main_group_size_length_pk , commitment_group_size_length)
sigma = size_sig (K, main_group_size_length , commitment_group_size_length)
comm_grow = size_communication_growing (K, main_group_size_length , commitment_group_size_length , secpar , secpar_prf)
comm_const = size_communication_constant (K, main_group_size_length , commitment_group_size_length , secpar , secpar_prf)

add this set of parameters to the table
row = [level ,log_q ,secpar , secpar_prf ,vartheta ,K, level_main_dlog , level_commitment_dlog ,pk /8000.0 , sigma /8000.0 , comm_grow /8000.0 ,

↪→ comm_const /8000.0]
return row

#HERE you can insert the combinations you want to try.
levels = [80 ,128]
log_qs = [20 ,30]

tabulate preparation
data = [[" Level ", " log_q ", "n", " n_PRF ", " vartheta ", "K", " Level DLOG (main)", " Level DLOG (com)", "|pk|", "| sigma |", "Comm. a", "Comm. b"]]
print ("")

for level in levels :
for log_q in log_qs :

K_init = minimum_plausible_K (level)
for K_off in range (0 ,30 ,10):

K = K_init + K_off
row = table_row (level ,log_q ,K)
data. append (row)

print (tabulate (data , headers =’firstrow ’,tablefmt =’fancy_grid ’))

J.3 Parameter Script for the Boosting Transform

Listing 3: Python Script to compute the parameters for the Okamoto-Schnorr instantiation of the boosting
transform. A discussion can be found in Supplementary Material Section I.
#!/ usr/bin/env python

import math
from tabulate import tabulate

###
Functions to determine the (log of) group size for given hardness
Formulas are taken from eprint .iacr.org /2019/260 , Section 8.1
###

def security_level_to_group_size_length (level):
return 2* level +1

##
Functions to compute the bit sizes of signatures and keys and
communication complexity for given group size , repetition parameter
K, commitment group size and statistical security parameters
##

def size_pk (group_size_length):
group generator , public key (group element)
return 2* group_size_length

def size_sig_schnorr (group_size_length , commitment_randomness_length):
signature contains c’,s’, and a commitment randomness
return 2* group_size_length + commitment_randomness_length

def size_sig_okamoto_schnorr (group_size_length , commitment_randomness_length):
signature contains c’,s_1 ’,s_2 ’, and a commitment randomness
return 3* group_size_length + commitment_randomness_length

###
Main part of the script , computes level of security for DLOG needed
to satisfy a given security level for the scheme for a given number
of signatures
###

Notation :
epsilon : Success probability of adversary
t : running time of adversary
q : number of initiated interactions with signer oracle
level_dlog : security level of the underlying DLOG instance

Compute the right -hand side of the inequality upper bounding the success probability
for an adversary against the omuf security of the scheme

60

def success_probability_upper_bound_omuf (log_epsilon , log_t , log_q , level_dlog):
q = 2** log_q

ell_BS : upper bound on the number of finished signature interactions of the linear BS scheme
ell_BS = 3* math.log(q+1) + math.log (2) - math.log (2** log_epsilon)

term1 = ell_BS * 2**(2+(1+ log_t - level_dlog +2* log_t) /3.0)
term2 = 2**(log_q + 1 + log_t - level_dlog)
term3 = 2**(log_q *(ell_BS +1) -level_dlog)

return term1 + term2 + term3

Compute a DLOG level large enough such that
epsilon <= success_probabilty_upper_bound_omuf ... leads to contradiction .
def dlog_level_from_epsilon_t_combination (level , log_epsilon , log_q):

log_t = level + log_epsilon
epsilon = 2** log_epsilon

rhs = epsilon
if we started from level , we would result in overflows as the RHS is too large .
level_dlog = 47* level
while rhs >= epsilon :

level_dlog = level_dlog + 1
rhs = success_probability_upper_bound_omuf (log_epsilon , log_t , log_q , level_dlog)

return level_dlog

Compute a DLOG level large enough s.t. level bits of security are provided for omuf
def dlog_level_from_security_level (level , log_q):

level_dlog = level

we consider every possible combination of epsilon and t and use the highest rsa level .
for minus_log_epsilon in range (level +1):

log_epsilon = -minus_log_epsilon
l = dlog_level_from_epsilon_t_combination (level , log_epsilon , log_q)
if l > level_dlog :

level_dlog = l

return level_dlog

level = 128
log_q = 30

commitment_randomness_length = 128
level_dlog = dlog_level_from_security_level (level , log_q)
group_size_length = security_level_to_group_size_length (level_dlog)
size_pk = size_pk (group_size_length)
size_sig_schnorr = size_sig_schnorr (group_size_length , commitment_randomness_length)
size_sig_okamoto_schnorr = size_sig_okamoto_schnorr (group_size_length , commitment_randomness_length)

print ("Want to support q = 2^" + str(log_q) + " signatures .")
print ("==> Need level for DLOG >= " + str(level_dlog))
print ("==> Need group bit size for DLOG >= " + str(group_size_length))
print ("==> Public Key Size (in KB) >= " + str(size_pk /8000.0))
print ("==> Schnorr Signature Size (in KB) >= " + str(size_sig_schnorr /8000.0))
print ("==> Okamoto - Schnorr Signature Size (in KB) >= " + str(size_sig_okamoto_schnorr /8000.0))

61

	Introduction
	Starting Point: The Basic Boosting Transform
	Our Contribution: Improved Boosting Transforms

	Preliminaries
	An Improved Boosting Transform
	Overview
	Blind Signatures from Linear Function Families
	Construction
	Security Analysis

	A Concrete Scheme based on CDH
	Overview
	Construction
	Security Analysis
	Concrete Parameters and Efficiency

	A Concrete Scheme based on RSA
	Overview
	The OGQ Linear Function
	The Underlying Boosting Transform
	Construction
	Security Analysis
	Concrete Parameters and Efficiency

	Addendum: From Semi-Honest to Malicious Blindness
	Non-Interactive Proof Systems
	Construction
	Analysis
	Applicability to Our Schemes

	Standard Computational Assumptions
	Blind Signature Schemes from Linear Function Families
	Randomness Homomorphic Commitments
	Randomness Homomorphic Commitment from RSA
	Randomness Homomorphic Commitment from DLOG

	Puncturable Pseudorandom Function
	Ommitted Chernoff Bound
	Omitted Analysis of Our Generic Construction
	Blindness
	One-More Unforgeability

	Ommitted Analysis of Our Scheme from CDH
	Ommitted Analysis of Our Scheme from RSA
	One-More Unforgeability
	Blindness

	Concrete Parameters of the Original Boosting Transform
	Scripts for Parameter Computation
	Parameter Script for Our RSA-based Scheme
	Parameter Script for Our CDH-based Scheme
	Parameter Script for the Boosting Transform

