
Transitional Leakage in Theory and Practice
Unveiling Security Flaws in Masked Circuits

Nicolai Müller1 , David Knichel1 , Pascal Sasdrich1 and
Amir Moradi2

1 Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

2 University of Cologne, Institute for Computer Science, Cologne, Germany
firstname.lastname@uni-koeln.de

Abstract. Accelerated by the increased interconnection of highly accessible devices,
the demand for effective and efficient protection of hardware designs against Side-
Channel Analysis (SCA) is ever rising, causing its topical relevance to remain immense
in both, academia and industry. Among a wide range of proposed countermeasures
against SCA, masking is a highly promising candidate due to its sound foundations
and well-understood security requirements. In addition, formal adversary models
have been introduced, aiming to accurately capture real-world attack scenarios
while remaining sufficiently simple to efficiently reason about the SCA resilience
of designs. Here, the d-probing model is the most prominent and well-studied
adversary model. Its extension, introduced as the robust d-probing model, covers
physical defaults occurring in hardware implementations, particularly focusing on
combinational recombinations (glitches), memory recombinations (transitions), and
routing recombinations (coupling).
With increasing complexity of modern cryptographic designs and logic circuits, formal
security verification becomes ever more cumbersome. This started to spark innovative
research on automated verification frameworks. Unfortunately, these verification
frameworks mostly focus on security verification of hardware circuits in the presence of
glitches, but remain limited in identification and verification of transitional leakage. To
this end, we extend SILVER, a recently proposed tool for formal security verification
of masked logic circuits, to also detect and verify information leakage resulting from
combinations of glitches and transitions. Based on extensive case studies, we further
confirm the accuracy and practical relevance of our methodology when assessing and
verifying information leakage in hardware implementations.
Keywords: Side-Channel Analysis · Transitional Leakage · Masking · Hardware

1 Introduction
Physical Attacks and Countermeasures. Even though design of secure cryptographic
algorithms is a well-researched topic, secure implementation remains a late-breaking
challenge. Principally, cryptographic algorithms are designed to withstand adversaries in
the black-box model, limiting adversarial observations to inputs and outputs. However,
practical implementations on physical devices usually entail side-channel information.
Within the context of such a gray-box model, adversaries may observe any physical
behavior and characteristics of an electronic device during execution of security-critical
applications, such as temporal behavior [Koc96], instantaneous power consumption [KJJ99],
Electromagnetic (EM) radiations [GMO01], or temperature and heat dissipation [HS13],
in order to reveal secret and sensitive information.

https://orcid.org/0000-0002-3286-4722
https://orcid.org/0000-0002-2510-8881
https://orcid.org/0000-0002-5443-626X
https://orcid.org/0000-0002-4032-7433
mailto:nicolai.mueller@rub.de, david.knichel@rub.de, pascal.sasdrich@rub.de, amir.moradi@rub.de
mailto:amir.moradi@uni-koeln.de

2 Transitional Leakage in Theory and Practice

Consequently, many protection mechanisms have been proposed, among which masking
(based on the concepts of secret-sharing) prevails as most promising candidate, due to a
formal and sound theoretical foundation [CJRR99]. Specifically in the context of hardware
implementations, different masking schemes and flavors have been proposed over the
years [ISW03, NRR06, RBN+15, GMK17, GM18], continuously improving efficiency and
security. At the same time, not a few schemes have been shown to be insecure due to design
flaws [MMSS19]. Nowadays, there is a growing awareness that design, implementation,
and protection of cryptographic algorithms is still a (mostly) manual, delicate, and error-
prone process requiring long-standing expertise and experience in hardware design and
security. Moreover, this recognition propels an entirely new branch of research intending
to consolidate security models and formal methods to assess and verify the security of
hardware implementations.

Formal Verification of Hardware Security. Strong theoretical foundations, such as
formal models for adversaries and physical execution environments, along with formal
verification methods can support and accelerate design, implementation, and verification
of secure cryptographic devices and applications. In connection with hardware masking,
the simple and abstract Ishai, Sahai, and Wagner (ISW) d-probing adversary and security
model [ISW03] usually provides a baseline verification model to reason about security in
a gray-box context. In its basic appearance, the d-probing model allows an adversary to
arbitrarily observe up to d intermediate values of an ideal circuit1 during the processing
of sensitive information. Along with some basic assumptions on noise, independence of
inputs, and circuit encoding, the security of masked cryptographic implementations can
be verified and proved under the d-probing model.

With respect to physical hardware and digital logic circuits, however, unconsidered
and unintentional physical effects, such as glitches [MPG05, MS06], transitions [CGP+12,
BGG+14], or couplings [CBG+17], and implementation defects due to architectural con-
ditions, such as parallelism [BDF+17] or pipelining [CGD18], have been shown to be
responsible for security degradation of theoretically secure designs and implementations.
Most of all, glitches are long-known causes for leakage of sensitive information even in the
presence of appropriate masking countermeasures [MPG05]. Adjusting the deficiencies in
the original ISW d-probing model, a more robust extension of the standard model has been
proposed recently [FGP+18], particularly allowing to incorporate unintentional physical
defaults as part of the adversarial model.

Automated Tools for Formal Verification. Through the ever increasing integration
of modern circuits and systems, complexity of hardware designs and implementations
grows further. In a sense, this continuous progress and increasing complexity of hardware
structures limits manual verification of masked circuits mostly to atomic parts and minor
components only, often considered as masked gadgets in recent literature. To this end,
the development of automated tools assisting designers in formal verification of masked
circuits is a natural and long overdue step.

Set within the context of automated formal verification, maskVerif [BBD+15, BBD+16,
BBC+19] is the first proposal addressing this direction of research. Originally, maskVerif
was designed to verify d-probing security for ideal circuits in the presence of transitional
leakage, but later versions of the tool have been extended to cover d-probing security
and security notions for composability, i.e., Non-Interference (NI) [BBD+15] and Strong
Non-Interference (SNI) [BBD+16], in the presence of glitches, however, still considering
transitions for ideal circuits only. While maskVerif pursuits a language-based formal
verification approach, Rebecca [BGI+18] and Coco [GHP+21] rely on Fourier coefficient

1In an ideal circuit, it is supposed that the gates have no delay to propagate the input changes to the
output, hence no glitches.

N. Müller, D. Knichel, P. Sasdrich, A. Moradi 3

estimation to automatically verify security of masked circuits. Even though Rebecca
was the first tool to explicitly consider glitches as physical defaults, it is still limited
to verification of d-probing security only, without supporting verification of additional
composability notions (the same holds for Coco, extending Rebecca to verification of
masked software implementations on CPUs). Only recently, SILVER [KSM20] has been
presented, allowing to verify pure d-probing security and all recent security notions for
composability (NI, SNI, and PINI [CS20]) in the presence of glitches while using an exact
verification approach based on Reduced Ordered Binary Decision Diagrams (ROBDDs),
avoiding false negatives (in contrast to maskVerif which relies on an optimistic approach).

(In-)complete Modeling of Physical Defaults. Comparing these existing approaches
and tools for formal verification of masked hardware circuits, what becomes immediately
apparent is the fact that all tools only consider glitches as undesired physical defaults while
neglecting information leakage due to transitions. In a sense, even though transitional
leakage is well-known to cause security degradation [CGP+12, BGG+14, CS21], only
maskVerif implements a rudimentary verification under such conditions, however, focusing
on ideal logic circuits only, hence, neglecting glitches as further source of unintentional
security degradation. As a consequence, none of the existing tools supports a complete
modeling of unintentional physical defaults occurring in hardware, i.e., glitches and
transitions, for the security verification of masked circuits. Even worse, under certain
circumstances, all tools may lead to false positives, i.e., reporting a hardware design secure
in the presence of glitches, while the presence of transition leakage actually breaks the
security of the masking scheme.

Our Contributions. In this work, we translate the transition-related findings of [FGP+18]
into an algorithmic evaluation approach well suited for its integration into leakage ver-
ification tools. The result is a novel probe-extension procedure allowing us to model
information leakage due to physical effects originating in combinational and memory
recombinations, i.e., glitches and transitions. In a next step, we extend the state-of-the-
art leakage verification framework SILVER to assess the security of masked hardware
circuits considering glitches and transitions simultaneously. For this, we further extend
the capabilities of SILVER to process and analyze iterative digital logic circuits, i.e.,
digital logic that processes data in a sequential fashion. Eventually, demonstrating the
power of our extended model and verification framework as well as the practical relevance
of accurately modeling glitches and transitions during security verification, we analyze
different iterative 8-bit S-box constructions, proposed by Boss et al. [BGG+16], and report
information leakage due to transitions, both in formal security verification as well as in
experimental Side-Channel Analysis (SCA) evaluations. In a second set of case studies, we
deal with iterative circuits, while Hardware Private Circuit (HPC) gadgets are integrated.
In contrast to the original version of SILVER, we are able to evaluate such circuits made by
Output-Probe-Isolating Non-Interference (O-PINI) secure gadgets as presented in [CS21].
Thanks to our extended version of SILVER, while confirming the issues reported and
claims made in [CS21], we provide other insights through theoretical and experimental
analyses when HPC gadgets are processed iteratively.

2 Background
2.1 Notations
We denote Boolean variables x ∈ F2 by lower case letters and vectors of multiple Boolean
variables X ∈ Fn

2 by upper case letters. To denote single elements of a vector X ∈ Fn
2 we

use subscripts. Hence, xi ∈ F2 denotes the element at position i of X. Moreover, we use

4 Transitional Leakage in Theory and Practice

subscripts and curly brackets to denote a primary input at a specific point in time. For
example, x{i} is forwarded to a circuit in clock cycle i. Further, we denote shares of a
variable with superscripts. Hence, Xi ∈ Fn

2 denotes share i of the unshared variable X.
To formalize the probing model, we use upper case bold letters to denote a set of probes,
e.g., P while we apply lower case bold letters to denote a single probe p ∈ P. Again, we
denote the ith probe pi ∈ P of a set with subscripts. For Boolean functions f and vectorial
Boolean functions F we use sans-serif fonts.

2.2 d-Probing Model
In the standard d-probing model, originally introduced in [ISW03], an adversary is granted
the ability to probe up to d wires in an ideal circuit. This means, every probe is instanta-
neous and independent of all other probes while providing access to the exact, noise-free,
and stable signal of a wire upon invocation of the circuit, i.e., for specific input assignments
and states of memory elements. Following this model, a circuit provides dth-order probing
security, if and only if an adversary is not able to learn anything about the secret, i.e.,
the joint distribution over observations made by up to d probes is independent of the
distribution of any secret processed by the circuit.

By introducing the robust probing model in [FGP+18], Faust et al. extended the
standard probing model in order to sufficiently capture information leakage originating
from physical defaults occurring in physical logic circuits and hardware implementations.
More precisely, the work covers combinational recombinations (glitches), memory recombi-
nations (transitions), and routing recombinations (couplings), aiming to accurately cover
all phenomenons relevant to side-channel leakage in hardware. For each considered physical
default, a probe extension was introduced to increase the number of observed values within
a circuit according to the considered physical default.

Glitch-Extended Probes. Glitches are unintentional and undesired signal transitions due
to different delay paths and switching delays within a combinational circuit. In order to
model such a behavior within the framework of the robust d-probing adversarial model,
any glitch-extended probe allows an adversary to learn all stable inputs (and hence all
possible combinations) flowing into the computation of the probed wire. As such, assuming
a worst-case scenario, a single glitch-extended probe on a combinational circuit is then
substituted by all relevant (standard) probes on the outputs of the last register stage or
on primary inputs.

Transition-Extended Probes. Transitions are unintentional and undesired recombinations
of memory contents due to consecutive invocations (e.g., clock cycles) of a circuit. In order
to model this behavior within the context of the robust d-probing adversarial model, each
transition-extended probe, placed on a memory element, is substituted by two (standard)
probes, one on the memory input and one on the memory output, effectively doubling the
number of adversarial probes.

Coupling-Extended Probes. Couplings are unintentional and undesired recombinations
of values carried on neighboring wires. In order to model such a behavior in the robust d-
probing adversarial model, each coupling-extended probe is replaced by the set of (standard)
probes observing the set of neighboring wires.

(g, t, c)-Extended Probes. We apply the notation proposed in [FGP+18], denoting a
(g, t, c)-extended probe as a glitch-extended (if g = 1), transition-extended (if t = 1), and
coupling-extended (if c = 1) probe within the robust d-probing adversarial model. More
specifically, throughout the given work, we will focus on (g, t, 0)-extended probes, as we
intend to analyze circuits on a gate-level for which layout and routing information usually
is not available and coupling cannot be modeled with adequate precision.

N. Müller, D. Knichel, P. Sasdrich, A. Moradi 5

2.3 Boolean Masking
Following the approach of secret sharing, Boolean masking splits a secret X ∈ Fn

2 into s
independently and uniformly distributed shares Xi, 0 ≤ i < s, such that the sum over

all these shares equals X, i.e., X =
s−1⊕
i=0

Xi. Known as uniform sharing, this is commonly

achieved by drawing Xi uniformly and at random from Fn
2 for all 0 ≤ i < s − 1 and

computing the remaining share as Xs−1 = X ⊕
s−2⊕
i=0

Xi, transforming the unshared secret

X ∈ Fn
2 into its shared representation X ′ =

(
Xi
)

0≤i<s
∈ Fn×s

2 . Naturally, this approach
requires splitting any secret in at least d + 1 shares to achieve security against an adversary
that is able to probe up to d wires in a circuit, i.e., to achieve d-probing security.

2.4 Threshold Implementation
Threshold Implementations (TIs) have been introduced and developed as a way to re-
alize masked circuits and to avoid leakage in hardware implementations caused due to
glitches [Bil15, CBR+15, BGN+14, NRR06, NRS08]. The number of input (sin) and
output sharings (sout) necessary to realize a dth-order TI of a given Boolean function
F : Fn

2 7→ Fm
2 with algebraic degree t is restricted by sin ≥ t× d + 1 and sout ≥

(
sin

t

)
where

FTI : Fn×sin
2 7→ Fm×sout

2 denotes the resulting TI which can be denoted as a set of sout

component functions Fi≤sout

TI : Fn×sin
2 7→ Fm

2 . A secure dth-order TI further should fulfill
the following properties:

Correctness. Let X ′ ∈ Fn×sin
2 be a valid Boolean masking of X ∈ Fn

2 . Then Y ′ =
FTI(X ′) ∈ Fm×sout

2 is a valid Boolean masking of Y = F(X) ∈ Fm
2 .

Non-Completeness. Any combination of up to d component functions Fi
TI of FTI must

be independent of at least one input share for every secret. Intuitively, when solitary
considering a circuit fulfilling non-completeness, an adversary in the d-probing model will
not learn anything about a secret X, as non-completeness guarantees that any observation
made by up to d probes will be independent of at least one circuit share and due to the
uniformity property of Boolean masking, these circuit shares will hence be independent of
the secret.

Uniformity. When grouped corresponding to their unshared input value X, each valid
output sharing Y ′ of Y = F(X) within this group has to occur p times, where p is constant
over all X and Y ′, while each invalid sharing does not occur at all. This guarantees that
Y ′ always is a uniform sharing of Y when given as input to a subsequent circuit.

2.5 Trivially Composable Gadgets
Finding secure, masked circuits for high security orders and large functions has proven to
be a hard task. For this, a wide variety of composability notions have been established,
aiming to define properties of masked circuits that are sufficient to guarantee security in
the d-probing model when combined to a larger design. This enables the construction of
small sub-circuits (typically realizing simple two-input gates for AND and XOR) that lead
to d-probing secure circuits when combined and interconnected. In recent literature, these
composable, atomic sub-circuits are commonly referred to as gadgets.

In the course of this direction of research, Non-Interference (NI) and Strong Non-
Interference (SNI) [BBD+15, BBD+16] were introduced first, where SNI remedied compos-
ability flaws discovered for NI by further restricting propagation [CS20] of probes placed on
output wires of a gadget. As the scope of SNI was initially limited to single-output gadgets,
Cassiers et al. [CS20] extended this notion to capture multiple-output gadgets as well, but

6 Transitional Leakage in Theory and Practice

in the same work, they introduced the notion of Probe-Isolating Non-Interference (PINI)
as a way to further reduce overhead requirements of composable gadgets and allowing
trivial implementation of linear functions.

Probe-Isolating Non-Interference. Following the principles of Domain Oriented Masking
(DOM) [GMK17], share domains were introduced for PINI [CS20] and output probes are
restricted to propagate within their own share domain while internal probes are limited
to propagate into a single, but arbitrary, domain. This allows trivial implementation
of linear functions, i.e., their share-wise application, while enabling trivial composition
of gadgets fulfilling the notion of PINI by simply interconnecting different input- and
output-shares with respect to their share domain, i.e., not mixing share domains through
interconnections.

Output-Probe-Isolating Non-Interferences. Recently, in order to model and achieve
trivial composition under transitions, the notion of O-PINI was introduced in [CS21], as
an extension to the original definition of PINI, aiming to solve issues that may occur when
there exist a feedback loop in the design, e.g., one input of a gadget depends on an output
of itself. In order to model this, at first, it is determined in which input share domains
the original probes propagate, before output probes are added (if they do not already
exist) to all these domains. The gadgets must then be PINI with respect to the new set of
probes in its original definition. This extension is motivated by the fact that adding an
internal probe placed on a gadget allows an additional – but arbitrary – domain to be in
the set of input shares resulting from propagation. Now, if there is a feedback loop in the
design and an output of the gadget is input to itself, these input shares will propagate
into the previous iteration, which can be effectively modeled by putting another probe on
the corresponding output domain, possibly reducing the security order. For example, as
presented in [CS21], Figure 1 visualizes why HPC2 is not O-PINI when initialized for the
second security order. For three input shares, we consider p0 and p1 placed on the gadget
internals x1 r01 propagating into share domain 1 (due to x1) and x2 r21 propagating into
share domain 2 (due to x2). Since there exists a feedback loop from its outputs to the
gadget’s inputs, p0 and p1 would further propagate into the outputs belonging to share
domain 1 and 2, which is similar to placing additional output probes p6 and p7. Now,
given {p0, p1, p6, p7}, i.e., two output probes placed on domain 1 and domain 2 and two
internal probes, PINI only guarantees that in this case the propagation is limited to input
share domain 1 and 2 (due to p6 and p7) and at most two other, domains (due to the
internal probes) which may potentially include share domain 0. In summary, {p0, p1}
may now propagate into three share domains 0, 1, and 2, rendering the design insecure.

HPC2
y0

y1
y2

R

x0 0
x1

x2 z0
z1

z2

1

s
p0

p1

p2

p3

p4

p5

p6

p7

Figure 1: Iterative HPC2 gadget.

By adding output probes corresponding to the input share domains resulting from
propagation and still guaranteeing that the original number of input domains, in which the
new set of probes propagates into, does not increase, O-PINI enables trivial composition
of iterative designs in the presence of transitions.

N. Müller, D. Knichel, P. Sasdrich, A. Moradi 7

HPC Gadgets. In [CGLS21], Cassiers et al. introduced novel gadget constructions called
Hardware Private Circuits (HPCs). This included HPC2, a gadget realizing a 2-input AND
gate and offering trivial composability under the notion of PINI in the glitch-extended
probing model for arbitrary security orders. This allows trivial construction of secure
circuits by simply substituting AND gates with its shared representation, i.e., HPC gadgets.
The security and composability guarantees provided by these gadgets are in conformity
with the notion of PINI in the presence of only glitches, excluding transitions. As a refined
notion which is able to handle transitions, O-PINI was introduced in [CS21], and at the
same time HPC2 was further adapted to be in conformity with it an hence be trivially
composable under transitions combined with glitches.

2.6 Formal Verification
In order to verify the security and composability of a design in the d-probing model, a
wide variety of tools have been proposed which differ in the their abstraction and accu-
racy levels [BGI+18, BBC+19, KSM20, BDM+20, BBD+16, BGR18, BBD+15, CGLS21].
However, all these tools offer a valuable assistance in finding provable secure masking
schemes and enable a designer to catch flaws in an early stage of the design process.

SILVER. In [KSM20], Knichel et al. introduced SILVER, a verification tool that utilizes
a methodology based on Binary Decision Diagrams (BDDs) for checking statistical inde-
pendence between observations made by (glitch-extended) probes and secret values or
set of shares, effectively enabling a verification of all common security and composability
notions (including PINI) in the standard and glitch-extended robust d-probing model. As
SILVER currently is the only publicly-available2 tool supporting the notion of PINI and is
free of false negatives, we opted to integrate our results into its verification framework.
Fortunately, following the concepts outlined Section 2.2, extending the probes with respect
to physical defaults is a simple pre-processing step, possibly increasing the number of
(standard) probes which have to be considered. This means, the core of SILVER, i.e., the
check for statistical independence utilizing BDDs, remains unchanged regardless of any
probe extension (which is already demonstrated for glitch-extended probes in the current
version of the tool).

Limitations. As SILVER constructs BDDs for representing Boolean functions, the verifi-
cation run time mainly depends on the complexity of the underlying Boolean functions,
in particular, the number of product terms in the disjunctive normal form of the cir-
cuit [KSM20]. Therefore, SILVER is applicable to small circuits like gadgets or single
S-Boxes, but not to a full cipher design. Moreover, the complexity of constructing all
relevant probe combinations grows exponentially with the security order, and each com-
bination itself encompasses a larger set of random variables. Consequently, higher-order
leakage verification with SILVER is only possible for small circuits. Further, due to its
nature, the construction of BDDs for a circuit containing a loop is not possible. Hence,
SILVER is not able to handle such circuits.

3 Transitional Leakage
As discussed in Section 2.2, the (g, t, c)-robust d-probing security model formalizes models
for capturing three different type of physical defaults (glitches, transitions, and couplings).
In particular, modeling of any considered default [FGP+18] or even a combination of
multiple defaults relies on extending a d-set of probes on intermediate values according to
the corresponding extension scheme.

2https://github.com/Chair-for-Security-Engineering/SILVER

https://github.com/Chair-for-Security-Engineering/SILVER

8 Transitional Leakage in Theory and Practice

F0 F1
1

X0
X1 0

X2

Y 0
Y 1

Y 2

p1p2

p3

p′2

p′3

p0 p4

p5

p′4

p′5

p6

p7

s

Figure 2: Iterative design of F with static primary inputs.

Currently, verifications are mostly performed for the widely used specification of
(1, 0, 0)-robust d-probing, i.e., a d-set, generated by glitch-extended probes, is used to take
combinational recombinations into account. However, to further allow the verification given
the combined occurrence of glitches and transitions, we present an automated procedure
for the combination of glitch-extended and transition-extended probes. For this, the final
set of probes can then be used for verification within the (1, 1, 0)-robust d-probing model
as part of security verification tools such as SILVER [KSM20].

For the sake of clarity, we start this section by presenting two examples and explain
how the expansion of probes is performed when (1) the primary inputs are stable and
(2) they change during the evaluation of the circuit. As discussed in [CS21], leakages due to
transitions often lead to problems if the same physical instance of a function F is evaluated
multiple times by different but not necessarily independent inputs. This holds for the
evaluation of an iterative circuit which is the underlying architecture of our experiments.
For this, we first define the structure of an iterative circuit.

Definition 1 (Iterative Circuit). An iterative circuit implements an iteration function
F : Fn

2 → Fm
2 , U 7→ Y driven by a multiplexer MUX : Fn

2 × Fn
2 × F2 → Fn

2 , (X, V, s) 7→ U as

U =
{

X if s = 0,
V otherwise ,

while X denotes the primary input and Y the primary output. Further, V ⊆ Y stands for
the feedback meaning that it is taken from the output of F. One execution of the circuit
means iterating F k times, for a constant k ≥ 2. Depending on s, the MUX selects either
the primary input X or the feedback V to be given to F. In a typical case, X is selected
for the first iteration while a part of the output of F is given to its input for the following
iterations.

Given this definition, we consider an iterative circuit for the examples given below,
which realize an exemplary function F = F1 ◦F0 using two combinational circuits F0 and F1
whose outputs are directly stored in registers. Hence, each iteration of F takes two clock
cycles. Further, the circuit receives three shares of an n-bit primary input (X0, X1, X2),
Xi ∈ Fn

2 , while the shared output of the function is also fed back as the new input, selected
by a multiplexer. After k iterations, the circuit output is taken as the (shared) result of
such an execution (Y 0, Y 1, Y 2), Y i ∈ Fn

2 . Further, in order to ensure the correctness of
the operation, the select signal of the multiplexer s = 0 if k = 0 (first iteration) while s = 1
for any subsequent iteration k 6= 0. Figure 2 and Figure 3 depict such an iterative circuit.

Example 1 (Static Primary Inputs). For the first example, we suppose that all primary
inputs remain stable throughout the entire execution. In this sense, the primary inputs
do not change during each of the k iterations. Now, let us consider a set of two probes
P = {p0, p1} placed on an output of F0 and F1 respectively, as shown in Figure 2. In the
following, we intend to extend the set P to cover both glitches and transitions.

N. Müller, D. Knichel, P. Sasdrich, A. Moradi 9

Step 1: Glitch-Extension. We start to model glitches for all p ∈ P by adding the relevant
probes, according to Section 2.2, into Pg, i.e., the set of probes after glitch-extension. As
p0 (resp. p1) is placed on one output share of F0 (resp. F1), we need to add probes on all
inputs of the combinational logic that contribute to the computation of p0 (resp. p1). As
an exemplary case, we assume the following extensions.

p1
(1,0,0)−−−−→ {p2, p3}, p0

(1,0,0)−−−−→ {p4, p5, p6, p7}, Pg = {p2, p3, p4, p5, p6, p7}

Supposing that p0 is extended to two input shares of F0, we need to examine all
corresponding inputs of the multiplexer. More precisely, if s switches from 0 to 1, the
multiplexer output replaces the primary inputs with the feedback signals. Hence, any
glitches, propagated to the multiplexer outputs, depend on the primary inputs as well as
the feedback signals, i.e., the outputs of the previously accomplished iteration. We model
this effect by adding probes on the corresponding feedback signals to Pg, i.e., adding p4
and p5, and on the corresponding primary inputs, i.e., p6 and p7.

Step 2: Transition-Extension. Second, we now extend the probes in Pg to take transitions
into account. Note, that it is also possible to first extend the probes based on transitions
and then continue with the extension scheme for glitches. This eventually will result in
the same d-set of probes that can be evaluated for statistical independence.

In a sense, according to [FGP+18], transitions combine two values that are consecutively
seen on the same register. Modeling the overwriting effect for registers allows the extension
of a probe p ∈ Pg placed on a register output by another probe p′ on the corresponding
register input. Consequently, our approach analyzes Pg and extends all contained probes
after the glitch-extension that are already at the register outputs (or primary inputs). For
instance, as p2 (resp. p3) is placed on an output of the first register stage, it holds that:

p2
(0,1,0)−−−−→ {p2, p′2}, p3

(0,1,0)−−−−→ {p3, p′3}

The same extensions must be applied on p4 and p5 placed on outputs of the second register
stage. Hence, it holds that:

p4
(0,1,0)−−−−→ {p4, p′4}, p5

(0,1,0)−−−−→ {p5, p′5},
Pg,t = {p2, p′2, p3, p′3, p4, p′4, p5, p′5, p6, p7}.

As a consequence, {p′2, p′3, p′4, p′5} denote the transition-extension probes on the
register inputs. Note that all register inputs are stable when stored. Hence, no further
glitch-extension on {p′2, p′3, p′4, p′5} is necessary and this step of our algorithm terminates
here. Ultimately, Pg,t now covers glitches and transitions, and its statistical independence
to the secrets (i.e., the unmasked primary input X = (X0 ⊕X1 ⊕X2) can be examined
implying the evaluation of two probes {p0, p1} under a (1, 1, 0)-robust 2-probing model.

3.1 Changes on Primary Inputs
In the previous example, we mainly followed the concepts and assumptions provided
in [CS21], particularly assuming that all primary inputs remain stable and static for the
entire execution of the circuit through multiple iterations. In one of the case studies, which
we present in Section 5, we demonstrate that such an assumption in fact can be the source
of security flaws. For this, in the following example, we allow transitions on primary inputs
such that each primary input can change at every clock cycle.

Example 2 (Dynamic Primary Inputs). In order to deal with inputs being changed
at every clock cycle, we introduce the notion of input sequences, denoting input values

10 Transitional Leakage in Theory and Practice

F0 F1
1

X0
{2}, X0

{1}, X0
{0} 0

X1
{2}, X1

{1}, X1
{0}

X2
{2}, X2

{1}, X2
{0}

Y 0
Y 1

Y 2

p0 p4

p5

p′4

p′5

p6

p7

s

Figure 3: Iterative design of F with transitional primary inputs.

given per clock cycle. Hence, with such an implicit notion of time, we define the primary
input X at cycle l as X{l}. We further consider the same iterative circuit as shown in
Example 1, but, for the sake of simplicity, we limit the set of probes to a single probe
P = {p0} as visualized in Figure 3. Again, we start with extending the probes based
on glitches. Following the same procedure as in Example 1, p0 is extended such that
p0

(1,0,0)−−−−→ {p4, p5, p6, p7}. Now, the fundamental difference to Example 1 is that we
have different input values consecutively given in every clock cycle. As a consequence,
transitions not only occur between input and output of registers, but may also occur due
to the consecutive primary input values. Hence, modeling the transitions by extending
the probes to cover registers, i.e., {p′4, p′5}, is not sufficient. For this, let us examine the
probes on the primary inputs {p6, p7}. Generally, if we are in clock cycle l, probe p6
observes a bit of X0

{l} and p7 a bit of X2
{l}. Obviously, such an extension does not consider

the fact that input values in cycle l have been replaced by the associated values of cycle
l + 1, i.e., the corresponding bits of X0

{l+1} and X2
{l+1}. Therefore, we need to include

two additional standard probes. Since the feedback signals and primary inputs have two
clock cycles distance (see Figure 3), if we are in the second clock cycle (l = 1), the first
iteration of the circuit k = 1 is accomplished, the feedback signals traverse the output
of F1 being stored in the register, and the select signal of the multiplexer switches. This
means that p4 and p5 observe the feedback value, and p6 and p7 the corresponding bits
of X0

{1} and X2
{1}. Due to the primary input transitions, p6 and p7 are also extended

to p′6 and p′7 observing the corresponding bits of X0
{2} and X2

{2}. As a consequence, the
resulting extensions can be modeled as:

p4
(0,1,0)−−−−→ {p4, p′4}, p5

(0,1,0)−−−−→ {p5, p′5}, p6
(0,1,0)−−−−→ {p6, p′6}, p7

(0,1,0)−−−−→ {p7, p′7}
Pg,t{2} = {p4, p′4, p5, p′5, p6, p′6, p7, p′7}.

Note that in the former cycles l < 1, the feedback signal does not yet carry the output of
F1 depending on the given primary inputs. Hence, the extension of the probes is slightly
different. For example, in the first clock cycle (l = 0), p0 extends to

p0
(1,1,0)−−−−→ Pg,t{1} = {p6, p′6, p7, p′7},

and the following primary inputs are probed:

p6
probe←−−− X0

{0}, p′6
probe←−−− X0

{1}, p7
probe←−−− X2

{0}, p′7
probe←−−− X2

{1}

3.2 Modeling Glitch- and Transition-Extended Probes
After giving a first intuition on the modeling and generation of (1, 1, 0)-extended probes in
the d-probing model using the two above examples, we now formally define the algorithmic

N. Müller, D. Knichel, P. Sasdrich, A. Moradi 11

solution for the identified problems and challenges. In addition, we show how to integrate
these algorithmic concepts into state-of-the-art formal verification tools, such as SILVER3.

Circuit Model. We model a circuit as Directed Acyclic Graph (DAG) that represents
all gates as nodes and all wires as edges. Hence, as the first step, such a graph should
be made for the circuit under evaluation. For circuits without loops, this can be trivially
done, knowing the netlist of the circuit.4 However, as shown above, we deal with iterative
circuits, which contain loops. To handle this, and extract a loop-free graph5, we remove
all loops and store a list of transitions F indicating the feedback signals. Each list entry
f ∈ F formalizes a single feedback loop together with its corresponding input multiplexer.
We denote each f ∈ F as a triple f = (i, j, l), where i ∈ I denotes a primary input
overwritten by a feedback signal j (i.e. both inputs of the multiplexer) during clock cycle
l. With F , we keep all information regarding loops while structurally removing them
from the circuit. F itself is created by analyzing all initial multiplexers MUX(i, j, s) that
select (depending on the selection signal s) if a primary input i or a feedback signal j is
given to the circuit. The corresponding clock cycle can then be found by analyzing the
latency of the feedback signal. As j is computed during one iteration, l corresponds to
the number of clock cycles per iteration. For example, if we consider Figure 2, we analyze
and remove three multiplexers MUX0(X0, Y 0, s), MUX1(X1, Y 1, s), and MUX2(X2, Y 2, s).
The list of transitions is F = {(X0, Y 0, 2), (X1, Y 1, 2), (X2, Y 2, 2)} and I = {X0, X1, X2}
which are given to F1. Based on the given circuit model, we formalize the glitch and
transition extension scheme as shown in Algorithm 1. For better understanding, we define
the following functions:

gate(w): returns the source gate of wire w.
type(g): returns reg if gate g is a register.
inputs(g): returns a set containing all input wires of gate g.
dfs(w): performs a depth-first search starting at wire w but stops going deeper

if a found wire w′ carries a synchronized element (either register
output or primary input). It returns all found w′.

Algorithm 1 receives a d-set of probes together with a manually created list of all primary
inputs I and a list of all transitions based on feedback signals F for all evaluated points in
time. The output of Algorithm 1 is the set of probes after glitch and transition extension.

Modeling Glitches. For any p ∈ P, we model glitches by placing probes on all syn-
chronized elements (either register outputs or primary inputs) that contribute to the
computation of the value that p observes. We realize the extension by a depth-first
search starting at p as the root node. The search itself is performed backwards and stops
evaluating a branch if a synchronized element is found. Only for the synchronized element,
we add a probe on its output wire. This can be seen in Lines 6-8 of Algorithm 1. Since
the circuit became loop-free, for any probe placed on an primary input, we check if the
primary input is input of an initial multiplexer during the evaluated clock cycle. This is
done by searching the tuple with the primary input and the evaluation cycle in F . If the
tuple exists, we place probes on both multiplexer inputs. Note that the glitches related to
both primary input and feedback occur during an individual clock cycle and on a specific
input given during this clock cycle. Hence, we create one set of probes per clock cycle
containing its individual probes. This can be seen in Lines 10-18 of Algorithm 1.

3We opted to integrate our solution into SILVER as it allows to avoid false negatives and provides
extensive support for additional composability notions.

4In digital circuit design, a netlist is a description of the connectivity of a circuit. In its simplest form,
a netlist consists of a list of the cells in a circuit and a list of the nodes they are connected to.

5It is essential for some verification tools, e.g., SILVER, as evaluating, e.g., constructing BDDs of a
circuit with loop, becomes impossible.

12 Transitional Leakage in Theory and Practice

Algorithm 1 Glitch and transition extension of a probing set
Input: P . Probing set P
Input: I,F . List of primary inputs I, list of feedback signals F
Input: n . Total latency of one interation
Output: Pg,t{0}, Pg,t{1}, . . . , Pg,t{n−1} . Final probing sets for all clock cycles
1:
2: Pg ← ∅ . Initialize set of probes
3: for ∀l ∈ {0, . . . , n− 1} do
4: R{l} ← ∅, S{l} ← ∅, Pg,t{l} ← ∅ . Initialize set of probes for cycle l

5: end for

6: for all p ∈ P do . Perform glitch-extension
7: Pg ← Pg ∪ dfs(p)
8: end for

9: for ∀l ∈ {0, . . . , n− 1} do
10: for all p ∈ Pg do . Perform glitch-extension on feedbacks
11: x← p
12: if ∃(x, y, l) ∈ F then . Check if x exist in F
13: p1

probe←−−− x, p2
probe←−−− y

14: R{l} ← R{l} ∪ {dfs(p1), dfs(p2)}
15: else
16: R{l} ← R{l} ∪ {p}
17: end if
18: end for

19: for all r ∈ R{l} do . Perform transition-extension on registers
20: if type(r) = reg then . Search all probes on register outputs
21: {x} ← inputs(r)
22: if ∃(x, y, l) ∈ F then
23: r′ probe←−−− {y}
24: else
25: r′ probe←−−− {x}
26: end if
27: S{l} ← S{l} ∪ {r, r′}
28: else
29: S{l} ← S{l} ∪ {r}
30: end if
31: end for

32: for all s ∈ S{l} do . Perform transition-extension on primary inputs
33: if l > 0 ∧ s = x{l} ∈ I then
34: s′ probe←−−− x{l−1} . Add the primary input of the previous clock cycle
35: Pg,t{l} ← Pg,t{l} ∪ {s, s′}
36: else
37: Pg,t{l} ← Pg,t{l} ∪ {s}
38: end if
39: end for
40: end for

Modeling Transitions. For any probe p ∈ Pg placed on a register output, we model
transitions on the corresponding register by placing a standard probe on the register input.

N. Müller, D. Knichel, P. Sasdrich, A. Moradi 13

S0

(a) Feistel

S0

(b) MISTY

S0 S1

L
(c) SPN

Figure 4: The underlying constructions of the 8-bit S-boxes introduced in [BGG+17].

Technically, we place the probe on the wire that drives the register. This can be seen in
Lines 19-31 of Algorithm 1. For any probe placed on a primary input x{l} we place an
additional standard probe on x{l−1}. This step must be repeated for all evaluated clock
cycles. This can be seen in Lines 32-39 of Algorithm 1.

3.3 Integration into SILVER
Since manual verification is time-consuming and hardly feasible for larger constructions,
we opted to automate our approach and integrated our probe-extension algorithm into the
already existing leakage verification tool SILVER [KSM20]. Given that SILVER operates
on an annotated gate-level netlist, we extended the initial parsing and pre-processing
procedures to support the conversion of an iterative circuit to a loop-free graph as well as
the generation of the list of transitions F . Further, transitions due to sequences of primary
inputs are indicated through an extended annotation scheme in the original gate-level
netlist.

In terms of analysis and verification, since SILVER already implements the security
verification within the (1, 0, 0)-robust probing model, we leave the already provided glitch-
extension scheme unchanged but only integrate our novel transition-extension scheme
accordingly, as shown above. Eventually, the final statistical independence check is now
performed on the newly created set of probes Pg,t{l} instead of P or Pg, as before. As a
result, if SILVER detects a statistical dependency for any Pg,t{l}, i.e., the set of probes
during cycle l, it will report information leakage accordingly.

4 Case Study 1: Strong 8-bit S-boxes
In order to apply the above-presented leakage evaluation procedure based on iterative
circuits existing in literature, we consider the strong 8-bit S-box designs originally proposed
at CHES 2016 [BGG+16] and later extended in [BGG+17]. During the following case
study, we evaluate all S-box designs with our extended version of SILVER and compare
the outcome with practical results based on physical measurements.

S-Box Architecture. The core idea of [BGG+17] is to construct a set of 8-bit S-boxes
using smaller 4-bit S-boxes and some linear operations in known constructions, namely a
Feistel network, a MISTY construction, or a Substitution Permutation Network (SPN).
Figure 4 presents all such constructions, where the 4-bit S-boxes are denoted by Si and a
linear layer by L. These constructions should be iterated k times with k ≥ 2 to build a
cryptographically strong 8-bit S-box. This allowed the authors to build a relatively small
masked circuit (TI) trivially realizing one round of such constructions (denoted by SB) and
iterate it to achieve an area-efficient masked implementation of the 8-bit S-box. Figure 5
shows such an iterative design, which is similar to what the authors proposed in [BGG+17,
Fig. 3(c)]. The authors have mainly constructed first-order secure TIs of their designs using

14 Transitional Leakage in Theory and Practice

SB

P

1

X0X1 0X2 8
8

8
Y 0Y 1Y 2

8
8

8

s

Figure 5: Iterative S-box architecture.

td + 1 = 3 shares, which satisfy (1, 0, 0)-robust 1-probing security. As shown in Figure 5,
all input shares of SB are synchronized by a single register stage. Consequently, each
iteration of SB is performed within a single clock cycle. In total, the authors introduced a
set of eight different S-boxes SB1 to SB8. We give the basic properties of each S-box in
Table 1, where Perm. refers to Figure 4(c) with linear layer L being a bit permutation,
and Matrix a matrix multiplication.

We implemented the same circuits receiving three input shares (X0, X1, X2) ∈ F8×3
2

and returning three output shares (Y 0, Y 1, Y 2) ∈ F8×3
2 . The output of the combinational

logic builds the feedback signal and is given as the new input to the circuit if k 6= 0.
This is handled by a multiplexer driven by the select signal s ∈ F2. Additionally, we
have instantiated a share permutation module, denoted by P in the feedback path (see
Figure 5). The purpose of such a module is to permute the shares. Although it has
not been discussed or pointed out in [BGG+17], the output shares of SB should not
necessarily be identically given to its input shares in the successive iteration. We denote
this permutation as a mapping of share indices. For example (0, 1, 2)→ (0, 1, 2) denotes
the identity as all shares are mapped to their original position. Note, however, that each
of the six possible permutations has no impact on the claimed first-order security of this
construction considering the (1, 0, 0)-robust probing model.

Example 3 (Strong 8-bit Iterative S-Boxes). Example 1 and Example 2 indicated that
iterative circuits are prone to transitional leakage. Therefore, using our transition-extended
version of SILVER, we tried to examine all eight different S-box constructions. We first
examined the combinational function of all such designs by (1, 0, 0)-robust probing model
and verified with SILVER that considering only glitches, the combinational function is
first-order secure and provides a uniform output sharing, i.e., its composition does not
violate security properties. As stated, permuting the shares of the feedback signals should
not affect the security if the probes are only extended due to glitches. This is also trivially
confirmed by SILVER. However, such a permutation may have an effect when transitions
are taken into account. Therefore, we evaluated all eight iterative designs for all six possible
share permutations considering the (1, 1, 0)-robust probing model. The results of such
evaluations are summarized in Table 1. Beside the result of first-order evaluations, we give
the corresponding number of evaluated probe combinations and the execution time next
to each evaluation result.

It can be seen that considering the identity (0, 1, 2) → (0, 1, 2), i.e., the original
construction in [BGG+17], none of the constructed iterative S-boxes is secure when the
probes are extended based on glitches and transitions. Interestingly, our extended version
of SILVER reports no leakage for three designs SB1, SB4, and SB5 when feedback shares
are permuted as (0, 1, 2) → (1, 2, 0). The same holds for two designs SB1 and SB4 for
permutation (0, 1, 2) → (2, 0, 1). Since these designs belong to different categories, we
believe that it is a coincidence with no dependency on the underlying construction of these
S-boxes. As a consequence, among the iterative designs introduced in [BGG+17] there is
no certain design category combined with a specific permutation of feedback shares which
guarantees the security in presence of glitches and transitions, independent of the employed

N. Müller, D. Knichel, P. Sasdrich, A. Moradi 15

Table 1: First-order evaluation results of all 8-bit S-boxes reported by SILVER under
the (1, 1, 0)-robust probing model, including the number of probe combinations and the
execution time on a Windows 10 server with 96 cores and 256GB RAM.

S-Box Type Iter. Area Share Permutation P: (0, 1, 2) →
GE (0, 1, 2) (0, 2, 1) (1, 0, 2) (1, 2, 0) (2, 0, 1) (2, 1, 0)

SB1 Perm. 8 241 73
2.2 s 719

9.9 s 73
2.1 s 3108

2.2 min 3116
2.2 min 711

10.3 s

SB2 Matrix 2 446 71
1.5 min 71

1.5 min 71
1.5 min 72

10.7 min 71
1.3 min 72

10.2 min

SB3 Matrix 4 458 71
3.6 min 71

1.5 min 71
1.4 min 71

19.8 min 71
2.0 h 71

20.5 min

SB4 Feistel 5 363 75
1.2 s 721

22.8 min 75
1.5 s 352

1.2 h 352
1.5 h 713

21.8 min

SB5 Perm. 9 263 73
3.7 s 73

3.6 s 73
3.8 s 356

6.9 min 73
3.4 s 711

13.3 s

SB6 Matrix 4 420 71
37.6 s 71

34.5 s 71
37.0 s 71

7.4 min 71
4.6 min 71

7.7 min

SB7 Feistel 4 431 77
6.9 s 77

36.2 s 77
1.9 s 77

33.1 s 77
32.3 s 77

33.7 s

SB8 Feistel 8 332 78
2.7 s 78

1.1 min 78
2.7 s 78

1.1 min 78
2.3 min 78

1.1 min

� ��� ��� ���
����
���	���

���

�

���
��
�	�

�	�

(a) (0, 1, 2) → (0, 1, 2)

� ��� ��� ���
�����	���
��

���

�

���
��
�
�

�
�

(b) (0, 1, 2) → (0, 2, 1)

� ��� ��� ���
����
���	���

��

�

�

���
��
�	�

�	�

(c) (0, 1, 2) → (1, 0, 2)

� ��� ��� ���
����
���	���

��

�

�

���
��
�	�

�	�

(d) (0, 1, 2) → (1, 2, 0)

� ��� ��� ���
����
���	���

��

�

�

���
��
�	�

�	�

(e) (0, 1, 2) → (2, 0, 1)

� ��� ��� ���
����
���	���

��

�

�

���
��
�	�

�	�

(f) (0, 1, 2) → (2, 1, 0)

Figure 6: Iterative SB1, first-order fixed vs. random t-test results over time, using 100
million traces.

components (i.e., 4-bit S-boxes, linear layers, round function of the Feistel network).

4.1 Experimental Analysis
As a sanity check, we examined the leakage of one of the iterative designs using real
measurements. To this end, we have taken the iterative design of SB1 (which is a first-order
TI with 3 shares) and implemented the corresponding circuit on the Spartan-6 target
Field-Programmable Gate Array (FPGA) of a SAKURA-G evaluation board [SAK] and
recorded the dynamic power consumption by means of a digital oscilloscope at a sampling
rate of 625MS/s. During all measurements, the target architecture was being operated
by a 6MHz stable clock source. For the analysis, we applied the common Test Vector
Leakage Assessment (TVLA) [GJJR11] approach on a set containing 100 million traces,
measured while the circuit receives either a fixed or a random 3-share 8-bit input (to the
8-bit S-box). We have examined the same circuit for all six share permutations and limited
our analyses to only first-order t-tests, as the underlying constructions are only supposed
to provide first-order security.

The resulting t-statistics, which are shown in Figure 6 and Figure 7, precisely confirm
our theoretical findings reported by our extended version of SILVER. More specifically, for

16 Transitional Leakage in Theory and Practice

� �� �� �� �� ���
��������	������106

�

��

�
	�

��	

�

���
��
�	
���

���

(a) (0, 1, 2) → (0, 1, 2)

� �� �� �� �� ���
��������	������106

�

��

�
	�

��	

�

���
��
�	
���

���

(b) (0, 1, 2) → (0, 2, 1)

� �� �� �� 	� ���
���������
�����106

��

�

�

�

�

��

��

���
��
�

���

���

(c) (0, 1, 2) → (1, 0, 2)

� �� �� �� 	� ���
���������
�����106

��

�

�

�

�

��

��

���
��
�

���

���

(d) (0, 1, 2) → (1, 2, 0)

� �� �� �� 	� ���
���������
�����106

��

�

�

�

�

��

��

���
��
�

���

���

(e) (0, 1, 2) → (2, 0, 1)

� �� �� �� 	� ���
���������
�����106

��

�

�

�

�

��

��

���
��
�

���

���

(f) (0, 1, 2) → (2, 1, 0)

Figure 7: Iterative SB1, first-order fixed vs. random t-test results over number of traces.

all designs that exhibit information leakage according to SILVER, we also observe leakage
in the real measurements. Interestingly, for the original settings (0, 1, 2)→ (0, 1, 2) and
(0, 1, 2) → (0, 2, 1), the t-statistics surpasses the 4.5 threshold by less than five million
traces, while for other insecure cases, many more traces are required to observe a significant
leakage. This experiment indicates and confirms that transitional leakage, which we have
detected by our transition-extended version of SILVER, is not only a purely theoretical
issue but can have a severe practical impact on the security of a design.

5 Case Study 2: HPC Gadgets
As given in Section 2.5, HPC2 gadgets offer trivial composability under the notion of PINI
only in the (1, 0, 0)-robust probing model [CGLS21]. In order to be in conformity with the
refined notion of O-PINI under transitions and glitches, a novel O-PINI2 multiplication
gadget has been proposed in [CS21]. In contrast to the original HPC2 gadget, such an
extended O-PINI2 gadget requires d additional fresh random bits and an extra register
stage, with d referring to the security order of the gadget, i.e., operating on d + 1 shares of
each input.

In the course of this case study, we first verify the results from [CS21] with our extension
of SILVER and confirm the reported issues related to transitional leakage when iterating
PINI-secure gadgets as described. Moreover, we verify the (1, 1, 0)-robust probing security
of an iterative design if the considered gadget is in conformity with the O-PINI notion.
Second, we show that the proposed O-PINI security notion is only necessary for a scenario
where the circuit’s loop is made by a single register stage. Eventually, we show how to
avoid transitional leakages even without the application of an O-PINI secure gadget but
solely relying on the length of the circuit’s loop.

Example 4 (Original Design). We first focus on the issues reported in [CS21]. More
precisely, we consider the iterative circuit shown in Figure 8, where input shares x and y
are given to an HPC 2-input multiplication gadget, which is iterated several times while
using the gadget output shares z as new input shares instead of x. Following [CS21], we
instantiated both, an HPC2 and an O-PINI2 gadget as the underlying 2-input multiplication
gadget in Figure 8, and verified both constructions up to the third security order, i.e.,
d ≤ 3, using our extended version of SILVER. As a side note, there is an inherent latency
imbalance in the design of any HPC2 and O-PINI2 gadget, i.e., the required refreshing of

N. Müller, D. Knichel, P. Sasdrich, A. Moradi 17

HPC
y

R

x 0
z

1

d + 1

d + 1
d + 1

s

Figure 8: Iterative circuit for Examples 4 and 5.

Table 2: Leakage verification results of iterated HPC2 and O-PINI2 gadgets under (1,1,0)-
robust probing model, including the number of probe combinations and the execution time
on a Windows 10 server with 96 cores and 256GB RAM.

Gadget Area Random. Security Order d Complexity
[GE] [bits] [expected] [achieved] [# of probes] [run time]

HPC2 104 1 1 0 7 8 0.01 s
HPC2 250 3 2 1 7 51 0.2 s
HPC2 459 6 3 2 7 1 862 53.8min

O-PINI2 142 2 1 1 3 22 0.03 s
O-PINI2 309 5 2 2 3 1 035 2.7min
O-PINI2 539 9 3 3 3 73 226 1.5 d

a single input introduces an additional cycle of latency for this input only. Hence, with
respect to the generation of the output z, the input x has a lower latency compared to the
other input y. Table 2 summarizes our evaluation results.

Our results indeed confirm the issues reported in [CS21], i.e., transitional leakage
decreases the security order by one if the gadget is PINI secure but not O-PINI secure.
Hence, in these cases, d-order security under the (1, 1, 0)-robust probing model is only
satisfied if the gadget is at least (d + 1)-order (1, 0, 0)-robust probing secure. When
evaluating the HPC2 gadgets, we noticed that SILVER detects the leakage in the second
clock cycle, when the feedback z is given as the new input instead of x. We show the
details of this issue for d = 1 in Figure 9(a) which depicts half of the circuit, i.e., the part
of the circuit which generates the first output share z0.

For this example, SILVER identified a single probe P = {p0} indicating first-order
leakage. More precisely, p0 is placed on an AND gate computing r x0 during the second
clock cycle when r is stored in a register. Note that we provided the tool with a sequence
of primary inputs r, i.e., distinct r{i} ∈ F2 in cycle i indicating that the fresh mask is
updated at every clock cycle.

Starting with the glitch-extension scheme, p0 is extended as follows:

p0
(1,0,0)−−−−→ {p1, p2, p3, p4, p5}, Pg = {p1, p2, p3, p4, p5},

where p1 observes the register which stores r and p5 the primary input x0. During the
next clock cycle, x0 is replaced by the feedback signal z0, hence a transition between x0

and z0. This leads to the following glitch-extended and transition-extended set of probes.

p1
(0,1,0)−−−−→ {p1, p′1}, p2

(0,1,0)−−−−→ {p2, p′2}, p3
(0,1,0)−−−−→ {p3, p0}, p4

(0,1,0)−−−−→ {p4, p′4},
Pg,t = {p1, p′1, p2, p′2, p3, p0, p4, p′4, p5}

Now, we consider the output after the first iteration, i.e., z0 = x0y0 ⊕ x0y1 ⊕ r{0}, while
the extended probes {p2, p3, p4} observe

(
x0y0, r{0}x0, x0(y1 ⊕ r{0})

)
. Simultaneously,

p′1 observes the fresh mask at the second clock cycle, i.e., r{1}. Therefore, probe p0

18 Transitional Leakage in Theory and Practice

z0
1
0x0

s

r
y1

y0

p0

p1p′1

p2p′2

p3

p4p′4

p5

(a) Original Design

y0

r
y1

z0
1
0x0

s

p0

p1

p2p′2

p3p′3

p4p′4

(b) Synchronized Inputs

Figure 9: Single share computation of a first-order HPC2 2-input multiplication gadget.

leads to an observation including
(
r{0}, r{1}, x0, x0y0, r{0}x0, x0(y1 ⊕ r{0})

)
. This trivially

leaks information about y. For an O-PINI2 gadget, z0 would be refreshed with another
mask independent of r and stored in a register, which avoids such a first-order leakage by
extending p0 under the (1,1,0)-robust probing model.

Example 5 (Delayed Feedback). As stated, the latency of x to z is one clock cycle.
Therefore, the feedback is propagated at a point in time when the applied fresh mask is
updated simultaneously. Hence, the transition-extended probes would capture the applied
fresh mask and the feedback signal which is blinded by the same fresh mask, hence an
undesired information leakage. A potential solution is to delay the feedback for (at least)
one additional clock cycle in such a way that, when the transition between the old input x
and the feedback signal z occurs, the fresh masks are updated (at least) one clock cycle
before. We realize this by delaying input x one clock cycle to be synchronized with the
other input y. This is shown in Figure 9(b).

Hence, a single probe p0 would still be extended by glitches to Pg = {p1, p2, p3, p4, p5}.
At the third clock cycle, p5 observes x0 while {p2, p3, p4} observe the result of the first
iteration, i.e.,

(
x0y0, r{0}x0, x0(y1 ⊕ r{0})

)
. At the same clock cycle, p1 observes two

consecutive fresh masks r{1} and r{2}. This obviously does not lead to any leakage as the
result of the first iteration is blinded by r{0} which is not observed by p1. Placing any other
single probe on this circuit does not lead to any first-order leakage under (1, 1, 0)-probing
model. We have confirmed this by evaluating such a circuit (for d ≤ 3) with our extended
version of SILVER.

As a side note, such a synchronization of inputs of the HPC2 gadget would solve the

N. Müller, D. Knichel, P. Sasdrich, A. Moradi 19

issue and at the same time keep its total latency of two clock cycles, in contrast to O-PINI2
multiplication gadget which has a latency of three clock cycles. As a result, if HPC gadgets
are used in an iterative circuit as shown in Figure 8, transitional leakage does not degrade
their security if the sequential loop (involving the feedback signal) consists of at least two
register stages and essentially fresh masks are updated at every clock cycle.

5.1 Experimental Analysis

Similar to the first case study (Section 4), we confirm our theoretical findings by means of an
experimental analysis. We have used the same measurement setup, and implemented both
designs of Example 4 and Example 5 for d = 1, collected 100 million traces recording the
instantaneous power consumption during 5 iterations, and conducted the same evaluation,
i.e., fixed-versus-random t-test.

The results, shown in Figure 10 and Figure 11, are inline with those reported by
SILVER. Most importantly, we do not observe any first-order leakage from the design
used in Example 5, while this is not the case for the design of Example 4. Note that the
leakage detected for Example 4 is slightly above the threshold, i.e., more than 50 million
measurements are required to observe the leakage. By this, we would like to highlight
that with the theory and tools at hand (SILVER), we can detect the security flaws in such
designs, but we cannot acquire any overview on their detectability and/or exploitability in
practice.

� ��� ��� ��� ����
�	����������

��

�

�

���
�	
���

��

(a) Original Design

� ��� ��� ��� ����
�	����������

��

�

�

���
�	
���

��

(b) Delayed Feedback

Figure 10: Iterative HPC gadget, first-order fixed v. random t-test results over time, using
100 million traces.

� �� �� �� 	� ���
���������
�����106

��

�

�

�

�

��

��

���
��
�

���

���

(a) Original Design

� �� �� �� 	� ���
���������
�����106

��

�

�

�

�

��

��

���
��
�

���

���

(b) Delayed Feedback

Figure 11: Iterative HPC gadget, first-order fixed v. random t-test results over number of
traces.

20 Transitional Leakage in Theory and Practice

6 Conclusions
In this work, we present a novel methodology for modeling transition- and glitch-extended
probes, enabling us to integrate the verification of transition-based leakage into SILVER,
an existing software framework for formal verification of masked circuits which before was
limited to perform verification in the (1, 0, 0)-robust d-probing model only, i.e., under the
occurrence of glitches. With the integration of our methodology into SILVER, we enable
designers to now also formally evaluate the security of hardware designs in the presence of
glitches combined with transitions (i.e., in the (1, 1, 0)-robust d-probing model), which is
highly relevant for constructing SCA-resilient iterative hardware designs.

For this, we present fundamental concepts to model and verify transition-based infor-
mation leakage originating from memory recombinations, feedback loops, and transitions
in primary inputs. We further demonstrate the relevance of our model extension by means
of two different case studies. More precisely, the first case study demonstrates the power of
the extended version of SILVER, for the first time enabling the verification and detection
of security flaws in the iterative S-box designs introduced in [BGG+17].

Additionally, our second study confirms the composition flaws of HPC2 multiplication
gadgets, as initially discussed in [CS21], when operated iteratively. In particular, this
also allows us to show that some constructions proposed in [CS21] might be seen over-
conservative with respect to security. Ultimately, for both case studies, we validate and
confirm our findings (i.e., information leakage reported by our extended version of SILVER)
by means of experimental leakage assessments.

While this work covers formal verification of SCA-resilience under glitches combined
with transitions and is publicly available at GitHub6, we should stress that its ability
to cover transitional leakage is limited to a certain form of circuits. More precisely, the
transitions associated to the input sequences are covered as long as the probes are placed
at the combinational circuit receiving such primary inputs. If the probes are places on the
combinational circuits which are not directly fed by the primary inputs, the transitional
leakage originating from the input sequences might not be detected. Further, this tool
does not yet cover any coupling-related leakage. As the detection of this would require
additional routing information, the overall extension scheme cannot be performed on netlist
level anymore. Nevertheless, a complete leakage verification should also take coupling
effects into account. Hence, the automated verification under the (1, 1, 1)-robust d-probing
model is a promising topic for future works.

Acknowledgments
The work described in this paper has been supported in part by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972 and through the projects 393207943 GreenSec, 435264177
SAUBER, and 406956718 SuCCESS.

References
[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin

Grégoire, and François-Xavier Standaert. maskVerif: Automated Verification
of Higher-Order Masking in Presence of Physical Defaults. In ESORICS 2019,
volume 11735 of Lecture Notes in Computer Science, pages 300–318. Springer,
2019.

6https://github.com/Chair-for-Security-Engineering/SILVER/tree/transitional-leakage

https://github.com/Chair-for-Security-Engineering/SILVER/tree/transitional-leakage
https://github.com/Chair-for-Security-Engineering/SILVER/tree/transitional-leakage

N. Müller, D. Knichel, P. Sasdrich, A. Moradi 21

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified Proofs of Higher-Order Masking.
In EUROCRYPT 2015, volume 9056 of Lecture Notes in Computer Science,
pages 457–485. Springer, 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-
Interference and Type-Directed Higher-Order Masking. In CCS 2016, pages
116–129. ACM, 2016.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel Implementations of
Masking Schemes and the Bounded Moment Leakage Model. In EUROCRYPT
2017, volume 10210 of Lecture Notes in Computer Science, pages 535–566,
2017.

[BDM+20] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain, and
Raphaël Wintersdorff. Tornado: Automatic Generation of Probing-Secure
Masked Bitsliced Implementations. In EUROCRYPT 2020, volume 12107 of
Lecture Notes in Computer Science, pages 311–341. Springer, 2020.

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the Cost of Lazy Engineering for Masked
Software Implementations. In CARDIS 2014, volume 8968 of Lecture Notes in
Computer Science, pages 64–81. Springer, 2014.

[BGG+16] Erik Boss, Vincent Grosso, Tim Güneysu, Gregor Leander, Amir Moradi, and
Tobias Schneider. Strong 8-bit Sboxes with Efficient Masking in Hardware. In
CHES 2016, volume 9813 of Lecture Notes in Computer Science, pages 171–193.
Springer, 2016.

[BGG+17] Erik Boss, Vincent Grosso, Tim Güneysu, Gregor Leander, Amir Moradi,
and Tobias Schneider. Strong 8-bit sboxes with efficient masking in hardware
extended version. J. Cryptogr. Eng., 7(2):149–165, 2017.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. Formal Verification of Masked Hardware
Implementations in the Presence of Glitches. In EUROCRYPT 2018, volume
10821 of Lecture Notes in Computer Science, pages 321–353. Springer, 2018.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Higher-Order Threshold Implementations. In ASIACRYPT 2014,
volume 8874 of Lecture Notes in Computer Science, pages 326–343. Springer,
2014.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight Private Circuits:
Achieving Probing Security with the Least Refreshing. In ASIACRYPT 2018,
volume 11273 of Lecture Notes in Computer Science, pages 343–372. Springer,
2018.

[Bil15] Begül Bilgin. Threshold implementations : as countermeasure against higher-
order differential power analysis. PhD thesis, University of Twente, Enschede,
Netherlands, 2015.

[CBG+17] Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav Nikov, Svetla
Nikova, and Vincent Rijmen. Does Coupling Affect the Security of Masked
Implementations? In COSADE 2017, volume 10348 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2017.

22 Transitional Leakage in Theory and Practice

[CBR+15] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov, and
Svetla Nikova. Higher-Order Threshold Implementation of the AES S-Box.
In CARDIS 2015, volume 9514 of Lecture Notes in Computer Science, pages
259–272. Springer, 2015.

[CGD18] Yann Le Corre, Johann Großschädl, and Daniel Dinu. Micro-architectural
Power Simulator for Leakage Assessment of Cryptographic Software on ARM
Cortex-M3 Processors. In COSADE 2018, volume 10815 of Lecture Notes in
Computer Science, pages 82–98. Springer, 2018.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verification.
IEEE Trans. Computers, 70(10):1677–1690, 2021.

[CGP+12] Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,
Matthieu Rivain, and Praveen Kumar Vadnala. Conversion of Security Proofs
from One Leakage Model to Another: A New Issue. In COSADE 2012, volume
7275 of Lecture Notes in Computer Science, pages 69–81. Springer, 2012.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In CRYPTO 1999,
volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer,
1999.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and Efficiently
Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE
Transactions on Information Forensics and Security, 15:2542–2555, 2020.

[CS21] Gaëtan Cassiers and François-Xavier Standaert. Provably Secure Hardware
Masking in the Transition- and Glitch-Robust Probing Model: Better Safe
than Sorry. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):136–158,
2021.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable Masking Schemes in the Presence
of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[GHP+21] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. Coco: Co-Design and Co-Verification of Masked Software Implementa-
tions on CPUs. In Michael Bailey and Rachel Greenstadt, editors, USENIX
Security 2021, pages 1469–1468. USENIX Association, 2021.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for sidechannel resistance validation. In NIST non-invasive attack
testing workshop, 2011.

[GM18] Hannes Groß and Stefan Mangard. A unified masking approach. J. Cryptogr.
Eng., 8(2):109–124, 2018.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An Efficient Side-Channel
Protected AES Implementation with Arbitrary Protection Order. In CT-RSA
2017, volume 10159 of Lecture Notes in Computer Science, pages 95–112.
Springer, 2017.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
Analysis: Concrete Results. In CHES 2001, volume 2162 of Lecture Notes in
Computer Science, pages 251–261. Springer, 2001.

N. Müller, D. Knichel, P. Sasdrich, A. Moradi 23

[HS13] Michael Hutter and Jörn-Marc Schmidt. The Temperature Side Channel and
Heating Fault Attacks. In CARDIS 2013, volume 8419 of Lecture Notes in
Computer Science, pages 219–235. Springer, 2013.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In CRYPTO 1999, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In CRYPTO 1996, volume 1109 of Lecture Notes in
Computer Science, pages 104–113. Springer, 1996.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - Statistical
Independence and Leakage Verification. In ASIACRYPT 2020, volume 12491
of Lecture Notes in Computer Science, pages 787–816. Springer, 2020.

[MMSS19] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert.
Glitch-Resistant Masking Revisited or Why Proofs in the Robust Probing
Model are Needed. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):256–
292, 2019.

[MPG05] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-Channel Leakage
of Masked CMOS Gates. In CT-RSA 2005, volume 3376 of Lecture Notes in
Computer Science, pages 351–365. Springer, 2005.

[MS06] Stefan Mangard and Kai Schramm. Pinpointing the Side-Channel Leakage
of Masked AES Hardware Implementations. In CHES 2006, volume 4249 of
Lecture Notes in Computer Science, pages 76–90. Springer, 2006.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold Imple-
mentations Against Side-Channel Attacks and Glitches. In ICICS 2006, volume
4307 of Lecture Notes in Computer Science, pages 529–545. Springer, 2006.

[NRS08] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Imple-
mentation of Non-linear Functions in the Presence of Glitches. In ICISC 2008,
volume 5461 of Lecture Notes in Computer Science, pages 218–234. Springer,
2008.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating Masking Schemes. In CRYPTO 2015, volume
9215 of Lecture Notes in Computer Science, pages 764–783. Springer, 2015.

[SAK] SAKURA. Side-channel Attack User Reference Architecture. http://satoh.
cs.uec.ac.jp/SAKURA/index.html.

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html

	Introduction
	Background
	Notations
	d-Probing Model
	Boolean Masking
	Threshold Implementation
	Trivially Composable Gadgets
	Formal Verification

	Transitional Leakage
	Changes on Primary Inputs
	Modeling Glitch- and Transition-Extended Probes
	Integration into SILVER

	Case Study 1: Strong 8-bit S-boxes
	Experimental Analysis

	Case Study 2: HPC Gadgets
	Experimental Analysis

	Conclusions

