
Performance of Hierarchical Transforms in Homomorphic

Encryption

A case study on Logistic Regression inference

Pedro Geraldo M. R. Alves?1,2*, Jheyne N. Ortiz1 and Diego F. Aranha2

1*Institute of Computing, University of Campinas, Campinas, Brazil.
2Department of Computer Science, Aarhus University, Aarhus, Denmark.

*Corresponding author(s). E-mail(s): pedro.alves@ic.unicamp.br;
Contributing authors: jheyne.ortiz@ic.unicamp.br; dfaranha@cs.au.dk;

Abstract

Recent works challenged the Number-Theoretic Transform (NTT) as the most efficient method for
polynomial multiplication in GPU implementations of Fully Homomorphic Encryption schemes such
as CKKS and BFV. In particular, these works argue that the Discrete Galois Transform (DGT) is a
better candidate for this particular case. However, these claims were never rigorously validated, and
only intuition was used to argue in favor of each transform. This work brings some light on the dis-
cussion by developing similar CUDA implementations of the CKKS cryptosystem, differing only in
the underlying transform and related data structure. We ran several experiments and collected perfor-
mance metrics in different contexts, ranging from the basic direct comparison between the transforms
to measuring the impact of each one on the inference phase of the logistic regression algorithm. Our
observations suggest that, despite some specific polynomial ring configurations, the DGT in a stan-
dalone implementation does not offer the same performance as the NTT. However, when we consider
the entire cryptosystem, we noticed that the effects of the higher arithmetic density of the DGT on
other parts of the implementation is substantial, implying a considerable performance improvement
of up to 15% on the homomorphic multiplication. Furthermore, this speedup is consistent when we
consider a more complex application, indicating that the DGT suits better the target architecture.

Keywords: NTT, DGT, Fully Homomorphic Encryption, CKKS, CUDA, Polynomial multiplication,
Privacy-preserving computing

1 Introduction

In 1978, Rivest et al. first conceived the notion
of Homomorphic Encryption (HE) schemes [41].

?Results were partially obtained while visiting the Depart-
ment of Computer Science at Aarhus University for 12 months.

Their objective was to preserve some mathe-
matical structure after encryption that enables
the evaluation of arithmetic circuits over cipher-
texts without decryption or knowledge of the
secret key. The computation outcome is naturally
encrypted, and an observer learns nothing regard-
ing the operands, the result, or the decryption
key. The first HE schemes had limited capabil-
ity, supporting only additions or multiplications,

1

2

and because of that they were called Partially
Homomorphic Encryption (PHE) schemes. ElGa-
mal’s and Paillier’s are notorious examples of such
PHE schemes [24, 37]. Since they cannot support
both operations simultaneously, their suitability
to real-world implementations is limited. It took
around 30 years after this initial work for the
first practical construction of a Fully Homomor-
phic Encryption (FHE) scheme supporting an
unlimited number of both operations to be intro-
duced [26]. Unfortunately, the first proposals did
not stand out for performance regarding latency
or memory consumption. Still, Gentry was suc-
cessful in drawing a blueprint that has guided
many FHE schemes. His main contribution [26]
was the proposal of a bootstrapping operation
that homomorphically evaluates the decryption
procedure to remove the upper bound on the
complexity of supported functions. The following
decade was dedicated to security and performance
improvements [12–15, 22, 27, 34].

Modern schemes have significantly reduced the
performance overhead imposed on computation
over ciphertexts [16, 23]. Their implementation
relies on polynomial arithmetic, so developers
have to find efficient ways to handle known costly
operators, such as polynomial multiplication and
division. Concerning the former, the literature
has established the suitability of the Number-
Theoretic Transform (NTT), a variant of the
Discrete Fourier Transform (DFT) that operates
over integers, to compute the polynomial multipli-
cation with linear complexity within the transform
domain. Nonetheless, some recent works suggest
that the Discrete Galois Transform (DGT) may
be a better candidate when the target hardware
is a CUDA-enabled GPU [2, 4, 6]. CUDA is
a SIMD architecture developed and maintained
by NVIDIA to employ GPUs’ potential for data
parallelism in tasks beyond graphical processing.
In particular, the suitability of current devices
for polynomial arithmetic made CUDA an essen-
tial tool for the efficient implementation of FHE
schemes [21, 32].

However, the particularities of the architec-
ture impose some challenges. For example, its
processing flow demands careful planning to align
possible conditional branches with certain thread
groups, and its memory paradigm considers sev-
eral structures with different dimensions and
latency characteristics, apart from the machine’s

main memory. So, part of the difficulty of its use
involves tailoring classical methods into variants
that conveniently fit the GPU.

1.1 Related Work

Current HE schemes are built on top of Gen-
try’s proposal of a bootstrappable cryptosystem,
a scheme that homomorphically evaluates its own
decryption circuit [26]. The bootstrap procedure
enables these proposals to be used as fully homo-
morphic since they can perform an unlimited
number of additions and multiplications. Some of
the primary schemes available in the literature
are BFV [22], CKKS [14], and TFHE [15]. All
these schemes share a common core for polyno-
mial arithmetic, which allows using a DFT-based
method to accelerate polynomial multiplication.
For this task, one may use the Fast Fourier Trans-
form (FFT), the NTT, or the DGT. In particular,
we target the application of these methods to the
implementation of CKKS on GPUs.

The applicability of DFT-based algorithms to
efficiently implement polynomial multiplication is
ubiquitous in the FHE literature. In 1966, Gen-
tleman and Sande [25] proposed the hierarchical
FTT, and it remained forgotten in the interim
until 1989 when Bailey rediscovered it as the
“four-step” FFT algorithm [7]. Later on, in 2008,
Govindaraju et al. implemented the four-step hier-
archical FFT in the context of GPUs [28]. A
few years later, Harvey developed arithmetic tech-
niques for reducing the number of reductions
modulo p during the computation of the NTT [30].
The NTT is a DFT variant that works in a finite
field, so its arithmetic better suits cryptographic
contexts, avoiding the use of floating-point arith-
metic that is inherent to the FFT. Because of
that, the NTT became the norm in the litera-
ture. In 2018, Dai et al. recursively applied the
four-step Cooley-Tukey algorithm [17] to obtain
NTTs with size 64 instead of performing the
transform on integer vectors of 2048 and 4096
coordinates [20]. Recently, Jung et al. applied
a hierarchical implementation of the NTT in
the fastest up-to-date implementation of logistic
regression over GPUs [31]. Following a slightly
different branch, Badawi et al. explored the suit-
ability of the DGT for FHE [2]. The DGT works
in the finite field Fp2 for prime p. Thus, it is sim-
ilar to the NTT but also adds the possibility of

3

halving the operands’ degree. In this same direc-
tion, the DGT was used to accelerate polynomial
multiplication on a BFV implementation on GPUs
[6], and lately, Alves et al. improved the use of
the DGT for polynomial multiplication in GPUs
through a hierarchical implementation [4].

The DGT is favored by the fact that arithmetic
in the field Fp2 is performed in the set of Gaus-
sian integers Zp[i], for some convenient choice of
prime p. By working with Gaussian integers, the
operands are converted from a N -degree to a N/2-
degree polynomial ring via a folding procedure.
Consequently, the degree of the inputs used inside
the transform is halved and so is the number of
roots that will be loaded and stored into mem-
ory during the transform computation. Moreover,
a CUDA implementation can also reduce the num-
ber of required threads, which avoids the parallel
performance degradation in bigger instances [2, 6].
Nevertheless, the representation in Zp[i] implies
denser arithmetic operations, which saves in mem-
ory bandwidth consumption. Notice that arith-
metic in Fp consists in coefficient-wise operations
modulo p between two N -degree polynomials. On
the other hand, when the base field is Fp2 , addition
and multiplication operations are similar to the
ones over complex numbers. This means that an
increased arithmetic density is natural to the DGT
and may improve performance if the implemen-
tation explores the processing hardware special
capabilities.

1.2 Our contributions

In this paper, we describe our efforts to resume
the investigation started by Badawi et al. on
the possible advantages of replacing the NTT
with the DGT for the implementation of poly-
nomial multiplication in FHE cryptosystems [2].
In particular, we target results claiming that the
DGT is more suitable than NTT for GPUs and
memory-bounded platforms [5]. To the best of our
knowledge, no previous work provided a deep anal-
ysis of the advantages of each transform in the
context of GPU execution.

We developed two implementations of the
CKKS scheme using DGT and NTT as the
underlying transform to perform multiplication
in the ring Zq[x]/(xN + 1). The implementa-
tions are referred to as AOA-DGT and AOA-
NTT, respectively. We compare the latencies of

the transforms executed independently and also
within CKKS’ homomorphic primitives. More-
over, we present a case study verifying how the
performance of the logistic regression inference
is affected by each. For that, we compute the
inference score using both implementations for
a trained model over the MNIST database con-
sidering the case when the model is encrypted,
protecting its secrecy, and when it is handled as
plaintext [33]. Furthermore, we analyze how the
problem scales for approaches found in the litera-
ture that run the inference with and without the
computation of the activation function.

Our experiments reveal that the NTT offers
a clear performance advantage over the DGT in
most cases and especially in smaller instances. For
8192-degree polynomial rings, however, the DGT
more efficiently takes advantage of the processing
hardware and can overcome the NTT.

Nonetheless, the AOA-DGT’s homomorphic
multiplication performs better even though its
related transform implementation does not. We
found procedures in the critical path of that primi-
tive not directly related to the transform itself but
that are impacted by the associated implemen-
tation decisions. For instance, a 10% slowdown
on the Logistic Regression inference executed on
AOA-NTT is observed, caused by the less effi-
cient basis extension methods. We show that
this result can be reversed by increasing arith-
metic density in AOA-NTT to match the one in
AOA-DGT.

Organization

This document is organized as follows. Section 2
describes the adopted notation and relevant
basic building blocks at Sections 2.2 and 2.4;
and the target FHE scheme, at Section 2.3.
Section 3 presents our experiments and method-
ology, and discusses the obtained results. Further-
more, Section 4 presents a case study on how
the selection of each transform affects the perfor-
mance on the inference of a homomorphic logistic
regression implementation.

2 Background

Most implementations of cryptosystems based on
the Ring Learning-With-Errors (RLWE) problem
requires the construction of basic building blocks
that offer polynomial arithmetic on a cyclotomic

4

ring. An example is the cryptosystem CKKS [14],
a leveled homomorphic encryption scheme. In
particular, the implementation of algorithms for
polynomial multiplication has been a challeng-
ing task. A simple schoolbook algorithm requires
quadratic complexity on the operands degree, and
because of that it is utterly unsuitable on instances
of cryptographic size. The typical approach in the
literature involves variants of the DFT, which offer
linear complexity when the operands lie in their
domains. In this work, we focus on the efficient
implementation of the NTT and DGT.

In this context, this section describes the nota-
tion used throughout the document, defines the
relevant primitives of CKKS, and discusses formu-
lations for the NTT and the DGT.

2.1 Notation

We use bold letters to denote vectors e.g., a and
A. For a vector a, we refer by ai the i-th element.
We denote by [x]q the reduction of an integer x
modulo q, that is, [x]q := x mod q, for some inte-
ger q. Furthermore, let X be a matrix, then x∗,i is
the set of all the elements on column i of X. In the
same way, xi,∗ is the set of all the elements on row
i of X. Also, we use bxe to define the rounding to
the nearest integer operation.

Let K be the 2N -th cyclotomic number field
and R = OK its ring of integers. We represent R
in its polynomial form, that is, R = Z[x]/(xN +1).
Moreover, for an integer q ≥ 2, Rq denotes the
quotient ring Rq = Zq[x]/(xN + 1).

Consider that C = {q0, q1, . . . , q`} is a
set of coprime integers and q = Π`

i=0qi. If
s ∈ RC , then ∃S ∈ Rq such that s :=
{[S]q0 , [S]q1 , . . . , [S]q`}. Arithmetic operations as
addition and multiplication over elements in RC
are taken coefficient-wise, that is, if a, b ∈ RC then

a+b =
{

[a0 + b0]q0 , . . . , [a` + b`]q`

}
. Furthermore,

we denote by [x]q0 the operation that selects the
0-th residue of x.

2.2 DFT-based Transforms

NTT is a variation of the DFT that replaces the
primitive N -th complex root of unity by a primi-
tive N -th root of unity ωN in a ring Zp [40]. For N
a power of two, the NTT requires p to be a prime
number and that N | (p − 1). In this case, Pol-
lard proved that there exists a primitive N -th root

of unity in Zp that can be computed as r(p−1)/N ,
where r is the primitive root modulo p. For a poly-

nomial a(x) =
N−1∑
j=0

ajx
j ∈ Z[x], the N -point NTT

computes

NTTωN
(a(x)) =

(
a(ω0

N), . . . , a(ωN−1N)
)
. (1)

Conversely, the inverse transform is

INTTω−1
N

(a(x)) =
[
N−1 ·NTTω−1

N
(a(x))

]
p
, (2)

where N−1 is the multiplicative inverse of N mod-
ulo p. The polynomial multiplication c(x) = a(x) ·
b(x) mod xN + 1 can be done via NTT as

c(x) =

ω−12N · INTTω−1
N

(NTTωN
â(x))�NTTωN

(b̂(x))),

in which â(x) = ω2N ·a(x). This technique of scal-
ing the operands by powers of ω2N is known as
the negative wrapped convolution [35].

DGT is an alternative to the NTT over the
finite field Fp2 , where p is a prime. It was pre-
sented as a method for integer convolution by
Crandall [18] and was further considered for poly-
nomial multiplication by Badawi et al. [6]. The
DGT and its inverse transform are defined in the
same way as NTT in Equations 1 and 2, but now
the operands are vectors with elements in Fp2 .

In this context, the field elements may be rep-
resented using the set of Gaussian integers modulo
p, denoted Zp[i], which is defined as Zp[i] =
{a+ ib | a, b ∈ Zp}, for i =

√
−1. The arithmetic

in Zp[i] is similar to the one in C but both real
(<) and imaginary (=) parts are taken modulo p.
When the polynomial ring is Z[x]/(xN +1), Cran-
dall [18] defines a transform on a vector a with
size N ≡ 0 mod 2 to a vector A with size N/2,
denoted as folding, such that

Aj = aj + iaj+N
2
∈ Zp[i].

This transform maps the coefficients of the poly-
nomial from ZNp to Zp[i]

N
2 . The inverse transform

from Zp[i]
N
2 to ZNp is denoted as unfolding and it

is given by

aj = <(Aj) and aj+N
2

= =(Aj),

5

for 0 ≤ j ≤ N/2− 1. Crandall [18] also defines
a “right-angle” convolution that multiplies the
folded vector A by powers of τ = τN

2
, an N

2 -th
root of i modulo p. We refer to this convolution as
twisting, since powers of τ are the twisting factors
defined as

Aj = Aj · τ j .
The corresponding inverse convolution is given by
the multiplication of the vector a, which is the out-
put of the unfolding procedure, by growing powers
of the inverse N

2 -th root of i, denoted τ−1.
For completeness, we present the polynomial

multiplication in the ring Zp[x]/(xN +1) via DGT
introduced by Badawi et al. [6] in Algorithm 1.
Notice that it operates on the coefficient vectors a
and b of two polynomials a(x), b(x) ∈ Zp[x]/(xN+
1). Similarly, the algorithm outputs the coefficient
vector c corresponding to the computation c(x) =
a(x) · b(x) ∈ Zp[x]/(xN + 1).

Algorithm 1 Polynomial multiplication in
Zp[x]/(xN + 1) via DGT

Require: Vectors a,b ∈ ZNp , p a prime number,

N a power-of-two integer, and τ a primitive N
2 -

th root of i modulo p.
Ensure: A coefficient vector c ∈ ZNp .
for j = 0; j < N/2; j = j + 1 do

a′j = aj + iaj+N/2
b′j = bj + ibj+N/2

end for
for j = 0; j < N/2; j = j + 1 do

a′j = τ j · a′j (mod p)

b′j = τ j · b′j (mod p)
end for
a′ = DGT(a′)
b′ = DGT(b′)
for j = 0; j < N/2; j = j + 1 do

c′j = a′j · b′j (mod p)
end for
c′ = IDGT(c′)
for j = 0; j < N/2; j = j + 1 do

aux = τ−j · c′j (mod p)
cj = <(aux)
cj+N

2
= =(aux)

end for
return c

2.3 CKKS Scheme

Cheon-Kim-Kim-Song proposed a leveled homo-
morphic encryption scheme known as CKKS [14]
in which the plaintext domain is composed of
complex numbers. The array of complex numbers
is mapped into elements of the ring R using an
encoding method that works as follows.

Let z be a vector of N complex numbers and
∆ a scalar. In practice, we have that decode(z) =
bFFT(z) · ∆−1e. In this sense, encode is defined
simply as the inverse procedure. Through this
approach, CKKS becomes capable of operating
with non-integer numbers using fixed-point arith-
metic. In this representation, ∆ is called the
scaling factor and is responsible for setting its
precision.

A CKKS ciphertext, denoted ct = (c0, c1), is
a pair of elements in RC , for C = {q0, . . . , qL} a

RNS basis. In other words, ct = {(c(i)0 , c
(i)
1)}0≤i≤L

such that (c
(i)
0 , c

(i)
1) ∈ Rqi ×Rqi . At this moment,

we say that this ciphertext has level ` = L + 1.
We have that c0 and c1 are built by the CKKS
encryption algorithm such that [c0 + s · c1]q0 ≈ m,
for a secret key s.

A decryption imprecision is expected, and its
error is considered part of the cryptosystem’s
inherent noise. Let ct0 = (ct0,0, ct0,1) and ct1 =
(ct1,0, ct1,1) be encryptions of m0 and m1 under
a secret key s, respectively. Then, m0 · m1 ≈
[(ct0,0 + s · ct0,1) · (ct1,0 + s · ct1,1)]q0 . Therefore,
the property that is expected to be conserved to
offer homomorphic multiplication is

m2 = m0 ·m1 ≈ [ct0,0 · ct1,0

+ s · (ct0,1 · ct1,0 + ct1,1 · ct0,0)

+ s2 · ct0,1 · ct1,1
]
q0
.

The problem with this construction is that the
outcome of a ciphertext multiplication would be
a ciphertext composed of three parts, which are
the coefficients of powers of s. This is not desir-
able for storage efficiency, and can also become
a significant computational problem for following
homomorphic operations, especially for homomor-
phic multiplications. Thus, a procedure to recover
the ciphertext’s linearity, i.e. write it as a linear
combination of {1, s}, is crucial in this context.

The relinearization procedure for this scheme
extends the polynomial representation of the

6

quadratic coefficient from an element of RC to
an element of RC+D, for a secondary basis D =
{p0, p1, . . . , pk} coprime to C. A multiplication by
an evaluation key, evk, is done in this bigger basis,
and then the representation is shrank back to the
basis C. These basis conversion steps are done
through approximate modulus switching functions
referred to as ModUp and ModDown.

Bajard et al. [8] define a fast basis extension
procedure from C to D as follows:

ConvC→D(a) =

[`−1∑
j=0

[a(j) · q̂−1j]qj · q̂j

]
pi

0≤i≤k

where q̂j =
∏
j′ 6=j qj′ . This procedure can be used

for ModUp, computing the approximated repre-
sentation of a in a bigger basis. This approxima-
tion, in the context of the CKKS, is close enough
to add negligible noise to the cryptosystem.

The inverse procedure, ModDown, aims at
computing b ≈ P−1 · b̃ ∈ ZC for P =

∏
p∈D p, given

as input the representation b̃ ∈ ZC+D.

ModDownC+D→C

({
b̃C , b̃D

})
=(

P−1 ·
(
b̃
(j)
C − ConvD→C(b̃D)(j)

))
0≤j≤`

.

Notice that, after a homomorphic multiplica-
tion, the encoding scaling factor of the outcome is
∆2. For maintaining the representation precision,
CKKS uses a rescaling method to restore the orig-
inal scaling factor (or an approximation of it). In
this sense, one of the residues used to represent the
ciphertext is consumed, leading to a `′ = (` − 1)-
level ciphertext. When `′ = 0, no further rescaling
is possible.

Let χkey be a secret key distribution, and χerr
an encryption key distribution over the ring R. In
practice, χkey is usually defined as a narrow dis-
tribution, sampling uniformly from {−1, 0, 1}, and
χerr is taken as a discrete Gaussian. Also, let C =
{q0, q1, . . . , qL} and D = {qL+1, qL2 , . . . , qL+k} be
two RNS basis coprime to each other. In the fol-
lowing we define some primitives relevant for this
work:

CKKS.SecKeyGen(1λ): Sample s←$χkey and
set the secret key as sk := (1, s).

CKKS.PubKeyGen(sk): Sample(
a(0), . . . , a(L)

)
←$RC and e←$χerr.

Set the public key as pk :=(
pk(j) = (−a(j) · s+ e mod qj , a

(j))0≤j≤L

)
.

CKKS.RelinKeyGen(sk): Sample(
a(0), . . . , a(k+L)

)
←$RC

⋃
B and e←$χerr.

Let b(j) := −a(j) · s+
[∏k−1

i=0 pi

]
gj

+ e mod gj ,

for gj ∈ C
⋃
B. Set the relinearization key

rlk :=
(
rlk(j) = (b(j), a(j))

)
0≤j≤L

.

CKKS.Encrypt(m, pk): For m ∈ RC ,
sample v←$χenc and e0, e1←$χerr.
Output the ciphertext ct :=(
c(j) =

[
v · pk(j) + (m+ e0, e1)

]
qj

)
0≤j≤L

CKKS.Decrypt(ct, sk): Output [ct · sk]q0 .

CKKS.Add(ca, cb): Let ca = (a
(j)
0 , a

(j)
1) and

cb = (b
(j)
0 , b

(j)
1) for j ∈ {0, . . . , L}. Output

([a
(j)
0 + b

(j)
0]qj , [a

(j)
1 + b

(j)
1]qj)0≤j≤L

CKKS.DR2(ca, cb): Let ca = (a
(j)
0 , a

(j)
1) and

cb = (b
(j)
0 , b

(j)
1). Output

(
d
(j)
0 , d

(j)
1 , d

(j)
2

)
=(

a
(j)
0 b

(j)
0 , a

(j)
0 b

(j)
1 + a

(j)
1 b

(j)
0 , a

(j)
1 b

(j)
1

)
∈ R3

qj , for

j ∈ {0, . . . , L}.
CKKS.Mul(ca, cb): Let ca = (a

(j)
0 , a

(j)
1) and

cb = (b
(j)
0 , b

(j)
1).

(a)
(
d
(j)
0 , d

(j)
1 , d

(j)
2

)
= CKKS.DR2(ca, cb),

(b) Having the representation of d2 in base C,
compute its representation in base D: d̃2 :=
ModUpC`←D`

(d2)

(c) c̃t
(j)

:= d̃2
(j)
· evk(j) mod qj for qj ∈ C+D.

(d) Having c̃t
(j)

in base C + D, compute
its representation in base C: ĉ(j) :=

ModDownD`←C`(c̃t
(j)

)

(e) Output
(
ĉ
(j)
0 + d

(j)
0 , ĉ

(j)
1 + d

(j)
1

)
0≤j≤L

.

CKKS.Rescale(ca): Let a `-level ciphertext

ca = (a
(j)
0 , a

(j)
1) for j ∈ {0, . . . , `}. Compute

cb := q−1` ·
(
a
(j)
0 − a`0, a

(j)
1 − a`1

)
0≤j≤`−1

. The

result, cb, is a (`− 1)-level ciphertext.
CKKS.AddPlain(c, p): Let c = (a(j), b(j)) be a
`-level ciphertext and p ∈ RC a plaintext, for
j ∈ {0, . . . , `}. Output (a(j)+p(j), b(j))0≤j≤L ∈
RC

CKKS.MulPlain(c, p): Let c = (a(j), b(j))
be a `-level ciphertext and p ∈ RC

7

a plaintext, for j ∈ {0, . . . , `}. Output
(a(j)p(j), b(j)p(j))0≤j≤L ∈ RC .

2.4 Hierarchical Transforms

The memory paradigm of GPUs involves differ-
ent layers that should be considered prior to
the computation. Usually, the processing work-
flow starts with the data copy from the machine’s
main memory to the GPU global memory, which
is the largest but also slowest memory space
accessible by CUDA threads. Thus, before com-
putation really starts, data needs to be copied
from the global memory to a faster memory. Each
CUDA thread is member of a three-dimensional
block of threads, which shares a fast but small
memory space, called shared memory. By doing
that, the performance is considerably increased.
Yet, this also imposes a constraint on the space
consumption.

As discussed by Alves et al., the implementa-
tion of the DGT or NTT in memory-constrained
devices, such as GPUs, is not straightforward [4].
The synchronization calls needed by these algo-
rithms limits the dimension of the input to the
size of a block of threads, or requires the use
of a software-based mechanism like Cooperative
Threads. To avoid such issue, a hierarchical strat-
egy can be adopted to reduce the size of the
transforms to a feasible dimension, which can
be easily supported by the processing hardware.
Originally proposed by Bailey and revisited by
Govindaraju et al. for the FFT, the idea is to split
the input polynomial, of degree N , into smaller
instances as close as to

√
N [7, 28].

We present a general description of a forward
hierarchical transform, which in our case is either
the hierarchical NTT or hierarchical DGT. The
forward hierarchical transform is done by execut-
ing the following four steps on an N -length integer
vector a. We also consider that the arithmetic
operations are taken modulo a prime number p.
When dealing with the hierarchical NTT trans-
form, we require that p ≡ 1 (mod 2N). But, when
the transform is the DGT, we require that p ≡ 1
(mod 4N) in order to the N

2 -th primitive root of
i exist modulo p.

1. Apply the weight corresponding to either NTT
or DGT to the operand a. When the NTT is the
transform, the weight is the negative wrapped
convolution, which multiplies the coefficients of

a by powers of the 2N -th primitive root of unity
modulo p. When the transform is the DGT,
the weight consists of folding the input vector
followed by a multiplication by powers of the
N/2-th primitive root of i modulo p, denoted
h (mod p). Despite the transform, the result of
this step is assumed to be an N ′-length vector.

2. By treating a as an Nr×Nc-matrix, denoted A,
perform Nc simultaneous Nr-length transforms
on each column of A.

3. Apply the twisting factor g, which is the N ′-
th primitive root of unity modulo p, to a by
multiplying each element Ai,j by gi·j (mod p).

4. Finally, perform Nr simultaneous Nc-length
transforms on each row of A.

We summarize the basic steps of a forward
hierarchical transform in Algorithm 2. Notice that
Aj denotes the j-th column of the matrix A. The
inverse hierarchical transform is obtained by exe-
cuting the above four steps in reversed order. This
is done by replacing the forward transform in steps
2 and 4 with their inverse counterparts and sub-
stituting the primitive roots in steps 1 and 3 by
their inverse modulo p.

Algorithm 2 Hierarchical forward transform

Require: An N -length integer vector a.
Ensure: The operand A in the hierarchical trans-

form domain.
a = ApplyWeight(a)
for j = 0; j < Nc; j = j + 1 do

Aj = PerformForwardTransform(Aj)
end for
A = ApplyTwiddleFactor(A)
A = TransposeMatrix(A)
for i = 0; i < Nr; i = i+ 1 do

Ai = PerformForwardTransform(Ai)
end for
return A

Consider that we want to perform the polyno-
mial multiplication c(x) = a(x)·b(x) ∈ Z[x]/(xN+
1) by adopting the hierarchical transforms. We
consider that a and b contain the coefficients of
the integer polynomials a(x) and b(x), respec-
tively. Thus, the polynomial multiplication is done
by executing the four-step algorithm into both a
and b, by computing the component-wise multipli-
cation on the operands, and by finally computing

8

the inverse hierarchical transform. As a result, we
obtain c, which holds the coefficients of the poly-
nomial c(x). Notice that, in the NTT domain, the
component-wise multiplication is performed in Zp.
On the other hand, in the DGT domain, the prod-
uct is performed in Zp[i] using arithmetic similar
to performed over complex numbers.

3 Performance Evaluation of
Hierarchical Transforms

This work investigates whether the DGT outper-
forms the NTT in its hierarchical form as a mech-
anism to accelerate the CKKS arithmetic in the
CUDA architecture. The main differences between
them are the input folding and the field arith-
metic of the DGT, which is more expensive than
in the NTT. However, doing arithmetic operations
in F(p2) instead of F(p) offers a higher computa-
tional density. These characteristics may improve
performance if they use the processing hardware
more efficiently. To examine this hypothesis, we
conceived two CUDA-based implementations of
CKKS using the hierarchical versions of both
DGT and NTT, which we refer to as AOA-DGT
and AOA-NTT. Both follow the same design
decisions, except for their basic data type.

We represent a polynomial as a single array
by concatenating its residues. In AOA-NTT, the
coefficients are stored as 64-bit unsigned integers,
and in AOA-DGT we use a structure composed
of two of those. All other implementation deci-
sions follow Alves et al.’s blueprint, as the use
of the double-CRT representation, encapsulating
data simultaneously in the RNS representation
and within the transform domain; and the GPU-
optimized state machine, avoiding data move
between memories and the transform domain [4].

Let C = {q0, . . . , qL} and D =
{qL+1, . . . , qL+k} be the main and secondary RNS
basis, as defined in Section 2.3. All time mea-
surements were obtained with a 63-bit prime q0,
and 52-bit primes qi, for i > 0, fixing the scaling
factor at 252. We selected this scaling factor aim-
ing the required precision to execute the logistic
regression inference, described at Section 4.

We collected time measurements of both
implementations in two distinct scenarios, com-
paring the transforms as a standalone but also

as part of more complex algorithms. The imple-
mentations were analyzed using NVIDIA’s rec-
ommended profiling tool, namely NVIDIA Nsight
Systems version 2021.2.1.2 [36]. All executions
were performed on a Google cloud instance and
the code was compiled using GCC and G++ 8.4.0,
and CUDA 11.3. Experiments were executed on
either NVIDIA Tesla V100 or Tesla A100 GPUs.

3.1 Direct Comparison: DGT versus
NTT

Following the hierarchical strategy, presented in
Section 2.4, N -degree polynomials are processed
as Nr or Nc-degree, such that N = Nr ·Nc. Thus,
we need Nc blocks of dNr/2e threads each to com-
pute step 2 of the algorithm, and then Nr blocks
of dNc/2e threads for step 4.

The effect of the hierarchical approach can be
observed in rings with degrees 4096 and 8192.
Table 1 shows execution times for computing the
DGT and the NTT on these instances represented
in different RNS bases, which offer the best and
the worst performance for the DGT compared
to the NTT, respectively. As it can be seen in
the table, DGT exhibits a consistent slowdown in
the smaller instance. Due to DGT’s folding pro-
cedure, 4096-degree polynomials are folded into
2048-degree polynomials with Gaussian integer
coefficients. Since 2048 can be written as 64 · 32,
it means that there will be blocks with 32/2 = 16
threads running in the GPU.

Modern GPUs’ streaming multiprocessors
(SMs) process groups of 32 threads at a time,
called warps, which are the primary processing
unit in a GPU. In this sense, 16-thread blocks
are too small and do not reach the CUDA warp
size. Since warps are only composed of threads
contained in the same block, blocks smaller than
32 imply that SM resources are being wasted,
explaining the performance observed on instances
of the DGT with a size smaller or equal to 32. In
comparison with NTT that does not use folding,
the operands are processed as 4096-degree poly-
nomials. Thus, 4096 = 64 · 64, and all blocks are
set with 32 threads, fitting in a warp perfectly. For
N = 8192, the opposite happens, and the DGT
benefits from the SM processing. In this case,
some NTT thread blocks have 64 elements, but
DGT enters in its optimal setup with 32-thread
blocks. Figure 1 expands this analysis for further

9

Table 1 Latencies for the computation of the DGT and
NTT on their hierarchical formulation on 4096- and
8192-degree polynomials represented in RNS bases
composed of r elements. Measurements in microseconds
were computed as the average of 100 independent
executions on an NVIDIA Tesla V100 GPU.

N = 4096
r 1 5 10 20 30 40 50

DGT 16.2 17.1 18.4 24.7 32.6 39.6 48.4
NTT 13.4 14.3 17.0 22.0 28.5 35.2 43.1
Ratio 1.21 1.20 1.08 1.12 1.14 1.13 1.12

N = 8192
r 1 5 10 20 30 40 50

DGT 17.7 18.9 23.0 35.0 47.8 60.4 77.0
NTT 14.2 17.2 23.5 36.9 52.2 64.3 76.4
Ratio 1.25 1.10 0.98 0.95 0.92 0.94 1.01

configurations. When N = 4096, a considerable
slowdown of the DGT is observed, related to its
inefficiency in exploiting the hardware’s resources.
The NTT starts to move from its optimal configu-
ration when N = 8192, losing execution efficiency.
At the same time, the DGT finds its best perfor-
mance, in which a speedup in the interval between
10 and 45 residues is observed.

In larger instances, AOA-DGT and AOA-
NTT suffer from the increasing consumption
of shared memory, which rises bank conflicts,
and thread block synchronization becomes more
expensive, since blocks must be split among sev-
eral warps.

3.2 Impact on CKKS Homomorphic
Primitives

The NTT and DGT transforms are applicable to
the CKKS context for reducing the complexity of
polynomial multiplications. However, the conse-
quences go beyond that. For instance, the basis
extension methods ModUp and ModDown,
described in Section 2.3, cannot be expressed
in an arithmetic circuit that can be evaluated
in the domains of the transforms. Thus, certain
operations, such as homomorphic multiplication,
require converting between distinct domains. One
would prefer to keep the data structure associated
with each transform to avoid conversion costs.
In that case, the implementation of those meth-
ods would have to consider that data structure
and would be affected by its particularities. Thus,
Table 1 is not sufficient to decisively conclude
about the suitability of each method regarding its
employment to CKKS.

Table 2 compares the CKKS’ homomorphic
addition and multiplication using each transform.
When the homomorphic addition is implemented
in AOA-DGT, it presents a slowdown of around
10%. This is a straightforward procedure and,
intuitively, one would expect the same perfor-
mance in both implementations since the required
number of modular additions is the same. How-
ever, this is an extremely memory-bound proce-
dure. Apart from memory transactions, it only
requires integer additions. Even the related reduc-
tions modulo p can be implemented with a single
integer addition by constant-time selection of a+b
and a + b − p. Hence, the memory overhead out-
weighs the computational cost. Some of the kernel
launch cost can be amortized by executing the
entire homomorphic addition in a single CUDA
kernel. However, the profiler still indicates that
both implementations achieve very low occupancy
and warps may stall waiting for load and store
transactions to the device’s memory. Notice that
the implementation in AOA-DGT takes twice the
number of input and output operands, thus being
more affected by warps stalls.

Algorithm 3 Pseudo-code of CKKS’ homomor-
phic multiplication

Require: ct0 ≡ CKKS.Encrypt(m0) and ct1 ≡
CKKS.Encrypt(m1), and evk as an evaluation
key.

Ensure: ct2 such that ct2 ≡
CKKS.Encrypt(m0 ×m1).
ĉt0 = Transform(ct0)
ĉt1 = Transform(ct1)

d̂ = CKKS.DR2(ĉt0, ĉt1)

d = InverseTransform(d̂)
e2 := ModUpC`←D`

(d2)
ê2 = Transform(e2)
ĉt := ê2 × evk
ct = InverseTransform(ĉt)
a := ModDownD`←C`(ct)
ct2 := (a0 + d0, a1 + d1)
return ct2

In contrast, homomorphic multiplication is a
much more complex operation, composed of arith-
metic operations, basis extensions, and transfor-
mations between the polynomial and transform
domain, as shown in Algorithm 3 and discussed

10

Fig. 1 Ratio (DGT/NTT) of the DGT and NTT execution time for different polynomial degrees and varying sizes of RNS
basis. Measurements computed as the average of 100 independent executions on an NVIDIA Tesla V100 GPU.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 10 20 30 40 50 60 70 80 90

D
G

T
 /

N
T

T

Number of residues

4096
8192

16384
32768
65536

Table 2 Comparison of homomorphic operations using the DGT and the NTT to perform the multiplication of 2n-degree
polynomials with log q = 323, providing at least 80-bit security level when n ≥ 13. Rescaling is not considered for
homomorphic multiplication. Measurements, in microseconds, computed as the average of 100 independent executions on
an NVIDIA Tesla V100 GPU.

Hom. Add. Hom. Mul.
n DGT (µs) NTT (µs) DGT/NTT DGT (µs) NTT (µs) DGT/NTT
12 4.4 4.1 1.07 188.6 175.8 1.07
13 5.7 5.5 1.04 237.9 251.6 0.95
14 8.8 8.3 1.06 380.7 395.1 0.96
15 15.9 14.2 1.12 652.4 725.4 0.90
16 30.8 25.5 1.21 1232.9 1402.8 0.88

in Section 2.3. In Table 2, AOA-NTT presents a
slowdown that increases with the ring degree. This
result appears to contradict the observation pre-
sented in Section 3.1, when we observed a better
performance for the NTT on these parameters.

In Table 3, we provide experimental results for
each component of the homomorphic multiplica-
tion, allowing them to be observed separately on
a much bigger instance. NVIDIA’s profiler tool
reveals that the basis extension procedures occupy
a critical role in homomorphic multiplication. In

11

Table 3 Comparison of the latency needed for each component of a homomorphic multiplication algorithm using the
DGT and the NTT to perform polynomial multiplication. We also compare them with two distinct methods for basis
conversion, a canonical and an optimized version applied to AOA-NTT to increase its arithmetic density. The canonical
fast basis extension algorithms are implemented following Algorithm 4 whereas the optimized uses Algorithm 5. These
values were obtained through NVIDIA’s Nsight Systems 2021.2.1.2 on a machine with an NVIDIA Tesla V100 GPU. The
results were evaluated on 216-degree polynomials with log q = 1831, composed by 53- and 54-element main and secondary
basis, respectively.

DGT (µs) NTT (µs) Ratio Opt. (µs) Ratio
ModUp 2377.0 4928.9 0.48 2592.8 0.92

ModDown 1659.2 1854.7 0.89 1896.6 0.87
Transforms 1131.2 1054.8 1.07 1062.8 1.06
Integer Op. 354.3 227.3 1.56 203.2 1.74

Total 5521.7 8065.7 0.68 5755.5 0.96

Algorithm 4 Canonical basis extension

Require: aC anN -degree polynomial represented
in the main RNS basis C = {q0, . . . , q`}.

Ensure: aD an N -degree polynomial represented
in the secondary RNS basis D = {p0, . . . , pk}.
for i = 0; i ≤ k; i = i+ 1 do

a
(i)
D = {0, . . . , 0}

for j = 0; j ≤ `; j = j + 1 do
for z = 0; z < N ; z = z + 1 do

x = a
(j)
C [z]

aux = x · q̂j−1
aux = aux mod qj
aux = aux · q̂j
aux = aux mod pi
aux = aux + a

(i)
D [z]

aux = aux mod pi
a
(i)
D [z] = aux

end for
end for

end for
return aD

AOA-NTT, ModUp takes 61% of the primi-
tive’s computing time, while ModDown takes
23%. Also, the procedures ModUp and Mod-
Down consumes 43% and 30% of the overall
running time of AOA-DGT, respectively. For the
results in the first two columns, both basis switch-
ing methods were implemented as in Algorithm 4.
Specially, the profiling tool indicated that ModUp
is roughly 2× slower in AOA-NTT in comparison
with AOA-DGT, and that ModDown presents
a non-negligible slowdown of 11%.

Our implementation of ModUp for the NTT
issues 2.2× more instructions than the DGT
approach, suggesting that the processor scheduler

Table 4 Comparison of homomorphic operations using
the DGT and the NTT to accelerate polynomial
multiplication for 2n-degree polynomials and log q = 323,
providing at least 80-bit security level when n ≥ 13.
Rescaling is not considered for homomorphic
multiplication. This experiment uses the Algorithm 5 on
AOA-NTT, which increases arithmetic density per thread
for the basis extension algorithms. Measurements, in
microseconds, computed as the average of 100
independent executions on an NVIDIA Tesla V100 GPU.

Hom. Mul. (µs)
n DGT NTT Ratio
12 188.6 175.4 1.08
13 237.9 240.8 0.99
14 380.7 381.0 1.00
15 652.4 681.6 0.96
16 1232.9 1318.6 0.94

is being less efficient. We verified this hypothe-
sis by refactoring our implementation according
to Algorithm 5. Experimental results for this
optimized version are referred to as “Opt.” in
Table 3. Now, each thread handles two coeffi-
cients, and same-instruction operations are called
sequentially, inducing the processor into dual issue
mode. This operation emulates the behavior of
the DGT, which benefits from the input’s folding.
Table 3 shows this optimization partially solves
the slowdown for ModUp, although not affect-
ing ModDown. No benefit could be measured for
this technique on DGT, suggesting that the pre-
vious approach already saturates the processor’s
dual-issue capability.

The effect of this optimized version of ModUp
on homomorphic multiplication is summarized in
Table 4. By replacing that method we can observe
a considerable performance gain that matches
DGT’s implementation in most cases. This result
goes towards Badawi et al.’s claim that the DGT
better fits CUDA’s processing paradigm [6]. The

12

Algorithm 5 Optimized basis extension

Require: aC an N -degree polynomial represented in the main RNS basis C = {q0, . . . , q`}, for N ≡ 0
mod 2.

Ensure: aD an N -degree polynomial represented in the secondary RNS basis D = {p0, . . . , pk}, for
N ≡ 0 mod 2.
Nh := N/2
for i = 0; i ≤ k; i = i+ 1 do

a
(i)
D = {0, . . . , 0}

for j = 0; j ≤ `; j = j + 1 do
for z = 0; z < Nh; z = z + 1 do

x0 , x1 = a
(j)
C [z] , a

(j)
C [z +Nh]

aux0 , aux1 = x0 · q̂j−1 , x1 · q̂j−1
aux0 , aux1 = aux0 mod qj , aux1 mod qj
aux0 , aux1 = aux0 · q̂j , aux1 · q̂j
aux0 , aux1 = aux0 mod pi , aux1 mod pi
aux0 , aux1 = aux0 + a

(i)
D [z] , aux1 + a

(i)
D [z +Nh]

aux0 , aux1 = aux0 mod pi , aux1 mod pi
a
(i)
D [z] , a

(i)
D [z +Nh] = aux0 , aux1

end for
end for

end for
return aD

folding property of DGT naturally increases the
arithmetic density, which benefits the execution
on GPUs.

4 Case Study: Homomorphic
Logistic Regression

Logistic Regression (LR) is a learning algorithm
widely used to solve classification problems. Basi-
cally, LR tries to model dependence between
variables [19] For instance, in a binary classifica-
tion problem, LR takes a dataset composed by n
records of the form (yi,xi), with yi ∈ {0, 1} and
xi ∈ Rd. Its objective is to predict the value of y
given x. For that, it assumes that the distribution
of y given x is

Pr[y = 1 | x] := σ(−x′>w), (3)

for some fixed vector w of weights, x′i = (1 | xi) ∈
Rd+1, and the Sigmoid function σ(x) = 1

1+e−x .
Thus, by having an approximation wapprox for w,
we can infer y with a predictable accuracy by
evaluating σ(−x′>wapprox).

LR can be seen as a neural network composed
by a single hidden unit that uses the Sigmoid

as the activation function. Its implementation
resembles some of the challenges of implement-
ing more complex neural networks, as selecting
homomorphic compatible approximations of those
functions [11]. Hence, this is a relevant application
for homomorphic encryption and, in particular,
to evaluate using the DGT or the NTT in an
implementation of CKKS.

The computation of w is done in the train-
ing phase. A training dataset is used to compute
a wapprox that sufficiently approximates w, and a
test dataset is used to evaluate the quality of the
approximation. The Gradient Descent method is
a common strategy for training [42]. It selects an
initial w0

approx and repeatedly computes wj
approx =

wj−1
approx − s · ∆ · J(xi) until a certain objective

is satisfied (e.g. a certain number of iterations is
executed), for s an arbitrary step size and J the
loss function related to the problem. By modifying
wapprox in the negative direction of the gradi-
ent of J , we minimize this function, obtaining a
better approximation for the weight vector. How-
ever, this is computationally costly and a delicate
procedure that may require thousands of multipli-
cations to achieve a suitable wapprox. Moreover,
it can also require human-supervised iterations to

13

adjust the network topology if we consider more
complex neural networks. Hence, since training is
done much less frequently than inference, in this
work, we focus only on the effects of the hier-
archical transforms in the inference phase, when
predictions are done by evaluating Equation 3
using wapprox.

Lastly, it is important to notice that the
Sigmoid function cannot be computed homomor-
phically. In

this sense, similar works that also implement
LR inference on FHE schemes avoid its computa-
tion by just taking the outcome of x′

>
w as the

classification result [10]. An alternative approach
is to approximate the computation of the Sigmoid
function using the related Taylor series expan-
sion [29]. The former strategy can retain the classi-
fication result but fails to compute the probability
of a specific record belonging to a particular class.
Conversely, approximating the Sigmoid function
requires several additional multiplicative levels per
ciphertext since such approximation is usually
made using around 4 and 8-degree polynomials
according to the required precision.

Implementation

We assume a scenario in which both the training
and the model was already computed. It could be
done over plaintexts through a standard library as
scikit-learn or PyTorch [38, 39], or over cipher-
texts [10, 11, 19]. Then, CUDA-enabled nodes
need to classify encrypted data using the model
given as input. This model could be made avail-
able as plaintext, contemplating cases in which the
model owner is contracted to evaluate third-party
data, or in encrypted form, when the computation
is performed by an entity that should not have
access to the model.

We follow other works in the literature
that apply learning algorithms to the MNIST
dataset [33]. The MNIST dataset is a classical
data collection of handwritten digits, composed
of black and white images representing digits
between 0 and 9, each having 28 × 28 = 784 pix-
els. These images are split into a training and a
test set with 60, 000 and 10, 000 records, respec-
tively. Moreover, each image is unique regarding
the handwritten style and the expected complex-
ity for its interpretation. So, the digit recognition
problem involves classifying m images among d =

10 classes of digits, each image having its pixel
columns serialized, composing n = 784-element
arrays.

We trained a model using a simple Python
script that applied the scikit-learn library’s LR
implementation to the training set of images. The
outcome is a model M that indicates an accu-
racy of 0.9167 when evaluated over the test set.
This model, as Equation 3 suggests, is simply a
d × n matrix of real numbers, represented using
the float data type, such that each row relates
to a classification index. So, it follows that d = 10
and n = 784.

In this MNIST context, two ciphertext designs
were evaluated, as follows.

Direct: In a simple implementation, we encrypt
each row of the model in a ciphertext, having their
columns distributed through the slots. So, a single
ciphertext stores all the columns related to a par-
ticular digit. This implies that d ciphertexts are
needed to fully encrypt the modelM. We perform
a similar process to encrypt images, encrypting
each image into a single ciphertext. Thus, a set
of m images becomes a set of m ciphertexts, each
one using n slots, as shown in Algorithm 7.
Transposed: The direct approach has memory

consumption efficiency but requires a sequence of
slots rotations to execute LR’s inference. An alter-
native to that is the transposition of the operands.
An n-pixel image dataset with m records becomes
a matrix of n rows and m columns in which
each row is encrypted to a single ciphertext.
However, the model encryption requires each ele-
ment to be encrypted in a single ciphertext, so
we can compute the inner product. This implies
a considerable increase in memory consumption.
The model encryption in this case requires n · d
m-slot ciphertexts. This design is presented in
Algorithm 8.

In more detail, Algorithm 7 receives an
encrypted set of images such that each image
is encapsulated in a single ciphertext. More-
over, it also receives the trained model, which
can be encrypted or exposed (in plaintext).
Let M = Rd × Rn be the model. If
encrypted, the algorithm receives a vector W =
{CKKS.Encrypt(wi,∗) | wi,∗ ∈M}. Otherwise, it
receives W = {wi,∗ | wi,∗ ∈M}.

The input of Algorithm 8 is transposed regard-
ing Algorithm 7. This time, the set of images is

14

encrypted such that each ciphertext stores a single
pixel of all images. Thus, a m-sized set of n-pixel
images becomes n ciphertexts of m slots. When
executed with the exposed model, it takes as input
a matrix W =

{
wi,j | wi,j ∈M>

}
. Otherwise, it

receives a matrix of ciphertexts such that W ={
CKKS.Encrypt({wj,i, . . . , wj,i}) | wi,j ∈M>

}
.

Initially, we consider that the inference is exe-
cuted without computing the Sigmoid function. In
this case, the direct strategy requires d+m cipher-
texts with at least n available slots to encrypt
images and the model. The transposed strategy
requires n·(d+1) ciphertexts containing at least m
slots. Hence, the direct and the transposed cipher-
text designs require d+m = 10+10, 000 = 10, 010
and n · (d + 1) = 784 · 11 = 8624 ciphertexts,
respectively. Also, the direct method performs
two homomorphic multiplications to compute the
inner product whereas the transposed requires
only one homomorphic multiplication.

In the transposed strategy, the number of mul-
tiplications and the encoding of the MNIST test
set of images require 10,000 slots. Thus, since our
implementation only supports power-of-2 polyno-
mials, we need that N = 32, 768 and log q = 115,
composed by a 2-element RNS basis. We use the
LWE estimator of Albrecht, Player, and Scott [3]
to estimate the hardness of the proposed param-
eter set against the fastest LWE solvers currently
known. For that, we obtain that the cost of run-
ning lattice attacks against the underlying LWE
instance is at least 21343, comprehending the cost
to run the uSVP variant of the primal lattice
attack.

Considering that a maximum number of 784
slots are needed per ciphertext in the direct
design, we would require that N = 2, 048 and
log q = 167, composed by a 3-element RNS basis.
However, the estimated hardness of such a param-
eter set is equivalent to a 47-bit security level,
not surpassing the 100-bit security level threshold.
By choosing N = 8, 192, we obtain a parameter
set with 181-bit security. Consequently, given the
high-degree of the polynomial rings, the memory
consumption for executing the LR’s inference over
the entire test set of the MNIST dataset is 3.42
GB and 8.1 GB for direct and transposed versions,
respectively.

Moreover, the computation of pi,j , the proba-
bility of the image i being classified as the digit j,

Table 5 Execution times of our implementations of
Algorithm 6 on AOA-DGT and AOA-NTT for cyclotomic
polynomial rings with dimension N = 2n+1. The
optimized basis extension approach is used in AOA-NTT.
We consider log q = 167, that offers 80-bit security in all
cases, and log q = 323, that achieves this security level
when n ≥ 13. Measurements taken on a Google Cloud
instance with an NVIDIA Tesla V100 GPU.

Sumslots
log(q) 323 167
n DGT NTT Ratio DGT NTT Ratio
12 1.34 1.21 1.11 1.05 0.98 1.08
13 1.92 1.89 1.01 1.31 1.22 1.07
14 3.30 3.27 1.01 2.02 1.90 1.07
15 6.44 6.23 1.03 3.44 3.41 1.01
16 13.34 12.84 1.04 6.87 6.59 1.04

is partially solved by a single homomorphic mul-
tiplication between the i-th encrypted image and
the j-th encrypted row ofM. After that, each slot
of the resulting ciphertext will contain the mul-
tiplication between each slot of the operands. To
conclude the inner product, we need to sum all the
slots of a ciphertext. That can be done as shown
in Algorithm 6, which depends on a slot rotation
done homomorphically [14]. Let c′ = rotate(c, i).
If c′ is a rotation of k slots of c, and si is the i-
th slot of c, then s′i+k mod n = si, where s′j is the
j-th slot of c′.

Algorithm 6 sumslots – Sum all slots of a
ciphertext

Require: A ciphertext ct with n slots.
Ensure: A ciphertext ct′ with n slots such that

each slot is the summation of every ct slot.
ct′ = copy(ct)
for i = n/2; i ≥ 1; i = i/2 do

aux = rotate(ct′, i)
ct′ = ct′ + aux

end for
return ct′

Algorithm 6, however, has a high inherent cost
due to the rotation procedure. Table 5 shows the
latencies measured in our implementations. When
compared to the costs for homomorphic multipli-
cation, presented in Table 3, it becomes clear that
the slots summation is the most costly part of
the LR inference with the direct approach in both
AOA-DGT and AOA-NTT.

Let s = {s0, s1, . . . , sn−1} be the slots of a
ciphertext c. The outcome of the c-slot summa-
tion will be a ciphertext c′ such that all its slots

15

will be equal to
∑n−1

i=0 si. To improve space effi-
ciency, we would like to store information about
the suitability of an image i to all candidate digits
in a single ciphertext, with d being the slot related
to the digit d. We use DiscardSlotsExcept(c, d) for
that. It returns the homomorphic multiplication
of c by the encryption of a = {a0, a1, . . . , an−1}
such that ai = 1, if i = d, and 0, otherwise.

By following the direct approach, we can com-
pute homomorphically a vector of ciphertexts,
denoted pred, such that element with index i
stores the encryption of the inner product between
the image i and the weight vector related to
each class, as shown in Algorithm 7. By design,
pred supports n slots but only d will be possibly
different than zero.

Algorithm 7 Direct version of an encrypted LR
inference
Require: W as a d-element representation of the

trained model; X ∈ Rm×Rn as a set of images;
and Xi = CKKS.Encrypt(xi) for xi ∈ X.

Ensure: c ∈ Zn such that ci = d, if xi is classified
as the digit d.

Online phase
for j = 0; j < d; j = j + 1 do

for i = 0; i < m; i = i+ 1 do
p = sumslots(Xi ·Wj)
p = DiscardSlotsExcept(p, d)
predi = predi + p

end for
end for

Offline phase
pred = CKKS.Decrypt(pred)
for i = 0; i < m; i = i+ 1 do

ci = argmax(predi)
end for
return c

On the other hand, the transposed design does
not need the sumslots procedure to compute the
inner product. Instead, the operands’ transpo-
sition enables its replacement by a sequence of
homomorphic multiplications and additions, as
seen in Algorithm 8. As we avoid the expensive
Algorithm 6, a considerable performance improve-
ment of 70× is observed when the model is
encrypted. When the model is given as plain-
text, the performance is improved by 700×, as
presented in Table 6.

Algorithm 8 Transposed version of an encrypted
LR inference
Require: W as a n × d matrix representing

the transposed trained model; X> ∈ Rm ×
Rn as a set of transposed images; and Xi =
CKKS.Encrypt(xi) for xi ∈ X>.

Ensure: c ∈ Zn such that ci = d, if xi is classified
as the digit d.

Online phase
for j = 0; j < d; j = j + 1 do

predj = 0
for i = 0; i < n; i = i+ 1 do

predj = predj +Xi ·Wj,i

end for
end for

Offline phase
pred = CKKS.Decrypt(pred)
for i = 0; i < m; i = i+ 1 do

ci = argmax(pred∗,i)
end for
return c

Algorithms 7 and 8 are composed of two
phases. The first one, called online phase, is the
more computationally intensive and, as aforemen-
tioned, can be executed homomorphically on a
powerful device. The dataset is kept encrypted,
and no knowledge of the decryption key is needed.
The second, called offline phase, is the result
delivery phase when the matrix of probabilities is
decrypted, and the prediction is made by selecting
the index of the maximum element of the array.
This is a much less intensive step that can be exe-
cuted even on a low-power device. However, as
discussed by Bajard et al., the sign or argmax

works also as filters that truncate data that can be
used to retrieve confidential information. Thus, by
not executing these functions homomorphically,
an adversary may be able to leak the entire trained
model [9]. Moreover, in some cases, as with the
Support Vector Machine algorithm, this could also
imply leakage of the input data. Thus, the solution
presented in those algorithms assumes a secure
executing environment for the decryption keys and
the decrypted matrix of probabilities.

Table 6 presents the latencies for the mini-
mum parameter set that offers at least a 128-bit
security level and provides the required multiplica-
tive depth for each approach. The accumulated
slowdown for sumslots on AOA-DGT, presented

16

in Table 5, impacts its latency on the direct
approach. Nonetheless, the transpose approach
does not depend on it and thus AOA-DGT and
AOA-NTT show similar execution times.

No impact was detected for the AOA-NTT
implementation done with the optimization dis-
cussed on Section 3.2. The ModUp function per-
formance is directly impacted by the basis sizes,
and in these instances, with 3 and 2-sized bases,
that optimization does not seem relevant.

When we consider the canonical formulation
of LR inference, which depends on the Sigmoid
function, something different can be observed. We
follow the literature and approximate this function
using a polynomial obtained by the truncation
at the 8-th term of its Taylor series approxi-
mation [1]. Evaluated through Horner’s rule, it
increases by 8 the number of homomorphic mul-
tiplications needed for inference, affecting perfor-
mance and memory consumption. Table 7 presents
our measurements. Motivated by the increased
memory requirement, we executed this experiment
on an NVIDIA Tesla A100. In the direct design,
the additional multiplications imply a reduction
of the security level of about 50 bits if we choose
N = 213. Thus, by setting N = 214, we could
obtain a security level of at least 80 bits.

In bigger instances, the higher arithmetic den-
sity of AOA-DGT implied in speedups in all cases
when compared to the non-optimized AOA-NTT.
However, when the optimization of the ModUp
function takes place, AOA-NTT is capable of
reversing that scenario. The transposed design,
implemented with a plaintext model, presents a
consistent similarity between both implementa-
tions. Homomorphic addition and multiplication
between ciphertexts and plaintexts are coefficient-
wise operations, as shown in Section 2.3.

The folding procedure used by the DGT does
not imply the reduction of the number of required
operations. However, the scalability of the DGT-
based implementation highlights and reduces the
execution time when more complex methods are
considered as basis extension procedures rota-
tion. This behavior agrees with the conclusion
in Section 3.2, which suggests that the DGT
implementation better fits CUDA’s processing
paradigm and that its characteristics have to be
ported to AOA-NTT so we can observe a similar,
or even superior, performance.

5 Conclusion

Most implementations based on the RLWE prob-
lem use the NTT to efficiently compute the poly-
nomial multiplication in the ring Zp[x]/(xN + 1)
for N a power of two and p a prime. However,
recent works [2, 4, 6] claim that polynomial mul-
tiplication can be more efficiently implemented on
GPUs using the DGT instead of the NTT.

In this context, we developed two implemen-
tations of the CKKS cryptosystem following the
same blueprint but diverging on the transform,
using either the DGT or the NTT for polynomial
multiplication. We refer to them as AOA-DGT
and AOA-NTT. We performed benchmarks on
both implementations by first directly compar-
ing the NTT and DGT transforms as standalone,
and then their implementations of CKKS’ homo-
morphic multiplication. After that, we extended
our evaluation to the context of logistic regression
inference.

Considering the latency for the DGT or NTT
isolated, we observed an overall similarity between
both implementations in bigger instances, i.e.,
the ring dimension ranging from 16384 to 65536.
For smaller instances, the NTT outperforms the
DGT but with a clear trend towards equalization
in large rings. The exception occurs on 8192-
degree polynomial rings when the DGT reaches
its warp efficiency peak. In that case, we observed
a speedup of up to 10% for AOA-DGT. Never-
theless, we could not observe the same behavior
for the homomorphic multiplication in CKKS.
In this case, AOA-DGT rapidly surpasses the
AOA-NTT performance. A deep analysis through
NVIDIA’s profiler tool showed that the DGT data
structure provides a higher arithmetic density,
which efficiently explores the processing hardware,
especially on the methods for basis extension. We
were able to successfully match the performance
of both implementations by porting the DGT data
representation to AOA-NTT

Lastly, we evaluated the impact of both AOA-
DGT and AOA-NTT on a logistic regression
inference performed homomorphically over cipher-
texts. We trained a model to classify handwrit-
ten digits in the MNIST dataset and measured
the execution time per image in different con-
figurations, exploring two ciphertext designs. We
concluded that, in bigger instances, AOA-DGT
presents a considerable speedup when compared

17

Table 6 Comparison of the latency per record required to compute the online phase of the LR inference over records in
the test set of the MNIST database with the model encrypted and as plaintext. The basic design runs with N = 213 and
log q = 167 while the transposed version runs with N = 215 and log q = 115, offering 172-bit and 1343-bit security level,
respectively, according to Albrecht’s estimator [3]. Measurements in microseconds were taken on a Google Cloud instance
with an NVIDIA Tesla V100 GPU.

Model Encrypted Exposed Encrypted> Exposed>

DGT 15461.2 13885.9 226.8 15.6
NTT 14396.8 12827.6 238.5 15.2

DGT/NTT 1.07 1.08 0.95 1.03

Table 7 Comparison of the latency per record required to compute the online phase of the LR inference over records in
the test set of the MNIST database with the model encrypted and as plaintext following the textbook algorithm, with the
homomorphic computation of the Sigmoid function. The basic design runs with N = 214 and log q = 583 while the
transposed version runs with N = 215 and log q = 531, offering 94-bit and 225-bit security level, respectively, according to
Albrecht’s estimator [3]. Measurements in microseconds were taken on a Google Cloud instance with an NVIDIA Tesla
A100 GPU.

Model Encrypted Exposed Encrypted> Exposed>

DGT 60279.7 56013.2 475.7 33.1
NTT 65998.5 60968.6 562.6 33.4

DGT/NTT 0.91 0.92 0.85 0.98
NTT-Opt 58200.0 56053.7 517.6 32.5

DGT/NTT-Opt 1.04 1.00 0.92 1.02
NTT/NTT-Opt 1.13 1.09 1.09 1.03

with a standard implementation on the AOA-
NTT, i.e. without methods that increase arith-
metic density on CUDA kernels.

Hence, our results indicate that the data rep-
resentation of the DGT on a CKKS implementa-
tion increases the implementation’s overall perfor-
mance by assisting the programmer to take imple-
mentation decisions that more efficiently explore
the GPU hardware.

Acknowledgments. This work was supported
in part by the Brazilian National Council for Sci-
entific and Technological Development (CNPq),
grants number 164489/2018-5 and 203175/2019-0;
and the Brazilian Coordination for the Improve-
ment of Higher Education Personnel Foundation
(CAPES) grant number 1591123. We specially
thank Google for GCP Research Credits Program
under number 106101194491; the Concordium
Blockchain Research Center at Aarhus University
(COBRA), Denmark; and the European Research
Council (ERC) under the European Unions’s Hori-
zon 2020 research and innovation programme
under grant agreement No. 803096 (SPEC).

References

[1] Abramowitz, M., I.A. Stegun, and R.H.
Romer. 1988. Handbook of mathematical func-
tions with formulas, graphs, and mathematical
tables.

[2] Al Badawi, A., B. Veeravalli, and K.M.M.
Aung 2018. Efficient polynomial multiplication
via modified discrete galois transform and nega-
cyclic convolution. In Future of Information
and Communication Conference, pp. 666–682.
Springer.

[3] Albrecht, M.R., R. Player, and S. Scott. 2015.
On the concrete hardness of learning with
errors. J. Math. Cryptol. 9 (3): 169–203 .

[4] Alves, P.G.M.R., J.N. Ortiz, and D.F. Aranha.
2020. Faster homomorphic encryption over
gpgpus via hierarchical DGT. IACR Cryptol.
ePrint Arch. 2020: 861 .

[5] Badawi, A.A., Y. Polyakov, K.M.M. Aung,
B. Veeravalli, and K. Rohloff. 2021. Imple-
mentation and performance evaluation of RNS
variants of the BFV homomorphic encryption

18

scheme. IEEE Trans. Emerg. Top. Com-
put. 9 (2): 941–956. https://doi.org/10.1109/
TETC.2019.2902799 .

[6] Badawi, A.A., B. Veeravalli, C.F. Mun, and
K.M.M. Aung. 2018. High-performance FV
somewhat homomorphic encryption on gpus:
An implementation using CUDA. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018 (2): 70–95.
https://doi.org/10.13154/tches.v2018.i2.70-95 .

[7] Bailey, D.H. 1990. FFTs in external or hier-
archical memory. J. Supercomput. 4 (1): 23–35
.

[8] Bajard, J., J. Eynard, M.A. Hasan, and
V. Zucca 2016. A full RNS variant of FV like
somewhat homomorphic encryption schemes. In
R. Avanzi and H. M. Heys (Eds.), Selected
Areas in Cryptography - SAC 2016 - 23rd Inter-
national Conference, St. John’s, NL, Canada,
August 10-12, 2016, Revised Selected Papers,
Volume 10532 of Lecture Notes in Computer
Science, pp. 423–442. Springer.

[9] Bajard, J., P. Martins, L. Sousa, and V. Zucca.
2020. Improving the efficiency of SVM classifi-
cation with FHE. IEEE Trans. Inf. Forensics
Secur. 15: 1709–1722. https://doi.org/10.1109/
TIFS.2019.2946097 .

[10] Benaissa, A., B. Retiat, B. Cebere, and
A.E. Belfedhal. 2021. Tenseal: A library for
encrypted tensor operations using homomor-
phic encryption.

[11] Bergamaschi, F., S. Halevi, T.T. Halevi,
and H. Hunt 2019. Homomorphic training of
30, 000 logistic regression models. In R. H.
Deng, V. Gauthier-Umaña, M. Ochoa, and
M. Yung (Eds.), Applied Cryptography and Net-
work Security - 17th International Conference,
ACNS 2019, Bogota, Colombia, June 5-7, 2019,
Proceedings, Volume 11464 of Lecture Notes in
Computer Science, pp. 592–611. Springer.

[12] Bos, J.W., K.E. Lauter, J. Loftus, and
M. Naehrig 2013. Improved security for a ring-
based fully homomorphic encryption scheme. In
M. Stam (Ed.), Cryptography and Coding - 14th
IMA International Conference, IMACC 2013,

Oxford, UK, December 17-19, 2013. Proceed-
ings, Volume 8308 of Lecture Notes in Computer
Science, pp. 45–64. Springer.

[13] Brakerski, Z., C. Gentry, and V. Vaikun-
tanathan. 2011. Fully homomorphic encryption
without bootstrapping. Electron. Colloquium
Comput. Complex.: 111 .

[14] Cheon, J.H., K. Han, A. Kim, M. Kim, and
Y. Song 2018. A full RNS variant of approxi-
mate homomorphic encryption. In C. Cid and
M. J. J. Jr. (Eds.), Selected Areas in Cryptog-
raphy - SAC 2018 - 25th International Con-
ference, Calgary, AB, Canada, August 15-17,
2018, Revised Selected Papers, Volume 11349 of
Lecture Notes in Computer Science, pp. 347–
368. Springer.

[15] Chillotti, I., N. Gama, M. Georgieva, and
M. Izabachène 2016. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 sec-
onds. In J. H. Cheon and T. Takagi (Eds.),
Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory
and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, Volume 10031 of Lecture
Notes in Computer Science, pp. 3–33.

[16] Chillotti, I., M. Joye, and P. Paillier 2021.
Programmable bootstrapping enables efficient
homomorphic inference of deep neural net-
works. In S. Dolev, O. Margalit, B. Pinkas,
and A. A. Schwarzmann (Eds.), Cyber Secu-
rity Cryptography and Machine Learning - 5th
International Symposium, CSCML 2021, Be’er
Sheva, Israel, July 8-9, 2021, Proceedings, Vol-
ume 12716 of Lecture Notes in Computer Sci-
ence, pp. 1–19. Springer.

[17] Cooley, J. and J. Tukey. 1965. An algorithm
for the machine calculation of complex fourier
series. Mathematics of Computation 19 (90):
297–301 .

[18] Crandall, R.E. 1999. Integer convolution via
split-radix fast Galois transform.

[19] Crawford, J.L.H., C. Gentry, S. Halevi,
D. Platt, and V. Shoup 2018. Doing real

https://doi.org/10.1109/TETC.2019.2902799
https://doi.org/10.1109/TETC.2019.2902799
https://doi.org/10.13154/tches.v2018.i2.70-95
https://doi.org/10.1109/TIFS.2019.2946097
https://doi.org/10.1109/TIFS.2019.2946097

19

work with FHE: the case of logistic regres-
sion. In M. Brenner and K. Rohloff (Eds.),
Proceedings of the 6th Workshop on Encrypted
Computing & Applied Homomorphic Cryptogra-
phy, WAHC@CCS 2018, Toronto, ON, Canada,
October 19, 2018, pp. 1–12. ACM.

[20] Dai, W., Y. Doröz, Y. Polyakov, K. Rohloff,
H. Sajjadpour, E. Savaş, and B. Sunar. 2018.
Implementation and evaluation of a lattice-
based key-policy abe scheme. IEEE Trans-
actions on Information Forensics and Secu-
rity 13 (5): 1169–1184. https://doi.org/10.
1109/TIFS.2017.2779427 .

[21] Dai, W. and B. Sunar 2016. cuhe: A homo-
morphic encryption accelerator library. In
E. Pasalic and L. R. Knudsen (Eds.), Cryptog-
raphy and Information Security in the Balkans,
Cham, pp. 169–186. Springer International
Publishing.

[22] Fan, J. and F. Vercauteren. 2012. Somewhat
practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2012: 144 .

[23] Feldmann, A., N. Samardzic, A. Krastev,
S. Devadas, R. Dreslinski, K. Eldefrawy,
N. Genise, C. Peikert, and D. Sánchez. 2021.
F1: A fast and programmable accelerator for
fully homomorphic encryption (extended ver-
sion). CoRR abs/2109.05371. https://arxiv.
org/abs/2109.05371 .

[24] Gamal, T.E. 1984. A public key cryptosys-
tem and a signature scheme based on discrete
logarithms. In CRYPTO, Volume 196 of Lec-
ture Notes in Computer Science, pp. 10–18.
Springer.

[25] Gentleman, W.M. and G. Sande 1966. Fast
fourier transforms: For fun and profit. In Pro-
ceedings of the November 7-10, 1966, Fall Joint
Computer Conference, AFIPS ’66 (Fall), New
York, NY, USA, pp. 563–578. Association for
Computing Machinery.

[26] Gentry, C. 2009a. Fully homomorphic
encryption using ideal lattices. In M. Mitzen-
macher (Ed.), Proceedings of the 41st Annual
ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 -

June 2, 2009, pp. 169–178. ACM.

[27] Gentry, C. 2009b. Fully homomorphic
encryption using ideal lattices. In Proceedings
of the Forty-First Annual ACM Symposium on
Theory of Computing, STOC ’09, New York,
NY, USA, pp. 169–178. Association for Com-
puting Machinery.

[28] Govindaraju, N.K., B. Lloyd, Y. Dotsenko,
B. Smith, and J. Manferdelli 2008. High perfor-
mance discrete fourier transforms on graphics
processors. In Proceedings of the ACM/IEEE
Conference on High Performance Computing,
SC 2008, November 15-21, 2008, Austin, Texas,
USA, pp. 2. IEEE/ACM.

[29] Han, K., S. Hong, J.H. Cheon, and D. Park.
2018. Efficient logistic regression on large
encrypted data. IACR Cryptol. ePrint Arch.:
662 .

[30] Harvey, D. 2014. Faster arithmetic for
number-theoretic transforms. Journal of Sym-
bolic Computation 60: 113–119 .

[31] Jung, W., S. Kim, J.H. Ahn, J.H. Cheon,
and Y. Lee. 2021. Over 100x faster bootstrap-
ping in fully homomorphic encryption through
memory-centric optimization with gpus. Cryp-
tology ePrint Archive, Report 2021/508. https:
//ia.cr/2021/508.

[32] Kim, S., W. Jung, J. Park, and J.H. Ahn
2020. Accelerating number theoretic trans-
formations for bootstrappable homomorphic
encryption on gpus. In IISWC, pp. 264–275.
IEEE.

[33] LeCun, Y., C. Cortes, and C. Burges. 2010.
Mnist handwritten digit database.

[34] López-Alt, A., E. Tromer, and V. Vaikun-
tanathan 2012. On-the-fly multiparty computa-
tion on the cloud via multikey fully homomor-
phic encryption. In H. J. Karloff and T. Pitassi
(Eds.), Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012,
New York, NY, USA, May 19 - 22, 2012, pp.
1219–1234. ACM.

https://doi.org/10.1109/TIFS.2017.2779427
https://doi.org/10.1109/TIFS.2017.2779427
{2109.05371}
{2109.05371}
https://ia.cr/2021/508
https://ia.cr/2021/508

20

[35] Lyubashevsky, V., D. Micciancio, C. Peikert,
and A. Rosen 2008. SWIFFT: A Modest Pro-
posal for FFT Hashing. In K. Nyberg (Ed.),
Fast Software Encryption, Berlin, Heidelberg,
pp. 54–72. Springer Berlin Heidelberg.

[36] NVIDIA. 2021. NVIDIA Nsight Sys-
tems. https://developer.nvidia.com/nsight-
systems. Last accessed: 2021-10-13.

[37] Paillier, P. 1999. Public-key cryptosys-
tems based on composite degree residuosity
classes. In EUROCRYPT, Volume 1592 of Lec-
ture Notes in Computer Science, pp. 223–238.
Springer.

[38] Paszke, A., S. Gross, F. Massa, A. Lerer,
J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala. 2019. Pytorch: An
imperative style, high-performance deep learn-
ing library, In Advances in Neural Informa-
tion Processing Systems 32, eds. Wallach, H.,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, 8024–8035. Curran
Associates, Inc.

[39] Pedregosa, F., G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al.
2011. Scikit-learn: Machine learning in python.
Journal of machine learning research 12 (Oct):
2825–2830 .

[40] Pollard, J.M. 1971. The fast Fourier trans-
form in a finite field. Mathematics of Computa-
tion 25: 365–374 .

[41] Rivest, R.L., L. Adleman, M.L. Dertouzos,
et al. 1978. On data banks and privacy homo-
morphisms. Foundations of secure computa-
tion 4 (11): 169–180 .

[42] Ruder, S. 2016. An overview of gra-
dient descent optimization algorithms.
CoRR abs/1609.04747. https://arxiv.org/abs/
1609.04747 .

{1609.04747}
{1609.04747}

	Introduction
	Related Work
	Our contributions
	Organization

	Background
	Notation
	DFT-based Transforms
	CKKS Scheme
	Hierarchical Transforms

	Performance Evaluation of Hierarchical Transforms
	Direct Comparison: DGT versus NTT
	Impact on CKKS Homomorphic Primitives

	Case Study: Homomorphic Logistic Regression
	Implementation

	Conclusion
	Acknowledgments

