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Abstract
Nonce‐misuse resilience (NMRL) security of Romulus‐N and GIFT‐COFB is ana-
lysed, the two finalists of NIST Lightweight Cryptography project for standardising
lightweight authenticated encryption. NMRL, introduced by Ashur et al. at CRYPTO
2017, is a relaxed security notion from a stronger, nonce‐misuse resistance notion.
The authors have proved that Romulus‐N and GIFT‐ COFB have nonce‐misuse
resilience. For Romulus‐N, the perfect privacy (NMRL‐PRIV) and n/2‐bit authen-
ticity (NMRL‐AUTH) with graceful degradation with respect to nonce repetition are
showed. For GIFT‐COFB, n/4‐bit security for both NMRL‐PRIV and NMRL‐AUTH
notions is showed.
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1 | INTRODUCTION

Authenticated encryption (AE) is a symmetric‐key crypto-
graphic function that provides simultaneously confidentiality
and message integrity. Popular AE schemes, such as GCM [1]
and OCB [2–4], are nonce‐based AE (NAE), where a nonce is
a value that never repeats at encryptions. In principle, the
nonce uniqueness is maintained, say by using a counter.
However, the nonce may repeat in practice due to various
reasons. The problem of repeating nonce is typically called
nonce‐misuse and has been recognised as a real threat shown
by many practical attacks, such as [5, 6].
Nonce‐misuse attacks against NAE can be devastating.

Most notably, GCM reveals its authentication key even with a
single nonce‐misuse [7], which implies universal forgery at-
tacks. Although these attacks do not invalidate the original
security proofs assuming a nonce‐respecting adversary, they are
extensively studied for various NAE algorithms due to their
practical relevance [8–11].

The problem of nonce‐misuse has been formally studied
by Rogaway and Shrimpton [12]. They defined Misuse‐resistant
AE (MRAE), which ensures the maximum security against
nonce‐misuse, called nonce‐misuse resistance (NMR). In
essence, MRAE ensures that a repeat of nonce in encryption
queries does not reveal anything as long as the entire input
tuple of (nonce, associated data (AD), plaintext) is unique.
Authenticity is also maintained even if a nonce is repeated.
This is very strong protection; however, inherently requires
off‐line, two‐pass computation.
Reflecting the increasing need for protection for resource‐

constrained devices, NIST is conducting a lightweight cryp-
tography (LWC) project aiming at standardising lightweight
AE schemes from 20181. After two selection rounds, NIST
announced 10 finalists in March 2022. To make lightweight AE
schemes, it is natural to focus on NAE. In fact, NIST did not
explicitly require any form of security against nonce reuse/
misuse, just mentioning that any security property maintained
even when nonce repeats could be advertised as a feature. As a
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result, a large fraction of the initial submissions to NIST LWC
are NAEs, and among the 10 finalists, only one finalist
(Romulus [13, 14]) includes an MRAE (Romulus‐M, a sec-
ondary member). Considering the aforementioned potential
risk of nonce‐misuse, investigating the effect of nonce‐misuse
on the finalists is practically relevant. Although there is some
progress, still nonce‐misuse analysis is scarce as pointed out by
[15], in particular within a formal provable security framework
(see Related Work below for a detailed discussion).
In this paper, we study two NIST LWC finalists, Romulus‐

N (the primary member of Romulus) and GIFT‐ COFB [16].
They are NAEs and not MRAEs. Instead, we focus on a
relaxed security notion against nonce‐misuse, called Nonce‐
Misuse ResiLience (NMRL)2, introduced by Ashur et al. at
CRYPTO 2017 [11]. They defined privacy (NMRL‐PRIV) and
authenticity (NMRL‐AUTH) notions. Intuitively, NMRL no-
tions tell if a repeat of a nonce N can affect messages using
nonces different from N. See [11] (also Section 2) for the
definitions and its relevance, security of popular schemes etc.
For example, GCM and OCB (of the first version) meet
neither NMRL‐PRIV nor NMRL‐AUTH [11]. For example,
Vanhoef and Piessen [17] mentioned the importance of resil-
ience against nonce‐misuse as mitigation of their attack against
WPA2 and suggested CCM and MRAEs as alternatives to
GCM. NIST also mentioned Ashur et al. in their status report
[18].
Besides being finalists, our motivation to study Romulus‐N

and GIFT‐COFB is based on the fact that they share structural
similarity (namely, COFB [19]). Their serial structure has also
some similarity to Sponges but it lacks ‘capacity’ part; thus,
most of the output blocks of a primitive are given to the ad-
versary. NMRL security analysis of such structure has not been
done before, and we cannot reuse any results on Sponges or
other finalists. Regarding the original proofs of Romulus‐N
and GIFT‐COFB, some of them could be reused; however,
we need dedicated analysis for the major remaining parts (see
below).
We first show that Romulus‐N and GIFT‐COFB are not

misuse resistant (Sect. 4). Under the NMR setting, the privacy
notion (NMR‐PRIV) is impossible to meet for their online
computations, and the authenticity notion (NMR‐AUTH) is
broken with few queries with a repeated nonce, which we call
the chain transition attack.
A natural question here is their NMRL security. We answer

this positively by showing that Romulus‐N and GIFT‐COFB
have NMRL‐PRIV and NMRL‐AUTH security. In particular,
Romulus‐N has perfect NMRL‐PRIV security and n/2‐bit
NMRL‐AUTH security with graceful degradation with respect
to the maximum number of a nonce repeat (i.e., if nonce does
not repeat too much it achieves almost ideal, about n‐bit
authenticity) for n = 128. This means that Romulus‐N main-
tains a strong resilience against nonce‐misuse. This result is
particularly relevant since Romulus‐N is a primary member of
Romulus and shows the completeness of Romulus as a family

of AEs having different levels of protection against nonce‐
misuse. For Romulus‐N, while NMRL‐PRIV security proof
is obvious thanks to the explicit domain separation via tweak,
our NMRL‐AUTH proof together with graceful degradation
requires a detailed analysis.
For GIFT‐ COFB, the original security bound is (n/

2 − log n)‐bit for both privacy and authenticity. We showed n/
4‐bit NMRL‐PRIV and NMRL‐AUTH security for n = 128.
These bounds are quantitatively weak, however still not
pointless in some use cases. Say, if nonce repeat is fairly
infrequent and can be detected within a short period, the
administrator can take action, for example, by resetting the
devices, before the damage gets too large. In contrast, when
nonce repeat occurs for GCM, the adversary immediately
mounts a universal forgery with probability one.
We stress that our proofs for GIFT‐COFB are quite

different from the original proofs for nonce‐respecting ad-
versary, which crucially depend on the fact that nonces in the
encryption queries are unique. Moreover, the short input mask
of n/2 bits prohibits a modular analysis via tweakable block
cipher (TBC) such as the proofs of OCB [3, 4] to achieve the
desired bound. We found that, for NMRL analysis, such a
modular analysis indeed works from the nature of the attack.
After an abstraction by the TBC, NMRL‐PRIV proof is im-
mediate, while NMRL‐AUTH proof is largely similar to the
proof of Romulus‐N but the difference in the usage of tweak
requires a dedicated analysis (indeed, this difference enables the
full n‐bit NMRL‐AUTH security for the TBC‐abstracted
version). We also would like to remark that our NMRL
proofs provide alternative nonce‐respecting security proofs for
GIFT‐ COFB as a byproduct. The bounds are weak, only n/4
bits, but its modular structure makes the proof more intuitive.
The resulting analysis reveals that the case analysis is indeed
subtle to avoid attacks (even in the nonce respecting scenario),
which has not been explicitly shown in the specification doc-
uments. We think this is a part of our contributions: our proof
eventually helps understanding the design and implies the
soundness of the construction (i.e. if n is large enough it im-
plements a secure NAE with sufficient NMRL security). The
original proofs are rather complex [20], and ours complement
them by showing a more detailed analysis of the domain
separation, supporting its correctness.
Related Work. Two NIST LWC finalists, Ascon [21] and

ISAP [22], have been shown to have nonce‐misuse resilient
privacy and misuse resistant authenticity [23, 24]. NMRL se-
curity has been shown for a 2nd‐round candidate Spook [25].
Elephant showed the NMR authenticity [26, 27].

2 | PRELIMINARIES

Let {0,1}* be the set of all finite bit strings, including the
empty string ɛ. For X ∈ {0,1}*, let |X| denote its bit length.
Here, |ɛ| = 0. For integer n ≥ 0, let {0,1}n be the set of
n‐bit strings, and let {0,1}≤n = ⋃i∈{0,…,n}{0,1}

i, where
{0,1}0 = {ɛ}. Let [n] = {1, …, n} and [ [n] ] = {0, 1, …,
n − 1}. If X is uniformly distributed over a set X , we write2

This acronym is to avoid confusion with nonce‐misuse resistance.

2 - INOUE ET AL.
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X←$ X . For two bit strings X and Y, X ‖ Y is their concate-
nation. We also write this as XY if it is clear from the context.
Let 0i (1i) be the string of i zero bits (i one bits), and for
instance, we write 10i for 1 ‖ 0i. We write msbiðXÞ (respec-
tively, lsbiðXÞ) to denote the i most (respectively, least) sig-
nificant bits of X. For X ∈ {0,1}*, let |X|n = max{1, ⌈|X|/
n⌉}. Let ðX½1�;…;X½x�Þ←n X be the parsing of X into n‐bit
blocks. Here X[1] ‖ X[2] ‖ … ‖ X [x] = X and x = |X|n.
When X = ɛ, we have X½1�←n X and X[1] = ɛ. Let X ⋘ i
denote the left rotation shift of X by i bits.
Following [3], by writing 2a for a ∈ {0,1}s, we mean a GF

(2s) multiplication by the polynomial x, also called a doubling.
Similarly, 3a means a multiplication by x þ 1, that is, 3a = 2a
⊕ a. They are used by GIFT‐COFB with s = 64 [20].
(Tweakable) Block Cipher. A TBC is a keyed function

~E : K � T W �M→M, where K is the key space, T W is
the tweak space, andM¼ f0; 1gn is the message space, such
that for any K;Twð Þ ∈K � T W , ~E K;Tw; ⋅ð Þ is a permutation
overM. We interchangeably write ~E K;Tw;Mð Þ or ~EK Tw;Mð Þ

or ~E
Tw
K ðMÞ. The decryption routine is written as ~E

Tw
K

� �−1
ð⋅Þ,

where if C ¼ ~E
Tw
K ðMÞ holds for some (K, Tw, M) we have

M ¼ ~E
Tw
K

� �−1
ðCÞ. When T W is a singleton, it is essentially a

block cipher and is simply written as E : K �M→M.
Random Primitives. Let X , Y and T w be non‐empty finite

sets. Let FuncðX ;YÞ be the set of all functions from X to Y,
and let PermðXÞ be the set of all permutations over X .
Moreover, let Perm T w;Xð Þ be the set of all functions
f : T w � X → X such that for any T ∈ T w, f (T, ⋅) is a per-
mutation over X . A uniform random permutation (URP) over
X , P : X → X , is a random permutation with uniform distri-
bution over PermðXÞ. An n‐bit URP is a URP over {0,1}n. A
tweakable URP (TURP) with a tweak space T w and a message
space X , ~P : T w �X → X , is a random tweakable permuta-
tion with uniform distribution over Perm T w;Xð Þ. The

decryption is written as P−1ð∗Þ for URP and ~P
−1� �T

ð∗Þ for
TURP given tweak T.

Definition 1 A nonce‐based authenticated encryption (NAE) is
a tuple Π¼ ðE;DÞ. For key space K, nonce space N , message
space M and associated data (AD) space A, the encryption
algorithm E takes a key K ∈K and a tuple (N, A, M) of a
nonce N ∈N , an AD A ∈A, and a plaintext M ∈M as
input, and returns a ciphertext C ∈M and a tag T ∈ T .
Typically, T ¼ f0; 1gτ for a fixed, small τ. The decryption
algorithm D takes K ∈K and the tuple (N, A, C, T) as input
and returns M ∈M or the reject symbol ⊥. The corresponding
encryption and decryption oracles are written as EK and DK .

An NAE scheme usually assumes each nonce in encryption
queries to be distinct. However, our security definitions
consider the case that nonces may be reused (misused) in
encryption queries.

2.1 | Security definitions

Let A be an adversary that queries an oracle O and outputs a
bit x ∈ {0, 1}. We write AO⇒ 1 to denote the event that x = 1.
It is a probabilistic event whose randomness comes from those
of A and O. Queries of A may be adaptive unless otherwise
specified. If there are multiple oracles O1;O2;…, AO1;O2;…

means that A can query any oracle in an arbitrary order unless
otherwise specified.

Definition 2 For a TBC ~E : K� T w �M→M, its
Tweakable Pseudorandom Permutation (TPRP)‐advantage
against A is defined as

Advtprp

~E
ðAÞ : ¼

�
�
�
�Pr A

~EK ⇒ 1
h i

− Pr A
~P ⇒ 1

h i��
�
�;

where ~P : T w �M→M is a TURP and A may query any
ðT ;MÞ ∈ T w �M. The PRP advantage of a block cipher
E : K�M→M Advprp

E ðAÞ
� �

is similarly defined by
assuming T w is a singleton.

We write (q, t)‐(T)PRP adversary to mean an adversary
using q queries and t time against the (tweakable) block cipher.

2.1.1 | Security notions for Authenticated
encryption.

Let Π¼ ðE;DÞ be an NAE scheme (Def. 1). We define $oracle
that takes any valid input (N, A, M) for EK and returns a
random string of jEKðN ;A;MÞj bits, and ⊥ oracle that takes
any valid input (N, A, C, T) for DK and returns ⊥.

Definition 3 (PRIV and AUTH). The (nonce‐respecting) pri‐
vacy and authenticity notions for Π are as follows [28].

Advpriv
Π A1ð Þ : ¼

�
�
�Pr A

EK
1 ⇒ 1

h i
− Pr A$

1 ⇒ 1
� ���

�;

Advauth
Π A2ð Þ : ¼

�
�
�Pr A

EK ;DK
2 ⇒ 1

h i
− Pr A

EK ;⊥
2 ⇒ 1

h i�
�
�

The adversary in the both notions are nonce‐respecting, that is,
the left oracle O1 takes a distinct nonce for each query. For
AUTH notion, if (C, T) is returned by the left oracle
O1ðN ;A;MÞ, then A2 cannot query the right oracle
O2ðN ;A;C;TÞ.

We use the term effective blocks to mean the number of
actual primitive calls invoked in a query.

2.1.2 | Misuse resistance

The security notions in the sense of NMR are obtained by
modifying the above notions. In particular, the privacy notion

INOUE ET AL. - 3
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(NMR‐PRIV, Advnmr−priv
Π A1ð Þ) is obtained by allowing A1 to

arbitrarily reuse nonce in encryption queries, but A1 must make
the entire query (N, A, M) distinct. The authenticity notion
(NMR‐AUTH, Advnmr−auth

Π A2ð Þ) is obtained similarly by
allowing A2 to arbitrarily reuse nonce in encryption queries,
and there is no restriction on nonces in decryption, as in the
original AUTH notion. Two‐pass, off‐line schemes, such as
SIV, [12] fulfill these notions and are called Misuse‐resistant
AE (MRAE). See [12] for more details.

2.1.3 | Misuse resilience

Nonce‐Misuse ResiLience (NMRL) [11] is a relaxation of
NMR. Specifically, the privacy and authenticity notions under
NMRL divide encryption queries into challenge and non‐
challenge ones and only require the adversary to be nonce‐
respecting among the former type of queries. The nonce‐
misuse in non‐challenge queries should not break the chal-
lenge ciphertexts (for privacy) or enable forgery with the
challenge nonce (for authenticity). The definitions of [11] are
as follows, where $ and ⊥ oracles as defined earlier.

Definition 4 (NMRL‐PRIV). The nonce‐misuse resilience
privacy advantage against A is defined as follows.

Advnmrl−priv
Π ðAÞ : ¼ Pr AEK ;EK ⇒ 1

� �
− Pr A$;EK ⇒ 1

� ��
�

�
�;

A may re‐use nonces with its right oracle O2, but it may not
re‐use nonces with its left oracle O1, nor may it use a nonce
already queried to O2 for an O1‐query and vice versa.

Definition 5 (NMRL‐AUTH). The nonce‐misuse resilience
authenticity advantage against A is defined as follows.

Advnmrl−auth
Π ðAÞ : ¼ Pr AEK ;DK ⇒ 1

� �
− Pr AEK ;⊥ ⇒ 1

� ��
�

�
�;

where (i) nonces in O1 may repeat, and (ii) after O1ðN ;A;MÞ
returns (C, T), O2ðN ;A;C;TÞ cannot be queried, and (iii)
each nonce appeared in O2 must appear at O1 at most once,
irrespective of the order of queries.

We remark that efficient single‐pass AE schemes anyway
cannot achieve full misuse resistance. Therefore, NMRL
somehow reflects ‘best possible’ security for such schemes
against nonce‐reuse. This may increase the lifetime of keys. For
example, when using 128‐bit random nonces, the fraction of
collided nonces remain small even if the number of encrypted
messages goes beyond 264. Therefore, if a large proposition of
encrypted messages quickly become obsolescent, then key
update may be deferred (since the small proposition of critical
messages remains secure w.h.p.).
Meanwhile, NMRL reflects a sort of forward security:

even if nonce is repeated, the future nonces are secure (as
long as they do not repeat). For example, consider some
plant sensors sending messages. Then, a repeat of nonces

would harm messages encrypted with that nonce, but the
damage would be mitigated by replay protection or generally
a stateful decryptor. In contrast, if GCM is used that does
not ensure NMRL (auth), then the damage cannot be
mitigated.
Remark. At EUROCRYPT 2019, Dutta et al. [29] intro-

duced the faulty nonce model. Roughly speaking, this model
adds an additional parameter quantifying maximum repetition
of nonce to the ordinary NMR definition, and this enables
fine‐grained understanding of the effects of nonce‐reuse. The
model of nonce‐misuse resilience is weaker, since it only en-
sures security at fresh nonces. On the other hand, misuse
resistance is not achievable by single‐pass AEs even in the
faulty nonce model.

3 | BRIEF DESCRIPTIONS OF
ROMULUS‐N AND GIFT‐COFB

3.1 | Romulus‐N

Romulus‐Nis the primary member of Romulus [13, 14]. It is
based on Skinny‐128‐384+(the 40‐round variant of SKINNY
[30] TBC having 128‐bit block and 384‐bit tweakey). The
specification of Romulus‐N is given in Figure 1. As shown in
Figure 1, Romulus‐N uses an n � n binary matrix G defined
as an n/8 � n/8 diagonal matrix of 8 � 8 binary sub‐
matrices:

G¼

Gs 0 0 … 0
0 Gs 0 … 0
⋮ ⋱ ⋮
0 … 0 Gs 0
0 … 0 0 Gs

0

B
B
B
B
@

1

C
C
C
C
A
;

where 0 here represents the 8 � 8 zero matrix, and Gs is an
8 � 8 binary matrix, defined as

Gs ¼

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

:

Let G(i) for i = 0, 8, 16, …, n be the matrix equal to G
except the (i + 1)‐st to nth rows, which are set to all zero3. For
our security proof, we just need the property that G is sound:

Definition 6 A matrix G is sound, if: (1) G is regular (full‐
rank), and (2) G(i) ⊕ I is regular for all i = 8, 16, …, n, where
I denotes the identity matrix.

3
This definition comes from that Romulusis defined on byte strings.

4 - INOUE ET AL.
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The paper [14, Theorem 1] showed the perfect (nonce‐
respecting) PRIV bound and n‐bit AUTH bound for Romulus‐
N. Despite being the primary member, no nonce‐misuse se-
curity analysis has not been shown for Romulus‐N in the
literature.

3.2 | GIFT‐COFB

GIFT‐COFB [16] is a block cipher‐based AE that combines a
variant of COFB mode [19] and the lightweight 128‐bit block
cipher GIFT [31]. GIFT‐COFB is a rate‐one scheme that has a
quite small footprint. The specification is shown in Figure 2 in
the Appendix. See also Figure 3 for illustration. The padding
padc : f0; 1g∗ → f0; 1gn is padcðxÞ ¼ x if x ≠ ɛ and |x|
mod n = 0, and padcðxÞ ¼ x k 10n−ðjxj mod nÞ−1 otherwise.
Note that padcðεÞ ¼ 10n−1. The GC in Figure 2 is an n � n
binary matrix different from G of Romulus‐N. It is defined as

GC ⋅ X : ¼ðX½2�;X½1�⋘ 1Þ for X½1�;X½2� �
n=2
X, X ∈

{0,1}n. Here, n = 128.
While not explicit in Figure 2, the block process can be

represented by the following functions. Let f0; 1g≤~n
¼

⋃i∈½n�f0; 1g
i.

Definition 7 Let ρC1 : f0; 1gn � f0; 1gn → f0; 1gn such that
ρC1ðY ;MÞ ¼GC ⋅ Y ⊕M. We define ρC; ρ0C : f0; 1gn �
f0; 1g≤~n → f0; 1gn � f0; 1g≤~n as

ρCðY ;MÞ :¼ ρC1ðY ;padcðMÞÞ;msbjMjðY Þ⊕M
� �

;

ρ0CðY ;CÞ :¼ ρC1 Y ;padc msbjCjðY Þ⊕ CÞÞ;msbjCjðY Þ⊕ CÞ:
���

The ρC is used for encryption and ρ0C is used for decryption.
Note that when ðX;MÞ ¼ ρ0CðY ;CÞ, then X ¼ GC ⊕ Ið Þ ⋅
Y ⊕ C, where I is the n � n identity matrix. We note that the
matrix GC ⊕ I has rank n − 1.

F I GURE 1 The algorithms of Romulus‐N [13]. Lines of [if (statement) then X ← x else x0] are shorthand for [if (statement) then X ← x else X ← x0].
The dummy variable η is always discarded. Let n be a multiple of 8. For X ∈ {0,1}≤n of length multiple of 8, we define padnðXÞ : ¼qX if |X| = n, and
padnðXÞ : ¼ qX k 0n−jXj−8 klen8ðXÞ if 0 ≤ |X| < n, where len8ðXÞ denotes the one‐byte encoding of the byte‐length of X. Note that padnðεÞ ¼ 0n. For
integer i, i denotes the LFSR encoding expression of i.

INOUE ET AL. - 5
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The designers [20] showed the security bound for the com-
bined nonce‐respecting PRIV and AUTH notions, which is
about (n/2 − log n)‐bit security4. Security property against
nonce‐misusing adversary has not been shown.

4 | NONCE‐MISUSE RESISTANCE OF
ROMULUS‐N AND GIFT‐COFB

Both Romulus‐N and GIFT‐ COFB do not have NMR‐PRIV
and NMR‐AUTH. The lack of NMR‐PRIV is clear from their
online computation. To break NMR‐AUTH of Romulus‐N, we
just need two encryptions of repeating nonce and one
decryption query, which we call ‘chain transition’ (CT) attack.
The attack is described by the following algorithm. Note that
in the description, we follow the formalism of Definition 5 and

view the adversary as interacting with a pair of oracles
O1;O2ð Þ that is either EK ;DKð Þ or EK ;⊥ð Þ.

Algorithm ‘Chain transition’ (CT) attack on Romulus‐N

1. C1kC2;Tð Þ←O1 N ;A;M1kM2ð Þ

2. C01kC
0
2;T

0
� �

←O1 N ;A;M 01kM
0
2

� �

3. C002 ←M 02 ⊕G−1 M 02 ⊕ C02
� �

⊕ G−1 ⊕ I
� �

M2 ⊕ C2ð Þ

4. Query O2 N ;A;C1kC002 ;T
0

� �
, and outputs 1 iff the

response is not ⊥.

Here, Mi, M 0i, C
0
i for i = 1, 2, and C00, are all n bits. To

understand the attack idea, let S ¼ ~E
N ;wA;að Þ

K
�
HashN

~EK ðAÞ
�
,

(X1, C1) = ρ(S, M1), Y1 ¼ ~E
N ;4;1ð Þ
K X1ð Þ, (X2, C2) = ρ(Y1, M2),

Y2 ¼ ~E
N ;wM ;2ð Þ
K X2ð Þ, (X3, T) = ρ(Y2, 0n); X 01;C

0
1

� �
¼ ρ S;M 01
� �

,

Y 01 ¼ ~E
N ;4;1ð Þ
K X 01

� �
, X 02;C

0
2

� �
¼ ρ Y 01;M

0
2

� �
, Y 02 ¼ ~E

N ;wM ;2ð Þ
K

F I GURE 2 The algorithms of GIFT‐COFB [16] with minor notation modifications. padcðxÞ ¼ x if x is not empty and |x| mod n = 0, and
padcðxÞ ¼ x k 10n−ðjxj mod nÞ−1 otherwise. Note that padcðεÞ ¼ 10n−1.

F I GURE 3 Example of GIFT‐COFB encryption for n‐bit associated data (AD) and 2n‐bit plaintext. Dashed boxes denote the tweakable block cipher
(TBC) instantiated by EK, which is identical to the TBC defined at Definition 8 gXEcofb EK½ �

� �
. See also Figure 4.

4
Reflecting Inoue et al. [36], the bound was revised, maintaining the original bit security.
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X 02
� �

, X 03;T
0

� �
¼ ρ Y 02; 0

n
� �

be the (intermediate) values
appeared during Romulus‐N encrypting (N, A, M1‖M2) and
N ;A;M 01kM

0
2

� �
. By these and by the definition of ρ, the n‐bit

states X2;Y2;X 02;Y
0
2 can be completely recovered, that is,

Y1 ¼G−1 M2 ⊕ C2ð Þ;

X2 ¼ Y1 ⊕M2 ¼M2 ⊕G−1 M2 ⊕ C2ð Þ;

Y 01 ¼G
−1 M 02 ⊕ C02
� �

;

X 02 ¼ Y
0
1 ⊕M 02 ¼M

0
2 ⊕G−1 M 02 ⊕ C02

� �
:

By these, the decryption of N ;C1kC002 ;T
0

� �
will compute

S ← ~E
N ;wA;að Þ

K HashN
~EK ðAÞ

� �
, (X1, M1) ← ρ(S, C1),

Y1 ← ~E
N ;4;1ð Þ
K X1ð Þ, and then X 002 ;M

00
2

� �
¼ ρ Y1;C002
� �

. It now
holds
X 002 ¼ Y1 ⊕ C002 ⊕G Y1ð Þ ¼ G−1 ⊕ I

� �
M2 ⊕ C2ð Þ⊕M 02⊕

G−1 M 02 ⊕ C02
� �

⊕ G−1 ⊕ I
� �

M2 ⊕ C2ð Þ ¼ X 02. By these, it

necessarily proceeds with Y2 ¼ ~E
N ;wM ;2ð Þ
K X2ð Þ, (X3, T*) = ρ(Y2,

0n), and finally finds T* = T0 and returns M1kM 002 ≠ ⊥. This
deviates from the ideal world response, and the attack advan-
tage against Definition 5 is 1.
Almost the same attack can break NMR‐AUTH of GIFT‐

COFB. This arises the natural question: do they maintain any
security property when nonce is misused? From the next sec-
tions, we answer positively by showing concrete security in the
sense of nonce‐misuse resilience.

5 | NONCE‐MISUSE RESILIENCE OF
ROMULUS‐N

We establish misuse resilience security for Romulus‐N in this
section.

Theorem 1 Let A1 be a privacy adversary against Romulus‐N
using qe encryption queries with a total number of effective
blocks σpriv, each nonce reused at most μ times and time
complexity tA1. Let A2 be an authenticity adversary using qe
encryption and qd decryption queries with a total number of
effective blocks σauth for encryption and decryption queries,
each nonce reused at most μ times, and time complexity tA2.
Further assuming μqe ≤ 2n/6. Then

Advnmrl−priv

Romulus‐N ~E½ �
A1ð Þ ≤ Adv~E

tprp B1ð Þ;

Advnmrl−auth

Romulus‐N ~E½ �
A2ð Þ ≤ Adv~E

tprp B2ð Þ þ
4μqe
2n
þ
6qd
2n
þ
2qd
2τ :

hold for some σpriv; tA þO σprivð Þð Þ‐TPRP adversary B1,
and for some σauth; tB þO σauthð Þð Þ‐TPRP adversary B2.

Here, τ ∈ [n] is the tag length. NIST submission document
[13] specifies τ = n, thus untruncated.

5.1 | Proof intuition

For the analysis, we focus on the idealised Romulus‐Noracles
E
�
~P
�
and D

�
~P
�
that are obtained from the real encryption

and decryption oracles of Romulus‐N via replacing the TBC
~EK with a TURP ~P. This (standard approach) introduces the
gaps Adv~E

tprp B1ð Þ and Adv~E
tprp B2ð Þ into the bounds as

indicated by Theorem 1.
Then, the NMRL‐PRIV proof just follows the nonce‐

respecting setting [14], and the bound remains optimal
thanks to the uniqueness of the challenge nonces. For NMRL‐
AUTH, the bounds match intuitions from our attack: for every
pair of nonce‐reusing encryption queries ðN ;A;MÞ;ð

N ;A0;M 0ð ÞÞ with wA = wA0 and a = a0, the distinguisher may
have the equalityHashN

�
~P
�
ðAÞ ¼ HashN

�
~P
�
A0ð Þ once observing

~P
N ;wA;að Þ

HashN
�
~P
�
ðAÞ

� �
¼ ~P

N ;wA0 ;a0ð Þ
HashN

�
~P
�
A0ð Þ

� �
from the

ciphertexts, the probability of which should be O (μqe/2n).
Such collisions ‘leak’ useful information about the TBC ~P,

which turns out helpful for forgery. Therefore, (intuitively) the
proof should argue that such collisions/equalities are the ‘only’
that can be obtained by reusing nonces. For rigorously char-
acterisation, we employ the H‐coefficient technique (see Ap-
pendix A for its general idea), one of the standard techniques
for symmetric provable security. In a nutshell, we show that the

derived intermediate values Si ¼ ~P
Ni;wAi;aið Þ

HashN
�
~P
�
Aið Þ

� �
,

i = 1, …, qe, are pseudorandom modulo the collisions. This
will establish the intuition rigorously.
In the subsequent two subsections, we analyse NMRL‐

PRIV and NMRL‐AUTH bounds for the aforementioned
idealised Romulus‐N, respectively.

5.2 | Proof for NMRL‐PRIV bound of
theorem 1

Proof for the optimal privacy security bound just follows the
nonce‐respecting setting [14]: each block in C1;…;Cqe;

�

T1;…;Tqeg produced by the idealised challenge encryption
oracle E

�
~P
�
is generated from the output of ~P given to G

taking tweak unique to each block, since each nonce used by
the challenge encryption oracle E

�
~P
�
is unique. As G is sound

(Definition 6), if Y is independent and random, so isG(Y). The
soundness of G also ensures the uniformity of the last
ciphertext block C [m] and the tag T.

5.3 | Proof for NMRL‐AUTH bound of
theorem 1

To apply the H‐coefficient method, we fix a distinguisher D
interacting either with the real world E

�
~P
�
;D
�
~P
�� �
or the ideal

world E
�
~P
�
;⊥

� �
. We summarise the transcript of adversarial

queries and responses in two lists QE and QD. The former list

INOUE ET AL. - 7
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QE ¼ N1;A1;M1;C1;T1ð Þ;…; Nqe;Aqe;Mqe;Cqe;Tqe
� �� �

summarises the queries to the encryption oracle, where the ith
tuple indicates encrypting (Ni, Ai, Mi) yielding Ci;Tið Þ∈
f0; 1gjMij � f0; 1gτ. Let ai and mi be the number of AD and
plaintext blocks in the ith encryption query (Ni, Ai, Si, Mi, Ci,
Ti), and let wAi be the corresponding wA value. The latter list

QD ¼ N1;A1;C1;T1; b1ð Þ;…; Nqd;Aqd;Cqd;Tqd; bqd
� �� �

;

where the ith tuple indicates decrypting Ni;Ai;Ci;Tið Þ yielding
bi ∈ {0,1}* ∪ {⊥}. Note that if QD is attainable (i.e., can be
generated in the ideal world with non‐zero probability), it has
to be bi = ⊥ for all i.
At the end of the interaction, we reveal certain interme-

diate values to D:

� In the real world, for every encryption query (Ni, Ai, Mi, Ci,

Ti), we reveal the intermediate value Si ← ~P
Ni;wAi;aið Þ

HashN
�
~P
�
Aið Þ

� �
at line 3 (see Figure 1) and append it to

the list QE.
� In the ideal world, for every pair (Ni, Ai) that appears in
encryption queries, we associate a uniformly distributed n‐
bit string Si and append it to the list QE.

We thus obtain an extended list

QE ¼ N1;A1; S1;M1;C1;T1ð Þ;…; Nqe;Aqe; Sqe;Mqe;Cqe;Tqe
� �� �

;

and define the adversarial transcript of queries and responses
as Q¼ QE;QDð Þ.
Following the standard approach to applying the H‐

coefficient technique, below we first define bad transcripts
and derive the probability of obtaining bad transcripts in the
ideal world. Then, we establish the desired ratio in Equation (9)
to complete the analysis.

5.3.1 | Bad transcripts

An attainable transcript Q is bad, if there exist two distinct
tuples Ni;Ai; Si;Mi;Ci;Tið Þ; Nj;Aj; Sj;Mj;Cj;Tj

� �
∈QE such

that Ni = Nj, Ai ≠ Aj, ai;wAið Þ ¼ ðaj;wAjÞ, though Si = Sj.
Such transcripts are bad, since they indicate collisions on
HashN

�
~P
�
and leak non‐trivial information about ~P.

For each (i, j) such that Ni = Nj and Ai ≠ Aj, the strings Si
and Sj are uniform and independent in the ideal world, and the
probability to have Si = Sj is 1/2n. For each (Ni, Ai, Si, Mi, Ci,
Ti), the number of choices of (Nj, Aj, Sj, Mj, Cj, Tj) with
Nj = Ni is at most μ by assumption. Therefore,

Pr Tid is bad½ � ≤
μqe
2n
:

5.3.2 | Ratio for good transcripts

For this part, consider an arbitrary attainable transcript
Q¼ QE;QDð Þ. For any i, let Hi ¼ HashN

�
~P
�
Aið Þ. In the

ideal world, each pair (Ni, Ai) is associated with a uniformly
distributed n‐bit string Si. Let α be the number of distinct pairs
(Ni, Ai) in QE. Then,

Pr Tid ¼Q½ �

¼ Pr Si; i¼ 1;…; qe½ �

� Pr Encrypt
�
~P
�
Ni; Si;Mið Þ ¼ Ci;Tið Þ∣Si; i¼ 1;…; qe

h i

� Pr Tid ¼QD∣QE½ �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼1

¼
1
2αn � Pr Encrypt ~P

� �
Ni; Si;Mið Þ ¼ Ci;Tið Þ∣Si; i¼ 1;…; qe�:

�

The equality Pr Tid ¼QD∣QE½ � ¼ 1 holds because if QD is
attainable then all the responses b1;…; bqd in QD are ⊥ and
because the ideal world right oracle ⊥ always returns ⊥.
On the other hand, in the real world, we have

Pr Tre ¼Q½ �

¼ Pr ~P
Ni;wAi;aið Þ

HashN
�
~P
�
Aið Þ

� �
¼ Si; i¼ 1;…; qe

� �

� Pr Encrypt ~P
� �

Ni; Si;Mið Þ ¼ Ci;Tið Þ∣Si; i¼ 1;…; qe
� �

� Pr Tre ¼QD∣QE�:½

Thus,

Pr Tre ¼Q½ �

Pr Tid ¼Q½ �

¼ 2αn � Pr ~P
Ni;wAi;aið Þ

HashN ~P
� �

Aið Þ
� �

¼ Si; i¼ 1;…; qe
� �

� Pr Tre ¼QD∣QE�:½

ð1Þ

5.3.3 | Pr ~P
Ni;wAi;aið Þ

HashN
�
~P
�
Aið Þ

� �
¼ Si;

�

i¼ 1;…; qe�

We follow the approach of [32]. Given ~P, we define a ‘bad
predicate’ BadH on ~P: BadH

�
~P
�
holds if there exist (Ni, Ai, Si,

Mi, Ci, Ti), Nj;Aj; Sj;Mj;Cj;Tj
� �

∈QE such that Ni = Nj,
Ai ≠ Aj, ai; aAið Þ ¼ ðaj; aAjÞ, though Hi ¼ HashN

�
~P
�
Aið Þ ¼

HashN
�
~P
�
Aj
� �

¼Hj .

8 - INOUE ET AL.
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In [14] (Case 3–2, page 78),5 it was proved that

Pr~P Hi ¼Hj∣Ni ¼ Nj ∧ Ai ≠ Aj ∧ ai; aAið Þ ¼ aj; aAj
� �h i

≤
3
2n

for any (i, j). Therefore,

Pr
h
BadH ~P

� �i
≤

X

Ni;Ai;Si;Mi;Ci;Tið Þ

X

Nj ;Aj ;Sj ;Mj ;Cj ;Tjð Þ:Nj¼Ni

3
2n
≤
3μqe
2n

:

It is easy to see that, conditioned on ¬BadH
�
~P
�
,

Hi = Hj ⇔ Si = Sj holds for any (i, j) with
Ni ¼ Nj ∧ Aj ≠ Aj ∧ ai;wAið Þ ¼

�
aj;wAj

�
. By this,

Now:

‐ If Ni;wAi; aiÞ ≠ Nj;wAj; ajÞ
��

for all j ∈ [i − 1], then clearly
pi = 1/2n;

‐ If (Ni, Ai) = (Nj, Aj) for some j ∈ [i − 1], then pi = 1;
‐ Finally, if Ni;wAi; aiÞ ¼ Nj;wAj; ajÞ

��
(though Ai ≠ Aj) for

some j ∈ [i − 1], then:
� Hi ≠ Hj conditioned on ¬BadH

�
~P
�
;

� Si ≠ Sj conditioned on ¬(B‐1);
� The number of j ∈ [i − 1] such that

Ni;wAi; aiÞ ¼ Nj;wAj; ajÞ
��

is at most μ by our assump-
tion on nonce reuse.

Thus, conditioned on ~P

�
Nj ;wAj ;aj

�

Hj
� �

¼ Sj; j ¼ 1;…; i − 1,
~P

Ni;wAi;aiÞ Hið Þð remains uniformly distributed in a set of size at
least 2n − μ, and the set includes the ‘target’ Si. By these, 1/
2n < pi ≤ 1/(2n − μ) in this case.

As per our assumption, the number of distinct pairs (N,
A) in the encryption queries is α. This also provides the
number of i such that pi < 1. By this, Equation (1) is
simplified to

Pr Tre ¼Q½ �

Pr Tid ¼Q½ �

≥ 2αn�

�

1 − Pr
h
BadH ~P

� �i
�

�
1
2n

� �α

�Pr Tre ¼QD∣QE½ �

≥ 1 −
3μqe
2n

� �

� Pr Tre ¼QD∣QE½ �:

5.3.4 | Analysing QD

It remains to bound Pr Tre ¼QD∣QE½ �. For this, we use

Pr
�
Tre ¼QD∣QE

�
¼1 − Pr D

�
~P
�
Ni;Ai;Ci;Tið Þ ≠ ⊥

h

for some Ni;Ai;Ci;Ti; bið Þ ∈QD∣QE�

≥ 1−qd�max
i∈ qd½ �

Pr D
�
~P
�
Ni;Ai;Ci;Tið Þ ≠ ⊥∣QE

h i
:

ð2Þ

To analyse maxi∈ qd½ �Pr D
�
~P
�
Ni;Ai;Ci;Tið Þ ≠ ⊥∣QE

� �
, we

consider an arbitrary decryption query ðN;A;C;TÞ (omitting
the subscript) and follow the analysis in [14]. Our analysis
deviates from [14] in that our condition that encryption queries
yield the extended transcript QE has a non‐negligible impact
on the randomness ~P, and this will be reflected in the subse-
quent Case 3. Concretely, let a0 and m0 be AD and ciphertext
block lengths of the single decryption query ðN;A;C;TÞ, and
let wA and wC be the corresponding constants. Let T∗ be the
true tag value for ðN;A;CÞ, that is,

Pr D
�
~P
�
ðN;A;C;TÞ ≠ ⊥∣QE

h i
¼ Pr~P T

∗ ¼ T∣QE½ �:

Pr ~P
Ni;wAi;aið Þ Hið Þ ¼ Si; i¼ 1;…; qe

� �

≥ Pr
h
~P

Ni;wAi;aið Þ Hið Þ ¼ Si; i¼ 1;…; qe ∧ ¬BadH ~P
� �i

≥
�
1 − Pr

h
BadH ~P

� �i�

�∏
qe

i¼1
Pr

"

~P
Ni;wAi;aið Þ Hið Þ ¼ Si∣~P

Nj ;wAj ;aj

� �

Hj
� �

¼ Sj; j ¼ 1;…; i − 1 ∧ ¬BadH ~P
� �
#

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pi

:

5
More clearly, their Case 3‐2 considers the probability to have ~P

N ;wA ;að Þ
ðHashN ~P

� �
ðAÞÞ¼

~P
N 0 ;wA0 ;a0ð Þ

HashN ~P
� �

A0ð ÞÞ
�

for an encryption query (N, A, M, C, T) and a decryption
query (N0 , A0 , C0 , T0) such that N = N0 , C = C0 , A ≠ A0 though (a, wA) = (a0 , wA0). This
equals the probability to have the hash collision HashN ~P

� �
ðAÞ ¼ HashN ~P

� �
A0ð Þ, and

the probability 3/2n can be extracted from [14].

INOUE ET AL. - 9
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Following Iwata et al. [14], [pages 76–79], we consider
three cases.

Case 1 N ≠ Ni for all i ∈ [qe].
The analysis just follows Case 1 of [14, page 76]. Briefly,

during D
�
~P
�
ðN;A;C;TÞ, the final ‘tag generation’ TBC‐call

(line 11 in Figure 1) will use a unique tweak N;wC;m0Þ
�

that
is different from all the tweaks used in the qe encryption
queries. This means the produced true tag T∗ is uniformly
distributed, and Pr~P T

∗ ¼ T∣QE½ � ¼ 1=2τ.

Case 2 N¼ Ni for some i ∈ [qe], though C ≠ Ci
Let Hi ¼ HashN

�
~P
�
Aið Þ, H¼ HashN

�
~P
�
ðAÞ, S ¼

~P
N;wA;a0ÞðHÞð . We are able to follow the analysis of Case 2 of [14,

page 76]. The core idea is that, to have T¼ T∗ for the true tag
T∗ for ðN;A;CÞ, it has to be either Hi ≠ H and Hi;H satisfy
certain ‘non‐trivial’ relations, or the two processes
Encrypt

�
~P
�
Ni; Si;Mið Þ and Decrypt

�
~P
�
ðN;S;CÞ made

distinct calls to ~P with outputs satisfy certain ‘non‐trivial’ re-
lations. But in both cases, distinct calls to ~P give rise to two
random n‐bit intermediate values, and the probability to have
such relations is O (1/2τ). More precisely, it holds
Pr~P T

∗ ¼ T∣QE½ � ¼ 2=2τ þ 2=2n.

Case 3 N¼ Ni for some i ∈ [qe], and C¼ Ci.
This means A ≠ Ai. For simplicity, we omit the index i and

abbreviate Ni, Ai, Si, Mi, … as N, A, S, M, … and so on. We
define X [j] and Y [j] as the jth ~P input and output in the
message encryption of this encryption query. Since the number
of blocks in M is m, we have j ∈ {1, …, m}. Moreover, when
j <m, Y [j] is to encrypt M [j + 1], and X [m] is given to ~P with
tweak N ;wM ;mð Þ to create Y [m] which further yields the tag

T. Recall that S ¼ ~P
N ;wA;að Þ

HashN
�
~P
�
ðAÞ

� �
. Similarly, define

X½j� and Y½j� as the jth ~P input and output in the message
encryption of the decryption query ðN;A;C;TÞ, and let

S¼ ~P
N;wA;a0ð Þ

HashN
�
~P
�
ðAÞ

� �
. Note that C¼ C as we

assumed, which means

X½m� ¼ X½m� ⇔ S ¼ S:

Thus,

Pr T∗ ¼ T∣QE½ �

≤ Pr T∗ ¼ T∣X½m� ≠ X½m� ∧QE½ � þ Pr X½m� ¼ X½m�∣QE½ �

≤
2
2τ þ Pr X½m� ¼ X½m�∣QE½ �

≤
2
2τ þ Pr S ¼ S∣QE½ �:

Following Case 3 in [14, page 78], we further distinguish
two subcases.

‐ Subcase 3.1: a;wAð Þ ≠ a0;wAð Þ. Then, S is random and in-
dependent of S as tweaks are different. This means
Pr S ¼ S∣QE½ � ¼ 1=2n. This is the same as Case 3‐1 in [14,
page 78].

‐ Subcase 3.2: a;wAð Þ ¼ a0;wAð Þ. This is the same as Case
3‐2 in [14, page 78]. In this subcase, the event S ¼ S is
equivalent with H ¼ H. The event H ¼ H only depends on
~P
Tw with tweak Tw of the form (⋆, 8, ⋆), which is in-
dependent of ~P

Tw with Tw ∈ {(⋆, 24, ⋆), (⋆, 26, ⋆), (⋆,
4, ⋆), (⋆, 20, ⋆), (⋆, 21, ⋆)} used for encryption. Iwata
et al. [14, page 79] proved that when an (‘unextended’)
encryption query transcript QE has no nonce repetition, it
holds6

Pr~P H ¼ H∣QE½ � ≤
3
2n
:

When QE has no nonce repetition, all the ciphertexts
C1;…;Cqe and tags T1;…;Tqe are uniform and independent
strings, and actually no information on the partial tweakable
random permutation ~P

Tw with tweak Tw of the form (⋆, 8, ⋆)
can be gained from QE. In other words, Iwata et al. actually
proved

Pr
~P
ð⋆;8;⋆Þ H ¼ H½ � ≤

3
2n
: ð3Þ

In our case, the situation deviates: conditioned on a good
transcript
QE ¼ N1;A1; S1;M1;C1;T1ð Þ;…; Nqe;Aqe; Sqe;Mqe;Cqe;Tqe

� �� �
;

it holds Sj ≠ Sj0 for any pair of indices (j, j0) with Nj = Nj0, Aj ≠
Aj0 and aj;wAj

� �
¼ aj0 ;wAj0
� �

. This means ~P satisfies

HashN
�
~P
�
Aj
� �

≠ HashN
�
~P
�
Aj0
� �

for any pair (j, j0) such that

Nj = Nj0, Aj ≠ Aj0 and aj;wAj
� �

¼ aj0 ;wAj0
� �

, that is, the bad

predicate BadH
�
~P
�
is not fulfilled. Thus,

Pr~P H ¼ H∣QE½ � ¼ Pr
~P
ð⋆;8;⋆Þ H ¼ H∣ ¬ BadH

�
~P
�h i
:

This affects the concrete bound. Though, we have

Pr
~P
ð⋆;8;⋆Þ H ¼ H½ � ¼ Pr

~P
ð⋆;8;⋆Þ H ¼ H ∧ BadH

�
~P
�h i

þ Pr
~P
ð⋆;8;⋆Þ H ¼ H ∧ ¬BadH

�
~P
�h i
;

meaning that

6
This can be derived from [14], Equation (10) and the subsequent bound pe ≤ 2/2τ + 3/
2n.

10 - INOUE ET AL.
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Pr
~P
ð⋆;8;⋆Þ H ¼ H∣ ¬ BadH

�
~P
�h i
¼
Pr

~P
ð⋆;8;⋆Þ H ¼ H ∧ ¬BadH

�
~P
�h i

Pr
~P
ð⋆;8;⋆Þ ¬BadH

�
~P
�h i

≤ Pr
~P
ð⋆;8;⋆Þ H ¼ H½ �

.
1 −

3μqe
2n

� �

:

Under the condition that μqe ≤ 2n/6 and using Equa-
tion (3), we finally obtain

Pr
~P
ð⋆;8;⋆Þ

h
H ¼ H∣ ¬ BadH ~P

� �i
≤
6
2n
:

Injecting the above results into Equation (2) finally yields

Pr Tre ¼QD∣QE½ � ≥ 1 −
6qd
2n
−
2qd
2τ

and

Pr Tre ¼Q½ �

Pr Tid ¼Q½ �
≥ 1 −

3μqe
2n

� �

� 1 −
6qd
2n
−
2qd
2τ

� �

≥ 1 −
3μqe
2n
þ
6qd
2n
þ
2qd
2τ

� �

;

and thus the final bound.

6 | NONCE‐MISUSE RESILIENCE OF
GIFT‐COFB

We establish misuse resilience security for GIFT‐COFB.

Theorem 2 Let A1 be a privacy adversary against GIFT‐
COFB using qe encryption queries with a total number of
effective blocks σpriv, and time complexity tA1, and let A2 be
an authenticity adversary using qe encryption and qd decryp‐
tion queries with a total number of effective blocks for
encryption and decryption queries σauth and time complexity
tA2. Let ℓmax denote the maximum number of effective blocks
in one query of A2. Then

Advnmrl−priv

GIFT−COFB EK½ �
A1ð Þ ≤ Advprp

E B1ð Þ þ
5σ2priv
2n=2

;

Advnmrl−auth
GIFT−COFB EK½ � A2ð Þ ≤ Advprp

E B2ð Þ þ
5σ2auth
2n=2

þ
4qdℓmax
2n

hold for some σpriv; tA1 þO σprivð Þð Þ‐PRP adversary
B1, and for some σauth; tA2 þO σauthð Þð Þ‐PRP adversary
B2.

6.1 | Proof overview of Theorem 2

Our proofs have two steps. At the first step, we introduce
a TBC called gXEcofb EK½ � based on EK. This definition is
not explicitly shown in the specification document; how-
ever, we present an equivalent representation to
GIFT − COFB EK½ � using gXEcofb EK½ �. We show
gXEcofb EK½ � has n/4‐bit TPRP security. In the second step,
we analyse the NMRL‐PRIV/‐AUTH advantage for the
idealised variant of GIFT‐COFB that uses a TURP instead
of gXEcofb EK½ �. We also note that it seems infeasible to
reuse the original proof [20] for our purpose as its non‐
modular approach. This requires us to take a different
approach.
The underlying TBC. Let n = 128, M¼ f0; 1gn,

T cofb
w ¼ f0; 1gn �B, where B ¼ ðI � J Þ ∪H, I ¼ 251 þ 1½ �½ �,
J ¼ ½½5��, H¼ ∗0; ∗1; ∗2; ∗3; ∗4f g be the tweak space. For
any valid tweak (N, B) for B ∈ I � J , we assume B ∉ {(0, 0),
(0, 1)}.

Definition 8 Let gXEcofb EK½ � : T cofb
w �M→M be a TBC

based on an n‐bit block cipher E : K�M→M, where T cofb
w

andM are as defined above. For plaintext M ∈M and tweak
T ¼ ðN ;BÞ ∈ T cofb

w , the ciphertext C ¼ gXEcofb EK½ �ðT ;MÞ is
such that

where L¼ msbn=2 EKðNÞð Þ and GC are as defined at 3.2.

Definition 8 is a variant of generalised XE/XEX mode
[3]. The TPRP advantage of gXEcofb EK½ � is proved as follows,
using [33, Theorem 4.1].

Theorem 3 For any adversary A using q encryption queries,

Advtprp

gXECOFB ½P�ðAÞ ≤
5q2

2n=2
;

where P is an n‐bit URP.
We devote to prove Theorem 3 in the remaining of this

subsection. We observe that Definition 8 is a variant of

C ¼

EK M ⊕ 2L k 0n=2
� �

⊕GC EKðNÞð Þ
� �

; if B¼ ∗0 ∈H

EK M ⊕ 3iL k 0n=2
� �

⊕GC EKðNÞð Þ
� �

; if B¼ ∗i ∈H; i ∈ ½4�

EK M ⊕ 2i3jL k 0n=2
� �� �

if B¼ ði; jÞ ∈ I � J

8
>><

>>:

;

INOUE ET AL. - 11
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generalised XE/XEX mode [3]. To prove its security, we rely
on the following theorem, which is obtained by simplifying
[33, Theorem 4.1]. The scheme in [33] is as follows7. Let
gXE EK½ � : T w �M→M, where T w ¼ f0; 1gn � B for a
finite set B, be a generalised XE mode such that, for
plaintext M ∈ {0,1}n and tweak T ¼ ðN ;BÞ ∈ T w, the
ciphertext C is

C ¼ EKðM ⊕ SÞ;

where V = EK(N) and S = F(B, V) for some (deterministic)
functions F : B � f0; 1gn → f0; 1gn.

Definition 9 [33] Let F : B � f0; 1gn → f0; 1gn. F is said to
be (ϵ, γ, ξ)‐uniform if

max max
B≠B;δ∈f0;1gn

Pr FðB;V Þ⊕ F B0;Vð Þ ¼ δ½ �;

�

max
B;B0;δ∈f0;1gn

Pr FðB;V Þ⊕ F B0;V 0ð Þ ¼ δ½ �

�

≤ ϵ;

max
B;δ∈f0;1gn

Pr½FðB;V Þ ¼ δ� ≤ γ;

max
B;δ∈f0;1gn

Pr½FðB;V Þ⊕ V ¼ δ� ≤ ξ

hold, where the probability is defined by V and V0 (if
exists), independently and uniformly distributed over
{0,1}n.

Theorem 4 If F is (ϵ, γ, ξ)‐uniform and P is an n‐bit URP, we
have

Advtprp

gXE½P�
ðAÞ ≤ q2 2ϵþ γ þ ξþ

1
2n þ 1

� �

:

for adversary A using q encryption queries.

Theorem 4 is a simplified version of [33, Theorem 4.1]
obtained by removing the decryption oracle and the ‘optional
encryption’ oracle8.
The TBC gXEcofb EK½ � of Def. 8 is an instantiation of

gXE EK½ � using F defined as follows, using L¼ msbn=2ðV Þ.

FðB;V Þ

¼
GCðV Þ⊕ 2L k 0n=2 ifB¼ ∗0 ∈H
GCðV Þ⊕ 3iL k 0n=2 ifB¼ ∗i ∈H; fori ∈ ½4�
2i3jL k 0n=2 ifB¼ ði; jÞ ∈ I � J :

8
<

:

ð4Þ

Lemma 1 The F of (4) is (1/2n/2, 1/2n/2, 1/2n/2)‐uniform.

Proof Let L¼ msbn=2ðV Þ and L¼ lsbn=2ðV Þ. When B ∈H,
let β ∈ {2, 3, 32, 33, 34} be the associated coefficient of L.
From the definition of GC in GIFT‐COFB, we observe that
HðV Þ : ¼GCðV Þ⊕ βL k 0n=2 is equal to a pair of 64 bits,
βL⊕ L;L⋘ 1Þ
�

. Note that, when V is uniform H(V) is also
uniform because L ⋘ 1 is uniform, and that βL⊕ L is also
uniform given L. From this fact and the injectivity of 2i3j

mapping for n = 128 shown by Rogaway [3], for γ, we have

Pr½FðB;V Þ ¼ δ�

¼

Pr GCðV Þ⊕ βL k 0n=2 ¼ δ
� �

≤
1
2n

ifB ∈H

Pr 2i3jL k 0n=2 ¼ δ
� �

≤
1
2n=2

ifB¼ ði; jÞ ∈ I � J

8
>><

>>:

For ϵ, let B ≠ B0 and we have

where β and β0 are associated coefficients of B and B0 when
they are in H. The first case of Equation (5) follows from the
uniformity of the first n/2‐bit part, given L and β ≠ β0. The
second case follows from the uniformity of GCðV Þ. The third

Pr FðB;V Þ⊕ F B0;Vð Þ ¼ δ½ �

¼

Pr βL k 0n=2 ⊕ β0L k 0n=2 ¼ δ
� �

≤
1
2n=2

ifB; B0 ∈H

Pr GCðV Þ⊕ βL k 0n=2 ⊕ 2i3jL k 0n=2 ¼ δ
� �

≤
1
2n

ifB ∈H;B0 ¼ ði; jÞ

Pr 2i3jL⊕ 2i
0

3j
0

L k 0n=2 ¼ δ
h i

≤
1
2n=2

ifB¼ ði; jÞ;B0 ¼ i0; j0ð Þ;

8
>>>>>><

>>>>>>:

ð5Þ

7
The paper [33] defines a generalised XEX mode with ‘optional encryption’, a form of
even more generalised TBC. Our presentation here is reduced to what we just need.

8
Since we only need a TPRP rather than a (CCA‐secure) TSPRP, the conditions for F can
be slightly relaxed, in particular for ξ. As this relaxation does not affect us (i.e. ξ is also
small for our case), we keep the original condition.

12 - INOUE ET AL.
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case follows from the result of [3].
For ξ, when B ∈H,

Pr½FðB;V Þ⊕ V ¼ δ� ¼ Pr βL⊕ L⊕ L; ðL⋘ 1Þ⊕ LÞ ¼ δ�
��

¼ Pr
h� �

β ⊕ 1ÞL⊕ L; ðL⋘ 1Þ⊕ L
�
¼ δ
i
≤
1
2n=2

from the uniformity L (while (β ⊕ 1)L and L⋘ 1 may agree
on most of the bits). When B¼ ði; jÞ ∈ I � J ,

Pr½FðB;V Þ⊕ V ¼ δ� ¼ Pr
�
2i3j ⊕ 1
� �

L;LÞ ¼ δ
�
≤
1
2n

from the uniformity L and independence from L. Thus, we
have ϵ = γ = ξ = 1/2n/2. This proves Lemma 1.Combining
Lemma 1 and Theorem 4, we obtain Theorem 3.

6.2 | Proof for NMRL‐PRIV bound of
Theorem 2

We observe that GIFT − COFB EK½ � can be seen as a mode of
TBC gXEcofb EK½ �, which we call idealised GIFT‐ COFB(iGC)
shown in Figure 4 in the Appendix. As iGC gXEcofb½P�

� �
is

equivalent to GIFT − COFB½P� for URP P, and from Theo-
rem 3, we have

Advnmrl−priv

GIFT−COFB½P�
ðAÞ ≤ Advtprp

gXEcofb½P�
ðBÞ þ Advnmrl−priv

iGC ~P½ �
ðAÞ ð6Þ

≤
5σ2priv
2n=2

þ Advnmrl−priv

iGC ~P½ �
ðAÞ ≤

5σ2priv
2n=2

for an adversary B using σpriv queries. The last inequality
follows from the same reason as Romulus‐N: all the ciphertext
blocks and the tags are generated by ~P taking distinct tweak
values.

6.3 | Proof for NMRL‐AUTH bound of
Theorem 2

Similar to Equation (6), we have

Advnmrl−auth
GIFT−COFB½P�ðAÞ ≤ Advtprp

gXEcofb½P�
ðBÞ þ Advnmrl−auth

iGC ~P½ �
ðAÞ

ð7Þ

≤
5σ2auth
2n=2

þ Adv
iGC ~P½ �

nmrl−auth
ðAÞ

for an adversary B using σauth queries.

F I GURE 4 Algorithms of iGC ~EK
� �

, an abstraction of GIFT‐ COFB using a TBC.

INOUE ET AL. - 13

 17518717, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ise2.12110 by C

ochraneC
hina, W

iley O
nline L

ibrary on [12/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



We evaluate Adv
iGC ~P½ �

nmrl−auth
ðAÞ
. The tweak values used by

iGC ~P
� �

always contain the nonce. This significantly simplifies
the security analysis.
Analysis for qd = 1. We first study the case qd = 1, given

QE ¼ Ni;Ai;Mi;Ci;Tið Þ; i ∈ qe½ �f g. The NMRL‐AUTH
advantage is pf : ¼ qPr T¼ T∗jQE½ �, where T* is the true tag
for the decryption query QD ¼ ðN;A;C;TÞ

9. If N ≠ Ni for all
i ∈ [qe], we simply observe pf ¼ 1=2n. Thus, we assume that
N¼ Ni holds for some (unique bydefinition) i∈ [qe]. In this case,
other tuples of encryption transcript in QE are completely in-
dependent of T* because all ~P calls in iGC ~P

� �
take a nonce. This

implies that we just need to think about the interactions between
the QD and ith encryption query and eventually makes the
analysis identical to the case of nonce‐respecting AUTH ad-
versary against iGC ~P

� �
. Due to the difference in the tweak usage

for block counting and in the feedback function, we cannot
follow the analysis of Romulus‐N. We provide a case analysis
below, which is similar (but somewhat more complex because of
complex domain separation) to the proof for the idealised
Remus − N, called TRemus − N [14].
We will use the following lemma.

Lemma 2 Let (Y, X, M, C) be a tuple of fixed values such that

ρCðY ;MÞ ¼ ðX;CÞ (where M;C ∈ f0; 1g
≤~n, |M| = |C|). Let

Y be a random variable uniform over {0,1}n \{Y}. For fixed

C ∈ f0; 1g≤~n, let X¼ ρC1 Y;padc msbjCjðYÞ⊕ C
� �� �

.
Then, PrY½X¼ X� ≤ 1=2n−2 holds for any fixed

C ∈ f0; 1g≤~n.

Proof For i ∈ [n], let Imsbi be the n � n matrix such that
Imsbi ⋅ Z¼ msbiðZÞ k 0n−i for Z ∈ {0,1}n. Let jCj ¼ s and
assume that the rank of GC ⊕ Imsbs is k. Let Yi denote its ith
bit. We have

Pr½X¼ X� ¼ Pr GCðYÞ⊕ padc msbsðYÞ⊕ Cð Þ ¼ X½ �

¼ Pr GCðYÞ⊕ ImsbsðYÞ⊕ Ck10n−s−1
� �

¼ X
� �

≤ max
δ∈f0;1gn

Pr GC ⊕ Imsbsð ÞðYÞ ¼ δ½ �:

The rank tells that the above probability is Pr Yi1 ¼ δ01;…;
�

Yik ¼ δ0k� for some i1, …, ik ∈ [n] and δ0i ∈ f0; 1g, i ∈ [k]. Since
Y has uniformity 1/(2n − 1) (i.e. maxy∈f0;1gnPr½Y¼ y�≤
1= 2n − 1ð Þ), this probability is at most

2n−k

2n − 1
≤
2
2k
:

We confirmed that the rank of GC ⊕ Imsbs is n for all
s ∈ [n − 1], and that is, n − 1 when s = n as mentioned earlier,
using a program. So, we let k = n − 1 and derive 2/2n−1 = 1/
2n−2. This completes the proof.

Remark. The original proof [20] uses a similar bound on the
collision probability of X and X; however, because that bound
is used when the underlying primitive is a random function
rather than a random permutation (i.e. after PRP‐PRF
switching), Y has uniformity 1/2n, that is, completely
random and independent of Y.

Classification of Tweak Sequences. For each encryption or
decryption query, iGC ~P

� �
will generate a sequence of tweak

values. If a query requires ℓ calls of ~P, the tweaks sequence is

in T cofb
w

� �ℓ
and is uniquely determined by the tuple (A, C) for

encryption or ðA;CÞ for decryption. Let LI : f0; 1g∗ → fe; c; pg
be a length‐indicator function such that LIðXÞ ¼ e (for empty)
if X = ɛ, LIðXÞ ¼ c (for complete) if X ≠ ɛ and |X| is a
multiple of n, and LIðXÞ ¼ p (for partial) otherwise. For a tuple
(N, A, M, C, T), we can define 9 classes depending on LIðAÞ
and LIðCÞ. Note that each class may have subcases, and the
final tweak of any subcase is either B ∈H or B¼ ði; jÞ∈
I � J for some constant j ∈ {2, 3, 4} specific to this class,
because this j is a function of ðLIðAÞ; LIðCÞÞ.
The following lists the 9 classes of tweak sequences for an

encryption query. We omit N as it is always contained. In the
descriptions of subcases of a class, let a = |A|n, m = |C|n.
The same classification also applies to a decryption query
QD ¼ ðN;A;C;TÞ, using A and C instead of A and C, and
using a0 ¼ jAjn and m

0 ¼ jCjn instead of a and m.

Class 1: ðLIðAÞ; LIðCÞÞ ¼ ðe; eÞ
1‐1 (*4)

Class 2: ðLIðAÞ; LIðCÞÞ ¼ ðe; cÞ
2‐1 m = 1: (*2, (0, 3))
2‐2 m ≥ 2: (*2, (1, 2), …, (m − 1, 2), (m − 1, 3))

Class 3: ðLIðAÞ; LIðCÞÞ ¼ ðe; pÞ
3‐1 m = 1: (*2, (0, 4))
3‐2 m ≥ 2: (*2, (1, 2), …, (m − 1, 2), (m − 1, 4))

Class 4: ðLIðAÞ; LIðCÞÞ ¼ ðc; eÞ
4‐1 a = 1: (*3)
4‐2 a ≥ 2: (*0, (2, 0), …, (a − 1, 0), (a − 1, 3))

Class 5: ðLIðAÞ; LIðCÞÞ ¼ ðc; cÞ
5‐1 a = 1, m = 1: (*1, (0, 2))
5‐2 a = 1, m ≥ 2: (*1, (1, 1), …, (m − 1, 1), (m − 1, 2))
5‐3 a ≥ 2, m = 1: (*0, (2, 0), …, (a − 1, 0), (a − 1, 1),
(a − 1, 2))
5‐4 a ≥ 2, m ≥ 2: (*0, (2, 0), …, (a − 1, 0), (a − 1, 1),
(a, 1), …, (a + m − 2, 1), (a + m − 2, 2))

Class 6: ðLIðAÞ; LIðCÞÞ ¼ ðc; pÞ
6‐1 a = 1, m = 1: (*1, (0, 3))
6‐2 a = 1, m ≥ 2: (*1, (1, 1), …, (m − 1, 1), (m − 1, 3))
6‐3 a ≥ 2, m = 1: (*0, (2, 0), …, (a − 1, 0), (a − 1, 1),
(a − 1, 3))
6‐4 a ≥ 2, m ≥ 2: (*0, (2, 0), …, (a − 1, 0), (a − 1, 1),
(a, 1), …, (a + m − 2, 1), (a + m − 2, 3))

Class 7: ðLIðAÞ; LIðCÞÞ ¼ ðp; eÞ
7‐1 a = 1: (*4)
7‐2 a ≥ 2: (*0, (2, 0), …, (a − 1, 0), (a − 1, 4))

Class 8: ðLIðAÞ; LIðCÞÞ ¼ ðp; cÞ9
Formally, this is not a decryption transcript as it lacks the oracle response b.

14 - INOUE ET AL.
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8‐1 a = 1, m = 1: (*2, (0, 3))
8‐2 a = 1, m ≥ 2: (*2, (1, 2), …, (m − 1, 2), (m − 1, 3))
8‐3 a ≥ 2, m = 1: (*0, (2, 0), …, (a − 1, 0), (a − 1, 2),
(a − 1, 3))
8‐4 a ≥ 2, m ≥ 2: (*0, (2, 0), …, (a − 1, 0), (a − 1, 2),
(a, 2), …, (a + m − 2, 2), (a + m − 2, 3))

Class 9: ðLIðAÞ; LIðCÞÞ ¼ ðp; pÞ
9‐1 a = 1, m = 1: (*2, (0, 4))
9‐2 a = 1, m ≥ 2: (*2, (1, 2), …, (m − 1, 2), (m − 1, 4))
9‐3 a ≥ 2, m = 1: (*0, (2, 0), …, (a − 1, 0), (a − 1, 2),
(a − 1, 4))
9‐4 a ≥ 2, m ≥ 2: (*0, (2, 0), …, (a − 1, 0), (a − 1, 2),
(a, 2), …, (a + m − 2, 2), (a + m − 2, 4))

We pick QE = (N, A, M, C, T) and QD ¼ ðN;A;C;TÞ,
where N¼ N but ðN;A;C;TÞ ≠ ðN ;A;C;TÞ, among these
classes, and show a bound for pf. Let us write Case (i, j) to
denote the case when QE is in Class i and QD is in Class j, for
i, j ∈ [9]. Let Stw

E Stw
D

� �
denote the tweak sequence of QE

(QD). For example, if QE is in Class 9 (9‐1), Stw
E ¼ ∗2; ð0; 4Þð Þ.

Recall that the actual tweak sequence is (N, *2) and (N, (0, 4)).
Case (i, i) for i ∈ [9]. Case (1, 1) does not exist. For i ∈ {2,

…, 9}, the analysis is effectively the same; therefore, we take
Case (8, 8) for example. For two non‐empty bit sequences
X ≠ X, where jXjn ¼ jXjn, let ΔðX;XÞ ∈ jXjn

� �
be the index

of the first difference: when i¼ ΔðX;XÞ, X½i� ≠ X½i� and
X½j� ¼ X½j� for all j ∈ [i − 1], where X [i] denotes the ith block.
We use ℓ to denote the number of maximum ~P calls in a query.
We further divide Case (8, 8) into the following subcases:

‐ Subcase (1): a = a0 and m = m0. We have Stw
E ¼ S

tw
D . We

either have A ≠ A or A¼ A and C ≠ C. In the first case, let
i¼ ΔðA;AÞ. Let (X, Y) be the input‐output pair of the ith ~P

call for QE. Define ðX;YÞ similarly for QD. By the defini-
tion of i and ρC, X ≠ X holds, and it means Y←$ f0; 1gnnfYg
(as ~P takes an identical tweak). From Lemma 2, the colli-
sion probability between the next ~P block inputs is at most
1/2n−2. This means that QD will create a chain of random
inputs to ~P, and the encryption of the last chain value yields
T*. As we have ℓ ~P calls, taking the union bound,
pf ≤ ℓ=2n−2 holds. For the second case (A¼ A and C ≠ C),
the analysis is mostly identical; due to the definition of ρC,
the first ciphertext difference will create a difference in the ~P

input, which will create a random chain with each collision
probability 1/2n−2. Thus, pf ≤ ℓ=2n−2 holds too.

‐ Subcase (2): a < a0. When a ≥ 2 (respectively, a = 1), (a, 0)
(resp. (*0)) appears only in Stw

D , hence the corresponding ~P

output is completely random. This will create a random
chain for the successive ~P inputs and makes pf ≤ ℓ=2n−2.

‐ Subcase (3): a > a0. When a0 ≥ 2 (respectively, a0 = 1), the
tweak value (a0 − 1, 2) (resp. (*2)) appears only in Stw

D , hence
pf ≤ ℓ=2n−2 holds in the same manner to the above case.

‐ Subcase (4): a = a0,m ≠m0. The last value of Stw
D is unique,

hence pf ≤ 1=2n holds.

Hence, pf ≤ ℓ=2n−2 holds for Case(8, 8). As mentioned
earlier, other Case(i, i) for all i ≠ 8 are similarly proved with
the same bound.

Case (i, j) for i ≠ j. For most of the cases, the analysis is
simple as there is a unique value that appears only in Stw

D . From
the same analysis as above, it makes pf ≤ ℓ=2n−2.
Still, there are two categories of Case (i, j) that need a

different analysis. The first category consists of Case (1, 7),
Case (7, 1), Case (2, 8), Case (8, 2), Case (3, 9), and Case (9,
3). The second category consists of Case (6, 4), Case (8, 4),
and Case (9, 7).
The first category allows Stw

D ¼ S
tw
E . But all the cases

included in this category have either A is empty and A is partial
(or vice versa), while the first tweak value may or may not be
identical. Thanks to the property of padc, this means that the
first (tweak, block) input tuples to ~P are always different, and
its output in QD will create a random chain to the last ~P input,
from the same reason as in Case (i, i), irrespective of the
lengths of queries. So pf ≤ ℓ=2n−2 holds for this category.
The second category is somewhat special because Stw

D can
be a subset of Stw

E . We takeCase (6, 4), for example, when a≥ 2,
m = 1 (Class6 − 3) and a0 ≥ 2 and C is empty (Class4 − 2). If a
≠ a0, the last value in Stw

D , namely (a
0 − 1, 3), is new, so

Stw
D ⊈ Stw

E and pf ≤ 1=2n. However, when a = a0, Stw
D ⊂ Stw

E
holds as Stw

D ¼ S
tw
E nfða − 1; 1Þg. Let (X0, Y0), (X1, Y1), and

(X2, Y2 = T) be the I/O pairs of the last three ~P for QE.
Similarly, let X0;Y0ð Þ, X1;Y1 ¼ T∗ð Þ be the last two I/O pairs of
~P for QD. If X1 ¼ X2 holds, it leads to a forgery.QE reveals Y1,
X2, and T. However, X1 is completely random, givenQE, as the
corresponding tweak (a − 1, 1) in Stw

E are used only once inQE
(together withN). As Y0 is a permutation of X1 given A [a], this
makes Y0 random too. If a = a0 and ΔðA;AÞ ¼ a or just A¼ A,
we have Y0 ¼ Y0, and the randomness of Y0 ensures

Pr X1 ¼ X2½ � ¼ Pr GC Y0ð Þ⊕ A½a� ¼ X2½ � ≤
1
2n

irrespective of the choice of A½a�. Unless X1 ¼ X2, T* is
random, which means pf ≤ 2=2n. If a = a0 and ΔðA;AÞ < a,
there is a pair of distinct inputs to ~P taking the same tweak,
which creates a random chain. As before, we have
pf ≤ ℓ=2n−2. Other cases in the second category follow simi-
larly. Summarising the entire case analysis, Advnmrl−auth

iGC ~P½ �
ðAÞ ≤

ℓ=2n−2 when qd = 1. The bound for general qd ≥ 1 is obtained
by multiplying qd:

Advnmrl−auth

iGC ~P½ �
ðAÞ ≤

qdℓ
2n−2

ð8Þ

for adversary A using qd decryption queries and maximum
input block length (for both encryption and decryption) ℓ.
From Def. 8 and Figure 4, ℓ ≤ ℓmax holds for any query. From
this and Equations (7) and (8), we conclude the proof.
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7 | CONCLUSION

We have shown that the two finalists of NIST Lightweight
Cryptography project, Romulus‐N and GIFT‐COFB, have
nonce‐misuse resilience privacy and authenticity, while origi-
nally defined as nonce‐based AE schemes. We also show that
they do not have stronger, misuse resistant security. Hence, our
results are qualitatively tight with respect to the security guar-
antee under nonce misuse. Such security features would provide
an additional defense for these schemes in practical use cases.
For GIFT‐COFB, an open question is to find matching attacks
resolving the tightness of nonce‐misuse resilience bounds. In
addition, studying nonce‐misuse resilience/resistance of other
finalists, both from the attack and provable security perspec-
tives, would be an interesting topic for future work.
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APPENDIX

The H ‐coefficient technique
We use Patarin's H‐coefficient technique [34] to prove security
for the involved new TBCs. We provide a quick overview of its
main ingredients here. Our presentation borrows heavily from
that of [35]. Fix a distinguisher D that makes at most q queries
to its oracles. As in the security definition presented above, D's
aim is to distinguish between two worlds: a ‘real world’ and an
‘ideal world’. Assume wlog that D is deterministic. The
execution of D defines a transcript that includes the sequence
of queries and answers received from its oracles; D's output is a
deterministic function of its transcript. Thus, if Tre;Tid denote
the probability distributions on transcripts induced by the real
and ideal worlds, respectively, then D's distinguishing advan-
tage is upper bounded by the statistical distance

Δ Tre;Tidð Þ : ¼
1
2

X

τ
Pr Tre ¼ τ½ � − Pr Tid ¼ τ½ �j j;

where the sum is taken over all possible transcripts τ.
Let Θ denote the set of attainable transcripts, that is,

transcripts that can be generated by D in the ideal world with
non‐zero probability. We look for a partition of Θ into two sets
Θgood and Θbad of ‘good’ and ‘bad’ transcripts, respectively,
along with a constant ϵ1 ∈ [0, 1) such that

τ ∈ T 1⇒
Pr Tre ¼ τ½ �

Pr Tid ¼ τ½ �
≥ 1 − ϵ1: ð9Þ

It is then possible to show (see [35] for details) that

Δ Tre;Tidð Þ ≤ ϵ1 þ Pr Tid ∈Θbad½ �

is an upper bound on the distinguisher's advantage. One
should think of ϵ1 and Pr Tid ∈Θbad½ � as ‘small’, so ‘good’
transcripts have nearly the same probability of appearing in the
real world and the ideal world, whereas ‘bad’ transcripts have a
low probability of occurring in the ideal world.
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