
Maliciously Secure Massively Parallel Computation for All-but-One

Corruptions

Rex Fernando1, Yuval Gelles2, Ilan Komargodski3, and Elaine Shi4

1UCLA: rex1fernando@gmail.com.
2Hebrew University: yuval.gelles@mail.huji.ac.il.

3Hebrew University and NTT Research: ilank@cs.huji.ac.il.
4Carnegie Mellon University: runting@gmail.com.

August 8, 2022

Abstract

The Massive Parallel Computing (MPC) model gained wide adoption over the last decade.
By now, it is widely accepted as the right model for capturing the commonly used programming
paradigms (such as MapReduce, Hadoop, and Spark) that utilize parallel computation power to
manipulate and analyze huge amounts of data.

Motivated by the need to perform large-scale data analytics in a privacy-preserving manner,
several recent works have presented generic compilers that transform algorithms in the MPC
model into secure counterparts, while preserving various efficiency parameters of the original
algorithms. The first paper, due to Chan et al. (ITCS ’20), focused on the honest majority
setting. Later, Fernando et al. (TCC ’20) considered the dishonest majority setting. The latter
work presented a compiler that transforms generic MPC algorithms into ones which are secure
against semi-honest attackers that may control all but one of the parties involved. The security of
their resulting algorithm relied on the existence of a PKI and also on rather strong cryptographic
assumptions: indistinguishability obfuscation and the circular security of certain LWE-based
encryption systems.

In this work, we focus on the dishonest majority setting, following Fernando et al. In this
setting, the known compilers do not achieve the standard security notion called malicious security,
where attackers can arbitrarily deviate from the prescribed protocol. In fact, we show that unless
very strong setup assumptions as made (such as a programmable random oracle), it is provably
impossible to withstand malicious attackers due to the stringent requirements on space and round
complexity.

As our main contribution, we complement the above negative result by designing the first
general compiler for malicious attackers in the dishonest majority setting. The resulting protocols
withstand all-but-one corruptions. Our compiler relies on a simple PKI and a (programmable)
random oracle, and is proven secure assuming LWE and SNARKs. Interestingly, even with such
strong assumptions, it is rather non-trivial to obtain a secure protocol.

Contents

1 Introduction 1
1.1 Our Results . 3

2 Overview of our Techniques 5
2.1 Our Malicious Compiler for Short Output Protocols . 6

2.1.1 Avoiding Coin-Flipping (or: P2P Semi-Malicious Security). 7
2.1.2 Enforcing P2P Semi-Malicious Behavior . 7

2.2 Our Malicious Security for Long Output Protocols . 11

3 Preliminaries 12
3.1 Somewhere Statistically Binding Hash . 12
3.2 Indistinguishability Obfuscation for Circuits . 13
3.3 Puncturable Pseudorandom Functions . 13
3.4 M-out-of-M Threshold Fully Homomorphic Encryption . 14
3.5 ID-Based Simulation-Extractable zk-SNARKs . 15
3.6 Threshold Signature Scheme with Distributed Reconstruction 17

4 The MPC Model and Security Definitions 19
4.1 The Massively Parallel Computation Model . 19
4.2 Malicious Security for MPC protocols . 20
4.3 P2P Semi-Malicious Security for MPC protocols . 22

5 Impossibility of a (Semi-)Malicious Secure Compiler 23

6 Common Subprotocols 26
6.1 The Distribute Subprotocol . 26
6.2 The Combine Subprotocol . 26

7 Semi-Malicious Secure MPC for Long Output 27
7.1 The Protocol . 27
7.2 Proof of Security . 31

8 Malicious-Secure MPC 37
8.1 Ingredients, Assumptions and Notation . 37
8.2 The Subprotocols . 40

8.2.1 The CalcMerkleTree Subprotocol . 40
8.2.2 The Agree Subprotocol . 42
8.2.3 The SNARK statements and the RecCompAndVerify Subprotocol 43

8.3 The Compiler . 48
8.4 Security of the Compiler . 50

8.4.1 Proof of Indistinguishability . 54
8.5 Putting it All Together . 61

References 67

A Semi-Malicious Secure MPC for Short Output 67
A.1 The Protocol . 67
A.2 Security . 68

1 Introduction

The Massively Parallel Computation (MPC1) model, first introduced by Karloff, Suri, and Vassil-
vitskii [KSV10], is widely accepted as the de facto model of computation that abstracts modern
distributed and parallel computation. This theoretical model is considered to best capture the
computational power of numerous programming paradigms, such as MapReduce, Hadoop, and
Spark, that have been developed to utilize parallel computation power to manipulate and analyze
huge amounts of data.

In the MPC model, there is a huge data-set whose size is N . There are M machines connected
via pairwise communication channels and each machine can only store S = N ε bits of information
locally for some ε ∈ (0, 1). We assume that M ∈ Ω(N1−ε) so that all machines can jointly at least
store the entire data-set. This setting is believed to capture best large clusters of Random Access
Machines (RAMs), each with a somewhat considerable amount of local memory and processing
power, yet not enough to store the massive amount of available data. Such clusters are operated by
large companies such as Google or Meta.

The primary metric of efficiency for algorithms in the MPC model is their round complexity. In
general, the goal is to achieve algorithms which run in o(log2N) rounds; Ideally, we aim for algorithms
with O(1) or O(log logN) rounds. The local computation time taken by each machine is essentially
“for free” in this model. By now, there is an immensely rich algorithmic literature suggesting various
non-trivial efficient algorithms for tasks of interest, including graph problems [AG18, ANOY14,
ASZ19, Ass17, ABB+17, AK17, ASW18, BKV12, BHH19, BBD+19, CFG+19, C LM+18, GU19,
GKMS19, LMW18, LMSV11, Ona18, RMCS13, HSS19], clustering [BMV+12, BBLM14, EIM11,
GLM19, YV18] and submodular function optimization [dPBENW16, EN15, KMVV15, MKSK13].

Secure MPC. The MPC framework enables the algorithmic study of the large-scale data analytics
commonly performed today. From a security point of view, a natural question is whether it is
possible to do so in a privacy-preserving manner. This question is of increasing importance because
numerous data analytics tasks we want to perform on these frameworks involve sensitive user data,
e.g., users’ behavior history on websites and/or social networks, financial transaction data, medical
records, or genomic data. Traditional deployment of MPC is often centralized and typically hosted
by a single company such as Google or Meta. However, for various reasons, it may not be desirable
for users to disclose sensitive data in the clear to centralized cloud providers.

As a concrete motivating scenario, imagine that multiple hospitals each host their own patient
records, but they would like to join forces and perform some clinical study on the combined records.
In this case, each hospital contributes one or more machines to the MPC cluster, and the challenge
here is how the hospitals can securely compute on their joint dataset without disclosing their
patient records. In this scenario, since the hospitals are mutually distrustful, it is desirable to
obtain a privacy guarantee similar to that of cryptographic secure multi-party computation. That
is, we would like to ensure that nothing is leaked beyond the output of the computation. More
specifically, just like in cryptographic secure computation, we consider an adversary who can observe
the communication patterns between the machines and also control some fraction of the machines.
Note that all machines’ outputs can also be in encrypted format such that only an authorized data
analyst can decrypt the result; or alternatively, secret shared such that only the authorized data
analyst can reconstruct. In these cases, the adversary should not be able to learn anything at all
from the computation. We call MPC algorithms that satisfy the above guarantee secure MPC.

Why classical secure computation techniques fail. There is a long line of work on secure

1Throughout this paper, whenever the acronym MPC is used, it means “Massively Parallel Computation” and not
“Multi-Party Computation”.

1

multiparty computation (starting with [GMW87, BGW88]), and so it is natural to wonder whether
classical results can be directly applied or easily extended to the MPC model. Unfortunately,
this is not the case, due to the space constraint imposed on each machine. Algorithms in the
MPC model must work in as few rounds as possible while consuming small space. Note that since
the number M of machines can be even larger than the space s of a machine, a single machine
cannot even receive messages from all parties at once, since it would not be able to simultaneously
store all such messages. This immediately makes many classical techniques unfit for the MPC
model. In many classical works, a single party must store commitments or shares of all other
parties’ inputs [GMW87, KOS03, Pas04, AJL+12, MW16, DHRW16]. Also, protocols that require
simultaneously sending one broadcast message per party (e.g., Boyle et al. [BCP15]) are unfit since
this also implies that each party needs to receive and store a message from all other parties.2

State of the art. Chan, Chung, Lin, and Shi [CCLS20] put forward the challenge of designing
secure MPC algorithms. Chan et al.’s main result is a compiler that takes any MPC algorithm and
outputs a secure counterpart that defends against a malicious adversary who controls up to 1/3− η
fraction of machines (for a small constant η). The round overhead of their compiler is only a constant
multiplicative factor, and the space required by each machine only increases by a multiplicative
factor that is a fixed polynomial in the security parameter. Malicious security relies on the existence
of a threshold FHE (TFHE) scheme, (simulation-extractable multi-string) NIZKs, and the existence
of a common random string (CRS) that is chosen after the adversary commits to its corrupted set.
If the protocol specification can be written as a shallow circuit, then a leveled TFHE scheme would
suffice, and so the construction can be based on LWE [Reg09, AJL+12, BGG+18]. Otherwise, we
need a non-leveled scheme which we can get by relying on Gentry’s bootstrapping technique [Gen09].
This requires the TFHE scheme being “circular secure”.3

More recently, Fernando et al. [FKLS20] considered the dishonest majority setting and presented
two compilers. The first compiler only applies to a limited set of MPC functionalities (ones with
a “short” output) and the second applies to all MPC functionalities. Both their compilers rely
on a public-key infrastructure (PKI) and they obtain security for a semi-honest attacker that
controls all machines but one. The round overhead of their compilers is similarly only a constant
multiplicative factor, and the space required by each machine only increases by a multiplicative
factor that is a fixed polynomial in the security parameter. Their first compiler is secure assuming a
TFHE scheme and the second compiler is secure assuming TFHE, LWE, and indistinguishability
obfuscation [BGI+12, GGH+13]. Both compilers require the TFHE scheme to be “circular secure”.
This work leaves two very natural open questions:

• Is it possible to get malicious security in the dishonest majority setting? Here, no feasibility
result is known under any assumption!

• Can we avoid non-standard assumptions in the dishonest majority setting?

2Some works design “communication preserving” secure computation protocols (for example, [NN01, LNO13,
HW15]) where the goal is to eliminate input/output-size dependency in communication complexity—all of these works
only address the two parties setting.

3In a leveled scheme the key and ciphertext sizes grow with the depth of the circuit being evaluated. In contrast,
in a non-leveled scheme these sizes depend only on the security parameter. Gentry’s bootstrapping requires the
assumption that ciphertexts remain semantically secure even when we use the encryption scheme to encrypt the secret
decryption key.

2

1.1 Our Results

We make progress towards answering both of the above problems. Our contributions can be
summarized as follows (with details following):

1. We prove that it is impossible to obtain a maliciously secure compiler for MPC protocols, no
matter what computational assumptions are used. Our impossibility result works even if the
compiler assumes a PKI, a common reference string, or even a non-programmable random
oracle.

2. We complement the above impossibility result by presenting a maliciously secure compiler
for MPC protocols, assuming a programmable random oracle, zero-knowledge SNARKs, and
LWE. This result is our main technical contribution.

3. Lastly, we make a simple observation that allows us to get rid of the circular security assumption
on TFHE that was made by Fernando et al. [FKLS20], as long as the protocol specification
can be written as a shallow circuit. Thus, in this case, our observation can be used to re-derive
[FKLS20]’s semi-honest long output protocol, relying only on LWE and indistinguishability
obfuscation. This is useful since many MPC algorithms have very low depth, usually at most
poly-logarithmic in the input size (e.g., [ASZ19, ASW18, GU19, HSS19] to name a few).

An impossibility result for semi-malicious compilers. We show an impossibility result for
a generic compiler that results with a semi-malicious secure MPC. The impossibility result holds
in the setting of Fernando et al. [FKLS20], where strong cryptographic assumptions as well as a
PKI were used. In fact, the impossibility result shows that no matter what cryptographic hardness
assumptions are used and even if the compiler relies on a PKI, a common reference string (CRS),
or a (non-programmable) random oracle, then no generic compiler can result with semi-malicious
secure MPC protocols.

In more detail, we show that the restrictions imposed by the MPC model (the near constant round
complexity along with the space constraint) make it impossible to implement certain functionalities
in a (semi-malicious) secure manner. Specifically, we design a functionality for which there is a
party whose outgoing communication complexity is roughly proportional to the number of parties.
This, in turn, means that either the round blowup or the space blowup must be significant, leading
to a contradiction. The functionality that we design assumes the existence of a one-way functions.

This impossibility result is inspired by a related lower bound due to Hubáček and Wichs [HW15]
who showed that the communication complexity of any malicious secure function evaluation protocol
must scale with the output size of the function. We extend their proof to the (multiparty, space
constrained) MPC setting allowing various trusted setup assumptions.

A malicious compiler. We observe that the above impossibility result does not hold if the compiler
relies on a programmable random oracle. To this end, as our second and more technical result,
we give a compiler which takes as input any insecure MPC protocol and turns it into one that is
secure against a malicious attacker that controls all machines but one. This compiler relies on a few
assumptions: LWE, the existence of a programmable random oracle, and a zero-knowledge succinct
non-interactive arguments of knowledge (zkSNARK). The compilation preserves the asymptotical
round complexity of the original (insecure) MPC algorithm. This is the first secure MPC compiler
for the malicious, all-but-one corruption setting, under any assumption.

Recall that a SNARK is a non-interactive argument system which is succinct and has a strong
soundness guarantee. By succinct we mean that the proof size is very short, essentially independent
of the computation time or the witness size. The strong soundness guarantee of SNARKs is

3

knowledge-soundness that guarantees that an adversary cannot generate a new proof unless it
knows a witness. This is formalized via the notion of an extractor which says that if an adversary
manages to produce an acceptable proof, there must be an efficient extractor which is able to
“extract” the witness. A SNARK is said to be zero-knowledge if the proof reveals “nothing” about the
witness. There are many constructions of SNARKs with various trade offs between efficiency, security
guarantees, and the required assumptions, for example the works of [Mic94, BCCT13, Gro16]. All
of these constructions can be used to instantiate our compiler, resulting in a compact CRS with size
independent of the number of parties and the input and output size.

From semi-malicious to malicious. The above result is obtained in two steps. First, we obtain
a semi-malicious MPC compiler. This step builds on the semi-honest (long output) protocol of
Fernando et al. [FKLS20] and extends it to the semi-malicious setting. Second, we generically
transform any semi-malicious MPC algorithm into a malicious one (both for all-but-one corruptions).
The transformation uses only zero-knowledge SNARKs and has only constant overhead in its round
complexity.

We remark that our semi-malicious protocol does not need a random oracle if we only need
semi-honest security. This result is interesting by itself since it gives a strict improvement over
the result of Fernando et al. [FKLS20]. Indeed, we get the same result as that of [FKLS20] except
that we use plain threshold FHE as opposed to their result which relies on a novel circular security
assumption related to threshold FHE.

Recall that in semi-malicious security introduced by Asharov et al. [AJL+12], corrupt parties
must follow the protocol specification, as in semi-honest security, but can use arbitrary values for
their random coins. In fact, the adversary only needs to decide on the input and the random coins
to use for each party in each round at the time that the party sends the first message.

Our semi-malicious to malicious compiler is essentially a GMW-type [GMW87] compiler but
for the MPC setting, and therefore is of independent interest. Interestingly, standard compilation
techniques in the secure computation literature do not apply to the MPC model. For example, it is
well-known that in the standard model, one can generically use non-interactive zero-knowledge proofs
(NIZKs) to compile any semi-malicious protocol into a malicious one (see e.g., [AJL+12, MW16])
without adding any rounds. However, this transformation relies on a broadcast channel and is
therefore inapplicable to the MPC model. We therefore present a relaxation of semi-malicious
security, called P2P semi-malicious security, which fits better to a peer-to-peer communication
network, and in particular, to the MPC model. We show a generic transformation from P2P semi-
malicious security to malicious security, assuming LWE and a zkSNARK for NP. Our transformation
is much more involved than the classical one in the broadcast model (which uses “only” zero-
knowledge proofs) and requires us to design and combine several new primitives. We believe that
this relaxation of semi-malicious security and the transformation themselves are of independent
interest.

Paper Organization

In Section 2, we give an overview of the techniques used in obtaining our results. Section 3 contains
preliminaries for the rest of the paper. In Section 4 we formally defined the model and the malicious
and P2P-semi-malicious security definitions. In Section 5 we prove the impossibility result of generic
(semi-)malicious compilers even using setup assumptions. In Section 6 we introduce two commonly
used procedures. In Section 7 we give a P2P-semi-malicious compiler for long-output MPC protocols.
Lastly, in Section 8 we give our P2P-semi-malicious-to-malicious compiler. For completeness,
in Appendix A, we give a P2P-semi-malicious compiler for short-output MPC protocols. The

4

protocol is essentially the same as [FKLS20], however we give an updated proof to achieve the
stronger security definition.

2 Overview of our Techniques

First, let us briefly recall the computational model. The total input size contains N bits and there
are about M ≈ N1−ε machines, each having space S = N ε. The space of each machine is bounded
by S and so in particular, in each round each machine can receive at most S bits. We are given
some protocol in the MPC model that computes some functionality f : ({0, 1}lin)M → ({0, 1}lout)M ,
where lin, lout ≤ S, and we would like to compile it into a secure version that computes the same
functionality. We would like to preserve the round complexity up to constant blowup, and to preserve
the space complexity as much as possible. Ultimately, we want to guarantee the strong notion of
security against malicious attackers that can arbitrarily deviate from the protocol specification.

Since our goal is to use cryptographic assumptions to achieve security for MPC protocols, we
introduce an additional parameter λ, which is a security parameter. For a meaningful statement,
one must assume that N = N(λ) is a polynomial and that S is large enough to store O(λ) bits.

We assume that the communication pattern, i.e., the number of messages sent by each party,
the size of messages, and the recipients, do not leak anything about the parties’ inputs. We call a
protocol that achieves this property communication oblivious. This assumption can be made without
loss of generality due to a result of Chan et al. [CCLS20] who showed that any MPC protocol can
be made communication oblivious with constant blowup in rounds and space.

It is instructive to start by explaining where classical approaches to obtaining malicious security
break down. A natural approach to bootstrap semi-honest to malicious security is by enforcing
honest behavior. A semi-honest compiler was given by Fernando et al. [FKLS20] so this seems like
a good starting point. Typically, such a transformation is done first letting parties commit to their
(secret) inputs and running a coin-flipping protocol to choose randomness for all parties before the
beginning of computations, and then together with every message they send, they attach a proof
that the message is well formed and was computed correctly using the committed randomness. The
proofs must be zero-knowledge so that no information is leaked about their input and randomness.
This is the most common generic approach, introduced already in the original work of Goldreich,
Micali, and Wigderson (GMW) [GMW87]. It turns out that trying to adapt this approach to the
MPC setting runs into many challenges.

• GMW-type compilers usually rely on a multiparty coin-flipping protocol since the underlying
semi-honest protocol only guarantees security when parties use fresh and uniform randomness
to generate their messages. It is not clear how to perform such a task while respecting the
constraints of the MPC model.

• GMW-type compilers usually rely on an all-to-all communication pattern. That is, whenever
a party Pi sends a message, it must prove individually to each other party Pj that it acted
honestly. This, of course, is completely untenable in the MPC model, since it would mean
an O(M) blowup in communication. Specifically, assume party P1 sends a message m during
round 1. Even if the message is meant only for P2, the GMW compiler requires P1 to broadcast
a commitment cm of m to every other party too, and prove that the message committed under
cm is computed correctly. This is necessary because other parties may later on receive messages
from, say, P2, that depend on m. This approach incurs O(M) communication blowup, and
this blowup must be charged either to round complexity or space in the MPC model.

5

The impossibility result. It turns out that the above challenges are somewhat inherent in
the MPC setting in the sense that it is impossible to bypass them, even if arbitrarily strong
cryptographic assumptions are made or even if trusted setup assumptions are used (e.g., a PKI or a
non-programmable random oracle). Specifically, it is impossible to obtain a maliciously-secure MPC
compiler under any cryptographic assumption and even if various setup assumptions are used.

The main idea for this impossibility result is to consider the following functionality: party 1
holds as input a PRF key k and the functionality is to send to party i ∈ [M] the value of the PRF
at point i, i.e., PRFk(i). The attacker will control all parties but 1. We show that any malicious
compiler for this functionality must incur non-trivial overhead either in the round complexity or
in the space complexity, rendering it useless in the MPC setting. More specifically, we show that
the total size of outgoing communication from party 1 must be proportional to the number of
machines in the system, M , which in turn means it must store this many bits in a small number
of rounds, implying our result. The proof of this lower bound on the outgoing communication
complexity of party 1 is inspired by a related lower bound due to Hubáček and Wichs [HW15] who
showed that the communication complexity of any malicious secure function evaluation protocol (a
2-party functionality) must scale with the output size of the function. We extend their proof to the
(multiparty, space constrained) MPC setting and also to capture various trusted setup assumptions.

The main idea of the proof is as follows. The view of the adversary in any realization of the above
protocol contains about M outputs of the PRF. By security, these outputs should be efficiently
simulatable. If the communication complexity from party 1 is smaller than M , we can use the
simulator to efficiently compress about M PRF values. This contradicts the fact that the outputs
of a PRF are incompressible. The actual argument captures protocols that might rely on setup
which is chosen before the inputs, for instance, a PKI or a non-programmable random oracle.
Additionally, the above argument works even if the underlying MPC is not maliciously secure but
only “semi-malicious” or even our new notion “P2P-semi-malicious” (both of which will be discussed
below).

2.1 Our Malicious Compiler for Short Output Protocols

To explain the main ideas underlying our compiler we first focus on a simpler setting where the given
(insecure) MPC algorithm has an output that fits into the memory of a single machine. Following
the terminology of Fernando et al. [FKLS20], we call such protocols short output. Recall that our
impossibility result from above basically says that the outgoing communication complexity from
some party must scale with the total output size. Since the latter is very small in our case, we
conclude that the impossibility result does not apply to short output MPC protocols.

Our starting point is the semi-honest compiler of Fernando et al. [FKLS20]: execute Π under
the hood of a homomorphic encryption (HE) scheme and eventually (somehow) decrypt the result.
If implemented correctly, intuitively, it is plausible that such a protocol will guarantee security
for any single party, even if all other ones are colluding. The main question is basically how to
decrypt the result of the computation. Fernando et al. [FKLS20] relied on a threshold FHE scheme
to implement the above blueprint.

At this point we would like to emphasize that it is not immediately straightforward how to
adapt existing threshold- or multi-key-based FHE [AJL+12, LTV12, MW16, BP16, PS16, BGG+18,
BJMS18] solutions to the MPC model. At a high-level, using these tools, each party first broadcasts
an encryption of its input. Then each party locally (homomorphically) computes the desired function
over the combined inputs of all parties, and finally all parties participate in a joint decryption
protocol that allows them to decrypt the output (and nothing else). However, the classical joint
decryption protocols are completely non-interactive but consume high space: each party broadcasts

6

a “partial decryption” value so that each party who holds partial decryptions from all other parties
can locally decode the final output of the protocol. If the underlying MPC protocol is short output,
then we can leverage the fact that for known TFHE schemes, the joint decryption process can be
executed “incrementally” over a tree-like structure, making it perfectly fit into the MPC model.
Specifically, it is possible to perform a joint decryption protocol in the MPC model to recover the
output as long as it fits into the memory of a single machine.

2.1.1 Avoiding Coin-Flipping (or: P2P Semi-Malicious Security).

As mentioned, we do not know how to directly perform a multiparty coin-flipping protocol in the
MPC model. Many previous works, such as [AJL+12, MW16], bypass this problem in the name
of saving rounds of communication, by assuming that the underlying protocol satisfies a stronger
notion of security called semi-malicious security.

In semi-malicious security, the guarantee is similar to semi-honest security, namely, that the
attacker has to follow the protocol, except that it is free to choose its own randomness. This is
formalized by the requirement that after every message the adversary sends on behalf of a corrupted
party, it must explain all messages sent up to this point by the party by providing an input and
randomness which is consistent with this party’s messages.

We do not know if the above semi-honest protocol can be proven to satisfy semi-malicious
security. This is because the classical definition of semi-malicious security seems specifically defined
to work in the broadcast model, and there are subtle problems that arise when using it without
broadcast. Nevertheless, we manage to define a relaxation of semi-malicious security, we term P2P
semi-malicious security, which turns out to be easier to work with in the MPC model. With this
refine notion in hand, we show that the above-mentioned semi-honest MPC compiler satisfies P2P
semi-malicious security. This step is rather straightforward once the right definition is in place. The
main technical contribution is a method to bootstrap this (weaker) notion of security to full-fledged
malicious security.

To explain what P2P semi-malicious security is, it is instructive to be more precise about what
semi-malicious security means. Specifically, in the semi-malicious corruption model the adversary
is only required to give a local explanation of each corrupted party’s messages. In the broadcast
channel, this is not a problem because all messages are public anyway, even those between corrupted
parties. However, absent a broadcast channel, the adversary need not explain messages between
corrupt parties as they can essentially be performed by the attacker, outside of the communication
model. (Recall that in the definition of secure computation, an adversary is only required to furnish
messages which honest parties can see.) Thus, in the P2P semi-malicious security model, we require
the adversary to explain its behavior completely by also explaining the “hidden” messages sent
amongst corrupt parties. While this gives a weaker security guarantee than classical semi-malicious
security it is still stronger than semi-honest security and it turns out to be sufficient for us to go all
the way to malicious security.

2.1.2 Enforcing P2P Semi-Malicious Behavior

The next challenge is how to compile our P2P semi-malicious protocol into a maliciously secure
one. Recall that classical GMW-type [GMW87] compilers do not work in the MPC model since
whenever a party Pi sends a message, it must prove individually to each other party Pj that it acted
honestly. This, of course, is completely untenable in the MPC model, since it would mean an O(M)
blowup in communication. Specifically, assume party P1 sends a message m during round 1. Even if
the message is meant only for P2, the GMW compiler requires P1 to broadcast a commitment cm of

7

m to every other party too, and prove that the message committed under cm is computed correctly.
This is necessary because other parties may later on receive messages from, say, P2, that depend on
m. This approach incurs O(M) communication blowup, and this blowup must be charged either to
round complexity or space in the MPC model.

First attempt. We use a strong form of zero-knowledge proofs, known as succinct non-interactive
arguments of knowledge or zkSNARKs. These proofs have the useful property that they can be
recursively composed without blowing up the size of the proofs. What this means is that if a verifier
sees a proof π for some statement x, it can then compute a new proof π′ that attests to knowledge of
a valid proof π for x. In our setting, this means that every party Pi can prove that its (committed)
new state and outgoing messages are computed correctly based on its committed previous state and
random coins, as well as a set of incoming messages which themselves must carry valid zkSNARKs
that vouch for their validity.

Remark 1. Note that for this to work in the MPC model, we need that the proofs are computable in
space proportional to the space of the local round computation. A SNARK that preserves the space
bound in this way is called a complexity-preserving SNARK, and generic transformations from any
SNARK to a complexity-preserving one are known [BCCT13].

Unfortunately, proving the security of this scheme turns out to be problematic. In the security
proof, we would need to recursively extract the composed zkSNARK proofs in order to find the
“cheating” proof (as some proofs along the way could be correct). That is, we need to invoke the
SNARK extractor over an adversary that itself is an extractor. Unfortunately, performing this
recursive extraction näıvely blows up the running time of the extractor exponentially with the
depth of the recursion, and thus the recursive composition can only be performed O(1) times. This
means that we would be able to support only constant-round MPC protocols. Some works bypass
this problem by making the very strong, non-standard assumption that there is a highly efficient
extractor (i.e., where the overhead is additive) and therefore recursive composition can be performed
for an unbounded number of times (for example, [BCCT13, CTV15, BCTV17, BJPY18]). We want
to avoid such strong assumptions.

Remark 2. At a very high level, proofs carrying data (PCDs) [CT10, BCCT13, BCMS20, BCL+21]
are a generalization of classical proofs that allow succinctly proving honest behavior over a distributed
computation graph. While the communication underlying an MPC algorithm can be viewed as a
specific distributed computation, we cannot use them directly to get malicious security. The main
problem is that PCDs only exist for restricted classes of graphs, unless very strong assumptions are
made. Known PCDs (e.g., the one of Bitansky et al. [BCCT13] which in turn relies on SNARKs)
only support constant-depth graphs or polynomial-depth paths. Our protocol does not fit into either of
these patterns. It is possible to get PCD for arbitrary graphs from SNARKs where the extractor has
an additive polynomial-time overhead, but as mentioned we want to avoid such strong assumptions.
Second, note that we require privacy when compiling a malicious-secure protocol, which PCDs alone
do not guarantee.

Our solution. Our goal is however to support an arbitrary round MPC protocol. To this end, we
devise a method for verifying P2P-semi-malicious behavior by ensuring consistency and synchrony
of intermediate states after every round, instead of throughout the whole protocol. We want that at
the end of each round, the parties collectively hold a succinct commitment to the entire current state
of all parties in the protocol. Given this commitment and a commitment to the previous round’s
state, the parties then collectively compute a proof that the entire current-round state has been

8

obtained via an honest execution of one round of the protocol with respect to the previous-round
state. This is implemented by recursively composing succinct proofs about the local state of each
machine (using its limited view of the protocol execution) into a conjunction of these statements
which proves global honest behavior. We implement this sub-protocol by composing zkSNARKs in
a tree-like manner so that we only have constant blow up in round complexity.

To describe our approach, we first design a few useful subprotocols:

1. CalcMerkleTree sub-protocol: every party i ∈ [M] has an input xi, and they run an MPC protocol
such that everyone learns the root digest τ of a Merkle tree over {xi}i∈[M], and moreover, every
party learns an opening that vouches for its own input xi w.r.t. to the Merkle root τ . We make
the arity γ of the Merkle tree as large as λ, i.e., the security parameter, and therefore the depth
of the tree is a constant. The protocol works in the most natural manner by aggregating the hash
over the γ-fan-in Merkle tree: in every level of the tree, each group of γ parties send their current
hash to a designated party acting as the parent; and the parent aggregates the hashes into a
new hash. At this moment, we can propagate the opening to each party, this time in the reverse
direction: from the root to all leaves. The protocol completes in constant number of rounds.

2. Agree sub-protocol: every party i ∈ [M] has an input xi, and they run a secure MPC protocol
to decide if all of them have the same input. To accomplish this in constant number of rounds
in the MPC model without blowing up the space, we use a special threshold signature scheme
that allows for distributed reconstruction. We build such a signature scheme by adapting a
scheme of Boneh et al. [BGG+18] to our setting. Crucially, the signature scheme of [BGG+18]
has a reconstruction procedure which is essentially linear. In this way, the parties can aggregate
their signature shares over a wide-arity, constant-depth tree (where the arity is again λ). If all
parties do not have the same input, disagreement can be detected during the protocol. Otherwise,
the party representing the root obtains a final aggregated signature which is succinct. It then
propagates the signature in the reverse direction over the tree to all parties.

3. RecCompAndVerify subprotocol: every party i ∈ [M] holds a zkSNARK proof πi to some statement
stmti. They run an MPC protocol to compute a recursively composed proof π for a statement
that is the conjunction of all stmtis. This is also performed by aggregating the proofs over a
wide-arity, constant-depth tree (where the arity is again λ); and the aggregation function in this
case is the recursive composition function of the zkSNARK. The aggregated proof is propagated
in the reverse direction over the tree to all parties.

In the first phase, before the protocol begins, each party holds an input and randomness for
the underlying protocol which is being compiled. First, the parties engage in a “commitment
phase”: (1) each party computes a non-interactive hiding and binding commitment to their input
and randomness, and then (2) the parties collectively generate a Merkle root τ0 which commits to
these commitments. This step can be accomplished by 1) calling CalcMerkleTree subprotocol, at the
end of which every party receives a Merkle root τ0 and its own opening, and 2) calling Agree to
ensure everyone agrees on τ0.

The next phase is used to simulate the first round of the underlying protocol. Recall that at this
point all parties have a consistent Merkle root τ0 which commits to their inputs and randomnesses,
so in other words, τ0 commits to the global starting state of the protocol. Each party executes the
underlying protocol to obtain a new private state sti,1 and a list msgouti,1 of its outgoing messages.
It then sends these outgoing messages to the recipient parties, and also stores any messages it
received in a list msgini,1. Every party now has a combined local state (sti,1,msgini,1,msgouti,1). All
parties now collectively compute a Merkle root τ1 of all their combined states, again by calling the
CalcMerkleTree and Agree sub-protocols. The parties now need to compute a new succinct proof π1

9

that the entire round-1 state committed to by τ1 has been honestly computed with respect to τ0.
For this to be true, each party Pi must not only prove that (sti,1,msgouti,1) was honestly computed,
but also that its outgoing messages have been properly received by its recipients. At this point,
each party Pi replies to every party Pj that sent a message that it received with an opening in
the global state τ1 that proves that it has recorded the message correctly in its list msgini,1. Now,
each party Pi can compute a proof that (sti,1,msgouti,1) has been computed honestly, and in addition,
that every message in msgouti,1 has been copied to msgj,1, where Pj is the recipient of the message.
These proofs are again aggregated using a recursive composition tree into a single succinct proof, by
calling RecCompAndVerify.

The rounds which follow proceed in essentially the same way. The only difference is that in
successive rounds, the input to each party’s local computation also includes the incoming messages
msgini,r. In this way, the parties incrementally verify that the protocol is being performed honestly,
without ever having to store a full transcript of the execution.

In terms of efficiency, the above compiler essentially replaces each round of the underlying
protocol with a constant number of rounds, therefore the round blowup is constant. Moreover, the
extra local space per party needed to carry out this transformation is only poly(λ) · S, where λ is
the security parameter and S is the space bound of the underlying protocol.

Technicalities in the proof. The most interesting challenge that arises is handling the recursive
composition of the SNARKs. In particular, we are in the context of secure computation, and
therefore we are required to exhibit a simulator which can replicate the behavior of an adversary
in the ideal world. This means we will need to simulate the honest parties’ SNARKs, so we will
require SNARKs with a zero-knowledge property, or zkSNARKs. Moreover, we need to extract
the corrupted parties’ witnesses. Since the recursive composition tree in the simulated world will
include a combination of real and simulated proofs, it is not clear how to use a standard SNARK
extractor to extract in this setting. To overcome this, we use a stronger notion of extraction,
known as identity-based simulation extractability, which works even in the presence of simulated
proofs [BJPY18]. At a high level, in this type of SNARK, each party receives an identity and proves
statements with respect to that identity. Then, during extraction, the adversary receives a restricted
trapdoor which allows it to simulate any proof with an honest id. The extractor is then guaranteed
to extract valid witness for any proof generated with an id that is not in the honest set. Crucially,
this notion is implied by the existence of vanilla SNARKs for NP along with one-way functions,
as shown by Boyle et al. [BJPY18]. (Note that the transformation of [BCCT13] for complexity
preserving SNARKs also preserves the identity-based simulation extractability property.)

Using the simulation-extractability property of a SNARK in the context of secure computation
protocols is trickier than the analogous usage of (non-succinct) non-interactive arguments. In
particular, the extractor needs to make non-black-box use of the adversary [GW11]. A naive way
for the simulator to use this property would be to extract the witnesses used by the corrupted
parties in every round, and then to verify using the witnesses that the round was computed honestly.
Unfortunately, it is not clear how to run the extractor in every round without recursively composing
the extractor with itself R times. This is problematic in super-constant round protocols, because
the extraction time could depend double-exponentially in the number of rounds. This appears to
be even more of a problem for the following reason. Since we are using recursively composable
SNARKs, soundness of our proofs are only guaranteed by exhibiting an extractor, and thus it
seems like extraction in every round is inevitable. However, we bypass this problem by forcing the
corrupted parties to commit at the very beginning to all randomness which they use in the protocol,
even the randomness used to commit to their private state in each round. This allows us to write a

10

simulator which only extracts in the first “commit phase” round, and also allows us to guarantee
soundness via a reduction which only extracts in the first round and some other arbitrarily chosen
round (the reduction is to the collision-resistance of the hash function or the binding property of
the commitment scheme). See details in Appendix 8.

2.2 Our Malicious Security for Long Output Protocols

Now, we consider general MPC protocols. Due to our impossibility result, obtaining an analogous
result for general MPC protocols necessarily requires a new approach, even if we only want to get
(P2P) semi-malicious security. To put things in context, it is useful to recall the semi-honest MPC
compiler for general MPC protocols of Fernando et al. [FKLS20].

Recall that the main challenge is to perform joint decryption of threshold FHE ciphertexts where
each party eventually wants to learn its own output. Here is where Fernando et al. [FKLS20] used
indistinguishability obfuscation: they generate an obfuscated circuit that has the master secret key
hardwired and only agrees to decrypt the given M ciphertexts. Ensuring that this circuit itself is
succinct requires careful use of SSB hashing [HW15] among other techniques. Once the circuit is
small enough, they invoked their short output protocol to generate it securely and then distribute
to all parties.4

This MPC compiler provably (due to our impossibility result) does not result in P2P-semi-
malicious MPC protocols. Moreover, it is not a matter of throwing in more cryptographic assumptions
or modifying the protocol in some clever way—any such modification will still result with an insecure
protocol against semi-malicious attackers. Our main observation used to bypass this is that the
impossibility result fails for protocols where the simulator can program the setup adaptively,
depending on the private inputs of the parties. To this end, we rely on a programmable random
oracle to “program” a specific uniformly-looking value, tying the hands of semi-malicious attackers.

In more detail, at the end of the evaluation phase, each party holds an encryption of its output.
These outputs are (homomorphically) padded, and then all of these padded ciphertexts are used in
a joint protocol to compute a “restricted decryption” obfuscated circuit. Additional randomness is
generated by each party by querying the random oracle and is hardwired (in a hashed manner) in
the restricted decryption circuit; this randomness is generally ignored throughout the protocol. The
simulator will use these random values to program the “right” values to be output by the restricted
decryption circuit. Specifically, in semi-malicious security, after each party commits to its input and
randomness, the simulator knows the private inputs and pads of malicious parties. At this point, it
can program the random oracle at the appropriate location so that using it to mask the padded
output gives the right output. We refer to Section 7 for the precise details.

From semi-malicious to malicious. To compile the above semi-malicious protocol into a
malicious one, we essentially use the same compiler that we described in Section 2.1.2. Indeed, that
compiler did not rely on the underlying MPC being short output at any point. The only technical
issue is that we need to address the fact that the underlying semi-malicious MPC compiler uses
a random oracle which makes it delicate in combination with SNARKs whose goal is to enforce
honest behaviour. To overcome this problem, we carefully design the semi-malicious protocol in a
way that allows us to separate the random oracle-related computation from the statement that is
being proven via the SNARKs. Specifically, we design the semi-malicious MPC compiler so that the
“important” points of the random oracle are known to all parties and so parties can locally verify

4Recall that no party knows the master secret key and so an inner short-output protocol is executed. Its inputs
include the shares of the master secret key and it outputs an obfuscation of the aforementioned circuit.

11

that part of the computation without using a SNARK, and the SNARK will only apply to the other
part of the computation which is in the plain model.

3 Preliminaries

For x ∈ {0, 1}∗, let x[a : b] be the substring of x starting at a and ending at b. A function
negl:N → R is negligible if it is asymptotically smaller than any inverse-polynomial function,
namely, for every constant c > 0 there exists an integer Nc such that negl(λ) ≤ λ−c for all
λ > Nc. Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally
indistinguishable if for any non-uniform PPT algorithm A there exists a negligible function negl
such that

∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]
∣∣ ≤ negl(λ) for all λ ∈ N.

3.1 Somewhere Statistically Binding Hash

A somewhere statistically binding (SSB) hash [HW15] consists of the following algorithms, which
satisfy the properties below:

• SSB.Setup(1λ, L, d, f, i∗)→ h: On input integers L, d, f , and an index i∗ ∈ [fdL], outputs a
hash key h.

• SSB.Start(h, x)→ v: On input h and a string x ∈ {0, 1}L, output a hash tree leaf v.

• SSB.Combine(h, {vi}i∈[f])→ v̂: On input h and f hash tree nodes {vi}i∈[f], output a parent
node v̂.

• SSB.Verify(h, i, xi, z, {v})→ b: On input h, and index i, a string xi, a hash tree root z, and a
set {v} of nodes, output 1 iff {v} consists of a path from the leaf corresponding to xi to the
root z, as well as the siblings of all nodes along this path.

Correctness: For any integers L, d, and f , and any indices i∗, j, strings {xi}i∈[fd] where |xi|=
L, and any h ← SSB.Setup(1λ, L, d, f, i∗), if {v} consists of a path in the tree generated using
SSB.Start(h, ·) and SSB.Combine(h, ·) on the leaf strings {xi}i∈[fd], from the leaf corresponding to xj
to the root z, along with the siblings of all nodes along this path, then SSB.Verify(h, j, xj , z, {v}) = 1.

Compactness of commitment and openings: All node labels generated by the SSB.Start and
SSB.Combine algorithms are binary strings of size poly(λ) · L.

Index hiding: Consider the following game between an adversary A and a challenger:

1. A(1λ) chooses L, d, and f , and two indices i∗0 and i∗1.

2. The challenger chooses a bit b←$ {0, 1} and sets h← SSB.Setup(1λ, L, d, f, i∗b).

3. The adversary gets h and outpus a bit b′. The game outputs 1 iff b = b′.

We require that no PPT A can win the game with non-negligible probability.

12

Somewhere statistically binding: For all λ, L, d, and f , i∗, and for any key h ←
SSB.Setup(1λ, L, d, f, i∗), there do not exist any values z, x, x′, {v}, {v′} such that SSB.Verify(h, i∗,
x, z, {v}) = SSB.Verify(h, i∗, x′, z, {v′}) = 1.

Theorem 3.1 ([HW15, Theorem 3.2]). Assume LWE. Then there exists an SSB hash construction
satisfying the above properties.

3.2 Indistinguishability Obfuscation for Circuits

Let C be a class of Boolean circuits. An obfuscation scheme for C consists of one algorithm iO with
the following syntax.

iO(C ∈ C, 1λ): The obfuscation algorithm is a PPT algorithm that takes as input a circuit C ∈ C,
security parameter λ. It outputs an obfuscated circuit.

An obfuscation scheme is said to be a secure indistingushability obfuscator for C [BGI+12,
GGH+13, SW14] if it satisfies the following correctness and security properties:

• Correctness: For every security parameter λ, input length n, circuit C ∈ C that takes n bit
inputs, input x ∈ {0, 1}n, C ′(x) = C(x), for C ′ ← iO(C, 1λ).

• Security: For every PPT adversary A = (A1, A2), the following experiment outputs 1 with at
most 1/2 + negl(λ):

Protocol 1 (Experiment ExptA,iO :). 1. (C0, C1, σ)← A1(1
λ)

2. If |C0|≠ |C1|, or if either C0 or C1 have different input lengths, then the experiment
outputs a uniformly random bit.

Else, let n denote the input lengths of C0, C1. If there exists an input x ∈ {0, 1}n such
that C0(x) ̸= C1(x), then the experiment outputs a uniformly random bit.

3. b← {0, 1}, C̃ ← iO(Cb, 1
λ).

4. b′ ← A2(σ, C̃).

5. Experiment outputs 1 if b = b′, else it outputs 0.

3.3 Puncturable Pseudorandom Functions

We use the definition of puncturable PRFs given in [SW14], given as follows. A puncturable family
of PRFs F is given by a triple of turing machines PPRF.KeyGen, PPRF.Puncture, and F , and a pair
of computable functions n() and m(), satisfying the following conditions:

• Functionality preserved under puncturing: For every PPT adversary A such that A(1λ)
outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ) where x ̸∈ S, we have that:

Pr

[
F (K,x) = F (KS , x) | K ← PPRF.KeyGen(1λ),

KS ← PPRF.Puncture(K,S)

]
= 1

• Pseudorandom at punctured points: For every PPT adversary (A1,A2) such that A1(1λ)
outputs a set S ⊆ {0, 1}n(λ) and state σ, consider an experiment where K ← PPRF.KeyGen(1λ)
and KS ← PPRF.Puncture(K,S). Then we have∣∣∣Pr [A2(σ,KS , S, F (K,S)) = 1]− Pr [A2(σ,KS , S, Um(λ)|̇S|) = 1]

∣∣∣ ≤ negl(λ)

13

where F (K,S) denotes the concatenation of F (K,x) for all x ∈ S in lexicographic order and
Uℓ denotes the uniform distribution over ℓ bits.

Theorem 3.2 ([GGM84, BW13, BGI14, KPTZ13]). If one-way functions exist, then for all effi-
ciently computable n(λ) and m(λ) there exists a puncturable PRF family that maps n(λ) bits to
m(λ) bits.

3.4 M-out-of-M Threshold Fully Homomorphic Encryption

An M -out-of-M threshold fully homomorphic encryption scheme can be defined by the following
polynomial-time algorithms:

• TFHE.Setup(1λ, 1d,M)← (pk, sk1, . . . , skM) : On input the security parameter λ, the depth
bound d, and the number of parties M , output a public key pk, a set of secret key shares,
and the public parameters which we assume the other algorithms get as input implicitly.
Furthermore, we assume sk is additively secret-shared such that sk =

∑
i∈[M] ski.

• TFHE.Enc(pk, µ) → ct: On input a public key pk and a message µ ∈ {0, 1}∗, output an
encryption ct of the message.

• TFHE.Eval(C, {cti}i∈[k]) → cto: On input a circuit C: {0, 1}l1 × . . . × {0, 1}lk → {0, 1}lo of
depth at most d and a set of ciphertexts ct1, . . . , ctk, output a ciphertext cto.

• TFHE.Dec(sk, ct)→ µ: On input a secret key sk and a ciphertext ct, output the decryption µ.

• TFHE.PartDec(ski, ct) → pi: On input a share of a secret key and a ciphertext ct, output a
partial decryption pi.

• TFHE.Dec.Round(p)→ µ: On input an (aggregated) partial decryption p, output a plaintext
µ.

We require the following properties:

Definition 1 (Compactness). For all λ, d,M ∈ N, all circuits C: {0, 1}l1 × . . .× {0, 1}lk → {0, 1}lo
of depth at most d, and all messages {µi}i∈[k], the following holds. For any (pk, {ski}i∈[M]) ←
TFHE.Setup(1λ, 1d,M), ctj ← TFHE.Enc(pk, µj) for j ∈ [k], ctout = TFHE.Eval(C, {ctj}j∈[k]), pj ←
TFHE.PartDec(skj , ctout), it holds that

|pk|, |ski|, |ctj |, |ctout|, |pj |≤ poly(λ, d, logM)

for all i ∈ [M], j ∈ [k].

Definition 2 (Correctness). For all λ, d,M ∈ N, all circuits C: {0, 1}l1 × . . .× {0, 1}lk → {0, 1}lo
of depth at most d, and all messages {µi}i∈[k], the following holds. For any (pk, {ski}i∈[M]) ←
TFHE.Setup(1λ, 1d,M), sk←

∑
i∈[M] ski, ctj ← TFHE.Enc(pk, µj) for j ∈ [k], ctout = TFHE.Eval(C,

{cti}i∈[k]), pi ← TFHE.PartDec(ski, ctout), it holds that

Pr[TFHE.Dec(sk, ctout) = C(µ1, µ2, . . . , µk)] = 1− negl(λ),

and

Pr[TFHE.Dec.Round(
M∑
i=1

pj) = C(µ1, µ2, . . . , µk)] = 1− negl(λ).

14

Definition 3 (Semantic Security). For all λ, d,M ∈ N, the following holds. For any PPT adversary
A, the following experiment outputs 1 with negligible probability:

Game 1 ExptA,TFHE,sem(1λ, 1d,M)

1: On input the security parameter λ, the depth bound d, and the number of parties M , the
adversary A output C ⊊ [M] denoting the parties that have been corrupted.

2: The challenger runs (pk, {ski}i∈[M])← TFHE.Setup(1λ, 1d,M).
3: The challenger samples b← {0, 1} and provides pk, TFHE.Enc(pk, b), and {ski}i∈C to A.
4: A outputs a guess b′. The experiment outputs 1 if b = b′.

We also require a TFHE scheme to satisfy simulation security. Informally, there exists a
simulator TFHE.Sim which generates via TFHE.Sim.Setup simulated shares of the secret key and
via TFHE.Sim.Query simulated partial decryptions indistinguishable from the real shares and real
partial decryptions. We refer the readers to [FKLS20, BGG+18] for a formal definition of simulation
security.

Leveled vs. non-leveled. A TFHE scheme as above is known from LWE; see [BGG+18]. Notice
that in the above scheme, d, the depth of the computation, is given as a parameter to the system,
and keys and ciphertexts blowup polynomially with d. This is sometimes called a leveled scheme. It
is known how to get a “non-leveled” scheme, namely, one that works for any (not a priori fixed)
d and whose blowup does not depend on d (i.e., it is poly(λ, logM)). Such a system is called a
non-leveled threshold FHE and the standard bootstrapping technique [Gen09] can be used to get it.
Using this method requires a circular security assumption, that is, the threshold FHE needs to be
secure even in the presence of an encryption of the master secret key.

In the statement of our results (Theorems 7.1 and A.1), we shall assume a non-leveled scheme, for
simplicity of presentation. However, all of our result can also be stated assuming only a leveled TFHE
scheme. In this case, the space blowup will be proportional to poly(λ, d, logM), where d is the total
depth of computation throughout the protocol. Similar blowup and assumptions were required by
all previous secure MPC compilers [CCLS20, FKLS20] (as well as in many communication-succinct
secure computation protocols such as [AJL+12, CM15, MW16]. Nevertheless, we point out that
many MPC algorithms have very low depth, usually at most poly-logarithmic in the input size (for
example, [ASZ19, ASW18, GU19, HSS19] to name a few). Thus, we expect that using a leveled
scheme would suffice in most applications.

3.5 ID-Based Simulation-Extractable zk-SNARKs

In this section we give the definition of ID-based simulation-extractable snarks (idse-zkSNARKs).

Definition 4 (ID-Based Simulation-Extractable zk-SNARKS (idse-zkSNARKs)). An ID-Based
simulation-extractable zk-SNARK scheme for the relation R is a tuple of PPT algorithms
(Π.Setup,Π.P, Π.V,Π.Sim1,Π.Sim2,Π.Sim3), defined as follows:

• Π.Setup(1λ,M)→ crs : Takes in the security parameter and a number M and outputs a CRS.
We will assume that M is always some poly(λ).

• Π.P(crs, ϕ, w, id) → π : takes the crs, the statement, the witness, and an id id ∈ ZM , and
outputs a succinct proof π, or ⊥ if R(ϕ,w) = 0.

• Π.V(crs, ϕ, π, id)→ 0 or 1 : takes the crs, the statement, the proof, and an id, and outputs 1
if the proof verifies correctly with respect to the id.

15

• Π.Sim1(1
λ,M)→ (c̃rs, td) : generates a simulated crs along with master trapdoor td.

• Π.Sim2(c̃rs, td, id) → tdid : Takes as input the crs, the master trapdoor, and an id, and
generates a trapdoor for that specific id.

• Π.Sim3(c̃rs, id, tdid, ϕ)→ π∗ : takes the simulated crs, an id id along with a trapdoor tdid, and
a statement ϕ, and generates a simulated proof π∗ with respect to id.

We require idse-zkSNARKs to satisfy the following completeness, compactness, adaptive sound-
ness, multi-theorem zero-knowledge, and id-based simulation-extractability requirements.

Definition 5 (Completeness). A SNARK scheme is said to satisfy completeness if for any (ϕ,w) ∈ R
and id ∈ ZM ,

Pr

[
Π.V(crs, ϕ, π, logM) = 1 :

crs← Π.Setup(1λ,M)
π ← Π.P(crs, ϕ, w, id)

]
= 1.

Definition 6 (Succinctness). A SNARK scheme must satisfy the following efficiency properties:

• The length of any honestly generated setup crs is bounded in size by poly(λ).

• The length of the proof π that Π.P(crs, ϕ, w, id) outputs, as well as the running time of
Π.V(crs, ϕ, π, id), is bounded by

poly(λ + |ϕ|+|M|+ log t + logM),

whereM is a machine that verifies the relation R, and t is a bound on the time taken onM
for statements of size |ϕ|.

Definition 7 (Complexity-Preserving Efficiency [BCCT13]). A SNARK scheme is said to be
complexity-preserving if the running time of Π.P(crs, ϕ, w, id) is proportional to poly(λ)·(|M|+|ϕ|+t+
logM), where t is the running time of the verification procedure for ϕ, and the space used by
Π.P(crs, ϕ, w, id) is proportional to poly(λ) · (|M|+|ϕ|+x + logM), where s is the maximum space
used by the verification procedure for ϕ.

We note that [BCCT13] give a generic transformation from any SNARK scheme to a complexity-
preserving SNARK scheme. Looking ahead, we note that this transformation preserves the id-based
simulation-extractability and zero-knowledge properties.

Definition 8 (Multi-Theorem (Black-Box) Zero-Knowledge). A SNARK is said to be multi-theorem
(black-box) zero knowledge if for all PPT adversaries A and ids id ∈ ZM , if crs← Π.Setup(1λ,M)
and (c̃rs, td)← Π.Sim1(1

λ,M), tdid ← Π.Sim2(c̃rs, td, id), we have that∣∣∣Pr
[
AΠ.P(crs,·,·,id)(crs)

]
− Pr

[
AO(c̃rs,id,tdid,·,·)(c̃rs)

]∣∣∣ < negl(λ),

where O(c̃rs, id, tdid, ϕ, w) outputs Π.Sim3(c̃rs, id, tdid, ϕ) if R(ϕ,w) = 1 and ⊥ otherwise, and where
the probability is taken over the coins of the adversary, the oracle, and the setup algorithms.

Definition 9 (ID-Based Simulation-Extractability). A SNARK scheme is said to be id-based
simulation-extractable if for all nonuniform PPT adversaries A there exists a non-uniform PPT
extractor EA such that the game SimExtA,EA(λ) defined below outputs 1 with negligible probability in
λ.

Game 2 SimExtA,EA(λ):

16

1. Choose uniform random strings rA, rsetup.

2. Initialize A with security parameter 1λ and randomness rA.

3. Generate simulated setup parameters and master trapdoor (c̃rs, td)← Π.Sim1(1
λ,M ; rsetup),

and send c̃rs to A.

4. Receive corrupted set C from A.

5. For each id ∈ [M] \ C, generate tdid ← Π.Sim2(c̃rs, td, id), and return the set {tdid}id∈[M]\C to
A.

6. Receive (ϕ∗, π∗, id∗) from A.

7. If id∗ ̸∈ C, then halt and output 0.

8. If Π.V(c̃rs, ϕ∗, π∗, id∗) = 0, then halt and output 0.

9. Run the extractor w∗ ← EA(c̃rs, rA, π1, . . . , πt) to obtain the witness w∗.

10. If (ϕ∗, w∗) ∈ R, output 0. Otherwise, output 1.

The work of [BJPY18] proves the following theorem:5

Theorem 3.3. Assuming the existence of one-way functions and a witness-indistinguishable SNARK
for all NP-relations R, there exists an idse-zkSNARK scheme for all NP-relations R.

3.6 Threshold Signature Scheme with Distributed Reconstruction

In this section, we define a variant of threshold signatures, with a property which we call distributed
reconstruction. We present the formal definition below. Since for our purposes the only access
structure needed is M -out-of-M , we restrict our definition to this case.

Definition 10 (M -out-of-M Threhold Signature Scheme with Distributed Reconstruction (TSDR)).
Let {P1, . . . , Pm} be a set of parties. A M-out-of-M threshold signature scheme with distributed
reconstruction is a tuple of algorithms (Sig.Setup,Sig.Sign,Sig.Combine, Sig.Verify), defined as follows:

• Sig.Setup(1λ, 1M): takes as input the security parameter and number of parties M and outputs
a pair (vk, {sski}i∈[M]), where vk is the public verication key and sski is Pi’s signing key.

• Sig.Sign(sski, x): outputs a signature σ{i} for a message x.

• Sig.Combine({σIi}i): Assuming
⋂

i Ii = ∅, outputs a combined signature for the set I =
⋃

i Ii.

• Sig.Verifyvk(x, σI) outputs 1 if σI is a valid aggregated signature for M on all parties in I, and
I = [M].

We require the threshold signature scheme to satisfy the following correctness, compactness, and
unforgeability requirements.

5The definition of idse-zkSNARKs given in [BJPY18] has a minor difference from our definition, in that our
extractor is given the trapdoors for the honest parties whereas their extractor is not given this information. But the
construction and proof in [BJPY18] nonetheless satisfy our definition, since it is strictly weaker than theirs.

17

Definition 11 (Correctness). We say a TSDR scheme satisfies correctness if for all λ,

Pr
[
Sig.Verifyvk(x, σ[M])

]
= 1− negl(λ)

whenever σ[M] ̸= ⊥ has been obtained via the interactive algorithm described below.

Game 3 Correctness Interactive Algorithm

1. Generate setup parameters (vk, {sski}i∈M)← Sig.Setup(1λ, 1M).

2. Set S ← ∅.

3. Receive message x; for each i ∈ [M], add σ{i} ← Sig.Signsski(x) to S.

4. While the next message received is not “finish”:

(a) Receive {Ij}j ; if
⋃

j Ij ̸= ∅, halt and output ⊥.

(b) For each Ij , if there is no (Ij , σIj) in S, halt and output ⊥.

(c) Let Ĩ =
⋃

j Ij . Set σĨ ← Sig.Combine({σIj}j). Add σĨ to S.

5. If no pair ([m], σ[M]) is in S, halt and output ⊥.

6. Otherwise, output σ[M].

Definition 12 (Compactness). We say a TSDR scheme satisfies compactness if there exists a
polynomial poly such that for all λ and m, the following holds:

• vk and every sski produced by Sig.Setup(1λ, 1M) have size bounded by poly(λ).

• Assuming (vk, {sski}) were produced by Sig.Setup as in the first bullet, the algorithms
Sig.Signssk(x) and Sig.Verifyvk(x, σI) take maximum space poly(λ) · |x|.

• Assuming (vk, {sski}) were produced by Sig.Setup as in the first bullet and all σIi were
produced by Sig.Setup as in the second bullet or a recursive application of Sig.Combine,
Sig.Combine({σIi}i) takes maximum space poly(λ) · |{σIi}i| · |x| and outputs a signature of size
bounded by poly(λ) · |x|.

• Assuming (vk, {sski}) were produced by Sig.Setup as in the first bullet and all σIi were produced
by Sig.Setup as in the second bullet or a recursive application of Sig.Combine, Sig.Verifyvk(x, σI)
takes maximum space poly(λ) · |x|.

Definition 13 (M -out-of-M Unforgeability). We say a TSDR scheme satisfies M -out-of-M un-
forgeability if for any PPT adversary A, the experiment UnforgeabilityA defined below outputs 1 with
negligible probability in λ.

Game 4 UnforgeabilityA(λ,M):

1. Generate setup parameters (vk, {sski}i∈M)← Sig.Setup(1λ, 1M).

2. Initialize A with security parameter 1λ and send vk to A.

3. Receive the set C ⊊ [M] of corrupted parties from A, and reply with {sski}i∈C .

18

4. Set S ← ∅.

5. For each query (I, x) received from A:

(a) Compute the signature σi ← Sig.Signsski(x) for each i ∈ I.

(b) Send {σi}i∈I to A.

(c) If there is a set Ix such that (x, Ix) ∈ S, replace this tuple in S with (xr, Ix ∪ I).
Otherwise, add (xr, C ∪ I) to S.

6. Receive (x∗, σ∗) from A. If (x∗, [M]) ̸∈ S and Sig.Verifyvk(x
∗, σ∗) = 1, then output 1.

Otherwise output 0.

We now import the following theorem from [BGG+18], which proves that there exists a TSDR
scheme assuming hardness of LWE.

Theorem 3.4 (Theorems 8.17 to 8.22 in [BGG+18]). Assuming hardness of LWE, there exists a
threshold signature scheme with distributed reconstruction satisfying the correctness, compactness,
and unforgeability requirements in Definitions 11 to 13.

4 The MPC Model and Security Definitions

In this section we formally define the MPC model and then define appropriate security definitions.
The model is defined in Section 4.1. The security of MPC algorithms is defined in a standard way,
following the security definition in multiparty computation literature. We focus on the strongest
notion of security called malicious security but we also define a weaker notion called semi-malicious
security which we use as a stepping stone towards malicious security (see Sections 4.2 and 4.3,
respectively).

4.1 The Massively Parallel Computation Model

We briefly recall the massively parallel computation (MPC) model, following Chan et al. [CCLS20]
and refer to their work for a more detailed description. In the MPC model, there are M parties
(also called machines) and each party has a local space of S bits. The input is assumed to be
distributively stored in each party, and let N denote the total input size in bits. It is standard to
assume M ≥ N1−ε and S = N ε for some small constant ε ∈ (0, 1). Note that the total space is M ·S
which is large enough to store the input (since M · S ≥ N), but at the same time it is not desirable
to “waste” space and so it is commonly further assumed that M · S ∈ Õ(N) or M · S = N1+θ for
some small constant θ ∈ (0, 1). Further, assume that S = Ω(logM).

At the beginning of a protocol, each party receives an input, and the protocol proceeds in
rounds. During each round, each party performs some local computation given its current state,
and afterwards may send messages to some other parties through private authenticated pairwise
channels. An MPC protocol must respect the space restriction throughout its execution—namely,
each party may store at any point in time during the execution of the protocol at most S bits of
information (which in turn implies that each party can send or receive at most S bits in each round).
When the protocol terminates, the result of the computation is written down by all machines to
some designated output tape, and the output of the protocol is interpreted as the concatenation of
the outputs of all machines. In particular, an output of a given machine is restricted to at most S
bits. An MPC algorithm may be randomized, in which case every machine has a sequential-access

19

random tape and can read random coins from the random tape. The size of this random tape is not
charged to the machine’s space consumption.

In this paper, we will be compiling MPC algorithms into secure counterparts and so it will be
will be convenient to make several assumptions about the underlying (insecure) MPC, denoted Π:

• In protocol Π, each party Pi takes a string xi of size lin as input and outputs a string yi of
size lout, where lin, lout ≤ S. It follows that N = lin ·M .

• Let R be the number of rounds that the protocol takes. In each round r ∈ [R], the behavior
of party i ∈ [M] is described as a circuit NextSti,r. We assume that NextSti,r takes a string
sti,r−1||msgini,r−1 as an input and outputs string sti,r||msgouti,r , where sti,r is the state of party i

in round r and msgini,r−1, the incoming messages to party i in round r − 1, and msgouti,r are the
outgoing messages of party i in round r. Note that the space of each party is limited to S
bits, so in particular |sti,r|≤ S for each i ∈ [M] and r ∈ [R]. See Figure 1 on page 20.

• The protocol is communication-oblivious: in round r ∈ [R], each party Pi sends messages of
a prescribed size to prescribed parties. In particular, this means that the communication
pattern of the protocol is independent of the input and therefore does not leak any information
about it. This assumption is without loss of generality due to a transformation from the
work of Chan et al. [CCLS20] who showed that any MPC protocol can be transformed into
a communication-oblivious one with only a constant multiplicative factor in the number of
rounds.

NextSti,r

msgouti,rsti,r

(Pi’s private state for
the current round)

(The messages to be
sent by Pi during the
current round)

sti,r−1 msgini,r−1

(Pi’s private state for
the previous round)

(The messages re-
ceived by Pi in the
previous round)

Figure 1: Input/output for NextSt (setup omitted for clarity)

4.2 Malicious Security for MPC protocols

We now define malicious security for MPC protocols following the general real-ideal framework
(given e.g., in [Gol09]) for defining secure protocols. We consider protocols assuming a PKI and
a random oracle. Security is shown by exhibiting a simulator which can generate a view that is
indistinguishable from the adversary’s real-world view. We want to handle adversaries which can
cause the corrupted parties to deviate arbitrarily from the protocol specification. To do that, we
define real-world and ideal-world executions as follows. We consider an MPC protocol Π which
realizes a functionality f(x1, . . . , xM)→ (y1, . . . , yM).

20

Communication model and setup. Our protocols will assume authenticated pairwise channels
between parties, such that a message sent from an honest party Pi to an honest party Pj is always
received by Pj at the end of the round in which it was sent. We assume that the adversary can see
all messages sent between honest parties. On the other hand, we do not assume honest parties can
see messages between corrupted parties. We note that since our security definition will allow aborts,
it is not necessary to prevent “flooding” attacks.

Furthermore, our protocol will rely on trusted setup, i.e., a PKI and a random oracle. The public
key of the PKI is denoted pk and the random oracle is denoted O. Every party in the protocol
(including the adversary) has query access to O.

The real-world execution. In the real-world execution, the protocol Π is carried out among
the M parties, where some subset C of corrupted parties is controlled by the adversary A.
realΠA(1λ, 1M , {xi}i∈[M]) a random variable whose value is the output of the execution which is

described as follows. First, A is initialized with security parameter 1λ. A first chooses an input
size (the length of x1||. . . ||xM). After receiving the public key pk and the number M of parties, A
chooses a set C, and then receives the set {(xi, ski)}i∈C of the corrupted parties’ inputs and secret
keys. The honest parties are then initialized with the inputs {xi}i∈[M]\C , and then A performs an
execution of Π with the honest parties, providing all messages on behalf of the corrupted parties.
Note that A does not need to provide messages sent between corrupted parties, since the honest
parties do not see these messages. At the end of the protocol execution, A may output an arbitrary
function of its view. Note that throughout the experiment A may perform arbitrary queries to the
oracle O. The output of realΠA(1λ, 1M , {xi}i∈[M]) is defined to be a tuple consisting of the output of
A, a sequence of input-output pairs corresponding to the oracle queries that were made, along with
the outputs of all honest parties.

The ideal-world execution with abort. The ideal-world execution is given with respect to
the function f which is computed by an honest execution of Π. In the ideal world, an adversary S,
called the simulator, interacts with an ideal functionality Ff . Denote with idealF

f

S (1λ, 1M , {xi}i∈[M])
the output of the execution which is defined as follows:

• Choosing input size and the corrupted set: First, S chooses an input size. After receiving
M , S chooses the set C of corrupted parties, and receives the set {xi}i∈C . The honest parties
{Pi}i∈[M]\C , are each initialized with input xi.

• Sending inputs to the trusted party: Every honest party sends its input xi to Ff , and
Ff records x̃i = xi. S sends a set {x̃i}i∈C of arbitrary inputs, where each x̃i is not necessarily
equal to xi.

• Trusted party sends the corrupted parties’ outputs to the adversary: Ff now
computes f(x̃1, . . . x̃M)→ (y1, . . . , yM). It sends {yi}i∈C to S

• Adversary chooses which honest parties will abort: S now sends the set {instri}i∈[M]\C
to Ff , where for each i, instri is either “continue” or “abort”. Ff then sends output yi to
each honest party Pi where instri is “continue”, and sends output ⊥ to each honest party Pi

where instri is “abort”.

• Outputs: S outputs an arbitrary function of its view. The output of the execution is defined
to be a tuple consisting of S’s output along with all outputs of the honest parties.

21

We now define malicious security for MPC protocols formally in terms of the real-world and
ideal-world executions.

Definition 14. We say that an MPC protocol Π for a functionality f is malicious secure in the
PKI model and random oracle model if for every non-uniform polynomial-time adversary A there
exists a non-uniform polynomial-time simulator S such that for every ensemble {xi}i∈[M] of poly-size

inputs, realΠA(1λ, 1M , {xi}i∈[M]) is computationally indistinguishable from idealF
f

S (1λ, 1M , {xi}i∈[M]).

Remark 3 (Programmability). The above definition allows the simulator S to “program” the
random oracle answers in its simulation. To allow this, the distinguisher in Definition 14 must not
have access to this oracle.

Alternatively, sometimes a non-programmable variant is used. Specifically, here the distinguisher
in Definition 14 does have access to this oracle and so S cannot program answers to its choice.

4.3 P2P Semi-Malicious Security for MPC protocols

We define a variant of semi-malicious security which is designed to be more suitable for models
other than the broadcast model. We first explain why the original semi-malicious definition yields
subtle problems when we do not assume the existence of a broadcast channel, and then we describe
our modification to the definition.

In the original definition of semi-malicious security given by [AJL+12], a semi-malicious adversary
is only required to give a local explanation of its behavior. Namely, whenever the adversary sends
a message on behalf of a corrupted party Pi, the adversary must write to the witness tape an
input-randomness pair for Pi. It must be the case that the message just sent by Pi, along with
all previous messages sent from Pi, are consistent with the input and randomness given by the
adversary. Note that the adversary gives such an input-randomness pair whenever any corrupted
party sends a message that is visible to honest party.

If we assume all communication takes place via a broadcast channel, this means that all messages
are visible to honest parties, even messages between corrupted parties. Thus, an adversary is
restricted to following the protocol specification honestly, with the proviso that it can change the
input/randomness pairs for the corrupted parties partway through the protocol.

In the case of point-to-point channels, adversary is not required to furnish messages between
corrupted parties, because they are not assumed to be visible to the honest parties. So although the
adversary must explain any message sent from a corrupted party Pi to an honest party Pj with
an input/randomness pair which is consistent with Pi’s message, it is not required to explain the
messages which were received by Pi from other corrupted parties. Since it can lie about the messages
received by Pi from corrupted parties in previous rounds, the adversary can behave very differently
from the honest protocol behavior. Thus, point-to-point channels offer much more freedom to a
semi-malicious adversary than the standard case of a broadcast channel.

Our variant of this definition is designed to fix this problem and to bring the adversary’s behavior
back to what semi-malicious security is intuitively supposed to guarantee, namely that the adversary
must act according to the honest protocol specification, modulo choosing the randomness for the
corrupted parties and choosing different input/randomness pairs in different rounds.

We define our variant of semi-malicious security, which we call security against P2P semi-
malicious adversaries, or P2P semi-malicious security for short. Like in malicious security definition,
we use the real-ideal paradigm, the “semi-malicious” real-world execution is defined below, and the
ideal-world execution is the same as in the malicious security definition from Section 4.2. Again, as
before, we consider protocols in the PKI model and also in the presence of a random oracle that all

22

participating parties (including the adversary) can query at any point in time. (Note that Remark 3
about programmability of the random oracle applies here as well.)

The real-world execution. In the real-world execution, the protocol Π is carried out among the
M parties, where some subset C of corrupted parties is controlled by a P2P semi-malicious adversary
A. Denote smRealΠA(1λ, 1M , {xi}i∈[M]) a random variable whose value is the output of the execution
which is described as follows. The real-world execution is similar to the real-world execution in the
case of malicious security, except that we restrict the set of adversaries to P2P-semi-malicious ones.
Such an adversary is required to have a special output tape called the “witness tape”, and after
each round ℓ it must write explanation of it behavior to this tape. That is, the adversary must write
to the witness tape a set {(xi, ri)}i∈C consisting of an input and randomness for every corrupted
party. (This is in contrast to standard semi-malicious security, where the adversary need only write
the input and randomness (xj , rj) of each corrupted party which sent a message to an honest party.)
Observe that the messages sent by any party in C in the honest protocol specification up to and
including round ℓ are uniquely determined by {(xi, ri)}i∈C and the setup (PKI and random oracle
queries determined by the honest protocol specification) along with all messages sent from [M] \ C
to C in previous rounds. Note that the witnesses given in different rounds not need be consistent.
Also, we assume that the attacker is rushing and hence may choose the corrupted messages and
the witness {(xi, ri)}i∈C in each round adaptively, after seeing the protocol messages of the honest
parties in that round. Lastly, the adversary may also choose to abort the execution on behalf of
{Pi}i∈C in any step of the interaction. At the end of the protocol execution, A may output an
arbitrary function of its view. Note that throughout the experiment A may perform arbitrary
queries to the oracle O. The output of smRealΠA(1λ, 1M , {xi}i∈[M]) is defined to be a tuple consisting
of the output of A, a sequence of input-output pairs corresponding to the oracle queries that were
made, along with the outputs of all honest parties.

Definition 15. We say that an MPC protocol Π for a functionality f is P2P semi-malicious secure
in the PKI model and random oracle model if for every non-uniform polynomial-time P2P semi-
malicious adversary A there exists a non-uniform polynomial-time S such that for every ensemble
{xi}i∈[M] of poly-size inputs, smRealΠA(1λ, 1M , {xi}i∈[M]) is computationally indistinguishable from

idealF
f

S (1λ, 1M , {xi}i∈[M]).

5 Impossibility of a (Semi-)Malicious Secure Compiler

In this section we prove that there is no generic compiler from insecure MPC protocol to semi-
malicious secure counterparts. Our impossibility works even in the presence of various setup models.
For instance, even if there is a PKI, a common reference string, and a (non-programmable) oracle,
our result rules out a generic compiler.

Theorem 5.1. Assume that there is a pseudorandom function family (PRF). Then, there is no
generic compiler that takes as input an MPC protocol and outputs a P2P-semi-malicious MPC
protocol that realizes the same functionality, unless the round complexity depends polynomially on
the number of machines. This is true even if the compiler relies on a PKI or a (non-programmable)
random oracle.

Overview. The proof relies on the fact that a too-good-to-be-true compiler could be used to
efficiently “compress” the outputs of a PRF. This is inspired by a result of Hubáček and Wichs [HW15]
who showed that the communication complexity of any malicious secure function evaluation protocol

23

must scale with the output size of the function. We extend their proof to the (multiparty, space
constrained) multi party computation setting and also to capture various trusted setup assumptions.

More specifically, the hard functionality is one where party P1 has, as input, a PRF key k
and it wants to transmit the value of the PRF at location i ∈ {2, . . . ,M} to party Pi. The
insecure implementation of this functionality is obtained by sending the PRF key to each party
to locally evaluate the PRF at its own index location. For ϵ ∈ (0, 1) and S = M ϵ, this can be
implemented in constant number of rounds by distributing the PRF key in a (arity

√
S) tree-like

manner. This protocol is clearly insecure (w.r.t any reasonable notion of security). We are going to
show that in any semi-malicious implementation of this functionality, party P1 must send Ω(M)
bits of information throughout the execution.

The formal proof of the above intuition shows that any generic semi-malicious compiler must
incur non-trivial overhead either in space or in the round complexity (thereby making our protocol
not in the MPC model). This is formalized in Theorem 5.2, and Theorem 5.1 is a direct corollary of
it. The proof is an adaptation of [HW15] and is given for completeness.

Theorem 5.2. Assume that a pseudorandom function exists. Let COMPILER be a compiler that
takes as input any M -machine protocol Π and outputs another protocol Π̃ that has the same input-
output functionality and is also P2P-semi-malicious secure. The compiler may assume a PKI or
a (non-programmable) random oracle. It must holds that R ∈ Ω(M/S), where R is the round
complexity of Π̃ and S is the space consumed by each machine.

Recall that in the MPC model it is often the case that R is tiny and that S is some small
polynomial in M , for instance R ∈ O(1) and S = M0.1. The above theorem says that it is impossible
to generically compile protocols to P2P-semi-malicious counterparts without significantly increasing
either the round complexity or the space complexity. Notice that the above theorem only holds
for compiler for all MPC functionalities and does not work if we only care about “short output”
protocols, as we exemplify in Appendix A. Additionally, it does not apply if we only need semi-honest
security, which was achieved in [FKLS20].

Required definitions. As mentioned, the contradiction is obtained by showing that a secure
compiler can be used to compress the outputs of a PRF. The latter do not have (Shannon) entropy
because they only appear to be random for computationally bounded attackers. Still, they do have a
computational variant of entropy which we want to use. Specifically, the notion that we use is called
“Yao incompressibility entropy”[Yao82] which, roughly, captures the fact that a given distribution is
computationally close to another distribution which does have (Shannon) entropy. For technical
reasons, we actually need a conditional variant which we define next. Below, we give the definition
adapted to our (multiparty) setting.

Definition 16 (Conditional Yao Incompressibility Entropy [HW15]). Let k = k(λ) be an integer-
valued function of security parameter λ. A probability ensembles X1,λ, . . . , Xn,λ has Yao in-
compressibility entropy at least k conditioned on Z1,λ, . . . , Zm,λ, denoted HY ao(X1,λ, . . . , Xn,λ |
Z1,λ, . . . , Zm,λ) ≥ k, if for every pair of circuit ensembles Cλ, Dλ (called “compressor” and “decom-
pressor”) of size poly(λ) where Cλ has output-size at most k(λ)− 1, it holds that

Pr[Dλ(Cλ(x1, . . . , xn, z1, . . . , zm)) = (z1, . . . , zm)] ≤ 1

2
+ negl(λ),

where (x1, . . . , xn, z1, . . . , zm)← (X1,λ, . . . , Xn,λ, Z1,λ, . . . , Zm,λ).

Definition 17 (Yao Incompressibility Entropy of Function [HW15]). We say that a function
f : {0, 1}ℓ1 × . . .× {0, 1}ℓM → {0, 1}L2 × . . .× {0, 1}LM has Yao incompressibility entropy at least

24

k, denoted HY ao(f) ≥ k, if there exist a probability ensemble X1, . . . , XM of distributions over
{0, 1}ℓ1 , . . . , {0, 1}ℓM such that HY ao(f(X1, . . . , XM) | X2, . . . , XM) ≥ k.

Lemma 5.1. Let f : {0, 1}ℓ1 × . . .× {0, 1}ℓM → {0, 1}L2 × . . .× {0, 1}LM be a functionality, and
let Π be a protocol for evaluating f with P2P-semi-malicious security (assuming a PKI and a
non-programmable random oracle against an adversary that control P2, . . . , PM . If HY ao(f) ≥ k,
then the outgoing communication from P1 (throughout the protocol) must be at least k bits.

Proof. Assume for contradiction that HY ao(f) ≥ k, but the outgoing communication from P1 is
at most k − 1 bits. Since Π securely evaluates f against semi-malicious adversaries that control
P2, . . . , PM , for every such adversary A, there exists an efficient simulator SA that satisfies Defini-
tion 15. For every ρ = {ri}i∈{2,...,M}, define the adversary Aρ that follows the protocol’s specification
except that it uses randomness ri to implement machine i’s messages. For each such ρ, let SAρ be
the corresponding simulator. There exists ρ for which SAρ does not abort.

We use SAρ to build an efficient compression Cρ and decompression Dρ procedures such that the
compressor manages to “compress” a sample from f(X1, . . . , XM) | X2, . . . , XM with only k− 1 bits
which the decoder can then use to recover the original sample. This, in turn, implies a contradiction
to the assumption that HY ao(f) ≥ k. If setup is used, the compressor and decompressor know
it as public information. Since the setup (either PKI or non-programmable random oracle) is
independent of the Xi’s, the below argument works in the same way. Specifically, the compressor
and decompressor also know the PKI and provide it to the simulator or alternatively they have access
to the random oracle and they use it to answer the parties’ / simulator’s queries. For simplicity of
description we ignore the setup.

Let X1, . . . , XM be distributions of parties inputs that maximize HY ao(f(X1, . . . , XM) |
X2, . . . , XM) so that HY ao(f) ≥ k. For an input {x2, . . . , xM , f(x1, . . . , xM)} (from the support of
(X2, . . . , XM , f(X1, . . . , XM)})), the compressor Cρ does the following:

1. Run SAρ(1λ, {P2, . . . , PM}, {xi, ri}i∈{2,...,M}, f(x1, . . . , xM)) to obtain view
SAρ

C .

2. Extract from view
SAρ

C the messages {mj
1,i}i∈{2,...,M},j∈[R] sent by party P1, where mj

1,i is the
message from P1 to Pi at round j.

3. Output {mj
1,i}i∈{2,...,M},j∈[R]

The decompressor Dρ do the following:

1. Execute the protocol Π (in the head) using ρ, λ and inputs {xi}i∈{2,...,M} and use the messages
from the compressor Cρ, as P1 to simulate the messages from P1. Denote y′2, . . . , y

′
M the output

of Π.

2. Output y′2, . . . , y
′
M .

By correctness of SAρ , we know that Pr[y′2, . . . , y
′
M = f(x1, . . . , xM)] ≥ 1− negl(λ). Hence, for

large enough λ, with very high probability, we successfully compressed and decompressed k(λ) bits
of information using only at most k(λ)− 1. This contradicts HY ao(f) ≥ k.

Proof of Theorem 5.2. Using a PRF we design an M -machine protocol that realizes a functionality
f for which HY ao(f) = M − 1. In our functionality, all parties are input-less except P1 which holds
a randomly chosen PRF key k of length λ (chosen independently of the setup). The output of each
party Pi for i ∈ {2, . . . ,M} is the evaluation of the PRF function at point i.

25

There is a trivial insecure implementation of this functionality in the MPC model: The parties
invoke Distribute√S(k) so that all parties receive k, the PRF key, and locally evaluate the PRF at
their respective index. However, as we shall see, there is no way to realize this functionality with
P2P-semi-malicious security.

Indeed, since the setup is independent of the private inputs (in our case the PRF key of party
P1), and since the PRF outputs are computationally indistinguishable from random, we directly
obtain HY ao(f(k)) = M − 1. By Lemma 5.1, the total outgoing communication from party P1 is
Ω(M). This can only hold if R ∈ Ω(M/S), as needed.

6 Common Subprotocols

We introduce two common subprotocols that take O(logγ M) rounds and the communication is
O(S · γ) per round for each machine, implement useful functionalities.

6.1 The Distribute Subprotocol

Consider the simple distribution functionality: P1 has some string x and it wants to distribute x to
all the other parties. In the normal model with point-to-point channels, P1 can just send x to every
other party which can be done in a single round. However, is problematic since it requires P1 to
send messages of Ω(M) bits in a single round. The following protocol implements this functionality
by delivering x along a “tree”.

Protocol 1 Distributeγ(x)

Input: P1 holds a string x where |x|≤ S.
Output: Each party holds x.
1: Let t = ⌈logγ M⌉. We refer to a party Pi as being on the level k if (i− 1) is a multiple of γk.
2: For each round k ∈ [t], all the parties on level t + 1− k send x to the parties on level t− k.

6.2 The Combine Subprotocol

The protocol Combine (described in Protocol 2) implements the following functionality. Initially, each
party i ∈ [M] has an input xi, and they want to jointly compute opMi=1xi = x1 op x2 op . . . op xM ,
where op is some associative operator. Note that if each party i sends xi to the recipient P1 in a
single round, P1 receive messages of Ω(M) bits in a single round. In protocol Combine, we use the
similar trick to ask parties aggregate the values in a tree fashion and in each round, all child nodes
send the values they aggregate in their own subtree to their parent nodes.

Protocol 2 Combineγ(op, {xi}i∈[M])

Input: Party Pi holds xi where γ · |xi|≤ S, and the parties agree on an associative operator op.
Output: P1 holds opMi=1xi.
1: Let t = ⌈logγ M⌉. We refer to a party Pi as being on the level k if (i− 1) is a multiple of γk.

Each node Pi sets xi,0 ← xi.
2: For each round k ∈ [t], for each party i on level k, Pi computes xi,k = opγj=1 xj′,k−1 where

j′ = i + γk−1(j − 1).
3: After t rounds, P1 has x1,t = x1 op . . . opxM .

26

7 Semi-Malicious Secure MPC for Long Output

In this section, we give a semi-malicious compiler for general MPC protocols. The compiler takes
as input an arbitrary (possibly insecure) MPC protocol and transforms it into a semi-malicious
counterpart.

Theorem 7.1 (Semi-Malicious Secure MPC for Long Output). Let λ ∈ N be a security parameter.
Assume that we are given a deterministic MPC protocol Π that completes in R rounds in which each
of the M machines utilizes at most S local space. Assume that M ∈ poly(λ) and λ ≤ S. Further,
assume that there is a (non-leveled) threshold FHE scheme as in Section 3.4.

Then, there is a compiler that transforms Π into another protocol Π̃ which assumes a PKI and
a (programmable) random oracle, and furthermore realizes Π with P2P semi-malicious security in
the presence of an adversary that statically corrupts up to M − 1 parties. Moreover, Π̃ completes in
R + O(1) rounds and consumes at most S · poly(λ) space per machine.

Property of our compiler is that for every message m, that sent in the original protocol, the size
of the corresponding message in compiled protocol is |m|·poly(λ), and the size of every additional
message in the compiled protocol is poly(λ).

Our compiler also support different space per machine. Specifically, let Si be the space of the
corresponding machine in the original protocol, then this machine consumes at most Si · poly(λ)
space in the compiled protocol. Similarly, the communication complexity of each machine is also
preserved, up to the same multiplicative security parameter blowup.

The rest of this section is devoted to proving Theorem 7.1. The protocol followed by its
efficiency analysis are given in Section 7.1. The security proof is given in Section 7.2.

7.1 The Protocol

We assume a PKI, so every party Pi knows the public key along with its secret key ski. At a high
level, the protocol is divided into two main phases, as in the short output protocol, with the major
differences occurring in the second phase. In the first phase, as in the short output protocol, each
party encrypts its initial state under pk, and the parties carry out an encrypted version of the
original (insecure) MPC protocol using the TFHE evaluation function. In the second phase, the
parties interact with each other so that all parties obtain an obfuscation of a circuit which will
allow them to decrypt their outputs and nothing else. This involves carrying out a sub-protocol
CalcSSBHash in which the parties collectively compute a somewhere-statistically-binding (SSB)
commitment to their ciphertexts. Recall that an SSB hash has a Merkle-tree structure which is
designed specifically to enable security proofs when using iO.

CalcSSBHash. The purpose of this protocol is for all parties to know an SSB commitment z to
their collective inputs, and for each party Pi to know an opening πi for its respective input. We will
perform this process over a tree with arity γ, mirroring the Merkle-like tree of the SSB hash. In the
first round, the parties use SSB.Start, and then send the resulting label to the parties Pi′ , i

′ ≡ 0
(mod γ) (call these nodes the parents). Each of these parties Pi′ then uses SSB.Combine on the
labels {yi,0} of its children to get a new combined label yi′,1, and then all the Pi′ parties send their
new labels to Pi′′ , i

′′ ≡ 0 (mod γ2). In addition, since the string each party P ′
i now has a part of its

children’s openings, namely yi′,1 and the set {yi,0} of sibling labels, it sends πi,1 = (yi′,1, {yi,0}) to
each of its children to be used as openings.

This process completes within 2⌈logγ M⌉ rounds, where in each round the current layer calculates
new labels and sends them to the new layer of parents, and each layer sends any πi,j received from
its parent to all its children. At the end, all parties will know z and πi.

27

The formal description of the protocol is below. Note that we use the subprotocols Distribute
and CalcSSBHash; Distribute was defined in the previous section, and CalcSSBHash is defined after
the main protocol.

P2P Semi-Malicious Compiler for long output Protocols

Input: Party Pi has input xi to the underlying MPC protocol and circuits NextSti,1, . . . ,NextSti,R,
as described in Section 4.1.

Output: In the end of the protocol, each party Pi will receive the output yi ∈ {0, 1}lout , where
(y1, . . . , yM) = f(x1, . . . , xM) and f is the functionality that the original protocol Π computes.

1: Setup Phase: Each party Pi knows the security parameter λ, the public keys pk, pk∗ along
with a share of the master secret keys, ski, sk

∗
i , respectively, where

(pk, {ski}i∈[M]), (pk
∗, {sk∗i }i∈[M])← TFHE.Setup(1λ,M).

2: Encrypted MPC Phase: For the first R rounds, the behavior of each party Pi is exactly as
in the encrypted MPC phase of the short output protocol. Specifically,

(a) Each party Pi encrypts its input xi using the public key pk: ctsti,0 ← TFHE.Enc(pk, xi).

(b) Parties evaluate the underlying protocol round by round. During round r ∈ [R], each
party Pi computes ctsti,r ||ctmsgouti,r

← TFHE.Eval(NextSti,r, ctsti,r−1 ||ctmsgini,r−1
) and sends

encrypted messages ctmsgouti,r
to other parties according to the original protocol Π.

(c) In the end of the evaluation phase, each party Pi holds ctyi = ctsti,R, the encryption of the
output yi.

3: Output Padding Phase: After the R rounds of the encrypted MPC protocol are done, each
party Pi does the following:

(a) Compute a random string padi ← {0, 1}lout .
(b) Calculate ctpadi ← TFHE.Encpk(padi).

(c) Calculate cto,i ← TFHE.Eval(⊕, ctpadi , ctyi), the TFHE evaluation of the circuit which
pads the output of the i party yi with the corresponding pad padi.

4: Output Circuit Generation Phase: At the end of the previous phase, each party Pi has an
encryption cto,i of their output padded with padi. The parties then coordinate with each other
in a manner which is now described, so that at the end P1 has an obfuscation of the circuit
Ch,zy ,zr,sk, defined below.

• SSB Hash phase:

(a) Each party chooses a uniform random string rssb,i, and the parties run the
(semi-malicious) short output compiler with (pk∗, {sk∗i }i∈[M]) over the protocol
Combineλ(⊕, {rssb,i}i∈[M]), so that P1 output is rssb = rssb,1 ⊕ . . .⊕ rssb,M .

(b) P1 generates an SSB hash key h← SSB.Setup(1λ, 2 · lout, ⌈logλM⌉, λ, 1; rssb) with
2 · lout as the block size and 1 as the statistically binding index.

(c) The parties run the protocol Distributeλ(h).

(d) The parties run the protocol CalcSSBHashh,λ({cto,i}i∈[M]) defined below, so that each
party Pi obtains an SSB commitment zy and an opening πy,i to cto,i.

• Randomness phase:

28

(e) Each party chooses a uniform random string rseed,i, and the parties run the
(semi-malicious) short output compiler with (pk∗, {sk∗i }i∈[M]) over the protocol
Combineλ(⊕, {rseed,i}i∈[M]), so that P1 output is rseed = rseed,1 ⊕ . . .⊕ rseed,M .

(f) The parties run the protocol Distributeλ(rseed).

(g) Each party Pi sends a query to random oracle to and sets ro,i = O(rseed∥i) (which is
of size lout).

(h) Each party Pi calculate offline (locally, without communicate with other parties)
CalcSSBHashh,λ({O(rseed∥i)}i∈[M]) defined below, to obtain an SSB commitment zr,
and store only the opening πr,i, that related to his index i.

• Circuit Generation phase:

(i) Each party chooses a uniform random string riO,i, and the parties run the short
output compiler with (pk∗, {sk∗i }i∈[M]) over the protocol
GenerateCircuith,zy ,zr,λ({(ski, riO,i)}i∈[M]) defined below, so that P1 obtains an
obfuscation C ′ of the circuit Ch,zy ,zr,sk, also defined below.

(j) The parties run Distribute(C ′).

5: Offline Output Decryption Phase: Once every party knows C ′, each party Pi can run
C ′(i, cto,i, ro,i, πy,i, πr,i) to obtain y′i, Pi’s padded output under the original MPC protocol. Pi

can then compute yi ← yi ⊕ padi.

CalcSSBHashh,γ({xi}i∈[M]):

Input: Each party Pi has a key h and xi. In this protocol we will number the parties starting at 0
(so the first party will be P0).

Output: The protocol stops after 2⌈logγ M⌉ rounds, and every party Pi knows the SSB tree root
y and the opening πi of xi.

1: Parameters: Let λ ≤ S. Assume h is an SSB hash which has been initialized with γ and
t = ⌈logγ M⌉.

2: Before starting: Each party Pi first computes ← SSB.Start(h, xi) to obtain a string yi,0 of
size λ.

When carrying out the protocol, we will divide the parties into subsets. Let
Sr = {Pi | i ≡ 0 (mod γr)} (and let S0 = {Pi}i∈[M]), let the set of children for i in Sr be
Di,r = {Pj | j ≡ 0 (mod γr−1) and i ≤ j ≤ i + γr}, and let the parent of i in Sr be
qi,r = γr⌊i/γr⌋.

3: Round k for k = 1, . . . , ⌈logγ M⌉+ 1:
Parties in the sets Sk−t, t = 1, 3, . . . , 2⌈k/2⌉ − 1 will participate.

• Each party Pi in Sk−1 does the following:

(a) If k − 1 > 0, receive yj,k−2 from each Pj ∈ Di,k−1.

(b) If k − 1 > 0, calculate yi,k−1 ← SSB.Combine(h, {yj,k−2}Pj∈Di,k−1
), and send

(yi,k−1, {yj,k−2}j∈Di,k−1
to all parties Pj , j ∈ Di,k−1.

(c) Send yi,k−1 to Pqi .

• Each party Pj in Sr for r = 0, . . . , k − 2 does the following:

(a) Check if received πj,r′ = (yi,r′ , {yj′,r′−1}j′∈Di,r′
) from Pqj .

29

(b) If so, append πj,r′ to πj .

(c) If r > 0, send πj,r′ to all Pj′′ ∈ Dj,r.

4: Round k′ for k′ = ⌈logγ M⌉+ 2, . . . , 2⌈logγ M⌉+ 1:
Each party Pj in Sr for r = 0, . . . , ⌈logγ M⌉ does the following:

(a) Check if received πj,r′ = (yi,r′ , {yj′,r′−1}j′∈Di,r′
) from Pqj .

(b) If so, append πj,r′ to πj .

(c) If r > 0, send πj,r′ to all Pj′′ ∈ Dj,r.

GenerateCircuith,zy ,zr,γ({(ski, riO,i)}i∈[M]):

Input: P1 the SSB commitment z; each party Pi has ski.

1. Parties run Combineγ(+, {ski}) so that P1 has the master secret key sk.

2. Parties run Combineγ(+, {riO,i}) so that P1 has riO =
∑

riO,i.

3. P1 calculates the obfuscation C ′ ← iO(Ch,zy ,zr,sk; riO).

Output: At the end of the protocol, P1’s output is defined as C ′. All other parties have blank
output.

Circuit Ch,zy ,zr,sk(i, ct, r, πy, πr):

1. If SSB.Verify(h, zy, i, ct, πy) = 1, and SSB.Verify(h, zr, i, r, πr) = 1:

(a) Output TFHE.Decsk(ct).

2. Otherwise, output ⊥.

Correctness. Correctness of the long output protocol follows from correctness of the TFHE
scheme, the iO scheme, the short output protocol, the SSB hash, and the CalcSSBHash subprotocol.
To see why correctness holds for the CalcSSBHash subprotocol, recall that the end of the protocol
each party Pi should know the root label z of the tree along with an opening πi corresponding to Pi’s
input xi. Note that each Pi receives messages for each ancestor of the leaf node yi,0 corresponding
to Pi’s input, and each message is of the form (yi′,r, {yj,r−1}j∈Di′,r), containing the ancestor’s label
and the ancestor’s direct children’s labels. This is sufficient to learn the root label z of the tree as
well as all node labels along the path to yi,0 along with the labels of the siblings of all nodes along
this path. From this, Pi can onstruct πi.

30

Efficiency. Note that, since M ∈ poly(λ) that mean there exists some constant ϵ > 0, such that
λ ≤M ϵ, so ⌈logλM⌉ ≤ ⌈logMϵ M⌉ = ⌈ϵ−1⌉ = O(1).

The encrypted MPC and output padding phases of the long output protocol takes exactly R
rounds. The output circuit generation phase consists of three executions of Distributeλ, a short
output protocol for Combineλ and GenerateCircuit, and the CalcSSBHash protocol, all of those
protocols takes O(logλM) = O(1) rounds. It follows that the total number of rounds used by the
long output protocol is R + O(1).

The maximum additional space used by each party during CalcSSBHash is O((logλM +λ) ·λ) =
poly(λ), The local calculation of zr and πr,i can be performed by store at most O(λ) ciphertexts of
each merkle-tree depth at any time, so the additional space is O(logλM · λ) = poly(λ) By the space
bounds on the short output protocol and the Distributeλ protocol, the total space used in the long
output protocol is S · poly(λ).

Note that for every message m, that sent in the original protocol, the size of the corresponding
message in compiled protocol is |m|·poly(λ), and the size of every additional message in the compiled
protocol is poly(λ). It follows that our compiler also preserve the communication, with same
multiplicative blowup like in space.

7.2 Proof of Security

To prove security, for every P2P semi-malicious adversary, we exhibit a simulator for the protocol
given above. This simulator will generate a view of an arbitrary set of corrupted parties which will
be indistinguishable from the view of the corrupted parties in a real-world execution of the protocol.
Note that the simulator receives the public key which is assumed to be generated honestly by the
TFHE setup algorithm, and also receives the set of corrupted parties C as input. This allows the
corrupted set C to be chosen based on the public key.

The behavior of the simulator is described below.

Long Output Simulator

Input: The simulator receives the corrupted set C, the public key pk, the corrupted parties’ inputs
{xi}i∈C , and the outputs {yi}i∈C .

Output: In the end of the protocol, each corrupted party Pi will receive the output yi where
(y1, . . . , yM) = f(x1, . . . , xM) and f is the functionality that the original protocol Π computes.

1: Simulated Setup:

• To generate the corrupted parties’ secret keys, the simulator uses the TFHE simulated
setup: ({ski}i∈C , σsim)← TFHE.Sim.Setup(pk, C),
({sk∗i }i∈C , σ∗

sim)← TFHE.Sim.Setup(pk∗, C), and sends {ski, sk∗i }i∈C to the adversary.

• Throughout the execution, upon every random oracle query, the simulator records it in a
data structure we denote cache. If the given query is already present in cache, the
simulator returns the previous answer. Otherwise, if the query is new, it samples a uniform
sequence of bits, records them for future queries, and responds with them. That is,

O(x) =

{
cache(x) x ∈ cache

uniform random string otherwise

2: Simulated Encrypted MPC Phase: The simulator performs this phase in the same way as
was done in the short output simulator. Specifically:

31

(a) For each honest party Pi, the simulator computes an encryption of 0:
ctsti,0 ← TFHE.Encpk(0|xi|)

(b) The simulator executes the underlying protocol round by round with the adversary.
During round r ∈ [R], each party Pi computes ctsti,r ||ctmsgouti,r

← TFHE.Eval(NextSti,r,

ctsti,r−1 ||ctmsgini,r−1
) and sends encrypted messages ctmsgouti,r

to other parties according to the

original protocol Π.

(c) In the end of the evaluation phase, each party Pi holds ctyi := ctsti,R .

3: Simulated Output Padding Phase: After the R rounds of the encrypted MPC protocol are
done, the simulator does the following on behalf of each honest party Pi:

(a) Calculate ctpadi ← TFHE.Encpk(0lout).

(b) Calculate cto,i ← TFHE.Eval(⊕, ctpadi , ctyi).
4: Simulated Output Circuit Generation Phase: At the end of the encrypted execution of

the MPC protocol, each party Pi has an encryption cto,i of their output, The simulator then
simulates the output circuit generation phase in the following manner, so that at the end P1

has an obfuscation of the circuit C̃h,zy ,zr,sk, defined below.

• SSB Hash phase:

(a) The simulator uses the short output simulator for the compiled Combineλ protocol,
where the protocol output is set to be uniform random string rssb, so P1 holds rssb.

(b) If 1 /∈ C, the simulator runs h← SSB.Setup, for P1. so he holds h.

(c) The simulator runs the protocol Distributeλ(h) with the adversary like in the real
world execution.

(d) The simulator runs the protocol CalcSSBHashh,λ({cto,i}i∈[M]) with the adversary like
in the real world execution.

• Program the Random Oracle:

(a) The simulator choose uniform random string rseed, and PRF key k.

(b) The simulator use the adversary’s witness tape to obtain {padi}i∈C .

(c) From this point the simulator will answer to the random oracle queries as follows:

O(x) =

PRFk(i)⊕ yi ⊕ padi x /∈ cache ∧ x ∈ {rseed∥i}i∈C
cache(x) x ∈ cache ∧ x /∈ {rseed∥i}i∈C
⊥ (and abort) x ∈ cache ∧ x ∈ {rseed∥i}i∈C
uniform random string otherwise

• Randomness phase:

(a) The simulator uses the short output simulator for the compiled Combineλ protocol,
where the protocol output is set to be rseed, so P1 holds rseed.

(b) The simulator runs the protocol Distributeλ(rseed) with the adversary as in the real
world execution.

(c) The simulator set ro,i = O(rseed∥i) for each honest party Pi.

(d) The simulator runs the protocol CalcSSBHashh,λ({O(rseed∥i)}i∈[M]}i∈[M]) locally to
obtain zr.

• Circuit Generation phase:

32

(a) The simulator choose uniform random string riO,i for each honest party Pi, and uses
the short output simulator for the compiled GenerateCircuit protocol, where the
protocol output is set to be the obfuscation C̃ ′ = iO(C̃h,zy ,zr,k).

(b) The simulator runs the protocol Distributeλ(C̃ ′) with the adversary like in the real
world execution.

Circuit C̃h,zy ,zr,k(i, ct, r, πy, πr):

1. If SSB.Verify(h, zy, i, ct, πy) = 1, and SSB.Verify(h, zr, i, r, πr) = 1:

(a) Output r ⊕ PRFk(i).

2. Otherwise, output ⊥.

Claim 1. Assuming security of the TFHE scheme, security of the SSB hash function, security of
the puncturable PRF, and security of the iO scheme, the output of the simulator is indistinguishable
from the view of a semi-malicious adversary which corrupts all parties in C.

We prove the claim via a sequence of hybrids, described below.

• Hybrid H0: In this hybrid, the simulator behaves identically to the real world, setting the
corrupted parties’ secret keys to be the ones generated by the TFHE setup, and running the
real-world protocol.

• Hybrid H1: In this hybrid, the simulator behaves in the same way as H0, except that it uses
the TFHE simulator to choose the corrupted parties’ secret keys, and it simulate the random
oracle as described in the simulated setup phase.

• Hybrid H2: In this hybrid, the simulator behaves in the same way as H1, except that it uses
the short output protocol simulator to simulate the executions of Combineλ runs.

• Hybrid H3: In this hybrid, the simulator behaves in the same way as in H2, except that
it samples a PRF key k, programs the random oracle, and uses the short output protocol
simulator to simulate the executions of GenerateCircuit.

• Hybrid H4: In this hybrid, the simulator behaves in the same way as in H3, except that
it sets ctsti,0 ← TFHE.Encpk(0|xi|) and ctpadi ← TFHE.Encpk(0lout) for each honest party Pi.
This hybrid is identical to the ideal-world protocol.

We now prove indistinguishability between each successive pair of hybrids.

Claim 2. Assuming security of the TFHE scheme, the output of the simulator in H0 is indistin-
guishable from the output of the simulator in H1.

Proof. This following directly from the security of the TFHE scheme, and from the random oracle
assumption, that random oracle output is indistinguishable from uniform random string.

Claim 3. Assuming security of the short output compiler, the output of the simulator in H1 is
indistinguishable from the output of the simulator in H2.

33

Proof. This following directly from the security of short output compiler, and the fact that one-time
pad distribution (Combineλ output in H1) is identical to uniform (Combineλ output in H2).

Claim 4. Assuming security of the SSB hash function, the puncturable PRF, and the iO scheme, the
output of the simulator in H2 is computationally indistinguishable from the output of the simulator
in H3.

Proof. We prove indistinguishability between H2 and H3 via a sequence of two subhybrids H2,j for
j ∈ [M], where H2,0 = H1 and H2,M = H3. In H2,j , the simulator sets the output of the simulated

GenerateCircuit protocol to be the circuit C̃ ′ = iO(C̃j
h,zy ,zr,k,sk

), where C̃j
h,zy ,zr,k,sk

is defined below.
We show indistinguishability between each successive pair H2,j−1 and H2,j by the following sequence
of hybrids:

• Hybrid H2,j−1,1: In this hybrid, the simulator behaves the same as in H2,j−1 except that it
sets the h← SSB.Setup, where the binding index i∗ = j.

• Hybrid H2,j−1,2: In this hybrid, the simulator behaves the same as in H2,j−1,1, except that

it uses an obfuscation of the circuit C̃j,2
h,zy ,zr,k′,sk,yj

in the output of GenerateCircuit, with a

punctured PRF key k′ punctured at j, where yj = ⊥ if j is honest party.

• Hybrid H2,j−1,3: In this hybrid, the simulator behaves the same as in H2,j−1,2, except that
from this point the simulator will answer to the random oracle queries as follows:

O(x) =

PRFk(i)⊕ yi ⊕ padi x /∈ cache ∧ x ∈ {rseed∥i}i∈C∧i≤j

cache(x) x ∈ cache ∧ x /∈ {rseed∥i}i∈C∧i≤j

⊥ (and abort) x ∈ cache ∧ x ∈ {rseed∥i}i∈C∧i≤j

uniform random string otherwise

• Hybrid H2,j−1,4: In this hybrid, the simulator behaves the same as in H2,j−1,3, except that

it uses an obfuscation of the circuit C̃j
h,zy ,zr,k′,sk

when computing the output of the simulated
GenerateCircuit protocol. This hybrid is identical to H2,j .

Circuit C̃j
h,zy ,zr,k,sk

(i, ct, r, πy, πr):

1. If SSB.Verify(h, zy, i, ct, πy) = 1, and SSB.Verify(h, zr, i, r, πr) = 1:

(a) If i ≤ j, output r ⊕ PRFk(i).

(b) Otherwise, output TFHE.Decsk(ct).

2. Otherwise, output ⊥.

Circuit C̃j,2
h,zy ,zr,k′,sk,out

(i, ct, r, πy, πr):

1. If SSB.Verify(h, zy, i, ct, πy) = 1, and SSB.Verify(h, zr, i, r, πr) = 1:

34

(a) If i < j, output r ⊕ PRF ′
k(i).

(b) If i = j, output out.

(c) Otherwise, output TFHE.Decsk(ct).

2. Otherwise, output ⊥.

We prove indistinguishability of each successive pair of these hybrids below.

Claim 5. Assuming the index hiding property of the SSB hash function, the output of the simulator
in H2,j−1 is indistinguishable from the output of the simulator in H2,j−1,1.

Proof. Assume that there is an efficient adversary A which distinguishes between H2,j−1 and H2,j−1,1

with non-negligible probability. We use A to build a reduction A′ against the index hiding property
of the SSB hash function.
A′ interacts with a challenger which supplies A′ with an SSB hash key with the statistical

binding bit i∗ set to either j − 1 or j. A′ performs the same steps as the simulator in H2,j−1, except
that it queries the challenger for the SSB hash key h. It sends the view of the corrupted parties to
A, and outputs the output of A.

If the SSB index hiding challenger sends an SSB hash key with the statistical binding index i∗

set to j − 1, then the view of A is identical to H2,j−1. If the challenger sends an SSB hash key
with i∗ set to j, the view of A is identical to H2,j−1,1. This means that A′ is a successful efficient
adversary against the index hiding property of the SSB hash function.

Claim 6. Assuming security of the iO scheme and statistical binding of the SSB hash function, the
output of the simulator in H2,j−1,1 is indistinguishable from the output of the simulator in H2,j−1,2.

Proof. Assume that there is an efficient adversary A which distinguishes between H2,j−1,1 and
H2,j−1,2 with non-negligible probability. We use A to build a reduction A′ against the security of
the iO scheme.
A′ interacts with a challenger, which receives two circuits from A′ and sends the obfuscation

of one of the two circuits. A′ performs the same steps as the simulator in H2,j−1,1, except that
instead of computing the simulated output for GenerateCircuit directly, it sends the two circuits
C0 = C̃j−1

h,zy ,zr,k′,sk
and C1 = C̃j,2

h,zy ,zr,k′,sk,yj
to the challenger and receives back an obfuscation of one

of them, which it uses as the simulated output of the SSB.Setup. It sends the view of the corrupted
parties to A, and outputs the output of A.

If the iO challenger sends an obfuscation of C0, then the view of A is identical to H2,j−1,1. If
the challenger sends obfuscation of C1, the view of A is identical to H2,j−1,2. This means that A′ is
a successful efficient adversary against the iO challenger, provided that C0 and C1 are functionally
equivalent. Note that the only input where the behavior of C1 could differ from the behavior of
C0 is on inputs (j, ct, r, πy, πr) , where ct ̸= cto,j , the committed output ciphertext of party j, and
SSB.Verify(h, zy, j, ct, πy) = 1. But by the statistical binding property, this is impossible.

Claim 7. Assuming PRF assumption hold, and security of the puncturable PRF, the output of the
simulator in H2,j−1,2 is indistinguishable from the output of the simulator in H2,j−1,3.

Proof. Assume that there is an efficient adversary A which distinguishes between H2,j−1,2 and
H2,j−1,3 with non-negligible probability. We use A to build a reduction A′ against security of the
puncturable PRF.

35

A′ interacts with a challenger which supplies A′ with a PRF key k′ punctured at position j,
and either string α, the evaluation PRFk(j) with the unpunctured key k or a uniform random
string of the same length. if A abort for such a α, A′ also abort, if not A′ performs the same steps
as the simulator in H2,j−1, except that it uses the challenger’s key k′ when computing the circuit

C̃j,2
h,sk,k′,y,zj

, and program the random oracle as follows:

O(x) =

α⊕ yi ⊕ padi x /∈ cache ∧ x ∈ {rseed∥i}i∈C∧i=j

PRFk(i)⊕ yi ⊕ padi x /∈ cache ∧ x ∈ {rseed∥i}i∈C∧i<j

cache(x) x ∈ cache ∧ x /∈ {rseed∥i}i∈C∧i≤j

⊥ (and abort) x ∈ cache ∧ x ∈ {rseed∥i}i∈C∧i≤j

uniform random string otherwise

It sends the view of the corrupted parties to A, and outputs the output of A.
From the random oracle assumption and the fact that rseed (the simulated output of Combineλ) is

a uniform random string, O(r∥j) in H2,j−1,2 is also uniform random string. So if the challenger sends
a uniform random α, the view of A is identical to H2,j−1,1,2. If the challenger sends α = PRFk(j),
then the view of A is identical to H2,j−1,3. Note that if A will guess rseed he can force A′ to
abort, but since the probability that A will guess rseed ∈ {0, 1}λ is negl(λ), this means that A′ is a
successful efficient adversary against security of the puncturable PRF.

Claim 8. Assuming security of the iO scheme and the statistical binding of the SSB hash function,
the output of the simulator in H2,j−1,3 is indistinguishable from the output of the simulator in
H2,j−1,4.

Proof. Assume that there is an efficient adversary A which distinguishes between H2,j−1,3 and
H2,j−1,4 with non-negligible probability. We use A to build a reduction A′ against the security of
the iO scheme.
A′ interacts with a challenger, which receives two circuits from A′ and sends the obfuscation

of one of the two circuits. A′ performs the same steps as the simulator in H2,j−1,3, except that
instead of computing the simulated output for GenerateCircuit directly, it sends the two circuits
C0 = C̃j,2

h,zy ,zr,k′,sk,yj
and C1 = C̃j

h,zy ,zr,k,sk
to the challenger and receives back an obfuscation of one

of them, which it uses as the simulated output of the SSB.Setup protocol. It sends the view of the
corrupted parties to A, and outputs the output of A.

If the iO challenger sends an obfuscation of C0, then the view of A is identical to H2,j−1,3. If
the challenger sends obfuscation of C1, the view of A is identical to H2,j−1,4. This means that A′ is
a successful efficient adversary against the iO challenger, provided that C0 and C1 are functionally
equivalent. Note that the only input where the behavior of C1 could differ from the behavior
of C0 is on inputs (j, ct, r, πy, πr) , where r ̸= ro,j , the committed randomness of party j, and
SSB.Verify(h, zr, j, r, πr) = 1. But by the statistical binding property, this is impossible.

Claim 9. Assuming semantic security of the TFHE scheme, the output of the simulator in H3 is
computationally indistinguishable from the output of the simulator in H4.

Proof. Assume that there is an efficient adversary A which distinguishes between H3 and H4 with
non-negligible probability. We use A to build a reduction A′ against semantic security of the TFHE
scheme.
A′ performs the same steps as the simulator in H2, except that instead of encrypting the honest

parties’ MPC inputs and randomness directly it sends the plaintexts {xi}i ̸∈C and {padi}i ̸∈C to the

36

challenger, and uses the ciphertexts received from the challenger as {ctsti,0}i ̸∈C and {ctpadi}i ̸∈C . It
sends the view of the corrupted parties to A, and outputs the output of A.

If the TFHE circular semantic security challenger sends ciphertexts with the true values, then
the view of A is identical to H3. If the challenger sends encryptions of 0 then the view of A is
identical to H4. This means that A′ is a successful efficient adversary against the TFHE semantic
security.

8 Malicious-Secure MPC

This section is devoted to presenting and analyzing our P2P-semi-malicious to malicious compiler.
The formal statement is given next.

Theorem 8.1 (P2P-Semi-malicious to malicious compiler). Assume hardness of LWE and the
existence of a SNARK scheme for NP. Let λ ∈ N be a security parameter. Assume that we are given
a P2P-semi-malicious MPC protocol Π secure against up to M − 1 corruptions in the PKI model.
Suppose that it consumes R rounds in which each of the M machines utilizes at most S local space.
Assume that M ∈ poly(λ) and λ ≤ S.

Then, there exists an MPC protocol which is maliciously secure against up to M − 1 corruptions
in the PKI model which realizes the same functionality. Moreover, the compiled protocol completes
in O(R) rounds and consumes at most S · poly(λ) space per party.

Combining Theorem 8.1 together with our short output semi-malicious compiler from Theo-
rem A.1, we obtain a maliciously secure compiler for short output deterministic MPC protocols.
Combining Theorem 8.1 together with our long output semi-malicious compiler from Theorem 7.1
we obtain a maliciously secure compiler for arbitrary deterministic MPC protocols. Full details are
given in Section 8.5.

The rest of the section is organized as follows. In Section 8.1, we introduce the cryptographic
primitives required for the protocol, introduce notation and make some simplifying assumptions.
In Section 8.2, we define several subprotocols which we will use. In Section 8.3, we give the formal
description of the compiler and analyze its efficiency, and finally, in Section 8.4, we prove that the
compiled protocol satisfies the security properties specified in Theorem 8.1.

8.1 Ingredients, Assumptions and Notation

Ingredients. In our protocol we use several generic building blocks:

1. An identity-based simulation-extractable zkSNARK (idse-zkSNARK). By Theorem 3.3, it is
sufficient to assume the existence of SNARKs for NP and one-way functions.

2. A threshold signature scheme with distributed reconstruction (Section 3.6). Such a scheme is
known from LWE by adapting the construction of Boneh et al. [BGG+18]. Although [BGG+18]
does not explicitly claim the distributed reconstruction property, it follows directly from the
fact that their reconstruction procedure is essentially linear.

3. A collision resistant hash function family H. We assume there is an algorithm H.Setup(1λ, 1γ),
which takes a security parameter λ and a compression parameter γ, and efficiently samples a
hash function h : {0, 1}λγ → {0, 1}λ. Such a family is known from LWE. We also assume that
size of the description of h and the space needed to evaluate h are both bounded by poly(λ) · γ.

4. A perfectly-binding non-interactive commitment scheme. Since any PKE scheme can be used
as a perfectly binding commitment, without loss of generality we assume this exists from LWE.

37

5. A pseudo-random function family. Such a family is known from LWE.

Together, we obtain Theorem 8.1 from zkSNARKs and LWE, as stated.

Assumptions and notation. Throughout, if ct is a valid ciphertext for message m, then we
assume ct[λ · (i− 1) : λ · i] is a valid ciphertext for the i-th bit of m (in particular, we assume that
the blowup is λ bits, for simplicity). We now discuss some assumptions about the underlying P2P
semi-malicious secure protocol, and we also fix some notation which will be useful when describing
the compiler.

First, we assume the underlying P2P semi-malicious secure protocol operates in the PKI model.
(It is straightforward to adapt our compiler to a semi-malicious protocol defined in the CRS model
or the plain model as well.) For simplicity, we also assume the protocol operates with point-to-point
authenticated (but not private) channels. In other words, an adversary can see all messages sent by
honest parties, even if the recipient is also honest.

We assume this protocol’s behavior is given in the form of a family of circuits {NextSti,r}i∈[M],r∈[R],
where NextSti,r denotes the behavior of party Pi in round r. We also assume NextSti,r has input and
output which is given in a particular form which will simplify the description of the malicious-secure
compiler. Recall from the technical overview that the high-level strategy of the compiler is that
for each round r of the underlying protocol, the parties should collectively compute a Merkle
root τr, where τr commits to a concatenation of all parties’ states with respect to this underlying
protocol at the end of round r. After obtaining τr, each party Pi must prove that its round-r
behavior represented by τr was honest with respect to the previous round represented by τr−1.
More specifically, Pi must show that it computed its round-r state honestly with respect to its
round-(r − 1) state, and that it sent honest messages to all round-r recipients specified by the

OutgoingMessageLocs(i, r) : takes a party index i and a round r, and outputs an indexed
family {(j, sj , ej)}j , where each tuple (j, sj , ej) indicates
that the sub-string of party Pi’s state starting at sj and
ending at ej should be sent to party Pj as a message.

IncomingMessageLoc(i, j, r): takes a sending party index i, a receiving party index j,
and a round r, and outputs a starting and ending location
(s, e) in Pj ’s state where Pj will store the message from Pi

at the end of round r.

IncomingMessageGlobalLoc(λ, i, j, r): takes a security parameter λ, a sending party index i, a
receiving party index j, and a round r, and outputs a
starting and ending location (s, e) in the string committed
to by τr, assuming the commitment scheme used has blowup
λ, where Pj will store the message from Pi at the end of
round r.

StateLoc(λ, i): Takes security parameter λ and party index i and, assuming
the commitment scheme C.Commit used has blowup λ,
returns a location l where Pi’s state will be stored in the
Merkle tree.

Table 1: Helper Functions

38

protocol. Thus there must be a way, given τr, to prove relationships between messages sent by some
party Pi and messages received by some other party Pj . The form which will be input and output
by NextSti,r will facilitate this.

We describe this form now. NextSti,r takes input of the form (smpk, smski, sti,r−1,msgini,r−1,
msgouti,r−1), where (smpk, smski) are the setup parameters, sti,r−1 is Pi’s private state at the end

of round r − 1 and msgini,r−1 contains all messages received by Pi during round r − 1. Similarly,
NextSti,r outputs a tuple of the form (sti,r,msgouti,r), where sti,r is Pi’s private state at the end of
round r and msgouti,r contains all messages sent by Pi during round r. The parties will compute τr as

a Merkle root of the concatenation C.Commit(st1,r)||msgin1,r||msgout1,r ||. . . ||C.Commit(stM,r)||msginM,r||
msgoutM,r of the outputs of NextSti,r for all parties, where each private state sti,r is hidden using a
noninteractive commitment.

Since the incoming and outgoing messages are sent in the clear, this enables each party Pi to
prove that it sent honest messages to each recipient party Pj : it can simply prove that (sti,r,msgouti,r)

was computed honestly, and as long as it has opening to each msginj,r at the appropriate location,
it can simply prove that its outgoing message to Pj recorded in msgouti,r is equal to the incoming

message recorded in msginj,r. We define some helper functions to help with this in Table 1

Sim.Setup1(1
λ, 1M)→ (smpk, stsim): generates the simulated public key smpk and a

private state stsim.

Sim.Setup2(stsim, C)→ ({smski}i∈C , st′sim): takes the set of corrupted parties and the state
from the previous step, and returns the set of
simulated secret keys smski along with an up-
dated private state stsim.

Sim.Round1(stsim)→ ({msgouti,1 }i∈[M]\C , st
′
sim): For round 1, the simulator takes as input its

private state stsim and generates first-round
messages on behalf of all honest parties along
with an updated simulator’s state st′sim.

Sim.Roundr({(msgouti,r−1, xi, ri)}i∈C , stsim)→
({msgouti,r }i∈[M]\C , st

′
sim):

In all other rounds, the simulator takes as input
the outgoing messages msgi,r−1 for each cor-
rupted parties Pi, the explanation {(xi, ri)}i∈C
for all corrupted parties’ behavior up to this
point, along with the simulator’s private state
stsim, and generates first-round messages on be-
half of all honest parties along with an updated
simulator’s state st′sim, possibly querying the
ideal functionality.

Table 2: Notation for P2P semi-malicious simulator

As the underlying MPC protocol is P2P semi-maliciously secure, it has a corresponding simulator
which will be needed when proving security of the malicious compiler. We fix the notation for the
simulator as follows, summarized in Table 2.

The setup phase is broken into two steps, Sim.Setup1 and Sim.Setup2. This is because we want
the adversary to be able to choose the set C of corrupted parties after seeing the public setup
parameters. So Sim.Setup1 receives as input a security parameter 1λ and the number of parties
1M and outputs a simulated public key smpk along with a simulator’s private state. Sim.Setup2

39

takes this state along with the corrupted set C, and returns an updated private state along with the
simulated private setup parameters for the corrupted parties. For each round r, Sim.Roundr outputs
the set {msgouti,r }i∈[M]\C of simulated outgoing messages for the honest parties for this round, along
with the simulator’s updated private state. During all rounds except for the first, Sim.Roundr takes
the set {msgouti,r−1}i∈C of outgoing messages for the corrupted parties from the previous round r − 1.
Since we are in the P2P semi-malicious setting, the simulator also takes as input a set {(xi, ri)}i∈C of
inputs and randomness for all corrupted parties which completely explains the adversary’s behavior
up to this point. Note that we want to handle rushing adversaries, which generate their round-r
messages after seeing the honest parties’ messages, so the simulator does not see any round-r
messages from corrupted parties when generating the honest parties’ messages for round r. For this
reason, during the first round, Sim.Round1 takes only its private state, and nothing else.

8.2 The Subprotocols

We define the subprotocols which will be used. These subprotocols enable the parties to compute and
agree upon a Merkle root which commits to a concatenation of all parties’ inputs, and to compute a
succinct proof of honest behavior for each round of the underlying protocol. Note that the compiler
and its subprotocols both use the Distribute and Combine subprotocols defined in Section 6.

8.2.1 The CalcMerkleTree Subprotocol

First, we present the CalcMerkleTree subprotocol. The purpose of this protocol is for all parties
to know a Merkle root τ with respect to some hash function h which commits to their collective
inputs, and for each party Pi to know an opening θi for its respective input. We will perform this
process over a tree with arity γ = λ. Each party is assigned to a set of nodes in the tree. The
0-th level of the tree consists of the leaves, one for each party, and each party supplies a string xi
corresponding to that leaf. The t-th level consists of the Merkle root, which is assigned to P0. The
job of P0 will be to receive the level-t − 1 labels and to apply the hash function to compute the
final root label, and then to distribute the root and the level-t− 1 openings up the tree. The nodes
on the interior levels of the tree have a similar job: receive labels from their children, compute the
label corresponding to this node by applying the hash function, and send this label to the node’s
parent and the openings back to the children.

The process completes within 2⌈logγ M⌉ rounds, where in each round the current layer calculates
new labels and sends them to the new layer of parents, and each layer sends any opening θi,j received
from its parent to all its children. At the end, each party Pi will know the root τ and an opening πi
to xi.

Protocol 3 CalcMerkleTreeh({xi}i∈[M]):

Input: Each party Pi has a hash function h and an input xi, where |xi|≤ S. In this protocol we
will number the parties starting at 0 (so the first party will be P0).

Parameters: Let λ ≤ S and t = ⌈logγ M⌉. Assume h is a collision-resistant hash function which
has been initialized with security parameter λ and compression parameter γ = λ.

Before starting: Each party Pi first computes a Merkle root yi,0 for a log|xi|-depth, fanin-2
Merkle tree of its input xi.

40

When carrying out the protocol, we will divide the parties into subsets. Let Sr = {Pi | i ≡ 0
(mod γr)} (and let S0 = {Pi}i∈[M]), let the set of children for i in Sr be Di,r = {Pj | j ≡ 0
(mod γr−1) and i ≤ j ≤ i + γr}, and let the parent of i in Sr be qi,r = γr⌊i/γr⌋.
For k = 1, . . . , ⌈logγ M⌉+ 1, do the following:

Round k: In this round, the parties in the sets Sk−t, t = 1, 3, . . . , 2⌈k/2⌉ − 1 will participate.

• Each party Pi in Sk−1 does the following:

1. If k − 1 > 0, receive yj,k−2 from each Pj ∈ Di,k−1

2. If k − 1 > 0, calculate yi,k−1 ← h({yj,k−2}Pj∈Di,k−1
), and send (yi,k−1, {yj,k−2}j∈Di,k−1

)
to all parties Pj , j ∈ Di,k−1.

3. Send yi,k−1 to Pqi

• Each party Pj in Sr for r = 0, . . . , k − 2 does the following:

1. Check if received θj,r′ = (yi,r′ , {yj′,r′−1}j′∈Di,r′
) from Pqj

2. If so, append θj,r′ to θj .

3. If r > 0, send θj,r′ to all Pj′′ ∈ Dj,r.

For k′ = ⌈logγ M⌉+ 2, . . . , 2⌈logγ M⌉+ 1:

Round k′: Each party Pj in Sr for r = 0, . . . , ⌈logγ M⌉ does the following:

1. Check if received θj,r′ = (yi,r′ , {yj′,r′−1}j′∈Di,r′
) from Pqj

2. If so, append θj,r′ to θj .

3. If r > 0, send θj,r′ to all Pj′′ ∈ Dj,r.

Output: The protocol stops after 2⌈logγ M⌉ rounds, and every party Pi knows the Merkle tree
root y and the opening θi of xi. Moreover, θi can be divided into openings θi,j for each size-λ chunk
of xi, where each opening θi,j has size log|xi|·2 + poly(λ).

We briefly discuss correctness and efficiency of CalcMerkleTree.

Correctness: We say that correctness holds for CalcMerkleTree if the end of an honest execution of
the protocol each party Pi knows the root label y of the tree along with an opening θi corresponding
to Pi’s input xi. Note that each Pi receives messages for each ancestor of the leaf node yi,0
corresponding to Pi’s input, and each message is of the form (yi′,r, {yj,r−1}j∈Di′,r), containing the
ancestor’s label and the ancestor’s direct children’s labels. This is sufficient to learn the root label z
of the tree as well as all node labels along the path to yi,0 along with the labels of the siblings of all
nodes along this path. From this, Pi can construct θi.

Efficiency: The CalcMerkleTree protocol has the property that each party Pi takes local space
bounded by S + poly(λ), assuming that for all i, |xi|≤ S and h← H.Setup(1λ). A straightforward
analysis shows that the noninteractive phase and each round take space bounded by S · poly(λ),
and because M ∈ poly(λ) there are a constant number 2⌈logλM⌉+ 1 = O(1) of rounds. These two
facts together imply the space bound.

41

8.2.2 The Agree Subprotocol

When using the CalcMerkleTree subprotocol in the malicious setting, it is not guaranteed that all
honest parties will receive a consistent Merkle root τ . Indeed, the corrupted parties could cause
different honest parties to receive different roots, or could prevent some honest parties from learning
the openings for their inputs. Because of this, we need a way for all parties to agree on a single
root, and for parties to be able to force an abort if they did not receive valid openings.

To that end, we define the subprotocol Agree. In this subprotocol, each party Pi has as input a
string xi. The subprotocol aborts if there exists i, j where xi ̸= xj . The main primitive used is a
threshold signature scheme with distributed reconstruction (TSDR); see Section 3.6. The distributed
reconstruction property is used to achieve the required space efficiency properties.

Protocol 4 Agreeγ({xi}i∈[M], vk, {sski}i∈[M]):

Input: Each party Pi has a string xi of size at most λ, the public verification key vk, and a secret
key sski, where (vk, {sski})← Sig.Setup(1λ, 1M) were generated using the TSDR setup algorithm.

1. Each party Pi computes the signature σi ← Sig.Signsski(xi) of the string xi with its secret key
sski.

2. The parties run Combineγ(Sig.Combine, {σi}) so that P1 has the combined signature σ.

3. The parties run Distributeγ(σ).

4. Each party Pi runs the verification algorithm Sig.Verifyvk(xi, σ) on the combined signature
and aborts if the verification fails.

Output: Each party Pi outputs xi.

Correctness: We say that Agree satisfies correctness if for any honest execution of the subprotocol
where xi = xj for all i, j ∈ [M], the protocol does not abort and every party Pi outputs xi at the
end. Correctness follows directly from the correctness of the TSDR scheme.

Efficiency: The Agree protocol has the property that each party Pi takes local space bounded by
S · poly(λ), assuming that for all i |xi|≤ λ. This follows directly from the efficiency properties of the
TSDR scheme.

Security: We define the security properties needed for Agree in terms of a game AgreeSecurity,
and prove that Agree satisfies these requirements.

Lemma 8.1. Let A be any PPT adversary. Then assuming unforgeability of the threshold signature
scheme, for all R, Pr

[
AgreeSecurityA(1λ, R) < negl(λ)

]
, where AgreeSecurity is nhe game defined

below.

Game 5 AgreeSecurityA(λ,R):

1. Initialize A with security parameter 1λ.

2. (vk, {sski}i∈[M])← Sig.Setup(1λ,M)

3. Send vk to A and receive C ⊊ [M] from A.

42

4. Send {sski}i∈C to A.

5. For r ∈ {0, . . . , R}:

(a) Receive {xi}i∈[M]\C from A.

(b) Execute an instance of Agree, acting on behalf of each party Pi, i ∈ [M] \ C using
((r, xi), vk, sski) as its input, and interacting with A which provides the behavior of the
corrupted parties.

(c) If Agree does not abort and there exists i, j ∈ [M] \ C such that Pi’s output xi is not
equal to Pj ’s output xj , then halt and output 1.

6. Output 0.

Proof. Assume there is a PPT A which causes AgreeSecurityA(λ,R) to output 1 with non-negligible
probability. We build a reduction A′ to the Unforgeability game from Definition 13.
A′ is an adversary for Unforgeability which has A hardcoded, and enacts AgreeSecurity with A,

except for the following differences:

• Instead of generating the setup itself, A′ queries the Unforgeability challenger to receive vk
which it forwards to A, and passes the choice of C made by A to the challenger to receive
{sski}i∈C .

• During the first step of the Agree protocol for each round r, instead of generating the honest
parties’ signatures directly, A′ sends ({i}, (r, xi)) to the challenger for each honest party Pi,
and receives back a signature which it uses as Pi’s signature.

• During each round r, if Agree does not abort and there exists i, j ∈ [M] \ C such that Pi’s
output xi is not equal to Pj ’s output xj , then A′ outputs the signature σ received by Pi at
the end of Agree.

Whenever it is the case that Agree does not abort and there exists i, j ∈ [M] \ C such that
Pi’s output xi is not equal to Pj ’s output xj , it follows that A′ did not query the challenger for
({j}, (r, xi)) during round r. This means that ((r, xi), [M]) is not in the challenger’s set S. On the
other hand, since all parties accepted, in particular this means that for the signature σ received
by Pi during Agree, it holds that Sig.Verifyvk((r, xi), σ). Thus A′ wins the unforgeability game in
this case. Since this happens whenever A wins AgreeSecurity, which happens with non-negligible
probability, A′ wins Unforgeability with non-negligible probability.

8.2.3 The SNARK statements and the RecCompAndVerify Subprotocol

The last subprotocol, RecCompAndVerify, deals with recursive composition and verification of the
zk-SNARKs that prove honest behavior during the commitment phase and during each round of
the underlying protocol. The subprotocol recursively composes proofs of honest behavior of each
party in a given round to get a succinct joint proof of all parties’ honest behavior in that round.
The parties then verify the proof and abort if the proof fails to verify.

Before defining the subprotocol, we first define formally the statements used when computing
zk-SNARKs. At a high level, the statement Φ((i, r, 0, τr−1, τr), w) proves that Pi’s state in τr was
computed honestly with respect to its state in τr−1, and that it sent honest messages to every
party it was supposed to send messages to during round r. We define the statements by specifying
algorithms which take the statement and the witness as inputs, and output 1 if the witness is valid
for the statement.

43

Statement 1 Φ((i, r, 0, τr−1, τr), (csti,r−1 ,msgini,r−1,msgouti,r−1, θi,r−1, csti,r ,msgini,r,msgouti,r , θi,r, ki, cki ,
αki , sti,r−1, sti,r, {(mj,r, θmj,r)}j)) :

1. Verify that the Merkle openings to the commitment to the private state of Pi along with the
messages sent and received during rounds r − 1 and r are valid with respect to τr−1 and τr,
and verify that the opening for the commitments to the private states are valid:

(a) Compute li ← StateLoc(λ, i), the location of Pi’s encrypted state in the Merkle trees.

(b) If θi,r does not open τr at location li to csti,r ||msgini,r||msgouti,r ||cki , then halt and output 0.

(c) If cki ̸= C.Commit(ki;αki), then halt and output 0.

(d) if csti,r ̸= C.Commit(sti,r;PRFki(r)), then halt and output 0.

(e) If r = 0, then halt and output 1. Otherwise, continue.

(f) If θi,r−1 does not open τr−1 at location li to csti,r−1 ||msgini,r−1||msgouti,r−1||cki , then halt
and output 0.

(g) if csti,r−1 ̸= C.Commit(sti,r−1;PRFki(r)), then halt and output 0.

2. Verify that computation and copying of messages was performed honestly:

(a) If NextSti,r(sti,r−1,msgini,r−1) ̸= (sti,r,msgouti,r), halt and output 0.

(b) For each (j, sj , ej) in OutgoingMessageLocs(i, r):

i. if θmj,r does not open τr at location IncomingMessageGlobalLoc(λ, i, j) to mj,r, halt
and output 0.

ii. msgouti,r [sj : ej] ̸= mj,r, halt and output 0.

3. Output 1.

Statement 2 Φ((i, r, k > 0, τr−1, τr), ({πj,k−1}j≡0 (mod γk−1),⌊j/γk⌋=i)) :

1. If i ̸≡ 0 (mod γk), output 0.

2. Verify that for each j such that j ≡ 0 (mod γk−1), ⌊j/γk⌋ = i,
Π.V(crs,Φ(j, r, k − 1, τr−1, τr), πj,k−1) = 1; otherwise, output 0.

We now define the RecCompAndVerify protocol below. Note that each party Pi has a unique id
(i, k) which it will use only during round k. We also assume that the SNARKs which are given as
inputs to RecCompAndVerify are proven using ids (i, 0). This will be useful when proving security
of the subprotocol, where we will want to extract from all SNARKs except for the ones generated
by the honest parties at the top level.

Protocol 5 RecCompAndVerify(r, crs, τr−1, τr, {(πi,r)}):

Parameters: Let the fan-in γ be λ.

44

Start: Each node Pi sets πi,r,0 = πi,r.

Round k: In this round, the parents are all Pi such that i ≡ 0 (mod γk), and the children are all
Pj such that j ≡ 0 (mod γk−1) but j ̸≡ 0 (mod γk). The round proceeds as follows:

1. Each child Pj sends πj,r,k−1 its parent Pi.

2. Pi computes the zk-SNARK πi,r,k ← Π.P(crs,Φ(i, r, k, τr−1, τr, (i, k)), {πj,r,k−1}).

Proof Verification: After t = ⌈logγ M⌉ rounds, P1 has π0,r,t = πr which proves that the round r
transcript committed to by τr has been honestly computed with respect to the round r − 1
transcript committed to by τr−1. The parties then do the following:

1. The parties run the subprotocol Distributeγ(πr) so that every party obtains πr.

2. Each party Pi runs Π.V(crs,Φ(0, r, t, τr−1, τr), πr, 1). If verification fails, Pi aborts and stops
responding.

Output: Each party Pi outputs πr.

Correctness: We say that RecCompAndVerify satisfies correctness if for every r, valid
idse-zkSNARK setup parameter crs, trees τr−1, τr, and proofs {πi,r} such that for all i
Π.V(crs,Π(i, r, 0, τr−1, τr), πi,r, i) = 1, an honest execution of the protocol does not abort, and
every party Pi outputs πr such that Π.V(crs,Π(0, r, t, τr−1, τr), πr, 1) = 1. Correctness follows
directly from correctness of the idse-zkSNARK protocol.

Efficiency: The RecCompAndVerify protocol has the property that each party Pi takes local space
bounded by S · poly(λ), assuming that for all i |xi|≤ λ. This follows directly from the efficiency
properties of the idse-zkSNARK scheme.

Security: We define the security properties needed for RecCompAndVerify, in terms of a game
RCVSecurity. In this game, a nonuniform PPT adversary A invokes R sequential instances of
RecCompAndVerify. The game takes two parameters r1 and r2; the challenger will try to extract
from the proofs produced by A during the r1-th and r2-th RecCompAndVerify instances. The game
is defined this way to support the extraction requirements during the proof of security of the main
compiler, which is designed to only need to extract twice during the protocol.

Lemma 8.2. Let A be any PPT adversary. Then assuming unforgeability of the threshold signature
scheme along with simulation-extractability of the idse-zkSNARK scheme, there is a PPT machine
EA such that for all R, r1 and r2, it holds that

Pr
[
RCVSecurityA,EA(1λ, R, r1, r2)

]
< negl(λ),

where RCVSecurity is the game defined below.

Game 6 RCVSecurityA,EA(1λ, R, r1, r2):

1. Choose uniform random strings αsnark, αA, {αi,r}i∈[M],r∈{0,...,R}.

45

2. Generate a simulated idse-zkSNARK setup (c̃rs, td)← Π.Sim1(1
λ,M · (t + 1);αsnark).

3. Initialize A with security parameter 1λ, setup parameters c̃rs, and randomness αA.

4. Receive the corrupted set C from A.

5. For each i ∈ [M] \ C, generate tdi ← Π.Sim2(c̃rs, td, (i, 0)).

6. Set τ−1 = ⊥.

7. For each r ∈ {0, . . . , R}:

(a) Receive τr from A.

(b) For each i ∈ [M] \ C, compute a simulated proof
πi,r ← Π.Sim3(c̃rs, i, tdi,Φ(i, r, 0, τr−1, τr);αi,r).

(c) Execute an instance of RecCompAndVerify, acting on behalf of each party Pi, i ∈ [M] \ C
using (r, c̃rs, τr−1, τr, πi,r) as its input, and interacting with A which provides the
behavior of the corrupted parties. If any parties abort, halt and output 0.

(d) If r = r1 or r = r2:

i. Compute {wi}i∈C ← EA(r1, r, c̃rs, α, {tdi}i∈[M]\C , {αi,r′}i∈[M]\C,r′∈{0,...,r}), where
α = (αA, {αi,r}). If the extractor fails, output 1.

ii. If there is an i ∈ C such that Φ((i, r, 0, τr−1, τr), (wi)) = 0, halt and output 1.

8. Output 0.

Proof. We divide the proof of this lemma into two parts. First, we define the extractor EA. Next, we
prove by induction that with respect to EA, A wins RCVSecurity with at most negligible probability.

Defining the extractor: We define EA by first recursively defining a large family of extrac-
tors. Define A′ as a machine that has A and r1 hardcoded and takes c̃rs and randomness
α = (αA, {αi,r}i∈[M],r∈{0,...,R}) as input, and plays RCVSecurityA, (1λ, R, r1, r2) with the follow-
ing differences:

• A′ receives a crs c̃rs from the challenger and forwards it to A.

• After A returns the corrupted set C, A′ sends {(i, r)}i[M],r∈{1,...,t} ∪ {(i, 0)}i∈C to a challenger
and receives back {td(i,0)}i∈[M]\C. A′ uses these trapdoors during each round in order to
simulate the honest parties’ proofs.

• If r = r1, instead of executing step 7d above, A′ halts and outputs πr which was output by P1

from the RecCompAndVerify subprotocol.

Now using A′ and Definition 9, we can recursively define extractors
ExtPartA([r1], [j1 . . . , jk], c̃rs, α, {tdi}) and ExtPartA([r1, r2], [j1 . . . , jk], c̃rs, α, {tdi}) for each
valid choice of [j1, . . . , jk] ∈ Z≤t

γ , where ExtPartA([r1], [j1 . . . , jk], c̃rs, α, {tdi}) extracts the proof
πjk,r1,(t−k) from RecCompAndVerify in round r1 and ExtPartA([r1, r2], [j1 . . . , jk], c̃rs, α, {tdi})
extracts the proof πjk,r2,(t−k) from RecCompAndVerify in round r2.

We start with ExtPartA([r1], [j1 . . . , jk], c̃rs, α, {tdi}), which we define recursively in terms of
[j1, . . . , jk] ∈ Z≤t

γ :

46

• Base case: ExtPartA([r1], [j1], c̃rs, α, {tdi}) runs the extractor EA′ from Definition 9 on the
same arguments, which outputs the set {πj,r,t−1}j≡0 (mod γt−1) of proofs from the second-to-last
round of the protocol RecCompAndVerify. ExtPartA([r1], [j1], c̃rs, α, {tdi}) then then simply
outputs πj1,r,t−1 from this set.

• Recursive case: Assuming ExtPartA([r1], [j1, . . . , jk−1], c̃rs, α, {tdi}) is defined, we recursively
define ExtPartA([r1], [j1 . . . , jk], c̃rs, α, {tdi}) as follows. Since ExtPartA([r1], [j1 . . . , jk−1], ·, ·, ·)
is a machine that takes a simulated crs c̃rs, some randomness, and the trapdoors for i ̸∈ C, it can
also be used as an adversary in the extraction game of Definition 9. Thus we have an extractor
EExtPartA([r1],[j1...,jk−1],·,·,·). ExtPartA([r1], [j1 . . . , jk], c̃rs, α, {tdi}) runs EExtPartA([r1],[j1...,jk−1],·,·,·)
on the same arguments to obtain the set {πj,r,t−k}j≡0 (mod γt−k),⌊j/γt−k⌋=jk−1

, and outputs
πjk,r,t−k from this set.

Now let ExtA([r1], c̃rs, α, {tdi}) run ExtPartA([r1], [j1, . . . , jt], c̃rs, α, {tdi}) for every valid
[j1, . . . , jt] in order to get {wi}i∈C. Here “valid” means that [j1, . . . , jt] is a valid path in the
tree of SNARKs defined by RecCompAndVerify such that jt ∈ C. ExtA([r1], c̃rs, α, {tdi}) returns this
set, or aborts if any of the extractors ExtPartA([r1], [j1, . . . , jt], ·, ·, ·) aborts.

Let A′′ be a machine which has A, r1, r2 and ExtA([r1], ·, ·, ·) hardcoded, and runs
RCVSecurityA,ExtA([r1],·,·,·)(1

λ, R, r1, r2) with the following differences:

• A′ receives a crs c̃rs from the challenger and forwards it to A.

• After A returns the corrupted set C, A′′ sends C to a challenger and receives back {tdi}i∈[M]\C .
A′′ uses these trapdoors during each round in order to simulate the honest parties’ proofs.

• If r = r2, instead of executing step 7d above, A′′ halts and outputs πr which was output from
the RecCompAndVerify subprotocol. (If all honest parties do not agree on πr then A′′ aborts.)

We define ExtPartA([r1, r2], [j1 . . . , jk], c̃rs, α, {tdi}) in terms of A′′ in exactly the same
way as ExtPartA([r1], [j1 . . . , jk], c̃rs, α, {tdi}) was defined in terms of A′, and we define
ExtA([r1, r2], c̃rs, α, {tdi}) in terms of ExtPartA([r1, r2], [j1 . . . , jk], c̃rs, α, {tdi}) in exactly the same
way as ExtA([r1], c̃rs, α, {tdi}) was defined in terms of ExtPartA([r1], [j1 . . . , jk], c̃rs, α, {tdi}).

Having defined ExtA([r1, r2], c̃rs, α, {tdi}) and ExtA([r1], c̃rs, α, {tdi}), we let EA implement
ExtA([r1], c̃rs, α, {tdi}) when extracting during round r1 and ExtA([r1, r2], c̃rs, α, {tdi}) when ex-
tracting during round r2.

Proving negligible probability of winning: First we note that every extractor which was
defined in the previous paragraphs runs in polynomial-time in λ. This is because the maximum
number of compositions 2(t + 1) of the extractor from Definition 9 is constant in λ.

Now it only remains to show that RCVSecurityA,EA(λ,R, r1, r2) outputs 1 with negligible proba-
bility in λ. Assume that during round r1 of the RCVSecurity experiment, The RecCompAndVerify
protocol outputs a πr1 such that Π.V(c̃rs,Φ(0, r, t, τr1−1, τr1), πr1) = 1 with non-negligible prob-
ability. We prove by induction the following statement: for all valid [j1, . . . , jk] such that
k < t, conditioned on RecCompAndVerify outputting a valid πr1 as explained above, with over-
whelming probability ExtPartA([r1], [j1 . . . , jk], c̃rs, α, {tdi}) outputs a πjk,r1,t−k such that Π.V(c̃rs,
Φ(jk, r1, t− k, τr1−1, τr1), πjk,r1,t−k, (jk, t− k)) = 1.

We first prove the base case. Assume that the base case does not hold. Then with non-
negligible probability conditioned on RecCompAndVerify in round r1 outputting a valid πr1 ,
ExtPartA([r1], [j1 . . . , jk], c̃rs, α, {tdi}) fails to output a valid πj1,r1,t−1 such that Π.V(c̃rs,Φ(j1, r1, t−
1, τr1−1, τr1), πj1,r1,t−1, (j1, t − 1)) = 1. Note that A′ outputs exactly the πr1 from the

47

RecCompAndVerify protocol. Consider the game SimExtA′,EA′ (λ). Since ExtPartA([r1], [j1], ·, ·, ·)
fails to output a valid proof with non-negligible probability, and A′ does not receive a trapdoor for id
(j1, t− 1), this means that SimExtA′,EA′ (λ) outputs 1 with non-negligible probability, contradicting
simulation-extractability of the idse-zkSNARK scheme.

We now prove the induction step. Assume that for some k < t, with non-
negligible probability conditioned on RecCompAndVerify in round r1 outputting a valid πr1 ,
ExtPartA([r1], [j1 . . . , jk], c̃rs, α, {tdi}) fails to output a valid πjk,r1,t−k such that Π.V(c̃rs,Φ(jk, r1, t−
k, τr1−1, τr1), πjk,r1,t−k, (jk, t − k)) = 1. By the induction hypothesis, with overwhelming con-
ditional probability ExtPartA([r1], [j1, . . . , jk−1], c̃rs, α, {tdi}) outputs a valid πjk−1,r1,t−(k−1) such
that Π.V(c̃rs,Φ(jk−1, r1, t − (k − 1), τr1−1, τr1), πjk−1,r1,t−(k−1), (jk−1, t − (k − 1))) = 1. Let-
ting Ahyp = ExtPartA([r1], [j1 . . . , jk−1], ·, ·, ·)), Consider the game SimExtAhyp,EAhyp

(λ). Since

ExtPartA([r1], [j1 . . . , jk], c̃rs, α, {tdi}) is defined in terms of EAhyp
and fails to output a valid proof

with non-negligible probability, and Ahyp does not receive a trapdoor for id (jk, t−k), this means that
SimExtAhyp,EAhyp

(λ) outputs 1 with non-negligible probability, contradicting simulation-extractability

of the idse-zkSNARK scheme.
By essentially the same argument, we can also show ExtA([r1], c̃rs, α, {tdi}) outputs a set of

valid witnesses with overwhelming probability conditioned on RecCompAndVerify outputting a valid
proof in r1. Then by applying the same argument again, we can show the same thing for all
ExtPartA([r1, r2], [j1 . . . , jk], c̃rs, α, {tdi}) and ExtA([r1, r2], c̃rs, α, {tdi}) as well. Since EA is defined
in terms of these two extractors, this completes the proof of the lemma.

8.3 The Compiler

We now give the formal description of the compiler.

Protocol 6 Malicious-Secure Compiler

Setup: Each party Pi knows the verification key vk along with secret key sski, where
(vk, ssk1, . . . , sskm)← Sig.Setup(1λ, 1M) are the setup parameters for the TSDR scheme. The
parties also know a hash function h and a SNARK CRS crs. Finally, the parties know the P2P
semi-malicious setup: every party knows the semi-malicious public key smpk, and each party Pi

knows its semi-malicious secret key smski.

Input: Party Pi has input xi and randomness ri to the underlying MPC protocol.

Commitment Phase:

1. Each party Pi chooses a PRF key ki and computes a commitment cki ← C.Commit(ki;αki). It
then computes csti,0 ← C.Commit((xi, ri);PRFki(0)).

2. The parties run the subprotocol CalcMerkleTreeh({csti,0 ||cki}i∈[n]), so that each party Pi

obtains a Merkle commitment τ0 and an opening θi,0 to csti,0 ||cki . Party Pi aborts if its
opening is not valid.

3. The parties run the subprotocol Agreeλ((0, τ0), vk, {sski}i∈[M]) and abort if the subprotocol
aborts.

4. Each party Pi calculates a SNARK π0,r ← Π.P(crs,Φ(i, 0,⊥, τ0),
(⊥,⊥,⊥, csti,0 ,⊥,⊥, θi,0, ki, cki , αki ,⊥, sti,0,⊥), (i, 0)).

48

5. All parties run RecCompAndVerify(crs,⊥, τ0, {πi,0}i∈[M]) to obtain and verify π0, a SNARK
for the statement Φ(0, 0, t,⊥, τ0). If the subprotocol aborts then all parties abort and stop
responding.

Evaluation Phase: The evaluation phase is divided into steps corresponding to the rounds of
the original protocol. Each step consists of several rounds in the new protocol. For each of the R
steps, the behavior of each party Pi is as follows:

• For round r of the underlying protocol: Pi starts with a state
(sti,r−1,msgini,r−1,msgouti,r−1), a Merkle root τr−1 for the previous round’s global state, and an

opening θi,r−1 for csti,r−1 ||msgini,r−1||msgouti,r−1||cki with respect to τr−1, where
csti,r−1 = C.Commit(sti,r−1;PRFki(r − 1)).

1. Compute (sti,r,msgouti,r)← NextSti,r(smpk, smski, sti,r−1,msgini,r−1).

2. For each (j, sj , ej) ∈ OutgoingMessageLocs(i, r), send msgouti,r [sj : ej] to party Pj .

3. Initialize msgini,r as an empty string of the appropriate size.

4. For each message m received from party j during the last step, write m to msgini,r at
location IncomingMessageLoc(j, i, r).

5. Compute csti,r ← C.Commit(sti,r;PRFki(r)).

6. Run CalcMerkleTreeh({csti,r ||msgini,r||msgouti,r ||cki}i∈[M]) with all other parties to obtain τr,

the Merkle root of the transcript, along with θi,r, an opening to sti,r||msgini,r||msgouti,r ||cki
with respect to τr. Abort if the opening is not valid.

7. Run Agreeλ((r, τr), vk, {sski}i∈[M]) and abort if the subprotocol aborts.

8. For each party that sent a message to Pi, send θmi,r , an opening to position
IncomingMessageGlobalLoc(j, i, r) in τr.

9. Calculate a SNARK πr,i ← Π.P(crs,Φ((i, r, 0, τr−1, τr), (csti,r−1 ,
msgini,r−1,msgouti,r−1, θi,r−1, csti,r ,msgini,r,msgouti,r , θi,r, ki, cki , αki , sti,r−1, sti,r,
{(mj,r, θmj,r)}j)), (i, 0)).

10. All parties run RecCompAndVerify(crs, τr−1, τr, {πi,r}i∈[M]) to obtain πr, a SNARK for
statement Φ(0, r, t, τr−1, τr). If the subprotocol aborts, then all parties abort and stop
responding.

Output Phase: At the end of round R, each player Pi has a state (sti,R,msgini,r,msgouti,r). Pi does
the following to compute its final output:

1. Compute yi ← NextSti,R(smpk, smski, sti,R,msgini,r).

2. Output yi.

Correctness and efficiency. Correctness of the compiler follows directly from the correctness
of the underlying building blocks. To analyze the efficiency of the compiler, we first recall that
during the sub-protocols CalcMerkleTree, Agree, and RecCompAndVerify, each machine takes local
space bounded by S · poly(λ). Moreover, the complexity-preserving efficiency property of the
idse-zkSNARK scheme guarantees that Π.P(crs, ϕ, w) is proportional to poly(λ) · (|ϕ|+|w|+s), where
s is the maximum space of the verification procedure for ϕ. Finally, when carrying over between

49

rounds, the parties only need to remember the previous round’s Merkle root and an opening of size
poly(λ) · S along with ki and the randomness used to generate the commitment cki . It follows from
these three facts that if the total local space used by each machine during the original protocol Π
is S, then the total local space used by each machine during the compiled protocol Π̃ is at most
S · poly(λ).

Remark 4 ((1+η) blowup in round complexity). The round complexity blowup in the above compiler
is constant, namely, an input protocol that consists of R rounds will result with a maliciously secure
protocol with O(R) rounds, where the constant underlying the O depends on the ratio between several
parameters of the system, which could be large in concrete instantiations. Here, we propose an
optimization to reduce the blow up to (1 + η) for any fixed η > 0.

In the current protocol, after every round we perform a “certification phase” which guarantees
that the state of all machines is consistent and all parties acted honestly given the previous state.
This phase costs some constant number of additional rounds, denoted c. Instead, we could do this
phase only once every c/η rounds, which we refer to as an epoch. Within an epoch, each party
would prove honest behaviour only to the machines it communicates with using zkSNARKs (i.e.,
each message will be accompanied with a SNARK attesting to the correct computation of the current
message given the previous state and the incoming messages). In the proof, extraction will be possible
in polynomial time within an epoch since it consists of only a constant number of rounds. Overall,
the round complexity of the compiled protocol will be (1 + η)R.

8.4 Security of the Compiler

In this section, we show that for any P2P semi-malicious secure protocol Π, the compiled protocol
Π satisfies the definition of malicious security given in Definition 14. We do this by exhibiting
a nonuniform polynomial-time simulator S for any nonuniform polynomial-time adversary A for
which the experiments realΠA(1λ, 1M , {xi}i∈[M]) and idealF

f

S (1λ, 1M , {xi}i∈[M]) are computationally
indistinguishable.

Let A be an arbitrary nonuniform polynomial-time adversary. We define the simulator with
respect to A as follows.

Simulator 1 Malicious Protocol Simulator

Input : The simulator receives as input the security parameter 1λ.

Simulated Setup: The simulator generates the setup for the corrupted parties as follows.

1. The simulator initializes A with 1λ and queries A for the input size N .

2. The simulator generates two threshold signature scheme setups
(vk, {sski}i∈[M])← Sig.Setup(1λ, 1M) using the honest aggregated signature setup algorithm.

3. The simulator chooses a hash function h← H.Setup(1λ, 1s).

4. The simulator generates the simulated idse-zkSNARK crs (c̃rs, td)← Π.Sim1(1
λ) using the

simulated SNARK setup algorithm, then for each i ∈ [M] \ C generates the id-specific
trapdoor tdi ← Π.Sim2(c̃rs, td, (i, 0)). It saves {tdi}i∈[M]\C .

5. The simulator generates the simulated public key for the underlying P2P semi-malicious
protocol: (smpk, stsim)← Sim.Setup1(1

λ, 1M)

50

6. The simulator sends (vk, vkrcv, h, c̃rs, smpk) to the adversary.

7. Upon receiving the set C of corrupted parties from the adversary, the simulator computes
({smski}i∈C , st′sim)← Sim.Setup2(stsim, C) and sets stsim ← st′sim. The simulator also receives
xi

8. The simulator responds to A with {(sski, sskrcv,i, smski)}i∈C .

Commitment Phase Extraction: The simulator does the following to extract the corrupted
parties’ inputs during the commitment phase.

1. On behalf of each honest party Pi, compute two commitments cki ← C.Commit(0;αki) and
csti,0 ← C.Commit((0, 0);αsti,0), where both αki and αsti,0 are uniform random.

2. Run the subprotocol CalcMerkleTree(h, {csti,0 ||cki}i∈[M]) on behalf of all parties, interacting
with A to obtain the messages of the corrupted parties, to obtain τ0, the Merkle root of the
transcript, along with θsti,0 , an opening to csti,0 ||cki with respect to τ0, for each party Pi,
i ∈ [M] \ C. If for some i the opening is not valid, then force the next step to abort by
refusing to respond on behalf of Pi.

3. Run the subprotocol Agree((0, τ0), vk, {sski}i∈[M]) on behalf of the parties, using A to obtain
the corrupted parties’ messages, and abort if all honest parties do not obtain a consistent τ0.
If the subprotocol causes any honest party to abort then force the protocol to abort by
refusing to respond on behalf of that party.

4. On behalf of each honest party Pi, calculate a simulated SNARK
πi,0 ← Π.Sim3(c̃rs, (i, 0), tdi,Φ(i, 0, 0,⊥, τ0);αsnark,i,0).

5. The simulator runs RecCompAndVerify(c̃rs,⊥, τ0, {πi,0}i∈[M]) on behalf of all parties,
interacting with A to obtain the corrupted parties’ messages, so that either every honest
party obtains π0, or at least one honest party aborts. If the subprotocol causes any honest
party to abort then force the protocol to abort by refusing to respond on behalf of that party.

6. Let E0 be the extractor guaranteed by Lemma 8.2 with respect to the machine Aext,0 (defined
below). Run E0(0, αsnark, αsig, αAext,0 , {αsnark,i,0}i∈[M]\C), where αAext,0 is the randomness for
Aext,0 and is chosen such that Aext,0 reproduces the same behavior as that of the simulator
and the adversary up to this point. E0 should output {(csti,0 , θi,0, sti,0 = (xi, ri), ki, αki)}i∈C .
If E0 fails, the simulator aborts.

7. Compute a Merkle root τ ′0 using the values (xi, ri, ki, αki) extracted in the previous step along
with the values (0, 0, 0, αki) committed to on behalf of the honest parties. If τ0 ̸= τ ′0 then the
simulator aborts.

Evaluation Phase: The simulator simulates the evaluation phase as follows. For each of the R
steps corresponding to rounds of the underlying protocol, the simulator proceeds as follows:

• During round r: The simulator starts the state stsim for the underlying protocol simulator,
along with a state (sti,r−1,msgini,r−1,msgouti,r−1) for each corrupted Pi, a Merkle root τr−1 for the

previous round’s global state, and an opening θi,r−1 for csti,r−1 ||msgini,r−1||msgouti,r−1||cki for each
corrupted Pi with respect to τr−1. Here csti,r−1 = C.Commit(sti,r−1;PRFki), a commitment to
Pi’s private state. Finally, the simulator knows (xi, ri, ki, αki) for each i ∈ C and cki , αki for
i ∈ [M] \ C from the commitment phase extraction. The simulator does the following:

51

1. Compute the messages and state of the simulator for the underlying protocol:

– If r = 1, compute ({msgouti,r }i∈[M]\C , st
′
sim)← Sim.Round1(stsim).

– If r > 1, compute
({msgouti,r }i∈[M]\C , st

′
sim)← Sim.Roundr({(msgouti,r−1, xi, ri)}i∈C , stsim). If Sim.Roundr

sends a query, forward the query to the ideal functionality, and forward the response
back to Sim.Roundr.

2. Set stsim ← st′sim.

3. For each i ∈ [M] \ C, choose αsti,r uniformly at random, and set
csti,r ← C.Commit(0;αsti,r).

4. Send all honest parties’ simulated messages to A. For all i ∈ [M] \ C:
– For each (j, sj , ej) ∈ OutgoingMessageLocs(i, r), if j ∈ C then send (j,msgouti,r [sj : ej])

to A.

5. Initialize an empty string msgini,r to the appropriate size for each honest party Pi.

6. Receive messages from corrupted parties to honest parties for round r from A, and
simulate messages between honest parties. For each i ∈ [M] \ C:
– For each message m received from A on behalf of Pj in round r, write m to st′i,r at

location IncomingMessageLoc(j, i, r).

– For each (j, sj , ej) ∈ OutgoingMessageLocs(i, r), if j ∈ [M] \ C then copy
msgouti,r [sj : ej] to msginj,r at position (s, e), where
(s, e)← IncomingMessageLoc(i, j, r).

7. Run CalcMerkleTree(h, {csti,r ||msgini,r||msgouti,r ||cki}i∈[M]) on behalf of all parties,
interacting with A to obtain the messages of the corrupted parties, to obtain τr, the
Merkle root of the transcript, along with θi,r, an opening to csti,r ||msgini,r||msgouti,r ||cki
with respect to τr, for each party Pi, i ∈ [M] \ C. If for some i the opening is not valid,
then force the next step to abort by refusing to respond on behalf of Pi.

8. Run Agree((r, τr), vk, {sski}i∈[M]) on behalf of all parties, interacting with A to obtain
the messages of the corrupted parties. Abort if all honest parties do not obtain a
consistent τ0. If the subprotocol causes any honest party to abort then force the protocol
to abort by refusing to respond on behalf of that party.

9. For each i ∈ [M] \ C:
(a) For each corrupted party Pj which sent a message to Pi in round r, send θmi,r , an

opening to position IncomingMessageGlobalLoc(j, i, r) in τr, to A.

(b) Receive openings sent to honest parties from A on behalf of corrupted parties. If A
sends an opening to Pi which is invalid, or if it shows an honest party’s message
wasn’t copied to a corrupted party’s state, force the next phase to abort by refusing
to respond on behalf of Pi.

(c) Calculate a simulated SNARK πr,i ← Π.Sim3(c̃rs, (i, 0), tdi,Φ(i, r, 0, τr−1, τr)).

10. The simulator runs RecCompAndVerify(c̃rs, τr−1, τr, {πi,r}i∈[M]) on behalf of all parties,
interacting with A to obtain the corrupted parties’ messages, so that either every honest
party obtains a valid proof π0, or at least one honest party aborts. If the subprotocol
causes any honest party to abort then force the protocol to abort by refusing to respond
on behalf of that party.

52

11. Compute what the corrupted parties’ messages and committed states should be
according an honest protocol execution with respect to the extracted inputs and
randomness (xi, ri), the PRF keys ki used as randomness for the commitments, and the
honest parties’ messages up to this point. For each i ∈ C:
(a) Compute (ŝt

′
i,r,

ˆmsgouti,r)← NextSti,r(sti,r−1,msgini,r−1).

(b) Initialize ˆmsgini,r as an empty string of the appropriate size.

(c) For each (j, sj , ej) ∈ OutgoingMessageLocs(i, r), if j ∈ C, let m = ˆmsgouti,r[sj : ej]

and write m to ˆmsginj,r at location IncomingMessageLoc(i, j, r). If j ∈ [M] \ C, let

m = ˆmsgouti,r[sj : ej] and write the honest-behavior message m to msginj,r at location
IncomingMessageLoc(i, j, r), overwriting the adversary’s message.

(d) For each i ∈ [M] \ C:
– For each (j, sj , ej) ∈ OutgoingMessageLocs(i, r), if j ∈ C then set

m = (j,msgouti,r [sj : ej]), and write m to ˆmsginj,r at location
IncomingMessageLoc(i, j, r).

(e) Compute ĉsti,r ← C.Commit(sti,r;PRFki(r)).

12. Compute a Merkle root τ̂0 using the values (ĉsti,r ,
ˆmsgini,r,

ˆmsgouti,r, cki) on behalf of the
corrupted parties along with the simulated states and commitments to ki
(csti,r ,msgini,r,msgouti,r , cki) on behalf of the honest parties. If τ0 ̸= τ̂0 then the simulator
aborts.

Output Delivery: If the last round finishes, the simulator delivers the output to all honest
parties which did not abort.

Aext,0(1
λ, 1M):

Input: Security parameter 1λ, number of machines 1M .

Hardcoded: adversary A.

Behavior: Aext,r enacts the simulation strategy defined above with A up to the end of the
RecCompAndVerify subprotocol in the commitment phase, except for the following differences.
During the generation of the setup parameters:

1. During the first part of the setup generation, instead of running the idse-zkSNARK setup
directly A′ receives c̃rs from the challenger and uses it when forwarding the public setup
parameters to the adversary during the setup phase. It generates the rest of the setup
parameters as normal.

2. Once A′ receives the corrupted party set C from A, it forwards this to the challenger.

During the commitment phase:

1. After the Agree subprotocol, when all parties have agreed on τ0, A′ sends τ0 to the challenger.

2. During the RecCompAndVerify subprotocol, A′ obtains the honest parties’ messages from the
challenger and forwards them to A, and receives the corrupted parties’ messages from A and
forwards them to the challenger.

Aext,0 halts after the end of the RecCompAndVerify subprotocol.

53

8.4.1 Proof of Indistinguishability

We prove that no adversary A can distinguish between a real-world execution with honest parties
and an ideal-world execution with the simulator defined in Section 8.4. We do this by exhibiting a
sequence of hybrids, each describing an interaction between A and a simulator, as follows:

Hyb0: In this hybrid, the simulator enacts a real-world execution with A, taking the part of
the honest parties.

Hyb1: In this hybrid, the simulator behaves identically to Hyb0 except regarding the idse-
zkSNARK. During setup, it uses the Π.Sim1 and Π.Sim2 algorithms to generate the setup and
trapdoors, and uses Π.Sim3 to simulate every idse-zkSNARK generated by the honest parties.

Hyb2: In this hybrid, the simulator behaves identically to Hyb1 except that during the
commitment phase, on behalf of each honest party Pi, it computes the commitment cki as a
commitment to 0 instead of a commitment to an honest PRF key ki.

Hyb3: In this hybrid, the simulator behaves identically to Hyb2 except that when computing
the commitment csti,r on behalf of each honest party Pi during the commitment phase and
during each round r, it uses a uniform random string as the source of randomness instead of
randomness chosen by PRFki .

Hyb4: In this hybrid, the simulator behaves identically to Hyb3 except that during the
commitment phase and during each round r, on behalf of each honest party Pi, it computes
the commitment csti,r as a commitment to 0 instead of a commitment to the honest state sti,r
(or instead of to (xi, ri) in the commitment phase).

Hyb5: In this hybrid, the simulator behaves identically to Hyb4 except that after running the
Agree subprotocol during the commitment phase and during each round r, it aborts if every
honest party does not output a consistent Merkle root τr.

Hyb6: In this hybrid, the simulator behaves identically to Hyb5 except that after the
RecCompAndVerify subprotocol in the commitment phase, the simulator runs the extrac-
tor E0 with respect to the machine Aext,0, and aborts if the extractor fails (see step 6 in the
simulation strategy above). It then uses the extracted values to recompute the Merkle root
for the commitment phase, and aborts if this Merkle root is not equal to the Merkle root
computed by the parties (see step 7 in the simulation strategy above).

Hyb7: In this hybrid, the simulator behaves identically to Hyb6 except that during each
round r after the RecCompAndVerify subprotocol, the simulator runs steps 11 and 12 in
the simulation strategy above. That is, during each round, it uses the values extracted

by E0 in the commitment phase to maintain states {ŝti,r|| ˆmsgini,r|| ˆmsgouti,r}i∈C for all cor-
rupted parties according an honest execution of the protocol. Then, for each round the

simulator uses {ŝti,r|| ˆmsgini,r|| ˆmsgouti,r||cki , ki}i∈C along with the simulated honest parties’

{csti,r ||msgini,r||msgouti,r ||cki}i∈[M]\C to recompute the Merle root for this round, and aborts if
this Merkle root is not equal to the one computed by the parties.

Hyb8: In this hybrid, the simulator behaves identically to Hyb7 except that instead of computing
the honest parties’ behavior for each P2P semi-malicious round according to the honest
protocol specification, it uses the P2P semi-malicous simulator to determine their behavior.
The behavior of the simulator in this hybrid is now identical to that of the ideal world.

54

Claim 1. Assuming the zero-knowledge property of the idse-zkSNARK holds, the view of the
adversary and the outputs of the honest parties are indistinguishable in Hyb0 and Hyb1.

Proof. The only difference between Hyb0 and Hyb1 is that during the setup the simulator generates
a simulated SNARK setup, and during the commitment phase and during the phase for each
round r, the simulator computes simulated idse-zkSNARKs instead of honest ones. Assume that A
distinguishes between Hyb0 and Hyb1 with non-negligible probability. We build a reduction A′ to
the multi-theorem zero-knowledge property of the idse-zkSNARK scheme.
A′ is an oracle machine which has A hardcoded and takes in a value crs. A′ runs the Hyb0

experiment with A except for the following differences.

• During the setup phase, instead of generating the idse-zkSNARK crs itself, A′ uses the value
crs which was given as input to A′.

• During the commitment phase and during the phase for each round r, instead of computing
each honest party Pi’s proof πi,r itself, A′ calls the oracle with values (Φ(i, r, 0, τr−1, τr), w),
where w is the valid witness for the statement Φ(i, r, 0, τr−1, τr). A′ then uses the proof πi,r it
receives as Pi’s proof during the RecCompAndVerify protocol for that round.

If we are in the real world of the idse-zkSNARK zero-knowledge game, thenA′ enacts exactly Hyb0.
On the other hand, if we are in the ideal world, then A′ enacts Hyb1. Thus, since A distinguishes
between these hybrids, A′ successfully beats the zero-knowledge game of the idse-zkSNARK scheme
with non-negligible probability.

Claim 2. Assuming the hiding property of the noninteractive commitment scheme holds, the view
of the adversary and the outputs of the honest parties are indistinguishable in Hyb1 and Hyb2.

Proof. The only difference between Hyb1 and Hyb2 is that in Hyb2, during the commitment phase,
the simulator computes a commitment cki ← C.Commit(0) instead of cki ← C.Commit(ki). We prove
indistinguishability of these two hybrids via a sequence of subhybrids Hyb1,0, . . . ,Hyb1,M , where
Hyb1,0 = Hyb1 and Hyb1,M = Hyb2. We define the hybrids as follows:

Hyb1,i: In this hybrid, the simulator behaves identically to Hyb1 except that whenever i′ ≤ i,
the simulator computes cki′ ← C.Commit(0) on behalf of Pi′ instead of cki′ ← C.Commit(ki′).

We prove indistinguishability between each successive pair of hybrids Hyb1,i−1 and Hyb1,i.
Assume A distinguishes between some pair of hybrids with non-negligible probability. Fix the
simulator’s choice of ki which maximizes the probability that A succeeds in distinguishing. We
construct a reduction A′ to the hiding property of the commitment scheme.

We define A′ as follows. A′ is machine which has A hardcoded and interacts with a challenger
for the hiding game of the commitment scheme. A′ runs the first hybrid experiment with A except
for the following difference. During the commitment phase, A′ receives a commitment c from the
challenger, which either commits to ki or 0. A′ then uses this commitment as cki .

If the challenger responds with a commitment to cki then A′’s behavior is exactly that of the
first hybrid. On the other hand, if the challenger responds a commitment to 0, then A′’s behavior
is that of the second hybrid. Thus, since A distinguishes between these hybrids, A′ successfully
beats the commitment scheme hiding game with non-negligible probability.

Claim 3. Assuming the pseudorandomness property of the PRF holds, the view of the adversary
and the outputs of the honest parties are indistinguishable in Hyb2 and Hyb3.

55

Proof. The only difference between Hyb2 and Hyb3 is that in Hyb3 the simulator generates commit-
ments on behalf of the honest parties using true uniform randomness instead of the pseudorandom
values used in Hyb2. We prove indistinguishability of these two hybrids via a sequence of subhybrids
Hyb2,0,0, . . . ,Hyb2,0,M ,Hyb2,1,1, . . . ,Hyb2,R,M , where Hyb2,0,0 = Hyb2 and Hyb2,R,M = Hyb3. We
define the hybrids as follows:

Hyb2,r,i: In this hybrid, the simulator behaves identically to Hyb2 except that whenever r′ ≤ r
and i′ ≤ i, when computing the commitment csti′,r′ on behalf of each honest party Pi′ during
the commitment phase and during each round r′, it uses a uniform random string as the source
of randomness instead of randomness chosen by PRFki .

We prove indistinguishability between each successive pair of hybrids Hyb2,r,i−1 (or Hyb2,r−1,M)
and Hyb2,r,i. Assume A distinguishes between some pair of hybrids with non-negligible probability.
We construct a reduction A′ to the PRF game.

We define A′ as follows. A′ is machine which has A hardcoded and interacts with a challenger
for the PRF game. A′ runs the first hybrid experiment with A except for the following difference.
During round r when computing the commitment C.Commit(sti,r;α) on behalf of party Pi, it queries
the challenger for a string and uses this string as the randomness α for the C.Commit algorithm.

If the challenger responds with a PRF evaluation then A′’s behavior is exactly that of the first
hybrid. On the other hand, if the challenger responds with a truly random string, then A′’s behavior
is that of the second hybrid. Thus, since A distinguishes between these hybrids, A′ successfully
beats the PRF indistinguishability game with non-negligible probability.

Claim 4. Assuming the hiding property of the noninteractive commitment scheme holds, the view
of the adversary and the outputs of the honest parties are indistinguishable in Hyb3 and Hyb4.

Proof. The only difference between Hyb3 and Hyb4 is that in Hyb4, for each i ∈ [M] \ C and
r ∈ 0, . . . , R, the simulator computes csti,r as a commitment to 0 instead of a commitment to the
honest state sti,r (or instead of to (xi, ri) in the commitment phase). We prove indistinguishability of
these two hybrids via a sequence of subhybrids Hyb3,0,0, . . . ,Hyb3,0,M ,Hyb3,1,1, . . . ,Hyb3,R,M , where
Hyb3,0,0 = Hyb3 and Hyb3,R,M = Hyb4. We define the hybrids as follows:

Hyb3,r,i: In this hybrid, the simulator behaves identically to Hyb1 except that whenever r′ ≤ r
and i′ ≤ i, the simulator computes csti,r as a commitment to 0 instead of a commitment to
the honest state sti,r (or instead of to (xi, ri) in the commitment phase).

We prove indistinguishability between each successive pair of hybrids Hyb3,r,i−1 (or Hyb3,r−1,M)
and Hyb3,r,i. Assume A distinguishes between some pair of hybrids with non-negligible probability.
Fix the randomness used by A as well as the randomness used by the simulator except for
the randomness used in committing to sti,r which maximizes the probability of A winning the
distinguishing game. This fixes the state sti,r of honest party Pi during round r. We construct a
reduction A′ to the hiding property of the commitment scheme.

We define A′ as follows. A′ is machine which has A hardcoded and interacts with a challenger
for the hiding game of the commitment scheme. A′ runs the first hybrid experiment with A except
for the following difference. During round r, A′ receives a commitment c from the challenger, which
either commits to sti,r or 0. A′ then uses this commitment as csti,r .

If the challenger responds with a commitment to sti,r then then A′ behaves in the same way
as the first hybrid. On the other hand, if the challenger responds with a commitment to 0, then
A′ has the behavior of the second hybrid. Thus, since A distinguishes between these hybrids with

56

non-negligible probability, A′ successfully beats the hiding game of the commitment scheme with
non-negligible probability.

Claim 5. Assuming unforgeability of the threshold signature scheme, the view of the adversary and
the outputs of the honest parties are indistinguishable in Hyb4 and Hyb5.

Proof. We prove this claim via Lemma 8.1. Assume that there is an adversary A which can
distinguish between the two hybrids Hyb4 and Hyb5 with non-negligible probability. We build a
reduction A′ against the game AgreeSecurity as follows.
A′ has the original adversary A hardcoded and interacts with the AgreeSecurity challenger.

It enacts Hyb5 with A except for the following differences. During the generation of the setup
parameters:

1. During the first part of the setup generation, A′ receives the TSDR verification key vk from
the challenger and uses it when forwarding the public setup parameters to the adversary
during the Hyb5 game. It generates the rest of the setup parameters as normal.

2. Once A′ receives the corrupted party set C from A, it forwards this to the challenger to receive
the TSDR secret keys {ssk}i∈C , and forwards these secret keys to the adversary as part of the
private setup parameters.

During the commitment phase and during every round r:

1. After the CalcMerkleTree subprotocol, for each honest party Pi, A′ sends xi = τr,i to the
challenger. Here τri is the output of CalcMerkleTree according to Pi.

2. During the Agree subprotocol, A′ obtains the honest parties’ messages from the challenger
and forwards them to A, and receives the corrupted parties’ messages from A and forwards
them to the challenger.

The only difference between Hyb4 and Hyb5 is that in Hyb5, during each round r after the
Agree subprotocol, the simulator aborts if all honest parties fail to agree on (r, τr). Thus, since
A successfully distinguishes between the two hybrids with non-negligible probability, this means
that A is able to induce such an abort during Hyb5. Because A′ behaves identically to Hyb5
when we run AgreeSecurityA′(1λ, R), we have that Pr

[
AgreeSecurityA′(1λ, R)

]
is non-negligible,

contradicting Lemma 8.1.

Claim 6. Assuming unforgeability of the threshold signature scheme and id-based simulation-
extractability of the idse-zkSNARK, the view of the adversary and the outputs of the honest parties
are indistinguishable in Hyb5 and Hyb6.

Proof. We prove this claim via Lemma 8.2. Assume that there is an adversary A which can
distinguish between the two hybrids Hyb5 and Hyb6 with non-negligible probability. We build a
reduction A′ against the game RCVSecurity as follows.
A′ has the original adversary A hardcoded and interacts with the RCVSecurity challenger.

It enacts Hyb6 with A except for the following differences. During the generation of the setup
parameters:

1. During the first part of the setup generation, A′ receives the idse-zkSNARK setup c̃rs from
the challenger and uses it as the CRS in the Hyb6 game. It generates the rest of the setup
parameters as normal.

57

2. Once A′ receives the corrupted party set C from A, it forwards this to the challenger.

During the commitment phase and during every round r:

1. After the Agree subprotocol, when all parties have agreed on τr, A′ sends τr along with τr−1

(or just τ0 if it is the commitment phase) to the challenger.

2. During the RecCompAndVerify subprotocol, A′ obtains the honest parties’ messages from the
challenger and forwards them to A, and receives the corrupted parties’ messages from A and
forwards them to the challenger.

The only difference between Hyb5 and Hyb6 is that in Hyb6, after the RecCompAndVerify subpro-
tocol, the simulator runs the extractor E0 guaranteed by Lemma 8.2 and aborts if the extractor fails
or if the extracted values fail to reconstruct τ0. Thus, since A successfully distinguishes between
the two hybrids with non-negligible probability, this means that A is able to induce such an abort
during Hyb6. Because A′ behaves identically to Hyb6 when we run RCVSecurityA′,E0(1λ, R, 0,⊥), we

have that Pr
[
RCVSecurityA′,E0(1λ, R, 0,⊥)

]
is non-negligible, contradicting Lemma 8.2.

Claim 7. Assuming simulation-extractability of the idse-zkSNARK, collision-resistance of the hash
function and binding of the noninteractive commitment scheme, the view of the adversary and the
outputs of the honest parties are indistinguishable in Hyb6 and Hyb7.

Proof. We prove the claim via a sequence of subhybrids Hyb6,0, . . . ,Hyb6,R, where Hyb6,0 is identical
to Hyb6 and Hyb6,R is identical to Hyb7.

Hyb6,r: Behave identically to Hyb7 until (including) round r, and behave identically to Hyb6
afterwards

Assume A can distinguish between the two hybrids with non-negligible probability. The only
difference between the two hybrids is that in Hyb6,r the simulator aborts if the new Merkle root
computed by the CalcMerkleTree is different than the Merkle root of an honest execution of the
corrupted parties based on the values extracted in the commitment phase. We finish the argument
in two steps. First, we show that if it is possible to extract both the commitment-phase witnesses
and the round-r witnesses used by the corrupted parties, then this yields an efficient algorithm
which obtains two different openings for either a commitment or a Merkle root. Second, we show
how to extract the witnesses.

Let RCVSecurity′ be a variant of RCVSecurity which, when outputting 0, also outputs the
witnesses for rounds r1 and r2. Assume there is an adversary A′ which has A hardcoded,
and where RCVSecurityA′,EA′ (1

λ, R, r1 = 0, r2 = r) enacts Hyb6,r and outputs 0 with over-

whelming probability. This means RCVSecurity′A′,EA′ (1
λ, R, r1 = 0, r2 = r) outputs a distri-

bution of witnesses that corresponds exactly to the proofs of A in Hyb6,r. Thus, with non-

negligible probability, RCVSecurity′A′,EA′ (1
λ, R, r1 = 0, r2 = r) outputs two sets of valid witnesses

W0 = {(ĉst0,0 , θ̂i,0, k̂i, ĉki , α̂ki , sti,0 = (xi, ri))}i∈C and Wr = {(csti,r−1 ,msgini,r−1,msgouti,r−1, θi,r−1, csti,r ,

msgini,r,msgouti,r , θi,r, ki, cki , αki , sti,r−1, sti,r, {(mj,r, θmj,r)}j)}i∈C , one for the statement Φ(0, 0, t,⊥, τ0)
for the commitment phase and one for the statement Φ(0, r, t, τr−1, τr) for round r, which correspond
to an execution of Hyb6,r where the simulator aborts during round r. Because of this, it holds that
the Merkle root τ̂r computed by the simulator from the set of witnesses W0 is not equal to the
Merkle root τr computed by the parties during CalcMerkleTree. Note however that τ̂r−1 = τr−1,
where τ̂r−1 is the honest-behavior verification root calculated by the simulator during round r − 1
(since the simulator did not abort in round r − 1). Using the fact that τ̂r ̸= τr and τ̂r−1 = τr−1,

58

along with the valid openings for τr and τr−1 in Wr, we show how to either obtain two openings for
τr−1 or two openings for one of the commitments csti,r .

Without loss of generality we can assume the difference in the strings committed to by the
Merkle roots is at a position corresponding to some player Pi’s state. In other words, letting

ŝti,r|| ˆmsgini,r|| ˆmsgouti,r||ĉki be the substring committed to as part of τ̂r on behalf of Pi, we assume
that

ĉsti,r || ˆmsgini,r|| ˆmsgouti,r||ĉki ̸= csti,r ||msgini,r||msgouti,r ||cki .

There are several cases: either i ∈ C or i ∈ [M] \ C, and either (ĉsti,r ,
ˆmsgouti,r) ̸= (csti,r ,msgouti,r),

ˆmsgini,r ̸= msgini,r, or ĉki ̸= cki . At least one of these cases must occur with non-negligible probability.
We handle each case as follows.

We start with the case where i ∈ C. First, assume ĉki ̸= cki . This means that the simulator has
an opening θ̂i,r−1 to a value ĉki in τr−1 at the same location as the opening θi,r−1 from Wr, which
is to a different value cki So if this case happens with non-negligible probability then we contradict
the collision-resistance of the hash function.

Next, assume that ĉki = cki but (ĉsti,r ,
ˆmsgouti,r) ̸= (csti,r ,msgouti,r). Letting ĉsti,r−1 , ŝti,r−1,

ˆmsgini,r−1, and ˆmsgouti,r−1, and k̂i be the values for Pi which the simulator computed during the

honest behavior verification step in round r−1, this means that either ki ̸= k̂i or (ŝti,r−1,
ˆmsgini,r−1) ̸=

(sti,r−1,msgini,r−1). It is impossible for ki ̸= k̂i, because that would contradict perfect binding

of the commitment scheme. But if (ŝti,r−1,
ˆmsgini,r−1) ̸= (sti,r−1,msgini,r−1), then we have that

(ĉsti,r−1 ,
ˆmsgini,r−1) ̸= (csti,r−1 ,msgini,r−1), also by perfect binding of the commitment scheme. The

simulator has an opening θ̂i,r−1 which opens τi,r−1 to (ĉsti,r−1 ,
ˆmsgini,r−1), whereas Wr contains θi,r−1

which opens τr−1 to (csti,r−1 ,msgini,r−1) at the same location. So if this happens with non-negligible
probability then we contradict the collision-resistance of the hash function.

For the final subcase when i ∈ C, assume (ĉsti,r ,
ˆmsgouti,r, ĉki) = (csti,r ,msgouti,r , cki) but ˆmsgini,r ̸=

msgini,r. Recall that msgini,r consists of messages mj,i,r sent from Pj to Pi during round r. Without
loss of generality, assume m̂j,i,r ̸= mj,i,r, for a particular choice of j. Recall that the adversary
must give as part of Wr an opening θmj,i,r for mj,i,r in τr at the correct location inside msgouti,r . The
simulator also has an opening for m̂j,i,r at this same location in τr. Thus, if this case happens with
non-negligible probability then we contradict the collision-resistance of the hash function.

Now we handle the case where i ∈ [M] \ C. Without loss of generality, assume there is no i ∈ C
where the substrings are different. We first observe that it cannot be the case that i ∈ [M] \ C
and (ĉsti,r ,

ˆmsgouti,r) ̸= (csti,r ,msgouti,r) or ĉki ̸= cki , since the simulator uses the same values at these

positions for τ̂r and τr. So the only possibility for when i ∈ [M] \ C is if ˆmsgini,r ̸= msgini,r. If this is
the case, then there must be some j ∈ C such that Pj sends a message to Pi during round r, and
that the message mj,i,r sent by the adversary on behalf of Pj is not equal to the message m̂j,i,r

which the simulator determined should be sent by Pj during the honest behavior verification step of
round r. This means that the adversary’s message m is not equal to msgoutj,r [si : ei], where msgoutj,r is

from Wr and (i, si, ei) ∈ OutgoingMessageLocs(j, r), since by assumption msgoutj,r = ˆmsgoutj,r. Thus
θmj ,r does not open τr at position IncomingMessageGlobalLoc(λ, j, i) to m. But the simulator has
an opening θi,r, which opens τr to m at position IncomingMessageGlobalLoc(λ, j, i), so if this case
occurs with non-negligible probability then we have a contradiction of the collision-resistance of the
hash function.

We finally show the existence of an A′ satisfying the requirements above. Let A′ be an adversary
for the RCVSecurity game, defined as follows. A′ has the original adversary A hardcoded and interacts

59

with the RCVSecurity challenger. It enacts Hyb6,r with A except for the following differences. During
the generation of the setup parameters:

1. During the first part of the setup generation, A′ receives the idse-zkSNARK setup c̃rs from
the challenger and uses it as the public setup parameters for the Hyb6,r game. It generates
the rest of the setup parameters as normal.

2. Once A′ receives the corrupted party set C from A, it forwards this to the challenger.

During the commitment phase and during every round r:

1. After the Agree subprotocol, when all parties have agreed on τr, A′ sends τr along with τr−1

(or just τ0 if it is the commitment phase) to the challenger.

2. During the RecCompAndVerify subprotocol, A′ obtains the honest parties’ messages from the
challenger and forwards them to A, and receives the corrupted parties’ messages from A and
forwards them to the challenger.

By Lemma 8.2, RCVSecurityA′,EA′ (1
λ, R, r1 = 0, r2 = r) outputs 0 with overwhelming probability,

which means RCVSecurityA′,EA′ (1
λ, R, r1 = 0, r2 = r) outputs witness sets W0 and Wr which are

valid for the corresponding execution of Hyb6,r with overwhelming probability. We have now shown
both steps of our argument, thus proving the claim.

Claim 8. Assuming P2P semi-malicious security of the underlying protocol, the view of the adversary
and the outputs of the honest parties are indistinguishable in Hyb7 and Hyb8.

Proof. The only difference between Hyb7 and Hyb8 is that in Hyb7 the simulator computes the
honest parties’ messages using the P2P semi-malicious simulator, whereas in Hyb8 it uses the honest
protocol behavior. Assume A distinguishes between the two hybrids with non-negligible probability.
We construct a reduction A′ to the P2P semi-malicious security of the underlying MPC protocol.

We define A′ as follows. A′ has the adversary A hardcoded and interacts with the challenger
for the P2P semi-malicious security game. Without loss of generality, assume that for round r
the challenger sends the honest parties’ messages in the form {msgouti,r }i∈[M]\C, and then requires
a response {(msgouti,r , xi, ri)}i∈C. A′ enacts the Hyb7 experiment with A except for the following
differences. During generation of the setup parameters:

1. A′ queries the challenger to receive smpk and forwards it to A.

2. Once A replies with the corrupted set C, A′ forwards it to the challenger to receive back
{smski}i∈C , which it forwards to A.

During round r of the experiment:

1. Instead of computing the honest parties’ messages directly, A′ queries the challenger to obtain
{msgouti,r }i∈[M]\C , which it uses as the honest parties’ outgoing messages.

2. After A′ performs the honest-behavior verification step for round r, if Hyb7 has not yet aborted,
A′ sends the set {(msgouti,r , xi, ri)}i∈C to the challenger.

Note that A′ is a valid P2P semi-malicious adversary, because the only way that Hyb7 does
not abort is if {(xi, ri)}i∈C completely explains the corrupted parties’ behavior. If the challenger
generates {msgouti,r }i∈[M]\C using the honest protocol, then the behavior of A′ is the same as the Hyb7
experiment. If the challenger generates {msgouti,r }i∈[M]\C using the P2P semi-malicious simulator,
then the behavior of A′ is the same as the Hyb8 experiment. Thus, since A successfully distinguishes
between the two experiments with non-negligible probability, A′ successfully wins the P2P semi-
malicious simulator indistinguishability game with non-negligible probability.

60

8.5 Putting it All Together

Given a short output MPC protocol, we can directly compile it into a P2P semi-malicious secure
protocol with our short output “insecure to P2P semi-malicious secure” compilerfrom Appendix A.
Then, we can compile it into a maliciously secure protocol with our “P2P semi-malicious to malicious
secure” compiler from Section 8. The resulting maliciously secure protocol has only constant overhead
in round complexity and a poly(λ) blowup in space. This lead to the following corollary:

Corollary 1. Assume the existence of a (non-leveled) threshold FHE system, LWE, and a SNARK
scheme for NP. Let λ ∈ N be a security parameter. Assume that we are given a (insecure)
deterministic short output MPC protocol Π. Suppose that it consumes R rounds in which each of
the M machines utilizes at most S local space. Assume that M ∈ poly(λ) and λ ≤ S.

Then, there exists an MPC protocol which realizes the same functionality as Π and which is
malicious secure against up to M − 1 corruptions in the PKI model. Moreover, the compiled protocol
completes in O(R) rounds and consumes at most S · poly(λ) space per party.

Given any long output protocol, we can compile it into a P2P semi-malicious secure protocol
with our long output “insecure to P2P semi-malicious secure” compiler from Section 7. This results
with a protocol in the random oracle model (which is somewhat inherent due to our lower bound
from Lemma 5.1). Unfortunately, we cannot directly use our “P2P semi-malicious to malicious
secure” compiler since in the description of the latter we did not capture input protocols that
rely on a random oracle. The reason is that SNARKs do not compose well with random oracles.
More specifically, in the long output compiled protocol all the parties calculate a shared string
denoted rseed (see Step 4.f), then each party calculates offline the root of a Merkle tree of the values
{O(rseed||i)}i∈[M] which we denoted zr (see Step 4.h) . Our goal is to prove that zr is correctly
calculated.

Note that zr is a deterministic function of rseed (since the random oracle is deterministic during
the execution of the protocol). So, zr can be calculated offline and its size is poly(λ). Now, in the
“P2P semi-malicious to malicious secure” compiler, after round r that corresponds to the end of
Step 4.f in the long output compiled protocol, we perform the following steps:

1. (Recall that τr is the Merkle tree root of states and messages of all parties at round r.) In
addition to storing τr, we also store zr. Denote τ∗r = (τr, zr) and from now on, use τ∗r instead
of τr.

2. The parties run Agreeλ(τ∗r , vk, {sski}i∈[M]) and abort if the sub-protocol aborts.

The above steps guarantee that all of the parties use the same zr. In round r + 1 of the malicious
compiled protocol, whenever a SNARK is computed (see Step 9 in the evaluation phase), it proved
that if we know that τ∗r is correctly calculated, then it must also be the case that τr+1 is correctly
calculated. In particular, the SNARK is never applied on a statement that contains a random oracle
query.

A different way to interpret the above is to imagine the statement provided to the SNARK as
composed of two parts: one that depends on a short seed rseed (that all parties know) and consists
of random oracle queries which eventually result with a small digest zr, and the other is a plain
model computation that only depends on zr. The point is that since zr is deterministic function of
rseed, the random-oracle dependent calculation can be locally computed by each party (and so zr
can be verified) and the SNARK can be applied only to the plain model computation that depends
on zr. Overall, we obtain the following corollary.

61

Corollary 2. Assume the existence of a (non-leveled) threshold FHE system, LWE, a SNARK
scheme for NP, and iO. Let λ ∈ N be a security parameter. Assume that we are given a (insecure)
deterministic MPC protocol Π. Suppose that it consumes R rounds in which each of the M machines
utilizes at most S local space. Assume that M ∈ poly(λ) and λ ≤ S.

Then, there exists an MPC protocol which realizes the same functionality as Π and which is
malicious secure against up to M − 1 corruptions, in the PKI/RO model. Moreover, the compiled
protocol completes in O(R) rounds and consumes at most S · poly(λ) space per party.

Acknowledgements. Rex Fernando is supported in part from a Simons Investigator Award,
DARPA SIEVE award, NTT Research, NSF Frontier Award 1413955, BSF grant 2018393, a
Xerox Faculty Research Award, a Google Faculty Research Award, and an Okawa Foundation
Research Grant. This material is based upon work supported by the Defense Advanced Research
Projects Agency through Award HR00112020024. Ilan Komargodski is the incumbent of the Harry &
Abe Sherman Senior Lectureship at the School of Computer Science and Engineering at the Hebrew
University. Yuval Gelles and Ilan Komargodski are supported in part by an Alon Young Faculty
Fellowship, by a JPM Faculty Research Award, by a grant from the Israel Science Foundation (ISF
Grant No. 1774/20), and by a grant from the US-Israel Binational Science Foundation and the US
National Science Foundation (BSF-NSF Grant No. 2020643). Elaine Shi is supported in part by the
US National Science Foundation (NSF awards 2044679 and 2128519).

References

[ABB+17] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni, and
Cliff Stein. Coresets meet edcs: algorithms for matching and vertex cover on massive
graphs. arXiv preprint arXiv:1711.03076, 2017.

[AG18] Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual
primal algorithms for maximum matching under resource constraints. TOPC, 2018.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication,
computation and interaction via threshold FHE. In EUROCRYPT, pages 483–501,
2012.

[AK17] Sepehr Assadi and Sanjeev Khanna. Randomized composable coresets for matching
and vertex cover. In SPAA, 2017.

[ANOY14] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev.
Parallel algorithms for geometric graph problems. In STOC, 2014.

[Ass17] Sepehr Assadi. Simple round compression for parallel vertex cover. CoRR,
abs/1709.04599, 2017.

[ASW18] Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms for
finding well-connected components in sparse graphs. CoRR, abs/1805.02974, 2018.

[ASZ19] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Log diameter rounds algorithms
for 2-vertex and 2-edge connectivity. In ICALP, 2019.

62

[BBD+19] Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, Mo-
hammadTaghi Hajiaghayi, Richard M. Karp, and Jara Uitto. Massively parallel
computation of matching and MIS in sparse graphs. In PODC, 2019.

[BBLM14] MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and Vahab Mirrokni.
Distributed balanced clustering via mapping coresets. In in NeurIPS, 2014.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for SNARKS and proof-carrying data. In STOC, 2013.

[BCL+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data without succinct arguments. In Advances in Cryptology
- CRYPTO, pages 681–710, 2021.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Recursive
proof composition from accumulation schemes. In Theory of Cryptography - TCC,
pages 1–18, 2020.

[BCP15] Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation:
Multi-party computation for (parallel) RAM programs. In CRYPTO, 2015.

[BCTV17] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero
knowledge via cycles of elliptic curves. Algorithmica, 79(4):1102–1160, 2017.

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter
M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully
homomorphic encryption. In CRYPTO, pages 565–596, 2018.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudo-
random functions. In Public-Key Cryptography - PKC 2014 - 17th International
Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires, Ar-
gentina, March 26-28, 2014. Proceedings, pages 501–519, 2014.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In STOC, 1988.

[BHH19] Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G. Harris. Exponentially
faster massively parallel maximal matching. In FOCS, 2019.

[BJMS18] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Thresh-
old multi-key fhe and applications to round-optimal mpc. IACR Cryptology ePrint
Archive, page 580, 2018.

[BJPY18] Elette Boyle, Abhishek Jain, Manoj Prabhakaran, and Ching-Hua Yu. The bottleneck
complexity of secure multiparty computation. In ICALP, 2018.

[BKV12] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in
streaming and mapreduce. Proceedings of the VLDB Endowment, 5(5):454–465, 2012.

63

[BMV+12] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei
Vassilvitskii. Scalable k-means++. Proceedings of the VLDB Endowment, 5(7):622–
633, 2012.

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key FHE
with short ciphertexts. In Advances in Cryptology - CRYPTO, pages 190–213, 2016.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In Advances in Cryptology - ASIACRYPT, pages 280–300, 2013.

[CCLS20] T.-H. Hubert Chan, Kai-Min Chung, Wei-Kai Lin, and Elaine Shi. MPC for MPC:
secure computation on a massively parallel computing architecture. In ITCS, 2020.

[CFG+19] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
complexity of (∆+1) coloring in congested clique, massively parallel computation,
and centralized local computation. In PODC, 2019.

[C LM+18] Artur Czumaj, Jakub La̧cki, Aleksander Ma̧dry, Slobodan Mitrović, Krzysztof Onak,
and Piotr Sankowski. Round compression for parallel matching algorithms. In STOC,
2018.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE
from learning with errors. In Advances in Cryptology - CRYPTO, pages 630–656,
2015.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments
from signature cards. In Innovations in Computer Science - ICS, pages 310–331,
2010.

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. Cluster computing in zero
knowledge. In Advances in Cryptology - EUROCRYPT, pages 371–403, 2015.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption
and its applications. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO,
2016.

[dPBENW16] Rafael da Ponte Barbosa, Alina Ene, Huy L Nguyen, and Justin Ward. A new
framework for distributed submodular maximization. In FOCS, pages 645–654, 2016.

[EIM11] Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using mapreduce. In
SIGKDD, 2011.

[EN15] Alina Ene and Huy Nguyen. Random coordinate descent methods for minimizing
decomposable submodular functions. In ICML, 2015.

[FKLS20] Rex Fernando, Ilan Komargodski, Yanyi Liu, and Elaine Shi. Secure massively
parallel computation for dishonest majority, 2020.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In ACM Symposium
on Theory of Computing, STOC, pages 169–178, 2009.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

64

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions (extended abstract). In FOCS, pages 464–479, 1984.

[GKMS19] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted
matchings via unweighted augmentations. In PODC, 2019.

[GLM19] Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. Improved parallel algo-
rithms for density-based network clustering. In ICML, 2019.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In STOC, 1987.

[Gol09] Oded Goldreich. Foundations of cryptography: volume 2. Cambridge university press,
2009.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT,
2016.

[GU19] Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications
in massively parallel computation and centralized local computation. In SODA, 2019.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, STOC,
2011.

[HSS19] MohammadTaghi Hajiaghayi, Saeed Seddighin, and Xiaorui Sun. Massively parallel
approximation algorithms for edit distance and longest common subsequence. In
SODA, 2019.

[HW15] Pavel Hubáček and Daniel Wichs. On the communication complexity of secure
function evaluation with long output. In ITCS, pages 163–172, 2015.

[KMVV15] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy
algorithms in mapreduce and streaming. TOPC, 2(3):14:1–14:22, 2015.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam D. Smith. Round efficiency of multi-party
computation with a dishonest majority. In Eurocrypt, 2003.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In CCS, pages 669–684, 2013.

[KSV10] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation
for mapreduce. In SODA, 2010.

[LMSV11] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering:
a method for solving graph problems in mapreduce. In SPAA, 2011.

[LMW18] Jakub La̧cki, Vahab S. Mirrokni, and Michal Wlodarczyk. Connected components at
scale via local contractions. CoRR, abs/1807.10727, 2018.

[LNO13] Yehuda Lindell, Kobbi Nissim, and Claudio Orlandi. Hiding the input-size in secure
two-party computation. In Advances in Cryptology - ASIACRYPT, pages 421–440,
2013.

65

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In STOC,
2012.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In FOCS, 1994.

[MKSK13] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed
submodular maximization: Identifying representative elements in massive data. In
NeurIPS, 2013.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via
multi-key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, Eurocrypt, 2016.

[NN01] Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function
evaluation. In STOC, pages 590–599, 2001.

[Ona18] Krzysztof Onak. Round compression for parallel graph algorithms in strongly sublinear
space. CoRR, abs/1807.08745, 2018.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In László Babai, editor, STOC, 2004.

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In TCC, 2016.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6):34:1–34:40, 2009.

[RMCS13] Vibhor Rastogi, Ashwin Machanavajjhala, Laukik Chitnis, and Anish Das Sarma.
Finding connected components in map-reduce in logarithmic rounds. In ICDE, 2013.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In STOC, 2014.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In FOCS, pages 80–91. IEEE Computer Society, 1982.

[YV18] Grigory Yaroslavtsev and Adithya Vadapalli. Massively parallel algorithms and
hardness for single-linkage clustering under ℓp-distances. In ICML, 2018.

66

Supplementary Material

A Semi-Malicious Secure MPC for Short Output

In this section, we give a semi-malicious compiler for MPC protocols whose output is short enough
to fit into the memory of a single machine. The compiler takes as input an arbitrary “short output”
(posssibly insecure) MPC protocol and transforms it into a semi-malicious counterpart. The compiler
is basically the same as the one of Fernando et al. [FKLS20], but they only proved that it is secure
in the semi-honest setting. We extend their proof of security to show that the compiler is readily
semi-malicious.

Theorem A.1 (Semi-Malicious Secure MPC for Short Output). Let λ ∈ N be a security parameter.
Assume that we are given a deterministic MPC protocol Π that completes in R rounds in which each
of the M machines utilizes at most S local space, and assuming Π results in an output for party
1 and no output for any other party. Assume that M ∈ poly(λ) and λ ≤ S. Further, assume that
there is a (non-leveled) threshold FHE scheme as in Section 3.4.

Then, there is an algorithm (compiler) that transforms Π into another protocol Π̃ which assumes
a PKI and furthermore realizes Π with P2P semi-malicious security in the presence of an adversary
that statically corrupts up to M−1 parties. Moreover, Π̃ completes in R+O(1) rounds and consumes
at most S · poly(λ) space per machine.

A.1 The Protocol

As mentioned the protocol that satisfies the properties in Theorem A.1 is the same as that of
Fernando et al. [FKLS20] and we give it below for completeness. We note that the proof of
semi-malicious security is slightly different from the proof of semi-honest security; details below.

The protocol proceeds in a encrypt-evaluate-decrypt fashion, where the encryption and evaluation
are done using a (threshold) FHE scheme and the decryption is done by aggregating all partial
decryptions in a tree. In more detail, the protocol proceeds in two phases: first, each party encrypts
its initial state under the public key pk, and the parties carry out an encrypted version of the
original (insecure) MPC protocol using the TFHE evaluation function. Second, P1 distributes the
resulting ciphertext, which is an encryption of the output, and all parties compute and combine
their partial decryptions so that P1 learns the decrypted output. This second phase crucially relies
on the fact that the TFHE scheme partial decryptions can be combined in a tree-like fashion.

The formal description of the protocol is below. Note that we use two subprotocols Distribute
and Combine, which are given in Section 6.

P2P Semi-Malicious Compiler for Short-output Protocols

Input: Party Pi has input xi to the underlying MPC protocol and circuits NextSti,1, . . . ,NextSti,R,
as described in Section 4.1.

Output: In the end of the protocol, party P1 will receive the output y ∈ {0, 1}lout , where
y = f(x1, . . . , xM) and f is the functionality that the original protocol Π computes.

1: Setup Phase: Each party Pi knows the security parameter λ, the public key pk along with a
secret key ski, where (pk, sk1, . . . , skM)← TFHE.Setup(1λ,M).

2: Evaluation Phase:

67

(a) Each party Pi encrypts its input xi using the public key pk: ctsti,0 ← TFHE.Enc(pk, xi).

(b) Parties evaluate the underlying protocol round by round. During round r ∈ [R], each
party Pi computes ctsti,r ||ctmsgouti,r

← TFHE.Eval(NextSti,r, ctsti,r−1 ||ctmsgini,r−1
) and sends

encrypted messages ctmsgouti,r
to other parties according to the original protocol Π.

(c) In the end of the evaluation phase, party P1 holds ctout, the encryption of the output y.

3: Decryption Phase:

(a) Parties execute Distributeλ(ctout) so that all parties receive the encryption ctout.

(b) Each party Pi locally computes ρi ← TFHE.PartDec(ski, ctout).

(c) Parties run Combineλ(+, {ρi}i∈[M]) and party P1 receives ρ =
∑M

i=1 ρi.

4: Offline Output Decryption Phase: Once P1 knows ρ he can obtain the output
y ← TFHE.Dec.Round(ρ).

Correctness and efficiency. Correctness follows directly from correctness of the TFHE scheme.
We proceed with the efficiency analysis. Note that, since M ∈ poly(λ) that mean there exists some
constant ϵ > 0, such that λ ≤M ϵ, so ⌈logλM⌉ ≤ ⌈logMϵ M⌉ = ⌈ϵ−1⌉ = O(1).

The encrypted MPC phase takes exactly R rounds, the distributed output decryption phase
consists of Distribute and Combine, both of which take ⌈logλM⌉ = O(1) rounds. Each party Pi

in the evaluation phase uses S · poly(λ) space. During decryption phase a Distribute and Combine
sub-protocols are invoked. There, Pi uses O(lout · λ2) space, since it stores λ ciphertexts, each of
size lout · λ. So the total space complexity is also S · poly(λ).

A.2 Security

To prove security, for every P2P semi-malicious adversary, we exhibit a simulator for the protocol
given above. This simulator will generate a view of an arbitrary set of corrupted parties which will
be indistinguishable from the view of the corrupted parties in a real-world execution of the protocol.
Note that the simulator receives the public key which is assumed to be generated honestly by the
TFHE setup algorithm, and also receives the set of corrupted parties C as input. This allows the
corrupted set C to be chosen based on the public key.

The behavior of the simulator is described below.

Short Output Simulator

Input: The simulator receives the corrupted set C, the public key pk, the corrupted parties’ inputs
{xi}i∈C , and, if 1 ∈ C, the output y = f(x1, . . . , xM).

Output: In the end of the protocol, if 1 ∈ C, party P1 will receive the output y = f(x1, . . . , xM)
and f is the functionality that the original protocol Π computes.

1: Simulated Setup: To generate the corrupted parties’ secret keys, the simulator uses the
TFHE simulated setup: ({ski}i∈C , σsim)← TFHE.Sim.Setup(pk, C), and sends {ski}i∈C to the
adversary.

2: Simulated Evaluation Phase:

(a) For each honest party i ∈ [M] \ C, the simulator computes an encryption of 0:
ctsti,0 ← TFHE.Encpk(0|xi|)

68

(b) The simulator executes the underlying protocol round by round with the adversary.
During round r ∈ [R], each party Pi computes ctsti,r ||ctmsgouti,r

← TFHE.Eval(NextSti,r,

ctsti,r−1 ||ctmsgini,r−1
) and sends encrypted messages ctmsgouti,r

to other parties according to the

original protocol Π.

(c) In the end of the evaluation phase, party P1 holds ctout, the encryption of the output y.

3: Simulated Decryption Phase:

(a) The simulator invoke Distributeλ(ctout) with the adversary, so that all parties receive the
encryption ctout.

(b) The simulator use the inputs and the adversary witness tape to obtain {ctsti,0}i∈C .

(c) The simulator invoke the TFHE simulator to obtain simulated partial decryptions:
{ρi}i∈[M]\C ← TFHE.Sim.Query(f, {ctsti,0}i∈[M], y, [M] \ C, σsim), or if 1 ̸∈ C,
{ρi}i∈[M]\C ← TFHE.Sim.Query(f, {ctsti,0}i∈[M],⊥, [M] \ C, σsim).

(d) Parties run Combineλ(+, {ρi}i∈[M]) and party P1 receives
∑M

i=1 ρi.

We now prove indistinguishability of the simulated views in the short output protocol from
the real-world views. That is, we show that no efficient adversary which corrupts an arbitrary
set of parties can distinguish between the output of the simulator and the view of the corrupted
parties in an honest execution of the protocol. We show this via a sequence of computationally
indistinguishable hybrids, where in the first hybrid the output of the simulator corresponds to the
real world, and in the last hybrid the simulator’s output corresponds to the ideal world.

• Hybrid H0: In this hybrid, the simulator behaves identically to the real world, setting the
corrupted parties’ secret keys to be the ones generated by the TFHE setup, and running the
real-world protocol.

• Hybrid H1: In this hybrid, the simulator behaves the same as in H0, except it generates
the corrupted parties’ secret keys via TFHE.Sim.Setup, and uses TFHE.Sim.Query to generate
the honest parties’ partial decryptions for the output. Note that if 1 ̸∈ C then the simulator
passes ⊥ to TFHE.Sim.Query instead of the output f(x1, . . . , xM).

• Hybrid H2: In this hybrid, the simulator behaves the same as in H1, except that it sets the
encryptions of each honest party’s input to 0: ctsti,0 ← TFHE.Encpk(0|xi|). H2 is identical to
the ideal world.

We now show indistinguishability of each successive pair of hybrids, relying on the properties of
the TFHE scheme which are defined in Section 3.4.

Claim 10. Assuming simulation security of the TFHE scheme, and simulation of incomplete
decryptions, the output of the simulator in H0 is indistinguishable from the output of the simulator
in H1.

Proof. Assume that there is an efficient adversary A which distinguishes between H0 and H1. We
use A to build a reduction A′ against simulation security of the TFHE scheme.
A′ performs the same steps as the simulator in H0, except that it interacts with the challenger

to obtain the public key, the corrupted parties’ secret keys, the initial ciphertexts and the partial
decryptions of the honest parties. It first receives pk from the challenger, then sends this to A,

69

receives C from A, along with the plaintexts {xi}i∈[M], where xi is Pi’s input for the underlying
MPC protocol, and sends this to the challenger. When it receives back ciphertexts {cti}i∈[M]\C , and
sends this to A, receives {cti}i∈C from A, it then performs the encrypted MPC phase in the same
way as in H0, and then finally, for the distributed output computation phase, it sends the query
(I, f), where f is the circuit representing the underlying MPC protocol and I is the set of honest
parties whose partial decryptions are seen by parties in C. Note that if I ∪ C ̸= [M], which happens
when 1 ̸∈ C, then the challenger uses ⊥ instead of f(x1, . . . , xM) when evaluating TFHE.Sim.Query.
When A′ receives the partial decryptions of the honest parties, it then uses these partial decryptions
to perform the rest of the procedure in the same way as H0. Once it has finished, it sends the views
of the corrupted parties, and sends this view to A. It outputs the output of A.

If the TFHE simulation security challenger enacts the real-world experiment, then the view of
A is identical to H0. If the TFHE challenger enacts the ideal-world experiment then the view of A
is identical to H1. Thus if A distinguishes between the hybrids then A′ is an efficient distinguisher
between the real and ideal experiments of the TFHE simulation game.

Claim 11. Assuming semantic security of the TFHE scheme, the output of the simulator in H1 is
indistinguishable from the output of the simulator in H2.

Proof. Assume that there is an efficient adversary A which distinguishes between H1 and H2 with
non-negligible probability. We use A to build a reduction A′ against semantic security of the TFHE
scheme.
A′ sends the set C of corrupted parties to the TFHE challenger. It receives pk and the secret

keys ski for i ∈ C. It then performs the same steps as the simulator in H1, except that it sends the
honest parties’ inputs to the challenger, and uses the ciphertexts which the challenger provides as
the honest parties’ encrypted initial state. It sends the view of the corrupted parties to A, and
outputs the output of A.

If the TFHE semantic security challenger sends ciphertexts with the true values, then the view
of A is identical to H1. If the TFHE challenger sends encryptions of 0 then the view of A is identical
to H2. Thus, if A can distinguish between the hybrids then A′ is a successful efficient adversary
against the TFHE semantic security game.

70

	Introduction
	Our Results

	Overview of our Techniques
	Our Malicious Compiler for Short Output Protocols
	Avoiding Coin-Flipping (or: P2P Semi-Malicious Security).
	Enforcing P2P Semi-Malicious Behavior

	Our Malicious Security for Long Output Protocols

	Preliminaries
	Somewhere Statistically Binding Hash
	Indistinguishability Obfuscation for Circuits
	Puncturable Pseudorandom Functions
	M-out-of-M Threshold Fully Homomorphic Encryption
	ID-Based Simulation-Extractable zk-SNARKs
	Threshold Signature Scheme with Distributed Reconstruction

	The MPC Model and Security Definitions
	The Massively Parallel Computation Model
	Malicious Security for MPC protocols
	P2P Semi-Malicious Security for MPC protocols

	Impossibility of a (Semi-)Malicious Secure Compiler
	Common Subprotocols
	The Distribute Subprotocol
	The Combine Subprotocol

	Semi-Malicious Secure MPC for Long Output
	The Protocol
	Proof of Security

	Malicious-Secure MPC
	Ingredients, Assumptions and Notation
	The Subprotocols
	The CalcMerkleTree Subprotocol
	The Agree Subprotocol
	The SNARK statements and the RecCompAndVerify Subprotocol

	The Compiler
	Security of the Compiler
	Proof of Indistinguishability

	Putting it All Together

	References
	Semi-Malicious Secure MPC for Short Output
	The Protocol
	Security

