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Abstract
We describe how any function over a finite field Fpn can be represented

in terms of the values of its derivatives. In particular, we observe that
a function of algebraic degree d can be represented uniquely through the
values of its derivatives of order (d − 1) up to the addition of terms of
algebraic degree strictly less than d. We identify a set of elements of the
finite field, which we call the degree d extension of the basis, which has
the property that for any choice of values for the elements in this set,
there exists a function of algebraic degree d whose values match the given
ones. We discuss how to reconstruct a function from the values of its
derivatives, and discuss the complexity involved in transitioning between
the truth table of the function and its derivative representation.

We then specialize to the case of quadratic functions, and show how
to directly convert between the univariate and derivative representation
without going through the truth table. We thus generalize the matrix
representation of qaudratic vectorial Boolean functions due to Yu et al.
to the case of arbitrary characteristic. We also show how to characterize
quadratic planar functions using the derivative representation. Based on
this, we adapt the method of Yu et al. for searching for quadratic APN
functions with prime field coefficients to the case of planar DO functions.
We use this method to find all such functions (up to CCZ-equivalence)
over F3n for n ≤ 7. We conclude that the currently known planar DO
polynomials cover all possible cases for n ≤ 7. We find representatives
simpler than the known ones for the Zhou-Pott, Dickson, and Lunardon-
Marino-Polverino-Trombetti-Bierbrauer families for n = 6. Finally, we
discuss the computational resources that would be needed to push this
search to higher dimensions.

1 Introduction
Functions over finite fields, typically referred to as discrete functions or vectorial
functions, play an important in many areas of mathematics, computer science,

∗Parts of this work were previously presented as a conference paper at WCC 2022. The
contents in Sections 3, 4, and 5 is completely new. The proof of Proposition 3 was omitted
from the conference version due to space constraints. Theorem 1 and Proposition 4 are
generalizations of Propositions 1 and 4 from the conference version, respectively, whose proof
was also omitted due to space constraints.
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and engineering. For instance, the non-linear components of modern crypto-
graphic block ciphers are typically modeled as functions between two finite fields
of characteristic 2; since linearity by itself does not provide any cryptographic
strength, the security of the entire encryption hinges on the properties of these
functions (usually called “substitution boxes”, or “S-boxes”, in this context).
Boolean functions, i.e. functions from F2n to F2 for some natural number n,
have been widely studied and applied in areas as varied as cryptography, arti-
ficial intelligence and combinatorics. In the case of odd characteristic, perhaps
one of the most remarkable applications of discrete functions is the correspon-
dence between quadratic planar functions and commutative semifields explored
in [7], which has led to recent breakthroughs and advances in an area that has
historically been studied since the early twentieth century. In general, discrete
functions can be used to encode almost any kind of data, and this has led to
their widespread use in many areas and contexts.

Discrete functions can be represented in many different ways. Arguably one
of the most natural such representations is the truth table, or look-up table
representation, which is simply a list of the values F (x) ∈ Fpm of a function
F : Fpn → Fpm on all possible inputs x ∈ Fpn . This representation has the
advantage of being simple to implement and fast to use in practice: indeed,
evaluating F at some given x ∈ Fpn amounts to nothing more than indexing
an array in the computer’s memory containing the truth table, and is certainly
the fastest way of working with a discrete function in practice. This natural
simplicity is, however, overshadowed by multiple drawbacks, such as the high
memory consumption (since every single value of F needs to be explicitly stored
in memory), and the fact that the values in the truth table reveal very little
about the structure and properties of the function. For instance, it is very hard
to say anything about the cryptographic properties, the algebraic degree, the
polynomial form, etc. of a function from its truth table without doing extensive
computations.

For this reason, alternative representations of discrete functions are studied
and used in practice. There is no overall “best” representation, and different rep-
resentations can be optimal with respect to different goals or parameters. For
instance, many cryptographically optimal functions have a very compact repre-
sentation as a univariate polynomial over Fpn , while the algebraic normal form
(ANF) makes it very easy to compute the algebraic degree of a function (or to
construct functions with a prescribed algebraic degree). Another motivation for
exploring different representations of discrete functions is related to computa-
tional searches: finding instances of cryptographically optimal functions such as
planar functions and APN functions is very hard, and due to the exponentially
growing search space, it is not possible to examine all possible functions. For
this reason, computational searches for e.g. APN functions have to be restricted
to some small set of functions, such as those having a simple form under some
given representation; then it is possible that the functions having a simple form
under one representation, e.g. the ANF, will be completely different from the
functions having a simple representation under a different representation, such
as a univariate polynomial. Another consideration is that the representation
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might make it easier (or harder) to determine whether a function possesses cer-
tain properties (such as being APN), or to decide whether a pair of functions is
equivalent or inequivalent under a given notion of equivalence (we note that e.g.
APN functions are classified under relations such as CCZ-equivalences, and so
computational searches are only done up to CCZ-equivalence).

We recall that the first-order derivatives of a function F are functions of
the form DaF (x) = F (a+ x)− F (x) that express the difference between a pair
of values of F whose pre-images have a prescribed difference; and higher-order
derivatives are basically “derivatives of derivatives” and express the relation
between more than two values of F . Many important cryptographic properties
such as the differential uniformity are defined in terms of derivatives, and so the
derivatives of a function are significant and natural objects to study.

In this paper, we show how any discrete function can be represented in terms
of the values of its derivatives. More precisely, we show that if F is a discrete
function of degree d, then knowing its derivatives of order (d − 1) allows us to
reconstruct the truth table of F uniquely up to the addition of a function of
algebraic degree strictly less than d. Since this “lower-degree” part of F can be
itself described in terms of derivatives of degree (d−2), (d−3), etc., knowing the
values of all derivatives of degree up to d allows F to be reconstructed uniquely.
In this way, the set of values of the derivatives of F constitutes an alternative
representation of F . While the memory needed for storing this representation
can be the same as that of the truth table in the worst case, memory can be
saved in comparison if the function is of low algebraic degree or if we ignore
some of the lower-degree terms of the function (for example, if we ignore the
quadratic and affine terms of a cubic function).

More importantly, our representation allows us to analyze the behavior of
the derivatives of the function; this is particularly useful in the case of quadratic
functions, where the representation consists of values of the first order deriva-
tives, and these are used in the definition of cryptographically optimal classes of
functions such as planar functions and APN functions. Indeed, specializations
of this representation to quadratic functions in characteristic 2 have previously
been used in works such as [18] and [17] to search for APN functions, although
the connection of this representation with derivatives does not seem to have
been made in those papers. This has made important computational results
possible: the approach in [18] was used to find thousands of new examples of
CCZ-inequvalent APN functions over F28 (whereas only several such functions
were known prior to that work), while the computations in [17] resulted in a
complete classification of all quadratic APN functions with coefficients in F2 over
F2n for n ≤ 9 (we remark that such classifications are very difficult to obtain,
even for specific subclasses of functions; APN functions have been completely
classified over F2n only for n ≤ 5 [2]; for cubic APN functions up to n ≤ 6 [13];
and for quadratic APN functions up to n ≤ 7 [13], [12]). Since this approach
was previously developed only for functions over finite fields of characteristic 2,
it was not possible to perform similar computations for e.g. planar functions or
other important classes of functions over finite fields of odd characteristic. In the
present paper, we show how quadratic functions of any differential uniformity
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over a field of any characteristic can be characterized in terms of the derivative
representation; we then apply this characterization to the case of characteristic
3, and computationally classify all quadratic planar functions with coefficients
in F3 over F3n for n ≤ 7. We confirm that there are no planar functions other
than the currently known ones (up to equivalence), but find representatives of
some of the known equivalence classes that are significantly simpler than the
previously known ones. We also discuss the computational challenges for taking
this approach farther, and propose several directions for future work.

We note that the exposition in the paper focuses on functions from Fpn to
Fpm with n = m for the sake of simplicity and since this is the most practically
relevant case (for instance, the cryptographically optimal classes of planar and
APN functions cannot be defined otherwise). Nonetheless, all of the principles
should be applicable to the general case of n ̸= m (with the exception of the con-
version to and from the univariate polynomial form, which may not be defined
when n ̸= m).

2 Preliminaries
Let n,m, p be natural numbers, with p prime. We denote by Fpn the finite
field with pn elements. An (n,m, p)-function F is any function F from Fpn

to Fpm ; when the values of n,m, p are understood from the context or are
not important, we will also refer to such functions as discrete functions or
vectorial functions. When p = 2, these are also called vectorial Boolean
functions; if, in addition, m = 1, we talk about Boolean functions.

The finite field Fpn can identified with the vector space Fn
p of dimension n

over Fp; in particular, every element x ∈ Fpn can be represented as a coordinate
vector in Fn

p . Let B = {b1, b2, . . . , bn} be a basis of Fpn over Fp.
We denote by wtB(x) the Hamming weight of the coordinate vector of x with

respect to B; in other words, if x =
∑n

i=1 aibi for ai ∈ Fp, then wt(x) =
∑n

i=1 ai,
with the sum taken over the integers. We note that the weight does not depend
on the concrete choice of basis, and so we will write wt instead of wtB.

The algebraic normal form (ANF) of an (n,m, p)-function F is the poly-
nomial

F (x1, x2, . . . , xn) =
∑

u∈Fpn

au

n∏
i=1

xui
i ,

where x = (x1, x2, . . . , xn) and u = (u1, u2, . . . , un) are the coordinate vectors
of x and u, respectively. The ANF always exists and is uniquely defined. The
algebraic degree deg(F ) of F is the largest Hamming weight of an exponent
with a non-zero coefficient, i.e.

deg(F ) = max{wt(u) : u ∈ Fpn | au ̸= 0}.

A function F of algebraic degree at most 1 are called affine, and has the property
that F (x) + F (y) + F (z) = F (x + y + z) for any x, y, z ∈ Fpn . If, in addition,
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F (0) = 0, we say that F is linear. Functions of algebraic degree 2 are called
quadratic, functions of algebraic degree 3 are called cubic, and so forth.

If F is an (n,m, p)-function with m | n, so that Fpm is a subfield of Fpn , the
function F can be represented as a polynomial over Fpn of the form

F (x) =

pn−1∑
i=0

aix
i.

This is called the univariate representation of F , and always exists; it can
be obtained, for instance, by Lagrange interpolation on the list of values of the
function. When, in addition, n = m, this representation is unique; in the cases
when m is a proper divisor of n, some additional restrictions have to be imposed
on the polynomial in order to ensure uniqueness. Since this is not relevant to
our work, we do not go into details here.

In fact, in the following, we will assume that we are working with (n, n, p)-
functions, i.e. that the domain and co-domain are the same. This is arguably
the most widely studied case in practice, and is motivated by the focus on
the cryptographically optimal classes of planar and almost perfect nonlinear
functions in the latter half of the paper. While the assumption that n = m
makes it possible to define a unique univariate polynomial representation, we
stress that virtually all of the principles and procedures discussed in the sequal
can immediately be applied to the general case of (n,m, p)-functions with n ̸= m
as well (except statements such as Proposition 3 that concern the univariate
representation).

For any (n, n, p)-function F , its (first-order) derivative in direction a ∈
Fpn is the (n, n, p)-function

∆aF (x) = F (a+ x)− F (x)− F (a) + F (0).

We note that the derivative is sometimes defined as DaF (x) = F (a+x)−F (x),
but in the context of studying properties such as differential uniformity, the
difference between the two representations is ∆aF (x) −DaF (x) is a constant,
and thus the two definitions can be used interchangeably. In our work, we prefer
the form ∆aF (x) since it is symmetric in a and x; for this reason, we will also
denote it by ∆F (a, x) or, equivalently, ∆F (x, a).

The differential uniformity δF of an (n, n, p)-function F is the maximum
number of solutions x to any equation of the form F (a + x) − F (x) = b for
any choice of a, b ∈ Fpn with a ̸= 0. Clearly, this is the same as the maximum
number of solutions x ∈ Fpn to ∆F (a, x) = b for any a, b ∈ Fpn with a ̸= 0.
Symbolically:

δF = max{#{x ∈ Fpn : ∆F (a, x) = b} : a, b ∈ Fpn | a ̸= 0}.

The differential uniformity is an important cryptographic parameter, and it is
desirable for it to be low in order for a function to provide reliable resistance
against differential cryptanalysis when employed as a component in a block
cipher. If δF = 1, we say that F is a perfect nonlinear (PN) or planar
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function. Since ∆F (a, x) = ∆F (a + x, x) when p = 2 (due to addition and
subtraction being the same operation), planar functions only exist when the
characteristic of the field is odd. In the case of even characteristic, the optimal
value of the differential uniformity is 2. If δF = 2, we say that F is almost
perfect nonlinear (APN).

Planar and APN functions are important objects of study due to their cryp-
tographic significance, but they are also of interest thanks to various correspon-
dences with optimal objects in other areas of mathematics. For instance, the
correspondence between quadratic planar functions over fields of odd character-
istic and commutative semifields studied in [7] is an important breakthrough,
which has led to the construction of multiple infinite families of semifields which
were not previously known despite the study of semifields since their introduc-
tion at the beginning of the twentieth century. We refer the reader to [6] for
more background on APN functions, and to [14] for a survey on constructions
and properties of APN and planar functions.

Finding new examples of APN and planar functions is thus clearly a matter
of significant theoretical and practical significance. A potential issue is that
the number of such functions is very large; in fact, the number of functions
even over a finite field of relatively small order such as F24 is so large that even
just recording all of these functions becomes a significant challenge. For this
reason, the classes of both APN and planar functions are only considered up
to an appropriate equivalence relations; that is, some notion of equivalence is
introduced (which must necessarily preserve the property of the functions being
APN or planar, respectively, so that such a classification would make sense), and
then any two functions belonging to the same equivalence class are considered to
be “the same”; in particular, only a single representative from each equivalence
class needs to be considered.

The most general known relation on (n, n, p)-functions used in practice that
preserves the differential uniformity is called CCZ-equivalence. We say that
F,G : Fpn → Fpn are CCZ-equivalent if there exists an affine permutation A
of Fp2n mapping the graph {(x, F (x)) : x ∈ Fpn} of F to the graph {(x,G(x)) :
x ∈ Fpn} of G (we note that Fpn × Fpn can be identified with Fp2n).

Less general notions of equivalence are frequently used in the literature as
well, since they can be easier to work with or reason about, and since they
coincide with CCZ-equivalence for some important classes of functions. We
say that F and G are linear equivalent if there exist linear permutations
L1, L2 of Fpn such that L1 ◦ F ◦ L2 = G; similarly, we say that F and G
are affine equivalent if there exist affine permutations A1, A2 of Fpn such
that A1 ◦ F ◦ A2 = G. Finally, we say that F and G are extended affine
equivalent (EA-equivalent) if there exist affine permutations A1, A2 of Fpn

and an affine (n, n, p)-function A such that A1 ◦F ◦A2+A = G. Clearly, linear
equivalence is a special case of affine equivalence, which in turn is a special
case of EA-equivalence; it can also be shown that EA-equivalence is a special
case of CCZ-equivalence, and so these notions of equivalence form a hierarchy
of increasing generality.

We know that two quadratic APN functions are CCZ-equivalent if and only
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if they are EA-equivalent [16]; that two planar functions are CCZ-equivalent if
and only if they are affine equivalent [4]; and that two quadratic planar functions
are CCZ-equivalent if and only if they are linear equivalent [4]. Since the vast
majority of the currenty known APN and planar functions are quadratic, this
means that in practice it is often enough to consider and reason about some of
these less general equivalence relations.

This can be advantageous since deciding whether two given functions are
CCZ-equivalent is one of the largest bottlenecks in finding new examples of i.a.
APN and planar functions. At the time of writing, the only efficient way of
deciding CCZ-equivalence is through linear codes. More precisely, a linear code
CF can be associated with any (n, n, p)-function F ; and then two functions
F and G are CCZ-equivalent if and only if CF and CG are isomorphic [9].
Algorithms for testing code isomorphism are known and implementations are
available for instance in the Magma algebra system [1]. Unfortunately, this
approach requires a lot of memory, and is only applicable to relatively small
finite fields (for instance, F211 and F38 are already too large for the algorithm
to run on our department server).

In the case of quadratic APN functions, EA-equivalence between a pair of
functions can be decided by computing their orthoderivatives [5]. We omit the
details here, but note that this approach can be used to very quickly confirm that
two quadratic APN functions are inequivalent. If the functions are equivalent (so
that they cannot be differentiated through the orthoderivatives), it is possible
to verify this with algorithms such as the ones described in [5] or [11], although
these approaches are significantly slower and do not work for some classes of
functions.

The orthoderivative approach, unfortunately, does not work for planar func-
tions. The only way to test CCZ-equivalence in general is through code isomor-
phism, although this takes significant time. In the case of even planar functions,
i.e. planar functions F (x) such that F (x) = F (−x) for all x ∈ FPn , a recent
algorithm allows equivalence to be decided without going through linear codes,
and significantly reduces the computation time and memory requirements [10].
We apply this approach to partition the functions that we find from our com-
putational searches into equivalence classes since all functions produced by our
computational search are even.

3 Higher-order derivatives and their properties
In this section, we formally define the notion of higher-order derivatives and
justify some of their fundamental properties. While many of these properties
may seem intuitively clear, we consider it necessary to provide formal proofs
since we are not aware of a similar treatment available in the literature, and
since the correctness of the derivative hypermatrix representation discussed in
the rest of the paper crucially depends on some of these properties.

For a function F over Fpn , we define its (k − 1)-st order derivative ∆k
F as

the function ∆k
F : Fk

pn → Fpn given by
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∆k
F (x1, x2, . . . , xk) =

∑
I⊆{1,2,...,k}

(−1)k−#IF

(∑
i∈I

xi

)
. (1)

For example, the first order derivative takes the form

∆2
F (x, y) = F (x+ y)− F (x)− F (y) + F (0),

and the second order derivative is of the form

∆3
F (x, y, z) = F (x+y+z)−F (x+y)−F (x+z)−F (y+z)+F (x)+F (y)+F (z)−F (0).

We can observe that a k-th order derivative can be expressed as the first order
derivative of a (k − 1)-st order derivative. This is formalized in Proposition 1
below.

In the following proof (as well as further on in the paper), we will identify
sets of elements with values of F ; for instance, if {x1, x2, x3} is a set of elements,
then the corresponding value of F will be F (x1+x2+x3). This is mostly useful
when the elements xi are multiples of elements from a basis, since any element
x can be written as a sum of such elements.

Proposition 1. For any (n, n, p)-function F , we have

∆d+1
F (x1, x2, . . . , xn−1, xn, xn+1) =∆d

F (x1, x2, . . . , xn−1, xn + xn+1)−
∆d

F (x1, x2, . . . , xn−1, xn)−
∆d

F (x1, x2, . . . , xn−1, xn+1).

(2)

Proof. From the definition of ∆d
F in (1), we can see that the value of the deriva-

tive of F is the sum of the values of F on all subsets of the inputs to the deriva-
tive, with the signs in front of the values of F being determined by the parity of
the corresponding subset. Let us denote A = ∆d

F (x1, x2, . . . , xn−1, xn + xn+1),
B = ∆d

F (x1, x2, . . . , xn−1, xn) and C = ∆d
F (x1, x2, . . . , xn−1, xn+1). We can see

that subsets containing both xn and xn+1 are contained in A, subsets containing
only xn are contained in B, and subsets containing only xn+1 are contained in
C; furthermore, we can immediately see that these subsets will have the correct
signs. Subsets not containing any of xn−1, xn, xn+1 occur in all of A, B, and
C, and they occur with the same sign in all three. However, since in (2) we
have A− B − C on the right-hand side, the values of F corresponding to such
subsets coming from e.g. A and B will cancel out, and only one value will be
left; again, it can be easily verified that the sign of this value is the same as the
one coming from the derivative on the left-hand side of (2).

We can also observe that, as one might expect, the k-th order derivative of
a function F of algebraic degree d has algebraic degree at most d − k. This is
most easily seen by considering the ANF of F .
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Proposition 2. Let F be an (n, n, p)-function with deg(F ) = d. Let D be the
function

D : x 7→ ∆k+1
F (a1, a2, . . . , ak, x)

for some natural number k and some a1, a2, . . . , ak ∈ Fpn . Then the degree of
D(x) is at most d− k.

Proof. We prove the statement by induction on k. If k = 1, then the first-order
derivative of F takes the form

∆2
F (a, x) = F (a+ x)− F (a)− F (x).

Let x = (x1, x2, . . . , xn) and a = (a1, a2, . . . , an) for xi, ai ∈ Fp. Since deg(F ) =
d, then the ANF of F does not contain any term of degree greater than d.
Consider the term cx1x2 · · ·xd of degree d for some c ∈ Fpn . In the first-order
derivative

F (a1 + x1, a2 + x2, . . . , an + xn)− F (a1, a2, . . . , an)− F (x1, x2, . . . , xn)

this becomes c((a1 + x1)(a2 + x2) · · · (an + xn)− a1a2 · · · an − x1x2 · · ·xn), and
the terms of degree d cancel out; the resulting expression is therefore of degree
at most d − 1. Since this argument applies to any term of degree d, and since
F does not contain terms of higher degree, we can conclude that deg(D) = 1 as
claimed.

For k > 1, the proof follows by induction using the decomposition in Propo-
sition 1; for instance, for k = 2, we obtain

D(x) = ∆3
F (a, b, x) = ∆2

F (a, b+ x)−∆2
F (a, x)−∆2

F (a, b) = ∆2
g(b, x)

for g(x) = ∆2
F (a, x). We then have deg(g) ≤ d− 1 and deg(D) ≤ (d− 1)− 1 =

d− 2 by the base case k = 1.

Combining the above two propositions, we can see that the derivatives as
defined in (1) have the same linearity properties that one would intuitively
expect when applied to functions of low enough algebraic degree. More precisely,
we see that the (d − 1)-st order derivative of a function of algebraic degee d is
linear.

Corollary 1. Let F be an (n, n, p)-function of algebraic degree d. Then G(x) =
∆d

F (a1, a2, . . . , ad−1, x) is linear in x for any choice of a1, a2, . . . , ad−1 ∈ Fpn .

Proof. By Proposition 2, G(x) has algebraic degree at most 1. From the de-
composition in Proposition 1, we can see that G(0) = 0, and therefore G(x) is
linear as claimed.

From Proposition 1 and Corollary 1, we can make the simple but fundamen-
tal observation that for any function F of degree d, ∆k

F is the zero function for
any k > d.
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Corollary 2. Let F be an (n, n, p)-function of algebraic degree d, and let
k > d be a natural number. Then, for any x1, x2, . . . , xk ∈ Fpn , we have
∆k

F (x1, x2, . . . , xk) = 0.

Proof. By Proposition 1, it suffices to prove the statement for k = d+1. Again
by Proposition 1, we can decompose

∆d+1
F (x1, x2, . . . , xd, xd+1) = ∆d

F (x1, x2, . . . , xd−1, xd + xd+1)−
∆d

F (x1, x2, . . . , xd−1, xd)−∆d
F (x1, x2, . . . , xd−1, xd+1).

For the sake of brevity, let us denote x1, x2, . . . , xd−1 by A. From Corollary 1,
∆d

F (A, x) is linear in x, and so

∆d+1
F (A, xd, xd+1) = ∆d

F (A, xd + xd+1 − xd − xd+1) = ∆d
F (A, 0),

which clearly evaluates to 0. This completes the proof.

4 The derivative hypermatrix
We now introduce the main object of our study, the degree d derivative hyperma-
trix, which is simply an indexed set containing the values of all degree d deriva-
tives of a function F on the elements of a given linear basis B = {b1, b2, . . . , bn}
of Fpn over Fp. Knowing the degree d derivative hypermatrix of a degree d
function allows the function to be uniquely reconstructed up to the addition of
terms of degree strictly less than d. In particular, knowing the degree k deriva-
tive hypermatrices of a degree d function F for k = 1, 2, . . . , d allows d to be
uniquely reconstructed, and is therefore a representation of F .

Definition 1. Let F : Fpn → Fpn for some prime p and some positive integer
n. Let B = {b1, b2, · · · , bn} be a basis of Fpn over Fp. The degree k derivative
hypermatrix of F is the hypermatrix HF ∈ Fnk+1

pn whose entries are given by

(HF )i1,i2,...,ik = ∆F (bi1 , bi2 , . . . , bik),

where 1 ≤ i1, i2, . . . , ik ≤ n.

We will now show that a degree d function F over Fpn can be uniquely
reconstructed from its degree d derivative hypermatrix up to the addition of
terms of algebraic degree strictly less than d. In particular, for d = 2 we will
obtain that we can reconstruct quadratic functions up to the addition of affine
terms, i.e. up to EA-equivalence.

We will assume that if the function F being reconstructed is of degree d,
then F (x) = 0 for all x ∈ Fpn with wt(x) < d. This can be assumed without
losing generality (up to the addition of terms of degree less than d), since if F
does not have this property, i.e. if there exist elements x ∈ Fpn with F (x) ̸= 0
and wt(x) < d, then we can always find a function f of degree deg(f) < d such
that f(x) = F (x) for all x ∈ Fpn with wt(x) < d. Then HF = HF−f , and the
reconstruction procedure can be applied to F − f instead.
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The fact that a function f as described above always exists can, in fact, be
seen as a corollary of the fact that functions can be reconstructed from their
derivative hypermatrix. For this reason, we will first show how a function F of
degree d with F (x) = 0 for all x with wt(x) < d can be reconstructed from HF ;
and the general statement that any function F of degree d can be reconstructed
(up to the addition of lower-degree terms) will follow as a corollary.

We begin by examining the case for cubic functions for the sake of simplicity.
The statement and proof for arbitrary algebraic degree is given in Theorem 1
below.

Suppose F is a cubic function and HF is its derivative hypermatrix of degree
3. In the following, we will write (x) as shorthand for F (x). Knowing HF gives
us knowledge of ∆F (a, b, c) for any a, b, c ∈ B, where B is a fixed basis of Fpn

over Fp. Let x ∈ Fpn . If wt(x) < 3, then F (x) = 0 by assumption. If wt(x) = 3,
then x = a+ b+ c for some a, b, c ∈ B, and then we have

∆F (a, b, c) = (a+b+c)−(a+b)−(a+c)−(b+c)+(a)+(b)+(c)−(0) = (a+b+c)

since all elements of Hamming weight less than 3 evaluate to 0; thus, F (a+ b+
c) = ∆F (a, b, c).

Suppose now that x = a+ b+ c+ d for a, b, c, d ∈ B. Then

∆F (a+ b, c, d) = (x)− (a+ b+ c)− (a+ b+ d).

We know that (a+b+c) = ∆F (a, b, c) and (a+b+d) = ∆F (a, b, d). Substituting
this above and re-arranging the terms yields

(a+ b+ c+ d) = ∆F (a+ b, c, d) + ∆F (a, b, c) + ∆F (a, b, d).

Using the linearity of ∆F (Corollary 1), the above becomes

F (a+ b+ c+ d) =∆F (a, c, d) + ∆F (b, c, d)+

∆F (a, b, c) + ∆F (a, b, d).

As a final example, if x = a+ b+ c+ d+ e for a, b, c, d, e ∈ B, then

∆F (a+ b+ c, d, e) = (x)− (a+ b+ c+ d)− (a+ b+ c+ e) + (a+ b+ c).

Using the expressions for values of Hamming weight 3 and 4 from above, this
becomes

(x) =∆F (a+ b+ c, d, e) + ∆F (a, b, c) + ∆F (a, c, d) + ∆F (b, c, d)+

∆F (a, b, c) + ∆F (a, b, e) + ∆F (b, c, e)−∆F (a, b, c).

The term ∆F (a, b, c) occurs three times here, once with a negative sign and twice
with a positive sign; after cancellation, and another application of Corollary 1,
this leaves us with the sum of the values of ∆F on all three-element subsets of
{a, b, c, d, e}.

The above discussion shows how to derive the value of x if all of the non-zero
entries in its coordinate vector are equal to 1. If this is not the case, e.g. if
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x = a + 2b + 2c + d, then the decomposition of F (x) into a sum of third-order
derivatives works in the same exact way, except that instead of taking the sum
of derivatives over three-element subsets of {a, b, c, d}, we take their sum over
three-element subsets of {a, 2b, 2c, d}; in other words, in this case we would get

F (a+ 2b+ 2c+ d) = ∆F (a, 2b, 2c) +∆F (a, 2b, d) +∆F (a, 2c, d) +∆F (2b, 2c, d).

Furthermore, since the order d derivatives of a degree d function are linear, we
have e.g. ∆F (2b, 2c, d) = 2 · 2 ·∆F (b, c, d), and so the values of these derivatives
can be immediately recovered from the derivative hypermatrix.

As the above illustration shows, there are three cases to consider depending
on the Hamming weight w = wt(x): if w < d, if w ≥ d but d − w < d, and
if w ≥ 2d. In the following, we formalize the same argument for functions of
arbitrary algebraic degree.

Theorem 1. Let F be an (n, n, p)-function of degree d such that F (x) = 0 for
all x ∈ Fpn with wt(x) < d. Let B = {b1, b2, . . . , bn} be a basis of Fpn over Fp.
Then, for any x ∈ Fpn with wt(x) = w, we have

F (x) =
∑

I⊆{1,2,...,w},#I=d

∆F (I), (3)

where j1, j2, . . . , jw are indices in {1, 2, . . . , n} such that x = c1bj1 + c2bj2 +
· · · cwbjw , and ∆F (I) is shorthand for ∆F (ck1bjk1

, ck2bjk2
, . . . , ckmbjkm

) with I =
{k1, k2, . . . , km} (note that the value of ∆F does not depend on the order of its
arguemnts since the derivatives are symmetric).

Proof. Without loss of generality, we can assume that the coefficients c1, c2, . . . , cw
are all equal to 1; otherwise we can multiply the elements of B by the appropri-
ate coefficients, and obtain a different basis of Fpn under which the coordinate
vector of x only contains 0 and 1 as coefficients. The proof proceeds by induction
on w.

If w < d, then F (x) = 0 by assumption, and the sum in (3) is empty, and
so the statement is true.

If w = d, then {j1, j2, . . . , jd} is the only subset in the sum in (3), and so
the latter becomes

F (x) = ∆F (bj1 , bj2 , . . . , bjd).

On the other hand, the derivative on the right-hand side equals ∆F (bj1 , . . . , bjd) =
F (bj1 + bj2 + · · ·+ bjd) = F (x) since all the remaining terms in the definition of
∆F are values of F on elements of Hamming weight less than d, which are all
equal to 0 by assumption.

If w > d but w − d < d, then the derivative

∆F (bj1 , bj2 , . . . , bjd−1
, bjd + bjd+1

+ · · ·+ bjw)

equals the sum of the values of F∑
∅̸=S⊆{j1,j2,...,jd−1}

(−1)#SF

(
bjd + bjd+1

+ · · ·+ bjw +
∑
s∈S

bs

)
. (4)
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By the induction hypothesis, we can express the values of F corresponding to
all subsets S except S = {j1, j2, . . . , jd−1} as the sum of the values of ∆d

F

on all d-element subsets of basis elements indexed by S ∪ {jd, jd+1, . . . , jd−1}.
Let D be a d-element subset of {j1, j2, . . . , jw}. Let L = {j1, j2, . . . , jd−1}
and R = {jd, jd+1, . . . , jw}, and denote Dl = D ∩ L and Dr = D ∩ R. Note
that for all the values F (x) in (4), x contains all the elements of B indexed
by R in its coordinate vector, and so the elements indexed by D will occur in
the coordinate vectors corresponding to precisely 2#L−#Dl values of F in (4).
Suppose #L > #Dl; then there exists some l ∈ L\Dl, and the map S 7→ S⊕{l},
where ⊕ denotes symmetric difference, is a bijection between the subsets of L
containing Dl but not l, and the subsets of L containing Dl ∪ {l}. The number
of sets of both types is thus equal, but one of them is the set corresponding to
x (the sum of all possible elements in L ∪ R); thus, all but one of these values
will cancel out. The only remaining set (besides the full L ∪ R) is therefore
(L∪R) \ {l}; L∪R contains precisely one element more, and so we can deduce
the corresponding values of F appear on both sides of the equation with the
same sign.

For those D for which L = Dl, the subsets D only occur in the set of indices
corresponding to x itself. We thus obtain that the derivative above is equal to

∆F = F (x)−
∑

S⊆{j1,j2,...,jw},#S=d,L⊊S

F

(∑
s∈S

bj

)
.

Replacing the values of F with Hamming weight d on the right-hand side of
the above equation with the corresponding order d derivatives, and transferring
them to the left-hand side, along with using the linearity from Corollary 1,
we obtain the sum of the values of F on all elements of Hamming weight d
with coordinates among {j1, j2, . . . , jw} on the left-hand side, and F (x) on the
right-hand side as desired.

In the case when w− d > d, the proof proceeds in the same manner, except
that F (

∑
s∈R bs) itself needs to be considered as a value since its Hamming

weight is d or more. We skip this part of the proof for the sake of brevity.

Theorem 1 shows that given a function F of degree d with F (x) = 0 on x
with wt(x) < 0, the truth table of F can be uniquely reconstructed from HF .
On the other hand, suppose that F ′ is another function with the same property
that F ′(x) = 0 whenever wt(x) < d. If F ̸= F ′, then there exists some x with
wt(x) ≥ d such that F (x) ̸= F ′(x), and therefore HF ̸= HF ′ . In this sense, the
mapping from functions to derivative hypermatrices is injective. Furthermore,
the number of derivative hypermatrices of degree d is precisely (pn)(

n
d), while

the number of functions of algebraic degree at most d is precisely

(pn)(
n
d)+(

n
d−1)+···+(n1)+1.

By Corollary 2, adding lower-degree terms to F will not change the hypermatrix
HF , and since there are

(pn)(
n

d−1)+(
n

d−2)+···+(n1)+1
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functions of algebraic degree no greater than d − 1, we can see that there are
(pn)(

n
d) classes of degree d functions (up to addition of lower-degree terms).

Since this is the same as the number of distinct degree d hypermatrices, we can
conclude that for any degree d derivative hypermatrix HF , there exists some
function F of algebraic degree d having HF as its derivative hypermatrix. We
thus obtain the following corollary.

Corollary 3. Let HF be a degree d derivative hypermatrix over Fpn . Then
there exists an (n, n, p)-function F of algebraic degree d having HF as a degree
d derivative hypermatrix.

Noting that the entries in the degree d derivative hypermatrix are the values
of F on all elements x ∈ Fpn of weight wt(x) = d with only 0 and 1 in their
coordinate vector motivates the following definition.

Definition 2. Let B = {b1, b2, . . . , bn} be a basis of Fpn over Fp for some natural
numbers p, n with p prime. Let d be a natural number with d ≤ (p − 1)n. We
call the set

Bd =

{
n∑

i=1

aibi : (a1, a2, . . . , an) ∈ {0, 1}n | wt(a1, a2, . . . an) = d

}

of all possible sums of d elements from the basis B the degree d extension of
B.

Using this terminology, we can now reformulate Corollary 3 as an “interpo-
lation lemma” as follows.

Corollary 4. Let Bd be a degree d extension of a basis B of Fpn over Fp for some
appropriate d, p, n. Let the elements of Bd be e1, e2, . . . , em for m =

(
n
d

)
. Then,

for any choice of values v1, v2, . . . , vm ∈ Fpn , there exists an (n, n, p)-function
F of algebraic degree d such that F (ei) = vi for i = 1, 2, . . . ,m. Furthermore,
this function is uniquely defined up to the addition of terms of algebraic degree
strictly less than d.

We can contrast the above with the classical Lagrange interpolation, in which
knowledge of the values of a function on k elements of the field would allow us
to reconstruct a degree k polynomial matching these points. The statement of
the above corollary is similar in principle, although the ordinary notion of the
degree of a polynomial is replaced with that of the algebraic degree; and the
algebraic degree of the interpolated polynomial is determined by the Hamming
weight of the interpolated points rather than the number of point-value pairs
that we consider.

We note that it is still possible to have a function F ′ with deg(F ′) > d
and having the same degree d derivative hypermatrix as F of deg(F ) = d. A
trivial example would be to take a function F of algebraic degree deg(F ) > 1,
and consider its values on a basis B of Fpn over Fp. The latter define a linear
function L whose values agree with those of F on all elements of B. Finally, we
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note that B itself is essentially the degree 1 derivative hypermatrix of both F
and L.

Nonetheless, we know that a function F of degree d always exists; and fur-
thermore, we can show that the functions obtained via the procedure described
in Theorem 1 will always be of algebraic degree d. This is because in the proof
of the theorem, we assume that the derivatives ∆d

F are linear, and reconstruct
the values of the function F based on this assumption; as a consequence, ∆k

F

will be the zero function for any k > d (cf. Proposition 1 and the proof of
Corollary 2). It remains to formalize the intuitive fact that if all derivatives of
a function F of degree greater than k vanish, then the algebraic degree of F
cannot be greater than k. Note that we already know that the converse holds
by Corollary 2.

We can prove this constructively using Corollary 3 as follows. Suppose F is
such that ∆k

F (x1, x2, . . . , xk) = 0 for all x1, x2, . . . , xk and all k > d for some
natural number d. Assume without loss of generality that there are arguments
x1, x2, . . . xd for which ∆d

F (x1, x2, . . . xd) does not vanish.
First, we construct the degree 1 derivative matrix of F ; by Corollary 3,

there exits a function F1 of degree 1 such that F − F1 vanishes on all points
of weight 1. We then construct the degree 2 matrix of F − F1, and obtain
by Corollary 3 a function F2 of degree 2 such that F − F1 − F2 vanishes on all
points of weight 2 or less. We continue in this manner until we have constructed
F ′ = F − F1 − F2 − · · · − Fd. Since deg(Fi) ≤ i, we have deg(F ′ − F ) ≤ d, and
so F ′ still satisfies ∆k

F ′ = 0 for k > d. Thus e.g. the degree d + 1 derivative
hypermatrix of F ′ is the zero matrix. Applying Theorem 1, we can see that
F ′(x) = 0 for all x with wt(x) > d. Since the same is true for x with wt(x) ≤ d by
the construction of F ′, we get that F ′ is the zero function, and thus deg(F ) ≤ d.

5 On some computational aspects of the deriva-
tive representation

The degree d derivative hypermatrix contains
(
n
d

)
elements from Fpn , which is

significantly less than the (pn)p
n

needed to represent the truth table. Of course,
this only allows us to represent the function up to the addition of terms of
lower-algebraic degree. Nonetheless, even in the case when we want to know
the exact function (in which case we need to store the derivative hypermatrices
of all degrees up to d), we need to store

d∑
j=0

(
n

j

)
elements. While this expression does not seem to have an obvious closed form,
we can see that it is substantially more compact than the truth table for func-
tions of low algebraic degree. Even in the worst case (for d = n), we need to
store 2n elements, while the truth table requires the storage of pn elements.
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As we have seen in the previous section, reconstructing a single value F (x) of
a degree d function F involves summing the values of its degree d derivatives on
all d-element subsets of its degree d derivative hypermatrix. The values of the
derivatives may also need to be multiplied by coefficients from the prime field if
some of the coordinates of x are distinct from 0 and 1. Thus, reconstructing the
value of x with wt(x) = w involves summing up and

(
w
d

)
values, and at most(

w
d

)
multiplications. Clearly, the number of multiplications cannot be greater

than the number of additions (plus one), and so evaluating the complexity of
the procedure reduces to counting the number of additions.

If we want to recover the entire truth table of the function, we will need

n∑
w=0

(p− 1)w
(
w

d

)
additions, since for every possible Hamming weight w, there are (p−1)w elements
x with wt(x) = w.

In the case of p = 2, the above sum evaluates to
(
n+1
d+1

)
using the identity∑n

j=k

(
j
k

)
=
(
n+1
k+1

)
. In the case of p > 2, computing the exact form of the sum

appears to be less trivial, but we can immediately give the bounds(
n+ 1

d+ 1

)
=

n∑
w=0

(
w

d

)
≤

n∑
w=0

(p−1)w
(
w

d

)
≤ (p−1)n

n∑
w=0

(
w

d

)
= (p−1)n

(
n+ 1

d+ 1

)
.

On the other hand, if we need to recover all values of the truth table, we can
begin by reconstructing all values of Hamming weight d, followed by all values
of Hamming weight d + 1, etc. In this way, a lot of redundant summation can
be avoided. From the identity

∆F (x1+x2+· · ·+xd−1, xd, . . . , xw) = F (x)−
∑

S⊆{d,d+1,...,w}

F

 ∑
s∈S∪{1,2,...,d−1}

xs

 ,

we can see that if we already have the values of all elements of weight less than
d computed, and if we know the value of the derivative on the left-hand side in
the expression above, we only need to do as many additions as the size of the
power set of {d, d + 1, . . . , w}, i.e. 2w−d+1. The value of the derivative can be
recovered with w − d+ 1 additions using linearity. In total, we would need

n∑
w=d+1

(p− 1)w(2d−1 − 1 + w − d+ 1) =

n∑
w=d+1

w(p− 1)w + (2d−1 − d)

n∑
w=d+1

w

additions to reconstruct all elements.
The second sum on the right-hand side is simply

n∑
w=1

w −
d∑

w=1

w =
n(n+ 1)

2
− d(d+ 1)

2
.
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n\d 1 2 3 4 5 6 7 8 9 10 11 12 13 14
5 1.01 1.79 1.68 0.98
6 1.00 2.22 2.68 1.93 0.92
7 1.00 2.68 4.03 3.71 2.18 0.89
8 1.00 3.15 5.72 6.55 4.90 2.44 0.87
9 1.00 3.63 7.74 10.70 9.91 6.25 2.70 0.86
10 1.00 4.11 10.10 16.37 18.26 14.25 7.78 2.97 0.85
11 1.00 4.60 12.79 23.83 31.17 29.22 19.70 9.49 3.25 0.84
12 1.00 5.09 15.81 33.30 50.03 54.94 44.44 26.39 11.37 3.53 0.84
13 1.00 5.58 19.16 45.03 76.44 96.34 91.21 64.92 34.45 13.44 3.81 0.83
14 1.00 6.077 22.84 59.27 112.19 159.65 173.38 144.33 91.73 44.00 15.67 4.10 0.83
15 1.00 6.57 26.85 76.26 159.27 252.61 309.61 295.48 219.53 126.05 55.18 18.09 4.38 0.83

Table 1: Proportion of number of operations when truth table is reconstructed
element by element to number of operations when truth table is reconstructed
iteratively by Hamming weight

On the other hand, the first sum on the right-hand side can be upper-bounded
by
∑n

w=d+1(p− 1)nw, which evaluates to

(p− 1)n
(
n(n+ 1)

2
− d(d+ 1)

2

)
.

Furthermore, it is possible to precompute the values of the order d derivatives
everywhere, so that their computation from the derivative hypermatrix can then
be avoided. This will then dispose of the term w − d + 1 in the sum above at
the cost of memory.

While the above formulas can be used to obtain the exact number of ad-
ditions needed to reconstruct the truth table for given values of p, n, d, it is in
general difficult to get a sense of how their values related to each other for a given
set of parameters. To give an idea of how much more efficient the reconstruction
is when the values of F are reconstructed iteratively by Hamming weight, we
have computed for p = 3 and n in the range 5 ≤ n ≤ 15, the proportion of
the number of additions needed to compute all values of F one by one to the
number of additions needed using the iterative approach. These proportions are
displayed in Table 1. All proportions are rounded up or down to two decimal
digits. As we can see from the table, the efficiency of the iterative approach
is especially pronounced when the degree d of the derivative hypermatrix is
approximately n/2, and grows with the dimension.

We note that the calculations above are based on the assumption that we
only want to reconstruct the function F with F (x) = 0 for wt(x) < deg(F ). If
the values of F need to be reconstructed exactly, then the same procedure as
above needs to be applied to the derivative hypermatrices of lower degree as
well.

In any case, it is evident that while it possible to naturally convert between
the truth table and derivative hypermatrix representation, the latter does not
offer any particular advantage in terms of memory consumption over the former.
The real advantage in storing a function as a matrix of derivatives is when
analyzing its behavior on d-dimensional additive subsets; for instance, in the
case of APN and planar functions. Furthermore, when the functions considered
are of degree d = 2, the derivative representation is unique up to EA-equivalence,
and this representation is thus advantageous for the study of e.g. quadratic
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APN and planar functions that are studied up to EA-equivalence to begin with.
In the following section, we restrict to the case of quadratic functions, and
discuss how the derivative representation can be applied to the mathematical
and computational study of functions with optimal differential uniformity.

Before we proceed, we would like to highlight one advantage that the deriva-
tive representation offers from the point of view of computational searches as
opposed to the truth table representation. A typical way of searching for new
e.g. APN or planar functions is to consider the representation of some known
function, and then to search for functions whose representation is “similar” in
some sense to that of the original function. If the representation in question is
e.g. the univariate one, the search might involve adding a small number of new
terms to the polynomial representation of the original function; if the represen-
tation is the truth table, the search might involve changing the values of the
function at a small number of inputs.

We can easily see that changing a single value of the degree d derivative hy-
permatrix of F will change the values of F (x) at all x containing the coordinates
of the value that was changed. For example, if d = 3 and ∆F (b1, b2, b3) was
changed, then any x with coordinate vector (x1, x2, x3, . . . , xn) with x1x2x3 ̸= 0
will be affected by the change. In total, there are (p − 1)3pn−3 such points in
the case of d = 3, or (p − 1)dpn−d, in general; and thus, functions that have
very similar derivative representations will have vastly different truth table rep-
resentations. This means that a computational search based on the derivative
hypermatrix will go through a different set of functions than one based on the
truth table.

While it is not quite as straightforward to compute how many values will
change if a single term in the univariate representation is modified, we can
observe by example that this can cause the entire derivative hypermatrix to
change. For instance, the function x2 over F34 has a degree 2 derivative matrix

α42 α44 α50 α68

α44 α46 α52 α70

α50 α52 α58 α76

α68 α70 α76 α14

 ,

while the one for x2 + x6 is
a33 a73 2 a51

a73 a19 a59 2
2 a59 a57 a17

a51 2 a17 a11

 ;

in both cases, α is the default primitive element chosen by Magma, and the
basis used is the normal basis {α, α3, α9, α27}.
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6 Application to the case of quadratic planar and
APN functions

As we have indicated in the discussion above, the derivative hypermatrix rep-
resentation is particularly useful in the case of quadratic and in the context
of planar and APN functions for two reasons. First, the two classes of planar
and APN functions are characterized in terms of their first-order derivatives,
whose values form the entries of the degree 2 derivative hypermatrix. Second:
the functions can be reconstructed up to the addition of affine terms, i.e. up to
EA-equivalence, under which planar and affine functions are typically classified
anyway. Since in the quadratic case HF is an ordinary matrix (as opposed to
a higher-dimensional hypermatrix), it is also somewhat more intuitive to work
with and, as we shall see in the sequel, allows for some characterizations and
simplifications that are not quite as straightforward in the multi-dimensional
case.

In the quadratic case, the degree 2 derivative hypermatrix (or simply, the
derivative matrix of F ) takes the form

HF =


∆F (b1, b1) ∆F (b1, b2) . . . ∆F (b1, bn)
∆F (b2, b1) ∆F (b2, b2) . . . ∆F (b2, bn)

...
...

. . .
...

∆F (bn, b1) ∆F (bn, b2) . . . ∆F (bn, bn)

 .

In the following, we will describe how the differential uniformity of a quadratic
function can be characterized directly in terms of its derivative matrix. One of
the immediate applications of such a characterization would be a computational
search for e.g. APN or planar functions; it is then imperative to be able to
quickly convert such functions to univariate representation so that they can be
conveniently compared and classified up to equivalence against known represen-
tatives. The general procedure described in Theorem 1 allows us to reconstruct
the truth table of a function F representing the CCZ-class given by by HF ; the
univariate representation can then be obtained by Lagrange interpolation from
the truth table.

In the quadratic case, however, it is possible to obtain the univariate rep-
resentation directly from HF and vice-versa. This involves only matrix multi-
plication, and is thus both simple to implement and highly efficient. This is
formalized in the following proposition.

Proposition 3. Let {b1, . . . , bn} be a basis of Fn
p . Let F : Fpn → Fpn be given

by F (x) =
∑

1≤i,j≤n−1,i≤j

aijx
pi−1+pj−1

. Then

HF = BTAB, (5)
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where B =


bp

0

1 bp
0

2 . . . bp
0

n

bp
1

1 bp
1

2 . . . bp
1

n
...

...
. . .

...
bp

n−1

1 bp
n−1

2 . . . bp
n−1

n

, A =


2a11 a12 . . . a1n
a12 2a22 . . . a2n
...

...
. . .

...
a1n a2n . . . 2ann

 ,

and BT is the transpose of B.

Proof. We shall show that
n∑

l=1

(BTA)ilBj = (HF )ij, for any 1 ≤ i, j ≤ n. In-

deed, for any 1 ≤ i ≤ n:

(BTA)i1 = 2a11b
p0

i + a12b
p
i + a13b

p2

i + . . .+ a1nb
pn−1

i ;

(BTA)i2 = a12b
p0

i + 2a22b
p
i + a23b

p2

i + . . .+ a2nb
pn−1

i ;
. . .
(BTA)in = a1nb

p0

i + a2nb
p
i + a3nb

p2

i + . . .+ annb
pn−1

i .
Then, for any 1 ≤ i, j ≤ n, we obtain

(BTAB)ij =

n∑
l=1

(BTA)ilBj =

(2a11b
p0

i + a12b
p
i + a13b

p2

i + . . .+ a1nb
pn−1

i )bp
0

j +

(a12b
p0

i + 2a22b
p
i + a23b

p2

i + . . .+ a2nb
pn−1

i )bp
1

j +

. . .

(a1nb
p0

i + a2nb
p
i + a3nb

p2

i + . . .+ annb
pn−1

i )bp
n−1

j =∑
1≤l,k≤n,l≤k

alk(b
pl−1

i bp
k−1

j ) +
∑

1≤l,k≤n,l≤k

alkb
pl−1

j bp
k−1

i =

∑
1≤l,k≤n,l≤k

alk(bi + bj)
pk−1+pl−1

−
∑

1≤l,k≤n,l≤k

alkb
pk−1+pl−1

i −

∑
1≤l,k≤n,l≤k

alkb
pk−1+pl−1

j = F (bi + bj)− F (bi)− F (bj) = ∆biF (bj).

This completes the proof.

Following [18], we define the rank of a vector v ∈ Fn
pn to be the dimension

of the subspace spanned by its elements. In other words, if v = (v1, v2, . . . , vn)
with vi ∈ Fpn , the rank of v is r(v) = logp #{a1v1 + a2v2 + · · · + anvn :
a1, a2, . . . , an ∈ Fp}. We now have the following characterization.

The following proposition provides an “algebraic” characterization of the
differential uniformity of a quadratic function in terms of its derivative matrix,
and is the basis for our computational search described in the next section.
We note that special cases of this characterization have been previously used
in computational searches such as [18] and [17]. Both of these approaches are
remarkable in their own right: the work in [18] allowed the authors of that
paper to find thousands of previously unknown examples of CCZ-inequivalent
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APN functions over F28 , while prior to this work, only a small number of such
functions (less than 50) were known. In [17], a classification of all quadratic
APN functions with prime field coefficients over F2n for n ≤ 9 was obtained; for
comparison, complete classifications of APN functions over F2n were only known
for n ≤ 5 in general, for n ≤ 6 for cubic functions, and for n ≤ 7 for quadratic
functions. These were significant computational advances in the study of APN
functions, and promise that the adaptation of these methods to the case of e.g.
planar functions might prove to be similarly useful.

Proposition 4. Let F be an (n, n)-function and HF be its derivative matrix.
Then F has differential uniformity δ = pk if and only if any non-zero linear
combination of the rows of HF has rank n− (k + 1).

Proof. First, note that each row of the derivative matrix represents the values
of a derivative ∆F bi(x) = ∆2

F (bi, x) on x ∈ B for some bi ∈ B, where B is a
basis of Fpn over Fp. Then a linear combination of the rows is a vector giving
the values of a derivative ∆2

F (a, x) on x ∈ B for some a ∈ Fpn . The rank of this
linear combination is the linear subspace spanned by its elements, and since the
first-order derivatives x 7→ ∆2

F (a, x) are linear in x, this subspace consists of
precisely all values taken by x 7→ ∆2

F (a, x).
Suppose that the rank of some linear combination of the rows of HF is at

most n − k for some k > 1, and let ∆2
F (a, x) be the corresponding derivative.

Then the corresponding subspace must contain pk zeros, i.e. ∆2
F (a, x) must take

value 0 for pk distinct x ∈ Fpn . This means that the equation ∆2
F (a, x) = 0 has

at least pn solutions x ∈ Fpn , and so the differential uniformity of F must be at
least pk.

Conversely, suppose δF ≥ pk; then there are at least pk elements x ∈ Fpn

solving ∆2
F (a, x) = b for some 0 ̸= a ∈ Fpn and some b ∈ Fpn , and since ∆2

F (a, x)
is linear in x, this means that its kernel is of size at least pk. Consequently, the
dimensions of the subspace {∆2

F (a, x) : x ∈ Fpn} is at most pn−k, i.e. the rank
of the vector (∆2

F (a, b1), . . . ,∆
2
F (a, bn)) is at most n−k. This vector can clearly

be expressed as a linear combination of the rows of the derivative matrix, which
concludes the proof.

Since our practical interest is predominantly focused on the case of planar
and APN functions, we explicitly state the implications of Proposition 4 for
these two special cases as follows.

Corollary 5. Let F be an (n, n, p)-function and HF be its derivative matrix.
Then:

• F is planar if and only if any non-zero linear combination of the rows of
HF has rank n;

• If p = 2, then HF only has zeros on its main diagonal, and F is APN if
and only any linear combination of the rows of HF has rank n− 1.
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This characterization can be compared with Theorem 1 and Definition 5 of
[18]. The condition on the rank of the linear combinations of rows of HF is the
same in both cases; the advantage of our approach is that the matrix HF has a
clear intuitive meaning (containing the values of the first-order derivatives of F
on the basis elements), and is consequently easier to analyze and to construct
from F in practice. Note that in the case of odd characteristic, the main diagonal
of HF is not necessarily zero since ∆xF (x) is not equal to 0 in general.

In particular, from the interpretation of HF in terms of the derivatives of
F , we see that applying a linear permutation L : Fpn → Fpn to all elements of
HF gives the derivative matrix of L(F ). Compare this with Theorem 3 of [18]
which requires a non-trivial proof. We state this as an observation; in practice,
we use it to restrict the number of matrices that we consider in our search.

Observation 1. Let HF be the derivative matrix of F : Fpn → Fpn , and let
L : Fpn → Fpn be a linear function. Then the matrix H ′

F defined by (H ′
F )i,j =

L((HF )i,j) for all i, j is the derivative matrix of L ◦ F . In particular, if L is a
permutation, then HF and H ′

F correspond to EA-equivalent functions.

7 Functions with prime field coefficients
As in [17], we now consider the case of quadratic functions F : Fpn → Fpn

with prime field coefficients, i.e. with coefficients in the subfield Fp. Since the
Frobenius automorphism x 7→ xp fixes Fp, we have F (xp) = F (x)p (and, more
generally, F (xpk

) = F (x)p
k

for any non-negative integer k) for any such func-
tion. Consequently, we have ∆

apkF (xpk

) = (∆aF (x))p
k

for any non-negative
integer k. If we construct the matrix HF corresponding to F with respect to
a normal basis, i.e. with respect to a basis B = {b, bp, bp2

, . . . , bp
n−1} for some

suitable b ∈ F∗
pn , then HF will be such that (HF )i+1,j+1 = (HF )

p
i,j for any

0 ≤ i, j ≤ n − 1; here we index the rows and columns from 0 to n − 1, since
(HF )i+1,j+1 = (HF )

p
i,j is true if the indices i, j are considered modulo n; in

other words, we have e.g. (HF )0,1 = (HF )
p
n−1,0.

This severely restricts the number of elements that we have to guess in
order to completely determine HF . For instance, the matrices H6

F and H7
F
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corresponding to a (6, 6)- and (7, 7)-function become

H6
F =



A B C D Cp4

Bp5

B Ap Bp Cp Dp Cp5

C Bp Ap2

Bp2

Cp2

Dp2

Dp3

Cp Bp2

Ap3

Bp3

Cp3

Cp4

Dp4

Cp2

Bp3

Ap4

Bp4

Bp5

Cp5

Dp5

Cp3

Bp4

Ap5


,

H7
F =



A B C D Dp5

Cp4

Bp6

B Ap Bp Cp Dp Dp5

Cp6

C Bp Ap2

Bp2

Cp2

Dp2

Dp6

D Cp Bp2

Ap3

Bp3

Cp3

Dp3

Dp4

Dp Cp2

Bp3

Ap4

Bp4

Cp4

Cp5

Dp5

Dp2

Cp3

Bp4

Ap5

Bp5

Bp6

Cp6

Dp6

Dp3

Cp4

Bp5

Ap6


,

respectively, with A,B,C,D ∈ Fp6 for H6
F , and A,B,C,D ∈ Fp7 for H7

F .
It is easy to see that in the case of even n, we have to guess n/2 + 1 values
in order to specify HF , while for odd n, we have to guess (n + 1)/2 values.
When n is even, we can restrict one of the values to the subfield Fpn/2 : for
instance, in H6

F , we have D = Dp3

due to the fact that H6
F is symmetric (since

∆aF (x) = ∆xF (a)), and so we must have D ∈ Fp3 . This naturally generalizes
to an arbitrary even dimension n.

Some further necessary conditions can be obtained by observing that the
linear combinations of the rows of any submatrix of HF must also have full
rank. Following [18], we say that a matrix S ∈ Fm×k

pn is proper if any non-zero
linear combination of the rows of S has rank k. Thus, HF is proper if and only
if it represents a planar function; and, clearly, if HF is proper, then the same is
true for any submatrix of HF (since if some linear combination of the rows of a
submatrix S ∈ Fm×k

p of HF spans a subspace of dimension less than k, then the
same linear combination of the rows of the entire matrix HF will have rank less
than n since appending n− k elements can increase the rank by at most n− k).

This submatrix condition is particularly valuable for submatrices that only
depend on a subset of the variables needed to specify the matrix. For instance,
the submatrix of H6

F on the rows with indices {0, 1} and the columns with
indices {0, 1, 2, 5} depends on A,B,C, but not on D. Similarly, the submatrix
with rows and columns with indices {0, 1} depends only on A and B. After
guessing the value of e.g. A and B, we can check whether all submatrices that
depend only on A and B are proper; if not, we can backtrack immediately, thus
saving significant computation time.

In this paragraph, we will denote the matrix corresponding to the rows with
indices R and columns with indices C by (R,C). For H6

F , we use the sub-
matrices corresponding to ({0, 5}, {0, 5}), ({0, 1}, {0, 1}) that depend only on
A and B; and those corresponding to {(0, 1, 5}, {0, 1, 5}), ({0, 2, 4}, {0, 2, 4}),
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({0, 1}, {0, 1, 2, 5}), ({0, 2}, {0, 1, 2, 4}), ({0, 5}, {0, 1, 4, 5}), ({0, 1, 4}, {0, 2, 5})
and ({0, 1, 2}, {0, 1, 2}) depending only on A,B,C.

In the case of H7
F , we use ({0, 6}, {0, 6}) and ({0, 1}, {0, 1}) that only de-

pend on A,B, and ({0, 1, 6}, {0, 1, 6}), ({0, 5, 6}, {0, 5, 6}), ({0, 1}, {0, 1, 2, 6}),
({0, 6}, {0, 1, 5, 6}), ({0, 1, 2}, {0, 1, 2}) that depend on A,B,C.

We note that the above lists do not exhaust all submatrices that only depend
on a subset of values, but according to our empirical observations, verifying
whether other submatrices are proper does not detect any contradictions beyond
the ones obtained from the submatrices listed above. For dimensions n less than
6, the computation time is so short that we do not have to consider submatrix
conditions of this form. As an example of how this improves the efficiency of
the search, we note that for n = 6, conducting the search for one fixed value of
A without the submatrix conditions takes around 7000 seconds as opposed to
around 5500 seconds with the submatrix conditions.

8 Computational results
We run our searches on a server with 56 3.2 GHz cores and 500 GB of memory.
We perform an exhaustive search over all possible matrices HF corresponding
to quadratic functions with prime field coefficients over F3n for n ≤ 7. In order
to facilitate the search, we use Observation 1 to restrict the value of one of the
entries of HF . However, while there is a linear permutation L such that L(c) = c′

for any two non-zero c, c′ ∈ Fpn , the composition of such a permutation with
a function having prime field coefficients is not necessarily going to have prime
field coefficients, and so we cannot simply fix the value of the first variable in HF

to 1. However, we consider all linear permutations with prime field coefficients
over F3n , and use them to restrict the choice of the first variable, A, in HF .
More precisely, we define an equivalence relation ∼ on F∗

pn with a ∼ b if there
exists a linear permutation L : Fpn → Fpn with prime field coefficients such that
L(a) = b. The number of such linear permutations is sufficiently small for us to
partition F∗

3n into equivalence classes according to ∼ for all the dimensions that
we consider. Since composing two functions with prime field coefficients gives
a function that also has prime field coefficients, it then suffices to consider only
one element from each class as the value of the first variable in HF . For n = 5
and n = 7, we get 3 equivalence classes; for n = 4, we get 7; and for n = 6, we
get 15.

In the case of n = 4, the search takes less than 2 seconds, and yields 24
functions. For n = 5, it takes about 17 seconds and yields 616 functions.
For n = 6, we run 15 parallel processes, one for each equivalence class of the
relation ∼ described in the previous paragraph; each process (with the submatrix
conditions) takes around 5500 seconds (as pointed out above); in total, we
get 2928 functions. Finally, in the case of n = 7, we conduct the search by
running 22 processes in parallel on the server (each process handling all three
equivalence classes under ∼), with each process handling 100 (out of 37 − 1)
possible values for B. Each of the 22 processes takes around 150 000 seconds to
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finish. Ultimately, we obtain 5093 functions.
The real bottleneck is classifying the functions under CCZ-equivalence. The

code isomorphism test can take up to around 5 seconds for n = 5, around a
minute for n = 6, and around an hour for n = 7. In the conference paper [8], we
use an ad-hoc method to speed up the classification for n = 7, which involves
composing the functions obtained from the search with linear permutations
with coefficients in the prime field at random in order to hopefully eliminate
equivalent pairs of functions without having to go through the computationally
expensive code isomorphism test. The entire computation takes about three
months; we refer the reader to [8] for details.

We also classify the functions using the recently developed algorithm for
testing linear equivalence of even planar functions [10]. This turns out to be
significantly faster, and finishes within three days of computation; the results
match those of the code isomorphism test.

We omit a list of the known CCZ-classes of planar functions since we see
that all functions that we find are CCZ-equivalent to one of the known instances.
We refer the reader to [14] for an excellent survey on planar functions which
includes all known families and sporadic instances. The families referenced in
the last column of Table 2 refer to the names used in [14].

We only find functions that are CCZ-equivalent to known ones. However, in
the case of n = 6, we find representatives for the Zhou-Pott, the Dickson, and
the Lunardon-Marino-Polverino-Trombetti-Bierbrauer (LMPTB) functions that
are simpler than the known ones. Comparing with the representatives given in
[3] and [15], we see that in the case of Zhou-Pott, our representative

x162 + 2x108 + 2x90 + x82 + 2x10 + x4 + x2

has 7 terms with prime field coefficients, while the one in [3], viz.

α140x324 + α504x246 + α284x108 + α504x90 + α674x82 + α506x54 + α726x30+

α225x28 + α140x12 + α388x4 + α532x2

has 11 terms with various coefficients; for the Dickson case, our representative

2x270 + 2x244 + x54 + x36 + x10 + x2

has 5 terms, as opposed to the 6 terms in [15], viz.

x162 + x84 + α58x54 + α58x28 + x6 + α531x2

and the 7 terms in [3], which we omit here; finally, for LMPTB, our representa-
tive

2x486 + x270 + 2x162 + x90 + x2

has 5 terms while the one in [15], viz.

2x270 + x246 + 2x90 + x82 + x54 + 2x30 + x10 + x2

has 7 terms; a different representative is given in [3], and also has 7 terms.
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Table 2: CCZ-representatives from all quadratic planar functions with prime
field coefficients over F3n with 4 ≤ n ≤ 7
n F Family

4 x2 Finite field
x36 + 2x10 + 2x4 Dickson

5

x2 Finite field
x4 Albert
x10 Albert

x10 + x6 + 2x2 Coulter-Matthews-Ding-Yuan
x10 + 2x6 + 2x2 Coulter-Matthews-Ding-Yuan

x90 + x2 sporadic
x162 + x108 − x84 + x2 sporadic

6

x2 Finite field
x10 Albert

x162 + 2x108 + 2x90 + x82 + 2x10 + x4 + x2 Zhou-Pott (*)
2x270 + 2x244 + x54 + x36 + x10 + x2 Dickson (*)

2x486 + x270 + 2x162 + x90 + x2 LMPTB (*)

7

x2 Finite field
x4 Albert
x10 Albert
x28 Albert

x10 + x6 + 2x2 Coulter-Matthews-Ding-Yuan
x10 + 2x6 + 2x2 Coulter-Matthews-Ding-Yuan

More importantly, we obtain a complete classification of all quadratic planar
functions with prime field coefficients over F3n up to n = 7. A complete overview
is given in Table 2.

We also try to extend our search to the case of dimension n = 8. In this
case, we end up with 31 possible choices for the value of the first element A of
the derivative matrix, namely

{1, α, α2, α4, α7, α10, α11, α13, α16, α19, α35, α37, α41, α43, α55, α65, α71, α82, α164,

α187, α236, α319, α410, α413, α436, α484, α533, α820, α1066, α1640, α2173}

where α is the default primitive element of F38 selected by Magma. Unfortu-
nately, even with the consideration of sub-matrices in order to prune branches
of the search tree as before, the computational load seems to be too much: after
approximately three weeks of computation for one of the choices of A, only 9
(out of 38−1 = 6560) possibilities for the second element B have been processed.
We thus conclude that pushing the same approach farther would be difficult,
and exploring dimensions beyond 7 would require significant optimizations to
the approach, or large-scale parallel computations.
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9 Conclusion and directions for future work
We have described how an (n, n, p)-function of algebraic degree d can be rep-
resented (up to addition of terms of lower algebraic degree) using a so-called
derivative hypermatrix containing the values of its derivatives of order (d − 1)
on the elements of a basis of Fpn over Fp, and how to transition between this
derivative representation and the truth table of the function. We have identified
a set Bd = {b1, b2, . . . , bm} (called a degree d extension) corresponding to any
given basis B of Fpn over Fp such that for any choice of values v1, v2, . . . , vm for
the elements in Bd it is possible to find an (n, n, p)-function F with F (bi) = vi
for all i, and with deg(F ) = d. We have discussed some of the advantages pro-
vided by this derivative representation from the point of view of computational
searches, and considered the complexity of converting between it and the truth
table representation.

In the case of quadratic functions, we have described how to directly obtain
the univariate from the derivative representation, and vice-versa; and we have
shown how the differential uniformity of a quadratic function can be character-
ized directly in terms of the derivative matrix. In this way, we have generalized
the matrix representation and characterization of quadratic APN functions from
[18] to the case of characteristics other than 2. We have used this generalized
characterization to perform a computational search for quadratic planar func-
tions over F3n with coefficients in F3, and have provided a complete classification
of such functions up to CCZ-equivalence. Our search has also produced simpler
representatives for some of the known classes of planar functions. Furthermore,
we have confirmed that the previously known representatives exhaust all planar
functions of this type up to CCZ-equivalence. Finally, we have motivated why
continuing this search in higher dimensions would require significant computa-
tional resources, and so a dedicated computational effort would be required to
obtain further results in this direction.

There are multiple directions left for future work. As outlined above, a po-
tential direction would be to conduct similar searches for dimensions greater
than 8, or for characteristics other than 3. This would require a non-trivial
amount of computational resources, and it would likely be necessary to paral-
lelize the computation and run it on highly efficient hardware in order to conduct
the search within a reasonable amount of time.

At the moment, we have focused our practical applications to the quadratic
case, since the main motivation for our study were the classes of planar and APN
functions which are defined in terms of their first-order derivatives. It would
be interesting to see what classes of functions can be defined in characterized
using their higher-order derivatives, which would then allow these classes to
be advantageously represented and studied using the higher-order derivative
hypermatrices. In this respect, finding an analogue to Proposition 3 for higher-
order functions would be useful since it would allow the polynomial form of such
functions to be extracted directly, i.e. without going through the truth table.
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