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Abstract. The tweakable Even-Mansour construction yields a tweak-
able block cipher from a public random permutation. We prove post-
quantum security of tweakable Even-Mansour when attackers have quan-
tum access to the random permutation but only classical access to the
secretly-keyed construction, the relevant setting for most real-world ap-
plications. We then use our results to prove post-quantum security—
in the same model—of the symmetric-key schemes Chaskey (an ISO-
standardized MAC), Elephant (an AEAD finalist of NIST’s lightweight
cryptography standardization effort), and a variant of Minalpher (an
AEAD second-round candidate of the CAESAR competition).

1 Introduction

The development of large-scale quantum computers would have a significant
impact on cryptography. For symmetric-key cryptosystems—even ideal ciphers—
one must at least double the key length in order to achieve the same security
against quantum attackers as is enjoyed against classical adversaries, due to the
possibility of using Grover’s search algorithm [8] to carry out a key-recovery
attack. In general, however, doubling the key length may not be sufficient [4,13,
14], and it is therefore critical to understand the security of various symmetric-
key constructions against quantum attackers.

One can consider two models of quantum attacks [3]. In the so-called Q2
model, the attacker is given quantum access to any underlying public primitives
(e.g., a block cipher) as well as the secretly keyed construction itself. In contrast,
the Q1 model assumes the adversary has quantum access to all public primitives
but only classical access to the secretly keyed scheme. The distinction between
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Q1 and Q2 is significant: for many symmetric-key constructions, polynomial-
query attacks are known in the Q2 model but not in the Q1 model [12–14]. At
the same time, the Q2 model appears to be highly unrealistic, particularly for
real-world applications where the honest parties only run the construction on
classical inputs, and do not expose any quantum interface to an attacker (which
is necessarily the case when the honest devices implementing the construction are
entirely classical). The Q1 model is thus a much better fit for realistic quantum
attacks, and several recent works [1,4,11] have focused on that model. From here
on, by “post-quantum security” we will mean the Q1 model by default.

Proving security in the Q1 model is challenging since it requires reasoning
about a combination of (related) classical and quantum oracles. Additional com-
plications arise when reasoning about permutations (rather than functions), par-
ticularly when their inverse may also be queried, as in the random-permutation
and ideal-cipher models. Indeed, most results in a “hybrid” classical-/quantum-
query setting (e.g., [5,9,16]) deal with oracles for functions, and there are only a
few existing results in the Q1 model that deal with random permutations. Jaeger
et al. [11] gave positive results for security of the FX construction (a mechanism
for key-length extension of an ideal cipher); their work also implies security for
the Even-Mansour construction either for non-adaptive adversaries or for a vari-
ant of the construction based on a public random function. Subsequent work by
Alagic et al. [1] showed post-quantum security of the full Even-Mansour con-
struction (i.e., based on a random permutation) against adaptive adversaries.

1.1 Our Results

We show post-quantum security of the tweakable Even-Mansour construction,
a tweakable block cipher constructed from a public random permutation. We
then use this result to establish post-quantum security of several symmetric-key
schemes. We stress that post-quantum security of tweakable Even-Mansour does
not follow from post-quantum security of Even-Mansour. Indeed, the tweak must
be incorporated in a way that satisfies several technical conditions; in addition,
incorporating both tweaks and possible key expansion introduces dependencies
and requires significant technical work to analyze. In all of our results, adver-
saries can make adaptive queries to any permutations to which they have access
(whether quantum or classical, as appropriate) in both the forward and inverse
directions. We now summarize our results.

Tweakable Even-Mansour. Let P : {0, 1}n → {0, 1}n be a permutation. The
tweakable Even-Mansour scheme TEMf1,f2 [P ] : {0, 1}n × T × {0, 1}n → {0, 1}n
is defined as

TEMf1,f2
k [P ](t, x) = P (x⊕ f1(t, k))⊕ f2(t, k),

where the key k is of length n, the set T is a tweak space, and f1, f2 are functions
satisfying some technical conditions we omit here. We also consider a variant
TEM-KXf1,f2 [P ] : {0, 1}κ × T × {0, 1}n → {0, 1}n (where κ ≤ n) that combines
tweakable Even-Mansour with key expansion, and is defined as

TEM-KXf1,f2k [P ](t, x) = P (x⊕ f1(t, P (k∥0n−κ)))⊕ f2(t, P (k∥0n−κ)) .
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Our main result is that both the above are secure (post-quantum) tweakable
block ciphers when P is modeled as a random permutation.

Theorem 1 (informal). An adaptive adversary making qC classical queries to

TEM-KXf1,f2k [P ] (for uniform k ∈ {0, 1}κ) and qQ quantum queries to a random
permutation P can distinguish the former from a uniform tweakable block cipher
with probability at most O

(
2−κ/2 · (qC

√
qQ + qQ

√
qC)
)
.

(The above is stated formally as Theorem 3 and proved in Section 4.1.) Set-
ting κ = n implies security of TEM as a corollary (since P (k) is uniform when
k ∈ {0, 1}n is uniform, for any permutation P ). It follows that any post-quantum
attack against TEM requires q2C · qQ + q2Q · qC ≈ 2n; hence Ω(2n/3) queries are
necessary for constant success probability, matching known attacks [3, 10].

We also consider an alternative method of performing key expansion in which
a key k ∈ {0, 1}κ is expanded to an “effective key” of length n by computing
FP (k) = P (k∥0n−κ) ⊕ k∥0n−κ. This gives rise to another variant of tweakable
Even-Mansour, defined as

TEM-KX1f1,f2k [P ](t, x) = P (x⊕ f1(t, FP (k)))⊕ f2(t, FP (k))).

We show that the key-expansion function FP is a pseudorandom generator (even
for adversaries having quantum access to P ). Using this fact, we are able to
prove a tighter security bound for TEM-KX1 than what we show for TEM-KX
(see Theorem 5 in Section 4.2 for a formal statement):

Theorem 2 (informal). An adaptive adversary making qC classical queries to

TEM-KX1f1,f2k [P ] (for uniform k ∈ {0, 1}κ) and qQ quantum queries to a random
permutation P can distinguish the former from a uniform tweakable block cipher
with probability at most O

(
2−κ/2 · (qC + qQ) + 2−n/2 · (qC

√
qQ + qQ

√
qC)
)
.

A new resampling lemma. As a key technical tool used in our results, we
prove a generalization of existing “resampling lemmas” [1,7] sufficient to handle
tweakable block ciphers, something we believe to be of independent interest. A
resampling lemma controls the success probability of a quantum-query adver-
sary D in an experiment of the following form:

1. D receives quantum oracle access to a random permutation P ;
2. two inputs s0, s1 are sampled from some distribution;
3. D receives quantum oracle access to either P , or P with inputs s0 and s1

“swapped”; it succeeds if it can correctly guess which is the case.

Prior work considered only the uniform distribution on s0, s1. We give a new
resampling lemma that handles a wider class of (adversarially influenced) dis-
tributions, and even allows the distribution to depend on information D learns
about P during step 1 of the above experiment (cf. Lemma 3 in Section 3):

Lemma 1 (informal). In the above experiment, for any D making at most q
quantum queries to P in step 1, Pr[D succeeds] ≤ 1/2 +O(√qε), where ε is the
min-entropy of s0, s1.
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To prove the lemma, we develop a novel permutation variant of the state-
ful simulation technique for quantum-accessible random oracles [19] (i.e., the
superposition oracle technique). In this context, some information about the
input-output pairs learned by the adversary via quantum queries can be read
directly from the oracle’s internal quantum register. In the original superposi-
tion oracle technique [19], this useful feature is a consequence of the statistical
independence of the function values of a random oracle. Existing generalizations
to invertible random permutations [1] lack this feature.

Applications. In Section 5 we use our results to derive corollaries regarding
the post-quantum security of various symmetric-key schemes when modeling the
underlying permutations on which they are based as ideal permutations. In each
case, security is established in two stages. First, we choose the tweak space T and
the tweak functions f1 and f2 appropriately, and apply our theorems above to
prove security for a certain block cipher construction. Then, we invoke existing
results to reduce security of the overall cryptographic scheme (in the appropriate
sense) to security of this cipher. Specifically:

1. We show how to specialize TEM so it captures the three pseudorandom
permutations used by Chaskey [15], an ISO-standardized lightweight MAC.
We can thus prove post-quantum security of Chaskey using Theorem 1.

2. We show how to specialize TEM-KX to the tweakable block cipher at the
core of Elephant [2], an authenticated encryption scheme that was a finalist
of NIST’s lightweight standardization effort [18]. Theorem 1 then implies
post-quantum security for Elephant. Using Theorem 2, we can prove a tighter
security bound for a variant of Elephant that uses a slightly different key-
expansion step.

3. We show how to specialize TEM-KX1 to the tweakable block cipher used
by (a variant of) Minalpher [17], an authenticated encryption scheme that
was a second-round candidate of the CAESAR competition. Theorem 2 then
implies post-quantum security for this variant.

To our knowledge, these are the first proofs of post-quantum security for any
versions of Chaskey, Elephant, or Minalpher.

2 Preliminaries

Notation and basic definitions. We let P(n) denote the set of all permu-
tations on {0, 1}n. In the public-permutation model (or random-permutation
model), a uniform permutation P ← P(n) is sampled and then provided as an
oracle (in both the forward and inverse directions) to all parties.

A block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n is a keyed permutation, i.e.,
Ek(·) = E(k, ·) is a permutation of {0, 1}n for all k ∈ {0, 1}κ. We say E is a
pseudorandom permutation if Ek (for uniform k ∈ {0, 1}κ) is indistinguishable
from a uniform permutation in P(n) even for adversaries who may query their
oracle in both the forward and inverse directions.
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For a set T , let E(T , n) be the set of all functions E : T × {0, 1}n → {0, 1}n
such that E(t, ·) is a permutation on {0, 1}n for all t ∈ T . A tweakable block
cipher Ẽ : {0, 1}κ × T × {0, 1}n → {0, 1}n is a family of permutations in-
dexed by both a key k ∈ {0, 1}κ and a tweak t ∈ T , i.e., we now require that
Ẽk(t, ·) = Ẽ(k, t, ·) is a permutation of {0, 1}n for all k ∈ {0, 1}κ and t ∈ T .
Tweakable block cipher Ẽk is secure if Ẽk (for uniform choice of k ∈ {0, 1}κ) is
indistinguishable from a uniform Ẽ ← E(T , n).

In all the security notions mentioned above we consider algorithms having
only classical access to secretly keyed primitives. When we consider constructions
of keyed primitives (e.g., a tweakable block cipher) from public primitives (e.g.,
a random permutation), however, we provide the distinguisher with quantum
oracle access to the public primitive. Thus, for example, a quantum distinguisher
in the public-permutation model can apply the unitary operators

|x⟩|y⟩ 7→ |x⟩|y ⊕ P (x)⟩
|x⟩|y⟩ 7→ |x⟩|y ⊕ P−1(x)⟩

to quantum registers of the adversary’s choice. (We emphasize that this includes
evaluating P/P−1 on arbitrary superpositions of inputs.) This is well-motivated,
as in practice P would be instantiated by a publicly known permutation; ad-
versaries with quantum computers would thus be able to coherently execute the
reversible circuit for computing P/P−1. On the other hand, secretly keyed prim-
itives would be implemented by honest parties; if honest parties only evaluate
the primitive on classical inputs then the attacker has no way to obtain quantum
access to that keyed primitive.

A reprogramming lemma. We recall here a reprogramming lemma from prior
work [1] that applies to the following experiment. A distinguisher D chooses an
arbitrary function F along with a randomized process B for determining a set of
points B at which F should (potentially) be reprogrammed to some known value.
D is then given quantum access to either F or a reprogrammed version of F ;
when it is done making its oracle queries, D is given B. Roughly, the lemma says
that D cannot determine whether it was interacting with F or the reprogrammed
version of F as long as no point is reprogrammed with high probability.

Formally, for a function F : {0, 1}m → {0, 1}n and a set B ⊂ {0, 1}m×{0, 1}n
such that each x ∈ {0, 1}m is the first element of at most one tuple in B, define

F (B)(x) :=

{
y if (x, y) ∈ B
F (x) otherwise.

The following is taken verbatim from [1, Lemma 3]:

Lemma 2. Let D be a quantum distinguisher in the following experiment:

Phase 1: D outputs descriptions of a function F0 = F : {0, 1}m → {0, 1}n
and a randomized algorithm B whose output is a set B ⊂ {0, 1}m × {0, 1}n
where each x ∈ {0, 1}m is the first element of at most one tuple in B. Let
B1 = {x | ∃y : (x, y) ∈ B} and ε = maxx∈{0,1}m {PrB←B[x ∈ B1]} .
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Phase 2: B is run to obtain B. Let F1 = F (B). A uniform bit b is chosen, and
D is given quantum access to Fb.

Phase 3: D loses access to Fb, and receives the randomness r used to invoke B
in phase 2. Then D outputs a guess b′.

For any D making q queries in expectation when its oracle is F0, it holds that

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤ 2q ·
√
ε .

3 A New Resampling Lemma

In this section, we describe a new resampling lemma for random permutations
that generalizes earlier results [1,7]. We consider a two-phase experiment in which
a distinguisher D is first given quantum oracle access to a uniform permutation
P : {0, 1}n → {0, 1}n. Then, a point s0 ∈ {0, 1}n is chosen in a manner specified
by the distinguisher and a uniform point s1 ∈ {0, 1}n is also chosen; in a second
phase D is given access either to the original permutation P (0) = P or a modified
permutation P (1) that is the same as P except that the values of P (s0) and P (s1)
are swapped. (See below for details.) We show, roughly speaking, that so long
as the distribution of s0 has high min-entropy and D makes only a bounded
number of queries in the first phase of the experiment, D cannot distinguish
those possibilities.

Compared to prior work of Alagic et al. [1], our result is more general in the
following ways:

– it allows for more general distributions of s0;
– it allows for the distribution of s0 to be adaptively chosen by D, after D

makes queries to P in the first phase;
– it furthermore allows D to select a sampling algorithm for s0 that will itself

make a query to P .

In order to achieve these improvements, we use a different proof technique from
that of Alagic et al. [1]. Our approach is closer in spirit to an earlier technique
of Grilo et al. [7], which was previously only applied to random functions.

We now state our new resampling lemma. For s0, s1 ∈ {0, 1}n, define

swaps0, s1(x) =


s1 if x = s0

s0 if x = s1

x otherwise.

Lemma 3. Let F ⊂ P(n). Consider the following experiment involving a quan-
tum distinguisher D:

Phase 1: Choose uniform P ∈ P(n), and give D quantum access to P . D out-
puts (D, τ), where D is a distribution on {0, 1}n and τ ∈ F .
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Phase 2: Sample ŝ ← D, set s0 = τ ◦ P (ŝ), and choose s1 ← {0, 1}n. Let
P (0) = P and define P (1) = P ◦ swaps0, s1 . A uniform bit b ∈ {0, 1} is

chosen, and D is given ŝ and quantum access to P (b). Then D outputs a
guess b′.

Let ε = 2 ·E(D,τ)←DP

[
maxx∈{0,1}n Prx′←D[x

′ = x]
]
. For any D making at most

q queries to P in phase 1,

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]|

≤
√
ε ·

(
1 +

√
q + log

(
11 · |F |√

ε

))
.

The proof of Lemma 3 is given in Appendix A.

4 Post-Quantum Security of Tweakable Even-Mansour

We use the result of the previous section to prove the post-quantum security
of three different variants of the tweakable Even-Mansour construction. In Sec-
tion 4.1, we prove security of TEM-KX; we then prove security of TEM as a
corollary. In Section 4.2, we prove security of TEM-KX1 by showing that its
key-expansion function is a pseudorandom generator.

4.1 Security of TEM-KX and TEM

Let P ∈ P(n) be a permutation and T a finite set, and fix two functions
f1, f2 : T ×{0, 1}n → {0, 1}n. We consider a key-expanding version of the tweak-
able Even-Mansour scheme TEM-KXf1,f2 [P ] : {0, 1}κ × T × {0, 1}n → {0, 1}n
defined as

TEMf1,f2
k [P ](t, x) = P (x⊕ f1(t, P (k||0n−κ)))⊕ f2(t, P (k||0n−κ)) .

We assume the tweak functions f1, f2 satisfy some structural properties.

Definition 1. A function f : T × {0, 1}n → {0, 1}n is proper (with respect
to T ) if it satisfies the following two properties:

Uniformity: For all t ∈ T , the function f(t, ·) is a permutation.

XOR-universality: For all distinct t, t′ ∈ T and all y ∈ {0, 1}n,

Prk←{0,1}n [f(t, k)⊕ f(t′, k) = y] ≤ 2−n .

Theorem 3. Let TEM-KX be as above, and let A be an adversary making qC
classical queries to its first oracle and qQ ≥ max{n, log (11 · |T |)} quantum
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queries1 to its second oracle. If f1, f2 are proper with respect to T , then

∣∣∣∣∣∣∣ Pr
k←{0,1}κ;
P←P(n)

[
ATEM-KXf1,f2

k [P ],P = 1
]
− Pr
Ẽ←E(T ,n);
P←P(n)

[
AẼ,P = 1

]∣∣∣∣∣∣∣
≤ 7 · 2−κ/2

(
qC
√
qQ + qQ

√
qC
)
.

Proof. The high-level structure of our proof is similar to the proof of security for
the Even-Mansour construction by Alagic et al. [1], though here relying heavily
on our new resampling lemma. For that reason, we copy some portions of their
proof (with appropriate updates for our setting).

Without loss of generality, we assume A never makes a redundant classical
query; that is, once it learns a triple (t, x, y) of tweak, input, and output by
making a query to its classical oracle, it never again submits a query (t, x)
(resp., (t, y)) to that oracle in the forward (resp., inverse) direction. We divide
an execution of A into qC + 1 stages 0, . . . , qC , where the jth stage corresponds
to the time between the jth and (j + 1)st classical queries of A. (The 0th stage
is the period of time before A makes its first classical query, and the qCth stage
is the period of time after A makes its last classical query.) A may adaptively2

distribute its qQ quantum queries between these stages arbitrarily, and we let

qQ,j be the expected number of quantum queries that AẼ,P makes in the jth

stage, where the expectation is taken over Ẽ ← E(T , n) and P ← P(n) and any
internal randomness/measurements of A. Note that

∑qC
j=0 qQ,j = qQ.

Fixing f1, f2, we write TEM-KXk for TEM-KXf1,f2k . In a given execution of
A, we denote its jth classical query by (tj , xj , yj , bj), where tj ∈ T is a tweak,
(xj , yj) ∈ {0, 1}n × {0, 1}n is an input/output pair, and bj ∈ {0, 1} indicates
the query direction, i.e., bj = 0 (resp., bj = 1) means that the jth classical
query was in the forward (resp., inverse) direction. We let Tj =

(
(t1, x1, y1, b1),

. . . , (tj , xj , yj , bj)
)
be the ordered list of the first j classical queries of A.

Our proof involves a sequence of experiments in which A’s oracles are mod-
ified based on the classical queries made by A thus far. We first establish the
appropriate notation. We use the product symbol

∏
to denote sequential com-

position of operations, i.e.,
∏n
i=1 fi = f1 ◦ · · · ◦ fn. Note that order matters,

since function composition is not commutative in general. We use the notation∏1
i=n fi = fn ◦ · · · ◦ f1 to denote the composition in reverse order. For a permu-

tation P , a key k, and a list Tj =
(
(t1, x1, y1, b1), . . . , (tj , xj , yj , bj)

)
as above,

1 The mild assumption on qQ can be avoided at the expense of an additive term of
O(qC · 2−κ/2 · (n+ log |T |)) in the bound.

2 Alternatively, the techniques of [6] can be used to turn the adversary into one that
uses a fixed query schedule; the overall bound would be unchanged.

8



define the operators

−→
S Tj ,P,k =

j∏
i=1

swap1−biP (xi⊕f1(ti,P (k||0n−κ))), yi⊕f2(ti,P (k||0n−κ))

−→
QTj ,P,k =

j∏
i=1

swap1−bixi⊕f1(ti,P (k||0n−κ)), P−1(yi⊕f2(ti,P (k||0n−κ)))

←−
S Tj ,P,k =

1∏
i=j

swapbiP (xi⊕f1(ti,P (k||00−κ))), yi⊕f2(ti,P (k||0n−κ))

←−
QTj ,P,k =

1∏
i=j

swapbixi⊕f1(ti,P (k||0n−κ)), P−1(yi⊕f2(ti,P (k||0n−κ)))

where, as usual, f0 is the identity map and f1 = f for any function f . We define
the modified permutation PTj ,k as

PTj ,k(x) =
←−
S Tj ,P,k ◦

−→
S Tj ,P,k ◦ P (x) .

Since P ◦ swapx, y = swapP (x), P (y) ◦ P for all x, y, we have

←−
S j,P,k ◦

−→
S Tj ,P,k ◦ P =

←−
S Tj ,P,k ◦ P ◦

−→
QTj ,P,k = P ◦

←−
QTj ,P,k ◦

−→
QTj ,P,k .

Roughly speaking, PTj ,k is the minimal modification of P that is consistent
with the forward (→) and inverse (←) queries from the transcript Tj when post-
composed (S) or pre-composed (Q) with P . For compactness we occasionally
write P j in place of PTj ,k when Tj and k are understood from the context.

We now define a sequence of hybrid experiments Hj , for j = 0, . . . , qC .

Experiment Hj. Sample uniform Ẽ ∈ E(T , n) and P ∈ P(n), and a uniform
key k ∈ {0, 1}κ. Then:

1. Run A, answering its classical queries using Ẽ and its quantum queries
using P , stopping immediately before its (j + 1)st classical query. Let Tj =(
(t1, x1, y1, b1), . . . , (tj , xj , yj , bj)

)
be the list of classical queries so far.

2. For the remainder of the execution of A, answer its classical queries using
TEM-KXk[P

Tj ,k] and its quantum queries using PTj ,k.

We can compactly represent Hj as the experiment in which A’s queries are
answered using the oracle sequence

P, Ẽ, P, · · · , Ẽ, P,︸ ︷︷ ︸
j classical queries

TEM-KXk[P
j ], P j , · · · ,TEM-KXk[P

j ], P j︸ ︷︷ ︸
qC − j classical queries

.

Each instance of Ẽ or TEM-KXk[P
j ] represents a single classical query, while

each instance of P or P j represents a stage during which A makes multiple
quantum queries to that oracle but no queries to its classical oracle. Observe
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that H0 corresponds to the execution of A in the real world, i.e., ATEM-KXk[P ],P ,

and HqC is the execution of A in the ideal world, i.e., AẼ,P .
For j = 0, . . . , qC − 1, we introduce additional experiments H′j :

Experiment H′j . Sample uniform Ẽ ∈ E(T , n) and P ∈ P(n), and uniform
k ∈ {0, 1}κ. Then:

1. Run A, answering its classical queries using Ẽ and its quantum queries
using P , stopping immediately after its (j+1)st classical query. Let Tj+1 =(
(t1, x1, y1, b1), . . . , (tj+1, xj+1, yj+1, bj+1)

)
be the classical queries so far.

2. For the remainder of the execution of A, answer its classical queries using
TEM-KXk[P

Tj+1,k] and its quantum queries using PTj+1,k.

Thus, H′j corresponds to running A using the oracle sequence

P, Ẽ, P, · · · , Ẽ, P,︸ ︷︷ ︸
j classical queries

Ẽ, P j+1, TEM-KXk[P
j+1], P j+1 · · · ,TEM-KXk[P

j+1], P j+1︸ ︷︷ ︸
qC − j − 1 classical queries

.

In Lemma 4 and Lemma 5, we establish the following bounds on the distin-
guishability of H′j and Hj+1, as well as Hj and H′j , for 0 ≤ j < qC :∣∣Pr[A(H′j) = 1]− Pr[A(Hj+1) = 1]

∣∣ ≤ 2−κ/2 · 2 · qQ,j+1

√
2 · (j + 1)

and ∣∣Pr[A(Hj) = 1]− Pr[A(H′j) = 1]
∣∣

≤ 2−κ/2
(
1 +

√
qQ + log(11 |T |) + n+ κ/2

)
+

4j

2κ
.

Using the above, we have

|Pr[A(H0) = 1]− Pr[A(HqC ) = 1]|

≤
qC−1∑
j=0

(
2−κ/2

(
1 +

√
qQ + log(11 |T |) + n+ κ/2 + 2qQ,j+1

√
2(j + 1)

)
+

4j

2κ

)

≤ 4q2C
2κ

+

qC−1∑
j=0

2−κ/2
(
1 +

√
qQ + log(11 |T |) + n+ κ/2 + 2 · qQ,j+1

√
2qC

)

≤ 4q2C
2κ

+ 2−κ/2
(
qC + qC

√
qQ + log(11 |T |) + n+ κ/2 + 2

√
2qQ
√
qC

)
.

The above bound can be simplified. By assumption, qQ ≥ log(11 · |T |) and

qQ ≥ n ≥ κ. So
√
qQ + log(11 · |T |) + n+ κ/2 ≤

√
7qQ/2. We may also assume

qC ≤ 2κ/2 since otherwise the bound is larger than 1. Under these assumptions,

10



we have 4q2C · 2−κ ≤ 4qC · 2−κ/2 ≤ 4qC
√
qQ · 2−κ/2 and so

4q2C
2κ

+ 2−κ/2 ·
(
qC + qC

√
qQ + log(11 · |T |) + n+ κ/2 + 2

√
2qQ
√
qC

)
≤ 2−κ/2 ·

(
5qC + qC

√
7qQ/2 + 2

√
2qQ
√
qC

)
≤ 2−κ/2 ·

((
5 +

√
7

2

)
qC
√
qQ + 2

√
2qQ
√
qC

)
≤ 2−κ/2 ·

(
7qC
√
qQ + 2

√
2qQ
√
qC

)
≤ 7 · 2−κ/2 ·

(
qC
√
qQ + qQ

√
qC
)
,

as claimed.
We now prove Lemma 4 and Lemma 5.

Lemma 4. For j = 0, . . . , qC − 1,

Pr[A(H′j) = 1]− Pr[A(Hj+1) = 1]| ≤ 2 · qQ,j+1

√
2 · (j + 1)/2κ ,

where qQ,j+1 is the expected number of queries A makes to P in the (j + 1)st
stage in the ideal world (i.e., in HqC ).

Proof. Let A be a distinguisher between H′j and Hj+1. We construct a distin-
guisher D for the experiment from Lemma 2:

Phase 1: D samples uniform Ẽ ∈ E(T , n) and P ∈ P(n). It then runs A, an-
swering its quantum queries using P and its classical queries using Ẽ, until af-
ter it responds to A’s (j+1)st classical query. Let Tj+1 =

(
(t1, x1, y1, b1), . . . ,

(tj+1, xj+1, yj+1, bj+1)
)
be the list of classical queries byA thus far. D defines

F (a, x) := P a(x) for a ∈ {1,−1}.
It also defines the following randomized algorithm B: sample k ← {0, 1}κ
and then compute the set B of input/output pairs to be reprogrammed so
that F (B)(a, x) = (PTj+1,k)

a
(x) for all a, x. Finally, D outputs (F,B).

Phase 2: B is run to generate B, and D is given quantum access to an oracle Fb.
D resumes running A, answering its quantum queries using Fb. Phase 2 ends
before A makes its next (i.e., (j + 2)nd) classical query.

Phase 3: D is given k. It resumes running A, answering its classical queries
using TEM-KXk[P

Tj+1,k] and its quantum queries using PTj+1,k. Finally, it
outputs whatever A outputs.

It is immediate that if b = 0 (i.e., D’s oracle in phase 2 is F0 = F ), then A’s
output is identically distributed to its output in Hj+1, whereas if b = 1 (i.e., D’s
oracle in phase 2 is F1 = F (B)), then A’s output is identically distributed to its
output in H′j . It follows that |Pr[A(H

′
j) = 1]−Pr[A(Hj+1) = 1]| is equal to the

distinguishing advantage of D in the reprogramming experiment of Lemma 2.
To bound this quantity, we bound the parameter ε and the expected number of
queries made by D in phase 2 (when F = F0).

11



The value of ε can be bounded using the definition of PTj+1,k and the fact
that F (B)(a, x) = (PTj+1,k)

a
(x). Fixing P and Tj+1, the probability that any

particular input (a, x) is reprogrammed is at most the probability (over k) that
it lies in the set{

(1, xi ⊕ f1(ti, P (k||0n−κ))), (1, P−1(yi ⊕ f2(ti, P (k||0n−κ)))),
(−1, P (xi ⊕ f1(ti, P (k||0n−κ)))), (−1, yi ⊕ f2(ti, P (k||0n−κ)))

}j+1

i=1

.

We compute the probability that (a, x) = (1, xi ⊕ f1(ti, P (k||0n−κ))) for some
fixed i. P is a permutation, and so is f1(ti, ·). As k is uniform,

Prk[(a, x) = (1, xi ⊕ f1(ti, P (k||0n−κ)))] =

{
2−κ a = 1

0 a = −1
.

A similar bound holds for the other possibilities. By distinguishing the cases
a = 1 and a = −1 and applying a union bound, we get ε ≤ 2(j + 1)/2κ.

The expected number of queries made by D in phase 2 when F = F0 is equal
to the expected number of queries made by A in its (j + 1)st stage in Hj+1.
Since Hj+1 and HqE are identical until after the (j+1)st stage is complete, this
is precisely qQ,j+1. ⊓⊔

Lemma 5. For j = 0, . . . , qC ,∣∣Pr[A(Hj) = 1]− Pr[A(H′j) = 1]
∣∣

≤ 1

2κ/2

(
1 +

√
qQ + log(11 |T |) + n+ κ/2

)
+

4j

2κ
.

Proof. We introduce additional experiments H∗j and H∗∗j .

Experiment H∗j . Sample uniform Ẽ ∈ E(T , n), P ∈ P(n), and k ∈ {0, 1}κ.
Then

1. Run A, answering its classical queries using Ẽ and its quantum queries
using P , until A makes its (j + 1)st classical query (tj+1, xj+1, bj+1 = 0),
which we assume for concreteness to be in the forward direction.3

2. Define s0 = f1(tj+1, P (k||0n−κ)) ⊕ xj+1 and sample uniform s1 ∈ {0, 1}n.
Define P (1) as P (1)(x) = (P ◦ swaps0, s1)(x). Then continue running A,
answering its remaining classical queries (including the (j + 1)st) using
TEM-KXk[(P

(1))Tj ,k], and its quantum queries using (P (1))Tj ,k.

Experiment H∗∗j is the same as H∗j , except that the (j + 1)st query is

answered using Ẽ to obtain yj+1 = Ẽ(tj+1, xj+1), and then we define s1 =
(PTj ,k)−1(yj+1 ⊕ f2(tj+1, P (k||0n−κ))). We have∣∣Pr[A(Hj) = 1]− Pr[A(H′j) = 1]

∣∣ ≤ ∣∣Pr[A(Hj) = 1]− Pr[A(H∗j ) = 1]
∣∣

+
∣∣Pr[A(H∗j ) = 1]− Pr[A(H∗∗j ) = 1]

∣∣
+
∣∣Pr[A(H∗∗j ) = 1]− Pr[A(H′j) = 1]

∣∣ .
3 As in [1], the case of an inverse query is entirely symmetric.
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We now bound the three differences on the right-hand side.
Let A be a distinguisher between Hj and H∗j . We construct a distinguisher

D for the experiment of Lemma 3, where F = {f1(t, ·)⊕ x}t∈T ,x∈{0,1}n .

Phase 1: D is given quantum access to a uniform permutation P . It samples
uniform Ẽ ← E(T , n) and then runs A, answering its quantum queries using
P and its classical queries using Ẽ (in the appropriate directions), until A
submits its (j + 1)st classical query (tj+1, xj+1, bj+1 = 0). At that point,
D has a list Tj =

(
(t1, x1, y1, b1), . . . , (tj , xj , yj , bj)

)
of the queries A has

made to its classical oracle thus far. D lets τ ∈ F be such that τ(·) =
f1(tj+1, ·) ⊕ xj+1, and defines the distribution D on {0, 1}n that chooses
uniform k ∈ {0, 1}κ and outputs k∥0n−κ. Finally, D outputs (D, τ).

Phase 2: The challenger samples ŝ ← D with ŝ = k∥0n−κ. Then D is given ŝ
and quantum oracle access to the permutation P (b). It continues running A,
answering its remaining classical queries—including the (j + 1)st—using
TEM-KXk[(P

(b))Tj ,k], and its remaining quantum queries using (P (b))Tj ,k.
D outputs whatever A does.

In phase 1, distinguisher D perfectly simulates experiments Hj and H∗j for A
until the point where A makes its (j+1)st classical query. If b = 0, D gets access
to P (0) = P in phase 2. Since D answers all quantum queries using (P (0))Tj ,k and
all classical queries using TEM-KXk[(P

(0))Tj ,k], we see that D perfectly simulates
Hj for A in that case. If, on the other hand, b = 1 in phase 2, then D gets access
to P (1), where P (1)(x) = P ◦ swaps0, s1(x). In this case D perfectly simulates H∗j
for A. Applying Lemma 3 thus gives

∣∣Pr[A(Hj) = 1]− Pr[A(H∗j ) = 1]
∣∣ ≤ √ε(1 +√qQ + log

(
11 |F |√

ε

))

=
1

2κ/2

(
1 +

√
qQ + log

(
11 |T | 2n
2−κ/2

))
. (1)

Next, we bound the distinguishability of H∗j and H∗∗j . Recall that in H∗j the

answer to the (j+1)st classical query is yj+1 = TEM-KXk[(P
(1))Tj ,k](tj+1, xj+1),

whereas in H∗∗j the response is yj+1 = Ẽtj+1(xj+1). In H∗j , we have

yj+1
def
= TEM-KXk[(P

(1))Tj ,k](tj+1, xj+1)

= (P (1))Tj ,k(s0)⊕ f2(tj+1, P (k||0n−κ))
= PTj ,k(s1)⊕ f2(tj+1, P (k||0n−κ)) .

Since s1 is uniform and PTj ,k(·) ⊕ f2(tj+1, P (k||0n−κ)) is a permutation, we
conclude that yj+1 is uniform. This is not identical to the distribution of yj+1

in H∗∗j , which is uniform subject to the constraint that Ẽtj+1
is a permutation.

Define the set Yj+1 = {yi | ti = tj+1}, i.e., these are the outputs of Ẽ that
A learned from queries with the same tweak tj+1 used in the (j + 1)st query.

13



Bounding the probability that yj+1 ∈ Yj+1 when yj+1 is uniform gives an upper
bound on the probability that A can distinguish H∗j and H∗∗j . Thus,

∣∣Pr[A(H∗j ) = 1]− Pr[A(H∗∗j ) = 1]
∣∣ ≤ |Yj+1|

2n
≤ j

2n
≤ j

2κ
. (2)

Finally, we bound the distinguishability of H∗∗j and H′j . Recall that the
difference between these experiments is that from the (j + 1)st query onward
the former uses (P (1))Tj ,k while the latter uses PTj+1,k (both for the quantum
queries of A and to instantiate TEM-KX for the classical queries of A). Thus,
the two experiments are identical if (P (1))Tj ,k and PTj+1,k are equal. In what
follows we upper bound the probability that they are not equal.

Both (P (1))Tj ,k and PTj+1,k involve j + 1 swaps: (P (1))Tj ,k involves j swaps
from the first j queries plus the extra swap by the definition of P (1), whereas
PTj+1,k involves j+1 swaps from the first j+1 queries. Since the (j+1)st query
is a forward query, we have

(P (1))
Tj ,k

(x) =
←−
S Tj ,P (1),k ◦

−→
S Tj ,P (1),k ◦ P (1)(x)

and
(P )Tj+1,k(x) =

←−
S Tj+1,P,k ◦

−→
S Tj+1,P,k ◦ P (x) .

Let X = {x1 ⊕ f1(t1, P (k||0n−κ)), . . . , xj ⊕ f1(tj , P (k||0n−κ))}, i.e., X contains
the inputs to P from the first j classical queries of A. Let Bad0 be the event that
xj+1 ⊕ f1(tj+1, P (k||0n−κ)) ∈ X and Bad1 be the event that s1 ∈ X . We upper
bound the probabilities of Bad0, Bad1, and then show that (P (1))Tj ,k = PTj+1,k

when neither Bad0 nor Bad1 occurs.
Since s1 is j

2n -close to uniform by Eq. (2), Pr[Bad1] ≤ 2j
2n . Bounding the

probability of Bad0 is more complex since we have to consider the tweaks from
the first j queries of A. Intuitively, for queries whose tweak was the same as tj+1,
we rely on the assumption that A does not repeat queries; for queries where the
tweaks are different, we use the XOR-universality of f1, f2. Define

X= = {xi ⊕ f1(ti, P (k||0n−κ)) | 1 ≤ i ≤ j, ti = tj+1}
X ̸= = {xi ⊕ f1(ti, P (k||0n−κ)) | 1 ≤ i ≤ j, ti ̸= tj+1}.

These sets partition X into those inputs using the same tweak as in the (j+1)st
query (X=) and those using different tweaks (X ̸=). Hence,

Pr[Bad0] = Pr[Bad=0 ] + Pr[Bad̸=0 ] ,

where Bad=0 is the event that xj+1⊕ f1(tj+1, P (k||0n−κ)) ∈ X= and Bad̸=0 is the
event that xj+1 ⊕ f1(tj+1, P (k||0n−κ)) ∈ X ̸=. For Bad=0 , we have

xj+1 ⊕ f1(tj+1, P (k||0n−κ)) ∈ {xi ⊕ f1(ti, P (k||0n−κ)) | ti = tj+1}
⇔ xj+1 ∈ {xi | ti = tj+1} .

Since A does not repeat queries, this means Pr[Bad=0 ] = 0.
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For Bad̸=0 , rewriting yields

xj+1 ⊕ f1(tj+1, P (k||0n−κ)) ∈ {xi ⊕ f1(ti, P (k||0n−κ)) | ti ̸= tj+1}
⇔ xj+1 ∈ {xi ⊕ f1(ti, P (k||0n−κ))⊕ f1(tj+1, P (k||0n−κ)) | ti ̸= tj+1} .

XOR-universality of f1, together with the fact that f1(t, ·) is a permutation for
all t, implies that the mapping gt,t′ : x 7→ f1(t, x) ⊕ f1(t′, x) is a permutation
whenever t ̸= t′. Thus gti,tj+1

◦ P preserves the min-entropy of k∥0n−κ and

Pr[Bad̸=0 ] ≤ |X ̸=|/2κ ≤ j/2κ. Summarizing,

Pr[Bad0] = Pr[Bad=0 ] + Pr[Bad̸=0 ] ≤ 0 +
|X ̸=|
2κ
≤ j

2κ
.

If neither Bad0 or Bad1 happens, we have P (1)(xi ⊕ f1(ti, P (k||0n−κ))) =
P (xi ⊕ f1(ti, P (k||0n−κ))) for all 1 ≤ i ≤ j; furthermore, PTj ,k(s1) = P (s1) or,
in other words, P (s1) = yj+1 ⊕ f2(tj+1, P (k||0n−κ)). Therefore,

−→
S Tj ,P (1),k =

j∏
i=1

swap1−bi
P (1)(xi⊕f1(ti,P (k||0n−κ))), yi⊕f2(ti,P (k||0n−κ))

=

j∏
i=1

swap1−biP (xi⊕f1(ti,P (k||0n−κ))), yi⊕f2(ti,P (k||0n−κ)) =
−→
S Tj ,P,k

and

←−
S Tj ,P (1),k =

1∏
i=j

swapbi
P (1)(xi⊕f1(ti,P (k||0n−κ))), yi⊕f2(ti,P (k||0n−κ))

=

1∏
i=j

swapbiP (xi⊕f1(ti,P (k||0n−κ))), yi⊕f2(ti,P (k||0n−κ)) =
←−
S Tj ,P,k,

and so

(P (1))Tj ,k(x) =
←−
S j,P (1),k ◦

−→
S j,P (1),k ◦ P (1)(x)

=
←−
S j,P,k ◦

−→
S j,P,k

◦ swapP (f1(tj+1,P (k||0n−κ))⊕xj+1), yj+1⊕f2(tj+1,P (k||0n−κ)) ◦ P (x)

=
←−
S j+1,P,k ◦

−→
S j+1,P,k ◦ P (x) = PTj+1,k.

Putting everything together, we conclude that∣∣Pr[A(H∗∗j ) = 1]− Pr[A(H′j) = 1]
∣∣ ≤ Pr[Bad0] + Pr[Bad1] ≤

3j

2κ
.

Combining the above with Eq. (1) and Eq. (2) concludes the proof of Lemma 5,
and hence the proof of Theorem 3. ⊓⊔
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Tweakable Even-Mansour. Recall that the tweakable Even-Mansour con-
struction TEM is defined as

TEMf1,f2
k [P ](t, x) = P (x⊕ f1(t, k))⊕ f2(t, k) .

Setting κ = n and noting that P (k) is uniform when k is uniform (since P is a
permutation), Theorem 3 yields the following as an easy corollary:

Theorem 4. Let A be an adversary making qC classical queries to its first oracle
and qQ ≥ 1 quantum queries to its second oracle. If f1, f2 are proper with respect
to T , then∣∣∣∣∣∣∣ Pr

k←{0,1}n;
P←P(n)

[
ATEM

f1,f2
k [P ],P = 1

]
− Pr
Ẽ←E(T ,n);
P←P(n)

[
AẼ,P = 1

]∣∣∣∣∣∣∣
≤ 7 · 2−n/2 ·

(
qC
√
qQ + qQ

√
qC
)
.

(Note: Theorem 4 is a corollary of Theorem 3 only for qQ ≥ max{n, log(11·|T |)}.
While small values of qQ are not particularly interesting, Theorem 4 can be shown
to hold for qQ ≥ 1 by a dedicated analysis that we omit here.)

4.2 Security of TEM-KX1

We also consider an alternate method of expanding a key k ∈ {0, 1}κ to an
effective key of length n, in which we compute FP (k) = P (k∥0n−κ) ⊕ k∥0n−κ.
This gives rise to TEM-KX1, a variant of tweakable Even-Mansour defined as

TEM-KX1f1,f2k [P ](t, x) = P (x⊕ f1(t, FP (k)))⊕ f2(t, FP (k))) .

We obtain a tighter security bound for this variant than for TEM-KX; this allows
us to give a tighter bound for Elephant in Section 5.2.

We first show that FP is a pseudorandom generator, even against adversaries
with quantum oracle access to P and P−1.

Lemma 6. For any quantum algorithm A making qQ quantum queries,∣∣∣∣∣∣∣ Pr
r←{0,1}n
P←P(n)

[
AP (r) = 1

]
− Pr
k←{0,1}κ
P←P(n)

[
AP (P (k||0n−κ)⊕ k||0n−κ) = 1

]∣∣∣∣∣∣∣ ≤
4 · qQ
2κ/2

.

Proof. Given an adversary A, we construct a distinguisher D for the reprogram-
ming experiment from Lemma 2:

Phase 1: D samples uniform P ∈ Pn and r ∈ {0, 1}n, and defines a randomized
algorithm B that proceeds as follows:
1. sample uniform k ∈ {0, 1}κ;
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2. output a set of reprogramming pairs B so that P blinded with B is
P (B)(x) = P ◦ swapP−1((k||0n−κ)⊕r), k||0n−κ .

Then D outputs P and B.
Phase 2: B is run with a uniform k ∈ {0, 1}κ to compute B. Let P0 = P and

P1 = P (B). A uniform b ∈ {0, 1} is chosen and D is given access to Pb (in
the forward and inverse directions). D runs A with input r and oracle Pb.
This phase ends when A has made its last query and outputs its guess.

Phase 3: D outputs what A outputs.

Note that there are at most four reprogrammed points. By construction, it
holds that Prk←{0,1}κ [x ∈ B1] ≤ 4 · 2−κ. By Lemma 2,

|Pr[D outputs 1 | b = 0]− Pr[D outputs 1 | b = 1]| ≤ 4qQ · 2−κ/2 . (3)

When b = 0, D runs AP (r) for uniform and independent P, r. When b = 1, D
runs AP1(r) where P1 and r are each uniform but are not independent. Indeed,

P1(k||0n−κ)⊕ k||0n−κ = P (P−1((k||0n−κ)⊕ r))⊕ k||0n−κ

= k||0n−κ ⊕ r ⊕ k||0n−κ = r .

We prove that P1 is uniform subject to that constraint. Let ℓ = 2n − 1, and let
x1, . . . , xℓ and y1, . . . , yℓ be arbitrary enumerations of X = {0, 1}n \ {k||0n−κ}
and Y = {0, 1}n \ {r ⊕ k||0n−κ}, respectively. We show that

Pr[∀i = 1, . . . , ℓ : P1(xi) = yi] =
1

(2n − 1)!
.

Letting

A = Pr[P−1((k||0n−κ)⊕ r) /∈ X]

·Pr[∀i = 1, . . . , ℓ : P1(x1) = yi | P−1((k||0n−κ)⊕ r) /∈ X]

= 2−n · 1

(2n − 1)!
=

1

2n!

and

B =

ℓ∑
j=1

Pr[P−1((k||0n−κ)⊕ r) = xj ]

·Pr[∀i ̸= j : P (k||0n−κ) = yj ∧ P1(xi) = yi | P−1((k||0n−κ)⊕ r) = xj ]

=

ℓ∑
j=1

2−n · 1

(2n − 1)!
=

ℓ

2n!
=

2n − 1

2n!
,

we have

Pr[∀i = 1, . . . , ℓ : P1(xi) = yi] = A+B =
1

(2n − 1)!
,

as desired. The claimed result thus follows from Eq. (3). ⊓⊔
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The following is an immediate corollary of Theorem 4 and Lemma 6.

Theorem 5. Let A be an adversary making qC classical queries to its first oracle
and qQ ≥ 1 quantum queries to its second oracle. If f1, f2 are proper with respect
to T , then ∣∣∣∣∣∣∣ Pr

k←{0,1}κ;
P←P(n)

[
ATEM-KX1f1,f2

k [P ],P = 1
]
− Pr
Ẽ←E(T ,n);
P←P(n)

[
AẼ,P = 1

]∣∣∣∣∣∣∣
≤ 4 · qQ2−κ/2 + 7 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
.

5 Applications

In this section we use our results of Section 4 to show post-quantum security of
the lightweight symmetric-key schemes Chaskey [15], Elephant [2], and a variant
of Minalpher [17]. Note that our proofs of security hold when some public per-
mutation at the core of each scheme is modeled as a random permutation; we
do not analyze the public permutations themselves.

5.1 Chaskey

Chaskey [15] is an ISO-standardized lightweight MAC whose construction is
based on a specific permutation P that we model as a random permutation.
Define FPk,k′(x) = P (x ⊕ k) ⊕ k′, i.e., the Even-Mansour cipher based on P .

Evaluating Chaskey using key k involves evaluating FPk,k, F
P
k⊕k1,k1 , and FPk⊕k2,k2 ,

where k1 = 2k, k2 = 4k, and multiplication is in the field GF (2n) with respect
to a particular representation of field elements as n-bit strings. Prior work [15]
shows that Chaskey is a secure MAC if these three instances of FP are indistin-
guishable from three independent random permutations—a notion called 3PRP
security—and also proves 3PRP security of F when P is modeled as a public
random permutation. Although this prior work considered classical adversaries
only, it is not hard to verify that the proofs carry through to imply security
of Chaskey against quantum adversaries making classical MAC queries, so long
as 3PRP security of F holds against adversaries making classical queries to the
secretly keyed ciphers and quantum queries to P .

As we now show, Theorem 4 readily implies 3PRP security of F in the post-
quantum setting.

Theorem 6. Let A be a quantum algorithm making qC classical queries to its
first three oracles and qQ ≥ 1 quantum queries to its fourth oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}n,
P←P(n)

[
AFP

k,k,F
P
k⊕k1,k1

,FP
k⊕k2,k2

,P = 1
]
− Pr
R1,R2,R3,P←P(n)

[
AR1,R2,R3,P = 1

]∣∣∣∣∣∣∣
≤ 7 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
,

where k1 = 2k and k2 = 4k.
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Proof. Letting T = {0, 1, 2} ⊂ GF (2n) and defining f1(t, k) = k ⊕ (2tk) and
f2(t, k) = 2t · k, we see that

TEMf1,f2
k [P ](0, x) = P (x⊕ k)⊕ k = Fk,k(x)

TEMf1,f2
k [P ](1, x) = P (x⊕ k ⊕ 2k)⊕ 2k = Fk⊕k1,k1(x)

TEMf1,f2
k [P ](2, x) = P (x⊕ k ⊕ 4k)⊕ 4k = Fk⊕k2,k2(x) .

The theorem thus follows from Theorem 4 once we verify that f1, f2 are proper.
Uniformity of f1 and f2 follows readily from invertibility of non-zero elements
in GF (2n). Finally, note that

f1(t, k)⊕ f1(t′, k) = 2 · (t⊕ t′) · k and f2(t, k)⊕ f2(t′, k) = (2t ⊕ 2t
′
) · k ,

with t⊕ t′ and 2t ⊕ 2t
′
non-zero for distinct t, t′; XOR-universality follows. This

concludes the proof of the theorem. ⊓⊔

As discussed earlier, the above theorem in combination with prior results [15]
imply post-quantum security (in the random-permutation model) of Chaskey.
Below we state a simple version of the theorem, leaving out some details and
parameters. We formulate MAC unforgeability in terms of a distinguishing ex-
periment in which the adversary is equipped with the Mack oracle, and must
distinguish the oracle implementing Verk from the oracle (denoted by ⊥) that
always rejects. (To exclude trivial attacks, the adversary cannot forward a mes-
sage/tag pair obtained from the first oracle to the second oracle.)

Theorem 7. Let (Mac,Ver) be the Chaskey MAC, and let A be a quantum algo-
rithm making qC classical queries to its first two oracles and qQ quantum queries
to its third oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}n;
P←P(n)

[
AMack,Verk,P = 1

]
− Pr
k←{0,1}n
P←P(n)

[
AMack,⊥,P = 1

]∣∣∣∣∣∣∣
≤ O(2−n · qC) + 7 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
.

5.2 Elephant

Elephant [2] is a lightweight authenticated encryption scheme with associated
data (AEAD) that was a finalist in the NIST lightweight cryptography stan-
dardization effort [18]. It is based on a tweakable block cipher we call ELE,
which is constructed from a specific permutation P . Prior work [2] proves—in
the purely classical setting—that Elephant is secure if ELE is a secure tweakable
block cipher, and that ELE is a secure tweakable block cipher if P is modeled as
a public random permutation. As with Chaskey, it is straightforward to verify
that the former result carries over to the setting of quantum adversaries with
classical access to Elephant if ELE is post-quantum secure.
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The tweakable block cipher ELE[P ] : {0, 1}n−s × T × {0, 1}n → {0, 1}n used
by Elephant is defined as

ELE[P ]k(t, x) = P (x⊕ f(t, P (k∥0s)))⊕ f(t, P (k∥0s)) , (4)

where f : T × {0, 1}n → {0, 1}n is a function that is proper with respect to T .
(The particular structure of f and T is not relevant here.) Since ELE is a special
case of TEM-KX where f1 = f2 = f , post-quantum security of ELE follows
directly from Theorem 3.

Theorem 8. Let ELE be as above and let A be an adversary making qC classical
queries to its first oracle and qQ ≥ max{n, log (11 · |T |)} quantum queries to its
second oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}n;
P←P(n)

[
AELE[P ]k,P = 1

]
− Pr
Ẽ←E(T ,n);
P←P(n)

[
AẼ,P = 1

]∣∣∣∣∣∣∣
≤ 7 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
.

As discussed earlier, the above theorem in combination with [2, Theorem B.3]
implies post-quantum security (in the random-permutation model) of Elephant.
Recall that in the authenticated encryption security experiment the adversary
is tasked with distinguishing the oracles (Enck,Deck) from the pair of oracles
in which the first (denoted $) outputs random ciphertexts and the second (de-
noted ⊥) always rejects. (Typical restrictions have to be imposed on the ad-
versary to avoid trivial attacks; we do not state these here explicitly.) A fully
flexible security theorem for Elephant involves many parameters; for simplicity,
we record only a simple version below.

Theorem 9. Let (Enc,Dec) be the Elephant AEAD scheme, and let A be a quan-
tum adversary making a total of qC classical queries to its first two oracles and
qQ ≥ max{n, log (11 · |T |)} quantum queries to its third oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}n;
P←P(n)

[
AEnck,Deck,P = 1

]
− Pr
P←P(n)

[
A$,⊥,P = 1

]∣∣∣∣∣∣∣
≤ O(2−n · qC) + 7 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
.

A variant with a tighter security bound. Next, we consider a slight variant
of Elephant for which we can give a tighter security bound. Recall that ELE
expands the key via k∥0s 7→ P (k∥0s). Here we instead expand the key via k 7→
k||0s ⊕ P (k||0s). The tweakable block cipher then becomes

ELE-KX1[P ]k(t, x) = P (x⊕ f(t, P (k∥0s)⊕ k||0s))⊕ f(t, P (k∥0s)⊕ k||0s) . (5)

Security of the above is then a direct consequence of Theorem 5.
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Theorem 10. Let ELE-KX1 be as above and let A be an adversary making qC
classical queries to its first oracle and qQ ≥ 1 quantum queries to its second
oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}n−s;
P←P(n)

[
AELE-KX1[P ]k,P = 1

]
− Pr
Ẽ←E(T ,n);
P←P(n)

[
AẼ,P = 1

]∣∣∣∣∣∣∣
≤ 2(qQ + qC) ·

√
2/2n−s + 7 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
.

The above implies post-quantum security of the variant of Elephant con-
structed from the cipher in Eq. (5) (in place of the cipher from Eq. (4)).

5.3 (A Variant of) Minalpher

Minalpher [17] is an AEAD scheme4 that was a second-round candidate in the
CAESAR competition. Minalpher is based on a single-round tweakable Even-
Mansour cipher that we call MA, which is constructed from a specific permuta-
tion P . Prior work in the purely classical setting [17] first proves that MA is a
secure tweakable block cipher when P is modeled as a random permutation and
then proves, as a consequence, that Minalpher is a secure AEAD scheme. Just as
with Elephant and Chaskey, the latter step easily translates to the post-quantum
setting if MA is secure in that setting.

We specify MA in more detail. The tweak space T contains tweaks of the
form (flag, N, i, j), where flag is an s-bit string that takes two possible values,
N ∈ {0, 1}n/2−s, and i, j are non-negative integers with i < 2ℓ giving an upper
bound on the message length and j ∈ {0, 1, 2}. The tweakable block cipher
MA : {0, 1}n/2 × T × {0, 1}n → {0, 1}n used by Minalpher is then given by

MAk(t, x) = P (x⊕ L(t, k)))⊕ L(t, k) ,

where

L((flag, N, i, j), k) = yi(y + 1)j ·
(
P (k||flag||N)⊕ (k||flag||N)

)
with y some fixed element of GF (2n). Note that Minalpher pads the key with
part of the tweak (in contrast to Elephant which just pads the key with 0s), which
prevents us from using Theorem 3 to analyze MA. We thus consider a variant of
Minalpher based on a different tweakable block cipher MA′ in which the key is
padded with 0s. Specifically, we set s = 1 so that flag is simply a bit, encode j
using two bits, and then fix the lengths of N and i so their combined length is
n− 3 bits. We then define

MA′k(t, x) = P (x⊕ f(t, k))⊕ f(t, k) ,

where

f(t, k) = (flag||N ||i||j) ·
(
P (k||0n/2)⊕ (k||0n/2)

)
.

Since f is proper, Theorem 5 implies:

4 Minalpher can also be used as a MAC, but here we focus on the AEAD scheme.
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Theorem 11. Let MA′ be as above and let A be an adversary making qC classi-
cal queries to its first oracle and qQ quantum queries to its second oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}n/2;
P←P(n)

[
AMA′

k,P = 1
]
− Pr
Ẽ←E(T ,n);
P←P(n)

[
AẼ,P = 1

]∣∣∣∣∣∣∣
≤ 2(qQ + qC) ·

√
2/2n/2 + 7 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
.

Let Minalpher′ be the variant of Minalpher constructed by using MA′ in place
of MA. We can combine the above with classical results about the security of
Minalpher [17] to prove post-quantum security of Minalpher′.

Theorem 12. Let (Enc,Dec) be the Minalpher′ AEAD scheme, and let A be a
quantum adversary making a total of qC classical queries to its first two oracles
and qQ quantum queries to its third oracle. Then∣∣∣∣∣∣∣ Pr

k←{0,1}n/2;
P←P(n)

[
AEnck,Deck,P = 1

]
− Pr
P←P(n)

[
A$,⊥,P = 1

]∣∣∣∣∣∣∣
≤ O(2−n/2 · qC) + 2(qQ + qC) ·

√
2/2n/2 + 7 · 2−n/2

(
qC
√
qQ + qQ

√
qC
)
.
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A Proof of New Resampling Lemma

We now restate and prove Lemma 3.

Lemma 7. Let F ⊂ P(n). Consider the following experiment involving a quan-
tum distinguisher D:
Phase 1: Choose uniform P ∈ P(n), and give D quantum access to P . D out-

puts (D, τ), where D is a distribution on {0, 1}n and τ ∈ F .
Phase 2: Sample ŝ ← D, set s0 = τ ◦ P (ŝ), and choose s1 ← {0, 1}n. Let

P (0) = P and define P (1) = P ◦ swaps0, s1 .

Let ε = 2 ·E(D,τ)←DP

[
maxx∈{0,1}n Prx′←D[x

′ = x]
]
. For any D making at most

q queries to P in phase 1,

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]|

≤
√
ε ·

(
1 +

√
q + log

(
11|F |√

ε

))
.

Proof. Note that s1 = s0 then P (0) = P (1). Thus, the distinguishing advantage
of D is upper bounded by its distinguishing advantage conditioned on s1 ̸= s0,
and this is what we analyze in the rest of the proof.

Given s1 ̸= s0, let H ⊂ {0, 1}n be a set of size 2n−1 containing s0 but not s1,
and let M be a bijection between H and {0, 1}n \H that maps s0 to s1. Define

⟨x⟩ =

{
{x,M(x)} if x ∈ H
{x,M−1(x)} if x /∈ H

.

We use the plain superposition oracle for permutations as defined, e.g., by
Alagic et al. [1] to simulate the permutation P . The resampling experiment with
a superposition in place of P acts on quantum registers X (query input), Y
(query output), E (adversary memory), and F (the oracle simulation’s internal
register). The oracle register F is partitioned into 2n registers Fx, indexed by
permutation inputs x. The initial state is

|η⟩F = (2n!)
−1/2 ∑

π∈P(n)

|π⟩F ,
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where |π⟩F =
⊗

x|π(x)⟩Fx
.

We begin by defining a basis BM of CP(n) = span{|π⟩ : π ∈ P(n)}. Define
the relation RM ⊂ P(n)× P(n) such that

(π, σ) ∈ RM ⇔ {π(x), π(M(x))} = {σ(x), σ(M(x))} for all x ∈ H ,

with the corresponding equivalence classes

[π]M = {σ ∈ P(n) : (π, σ) ∈ RM} .

We denote the set of all equivalence classes by P(n)/RM . For any x, x′ ∈ {0, 1}n
and c ∈ {0, 1}, define the quantum state

|Ψ cx,x′ ⟩ =
1√
2
(|x⟩|x′⟩+ (−1)c|x′⟩|x⟩) .

Define ΓM = P(n)/RM × {0, 1}H . Although ΓM and the equivalence classes
[π]M depend on M , we will sometimes suppress this in the notation.

For each pair ([π], y) ∈ Γ we define a vector |([π], y)⟩F as follows. Let π be
such that π(x) > π(M(x)) for all x ∈ H, where “<” denotes lexicographic order;
we call this π the canonical representative of [π]. Define

|([π], y)⟩F :=
⊗
x∈H

∣∣∣Ψyxπ(x),π(M(x))

〉
FxFM(x)

.

Observe that if [π] = [σ] and y = y′ then ⟨([π], y) | ([σ], y′)⟩ = 1, and otherwise
⟨([π], y) | ([σ], y′)⟩ = 0. The set

BM = {|([π], y)⟩ : ([π], y) ∈ Γ}

is thus an orthonormal set. To see that it forms a basis of CP(n), observe that
|BM | = |P(n)|. It follows that any state |φ⟩XYEF can be decomposed as

|φ⟩XYEF =
∑

([π],y)∈Γ

|φ([π], y)⟩XYE ⊗ |([π], y)⟩F ,

where |φ([π], y)⟩ are subnormalized such that∑
([π],y)∈Γ

∥|φ([π], y)⟩∥2 = 1 .

Define Γj = {([π], y) ∈ Γ : |y| ≤ j}, where |y| denotes Hamming weight.

Claim. Let |ϕq⟩XYEF be the global state after the (unitary part of the) distin-
guisher has made q queries in phase 1 to a superposition oracle initialized in any
state |τ̃ ⟩ such that ⟨([π], y) | τ̃⟩ = 0 for all y ̸= 0. Then for all y with |y| > q, we
have | ϕq([π]M , y) ⟩ = 0.
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Proof. We prove the claim by induction on q. The base case q = 0 holds by
assumption. For the inductive step, say the claim holds for q−1, and recall that

|ϕq⟩XYEF = UXYEOXY F |ϕq−1⟩XYEF .

By the induction hypothesis we can decompose

|ϕq−1⟩XYEF =
∑

([π],y)∈Γq−1

|ψq−1([π], y)⟩XYE ⊗ |([π], y)⟩F .

Using this decomposition and a linearity argument, it suffices to show that for
|y| ≤ q − 1, the state OXY F |x⟩X |y⟩Y |([π], y)⟩F is supported on basis vectors
|([π′], y′)⟩F with |y′| ≤ q. This follows from the fact that

OXY F |x⟩X = |x⟩X ⊗O(x)
Y Fx

.

for some operator O(x). This establishes the claim. ⊓⊔

Next, define the projector

Π≤qF :=
∑

([π],y)∈Γq

|([π], y)⟩⟨([π], y)|F

and let Π± = 1
2 (1 ± Swap) be the projectors onto the symmetric and antisym-

metric subspaces of C2n ⊗ C2n .
We will rely on the following claim:

Claim. For any m ∈ N we have

Pr
σ←P(n)

[∃τ ∈ F, S ⊂ {0, 1}n ∀x ∈ S : |S| = m ∧ τ ◦ σ(x) ∈ ⟨x⟩] ≤ 11 · 2−m · |F | ,

Proof. For fixed τ ∈ F and S ⊂ {0, 1}n of size m, the number of permutations
P for which P (x) ∈ ⟨x⟩ for all x ∈ S is at most 2m · (2n −m)!. Thus,

Pr
σ←P(n)

[∀x ∈ S : τ ◦ σ(x) ∈ ⟨x⟩] ≤ 2m
(2n −m)!

2n!
.

A union bound over all τ and S yields

Pr
σ←P(n)

[∃τ ∈ F, S ⊂ {0, 1}n with |S| = m ∀x ∈ S : τ ◦ σ(x) ∈ ⟨x⟩] ≤ |F |2
m

m!
.

Using 11m! ≥ 4m proves the claim. ⊓⊔

We now return to the proof of Lemma 3. Let Σ≤mF be the projector onto the
subspace of CP(n) spanned by the permutations π such that

|{x ∈ {0, 1}n | ∀τ ∈ F : τ ◦ π(x) ∈ ⟨x⟩}| ≤ m.
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The claim implies∥∥∥∥∥∥|η⟩ − 1√
∥Σ≤mF |η⟩∥

Σ≤mF |η⟩

∥∥∥∥∥∥ ≤ 2 ·
√

11 · 2−m|F | .

Note that Π≤0Σ≤m|η⟩ = Σ≤m|η⟩. We analyze the resampling experiment where
the random permutation is replaced by a superposition oracle initialized with

1√
∥Σ≤m

F |η⟩∥
Σ≤mF |η⟩F .

Let |ψ⟩XYEF denote the global state after phase 1, conditioned on a par-
ticular pair (D, τ) output by the distinguisher. As in [7], we can relax the task
of the distinguisher as follows: instead of merely providing access to an oracle
interface acting on |ψ⟩XYEF for b = 0 and SwapFs0

Fs1
|ψ⟩XYEF for b = 1, we

give the distinguisher arbitrary access to all registers; the distinguisher’s task is
then to distinguish those quantum states.

For x ∈ {0, 1}n, define the projector Q⟨x⟩ =
∑
y∈⟨x⟩ |y⟩⟨y|. In the following,

z is a variable that corresponds to the result of measuring Fŝ, i.e., τ(z) = s0.
Setting

Πψ,ŝ,z =
1

∥|z⟩⟨z|Fŝ
|ψ⟩XYEF ∥2

|z⟩⟨z|Fŝ
|ψ⟩⟨ψ|XYEF |z⟩⟨z|Fŝ

,

it follows that

2Pr[b = b′ | (D,H,M), s0]− 1

≤ 1

2

∥∥∥Πψ,ŝ,z − SwapF⟨τ(z)⟩
Πψ,ŝ,zSwapF⟨τ(z)⟩

∥∥∥
1

=
1

2

∥∥∥Πψ,ŝ,z (1− Swap)F⟨τ(z)⟩
+ (1− Swap)F⟨τ(z)⟩

Πψ,ŝ,zSwapF⟨τ(z)⟩

∥∥∥
1

≤
∥∥∥Πψ,ŝ,zΠ

−
F⟨τ(z)⟩

∥∥∥
1
+
∥∥∥Π−F⟨τ(z)⟩

Πψ,ŝ,zSwapF⟨τ(z)⟩

∥∥∥
1

=
2

∥|z⟩⟨z|Fŝ
|ψ⟩XYEF ∥

∥∥∥Π−F⟨τ(z)⟩
|z⟩⟨z|Fŝ

|ψ⟩XYEF
∥∥∥
2
.

(The second inequality is the triangle inequality.) Taking the expectation over
ŝ← D and z, we get

2Pr[b = b′ | (D,H,M)]− 1

≤ 2Eŝ,z
1

∥|z⟩⟨z|Fŝ
|ψ⟩XYEF ∥

∥∥∥Π−F⟨τ(z)⟩
|z⟩⟨z|Fŝ

|ψ⟩XYEF
∥∥∥
2

≤ 2

√
Eŝ,z

1

∥|z⟩⟨z|Fŝ
|ψ⟩XYEF ∥

∥∥∥Π−F⟨τ(z)⟩
|z⟩⟨z|Fŝ

|ψ⟩XYEF
∥∥∥2

= 2

√∑
ŝ,z

D(ŝ)
∥∥∥Π−F⟨τ(z)⟩

|z⟩⟨z|Fŝ
|ψ⟩XYEF

∥∥∥2 , (6)

where the first inequality is Jensen’s inequality.
It remains to prove the following claim:
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Claim. For any pair (D, τ) and any normalized state |φ⟩XYEF such that

Π≤qF |φ⟩XYEF = |φ⟩XYEF and Σ≤mF |φ⟩XYEF = |φ⟩XYEF ,

we have ∑
ŝ,z

D(ŝ)
∥∥∥Π−F⟨τ(z)⟩

|z⟩⟨z|Fŝ
|ψ⟩XYEF

∥∥∥2 ≤ (m+ q)εD .

Proof. Observe that

Π−
∣∣∣Ψ0
π(x),π(M(x))

〉
= 0 and Π−

∣∣∣Ψ1
π(x),π(M(x))

〉
=
∣∣∣Ψ1
π(x),π(M(x))

〉
for all x and all canonical representatives π. It follows that

Π−Fs0
Fs1
|φ⟩XYEF =

∑
([π],y)∈Γq :
ys0=1

|φ([π], y)⟩XYE ⊗ |([π], y)⟩F .

We can now bound∑
ŝ,z

D(ŝ)
∥∥∥Π−F⟨τ(z)⟩

|z⟩⟨z|Fŝ
|ψ⟩XYEF

∥∥∥2
≤
∑
ŝ

∑
z:ŝ∈⟨τ̂(z)⟩

D(ŝ) ∥|z⟩⟨z|Fŝ
|ψ⟩XYEF ∥2

+
∑
ŝ

∑
z:ŝ/∈⟨τ̂(z)⟩

D(ŝ)
∥∥∥(Π−F⟨τ(z)⟩

⊗ |z⟩⟨z|Fŝ

)
|ψ⟩XYEF

∥∥∥2 .
We bound the two terms separately, beginning with the second. We decompose

|ψ⟩XYEF =
∑

([π],y)∈Γq

|ψ([π], y)⟩XYE ⊗ |([π], y)⟩F

and denote the only element of ⟨x⟩ ∩H by x̃. We have∑
ŝ

∑
z:ŝ/∈⟨τ̂(z)⟩

D(ŝ)
∥∥∥(Π−F⟨τ(z)⟩

⊗ |z⟩⟨z|Fŝ

)
|ψ⟩XYEF

∥∥∥2
=
∑
ŝ

∑
z:ŝ/∈⟨τ̂(z)⟩

D(ŝ)
∑

([π],y)∈Γq

∥∥∥(Π−F⟨τ(z)⟩
⊗ |z⟩⟨z|Fŝ

)
|ψ([π], y)⟩XYE ⊗ |([π], y)⟩F

∥∥∥2
=

∑
([π],y)∈Γq

∑
ŝ/∈⟨τ◦π(x)⟩:
y ˜π(x)

=1

D(ŝ) ∥|ψ([π], y)⟩XYE∥2

≤
∑

([π],y)∈Γq

qεD ∥|ψ([π], y)⟩XYE∥2 = q · εD.

For the first term, we have Σ≤mF |φ⟩XYEF = |φ⟩XYEF , i.e., for any permutation
π in the support of this state there are at mostm values x such that τ◦π(x) ∈ ⟨x⟩.
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For the second term, we have Σ≤mF |φ⟩XYEF = |φ⟩XYEF , i.e., |φ⟩ is supported
on basis states |[π], y⟩ where π has at most m fixed points. Using essentially the
same chain of inequalities as for the second term, we get∑

ŝ

∑
z:ŝ∈⟨τ̂(z)⟩

D(ŝ) ∥|z⟩⟨z|Fŝ
|ψ⟩XYEF ∥2 ≤ mεD .

This completes the proof. ⊓⊔

Combining the above claim with Eq. (6), taking the expectation over (D, τ),
and applying Jensen’s inequality one more time results in the bound

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤
√

(q +m)ε

for the modified resampling experiment and thus

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]| ≤
√
(q +m)ε+ 11 · 2−m|F | .

Setting m = log
(

11|F |√
ε

)
we get

|Pr[D outputs 1 | b = 1]− Pr[D outputs 1 | b = 0]|

≤
√
ε

(
1 +

√
q + log

(
11
|F |√
ε

))
,

matching the lemma. ⊓⊔
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