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Abstract

We give the first constructions in the plain model of 1) nonmalleable digital lockers (Canetti and
Varia, TCC 2009) and 2) robust fuzzy extractors (Boyen et al., Eurocrypt 2005) that secure sources
with entropy below 1/2 of their length. Constructions were previously only known for both primitives
assuming random oracles or a common reference string (CRS).

Along the way, we define a new primitive called a nonmalleable point function obfuscation with
associated data. The associated data is public but protected from all tampering. We use the same
paradigm to then extend this to digital lockers. Our constructions achieve nonmalleability over the
output point by placing a CRS into the associated data and using an appropriate non-interactive zero-
knowledge proof. Tampering is protected against the input point over low-degree polynomials and over
any tampering to the output point and associated data. Our constructions achieve virtual black box
security.

These constructions are then used to create robust fuzzy extractors that can support low-entropy
sources in the plain model. By using the geometric structure of a syndrome secure sketch (Dodis et al.,
SIAM Journal on Computing 2008), the adversary’s tampering function can always be expressed as a
low-degree polynomial; thus, the protection provided by the constructed nonmalleable objects suffices.
Keywords: Point obfuscation, digital lockers, nonmalleability, virtual black box obfuscation, fuzzy
extractors.

1 Introduction

The random oracle (RO) paradigm [9] allows one to analyze cryptographic primitives/protocols with an
idealized random function, significantly simplifying the designs and analyses. Since instantiating RO with
a real-life object is impossible for the general case [23], it is important to identify useful RO properties
that are achievable under specific hard problems.

Initial Efforts – Point Obfuscation. Canetti [20] initiated a study on an important property of
random oracles called oracle hashing — or point obfuscation — and realized it in the plain model. More
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specifically, a point function Ival is indexed by a string val and acts as follows:

Ival(val
′) =

{
1 val = val′

0 otherwise
.

An obfuscated point function should reveal nothing beyond the input/output behavior of the function
Ival(·). This security notion is called virtual black-box (VBB) security. Constructions are known from
multiple assumptions [20, 48, 3, 28].

VBB secure obfuscation of point functions captures the idea that the output of the RO is independent
of its input, and that one can verify whether the output (for now, up to one bit) of an RO is correctly
generated from a specific input. While VBB security is impossible for general functions [5], VBB secure
obfuscation appears possible for point functions. (Similar techniques are used to obfuscate wildcards,
conjunctions, and hyperplanes [24, 18, 12, 41, 6, 32].)

Next Step – Nonmalleability. However, there are many other properties of the RO that make it a
desirable object. For example, given an RO output value on input x, it should be infeasible to obtain
another output of RO on any related input point (e.g., x + 1). Applied to our setting, this is known as
nonmalleable point obfuscation. The nonmalleability of random oracles enables many other objects that
resist active attack. For example, this work considers robust fuzzy extractors [16] as an application, which
were first constructed from random oracles.

Canetti and Varia [25] defined a nonmalleable point function and realized it in the common reference
string (CRS) model. However, as one of the most valuable properties of the RO is that no trusted setup
is required, an ideal instantiation would not require a CRS.

To tackle this, Komargodski and Yogev [46] proposed a construction of a nonmalleable point obfusca-
tion in the plain model.1 Prior work in plain model point obfuscation considers a limiting tampering class
of low-degree polynomials where the degree relates to the hardness of the underlying number-theoretic
assumption.

Another Step Forward – Digital Lockers. An obfuscated point function only outputs one bit.
However, we are generally interested in the RO outputting a random string for a given input. To emulate
this functionality, a natural extension is the multi-bit point function, where each function Ival,key is indexed
by a pair of strings (val, key) and works as follows:

Ival,key(val
′) =

{
key val = val′

⊥ otherwise
.

An obfuscation of a function of this class is called a digital locker, which is useful in password [20] and
biometric authentication [1, 22].

Though we know how to build digital lockers in the plain model [21], the only existing nonmalleable
constructions require a CRS. Fenteany and Fuller [39] achieved half of the goal, constructing a digital
locker that nonmalleabile against tampering only on val in the standard model. However, while the
work [39] pointed out a technique to additionally protect key, it required a CRS, similarly to the original

1Unfortunately, their underlying cryptographic assumption was broken by Bartusek, Ma, and Zhandry [7]. An alternative
assumption was posed in [47], but this did not suffice to show security. Fortunately, Bartusek, Ma, and Zhandry introduced
their own assumption and accompanying construction, showing their assumption holds in a strong variant of the generic
group model [7].
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work [25]. As an ideal instantiation of RO does not require a trusted setup, this naturally motivates our
main question:

Can one build a nonmalleable digital locker in the plain model without setup?

Our Technical Contributions We answer the main question in the affirmative, constructing a non-
malleable digital locker in the plain model. We present the following contributions:

1. Point Obfuscation with Associated Data We define a new primitive called a nonmalleable point
obfuscator with associated data. We then instantiate this object using group assumptions introduced
by Bartusek, Ma, and Zhandry [7].

2. Creating a Multibit Output We then integrate this construction with the real or random con-
struction [21], yielding a nonmalleable digital locker that prevents tampering on the input and
associated data only. This step is not black box in the point obfuscations. Instead, it is created
from scratch using similar techniques from the same group assumptions as the constructed point
obfuscation.

3. Protecting the Multibit Output By putting the CRS of a true simulation extractable non-
interactive zero-knowledge proof (NIZK) [33] into the associated data, we can protect the output
of the digital locker. Conceptually, our new tool protects the NIZK crs, which (if intact) can be
used to derive nonmalleability for the other parts of the construction. This step is black box from
an appropriate variant of a digital locker.

In all of the above steps, the prevented tampering class for the input point, val is low-degree polynomials,
rather than the desired complete tamper resistance. However, this class is still meaningful in many
applications where a RO was previously used.

1.1 Low Entropy Robust Fuzzy Extractors in the Plain Model

Despite a limited tampering class, our nonmalleable objects suffice to construct the first plain model
robust fuzzy extractors [16] that support sources whose entropy is less than half their length 1/2, a known
barrier for information-theoretically secure constructions [36]. We notice that all prior computationally
secure constructions relied on some form of a CRS, and our work shows that this component is not
required.

A fuzzy extractor is a pair of algorithms (Gen,Rep) with two properties:

Correctness. Let w,w′ be values that are close in some distance metric, and define (key, pub)← Gen(w).
Then it is true that Rep(w′, pub) = key.

Security. The value key is computationally indistinguishable from a uniform value given pub.

Digital lockers have been used to construct reusable fuzzy extractors, as in [52] [22, 1], i.e., one can derive
multiple keys from the same entropy source. An additional desirable property is robustness [34], which
prevents an adversary from modifying pub in an attempt to force Rep to produce a different key.

Robust fuzzy extractors are notoriously difficult to construct – we show various limitations of the prior
constructions in Table 1. Dodis and Wichs [36] showed that it is only possible information-theoretically
if the entropy of w is at least half its length. Feng and Tang [38] showed this barrier exists in the CRS
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Scheme Model Security SS errors H∞(W ) < |W |/2?

[14, 15] RO IT t X
[34] Plain IT t X
[30] CRS IT t X
[57, 55, 56] CRS Comp. 2t X
[38] CRS∗ Comp. 2t X
Syn. + NM Point Obf w/ Assoc. Data Plain Comp. 2t X
Syn. + NM Digital Locker Plain Comp. 2t X

Table 1: Comparison of Robust Fuzzy Extractors. The CRS∗ model means that the distribution of W can depend
on the CRS, however, the CRS is still assumed not to be modified. For a distribution W , H∞(W ) represents
min-entropy (see Section 2) and |W | represents its length. IT corresponds to information-theoretic security and
Comp. represents security against computationally bounded adversaries. Syn. is the syndrome or null space of an
appropriate error correcting code. The column of SS errors indicates the error tolerance of the underlying secure
sketch. This parameter is related to the information leakage of the secure sketch. This work and prior computational
works require a secure sketch that corrects 2t errors, which leads to more leakage.

model, as well. Feng and Tang construct a robust fuzzy extractor with computational security for entropy
sources that can depend on the CRS.

We construct the first robust fuzzy extractor in the plain model that supports entropy for w that
is less than half its length. We combine our nonmalleable digital locker with a specific error-correction
component, the syndrome construction [11, 31, 35]. The syndrome construction allows the reduction to
extract a low-degree polynomial that is consistent with the adversary’s tampering. Similar techniques were
used to construct CRS model robust fuzzy extractors from algebraic-manipulation detection codes [30].
We present a second construction directly from the nonmalleable point function from associated data
which is able to extract a limited length key.2

To the best of our knowledge, our work and that of Cramer et al. [30] are the only two approaches
to building a robust fuzzy extractor that do not build a robust extractor first. This is because our
nonmalleable tools only prevent limited tampering classes; both works use the secure sketch component
to guarantee the adversary’s tampering is in this low complexity class.

1.2 Technical Overview

In this section, we present an overview of our techniques. In the CRS model, nonmalleability of point
functions can be achieved as [25], by using a nonmalleable NIZK system – in addition to generating a
regular C ← DL(Ival,key), one also appends a zero-knowledge proof π to the output showing knowledge of
the pair (val, key) inside C. However, any non-trivial nonmalleable NIZK system would require a trusted
(nontamperable) CRS for security of the proof system, so the overall obfuscation would be (crs, C, π).
Without trusted setup, an adversary may simply replace the crs, rendering the NIZK ineffective and
breaking nonmalleability. So, this trusted setup required immediately fails at achieving our goal.

1.2.1 Point Obfuscation with Associated Data

To achieve our goal, we formalize a notion that blends any public string with point obfuscation in a mean-
ingful way, called point obfuscation with associated data. More specifically, the obfuscator Obf(Ival, ad)

2We also show that a nonmalleable point function (without associated data) suffices to construct a robust secure sketch [35].
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takes as input the point function Ival and an additional public string ad (e.g., crs) and then outputs an
obfuscated program C along with ad. The output program C should be VBB secure, and ad is treated
as public information.

We formulate nonmalleability properties that treat the two inputs quite differently. The adversary
outputs (C ′, ad′, f) and wins if C ′ is consistent with the values f(val) and ad′, and one of the following
hold:

1. The function belongs to some targeted function class, i.e., f ∈ F , or

2. The function f is the identity and ad′ 6= ad.

Nonmalleability requires that the adversary has only a negligible winning probability, meaning that they
cannot replace ad by any other string, nor tamper val consistently by any function in the class F .

Remark 1. It is undesirable that in the definition the adversary output their tampering function. The
desired notion is that the adversary cannot output (C ′, ad′) that is consistent with any f . This notion
is impossible to achieve in the plain model if f contains linear shifts. Essentially, given an obfuscation
of point x, an adversary not required to output their mauling function may simply create an obfuscation
of independent point y. It is clear that if the function f(z) = z − x + y is in F , this would be a valid
tampering, but it is impossible to prevent without requiring the adversary shows some awareness of its
specific tampering. The definition where the adversary chooses and outputs f after seeing C does imply
that all fixed functions f are prevented [47]. See Appendix A for more details.

How to Construct this Object Before instantiating such an object, we recall some notations and
related constructions of nonmalleable point obfuscations in prior work [46, 7, 39]. We note that all of
these constructions rely on groups that only efficiently admit linear operations.

Suppose that g is a generator of a prime order group whose order is p. Throughout this paper, [x]g will
be used to represent gx (called implicit notation in [37]) so as to highlight the behavior in the exponent.
We treat val as an element in Zp. Let the class of tampering functions F correspond to low degree
polynomials over Zp. Previous constructions [7] use a set of polynomial encodings, denoted as P, and
compute the following for Obf(Ival) :

1. Sample some P ← P,

2. Output P, [P (val)]g.

The intuition for security3 is twofold: 1) that P is sufficiently randomized to argue virtual black box
security [5], and that 2) for all instances of P ∈ P no fixed affine functions of P — i.e., αP (val) + β —
correspond to any P ′(f(val)) for P ′ ∈ P and low degree polynomial f . Prior work achieves these two
properties jointly by randomizing the low degree coefficients of P and fixing some higher powers to have
a coefficient of 1. For example, Bartusek et al. [7] consider Pa(x) = ax+ x2 + x3 + x4 + x5.

Our construction builds such a function class P, parameterizing P ∈ P by both a random a and ad,
so that ad and val can be blended in a secure way. Let ρ := |ad|. Then, we have:

Pa,ad(x)
def
= ax+

ρ+1∑
i=2

adix
i +

ρ+6∑
i=ρ+2

xi.

3The actual constructions are more complicated to ensure correctness holds, using other points of randomness and group
elements to check correctness. These are not used in arguing nonmalleability. For simplicity, we do not discuss correctness
in this section.
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Algorithm 1: Augmented real-or-random construction that provides nonmalleability over input
point and associated data. Obf is an obfuscator and NMObf is a nonmalleable obfuscator.

Input (val, key, ad).
Sample random z.
for each bit i of key do

if keyi = 1 then
Ci ← Obf(Ival)

else
Ci ← Obf(Iz)

end

end
Let C0 ← NMObf(Ival,ad). // To distinguish an all-zero key and provide

nonmalleability

Output C = (C0, C1, . . . , C|key|, ad).

In the above, the random a corresponds to the lowest degree coefficient of P and the bits of ad set
intermediate coefficients of the polynomial P . We can prove security using the same group assumption
used in prior nonmalleable point obfuscation works [7, 39].

While the construction has a similar structure to prior work, analysis of nonmalleability is significantly
more complicated by the fact that the adversary 1) knows ad, 2) can output any value for ad′, and 3)
doesn’t have to explain how ad′ arose from ad. This gives the adversary more flexibility, and proving
nonmalleability becomes a careful multi-step procedure.

To give some intuition for the algebraic structure, it is important that the powers multiplied by the
bits of ad are below the powers with coefficients 1. If these were switched, one could apply a polynomial
tampering function to x and change the associated data to compensate for the resulting changes in the
higher powers. Another natural approach is to obfuscate the string x||ad using a nonmalleable point
obfuscation. In addition to the difficulties mentioned above, the algebraic structure is unclear. The
concatenation operation would occur on strings before mapping to Z∗p. However, the tampering function
f : Z∗p → Z∗p changes elements. The corresponding tampering function on strings depends on the mapping
from strings to Z∗p.

1.2.2 Extending to the Multibit Setting

Next, we integrate the above with the real-or-random approach of Canetti and Dakdouk [21]. The modified
algorithm is summarized in Algorithm 1.

On the technical side, this approach requires the polynomials in the group to have more randomized
powers, similar to the prior work of Fenteany and Fuller [39]. However, unlike their work, we only use
one nonmalleable point obfuscation, the rest simply provide privacy. That is, only C0 in Algorithm 1 is
nonmalleable. As we show, this is sufficient to ensure nonmalleability over the resultant digital locker.

1.2.3 Protecting the Multibit Output

The above instantiation of the real-or-random construction prevents tampering of the input point and
associated data but provides no protection over key. Our protection of the associated data allows us to
upgrade the NIZK construction of [25] to the plain model. Our technique protects the associated data,
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which is set as crs, and the security of NIZK protects everything else, so long as crs cannot be tampered
with. As we discuss in Section 5.3, we are also able to use a weaker NIZK system, specifically true
simulation extractible NIZKs, which may be instantiable in pairing-free groups.

1.3 Discussion and Open Questions

This work presents the first constructions in the plain model of nonmalleable digital lockers and low-
entropy robust fuzzy extractors. The integration of the nonmalleable point function with associated
data with the real-or-random construction is technical and non-black box. Ideally, one would be able
to define some necessary condition such that general black box composition of our point obfuscation
with associated data and any other point obfuscation or digital locker is possible. One can view our
construction as evidence that our particular nonmalleable point obfuscator with associated data is safe
under composition with a specific point function.

There are known barriers to constructing digital lockers secure against auxiliary data that is hard to
invert (such as a point function) if indistinguishability obfuscation exists [19, 10]. Security in the presence
of auxiliary data is the standard method for arguing composition.

In this work, we focus on nonmalleability of digital lockers. Obfuscating wildcards, conjunctions,
and hyperplanes use similar techniques [18, 12, 41, 6, 32, 24], so our techniques may apply. We note
that some of these objects directly yield non-robust fuzzy extractors [41, 32], so it may be possible to
provide robustness by making the obfuscation nonmalleable. It seems less likely the techniques can be
used to protect obfuscation of general evasive functions [4], compute-and-compare programs [45, 58, 17]
and general obfuscation [42, 43, 51, 50, 44, 2].

We generically use (true simulation extractible) NIZKs. Optimizing this construction is important,
since this object will likely represent the dominant computational cost.

2 Preliminaries

Logarithms are base 2. Let Xi ∈ Z be random variables. We denote by X = X1, ..., Xn the tuple
(X1, . . . , Xn). For a discrete random variable X, the min-entropy of X is H∞(X) = − log(maxx Pr[X =
x]). For a pair of discrete random variables X,Y , the average min-entropy of X|Y is

H̃∞(X|Y ) = − log

(
E
y∈Y

(
2−H∞(X|Y )

))
.

The notation id is used to denote the identity function: ∀x, id(x) = x. Capitalized letters are used for
random variables and lowercase letters for samples. Let {Dλ} be an ensemble of sets. Two circuits, C
and C ′, with inputs in Dλ are functionally equivalent, denoted C ≡ C ′, if ∀x ∈ Dλ, C(x) = C ′(x). For a
matrix A, let Ai denote the ith row and Ai,j to denote the entry in the i row and jth column.

Definition 2.1. An ensemble of distributions X = {Xλ}λ∈N, where Xλ is over Dλ, is well-spread if the
function H∞(Xλ) mapping λ to non negative reals grows faster than ω(log λ). That is, H∞(Xλ) = ω(log λ).

Definition 2.2. An ensemble of distributions X = {Xλ}λ∈N, where Xλ is over Dλ, is efficiently sam-
pleable if exists a PPT algorithm given 1λ as input whose output is identically distributed as Xλ.

Throughout this work, we will use λ to represent the security parameter, ρ to represent the length of the
associated data, ` to represent the length of the output key, and τ to represent the maximum degree of
the polynomial the adversary uses for mauling.
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3 Obfuscation Definitions

All obfuscation definitions include require only polynomial slowdown, which is easily verifiable for all
presented constructions. The main object we introduce in this work is a nonmalleable point function with
associated data. A traditional point function Ival : Zp 7→ {0, 1} takes a single input val ∈ Zp and returns
1 if and only if the input x to the function is val. An obfuscator is designed to preserve this functionality
while hiding val. The definition of a nonmalleable point function with associated data adds a second input
to I denoted as ad ∈ {0, 1}ρ. This input does not need to be hidden by the obfuscator but should be
nonmalleable. So the raw functionality is just a point function of the pair val, ad. That is,

Ival,ad(x, y) =

{
1 x = val ∧ y = ad

0 otherwise.

Note that, since in our use cases ad is public, an honest user may just use the given ad in using the obfus-
cated point function. In our further sections, we use lockPoint(·) to denote point obfuscation algorithm
and unlockPoint as the obfuscated program. As prior work [25, 46, 39], we first present the notion of an
obfuscation verifier:

Definition 3.1 (Obfuscation Verifier). Let λ ∈ N be a security parameter and let O input x ∈ Dλ and
output a program P. An algorithm Vobf is a value verifier if ∀x ∈ Dλ it is true that

Pr
Vobf,O

[Vobf(P) = 1|P ← O(x)] = 1.

Definition 3.2 (Nonmalleable Point Function with Associated Data). For security parameter λ ∈ N
parameter ρ ∈ N, let Dλ be a sequence of input domains and F : Dλ → Dλ be a family of functions. Let X
be a family of distributions over Dλ. A (F ,X , ρ)-nonmalleable point function obfuscation with associated
data lockPoint is a PPT algorithm that inputs a point val ∈ Dλ and ad ∈ {0, 1}ρ, and outputs a circuit
unlockPoint. Let Vobf be an obfuscation verifier for lockPoint as defined in Definition 3.1. The following
properties must hold:

1. Completeness: For all val ∈ Dλ, ad ∈ {0, 1}ρ, it holds that

Pr[unlockPoint(·, ·) ≡ Ival,ad(·, ·)|unlockPoint← lockPoint(val, ad)] ≥ 1− ngl(λ),

where the probability is over the randomness of lockPoint.

2. Virtual Black Box Security: For every PPT A and any polynomial function p, there exists a
simulator S and a polynomial function q(·) such that, for all large enough λ ∈ N, all val ∈ Dλ, ad ∈
{0, 1}ρ and for any predicate P : Dλ × {0, 1}ρ 7→ {0, 1},

|Pr[A(unlockPoint, ad) = P(val, ad)|unlockPoint← lockPoint(val, ad)]

−Pr[SIval,ad(·)(1λ, ad) = P(val, ad)]| ≤ 1

p(λ)
,

where S is allowed q(λ) oracle queries total to Ival,ad and the probabilities are over the internal
randomness of A and lockPoint, and of S, respectively. Here Ival,ad(·) is an oracle that returns 1
when provided input (val, ad) and 0 otherwise.
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3. Nonmalleability: For any X ∈ X , for all ad ∈ {0, 1}ρ, for any PPT A, there exists ε = ngl(λ),
such that defining

unlockPoint← lockPoint(val, ad),

(C, f, ad∗)← A (unlockPoint, ad)

it is true that :

Pr
val←X

[
Vobf(C) = 1, (If(val),ad∗ ≡ C)

f ∈ F ∨ (f = id ∧ ad∗ 6= ad)

]
≤ ε.

3.1 Nonmalleable Digital Locker

We recall the definition of a nonmalleable digital locker. To distinguish this from the case of point obfus-
cation, we use lock() to denote the multi-bit point obfuscation algorithm and unlock as the (obfuscated)
digital locker. In our construction, all tampering of the output key is prevented, so we remove the notion
of a key verifier that was used in [39].

Definition 3.3 (Nonmalleable Digital Locker). For security parameter λ ∈ N, let Dλ be a sequence of
domains, let

1. F : Dλ → Dλ be a function family,

2. X be a family of distributions over Dλ,

3. lock be a PPT algorithm that maps points val ∈ Dλ, key ∈ {0, 1}n to a circuit unlock, and

4. Vobf be an obfuscation verifier.

The algorithm lock is a (F ,X , n)-nonmalleable digital locker if all of the below are satisfied:

1. Completeness For all val ∈ Dλ, key ∈ {0, 1}n it holds that

Pr[unlock(·) ≡ Ival,key(·)|unlock← lock(val, key)] ≥ 1− ngl(λ),

where the probability is over the randomness of lock. Here Ival,key is a function that returns key when
provided input val, otherwise Ival,key returns ⊥.

2. Virtual Black Box Security: For all PPT A and p = poly(λ), ∃S and q(λ) = poly(λ) such that
for all large enough λ ∈ N, ∀val ∈ Dλ, key ∈ {0, 1}n,P : Dλ × {0, 1}n 7→ {0, 1},∣∣∣Pr[A(lock(val, key)) = P(val, key)]− Pr[SIval,key(1λ) = P(val, key)]

∣∣∣ ≤ 1

p(λ)
,

where S is allowed q(λ) oracle queries to Ival,key and the probabilities are over the internal randomness
of A and lock, and of S, respectively.

3. Nonmalleability ∀X ∈ X , PPT A, key ∈ {0, 1}n, there exists ε = ngl(λ) such that:

Pr
val←X

 Vobf(C) = 1,(
(f ∈ F ∧ key′ 6=⊥)∨

(key′ 6∈ {⊥, key} ∧ f = id)

)∣∣∣∣∣∣∣
unlockval,key ← lock(val, key)

(C, f)← A(unlockval,key)

key′ ← C(f(val))

 ≤ ε.
recall id is the identity function.
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Remark 2. As mentioned in the Introduction, there are alternative notions of nonmalleability. We
formally define fixed nonmalleability, a weaker definition which was used in [25], and oblivious nonmal-
leability, which does not require the adversary to output the targeted function f . In that appendix, we
refer to the above nonmalleability definition as adaptive. There we show that oblivious nonmalleability is
impossible in general. One can bypass this result by using cryptographic tools that extract the tampering
function, such as a random oracle or non-falsifiable assumptions.

3.2 Same Point Definitional Equivalences

The soundness in Definitions 3.2 and 3.3 are virtual black box security [5]. In the majority of this
work, we will be using distributional indistinguishability, which says that obfuscations of all well spread
distributions X are indistinguishable from obfuscations of random points. Bitanski and Canetti [13]
showed that this definition is equivalent to virtual black box obfuscation for point functions (see also [20,
54]). Furthermore, they showed this equivalence holds when given a constant number of obfuscations on
related points. Fenteany and Fuller [39] show that this equivalence holds if given a polynomial number of
copies unlockPoint1 ← lockPoint(X), ..., unlockPoint` ← lockPoint(X) as long as the same value is locked
in each call to lockPoint. We generalize these results showing that a vector of obfuscations that have
output on a single input point are secure when composed with associated data. That is, define the circuit
class

Pointval,key,ad(val
′, ad′) =

{
key val′ = val ∧ ad′ = ad

⊥ otherwise
.

Note that point functions and digital lockers both with and without associated data variants fall into this
class by adjusting whether ad and key are of length 0. These proofs are straightforward extensions of the
proofs in [39].

Definition 3.4 (Distributional Indistinguishability). A Point obfuscator is called a good distributional
indistinguishable (DI) obfuscator if for any PPT A with binary output and any well-spread distribution
X over points in Dλ, for all vectors ~key, ~ad then there exists some negligible function ε such that

| Pr
val←X

[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val, ~adi, ~keyi)}`i=1]

− Pr
u

$←Dλ
[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(u, ~adi, ~keyi)}`i=1]| ≤ ε.

Theorem 3.1. For the class Point under ` = poly(λ) composition where the same val is used in each
obfuscation, distributional indistinguishability and virtual black box security (in Definition 3.2) are equiv-
alent.

This equivalence works through an intermediate definition known as oracle indistinguishability.

Definition 3.5 (Oracle Indistinguishability). A Pointobfuscator is a oracle indistinguishable (OI) ob-
fuscator if for any PPT adversary A and any polynomial function p, there exists a polynomial size family
of sets {Lλ}λ∈N for all val 6∈ Lλ, such that for all ~key, ~ad for all sufficiently large λ,

|Pr[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val, ~adi, keyi)}`i=1]

− Pr
val′

$←Dλ
[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val′, ~adi, keyi)}`i=1]| ≤

1

p(λ)
.
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Proof of Theorem 3.1. We show Theorem 3.1 in three steps. All of these steps assume the same ` for each
definition.

Lemma 3.1. If Point satisfies Definition 3.4, then it satisfies Definition 3.5.

Proof of Lemma 3.1. Consider some binary PPT A and polynomial function p. We proceed by contra-
diction. Let Xλ be the set of all values val ∈ Xλ such that ∃ ~key, ~ad and for all sufficiently large λ

|Pr[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val, ~adi, keyi)}`i=1]

− Pr
val′

$←Dλ
[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val′, ~adi, keyi)}`i=1]| >

1

p(λ)
. (1)

Fix some such values ~key and ~ad. Define X+
λ as the set of points where Equation 1 is true without

the absolute values and X−λ as the set of points where the negation is true without the absolute values.
Assume towards a contradiction that |Xλ| = ω(poly(λ)). Then it must be case for either X+

λ or X−λ .
Assume that without loss of generality that |X+

λ | = ω(poly(λ)). Define Zλ as the uniform distribution
over points in X+

λ . Then it must be the case that

| Pr
val←Zλ

[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val, ~adi, keyi)}`i=1]

− Pr
val′

$←Dλ
[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val′, ~adi, keyi)}`i=1]| >

1

p(λ)
.

This contradicts the definition of distributional indistinguishability. Thus it must be the case that |Xλ| =
poly(λ). This completes the proof of Lemma 3.1.

Lemma 3.2. If Point satisfies Definition 3.5 then it satisfies VBB security (soundness in Definition 3.2).

Proof of Lemma 3.2. Let A be some PPT adversary. Suppose that Point satisfies Definition 3.5 oracle
indistinguishability when composed ` times. Let Lλ be the polynomial size set in Definition 3.5. Define
the simulator SA( ~ad):

1. Define ~key =⊥`.
2. Query the first oracle I1val,ad1,key1 on each point x ∈ Lλ with the value ~ad1. If the oracle returns

y1 6=⊥, set val = x, key1 = y1. Query oracles Ii
val, ~adi,keyi

retrieving value yi and set keyi = yi. If some

value was returned go to next step.

3. If val =⊥ set val
$← Dλ.

4. If ~key =⊥` uniformly sample ~key.

5. Run and output A({Point(val, ~adi, keyi), ~adi}`i=1).

Note that Lλ may differ for each adversary and length λ. Fix some predicate P. We now analyze the qual-
ity of SA suppose that val ∈ Lλ then SA outputs exactly the distribution A({unlockPointi, ~adi, keyi}`i=1)

11



so the simulation is perfect. In the case when val 6∈ Lλ by the definition of oracle indistinguishability

Pr[A({Ci, ~adi}`i=1) = P(val, ~key, ~ad)|{Ci ← Point(val, ~adi, keyi)}`i=1]

−Pr[S
I1,val,~ad1

(·),...,I`,val,~ad` (·)
A (1λ, ~ad1, ..., ~ad`) = P(val, ~key, ~ad)] ≤

|Pr[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val, ~adi, keyi), val 6∈ Lλ}`i=1]

− Pr
val′

$←Dλ
[A({Ci, ~adi}ti=1) = 1|{Ci ← Point(val′, ~adi, keyi)}`i=1]| ≤

1

p(λ)
.

Thus, in all cases for an arbitrary polynomial p(λ) the VBB condition is satisfied.

Lemma 3.3. If Point satisfies VBB security (soundness in Definition 3.2) then it satisfies Definition 3.4.

Proof of Lemma 3.3. We assume that Point is not distributional indistinguishable towards showing that
Point is not VBB. That is, there exists some A and distribution X and vectors ~ad, ~key such that for all
polynomial functions p(λ) it is true that

| Pr
val←X

[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val, ~adi, keyi)}`i=1]

− Pr
u

$←Dλ
[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(u, ~adi, keyi)}`i=1]| > 1/p(λ).

Assume without loss of generality that the statement is true without the absolute values. Define the
random variable γ(val) = Pr[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val, ~adi, keyi)}`i=1]. Then sort val by γ(val).
There must exist super polynomial size sets Xmax,Xmin such that

| Pr
val←Xmax

[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val, ~adi, keyi)}`i=1]

− Pr
val←Xmin

[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val, ~adi, keyi)}`i=1]| > 1/p(λ).

Define the following values:

Amax = Pr
val←Xmax

[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val, ~adi, keyi)}`i=1]

Amin = Pr
val←Xmin

[A({Ci, ~adi}`i=1) = 1|{Ci ← Point(val, ~adi, keyi)}`i=1]

Smax = Pr
val←Xmax

[SI
1
val,ad1

(·),...,I`val,ad` (·)(1λ, ad1, ..., ad`) = P(val, ~key)]

Smin = Pr
val←Xmin

[SI
1
val,ad1

(·),...,I`val,ad` (·)(1λ, ad1, ..., ad`) = P(val, ~key)]

No simulator S can perform differently on the distributions Xmax and Xmin as for any polynomial sequence
size set of queries Lλ the probability that Prval←Xmax [val ∈ Lλ] ≤ ngl(λ). The same holds for Xmin. Thus,
it must be the case that Smax−Smin ≤ ngl(λ). The contradiction follows by the triangle inequality. That
is,

1/p(λ) < Amax −Amin < (Amax − Smax) + (Smax − Smin) + (Smin −Amin).

This implies that either Amax − Smax or Smin − Amin is greater than 1/3p(λ). This completes the proof
by noting that for any desired 1/3p(λ) one can find an appropriate 1/p(λ). This completes the proof of
Lemma 3.3.

The application of Lemma 3.1, 3.2, and 3.3 proves Theorem 3.1.
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3.3 Group Theoretic Assumptions

We present our underlying group-theoretic assumptions here. As a reminder, we use the implicit nota-
tion [37] to denote encoding in a group with generator g (where [x]g denotes gx).

Assumption 3.1. [7, Assumption 3] Fix some ψ ∈ Z+. Let G = {Gλ}λ∈N be a group ensemble with
efficient representation and operations where each Gλ is a group of prime order p(λ) ∈ (2λ, 2λ+1). Let
{Xλ} be a family of well-spread distributions over Dλ = Zp(λ). Then for any PPT A:∣∣Pr[A({ki, [kix+ xi]g}i∈[2,...,ψ] = 1]− Pr[A({ki, [kir + ri]g}i∈[2,...,ψ]

∣∣ = ngl(λ).

where x← Xλ, r ← Zp(λ), ki ← Zp(λ).

Bartusek, Ma, and Zhandry [7] justified Assumption 3.1 by showing it holds in the generic group model
even if Xλ depends on g. This model of allowing a distribution to depend on g is related to the non-
uniform generic group model [27]. Such an assumption is crucial to arguing plain model security (rather
than treating Xλ as independent of g). The second assumption can be proved from Assumption 3.1, see
[7, Lemma 8], and is useful for arguing nonmalleability:

Assumption 3.2. [7, Assumption 4] Fix some ψ ∈ Z+. Let G and Xλ be defined as in Assumption 3.1.
For any PPT A,

Pr[[x]g ← A({ki, [kix+ xi]g}i∈[2,..,ψ])] = ngl(λ).

where x← Xλ and ki ← Zp(λ).

4 Nonmalleable Point Functions with Associated Data

We begin by instantiating a nonmalleable point obfuscation satisfying Definition 3.2.

Construction 4.1. Let λ ∈ N be a security parameter, let ρ ∈ N be a parameter. Let G = {Gλ}λ∈N be
a group ensemble with efficient representation and operations where each Gλ is a group of prime order
p(λ) ∈ (2λ, 2λ+1). Define five polynomials p1, ..., p5 as follows:

p1,ad,c1(val) = c1val +

ρ∑
i=1

adival
i+1 +

ρ+6∑
i=ρ+2

vali,

p2,c2(val) = c2val + valρ+7,

p3,c3(val) = c3val + valρ+8,

p4,c4(val) = c4val + valρ+9,

p5,c5(val) = c5val + valρ+10.

In the above, all calculations are conducted modulo Zp(λ).

Let g be a generator of the group Gλ. Let c1, c2, c3, c4, c5
$← Zp(λ) be input randomness. Let ρ

def
= |ad|.

Consider the following construction:

lockPoint(val, ad; a, b, c)
def
=


c1, [p1,ad,c1(val)]g
c2, [p2,c2(val)]g
c3, [p3,c3(val)]g
c4, [p4,c4(val)]g
c5, [p5,c5(val)]g
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Vobf is the circuit that checks that unlockPoint consists of the appropriate number of values and group
elements. If not, it outputs 0. Given a program unlockPoint consisting of five pairs {(c′i, g′i)}5i=1

4 and
inputs val′, ad′ compute: [

p1,ad′,c′1(val′)
]
g

?
= g′1,{[

pi,c′i(val
′)
]
g

?
= g′i

}5

i=2

.

If all of these checks pass, output 1. Otherwise, output 0.

Theorem 4.1. Let all parameters be as in Construction 4.1, let ρ ∈ N be a parameter. Define F : Zp(λ) →
Zp(λ) as the set of non-constant, non-identity polynomials of maximum power τ . Suppose that

1. Assumption 3.1 holds for ψ = max{τ(ρ+ 6), ρ+ 10} and

2. (ρ+ 6)22ρ/p(λ)3 = ngl(λ).

Then, Construction 4.1 is a (F ,X , ρ)-nonmalleable point function obfuscation with associated data.

Remark 3. In the above, the size of associated data is limited to be ρ ≈ log(p(λ)), which is linear in the
security parameter λ. Our primary application has the associated data as the CRS of some NIZK. Such
strings can be quite long. In Section 5.4, we show that it suffices to include a short value in the associated
data whose size is Θ(log λ).

In order to prove that Construction 4.1 satisfies Definition 3.2, we must prove correctness, virtual black
box security, and nonmalleability.

• Correctness is described in Lemma 4.1.

• Virtual black box security is described in Theorem 4.2.

• Nonmalleability is described in Theorem 4.3. First, we show val is nonmalleable for low-degree
polynomials in Lemma 4.4. Then, in Lemma 4.5, we show that conditioned on val not being
changed, ad is completely nonmalleable. To give some intuition we present a simpler argument for
nonmalleability in the algebraic group model in Appendix B.

Lemma 4.1. For any ρ such that (ρ + 6)22ρ/p(λ)3 + ρ/p(λ) = ngl(λ), Construction 4.1 satisfies com-
pleteness.

Proof. Fix some point x ∈ Zp(λ) and some ad ∈ {0, 1}ρ. It suffices to argue that over the randomness
of unlockPoint ← lockPoint(x, ad) that the probability that there exists some distinct y, ad′ such that
unlockPoint(y, ad′) = 1 as well is ngl(λ).

Recall that the randomness used to construct unlockPoint is the values a, b, c. Fix some x ∈ Zp(λ), ad ∈
{0, 1}ρ. Fix some value a and define

α
def
= p1,ad,c1(x) = c1x+

ρ∑
i=1

adix
i+1 +

ρ+6∑
i=ρ+1

xi.

4g is a generator that is a global system parameter along with the group description. Note that it is efficiently checkable
1) whether the order of a group is prime and 2) whether an element g is a generator of the known order group.
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The probability that there exists some ad′ such that p1,ad′,c1(x) = α requires that x is a root of p1,ad−ad′,c1(x).
For a fixed x, this is a polynomial of degree upper bounded by ρ, and so it is 0 with probability at most
ρ/p(λ). For the rest of the proof we assume that for the true value x, there is a unique ad that where
p1,ad,c1(x) = α.

We now count the number of pairs ad′, y such that p1,ad′,c1(y) = α. For some other value y, ad′, since
G is prime order the only way for the first element to match is for

α = ay +

ρ∑
i=1

ad′iy
i+2 +

ρ+6∑
i=ρ+2

yi.

Since this is a polynomial of degree ρ+ 6 for each value ad′ there are at most ρ+ 6 such values y where
this is the case.

Using the check values in unlockPoint, these must also verify for y 6= x. Consider the polynomial

p(c2)
def
= c2(x− y) + xρ+7 − yρ+7. For the first check value of Construction 4.1 to verify for y, P (c2) must

equal 0, as it represents the difference in the exponents of the check value for x and y. This is a linear
polynomial in c2 that is zero with probability at most 1/p(λ). A similar argument holds for all four check
values. Thus, a candidate y is a solution to all four equations equations with probability 1/p(λ)4. Thus
means for a fixed x, ad, ad′ the probability of one of the y’s working is at most (ρ + 6)/p(λ)4 by union
bound. We apply a union bound over the total number of x, ad, ad′, the probability across all x, ad of
there existing some y, ad′ is at most (ρ+6)22ρ/p(λ)3 as desired. Adding the case where there are multiple
ad for the original value x one has that the overall probability is at most

(ρ+ 6)22ρ

p(λ)3
+

ρ

p(λ)
.

This completes the proof of Lemma 4.1.

Theorem 4.2. Let ρ be the length of ad. Suppose that Assumption 3.1 holds for highest power ψ = ρ+10.
Then, Construction 4.1 satisfies virtual black box security.

Proof of Theorem 4.2. Before we prove security, we introduce the following lemma which we will use
throughout to simplify our arguments of virtual black box security. It considers the generalized function-
ality Point which encompasses point functions and digital lockers with and without associated data (see
Section 3.2).

Lemma 4.2. Let λ, ρ, ` ∈ N, and let m = m(ρ, `) for some polynomial m(·, ·) where m − 1 ≥ `. Let
ad be a binary vector of length ρ and let key be a binary vector of length n, and let M(ad, key, 1λ) be a

PPT algorithm which samples a matrix M ∈ Z`×(m−1)p(λ) for some prime p that has row rank at least ` with

probability 1− ngl(λ).
Suppose that Assumption 3.1 holds for highest power m, and let ~k = (k2, ..., km) be the (m − 1)-long

uniformly distributed vector of coefficients. If whenever M is full rank the output Point(x, ad, key) is
identically distributed to: (~u||M),

(~u||M)


x
x2

. . .
xm



g

, ad

 ,

where M←Mad and ~u = M~kT then Point satisfies virtual black box security.
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Proof of Lemma 4.2. Let Point be a point obfuscator Suppose toward contradiction that there exists
some well-spread distribution Xλ, ad, key and some matrix sampling processM =M(ad, key, 1λ) described
above, we use the notation PointM to emphasize that the distribution of Point can be formed using the
processed described in the lemma. Suppose that there exists a PPT adversary AM, a polynomial q(·)
such that∣∣∣∣ Pr
x←Xλ

[AM(PointM(x, ad, key), ad, key) = 1]− Pr
r←Zp(λ)

r[AM(PointM(r, ad, key), ad, key) = 1]

∣∣∣∣ > 1

q(λ)
,

We show how to build an adversary B that breaks Assumption 3.1 with respect to distribution family Xλ
receiving one fewer than m = m(`, ρ) elements (corresponding to maximum power m). That is, B will
receive m− 1 pairs of the form

{ki, gkiz+z
i}i∈{2,...,m},

where z is distributed according to either Xλ or uniformly in Zp(λ). Denote by {ki, [hi]g}i the received
values, so hi = kiz + zi.

First, B samples M ∈ Z(m−1)×`
p(λ) from M(ad, key). If M is not full rank B flips a random bit. Otherwise,

it creates two `-long vectors u and v as so, for each j ∈ [`], set

uj =

m−1∑
i=1

Mi,jki+1 and vj =

m−1∏
i=1

[hi+1]
Mi,j
g . (2)

Then, B computes Point as Point = {uj , vj}`j=1. It is clear that the values of vj form an obfuscation for
the transformation (~u||M)


z
z2

. . .
zm



g

.

Because the probability that M has rank ` is 1− ngl(λ), we see that with overwhelming probability we
have formed a valid obfuscation to give (along with ad, key) to AM. Denote by

DistingA
def
= |Pr[AM(Point(x, ad, key), ad, key) = 1]− Pr[AM(Point(r, ad, key), ad, key) = 1]|.

Then, we have ∣∣∣Pr[B({ki, gkix+x
i}i∈[2,m])]− Pr[B({ki, gkir+r

i}i∈[2,m])]
∣∣∣ =

Pr[M ←Mad full rank] · DistingA =

(1− ngl(λ))
1

q(λ)
≥ 1

q′(λ)

for some polynomial q′(λ). We arrive at a contradiction, and this completes the proof of Lemma 4.2.

From Lemma 4.2, we see that we may prove VBB security by being able to form our construction from
a particular linear shift as described in the lemma. To this end, given any ad, we construct the following
matrix D:

D =


ad 1 1 1 1 1 0 0 0 0
~0ρ 0 0 0 0 0 1 0 0 0
~0ρ 0 0 0 0 0 0 1 0 0
~0ρ 0 0 0 0 0 0 0 1 0
~0ρ 0 0 0 0 0 0 0 0 1
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It is clear that this matrix has a rank of at 5 (for any ad). The output(D~kT ||D),

(D~kT ||D)


x
x2

. . .
xm



g

, ad

 ,

is identically distributed to an obfuscation (the rank 5 condition occurs with probability 1). Thus, the
construction of Point implied by Lemma 4.2 is VBB secure.

Theorem 4.3. Let λ be a security parameter. Let {Xλ} be a well-spread distribution ensemble and let
τ, ρ ∈ Z+ be parameters that are both poly(λ). Let Fpoly be the ensemble of functions fλ where fλ is the set
of non-constant, non-identity polynomials in Zp(λ)[x] with degree at most τ . Suppose that Assumption 3.1
holds for ψ = max{ρ+ 10, τ(ρ+ 6)}. Then, the obfuscator in Construction 4.1 is nonmalleable over Fpoly
with distribution ensemble {Xλ}, and AD = {0, 1}ρ.

The proof strategy is as follows:

1. Lemma 4.3. Showing that any method of incorporating associated data suffices for keeping val
from being changed as long as there are enough large powers of val that are not affected by associated
data.

2. Lemma 4.5. Show that if the value val is not tampered then for Construction 4.1 it is difficult to
change ad ∈ {0, 1}ρ.

Lemma 4.3. Let λ be a security parameter. Let {Xλ} be a well-spread distribution ensemble and let
τ, ` ∈ Z+ be poly(λ). Let Fpoly be the ensemble of functions fλ where fλ is the set of non-constant,
non-identity polynomials in Zp(λ)[x] with degree at most τ .

Let P (x) = r1x + . . . + rρ−1x
ρ−1 + rρx

ρ with ri ∈ Zp(λ), and let ~P = {r1, . . . , rρ} where any or all of
the ri may be 0. Suppose that Assumption 3.1 holds for ψ = max{ρ+ 10, τ(ρ+ 6)}. Define as obfuscation
(with c1, c2, c3, c4, c5 uniformly distributed in Zp(λ))

lockPointP (val, ~P ; c1, c2, c3, c4, c5)
def
= ~P ,


c1,

[
c1val + valP (val) +

∑ρ+6
i=ρ+2 val

i
]
g

c2,
[
c2val + valρ+7

]
g

c3,
[
c3val + valρ+8

]
g

c4,
[
c4val + valρ+9

]
g

c5,
[
c5val + valρ+10

]
g

 .

Consider Fpoly and distribution ensemble {Xλ}. For any nonmalleability PPT adversary A in Defini-
tion 3.2, A outputs a valid f, P ′, unlockPointP ′ with negligible probability.

Proof. We look to contradict Assumption 3.2. Consider a mauling adversaryAP that, given an obfuscation
with polynomial P (x), can output a new obfuscation of f(x) for f ∈ Fpoly. Consider τ to be the degree of

f and ρ to be the (maximum) degree of P . For ki, define hi
def
= kix+xi. We build an adversary BP , which

given the ensemble {ki, [hi]g}i=2,...,ψ and access to AP can recover gx with non-negligible probability.
We will separately consider cases where τ > 1 and where τ = 1 (a linear polynomial). In both cases

BP will prepare the obfuscation in the same manner, forwarding the distribution Xλ and keeping the
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coefficients ri received from AP . Upon receiving the ensemble {ki, [hi]g}i=2...,ψ, we create an obfuscation
of x as so:

(c1, g1) =

ρ+1∑
i=2

riki +

ρ+6∑
i=ρ+2

ki,

ρ∏
i=1

[hi]
ri
g ·

ρ+6∏
i=ρ+2

[hi]g


(c2, g2) = (kρ+7, [hρ+7]g)

(c3, g3) = (kρ+8, [hρ+8]g)

(c4, g4) = (kρ+9, [hρ+9]g)

(c5, g5) = (kρ+10, [hρ+10]g)

Send these to AP alongside ~P itself, which returns (without loss of generality)

(f, P ′, (c′1, g
′
1, c
′
2, g
′
2, c
′
3, g
′
3, c
′
4, g
′
4, c
′
5, g
′
5))

where P ′ is the description of a polynomial of degree at most ρ. BP ignores everything but f, P ′, c′1, and
g′1.

Non Linear Case. First, we consider the case when the degree of f denoted as τ > 1. Define the
polynomial `(x) as the coefficients of:

`(x) =

τ(ρ+6)∑
i=0

~lix
i def= c′1f(x) + f(x)P ′(f(x)) + f(x)ρ+2

4∑
i=0

(f(x))i.

That is, `(x) is the polynomial AP claims they have mauled the exponent of the term g′1 to. Note that
the coefficients of ` are computable by BP . Let h∗ denote the exponent of g′1. In order for the AP to
succeed in tampering, it must be the case that `(x) = h∗ with noticeable probability (over the choice of
x and the AP ’s randomness).

Since BP has properly prepared the obfuscation for AP , AP returns a valid obfuscation of f(x) with
probability at least 1/poly(λ). That is, that h∗ = `(x) with the same probability. BP computes and
returns

g′1
[`0]g ·

τ(ρ+6)∏
i=2

[hi]
`i
g

−11/

(
l1−

τ(ρ+6)∑
i=2

kili

)
.

With noticeable probability g′1 = [h∗]g with h∗ =
∑τ(ρ+6)

i=0 `ix
i. When this occurs,g′1

[`0]g ·
τ(ρ+6)∏
i=2

`i[hi]
`
g

−1 =

τ(ρ+6)∑
i=0

`ix
i − `0 −

τ(ρ+6)∑
i=2

`i(kix+ xi)


g

=

x
`1 − τ(ρ+6)∑

i=2

ki`i


g

.
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Thus, in the case that AP returns the correct value and `1 −
∑τ(ρ+6)

i=2 ki`i 6= 0, BP computes and return
the correct value. Since f(x) is of degree τ , lτ(ρ+6) must be nonzero. AP ’s view is independent of kτ(ρ+6).

5

So, the probability that the sum

Pr
kτ(ρ+6)

τ(ρ+6)∑
i=2

ki`i = `1

 =
1

p(λ)− 1
.

So, BP returns the correct value with probability 1/poly(λ) − 1/(p(λ) − 1) = 1/poly(λ) contradicting
Assumption 3.2.

Linear Case. We now consider the case where τ = 1, or for linear functions f . In this case, we only
use the ensemble {ki, [kix + xi]g}i=2,...,ρ+10. This time, of the ensemble (f, P ′, c′1, g

′
1) which BP receives

and reserves from AP , we see f = αx+ β. Once again, B computes the coefficients of the polynomial `,
this time as

ρ+6∑
i=0

`ix
i def= c′1f(x) + f(x) · P ′(f(x)) + f(x)ρ+2

4∑
i=0

f(x)i.

In this case, BP computes and outputs:

g′1
(

[l0]g ·
ρ+6∏
i=2

hlii

)−11/

(
l1−

ρ+6∑
i=2

kili

)
.

As before let h∗ denote the exponent of g′1. Then,

h∗ = c′1f(x) + f(x)P ′(f(x)) + f(x)ρ+2
4∑
i=0

f(x)i

with noticeable probability, and BP ’s computation evaluates to gx unless l1 −
∑ρ+6

i=2 kili = 0. To see that
this happens with negligible probability, note that the original c1 is formed as

c1 =

ρ+1∑
i=2

ri−1ki +

ρ+6∑
i=ρ+2

ki

for random values k2, ..., kρ+6.
As all ki are uniformly chosen, the only information A learns about kρ+2, ..., kρ+6 is in the value c1.

Since these are the terms we will be relying on for nonmalleability, we re-index, letting δ = ρ + 2. We
additionally define c = l1 −

∑δ−1
i=2 kili, so that we want to show c −

∑δ+4
i=δ kili 6= 0 except with negligible

probability.
Without loss of generality, we assume that the adversary knows the values k2, . . . , kδ−1 exactly. That

is, assume the adversary sees the values (k2, . . . , kδ−1, z) where z := kδ + . . .+kδ+4. Equivalently, we have
kδ+4 = z − kδ+3 − kδ+2 − kδ+1 − kδ. Using these substitutions, we may rewrite c−

∑δ+4
i=δ kili as

c− lδ+4z + (lδ+4 − lδ+3)kδ+3 + (lδ+4 − lδ+2)kδ+2 + (lδ+4 − lδ+1)kδ+1 + (lδ+4 − lδ)kδ
5For all ρ > 0 if τ > 1 then the value τ(ρ+ 6) > ρ+ 8.
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So, it remains to show that this expression is zero with negligible probability over the adversary’s choices
of l. Suppose not. Because f is linear, f(x) = αx + β, and so the adversary must find α, β, γ such that
lδ+i = γ for all i ∈ {0, 1, 2, 3, 4} (as they know z but not the k-values in the expression). Rewriting the `
values in terms of terms of the binomial coefficients of α and β, the desired linear combination is:


`δ+4

`δ+3

`δ+2

`δ+1

`δ


ᵀ 
kδ+4

kδ+3

kδ+2

kδ+1

kδ

 =



αδ+4

αδ+3
((

δ+4
1

)
β +

(
δ+3
0

))
αδ+2

((
δ+4
2

)
β2 +

(
δ+3
1

)
β +

(
δ+2
0

))
αδ+1

(∑3
i=0

((
δ+4−i
3−i

)
β3−i

))
αδ
(∑4

i=0

((
δ+4−i
4−i

)
β4−i

))



ᵀ 
kδ+4

kδ+3

kδ+2

kδ+1

kδ

 = γ


kδ+4

kδ+3

kδ+2

kδ+1

kδ

 .

Lemma 4.4. For α, β, δ, γ ∈ Zp(λ) the only solutions of

αδ+4

αδ+3
((

δ+4
1

)
β +

(
δ+3
0

))
αδ+2

((
δ+4
2

)
β2 +

(
δ+3
1

)
β +

(
δ+2
0

))
αδ+1

(∑3
i=0

((
δ+4−i
3−i

)
β3−i

))
αδ
(∑4

i=0

((
δ+4−i
4−i

)
β4−i

))



ᵀ 
kδ+4

kδ+3

kδ+2

kδ+1

kδ

 = γ


kδ+4

kδ+3

kδ+2

kδ+1

kδ



that hold for all values of kδ, ..., kδ+4 are (α = 0, β = 0), (α = 1, β = 0), α = −1, δ = −5 and α−1, δ = −6.

We note that since ρ = poly(λ) for large enough λ one can be sure that ρ 6∈ {−8,−9} mod p(λ) and
thus, δ 6∈ {−6,−7} mod p(λ). So, the only functions that A can maul to with noticable probability are
the constant and identity functions, neither of which are in Fpoly. So, with non-negligible probability, BP
returns some f ∈ F (given Assumption 3.2). This completes the proof of Lemma 4.3.

Lemma 4.5. Let λ be a security parameter. Let {Xλ} be a well-spread distribution ensemble and let
τ, ρ ∈ Z+ be poly(λ). Let Fpoly be the ensemble of functions fλ where fλ is the set of non-constant,
non-identity polynomials in Zp(λ)[x] with degree at most τ .

Let P~b(x) = bρx
ρ + bρ−1x

ρ−1 + . . . + b1x where bi ∈ {0, 1}. Suppose that Assumption 3.2 holds for
ψ = max{ρ+ 10, τ(ρ+ 6)}. Define as an obfuscation (with c1, c2, c3, c4, c5 uniformly distributed in p(λ)):

lockPoint(val,~b; c1, c2, c3, c4, c5)
def
= ~b,


c1,

[
c1val + valP~b(val) +

∑ρ+6
i=ρ+2 val

i
]
g

c2,
[
c2val + valρ+7

]
g

c3,
[
c3val + valρ+8

]
g

c4,
[
c4val + valρ+9

]
g

c5,
[
c5val + valρ+10

]
g

 .

Consider Fpoly and distribution ensemble {Xλ}. The probability that any PPT algorithm outputs a valid

obfuscation with the identity function f and some P~b′ with ~b′ ∈ {0, 1}ρ,~b′ 6= ~b is negligible.
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Proof. Our proof follows the same structure as the proof of Lemma 4.3. However, we now assume a
mauling adversary A~b that, given an obfuscation with polynomial P (x) (with binary coefficients) outputs
a new obfuscation

(f,~b′, (c′1, g
′
1, c
′
2, g
′
2, c
′
3, g
′
3, c
′
4, g
′
4, c
′
5, g
′
5))

where f is the identity function, ~b′ 6= ~b and the obfuscation being correct with noticeable probability. As
before, we use this A~b to construct a B~b that breaks Assumption 3.2. Let ρ to be the degree of P . For ki,

define hi
def
= kix + xi. We build an adversary B~b, which given the ensemble {ki, [hi]g}i=2,...,ψ and access

to A~b can recover gx with non-negligible probability. B~b prepares the obfuscation as before in the same
manner, forwarding the distribution Xλ and keeping the values r1, ..., rρ received in the description of P
from A~b. Upon receiving the ensemble {ki, [hi]g}i=2...,ψ, we create an obfuscation of x as so:

(c1, g1) =

ρ+1∑
i=2

riki +

ρ+6∑
i=ρ+2

ki,

ρ∏
i=1

[hi]
ri
g ·

ρ+6∏
i=ρ+2

[hi]g


(c2, g2) = (kρ+7, [hρ+7]g)

(c3, g3) = (kρ+8, [hρ+8]g)

(c4, g4) = (kρ+9, [hρ+9]g)

(c5, g5) = (kρ+10, [hρ+10]g)

Send these to A~b, which returns (without loss of generality)

(f,~b′, c′1, g
′
1, c
′
2, g
′
2, c
′
3, g
′
3, c
′
4, g
′
4, c
′
5, g
′
5))

where ~b′ ∈ {0, 1}ρ and f is the identity. B~b only uses f,~b′, c′1, and g′1 from here on. Define the polynomial
`(x) as the coefficients of

`(x) =

ρ+6∑
i=0

~lix
i def= c′1x+ xP~b′(x) + xρ+2

4∑
i=0

xi.

Note that the coefficients of ` are computable by B~b. With the exception of c′1, the coefficients of ` are
all binary.

Let h∗ denote the exponent of g′1. In order for the A~b to succeed in tampering, it must be the case
that `(x) = h∗ with noticeable probability (over the choice of x and the A~b’s randomness).

Since B~b has properly prepared the obfuscation for A~b, A~b returns a valid obfuscation of ~b′, x with
probability at least 1/poly(λ). That is, that h∗ = `(x) with the same probability. B~b computes and
outputs g′1

(
ρ+6∏
i=2

hlii

)−11/

(
l1−

ρ+6∑
i=2

kili

)
.

As before let h∗ denote the exponent of g′1. Then, h∗ = c′1x + xP~b′(x) + xρ+2
∑4

i=0 x
i with noticeable

probability, and B~b’s computation evaluates to [x]g unless l1 −
ρ+6∑
i=2

kili = 0. For ~b′ 6= ~b, there must be at

least one bit i where bi = 1 ∧ b′i = 0 or b′i = 0 ∧ bi = 1. Note that, for all i ∈ [2, ρ + 1], li = b′i. We now
split our analysis into two cases:
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∃i such that bi = 0 ∧ b′i = 1. Let i∗ denote one such location. Then, `i∗ = 1. Furthermore, A~b’s view
is independent of ki∗ since bi = 0. So, the probability that the sum

Pr
ki∗

`1 − ρ+6∑
i=2,i 6=i∗

ki`i

 = ki∗

 =
1

p(λ)− 1
.

So, B~b returns the correct value with probability 1/poly(λ) − 1/(p(λ) − 1) = 1/poly(λ) contradicting
Assumption 3.2.

∀i, bi = 0 → b′i = 0 and ∃i such that bi = 1 ∧ b′i = 0. Let i∗ denote one such index. All information
about ki∗ known by A~b is contained in the value

∑ρ+1
i=2 riki+

∑ρ+6
i=ρ+2 ki since {ki}ρ+2≤i≤ρ+6 are uniformly

distributed one has

∀s,Pr

ki∗ = s

∣∣∣∣∣∣
ρ+1∑
i=2

riki +

ρ+6∑
i=ρ+2

ki

 = Pr[ki∗ = s] =
1

p(λ)
.

Thus, as before one has

Pr
ki∗

[(
`1 −

ρ+6∑
i=2

ki`i

)
= 0

]
=

1

p(λ)− 1
.

Thus, in both cases,

∃i∗,Pr
ki∗

[(
`1 −

ρ+6∑
i=2

ki`i

)
= 0

]
=

1

p(λ)− 1
.

This completes the proof of Lemma 4.5 by noting that these cases are exhaustive.

Corollary 4.1. Construction 4.1 satisfies nonmalleability under Assumption 3.2.

5 Standard Model Digital Lockers

We will now construct a nonmalleable digital locker in two steps.

• In Section 5.1 we amend our previous construction of a NMPOad to instead output a predetermined
key rather than a single bit. Nonmalleability of the input val and ad must still be preserved, but no
nonmalleability is guaranteed for key.

• In Section 5.2, we use this intermediate digital locker with a non-interactive zero knowledge proof,
to guarantee complete nonmalleability over key.

Of course, correctness and security must hold for val, key as well. The end result of these efforts (Construc-
tion 5.2) will be a digital locker with: 1) input val nonmalleable over low-degree polynomials, 2) public
helper string ad nonmalleable over any tampering, and 3) output key nonmalleable over any tampering.
As we will see in Section 6, these tampering classes have meaningful applications.
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5.1 Digital Lockers Nonmalleable over val and ad

We integrate our NMPOad with the real-or-random construction [21] in Figure 1. The essential idea is
that we may encode each bit of key as a real (encoding val) or random (encoding a random point) point
obfuscation, with an additional obfuscation of val to ensure that is the point being tested. We encode the
attestation of ad in this additional obfuscation.

In order to adapt our techniques to a real-or-random digital locker with |key| = `, then, it is clear
that we must ensure that each point obfuscation retains security in the presence of up to ` other copies of
the same point (i.e., if key = 1`). The previous construction is clearly not sufficient, providing two copies
of the obfuscation breaks security (see discussion in [39]), but we may use similar techniques as so. We
begin by defining the intermediate cryptographic object.

Definition 5.1 (Input Nonmalleable Digital Locker with Associated Data). For security parameter λ ∈ N,
let {Dλ} be an ensemble of finite sets, let ρ ∈ N be a parameter. Let

1. F : Dλ → Dλ be a function family,

2. X be a family of distributions over Dλ,

3. iLock be a PPT algorithm that maps points val ∈ Dλ, ad ∈ {0, 1}ρ, key ∈ {0, 1}n to a circuit iUnlock,
and

4. Vobf be an obfuscation verifier.

The algorithm iLock is a (F ,X , ρ, n)-input nonmalleable digital locker with associated data if all of the
below are satisfied:

1. Completeness For all val ∈ Dλ, ad ∈ {0, 1}ρ, key ∈ {0, 1}n it holds that

Pr[iUnlock(·) ≡ Ival,ad,key(·)|iUnlock← iLock(val, ad, key)] ≥ 1− ngl(λ),

where the probability is over the randomness of iLock. Here Ival,ad,key is a function that returns key
when provided input (val, ad), otherwise Ival,ad,key returns ⊥.

2. Virtual Black Box Security: For all PPT A and p(λ) = poly(λ), ∃S and q(λ) = poly(λ) such
that for all large enough λ ∈ N, ∀val ∈ Dλ, ad ∈ {0, 1}ρ, key ∈ {0, 1}n,P : Dλ × {0, 1}ρ+n 7→ {0, 1},∣∣Pr[A(iLock(val, ad, key), ad) = P(val, ad, key)]

−Pr[SIval,ad,key(1λ, ad) = P(val, ad, key)]
∣∣ ≤ 1

p(λ)
,

where S is allowed q(λ) oracle queries to Ival,ad,key and the probabilities are over the internal ran-
domness of A and lock, and of S, respectively.

3. Input Nonmalleability For all X ∈ X , PPT A, ad ∈ {0, 1}ρ, key ∈ {0, 1}n, there exists ε = ngl(λ)
such that:

Pr
val←X

 Vobf(C) = 1,

f ∈ F ∨ (f = id ∧ ad′ 6= ad)

C(f(val), ad′) 6=⊥

∣∣∣∣∣∣∣
unlockval,key ← iLock(val, ad, key)

(C, f, ad′)← A(unlockval,key, ad)

 ≤ ε.
Remark 4. Note that input nonmalleability does not protect against key tampering. In fact, an adversary
that arbitrarily mauls key to key′ ∈ {0, 1}n is allowed for this object, so long as val and ad are not tampered.
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iLock(val, ad, key) :

1. Define ` = |key|,
2. Sample z ← Zp(λ),

3. Sample C ← Z(`+1)×(`+1)
p(λ) ,

c0,`+2, c0,`+3, c0,`+4, c0,`+5 ← Zp(λ),
4. Compute unlockPointad =

[p0,ad,C0
(val)]g

c0,`+2,
[
p0,1,c0,`+2

(val)
]
g

c0,`+3,
[
p0,2,c0,`+3

(val)
]
g

c0,`+4,
[
p0,3,c0,`+4

(val)
]
g

c0,`+5,
[
p0,4,c0,`+5

(val)
]
g


5. For i = 1 to `:

unlockPointi =

{[
p∗Ci

(val)
]
g

keyi = 1[
p∗Ci

(z)
]
g

keyi = 0
.

6. Output C, unlockPointad, {unlockPointi}`i=1.

iUnlock(C′, unlockPoint′ad,
{unlockPoint′i}`i=1, val

′, ad′):

1. Parse unlockPoint′ad as
c′0,`+2, c

′
0,`+3, c

′
0,`+4, c

′
0,`+5,

g′0,1, g
′
0,2, g

′
0,3, g

′
0,4, g

′
0,5.

2. Verify [
p1,ad′,C′

0
(val′)

]
g

= g′0,1,{[
pi,c′0,i(val

′)
]
g

= g′0,i

}5

i=2

.

If one checks does not pass output ⊥.

3. Initialize key = ~0`.

4. For i = 1 to `:

(a) If [p∗C′
i
(val′)]g = unlockPoint′i set

keyi = 1.

5. Output key.

Figure 1: Real-or Random-Instantiation of Input Nonmalleable Digital Locker with Associated Data.

Before introducing the construction, we define some polynomials that will be used in the construction as
follows:

p0,ad, ~c0(val) = c0,1val +
∑̀
i=1

c0,i+1val
i+1 +

ρ∑
i=1

adival
`+1+i +

5∑
i=1

val`+ρ+1+i, (3)

p0,1,c0,`+2
(val) = c0,`+2val + val`+ρ+7, (4)

p0,2,c0,`+3
(val) = c0,`+3val + val`+ρ+8, (5)

p0,3,c0,`+4
(val) = c0,`+4val + val`+ρ+9, (6)

p0,4,c0,`+5
(val) = c0,`+5val + val`+ρ+10, (7)

p∗~c(val) = cj,1val +
∑̀
i=1

cj,i+1val
i+1. (8)

Construction 5.1. Let λ ∈ N be a security parameter, let ρ, ` ∈ N be parameters. Let G = {Gλ} be
a group ensemble with efficient representation and operations where each Gλ is a group of prime order
p(λ) ∈ (2λ, 2λ+1). Let Dλ = Zp(λ). Let g be a generator of Gλ. Let ρ, ` ∈ Z+ such that ρ = O(log λ) and
` = poly(λ). Define the Construction of (iLock, iUnlock) as in Figure 1.

Theorem 5.1. Let all parameters be as in Construction 5.1. Let τ ∈ N and ρ ∈ N be parameters.

1. Suppose that Assumption 3.1 holds for maximum power max{`+ ρ+ 10, τ(`+ ρ+ 6)},
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2. Let Fpoly be the family of polynomials over Zp(λ) with maximum degree τ , and

3. (`+ ρ+ 10)22ρ/p(λ)3 = ngl(λ).

Then, Construction 5.1 is a (Fpoly,X , ρ, `)-input nonmalleable digital locker with associated data.

Proof. As before, we prove completeness, security, and nonmalleability separately.

Completeness: The following lemma proves the necessary completeness guarantee.6

Lemma 5.1. For any ρ, ` such that (`+ ρ+ 10)22ρ/p(λ)3 + ρ/p(λ) = ngl(λ), Construction 5.1 satisfies
completeness.

Proof. This argument is as in Lemma 4.1 with the polynomials now being of degree at most `+ρ+10.

Security: LetM be a process that forms obfuscations of the type in Construction 5.1. We can create

M as so: Sample a `-long vector A
$← Z`p(λ). Then, sample an ` × ` random matrix B ← Z`×`p(λ). Define

the matrix D ∈ Z(`+5)×(`+ρ+9)
p(λ) as:

D =



A ad 1 1 1 1 1 0 0 0 0

01×` 01×ρ 0 0 0 0 0 1 0 0 0
01×` 01×ρ 0 0 0 0 0 0 1 0 0
01×` 01×ρ 0 0 0 0 0 0 0 1 0
01×` 01×ρ 0 0 0 0 0 0 0 0 1

B 0`×ρ 0`×ρ 0`×1 0`×1 0`×1 0`×1 0`×1 0`×1 0`×1 0`×1

 . (9)

It is clear that, for all settings of A,B, and ad, the first five rows of D have rank at least 5. Clearly,
the last ` rows cannot be in the span of the first 5 so, it suffices to show that B has full rank with
overwhelming probability. Because B ∈ Z`×`p(λ) is a random matrix sampled independently of A,

Pr[rank(B) = `] ≥ 1− `/p(λ) = 1− ngl(λ)

see [26]. So, for all ad, the matrix D has rank at least `+ 5 with probability 1− ngl(λ). By Lemma 4.2,
the Point construction detailed there satisfies VBB security. Finally, we note that the construction of D
results in this Point program matching Construction 5.1 exactly.

Nonmalleability: In order to prove input nonmalleability, we will use a similar structure to The-
orem 4.3. That is, we will first show that, for any low degree polynomial, it is difficult to maul the
underlying val, even if ad may change arbitrarily. Then, assuming val is unchanged, we show that it is
difficult to output a valid obfuscation with ad′ 6= ad.

Theorem 5.2. Let λ be a security parameter Let {Xλ} be a well-spread distribution ensemble and let
τ, `, ρ ∈ Z+ be parameters that are poly(λ). Let Fpoly be the ensemble of functions fλ where fλ is the set
of non-constant, non-identity polynomials in Zp(λ)[x] with degree at most τ . Suppose that Assumption 3.2
holds for maximum power ψ = τ(`+ρ+6). Then, the obfuscator in Construction 5.1 is input-nonmalleable
for Fpoly, distribution ensemble {Xλ}, and ad of length ρ.

6In Section 5.4 we show how to encode a long CRS as long as one can support associated data of size Θ(log λ).
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Proof. As before, we adopt a two-step proof structure:

1. Lemma 5.2. Even given the ` point obfuscations as extra advice, and given the power to arbitrarily
maul ad (even to arbitrary vectors), no adversary can maul the underlying val in the underlying
nonmalleable point obfuscation with associated data.

2. Lemma 5.3. Assuming that val is not tampered, then our construction additionally prevents
tampering to binary ad.

As their proof structure follows in a technically similar manner as before. We state them below.

Lemma 5.2. Let λ be a security parameter. Let {Xλ} be a well-spread distribution ensemble and let
x be sampled from it. Let τ, `, ρ ∈ Z+ be poly(λ). Let Fpoly be the set of non-constant, non-identity
polynomials in Zp(λ)[x] with maximum degree τ . For a vector rρ, . . . , r1 ∈ Zp(λ), define the polynomial

P (x)
def
= rρx

ρ + rρ−1x
ρ−1 + . . .+ r1x. Let iLock be as in Construction 5.1, except replacing

[
p0,ad,c~0 (val)

]
g

with [
c0,1val +

∑̀
i=1

c0,i+1val
i+1 + P (val)val`+1 +

5∑
i=1

val`+ρ+1+i

]
g

Suppose Assumption 3.2 holds for maximum power τ(` + ρ + 6). Then, for any adversary A for input
nonmalleability for iLock, the probability that f ∈ Fpoly is ngl(λ).

Proof. We look to contradict Assumption 3.2. Consider a mauling adversary A that, given a distribution
Xλ, vector ad1, ..., adρ, and an obfuscation iLock of the form in Construction 5.1, can output a new obfus-
cation of f(x) for f ∈ Fpoly with non-negligible probability. In particular, A may output an obfuscation
with arbitrary polynomial P ′(x) with degree at most ρ. Let τ be maximum degree of f .

For ki, define hi = kix + xi. We will build an adversary B which, given {ki, [hi]g}i=2,...,τ(`+ρ+10) and
access to A, can recover gx with non-negligible probability. As before, we will separately consider the
cases where τ > 1 and τ = 1.

In either case, B will prepare the obfuscation in a similar manner. In the proof of security, we see
how an obfuscation of iLock can be formed from the ensemble of ki and [hi]g. Specifically, we sample

A
$← Z`p(λ) and B

$← Z`×`p(λ), and using the coefficients ~P , we are able to form D in a similar way to

Equation 9, except replacing the entries of ad with ~P .
With all of this, B gives the resultant iLock, along with the coefficients ~P , to A. We note here that

the constructed iLock corresponds to the all-1 key, i.e., key = ~1. Not only is this done as it gives the most
information on x to A, but we see that A may also create terms corresponding to 0-bits independently,
if such terms would prove beneficial.

Then, A returns, with non-negligible probability,
f, ~P ′, unlockPoint~P ′ =



~c0
′,

[
p0, ~P ′, ~c0(f(val))

]
g

c′0,`+2,
[
p0,1,c0,`+2

(f(val))
]
g

c′0,`+3,
[
p0,2,c0,`+3

(f(val))
]
g

c′0,`+4,
[
p0,3,c0,`+4

(f(val))
]
g

c′0,`+5,
[
p0,4,c0,`+5

(f(val))
]
g

{~ci′,
[
p∗
~ci
′(z′i)

]
g
}`i=1
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where f ∈ Fpoly, P ′ is of degree at most ρ, z′i may be either f(val) or an arbitrary point for each i,
and the polynomials are as defined in Equations 3, 4, 5, 6, 7, and 8, with emphasis that each adi in
Equation 3 is replaced by P ′i here. For the purposes of nonmalleability, we are only interested in f, ~P ′, ~c0

′,

and g′ =
[
p0, ~P ′, ~c0(f(val))

]
g
. The rest of A’s output is discarded.

Non-Linear Case: We first consider the case where τ > 1, i.e., when f is non-linear. This argument
follows as in Lemma 4.3 with different indices to reflect the augmented construction. Define the polynomial
G(x) as the coefficients of:

G(x) =

τ(`+ρ+6)∑
i=0

Gix
i def=

`+1∑
i=1

aif(x)i + f(x)`+1P ′(f(x)) + f(x)`+ρ+1
5∑
i=1

(f(x))i.

That is, G(x) is the polynomial A claims they have mauled the exponent of the term g′1 to. Note that the
coefficients of G are computable by B. Let h∗ denote the exponent of g′1. In order for the A to succeed
in tampering, it must be the case that G(x) = h∗ with noticeable probability (over the choice of x and
randomness of AP ). B computes and returns

g′1
[G0]g ·

τ(`+ρ+6)∏
i=2

[hi]
Gi
g

−11/

(
G1−

τ(`+ρ+6)∑
i=2

kiGi

)
.

When h∗ =
∑τ(`+ρ+6)

i=0 Gix
i, theng′1

[G0]g ·
τ(`+ρ+6)∏

i=2

Gi[hi]
Gi
g

−1 =

τ(`+ρ+6)∑
i=0

Gix
i −G0 −

τ(`+ρ+6)∑
i=2

Gi(kix+ xi)


g

=

x
G1 −

τ(`+ρ+6)∑
i=2

kiGi


g

Thus, in the case that A returns the correct value and G1−
∑τ(`+ρ+6)

i=2 kiGi 6= 0, B computes and returns
the correct value. Since f(x) is of degree τ , Gτ(`+ρ+6) must be nonzero. A’s view is independent of
kτ(`+ρ+6). So, the probability that the sum

Pr
kτ(`+ρ+6)

τ(`+ρ+6)∑
i=2

kiGi = G1

 =
1

p(λ)− 1
.

So, B returns the correct value with probability 1/poly(λ) − 1/(p(λ) − 1) = 1/poly(λ) contradicting
Assumption 3.2.

Linear Case This argument follows similarly to the linear case in Lemma 4.3 with different indices
to reflect the augmented construction. This time, B receives the ensemble of f, ~P ′, and unlockPoint~P ′ as
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above, but now f = αx + β. As before, B only considers α, β, ~P ′, ~c0
′, and g′ =

[
p0, ~P ′, ~c0(f(val))

]
g

from

here. It computes the coefficients of the polynomial G as

G(x) =

`+ρ+6∑
i=0

Gix
i def=

`+1∑
i=1

aif(x)i + f(x)`+1P ′(f(x)) + f(x)`+ρ+1
5∑
i=1

(f(x))i.

as in the nonlinear case. In this case, B computes and outputs:

g′1
(

[G0]g ·
`+ρ+6∏
i=2

[hi]
Gi
g

)−11/

(
G1−

`+ρ+6∑
i=2

kiGi

)
.

We see B’s computation evaluates to gx unless

G1 −
`+ρ+6∑
i=2

kiGi = 0.

To see that this happens with negligible probability, for the coefficient x1 of the first group element for
the i-th key bit polynomial of iLock received is ci for values ci that depend on kj for j < `+ 1. So, A sees

no information about the values {ki}`+ρ+6
i=`+ρ+2 except for that of the coefficient of x1 in the first term ~c0

′

Without loss of generality, we assume that an adversary knows the values k2, ..., k`+ρ+1. The adversary
must find α, β, γ such that

`+ρ+6∑
i=`+ρ+2

(αx+ β)i = γ

`+ρ+6∑
i=`+ρ+2

xi.

Setting δ = `+ρ+6, by application of Lemma 4.4 the only solutions where f ∈ Fpoly are when δ ∈ {−5,−6}
mod p(λ). Since ` + ρ = poly(λ), for large enough λ one can be sure that δ 6∈ {−5,−6} mod p(λ). So,
the only functions that A can maul to with noticeable probability are the constant and identity functions,

neither of which are in Fpoly. This means that A returns a solution where G1 −
`+ρ+6∑
i=`+ρ+2

kiGi = 0. with

negligible probability. So, with non-negligible probability, B returns some gx. This is a contradiction of
Assumption 3.2 and completes the proof of Lemma 5.2.

Lemma 5.3. Let λ be a security parameter. Let {Xλ} be a well-spread distribution ensemble and let
ρ, ` ∈ Z+ be poly(λ). Let Fpoly be the ensemble of functions fλ where fλ is the set of non-constant,
non-identity polynomials in Zp(λ)[x] with degree at most τ . Let iLock be as in Construction 5.1. Suppose
Assumption 3.2 holds for maximum power `+ρ+6. Consider a PPT adversary A for input nonmalleability
in Definition 5.1 which outputs f ∈ Fpoly with negligible probability. Then, the probability that A outputs
the identity function f and some ad′ 6= ad with coefficients in {0, 1} is ngl(λ).

Proof. Let ad ∈ {0, 1}ρ be arbitrary. We show how, given some Aad that is capable of producing some
ad′ 6= ad with noticeable probability, we may build an algorithm B that finds gx given the ensemble
{ki, [kix+xi]g}i=2,...,`+ρ+6. First, B receives Xλ from A. Then, B prepares the obfuscations from {ki, [kix+
xi]g}i=2,...,`+ρ+6 as in Equation 9 and Lemma 5.2.
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We now assume that with non-negligible probability, A outputs
f, ~ad

′
, unlockPoint ~ad′ =



~c0
′,

[
p
0, ~ad

′
, ~c0

(f(val))
]
g

c′0,`+2,
[
p0,1,c0,`+2

(f(val))
]
g

c′0,`+3,
[
p0,2,c0,`+3

(f(val))
]
g

c′0,`+4,
[
p0,3,c0,`+4

(f(val))
]
g

c′0,`+5,
[
p0,4,c0,`+5

(f(val))
]
g

{~ci′,
[
p∗
~ci
′(z′i)

]
g
}`i=1




where the following conditions hold:

• f is the identity function,

• |ad| = ρ, and each entry in ad′ is in {0, 1} such that ad′ 6= ad as vectors,

• the obfuscation is correct.

B only considers ~c0
′ and g′1 =

[
p
0, ~ad

′
, ~c0

(val)
]
g
. Let P ′(x) =

∑ρ
i=1 ad

′
ix
i. Define the polynomial G(x) as

the coefficients of:

G(x) =

`+ρ+6∑
i=0

Gix
i def=

`+1∑
i=1

c′0,ix
i + x`+1P ′(x) + x`+ρ+1

5∑
i=1

xi.

Note that the coefficients of P ′ and G are computable by B. Let h∗ denote the exponent of g′1. It must
be the case that G(x) = h∗ with noticeable probability. As such, B computes and outputs:

g′1
(
`+ρ+6∏
i=2

[hi]
Gi
g

)−11/

(
G1−

`+ρ+6∑
i=2

kiGi

)
.

B’s computation evaluates to gx unless

G1 −
`+ρ+6∑
i=2

kiGi = 0.

For ad′ 6= ad there must be at least one bit i where adi = 1 ∧ ad′i = 0 or ad′i = 0 ∧ adi = 1. Furthermore
note that ad′i = G`+1+i for i = 1, ..., ρ. We now split our analysis into these two cases (which are identical
up to change of indices of the proof of Lemma 4.5):

∃i such that adi = 0 ∧ ad′i = 1. Let i∗ denote one such location. Recall that by definition Gi∗ = 1.
Furthermore, A’s view is independent of ki∗ since adi = 0. So, the probability that the sum

Pr
ki∗

G1 −
`+ρ+6∑
i=2,i 6=i∗

kiGi

 = ki∗

 =
1

p(λ)− 1
.
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∀i, adi = 0→ ad′i = 0 and ∃i such that adi = 1∧ad′i = 0. Let i∗ denote one such index. All information
about ki∗ known by Aad is contained in the two values (corresponding to ad1 and when ad = 0)

v1 =

`+ρ+1∑
i=`+2

riki +

`+ρ+6∑
i=`+ρ+2

ki

v2 =

`+ρ+6∑
i=`+ρ+2

ki

since {ki}3`+ρ+2≤i≤3`+ρ+6 are uniformly distributed, one has

∀s,Pr [ki∗ = s|v1 ∧ v2] = Pr[ki∗ = s] =
1

p(λ)
.

Thus, as before, one has

Pr
ki∗

[(
G1 −

`+ρ+6∑
i=2

kiGi

)
= 0

]
=

1

p(λ)− 1
.

Thus, in both cases,

∃i∗,Pr
ki∗

[(
G1 −

`+ρ+6∑
i=2

kiGi

)
= 0

]
=

1

p(λ)− 1
.

This completes the proof of Lemma 5.3 by noting that these cases are exhaustive, and that for any given
ad we may construct the reduction in this way.

Finally, we conclude by noting that application of Lemma 5.2 and Lemma 5.3 yields Theorem 5.2.

5.2 Adding Key Nonmalleability

We now show that the input nonmalleable digital locker with associated data suffices to build a fully
nonmalleable digital locker for the same function class. Let iLock be such an object and Π = (Setup, P, V )
be some appropriate non-interactive proof system (described in Section 5.3) using a crs of length ρ for
the following language that proves well-formness of iLock:

L = {iUnlock : ∃(val, crs, key, r) such that iUnlock = iLock(val, crs, key; r)}

Construction 5.2. For security parameter λ ∈ N, let F : Dλ → Dλ be a family of functions, let ρ, ` ∈ N
be parameters, X be a family of distributions over Dλ. Suppose that

1. iLock is a (Fpoly,X , ρ, `)-input-nonmalleable digital locker with associated data with associated ob-
fuscation verifier VobfInput, and

2. Π = (Setup, P, V ) is an NIZK system for the language L with short non-tamperable CRS.7 We
formally define this property and show a generic construction in Section 5.3.

Then define (lock, unlock,Vobf) as in Figure 2.
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lock(val, key) :

1. Sample (crs = (crs1, crs2),TK,EK)← Setup(1λ).

2. Compute iUnlock← iLock(val, crs1, key; r).

3. Compute π ← P (unlock′; val, key, r, crs).

4. Output (iUnlock, π, crs).

Vobf(iUnlock, π, crs):

1. If VobfInput(iUnlock) = 0 output 0.

2. If crs = ~0 output 0.

3. if V (π, unlock′, crs) = 0 output 0.

4. Output 1.

unlock(val, iUnlock, π, crs = (crs1, crs2)): Output iUnlock(val, crs1)

Figure 2: Digital Locker Construction.

Theorem 5.3. Let notation be as in Construction 5.2. Suppose that

1. iLock is a (Fpoly,X , ρ, `)-input-nonmalleable digital locker with associated data with associated ob-
fuscation verifier VobfInput, and

2. Π = (Setup, P, V ) is a true simulation extractable non-interactive zero knowledge proof system as
described in Section 5.3,

3. That every function f ∈ F is entropy preserving; i.e., for any well-spread X, f(X) is also well-
spread.

Then lock, unlock is a (F ,X , n)-nonmalleable digital locker.

Proof of Theorem 5.3. Following Definition 3.3, we need to prove completeness, soundness, and nonmal-
leability. Completeness can be easily verified, so we just focus on the non-trivial parts, i.e., proof of
soundness and nonmalleability.

Soundness To prove soundness, we first observe that according to Theorem 3.1, for this class of circuits
being obfuscated DI is equivalent to VBB, so for the rest of the proof, we focus on proving the DI. We
prove soundness by contradiction. Suppose there exists a PPT adversary A, a key key ∈ {0, 1}`, and a
well-spread distribution X such that

| Pr
val←X

[A(lock(val, key)) = 1]− Pr
r

$←Dλ
[A(lock(r, key)) = 1] > ε

for some non-negligible ε, then there exists an adversary B that breaks the DI security of the input-
nonmalleable digital locker. This reaches a contradiction.
B receives the distribution X samples (crs1, crs2,TK,EK)← Setup(1λ) for the proof system, and sets

associated data as crs1. B sends this distribution to the reduction for iLock with the input distribution
the same X, and associated data, crs1. The reduction samples some val ← X or uniform r. B receives
iUnlock. Next B creates a simulated π. It sends iUnlock, π, crs to A and outputs A’s decision.

Clearly, if val is from the distribution X, then the reduction has simulated an indistinguishable
lock(val, key) (assuming the simulated proof π is indistinguishable), or otherwise, lock(r, key). That is,
in both cases, the obfuscation is properly prepared assuming the indistinguishability of the simulated

7That is, crs can be split into (crs1, crs2) where crs1 has length independent of the language, i.e., O(λ), and only crs1
is required to be non-tamperable. crs2 cannot be modified (computationally infeasible) given the original crs1.
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proof. Thus, the advantage of the adversary A translates to the advantage of B in breaking the DI of the
nonmalleable point obfuscation. By the equivalence of DI and VBB of point obfuscation, this breaks the
soundness of the nonmalleable point obfuscation.

Nonmalleability Now we prove nonmalleability. As before, we prove by contradiction. Suppose there
exists a PPT adversary A and key ∈ {0, 1}`, a well-spread distribution X such that A breaks the non-
malleability experiment with non-negligible probability ε. Then there exists an adversary B that breaks
the nonmalleability of the underlying iLock(·).
B follows exactly the same procedure in preparing the input to the adversary A as in soundness proof

above. Now A would return a triple (C, f, crs∗ = (crs∗1, crs
∗
2)) that passes the checking conditions with

a non-negligible probability ε. Assume C is different from the original obfuscation given to A (as we don’t
allow identity tampering). B does the following:

• If the crs1 is modified to a different crs∗1, then the reduction just outputs the C, f, crs∗1 which
correspond to a tamper according to nonmalleability of iLock(·).

• If the crs1 is kept intact but crs2 is modified to a different crs∗2, then this breaks the underlying
NIZK as it is computationally infeasible to obtain a consistent but different crs∗2.

• If the crs = crs∗ in C is intact yet the statement-proof pair is modified, then B runs the witness
extractor to extract a valid witness, i.e., val′ used to generate C. As the input obfuscated circuits
received by B are properly prepared by the challenger, the simulated proof given to the adversary A
is with respect to a true statement. In this case, the notion of true simulation extractability allows
B to extract a valid witness by running the extractor. Thus, given val′ = f(val). B can prepare an
obfuscation (with an arbitrary associated data of val′), breaking the nonmalleability of iLock(·).

Since A wins the nonmalleable experiment with a non-negligible probability, one of the above case must
happen with a non-negligible probability. This would imply the contradiction we expect. The above two
arguments complete the proof of Theorem 5.3.

5.3 The Building Block – True Simulation Extractable NIZK

In this section, we present the building block used in Construction 5.2 – true simulation extractable NIZK.
The notion was introduced by Dodis et al. [33] as a relaxation of all simulation extractable NIZK. We
describe the notion in what follows.

Definition 5.2. Let R be an NP relation on pairs (x,w) with corresponding language LR = {x :
∃w such that (x,w) ∈ R}. A true-simulation extractable non-interactive zero-knowledge (NIZK) argu-
ment for a relation R consists of three algorithms (Setup,Prove,Verify) with the following syntax:

• (crs,TK,EK)← Setup(1λ): creates a common reference string crs, a trapdoor TK, and an extrac-
tion key EK.

• π ← Prove(crs, x, w): creates an argument π that R(x,w) = 1.

• 0/1← Verify(crs, x, π): verifies whether or not the argument π is correct.

For presentation simplicity, we omit crs in the Prove and Verify. We require that the following three basic
properties hold:
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• Completeness. For any (x,w) ∈ R, if (crs,TK,EK) ← Setup(1λ), π ← Prove(x,w), then
Verify(x, π) = 1.

• Soundness. For any PPT adversary A, the following probability is negligible: for (crs,TK,EK)←
Setup(1λ), (x∗, π∗)← A(crs) such that x∗ /∈ LR but Verify(x∗, π∗) = 1.

• Composable Zero-knowledge. There exists a PPT simulator S such that for any PPT A, the
advantage (the probability A wins minus one half) is negligible in the following game.

– The challenger samples (crs,TK,EK)← Setup(1λ) and sends (crs,TK) to A
– A chooses (x,w) ∈ R and sends to the challenger.

– The challenger generates π0 ← Prove(x,w), π1 ← Sim(x,TK), and then samples a random bit
b← {0, 1}. Then he sends πb to A.

– A outputs a guess bit b′, and wins if b′ = b.

• Extractibility. Additionally, true simulation extractability requires that there exists a PPT extrac-
tor Ext such that for any PPT adversary A, the probability A wins is negligible in the following
game:

– The challenger samples (crs,TK,EK)← Setup(1λ) and sends crs to A.

– A is allowed to make oracle queries to the simulation algorithm Sim′((x,w),TK) adaptively.
Sim′ first checks if (x,w) ∈ R and returns Sim(x, TK) if that is the case.

– A outputs a tuple x∗, L∗, π∗.

– The challenger runs the extractor w∗ ← Ext(L∗, (x∗, π∗),EK).

– A wins if (1) the pair (x∗, L∗) was not part of the simulator query, (2) the proof π∗ verifies,
and (3) R(x∗, w∗) = 0.

Briefly speaking, a true simulation extractable NIZK requires that the adversary can only query the
simulation oracle only on true statements, whereas all simulation extractability allows the adversary to
query on any (perhaps false) statement. As shown by the work [33], the true simulation extractable NIZK
can be constructed in a fairly simple way as summarized by the following theorem.

Theorem 5.4 ([33]). Assume that there exists a CCA2 encryption and a regular NIZK argument for NP
languages, then there exists a true simulation extractable NIZK for NP languages.

The work [33] showed how to instantiate the building blocks under the SXDH assumption over bilinear
groups. There is plausible evidence that the regular NIZK can be constructed without the need of pairing
groups, c.f. [29], under some non-standard assumptions.

5.4 NIZK with Short Non-Tamperable CRS

The generic use of the NIZK from Dodis et al. [33] requires long CRS that would depend on the language
being proved, and this is a general fact for NIZKs. In our application, however, this poses a challenge when
we combine this with our non-malleable obfuscation with associate data. Particularly, the correctness of
Theorem 4.1 requires a group that has a length larger than that of associated data. We notice that the
language L used in Construction 5.2 requires a long CRS, as the statement and the witness are long. So,
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putting CRS as the associated data in the non-malleable digital locker would require a significantly larger
group, which is undesirable.

To handle this technical subtlety, we present a simple transformation from any NIZK into one whose
CRS has the following structure: crs = (crs1, crs2), where only crs1 is short and non-tamperable, crs2
can be arbitrarily long but cannot be tampered consistently (computationally infeasible) as long as crs1 is
kept intact. In this way, we can put crs1 as the associated data into our non-malleable digital locker, and
keep crs2 public, as we presented in the prior section. Thus, the underlying group of the non-malleable
obfuscation can be significantly smaller.

To achieve this, given any crs′ from the underlying NIZK, we define a new NIZK which is essentially
the same as the original one, except in the CRS generation: first it samples a collision resistant hash
function h and computes z = h(crs). It outputs crs = (crs1 = (h, z), crs2 = crs′) as the new CRS. The
verifier will always check whether h(crs2) = z and rejects immediately if it does not hold. The security
(zero-knowledge, soundness) is not affected by crs1, as it can be generated just given crs′.

6 Application to Fuzzy Extractors

In this section, we show that a nonmalleable digital locker suffices to build a robust fuzzy extractor [14,
16, 15, 34] when combined with a standard secure sketch. We note information-theoretic robust fuzzy
extractor in the plain model or CRS models requires the source to have an entropy of at least half its
length [36]. In this work, we consider computational robust fuzzy extractors in the plain model. We begin
with a few definitions.

Definition 6.1 (Secure Sketch). Let λ be a security parameter. Let W = Wλ be a family of random
variables over metric space (M, dis) = (Mλ, disλ). Then SS,Rec is a (M,W, t, δ)-secure sketch if the
following hold:

Correctness For all w,w′ ∈M such that dis(w,w′) ≤ t,

Pr[Rec(w′,SS(w)) = w] ≥ 1− δ.

Security For all distributions W ∈ W it is true that

H̃∞(W |SS(W )) ≥ ω(log λ).

Definition 6.2 (Robust Fuzzy extractor). An (M,W, `, t)-computationally robust fuzzy extractor is a
pair of PPT algorithms (Gen,Rep) where for all w,w′ ∈M,

• (key, pub)← Gen(w), where key ∈ {0, 1}` and pub ∈ {0, 1}∗

• key′ ← Rep(pub, w′)

such that the following properties are true:

• Correctness : For all w,w′ ∈M such that dist(w,w′) ≤ t,

Pr
[
key′ = key

∣∣ (key, pub)← Gen(w), key′ ← Rep(pub, w′)
]
≥ 1− ngl(λ).
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• Security : For any distribution W ∈ W, and for (key, pub)← Gen(W ), for all PPT A there exists
some ngl(λ) function such that

|Pr[A(key, pub) = 1]− Pr[A(U`, pub) = 1] ≤ ngl(λ).

where U` is a uniformly distributed random variable on {0, 1}`.

• Robustness: Let W,W ′ ∈M be (correlated) distributions such that

Pr
(w,w′)←(W,W ′)

[dis(w,w′) ≤ t] = 1

and W,W ′ ∈ W. For all W,W ′ ∈ W and for all adversaries A, the advantage of A in the following
experiment is at most ngl(λ):

1. Sample (w,w′)← (W,W ′).

2. Compute (key, pub)← FE.Gen(w) and send it to A.

3. A outputs pub′ and wins if pub′ 6= pub and FE.Rep(pub′, w′) 6∈ {⊥, key}.

Before introducing a common secure sketch which uses code syndromes we introduce the notation of
Wgt(x) = dis(x, 0) as the Hamming weight of x.

Definition 6.3 (Syndrome). Let A : Fkq → Fnq be a (n, k, d = 2t+ 1)-linear error code, then there exists

a matrix Syn : Fnq → Fn−kq with two properties:

1. For all values x where Wgt(x) ≤ t the value Syn(x) is unique.

2. There is an efficient mapping from s ∈ Fn−kq to the value x of weight at most t if one exists. Let
Invert denote this mapping. If no such value exists then the output of Invert is ⊥.

3. For any two values s, s′ where Wgt(s),Wgt(s′),Wgt(s− s′) ≤ t it is true that

Invert(Syn(s− s′)) = Invert(Syn(s)− Syn(s′))

= Invert(Syn(s))− Invert(Syn(s′)) = s− s′.

Definition 6.4 (Syndrome Secure Sketch [11, 31, 35]). Let W ∈ Fnq be the set of all distributions W
where H∞(W ) = (n−k) log q+ω(log λ). Let Syn be the Syndrome of an (n, k, d = 2t+ 1)-error correcting
code. Then define SS(w) = Syn(w) and

Rec(w′, s) = w′ − Invert(Syn(w′)− s) = w′ − Invert(Syn(w′ − w)) = w.

Then (SS,Rec) is a (Fnq ,W, t, 0)-secure sketch.

Theorem 6.1. Assume the following:

1. (SS,Rec) be a syndrome secure sketch for distance 2t, that is, d = 4t+ 1,
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Gen(w) :

1. Compute ss← SS(w).

2. Sample random key ∈ {0, 1}`.

3. Obfuscate unlockw,key ← lock(w, key).

4. Output key, pub = (ss, unlockw,key).

Rep(w′, ss′, unlock′):

1. If Vkey(unlock
′) = 0 output ⊥.

2. Let w∗ ← Rec(w′, ss′)

3. If dis(w′, w∗) > t or w∗ 6∈ Fnq output ⊥.

4. Output unlock′(w∗).

Figure 3: Robust Fuzzy Extractor from nonmalleable digital locker and syndrome secure sketch.

2. W is the set of all efficiently sampleable distributions W where

H̃∞(W |SS(W )) ≥ ω(log λ),

3. (lock, unlock, Vkey) is a nonmalleable digital locker for (F ,X ) where F includes all functions f : Fnq →
Fnq of the form f(x) = x+a and where X is the set of all distributions X where H∞(X) = ω(log λ).

Then (Gen,Rep) described in Figure 3 is a (M,W, `, t)-robust fuzzy extractor (Definition 6.2).

Proof of Theorem 6.1. Correctness: Correctness is immediate from the correctness guarantees of the
secure sketch and digital locker respectively.

Before proceeding to security and nonmalleability, it is more convenient to work with a worst-case
definition of min-entropy. Fix some distribution W ∈ Wλ and let α = ω(log λ) be some value such that
H̃∞(W |SS(W )) ≥ α. Such an α exists by Definition 6.1.
By [35, Lemma 2.2a] over the choice of ss,

H∞(W |SS(W ) = ss) ≥ H̃∞(W |SS(W ))− log 1/δ

with probability at least 1 − δ. Fix δ = 2−α/2 and note that 1 − δ = ngl(λ). That is, there exists some
set E such that Pr[SS(W ) ∈ E] ≥ 1 − ngl(λ) and for all ss ∈ E, H∞(W |SS(W ) = ss) ≥ α/2. For any
adversary, A that distinguishes two tuples across SS(W ) with a noticeable probability it must be the case
that A distinguishes two tuples across E with noticeable probability.

Security: We proceed by contrapositive. Suppose that the resulting fuzzy extractor is not secure. That
is, there exists some PPT A and polynomial function p(λ) such that∣∣ Pr

key,SS,unlock,A
[A(key,SS, unlock) = 1|SS ∈ E]

− Pr
U`,SS,unlock,A,

[A(U`,SS, unlock) = 1|SS ∈ E]
∣∣ > 1/p(λ).

To argue security, note that lock is virtual black box secure. Define r(λ) = 3 ∗ p(λ) and let S be the
simulator of A for polynomial r(λ). Then it is the case that for all SS ∈ E∣∣∣Pr[A(lock(w, key), key, SS) = 1]− Pr[SIw,key(1λ, key,SS) = 1]

∣∣∣ ≤ 1

3p(λ)
, (10)

Note that the above is true if key is replaced by U`, a uniform random variable over {0, 1}`. It is true
that for any polynomial number of queries and for all key, U`∣∣∣Pr[SIw,key(key, SS, 1λ) = 1]− Pr[SIw,key(U`, SS, 1λ) = 1]

∣∣∣ ≤ 1

3p(λ)
. (11)
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This is proved in [22, Lemma 2].
Using the triangle inequality on Equation 10, Equation 11, and Equation 10 with key replaced by U`
yields that∣∣∣∣ Pr

key,SS,unlock,A
[A(key, SS) = 1|SS ∈ E]− Pr

U`,SS,unlock,A,
[A(U`,SS) = 1|SS ∈ E]

∣∣∣∣ ≤ 1/p(λ).

this is a contradiction and completes the security argument.

Robustness: We proceed by contradiction. Let A be some adversary that breaks the robustness prop-
erty of the fuzzy extractor. We assume that A outputs a fixed pair of distributions W,W ′ (there is a
nonuniform algorithm that is programmed with the best pair of distributions) where W is efficiently sam-
plable (see Definition 2.2). As in the security argument, we restrict our consideration where SS(W ) ∈ E
which occurs with overwhelming probability. In this setting, the distribution W |SS(W ) is in the family
of distributions X for which the digital locker should be nonmalleable.

We proceed to show that there exists some PPT adversary A′ that breaks the nonmalleability of the
digital locker:

1. Initialize A.

2. Receive W,W ′ from A.

3. Sample a random key← {0, 1}`.
4. Sample w∗ ←W and compute ss← SS(w∗).

5. Provide W |ss to the challenger and receive unlock in response.

6. Run (ss′, unlock′)← A(ss, unlock, key).

7. If unlock′ = unlock output ⊥.

8. If ss′ = ss set f(x) = x. That is, f = id.

9. Else if Invert(ss′ − ss) =⊥ output ⊥.

10. Else set f(x) = x+ Invert(ss′ − ss).
11. Output (unlock′, f).

We now turn to analyzing A′s performance. We first remark that if A breaks robustness of the fuzzy
extractor then it must be the case that

Pr
(w,w′)←(W,W ′)

Rep(w′,SS′, unlock′) 6= {⊥, key}

∣∣∣∣∣∣∣
(key,SS, unlock)← FE.Gen(w)

SS ∈ E
(SS′, unlock′)← A(SS, unlock)

 > 1/p(λ).

for some polynomial p(λ). Then it is true that

Pr
(w,w′)←(W |ss,W ′)

Rep(w′,SS′, unlock′) 6= {⊥, key}

∣∣∣∣∣∣∣
(key, ss, unlock)← FE.Gen(w)

ss ∈ E
(SS′, unlock′)← A(ss, unlock)

 > 1/p(λ).
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By definition the probability that there exists a point beside w that causes unlock to output a value
other than ⊥ is negligible in the randomness of the lock algorithm. This means that if unlock′ = unlock
then Rep(w′,SS′, unlock) ∈ {⊥, key} with overwhelming probability. This means that

Pr
(w,w′)←(W |ss,W ′)

Rep(w′,SS′, unlock′) 6= {⊥, key}

∣∣∣∣∣∣∣∣∣
(key, ss, unlock)← FE.Gen(w)

ss ∈ E
(SS′, unlock′)← A(ss, unlock)

unlock′ 6= unlock

 > 1/p(λ).

for some polynomial p′(λ). We start by observing that in the setting when ss = ss′. Since it is true with
probability 1 that dis(w,w′) ≤ t, this means that Rec(w′, ss) = w with probability 1. This means that
the input provided to unlock′ will be w and corresponding tampering function is the identity.

We now consider the setting when ss 6= ss′. Recall that dis(w,w′) ≤ t with probability 1. Note that

w = Rec(w′, ss). Let f(w)
def
= Rec(w′, ss′) respectively. Note that by definition Invert(Syn(w′) − ss) 6=⊥

with probability 1. It must also be the case that Invert(Syn(w′) − ss′) 6=⊥ with noticeability probability
and thus there exists some point f(w) such that dis(w′, f(w)) ≤ t and Syn(f(w)) = ss′. In more detail
this means that,

w = w′ − Invert(Syn(w′)− s)
f(w) = w′ − Invert(Syn(w′)− s′)

Substituting one has that

f(w) = w′ − Invert(Syn(w′)− ss′)
= w + Invert(Syn(w′)− ss)− Invert(Syn(w′)− ss′)
= w + Invert(ss′ − ss).

Note for the last step is implied by Property 3 of the Syndrome (Definition 6.3) since dis(w′, w) ≤ t and
dis(w′, f(w)) ≤ t and thus dis(w, f(w)) ≤ 2t together these facts imply that

Invert(Syn(w′)− ss)− Invert(Syn(w′)− ss′) = Invert(ss′ − ss).

Thus, in both cases (when ss = ss′ and when ss 6= ss′) A′ is able to extract the tampering function f
and unlock′ constitutes a break of the nonmalleability property of the digital locker. This completes the
robustness argument.

This completes the proof of Theorem 6.1.

Aligning tampering functions There is a subtlety when we instantiate the fuzzy extractor of Theo-
rem 6.1 – the digital locker in Theorem 6.1 requires a function class of the domain Fnq , whereas the digital
locker constructed in Figure 2 works in Zp(λ). It is unclear whether there is an additively homomorphic
mapping between these spaces for arbitrary p, q, n. Therefore, a trivial plug-in of the digital locker of
Figure 2 does not work. In Section 6.1, we show that how to align readings in a simple way at the cost
of increased leakage of the secure sketch.
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SS′(w) :

1. Compute ss← SS(w).

2. Obfuscate
unlockPointw ← lockPoint(w).

3. Output (ss, unlockw).

Rec′(w′, ss′, unlockPoint′):

1. If Vobf(unlockPoint
′) = 0 output ⊥.

2. Compute w∗ ← Rec(w′, ss′)

3. If dis(w′, w∗) > t or w∗ 6∈ Fnq output ⊥.

4. Else if unlockPoint′(w∗) = 0 output ⊥.

5. Else output w∗.

Figure 4: Robust Secure Sketch from nonmalleable point obfuscation and syndrome secure sketch.

An alternative to efficiently sampleable W . Theorem 6.1 required W to be efficiently sampleable.
This is because in the proof the reduction samples a w ← W to compute a secure sketch ss and create
the conditional distribution W |SS(w). An alternative approach is to define all of the objects throughout
our main technical sections to be nonmalleable in the presence of auxiliary information Z such that
H∞(W |Z) ≥ ω(log λ). In this case, A′ can receive ss as auxiliary information and directly forward it to
A.

All of the proofs contained in this work naturally extend to the setting of auxiliary information. The
major work needed to have confidence in the auxiliary input approach is to show that [7, Assumption 3]
holds in the non-uniform generic group model [27] in the presence of auxiliary information. Importantly,
the distribution W has average min-entropy conditioned on SS(W ). There are strong impossibility results
on digital lockers that are secure against hard to invert auxiliary information [19].

Applications of nonmalleable point function obfuscation. Nonmalleable point obfuscation and
nonmalleable point obfuscation with associated data (Definition 3.2) can be used to build robust secure
sketches and robust fuzzy extractors, respectively.

• Robust secure sketch: Robustness for secure sketches is defined in a similar fashion as for fuzzy
extractors. For correlated distributions W,W ′, the adversary receives SS(w) from the challenger
and outputs SS′. The adversary wins the robustness game if he succeeds in finding a value SS′ such
that Rec(SS′, w′) 6∈ {⊥, w}. Informally, suppose (lockPoint, unlockPoint) is a nonmalleable point
obfuscation and (SS,Rec) is a syndrome-based secure sketch. Then Figure 4 describes a robust
secure sketch. The formal theorem and proof can be found in Section 6.2.

• Robust fuzzy extractor: Let (lockPoint, unlockPoint) be a nonmalleable point obfuscation with
associated data, (SS,Rec) be a syndrome-based secure sketch and ext be a randomness extractor.
Then Figure 5 describes a robust fuzzy extractor. We stress that this construction requires the
remaining entropy of W to be high conditioned on both the produced key which is produced using
a randomness extractor [49, 53] and SS(w). There is no limitation on the key length in the robust
fuzzy extractor from the nonmalleable digital locker (in Theorem 6.1). The formal theorem and
proof can be found in Section 6.3.

6.1 Instantiations – Aligning the Tampering Function Classes

In this section, we show how to align the tampering function classes required by the fuzzy extractor of
Theorem 6.1 and the construction of Figure 2. This deals with the mismatch in input domain for the
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Gen(w) :

1. Sample random seed ∈ {0, 1}ρ.

2. Generate key← ext(w; seed).

3. Compute ss← SS(w).

4. Obfuscate
unlockPointw,seed ← lockPoint(w, seed).

5. Output key and
pub = (ss, unlockPointw,seed, seed).

Rep(w′, ss′, unlockPoint′, seed′):

1. If Vkey(unlockPoint
′) = 0 output ⊥.

2. Compute w∗ ← Rec(w′, ss′)

3. If dis(w′, w∗) > t or w∗ 6∈ Fnq output ⊥.

4. if unlockPoint′(w∗, seed′) = 0 output ⊥.

5. Output key← ext(w∗; seed′).

Figure 5: Robust Fuzzy Extractor from nonmalleable point obfuscation with associated data, syndrome secure
sketch and randomness extractor.

syndrome (which takes inputs in Fnq ) and the nonmalleable digital locker (which takes inputs in Zp).
Assume that the input readings w,w′ are q-ary strings of length n. Instead of using a q-ary error

correcting code (A ∈ Fn×kq and Syn : Fn×(n−k)q ), we consider an error correcting code with entries in Fq′
for some prime q′ ≥ 2(q − 1) + 1. That is, let A′ ∈ Fn×kq be a (n, k, d = 4t + 1) linear error correcting
code, and let Syn′ be the corresponding syndrome. Furthermore, we make the restriction p ≥ qn, where
Zp is the input domain of the digital locker of Figure 2. In the construction of Rep, note there is a check
if the recovered value, w∗, is not q-ary, in which case we output ⊥. Thus, for the adversary to successfully
break robustness they must produce a q-ary output.

Now we encode every string x ∈ Fnq as the natural q-ary representation, i.e., x 7→
∑

i∈[n] xiq
i−1 ∈ Zp,

denoted as Enc(x). Moreover, the digital locker takes input an encoded version of w, i.e.,

lockPoint(Enc(w), seed) and unlockPoint(Enc(w∗), seed′).

By setting things up in this way, Theorem 6.1 holds even if the underlying digital locker is non-malleable
for shift functions in Zp.

In Theorem 6.1 the reduction extracts a tampering function f : Fnq → Fnq where f(w) = w+Invert(ss′−
ss). With the modified syndrome construction, the function f : Fnq → Fnq , as above, the reduction can
extract a function f(w) = w + Invert(ss′ − ss). By the check of w∗ ∈ Fnq and the initial condition
that w ∈ Fnq , this implies that wi + Invert(ss′ − ss)i ∈ Fq, we can first conclude that Invert(ss − ss′)
can be represented in {−(q − 1), ..., (q − 1)}n. Under this representation, we conclude that for each i,
wi + Invert(ss′ − ss)i ∈ Fq using standard integer addition. So, for each i, we are guaranteed an element
in Fq (i.e., Enc(w∗) = Enc(w) + Enc(Invert(ss′ − ss))), which corresponds exactly to a shift tampering
function in Zp, and thus the reduction can break the underlying non-malleable digital locker.

The effect of this transform is to increase the required entropy on the distribution W . The standard
analysis of the secure sketch assumes that SS(W ) leaks (n − k) log q bits of information about W . By
increasing the syndrome from q to q′ this increases the leakage of the secure sketch by (n− k) log(q′/q) ≈
(n− k) log 2. This transform applies to the constructions in Figures 4 and 5 as well. We do not include it
in our proofs to show the general connection between syndrome secure sketches and nonmalleable point
obfuscation variants.
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6.2 Application of nonmalleable point function obfuscation

Definition 6.5 (Robust Secure Sketch). Let (SS,Rec) be a (M,W, t, δ)-secure sketch as described in
Definition 6.1. Let W,W ′ ∈M be (correlated) distributions such that

Pr
(w,w′)←(W,W ′)

[dis(w,w′) ≤ t] = 1

and W,W ′ ∈ W. Then (SS′,Rec′) is a robust secure sketch if for all W,W ′ ∈ W and for all adversaries
A, the advantage of A in the following experiment is at most ngl(λ):

1. Sample (w,w′)← (W,W ′).

2. Compute ss← SS(w) and send it to A.

3. A outputs ss′ and wins if ss′ 6= ss and Rec(ss′, w′) 6∈ {⊥, w}.

Theorem 6.2. Let W be the set of all efficiently sampleable distributions W where H̃∞(W |SS(W )) ≥
ω(log λ) and (SS,Rec) be an (M,W, 2t, δ) syndrome-based secure sketch. Let (lockPoint, unlockPoint) be an
(F ,X , ρ)-nonmalleable point function obfuscation where F includes all functions of the form f(x) = x+a
and X is the set of all distributions X such that H∞(X) = ω(log λ). Then (SS,Rec) described in Figure
4 is an (M,W, t, δ)-robust secure sketch.

Proof of Theorem 6.2.

Correctness & security Correctness and security are immediate from the correctness guarantees of
the secure sketch and point function obfuscation, and the security of the secure sketch respectively.

Robustness Again, it is more convenient to work with a worst-case definition of min-entropy. For any
adversary A that distinguishes two tuples across SS(W ) with a noticeable probability it must be the
case that A distinguishes two tuples across E with noticeable probability, where E is the set such that
Pr[SS(W ) ∈ E] ≥ 1− ngl(λ) and for all ss ∈ E, H∞(W |SS(W ) = ss) ≥ α/2.

We then proceed by contradiction. Let A be some adversary that breaks the robustness property of
the secure sketch (SS′,Rec′). We assume that A outputs a fixed pair of distributions W,W ′ (there is
a nonuniform algorithm that is programmed with the best pair of distributions) where W is efficiently
sampleable (see Definition 2.2). As in the security argument, we restrict our consideration where SS(W ) ∈
E which occurs with overwhelming probability. In this setting, the distribution W |SS(W ) is in the family
of distributions X for which the point function obfuscation should be nonmalleable.

We proceed to show that there exists some PPT adversary A′ that breaks the nonmalleability of the
point function obfuscation:

1. Initialize A.

2. Receive W,W ′ from A.

3. Sample w∗ ←W and compute ss← SS(w∗).

4. Provide W |ss to the challenger and receive unlockPoint in response.
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5. Run (ss′, unlockPoint′)← A(ss, unlockPoint).

6. If unlockPoint′ = unlockPoint output ⊥.

7. If ss′ = ss set f(x) = x. That is, f = id.

8. Else if Invert(ss′ − ss) =⊥ output ⊥.

9. Else set f(x) = x+ Invert(ss′ − ss).
10. Output (unlockPoint′, f).

The argument for robustness follows identically to the proof of Theorem 6.1. It is below for complete-
ness. We now turn to analyzing A′s performance. We first remark that if A breaks robustness of the
secure sketch then it must be the case that

Pr
(w,w′)←(W,W ′)

Rec′(w′,SS′, unlockPoint′) 6=⊥
∣∣∣∣∣∣∣

(SS, unlockPoint)← SS′(w)

SS ∈ E
(SS′, unlockPoint′)← A(SS, unlockPoint)

 > 1/p(λ).

for some polynomial p(λ). Then it is true that

Pr
(w,w′)←(W |ss,W ′)

Rec′(w′, SS′, unlockPoint′) 6=⊥
∣∣∣∣∣∣∣

(ss, unlockPoint)← SS′(w)

ss ∈ E
(SS′, unlockPoint′)← A(ss, unlockPoint)

 > 1/p(λ).

By definition the probability that there exists a point beside w that causes unlockPoint to output a value
other than ⊥ is negligible in the randomness of the lockPoint algorithm. This means that if unlockPoint′ =
unlockPoint then Rec′(w′, SS′, unlockPoint) ∈ {⊥, w} with overwhelming probability. This means that

Pr
(w,w′)←(W |ss,W ′)

Rec′(w′, SS′, unlockPoint′) 6=⊥
∣∣∣∣∣∣∣∣∣

(ss, unlockPoint)← SS′(w)

ss ∈ E
(SS′, unlockPoint′)← A(ss, unlockPoint)

unlockPoint′ 6= unlockPoint

 > 1/p(λ).

for some polynomial p′(λ). We start by observing that in the setting when ss = ss′, since it is true with
probability 1 that dis(w,w′) ≤ t, this means that Rec(w′, ss) = w with probability 1. This means that
the input provided to unlockPoint′ will be w and corresponding tampering function is the identity.

We now consider the setting when ss 6= ss′. Recall that dis(w,w′) ≤ t with probability 1. Note that

w = Rec(w′, ss). Let f(w)
def
= Rec(w′, ss′) respectively. Note that by definition Invert(Syn(w′) − ss) 6=⊥

with probability 1. It must also be the case that Invert(Syn(w′) − ss′) 6=⊥ with noticeability probability
and thus there exists some point f(w) such that dis(w′, f(w)) ≤ t and Syn(f(w)) = ss′. As before,

f(w) = w + Invert(ss′ − ss).

Thus, in both cases (when ss = ss′ and when ss 6= ss′) A′ is able to extract the tampering function f and
unlockPoint′ constitutes a break of the nonmalleability property of the point function obfuscation. This
completes the robustness argument. This completes the proof of Theorem 6.2.

42



6.3 Application of Nonmalleable Point Obfuscation with Associated Data

Definition 6.6 (Strong average case randomness extractor [49, 53]). Let ext : {0, 1}n → {0, 1}` be a a
PPT algorithm that uses ρ bits of randomness. ext is an efficient (n,m, `, ε)-strong randomness extractor
if for all distributions W on {0, 1}n and Y , such that H̃∞(W |Y ) ≤ m,

SD
(
(ext(W ; seed), seed, Y ), (U`, seed, Y )

)
≤ ε

where seed ∈ {0, 1}ρ is uniform and U` denotes the random uniform variable on {0, 1}`.

Theorem 6.3. Let W be the set of all efficiently sampleable distributions W where H̃∞(W |SS(W )) ≥
ω(log λ) and (SS,Rec) be an (M,W, 2t, δ) syndrome-based secure sketch. Let (lockPoint, unlockPoint) be an
(F ,X , ρ)-nonmalleable point function obfuscation where F includes all functions of the form f(x) = x+a
and X is the set of all distributions X such that H∞(X) = ω(log λ). Let ext be an (n,m, `, ε)-strong
average-case randomness extractor. Then (Gen,Rep) described in Figure 5 is an (M,W, `, t)-robust fuzzy
extractor (Definition 6.2).

Proof of Theorem 6.3. We argue correctness, security, and robustness separately.
Correctness: Correctness is immediate from the correctness guarantees of the secure sketch, point

function obfuscation and randomness extractor.

Again, it is more convenient to work with a worst-case definition of min-entropy. For any adversary
A that distinguishes two tuples across SS(W ) with a noticeable probability it must be the case that A
distinguishes two tuples across E with noticeable probability, where E is the set such that Pr[SS(W ) ∈
E] ≥ 1− ngl(λ) and for all ss ∈ E, H∞(W |SS(W ) = ss) ≥ α/2.

Security: We proceed by contrapositive. Suppose that the resulting fuzzy extractor is not secure. That
is, there exists some PPT A and polynomial function p(λ) such that∣∣∣∣ Pr

key,pub,A
[A(key, pub) = 1|SS ∈ E]− Pr

U`,pub,A,
[A(U`, pub) = 1|SS ∈ E]

∣∣∣∣ > 1/p(λ)

where pub = (SS, unlockPoint, seed). To argue security, note that lockPoint is virtual black box secure.
Define r(λ) = 3 ∗ p(λ) and let S be the simulator of A for polynomial r(λ). Then it is the case that for
all SS ∈ E ∣∣∣Pr[A(unlockPoint, seed,SS) = 1]− Pr[SIw,seed(seed, 1λ, SS) = 1]

∣∣∣ ≤ 1

3p(λ)
.

Also note that since ext is a strong average-case randomness extractor then

SD
(
(key, seed,SS), (U`, seed,SS)

)
≤ ε

and thus ∣∣∣Pr[A(unlockPoint, seed,SS, key) = 1]− Pr[SIw,seed(seed, key, 1λ,SS) = 1]
∣∣∣ ≤ 1

3p(λ)
. (12)

The above is true if key is replaced by U`, a uniform random variable over {0, 1}`.
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It is true that for any polynomial number of queries and for all key, U`∣∣∣Pr[SIw,seed(key, pub, 1λ) = 1]− Pr[SIw,seed(U`, pub, 1λ) = 1]
∣∣∣ ≤ 1

3p(λ)
. (13)

This is proved in [22, Lemma 2].
Using the triangle inequality on Equation 12, Equation 13, and Equation 12 with key replaced by U`
yields that ∣∣∣∣ Pr

key,pub,A
[A(key, pub) = 1|SS ∈ E]− Pr

U`,pub,A,
[A(U`, pub) = 1|SS ∈ E]

∣∣∣∣ ≤ 1/p(λ).

this is a contradiction and completes the security argument.

Robustness: We proceed by contradiction. Let A be some adversary that breaks the robustness prop-
erty of the fuzzy extractor. We assume that A outputs a fixed pair of distributions W,W ′ (there is a
nonuniform algorithm that is programmed with the best pair of distributions) where W is efficiently sam-
plable (see Definition 2.2). As in the security argument, we restrict our consideration where SS(W ) ∈ E
which occurs with overwhelming probability. In this setting, the distribution W |(SS(W ), seed, key) is in
the family of distributions X for which the point function obfuscation should be nonmalleable.

We proceed to show that there exists some PPT adversary A′ that breaks the nonmalleability of the
point function obfuscation:

1. Initialize A.

2. Receive W,W ′ from A.

3. Sample a random seed← {0, 1}ρ.
4. Sample w∗ ←W and compute ss← SS(w∗).

5. Compute key← ext(w∗; seed).

6. Provide W |(ss, seed, key) to the challenger and receive unlockPoint in response.

7. Run (ss′, seed′, unlockPoint′)← A(ss, seed, unlockPoint, key).

8. If unlockPoint′ = unlockPoint output ⊥.

9. If ss′ = ss set f(x) = x. That is, f = id.

10. Else if Invert(ss′ − ss) =⊥ output ⊥.

11. Else set f(x) = x+ Invert(ss′ − ss).
12. Output (unlockPoint′, f, seed′).

The argument for robustness follows identically to the proof of Theorem 6.1. It is below for complete-
ness. We now turn to analyzing A′s performance. We first remark that if A breaks robustness of the
fuzzy extractor then it must be the case that

Pr
(w,w′)←(W,W ′)

Rep(w′, pub′) 6= {⊥, key}

∣∣∣∣∣∣∣
(key, pub)← FE.Gen(w)

SS ∈ E
(pub′)← A(SS, pub)

 > 1/p(λ).
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for some polynomial p(λ) and pub′ = (SS′, seed′, unlockPoint′), pub = (SS, seed, unlockPoint). Then it is
true that

Pr
(w,w′)←(W |(ss,seed,key),W ′)

Rep(w′, pub′) 6= {⊥, key}

∣∣∣∣∣∣∣
(key, pub)← FE.Gen(w)

ss ∈ E
(pub′)← A(pub)

 > 1/p(λ)

with pub = (ss, seed, unlockPoint) this time.
By definition the probability that there exists a point beside w that causes unlockPoint to output a
value other than 0 is negligible in the randomness of the lockPoint algorithm. This means that if
unlockPoint′ = unlockPoint and seed′ = seed then Rep(w′,SS′, seed′, unlockPoint) ∈ {⊥, key} with over-
whelming probability. This means that

Pr
(w,w′)←(W |(ss,seed,key),W ′)

Rep(w′, pub′) 6= {⊥, key}

∣∣∣∣∣∣∣∣∣
(key, pub)← FE.Gen(w)

ss ∈ E
(pub′)← A(pub)

unlockPoint′ 6= unlockPoint

 > 1/p(λ).

for some polynomial p′(λ).
We start by observing that in the setting when ss = ss′, since it is true with probability 1 that

dis(w,w′) ≤ t, this means that Rec(w′, ss) = w with probability 1. This means that the input provided
to unlockPoint′ will be w and corresponding tampering function is the identity. Then if seed′ 6= seed, this
breaks the point function obfuscation with associated data nonmalleability property.

We now consider the setting when ss 6= ss′. Recall that dis(w,w′) ≤ t with probability 1. Note that

w = Rec(w′, ss). Let f(w)
def
= Rec(w′, ss′) respectively. Note that by definition Invert(Syn(w′) − ss) 6=⊥

with probability 1. It must also be the case that Invert(Syn(w′) − ss′) 6=⊥ with noticeability probability
and thus there exists some point f(w) such that dis(w′, f(w)) ≤ t and Syn(f(w)) = ss′. As before
f(w) = w + Invert(ss′ − ss). Thus, in both cases (when ss = ss′ and when ss 6= ss′) A′ is able to extract
the tampering function f and (unlockPoint′, seed′) constitutes a break of the nonmalleability property of
the point function obfuscation. This completes the robustness argument which completes the proof of
Theorem 6.3.
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A Alternative Notions of Nonmalleability

We consider an alternative notion, which we call fixed nonmalleability, to contrast with the above adaptive
definition. This definition is drawn from verifiable nonmalleability in the work of Canetti and Varia [25,
Definition 6].

Definition A.1 (Fixed Nonmalleability). Let all notation be as in Definition 3.2 except that Nonmal-
leability is replaced with the following:

3. Fixed Nonmalleability: For any X ∈ X , for all ~ad ∈ AD, for any PPT A, where ∀f ∈ F , there
exists ε = ngl(λ), such that defining

{unlockPointi ← lockPoint(val, ~adi)}`i=1,

(C, ad∗)← A
(
{unlockPointi, ~adi}`i=1

)
it is true that :

Pr
val←X

[
Vobf(C) = 1, (If(val),ad∗ ≡ C)

∨((Ival,ad∗ ≡ C) ∧ (∀j, ad∗ 6= ~adj))

]
≤ ε.

Note that adaptive nonmalleability as defined in Nonmalleability of Definition 3.3 is stronger than fixed
nonmalleability as shown by [46, Claim 3.5]. Lastly, we consider a stronger notion possible notion which
we call oblivious nonmalleability.

Definition A.2 (Oblivious Nonmalleability). 3. Oblivious Nonmalleability: For any X ∈ X , for
all ~ad ∈ AD, for any PPT A, where there exists ε = ngl(λ), such that defining

{unlockPointi ← lockPoint(val, ~adi)}`i=1,

(C, ad∗)← A
(
{unlockPointi, ~adi}`i=1

)
it is true that :

Pr
val←X

[
Vobf(C) = 1,∃f ∈ F , (If(val),ad∗ ≡ C)

∨((Ival,ad∗ ≡ C) ∧ (∀j, ad∗ 6= ~adj))

]
≤ ε.

Lemma A.1. For any F that includes shifts by constants, no black box reduction can show that lock
satisfies Definition A.2 in the plain model.

Proof. Consider an A that is provided with lockPoint(val) and responds only with an obfuscation of
an independent point obfuscator lockPoint(val′) for a random val′. Then A has successfully mauled to
lockPoint(f(val)) for f(x) = x− val + val′, which is a valid low-degree but nonconstant polynomial.

Note above lockPoint(val′) can be constructed without even seeing lockPoint(val). The above result
also seems likely to hold in the algebraic group model (see [40] and Definition B.1 ). Recall that in the
algebraic group model, an adversary outputs how they formed the obfuscation as a linear combination
of the given obfuscation. Oblivious nonmalleability is unlikely to be attainable if the space of valid
unlockPoint is dense as the adversary can just raise the provided group elements to a random power and
output this as a new obfuscation.
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B A simple nonmalleability argument in the Algebraic Group Model

In this section, we provide a simple intuitive proof on nonmalleability of our primary construction in the
algebraic group model along with Assumption 3.2. The purpose of this proof is to give the reader intuition
for the argument. Lemma 4.3 does not require use of the algebraic group model. Before introducing the
new lemma we give some background definitions.

We introduce a weaker variant that is clearly implied by the Assumption 3.2:

Assumption B.1. Let G and Xλ be defined as in Assumption 3.1. For any ` = poly(λ) for any PPT A,

Pr[x← A({ki, [kix+ xi]g}i∈[2,..,`])] = ngl(λ).

where x← Xλ and ki ← Zp(λ).

We now restate the flexible uber assumption from [8] adapted to consider non-uniform distributions
and distributions over input polynomials. Before doing that we have to define an algebraic algorithm.

Definition B.1. An algorithm A executed in a game G is called algebraic if for all group elements
[~z]g ∈ Gλ that A outputs, it additionally tells how those elements were formed in terms of the received
group elements. That is, A([~x]g) provides a matrix A such that

[~z]g = [A~x]g

We use Zp[X, r] to represent the set of polynomials over the Zp of degree at most r.

Definition B.2 (Linear Independence of Polynomials). Let ~R ∈ Zp[X, r]k and let W ∈ Zp[X, r]. The

polynomial W is linearly dependent on ~R if ∃α1, ..., αk such that

sW =
k∑
i=1

αi~Ri.

Otherwise W is called linearly independent of R.

Assumption B.2 (Flexible Uber Assumption for Well-Spread Distributions). Let G = {Gλ}λ∈N be a
group ensemble with efficient representation and operations where each Gλ is a group of prime order
p ∈ (2λ, 2λ+1). We assume that for every λ ∈ N there is a canonical (efficiently computable) group and
canonical and efficient mapping between the elements of {0, 1}λ to Gλ. Let {Xλ} be a family of well-
spread distributions over {0, 1}λ. Let ~R be a distribution over vectors of polynomials over Zp of degree at

most `. The (~R, ι) flexible uber assumption is that no PPT algebraic adversary Aalg can output vectors
S,T ∈ Zp[X]ι and value g∗ such that

Pr
x←Xλ

[
(S,T, g∗)← A(~R, [~R(x)]g)

∧g∗ = [T(x)]g

∣∣∣∣∣T l.i. of ~R

∧S~R = T

]
= ngl(λ).

We are now ready to provide an algebraic version of our nonmalleability argument. An algebraic
version of Lemma ?? can also be stated.
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Lemma B.1. Let λ be a security parameter. Let {Xλ} be a well-spread distribution ensemble and let
τ, ` ∈ Z+ be poly(λ). Let Fpoly be the ensemble of functions fλ where fλ is the set of non-constant,
non-identity polynomials in Zp(λ)[x] with degree at most τ .

Let P (x) = rρx
ρ + rρ−1x

ρ−1 + . . .+ r1x+ r0 with ri ∈ Z defined in some way by ad where any or all of
the ri may be 0. Suppose that Assumption 3.1 holds for ` = τ(ρ + 7). Define as obfuscation (with a, b, c
uniformly distributed in p(λ))

lockPointP (val, ad; a, b, c)
def
=


a,

[
aval + val2P (val) +

∑ρ+7
i=ρ+3 val

i
]
g

b,
[
bval + valρ+8

]
g

c,
[
cval + valρ+9

]
g

 .
Consider Fpoly and distribution ensemble {Xλ}. For any PPT algebraic adversary A for nonmalleability
in Definition 3.2, A outputs f, unlockPointP ′ , P

′, where lockPointP ′ obfuscates f(val), f ∈ Fpoly, and P ′

is a polynomial of degree at most ρ, with negligible probability.

We use the following lemma showing that Assumption B.1 implies Assumption B.2.

Lemma B.2. Let G be defined as above. Suppose that Assumption B.1 holds for power ` and that one can
properly prepare an instance of ~R using linear operations on {ki, [kix+ xi]}i∈[2,...,`], then Assumption B.2
holds assuming deg(T) = poly(λ).

Proof. The core of the proof is as in [8, Theorem 4.1]. We consider nonuniform distributions over x and
because of this consider randomized polynomial families rather than a deterministic vector of polynomials.

Let A be an algebraic adversary that succeeds against distributions from ~R with an advantage at
least ε. We restrict our attention to the case when T is linearly independent of ~R. We now construct an
adversary B that can break Assumption B.1.

Recall that adversary B takes input {ki, zi = [kix + xi]g}i∈[2,..,`]). Then B forms the polynomials
~R(x) and provides ~R, [~R(x)]g to A. Now A returns S,T and g∗ as above. Define the polynomial

P = T − S~R, since T is linearly independent of ~R this polynomial must be nonzero and polynomial
degree, denoted as β. Factor the polynomial P to find its roots α1, ..., αβ. If for some root αj it is true
that ∀i, zi = [kiαj + αi]i∈[2,...,`] output αj else abort. Then B succeeds whenever A which completes the
proof. This completes the proof of Lemma B.2.

Lemma B.2 suffices to prove Lemma B.1 with the following observations:

1. A good obfuscation can be linearly formed from the tuple {ki, zi = [kix + xi]g}i∈[2,..,`]) as long as
` ≥ ρ+ 9. This was shown in the proof of Theorem 4.2.

2. From the tampering function f and values a′, b′, c′, ad′ one can compute the polynomials in the
exponent. Namely, the polynomials in the exponent are:

a′f(val) + ad ∗ f(val)2 +

ρ+7∑
i=ρ+3

f(val)i

b′f(val) + f(val)ρ+8

c′f(val) + f(val)ρ+9

3. That for all f ∈ Fpoly, the resulting polynomials in the exponent are linearly independent of the
provided polynomials. Shown in proof of Lemma 4.3.

52


	Introduction
	Low Entropy Robust Fuzzy Extractors in the Plain Model
	Technical Overview
	Point Obfuscation with Associated Data
	Extending to the Multibit Setting
	Protecting the Multibit Output

	Discussion and Open Questions

	Preliminaries
	Obfuscation Definitions
	Nonmalleable Digital Locker
	Same Point Definitional Equivalences
	Group Theoretic Assumptions

	Nonmalleable Point Functions with Associated Data
	Standard Model Digital Lockers
	Digital Lockers Nonmalleable over val and ad
	Adding Key Nonmalleability
	The Building Block – True Simulation Extractable NIZK
	NIZK with Short Non-Tamperable CRS

	Application to Fuzzy Extractors
	Instantiations – Aligning the Tampering Function Classes
	Application of nonmalleable point function obfuscation
	Application of Nonmalleable Point Obfuscation with Associated Data

	Alternative Notions of Nonmalleability
	A simple nonmalleability argument in the Algebraic Group Model

