
Practical Related-Key Forgery Attacks on the
Full TinyJAMBU-192/256

Orr Dunkelman, Eran Lambooij∗, Shibam Ghosh

Department of Computer Science, University Of Haifa, Haifa, Israel
∗eran@hideinplainsight.io

Abstract. TinyJAMBU is one of the finalists in the NIST lightweight
cryptography competition. It has undergone extensive analysis in the re-
cent years as both the keyed permutation as well as the mode are new
designs. In this paper we present a related-key forgery attack on the up-
dated TinyJAMBU scheme with 256- and 192-bit keys. We introduce a
high probability related-key differential attack were the differences are
only introduced into the key state. Therefore, the characteristic is ap-
plicable to the TinyJAMBU mode and can be used to mount a forgery
attack. The time and data complexity of the forgery are 232 using 210

related-keys for the 256-bit key version, and 242 using 212 related-keys
for the 192-bit key version.
For the 128-bit key we construct a related-key differential characteristic
on the full keyed permutation of TinyJAMBU with a probability of 2−16.
We extend the related-key differential characteristics on TinyJAMBU to
practical time key recovery attacks that extract the full key from the
keyed permutation with a time and data complexity of 223, 220, and 218

for respectively the 128-, 192-, and 256-bit key variants.
All characteristics are experimentally verified and we provide key nonce
pairs that produce the same tag to show the feasibility of the forgery
attack.

1 Introduction

In recent years it has been understood that, although confidentiality is an im-
portant feature of cryptographic primitives, authenticity of the data is, an often
overlooked, but equally valuable property. Therefore, when NIST launched the
lightweight cryptography competition [5] to find a new lightweight primitive.
They included authenticity as one of the primary design goals.

When looking at authenticated encryption, the scheme is considered to be
broken when either the confidentiality or the authenticity of the ciphertext are
diminished. This both improves and worsens the job of a cryptanalyst, as now,
for a full break of the scheme two things must happen in parallel: First the
cryptographer has to find a favorable property in the primitive; Second, it must
be possible to observe this property through the (often restrictive) mode.

In this paper we look at the authenticated encryption scheme TinyJAMBU [6,7],
which is based on the sponge duplex construction [1,2] and a lightweight keyed

2 Orr Dunkelman, Eran Lambooij∗, Shibam Ghosh

permutation. The keyed permutation used in TinyJAMBU has a 128-bit state
and a 128-, 192-, or 256-bit key. The permutation is an NLFSR, with a NAND
gate as the non-linear component. Each round the feedback bit is XOR-ed with
the next key bit using a cyclic key schedule.

In the TinyJAMBU mode two versions of the keyed permutation are used. We
denote these as: Pa, and Pb. Pa is used in phases where no output is observed,
and consists of 640 rounds for all the key sizes. Pb is used in the first initialization
step and when part of the state can be observed. It consists of 1024, 1152, and
1280 rounds for respectively the 128-, 192-, and 256-bit key variants. We note
that the designers of TinyJAMBU have recently changed the number of rounds
of Pa from 384 to 640 [7] to counter a differential attack by Saha et al. [3].
Therefore, most of the results in the literature are on 384 rounds.

We first look at the current results on TinyJAMBU before we turn our atten-
tion to our contributions. In their specification of TinyJAMBU [6,7] the designers
provide a rigorous security analysis of the design against various attacks. Using
MILP modelling they prove the probability of the best differential for 384 rounds
of the permutation to be less then 2−78. In [3], Saha et al. look at the differential
characteristics through the TinyJAMBU permutation improving the probability
of the characteristics using (first order) correlated NAND gates. The authors
propose a differential characteristic through 338 and 384 rounds of the permu-
tation with a probability of respectively 2−62.68 and 2−70.68.

Most attacks consider the case where the attacker only has access to 32 in-
and output bits as is dictated by the mode. When there are no constraints on
the bits that the attacker can access; Saha et al. report a characteristic through
384 rounds of the keyed permutation with probability 2−19 [3]. To mitigate these
attacks, the designers of TinyJAMBU increased the number of rounds from 384
to 640 in the second version [7] of the specification.

In the updated specification the designers of TinyJAMBU improved the differ-
ential characteristics through the keyed permutation in the case that the attacker
can only affect 32 of the in- and output bits. They found differential character-
istics with probabilities 2−41, 2−64, and 2−88 covering respectively 384, 512, and
640 rounds.

Due to the cyclic nature of the permutation slide attacks are a natural di-
rection of analysis. Sibleyras, et al. [4], discuss full round slide attacks on Tiny-
JAMBU in the single key setting. The designers of TinyJAMBU already mention
in the specification that there exists a simple related-key slide attack. Due to
the frame bits used in the mode the slide attacks cannot be used to attack the
full scheme. The complexities of these attacks are beyond the birthday bound.

1.1 Our Contributions

We propose an iterative related-key differential characteristic that can be applied
to the keyed permutation inside the mode. The attack works for the 256-bit as
well as the 192-bit key variants of the permutation. Combining this characteristic
with the proper nonce differences we can reach a zero difference in the state
just before the first message addition with a probability of 2−32 and 2−42 for

Practical Related-Key Forgery Attacks on the Full TinyJAMBU-192/256 3

respectively the 256- and 192-bit key variants. We note that the designers of
TinyJAMBU do not claim security in the related key model.

We extend this attack to a nonce respecting forgery attack which has a data
and time complexity of 232 and 242 for respectively the 256- and 192-bit variants
of TinyJAMBU. The results are summarised in Table 1 and we provide inputs
that lead to a forgery for both versions in Table 3.

The 128-bit key variant of TinyJAMBU cannot be attacked using the same
characteristic. But, we show that if we allow for differences to be inserted into
state bits, we can get a similar iterative characteristic for the 128-bit variant
with a probability of 2−2 per 128 rounds.

We note that our results are also applicable to the first version to the Tiny-
JAMBU scheme.

Table 1: A summary of distinguishers on TinyJAMBU. The results only include
distinguishers where the attacker has access to 32 in-, and output bits.

Key size #Rounds Complexity (Data) Setting Type Source

128 1024 216 Related-key CP Differential Section 3.3
192 1152 212 Related-key CP Differential Section 3.3
256 1280 210 Related-key CP Differential Section 3.3

any 338 262.68 CP Differential [3]
any 384 270.68 CP Differential [3]
any 384 241 CP Differential [7]
any 512 264 CP Differential [7]
any 512 264 KP Linear [7]
any 640 288 CP Differential [7]

128 ∞ 264 KP Slide [4]
192 ∞ 265 Adaptive CP Slide [4]
256 ∞ 267.5 Adaptive CP Slide [4]

CP = Chosen Plaintext
KP = Known Plaintext

1.2 Paper Structure

We give a short overview of the mode and the keyed permutation used in Tiny-
JAMBU in Section 2. Next we describe the related key differential characteristic
and the resulting forgery on the full mode in Section 3 and Section 4. We con-
clude the paper in Section 5.

4 Orr Dunkelman, Eran Lambooij∗, Shibam Ghosh

2 The Specification of TinyJAMBU

TinyJAMBU is one of the finalists of the NIST lightweight competition. The
design principle of TinyJAMBU is based on the sponge duplex mode using a
keyed permutation. The keyed permutation is derived from a NLFSR with a
128-bit state using a NAND gate as the non-linear operation the key bits are
added in a cyclic fashion.

In the upcoming sections we give a quick overview of the important parts of
TinyJAMBU with respect to understanding the attack. For a complete specifica-
tion of TinyJAMBU we refer the reader to the full specification of TinyJAMBU [7].

2.1 The keyed permutation

The TinyJAMBU keyed permutation used has a 128-bit state and is defined for
128-, 192-, or 256-bit keys. Given an n-bit register x ∈ {0, 1}n we define xi to
denote the i-th bit of the register. Here x0 is the least significant bit, and xn−1

is the most significant bit of the register. Using this notation we can write the
n-bit register x as (xn−1, xn−2, . . . , x0). The size of a register x is denoted as |x|
and the concatenation of two registers x, y is denoted as x∥y.

We define the permutation P on the state v ∈ {0, 1}128, given a key k ∈
{0, 1}κ (where κ ∈ [128, 192, 256]), and round i as:

P(k,i)(v) = (v91 ⊕ v85v70 ⊕ v47 ⊕ v0 ⊕ k(i mod |k|), v127, . . . , v1)

Now we define the r-round permutation P for some key k as:

Pr = P(k,r−1) ◦ P(k,r−2) ◦ . . . ◦ P(k,0)

The round function P of the TinyJAMBU permutation is depicted in Figure 1.

0

⊕ ki

47

⊕

7085

NAND

⊕

91

⊕

127

Fig. 1: Round function of the TinyJAMBU permutation.

2.2 The TinyJAMBU mode

The TinyJAMBU mode uses the permutation described in Section 2.1 in a duplex
construction with a 32-bit message injection part, a 32-bit squeezing part. The
mode consists of four separate phases: the key initialization, the associated data,

Practical Related-Key Forgery Attacks on the Full TinyJAMBU-192/256 5

the encryption, and the finalization part. After every permutation call a constant
depending on the current phase constℓ is added to the state. One thing to note is
that unlike most duplex constructions the squeezing and injection of data occurs
in different parts of the state.

TinyJAMBU uses keyed permutations using the same key k, but a different
number of rounds in different phases of the encryption. We denote them as Pa

and Pb where the values of a and b for the different key sizes are given in Table 2.

Table 2: Parameters for the different variants of TinyJAMBU.

Variant #Rounds Pa #Rounds Pb State Key Nonce Tag

TinyJAMBU-128 640 1024 128 128 96 64
TinyJAMBU-192 640 1152 128 192 96 64
TinyJAMBU-256 640 1280 128 256 96 64

Initialization. In the initialization the key k is mixed into the state s ∈ {0, 1}128
by applying Pb to the initial state s = (0, 0, ..., 0). After that, in the nonce setup
phase, a 96-bits nonce N is split up into three 32-bit nonce parts N0∥N1∥N2 and
for each part of the nonce the state is updated with Pa after which the nonce is
added to the most significant bits of the state. A depiction of the initialization
is given in Figure 2.

0

K

Key setup Pa
K Pa

K Pa
K

⊕

const1

⊕

⊕

N0

const1

⊕

N1

⊕

const1

⊕

N2

⊕

const1

Fig. 2: TinyJAMBU initialization and nonce addition.

Associated Data Processing. During the Associated data processing the
associated data is added to the state. The associated data is divided into 32-bit

6 Orr Dunkelman, Eran Lambooij∗, Shibam Ghosh

blocks. For each block the state is updated with Pa, after which the associated
data block is XORed into the state. We depict the associated data processing in
Figure 3.

K

N

Init Pa
K Pa

K Pa
K

r

r

⊕

const2

c
· · ·

⊕

⊕r

r

c

A[1]

const2

c

r

r

c ⊕

⊕

A[a]

const3

Fig. 3: Processing the associated data.

Encryption. During the encryption stage a key stream is generated to encrypt
a message into a ciphertext. The plaintext is divided into 32-bit blocks. For each
block, the state is updated with Pb, after which the plaintext block is XORed
into the most significant part of the state. Finally, we obtain the 32-bit ciphertext
block by XORing bits 95 . . . 64 of the state with the plaintext block. Note that,
the plaintext and nonce are added to the 32 most significant bits of the state
which are 127 . . . 96. The key stream used for encryption, is obtained from bits
95 . . . 64.

Finalization. After encrypting the plaintext the 64-bit authentication tag T0∥T1

is generated in two steps. First, to generate T0, we apply Pb and extract bits
95 . . . 64. Then we apply Pa after which we extract the same 32 bits of the state
to get T1. We depict the finalization and encryption process in Figure 4.

3 Related Key Differential Characteristics on P
We describe a high probability related-key differential characteristic on the full-
round permutation P1024 with 256- and 192-bit keys. This characteristic uses
the simplicity of the key schedule of the keyed permutation to introduce and
cancel differences in the state. Moreover, at all times there is at most one active
bit in the state, which leads to a high probability characteristic through the full
permutation P1280 with a probability of 2−10 for the 256-bit key variant. For the
192-bit key variant the characteristic has a probability of 2−12 through P1152.
The probability for the characteristic through P640 is only 2−4 for the 256-bit

Practical Related-Key Forgery Attacks on the Full TinyJAMBU-192/256 7

Pb
K Pb

K Pb
K Pb

K
Pa
K

r

r
⊕

⊕

M [1] C[1]

c

const3

⊕

r

r
⊕

⊕

M [2] C[2]

c

const3

⊕
· · ·

⊕ r

r

c

⊕

M [m] C[m]

⊕

const4

T1

⊕

const4

T2

Fig. 4: TinyJAMBU encryption and finalization.

variant and 2−6 for th 192-bit variant. These characteristics allow an attacker to
reach a zero difference state just before the message addition with a probability
of 2−32 for the 256-bit key case and 2−42 for the 192-bit key case.

3.1 The 256-bit key variant

We start with a difference in key bit k0 which is inserted into the state in the
first round. The propagation of the difference through the linear taps is cancelled
by the following key differences: k37, k81, k128. After 128 rounds the difference is
cancelled and the state difference is 0 for the next 127 rounds with probability
(12)

2. This is because when the introduced state difference reaches a NAND
gate it produces a zero difference with probability 1

2 and the difference enters
the NAND gate twice before getting cancelled. At round 256 we return to the
original configuration of state and key differences.

The above key difference gives a zero state difference after P1280 with prob-
ability 2−10. However, if we use the same key differences for P640 there is a
difference in the least significant bit of the state. The problem here is that we
cannot cancel this difference using the nonce, since the nonce is added to the
most significant bits of the state. The solution to this problem is to shift the key
difference by 127 bits. Which leads to the following sets of possible differences
in key bits:

(k164−t, k208−t, k255−t) for 0 ≤ t < 32

and a difference in the following nonce bits (where the nonce is denoted by N):

(N95−t, N63−t, N31−t)

This puts this one bit difference in the output in the most significant bit after
P640, while still keeping the zero difference after P1280. One added benefit is that
for P640 the characteristic passes through two less non-linear taps, reducing the
probability of the characteristic from 2−6 to 2−4.

Due to this characteristic we get, with probability 2−10−3·4−10 = 2−32, a
zero difference before the message addition. This is important since this is the

8 Orr Dunkelman, Eran Lambooij∗, Shibam Ghosh

first point in which we can observe (part of) the state difference through the
ciphertext.

3.2 The 192-bit key variant

The characteristic for the 192-bit variant is nearly the same as the characteris-
tic for the 256-bit variant. The only difference is that instead of offsetting the
characteristic by 127 positions to get the 1 difference after P640 in the most sig-
nificant bit. We offset the difference by 63, which produces the same behaviour.
This gives us the following sets of possible differences in the key bits:

(k100−t, k144−t, k191−t) for 0 ≤ t < 32

and a difference in the following nonce bits (where the nonce is denoted by N):

(N95−t, N63−t, N31−t)

The main difference with the 256-bit variant is that the probability is slightly
lower. This is due to the fact that instead of 2 non-linear taps per 256 rounds
of the cipher we get 2 non-linear taps per 192 rounds of the cipher. This char-
acteristic has a probability of 2−6 and 2−12 for respectively P640, and P1152.
Producing a 1 bit in the most significant bit of the state after P640 and a zero
difference after P1152.

3.3 Other Related Key Characteristics on P1024

The characteristics in Section 3 do not work for the 128-bit key variant as it
requires cancelling the state difference with the key difference after 129 rounds.
However, if we allow the attacker to insert a difference into the state as well
as the key. Or in other words, if we analyse the permutation as a stand alone
primitive, we can use the same idea to construct a differential characteristic for
the 128-bit key variant.

We insert a difference in the state on bits v127, and a difference in the key
state in k36 and k80. This difference is chosen such that the difference does not
diffuse through the linear taps of the NLSFR. Since there is one active bit the
bit reaches a NAND gate twice every 128 rounds. This leads to a probability of
2−2 per 128 rounds and a probability of 2−16 for P1024.

We can improve the probability of the distinguisher by a factor of 2−2 by
moving the difference bit in the state to behind the second non-linear tap, i.e.,
v69.

Naturally, this characteristic can be extended to the 192- and 256-bit key
cases.

3.4 Key recovery attack

In the case that we allow for the attack to observer the full input and output
states we can do a key recovery attack on the keyed permutation using the

Practical Related-Key Forgery Attacks on the Full TinyJAMBU-192/256 9

characteristics discussed in Section 3.3. We use the observation that, if the output
difference of the NAND is zero while one of the input differences is one, the
values of the non difference bits of the NAND are 0. Thus, observing the output
difference immediately leaks the value of one bit of the state in 16 rounds of the
cipher. By looking at the first two state bits that are leaked we can recover two
of the key bits.

Note that the two first state bits that are leaked give us the following equa-
tion:

vi+91 ⊕ vi+85vi+70 ⊕ vi+47 ⊕ vi ⊕ ki ⊕ 1 = 0

Thus, we can recover key bits k0 and k15 in the chosen plaintext model.
By using multiple characteristics we can recover k0 . . . k37. The rest of the

key bits can be recovered by first recovering k0 . . . k37 and using the recovered
key bits to simplify the expressions for the subsequent bits. This allows us to
recover the full key in 223, 228, and 244 time and data for respectively the 128-,
256-, 192-bit primitives.

3.5 Experimental Verification

We conducted experiments to verify the existence of the related-key differential
for all versions. For the 192- and 256-bit variants we verified the existence of the
related-key differential through the mode after key-setup and nonce initialization
step. For TinyJAMBU-192 we get zero difference after key-setup and initialization
step with probability 2−11.8 and 2−29 respectively. For TinyJAMBU-256 we get a
zero difference after the key-setup and nonce initialization step with probability
2−10.5 and 2−21.6 respectively.

We tested the probability of the differential through P1024 of TinyJAMBU-
128 for 210 random keys. For each key we have tested 220 pairs of plaintexts. The
experimentally verified probability of the differential is 2−15.5. The source code
can be found in https://github.com/ShibamCrS/TinyAtttacksOnTinyJambu.

git.

4 Forgery Attack on TinyJAMBU

Using the related key differential characteristic from Section 3 we can create
a forgery attack on TinyJAMBU. We generate a key, nonce, message pair that
produces the same tag for different nonces and keys. We first discuss the attack
on the 256-bit key version of TinyJAMBU, but is also applicable to the 192-bit
key version, although with a slightly higher complexity.

The main hurdle in creating a forgery is to find a key pair that can be used
for the attack. This is due to the fact that during the key initialization the only
input we have access to is the key. It is only after the key initialization, in the
nonce setup, that we can insert more data. Thus only a part of the key pairs can
be attacked this way. The probability that the characteristic survives through
P1280 is 2−10, thus only one in 210 key pairs will be susceptible to a forgery

https://github.com/ShibamCrS/TinyAtttacksOnTinyJambu.git
https://github.com/ShibamCrS/TinyAtttacksOnTinyJambu.git
https://github.com/ShibamCrS/TinyAtttacksOnTinyJambu.git
https://github.com/ShibamCrS/TinyAtttacksOnTinyJambu.git

10 Orr Dunkelman, Eran Lambooij∗, Shibam Ghosh

attack under a specific difference. In the case that we are interested in creating a
forgery for a certain key we can try 32 key differences to increase the probability
that we find a forgery under a certain key to 2−5.

To find a forgery we start with 210 key pairs. For each pair we encrypt
the same message block with 222 nonce pairs. The difference for the nonce is
such that it cancels the difference after P640, i.e., we put a difference in the
most significant bit of each partial nonce. We can observe the output difference
through the first ciphertext. We expect to see one ‘golden’ key pair that survives
this initial filtering step, which with high probability, follows the characteristic
through the key initialization and the nonce addition.

Using this key and nonce pair we search for a forgery by changing the last
nonce. Since we have to pass twice through P640 and twice through P1280 to
produce both tags, the (naive) probability of finding a colliding tag is 2−28 after
we found a golden key and nonce pair. One thing to consider is that the last
finalization step is using P640 as the permutation, which as discussed in Section 3
produces a difference in the most significant bit of the state. Nevertheless, since
we extract bits 64 to 95 to use as the tag, the tag difference stays zero.

The total cost of this attack is 232 + 228 data and time, where we ask for
encryptions under 210 related key pairs in the nonce respecting setting. If we
move to the nonce misuse setting we get a forgery in 232+214 time since we can
add the randomness in the message instead of the last nonce part. We note that
finding more forgeries after finding a ‘golden’ key nonce pair is 228 in the nonce
respecting setting and 214 for the nonce misuse setting.

The complexities for the forgery are low enough that we could compute a
forgery on our own desktop. In Table 3 we provide key and nonce inputs that
produce the same tag for both the 256- and 192-bit key cases.

4.1 TinyJAMBU-192

The forgery attack on TinyJAMBU-192 is the same as the forgery attack on
TinyJAMBU-256, although the probabilities (as is discussed in Section 3) are
slightly higher. The probability for the characteristic to pass through P640 and
P1152 is respectively 2−6 and 2−12. This leads to a forgery with a data and time
complexity of 242 + 236 in the nonce respecting setting and a data and time
complexity of 242 + 218 in the nonc misuse setting.

5 Conclusion

We discussed a full round related-key differential characteristic that can be ap-
plied to the mode. Using this characteristic we show how to create a tag forgery
for TinyJAMBU-192 and TinyJAMBU-256 with a complexity of respectively 232

and 242 time and data using respectively 210 and 212 related keys. We look at
the keyed permutation as a primitive and showed how to create a related-key
distinguisher for the permutation with a complexity of 2−16 for the 128-bit key

Practical Related-Key Forgery Attacks on the Full TinyJAMBU-192/256 11

Table 3: Key and nonce pairs that produce the same tag (and ciphertext) with the
nibbles that have a difference marked. The leftmost byte is the least significant
byte.

Key size Key Nonce Message Ciphertext Tag

192

9AE19248 8B102E07 19A2492E

AB0F2C02 9EDB377D DF81AB70 11129DA1 C9211BA2 1734A489

090EF19C 66F4AAEB 923635DC 1229B9F6

9AE19248 8B102E87 19A249AE

AB0F2C02 8EDB377D DF81ABF0 11129DA1 C9211BA2 1734A489

090EF09C 66F4AA6B 9236355C 1229B9F6

256

B429DBD1 14F8B269 BF8A51BD

7D83ABD0 3893F974 B71DC3C6

79626DF1 B3A3D867 8443C018 29594AD7 E015A04A 1E8CA308

A415E2BB D5A2A68A 95CBD1F7

B429DBD1 14F8B269 BF8A513D

7D83ABD0 3893F9F4 B71DC346

79626DF1 A3A3D867 8443C098 29594AD7 E015A04A 1E8CA308

A415E3BB D5A2A60A 95CBD1F7

variant. We also show how to recover the key using this distinguisher in 223 data
and time for the 128-bit variant.

One important note to make is that TinyJAMBU-128 is the main contribution
of the TinyJAMBU submission to the NIST lightweight competition. The forgery
discussed in the paper does not apply to this variant. Nevertheless, as we have
shown, the keyed permutation used in TinyJAMBU-128 is easily distinguished
and can therefore be considered weak in the related key model. Combining this
with fact that the other variants of the authenticated encryption scheme are
broken, the 128-bit version should be used with care.

These attacks were mainly possible due to the fact that the key schedule of
the primitive were cyclic. The protection offered against related key attacks by
doing the key initialization with a constant state were not enough to protect
against these attacks. To circumvent this attack the number of rounds in Pa

and Pb should almost be doubled. Another easy fix for the problem would be to
employ some sort of a key schedule to the permutation or to add a few additional
NAND gates. We notified the designers of TinyJAMBU about the attacks which
they verified. The designers suggested to use Pa to process the key after the
initialization in the same fashion as the associated data is processed. Thus, for
the 256-bit version, eight extra calls to Pa are made, and, in the 192-bit version,
six extra calls to the permutation are made, where each of the calls processes 32
bits of the key.

12 Orr Dunkelman, Eran Lambooij∗, Shibam Ghosh

References

1. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiability of
the sponge construction. In: EUROCRYPT. Lecture Notes in Computer Science,
vol. 4965, pp. 181–197. Springer (2008)

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Duplexing the sponge: Single-
pass authenticated encryption and other applications. In: Selected Areas in Cryptog-
raphy. Lecture Notes in Computer Science, vol. 7118, pp. 320–337. Springer (2011)

3. Saha, D., Sasaki, Y., Shi, D., Sibleyras, F., Sun, S., Zhang, Y.: On the security
margin of TinyJAMBU with refined differential and linear cryptanalysis. IACR
Trans. Symmetric Cryptol. 2020(3), 152–174 (2020)

4. Sibleyras, F., Sasaki, Y., Todo, Y., Hosoyamada, A., Yasuda, K.: Birthday-bound
slide attacks on TinyJAMBU’s keyed permutation for all key sizes. In: Fifth
Lightweight Cryptography Workshop (2022)

5. Technology, N.: Report on Lightweight Cryptography: NiSTIR 8114. CreateSpace
Independent Publishing Platform (2017)

6. Wu, H., Huang, T.: TinyJAMBU: A Family of Lightweight Authen-
ticated Encryption Algorithms: Submission to NIST LwC (2019),
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf

7. Wu, H., Huang, T.: TinyJAMBU : A family of lightweight authenticated encryption
algorithms (version 2) (2021), https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/finalist-round/updated-spec-doc/

tinyjambu-spec-final.pdf

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf

	Practical Related-Key Forgery Attacks on the Full TinyJAMBU-192/256

