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Abstract. Elections are an important corner stone of democratic processes. In addition to publishing
the final result (e.g., the overall winner), elections typically publish the full tally consisting of all
(aggregated) individual votes. This causes several issues, including loss of privacy for both voters and
election candidates as well as so-called Italian attacks that allow for easily coercing voters.
Several e-voting systems have been proposed to address these issues by hiding (parts of) the tally.
This property is called tally-hiding. Existing tally-hiding e-voting systems in the literature aim at
hiding (part of) the tally from everyone, including voting authorities, while at the same time offering
verifiability, an important and standard feature of modern e-voting systems which allows voters and
external observers to check that the published election result indeed corresponds to how voters actually
voted. In contrast, real elections often follow a different common practice for hiding the tally: the
voting authorities internally compute (and learn) the full tally but publish only the final result (e.g.,
the winner). This practice, which we coin publicly tally-hiding, indeed solves the aforementioned issues
for the public, but currently has to sacrifice verifiability due to a lack of practical systems.
In this paper, we close this gap. We formalize the common notion of publicly tally-hiding and propose the
first provably secure verifiable e-voting system, called Kryvos, which directly targets publicly tally-hiding
elections. We instantiate our system for a wide range of both simple and complex voting methods and
various result functions. We provide an extensive evaluation which shows that Kryvos is practical and
able to handle a large number of candidates, complex voting methods and result functions. Altogether,
Kryvos shows that the concept of publicly tally-hiding offers a new trade-off between privacy and
efficiency that is different from all previous tally-hiding systems and which allows for a radically new
protocol design resulting in a practical e-voting system.

1 Introduction

Elections are an import corner stone of democratic processes. Besides national or local political elections,
elections also often are and have to be carried out in companies, organizations, associations, etc. There exists a
multitude of different voting methods ranging from relatively simple voting methods, such as plurality/single-
choice voting, to more complicated ones, such as cumulative voting with multiple votes, and very complex
ones, like preferential elections and multi-round votings. In practice, not just simple voting methods are
used but often also more complex ones as they allow for capturing the voters’ preferences more accurately.
For example, Instant-Runoff Voting (IRV) [1] is an important preferential voting method that is used in
many countries for municipal or national political elections, including Australia, India, the UK, and the
US [2, 3, 4, 5]. Also, there are many different result functions used in elections. For example, one might only
be interested in the winner of the election (e.g., for presidential elections) or the n best or worst candidates
(ranked or not ranked), e.g., to fill positions or decide who moves on to a runoff election.
Verifiability. A fundamental security property of elections is verifiability [6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
i.e., voters should be able to verify that their votes were actually counted and every observer, including voters,
election officials, and external observers, should be able to verify whether the final election outcome indeed
corresponds to the votes submitted by the voters. This property is not just required for traditional paper-
based elections, where votes are typically tallied by several (mutually distrusting) talliers and observers can



monitor the tallying process, but it is particularly crucial for electronic voting (e-voting) systems: numerous
problems with e-voting systems have been reported in many countries, where votes have been dropped or
miscounted (see, e.g., [16, 17, 18, 19] and references therein). This does not come as a surprise since e-voting
systems are among the most complex hardware and software systems. Hence, it is virtually impossible to avoid
programming errors or subtle security vulnerabilities. Verifiability enables external and internal observers to
detect and reject false election results, even when the underlying cause is an unknown programming error
or vulnerability. Verifiability therefore has been studied intensively for e-voting systems (see, e.g., [20] for an
overview), with Helios [21] being one of the most prominent verifiable e-voting systems used in practice.
Publishing the Full Tally. In purely paper-based elections and tallying processes, in order to obtain
verifiability it appears unavoidable to publicly reveal the full tally consisting of all (aggregated) individual
votes, rather than just the actual election result, such as the winner of the election or the n best candidates:
arbitrary observers (both voters and external observers) should be able to verify the election outcome, and
hence, they have to watch the tallying process and by this learn the full tally. While this is not strictly
necessary for e-voting systems, currently most verifiable e-voting systems also have to publish the full tally
by design, including, for example, the prominent Helios system. This, however, comes with several downsides:

– Biased voters: As mentioned above, some elections consist of several rounds. In particular, they might
involve runoff elections. Revealing the intermediate tallies for the candidates during such an election
introduces biases that are likely to influence voters’ choices for the following rounds, which might be
unintended.

– Embarrassed candidates: In some elections, for example, within companies or associations, it is unneces-
sarily embarrassing for the losing candidates to publish the (possibly low) number of votes they received.

– Weak mandates: If the winning margin is small, then revealing the full tally can undermine the power of
the elected candidate. This might be undesirable.

– Gerrymandering : If the distribution of votes in different districts/groups is published, then this information
can be used to adjust the specifications of those districts/groups for future elections so that one of the
parties has an advantage.

– Italian attacks: In preferential voting (e.g., IRV), the individual choices of voters can be essentially unique
and thus be regarded as “fingerprints”, even if the number of candidates is moderate. This privacy loss
can be exploited to perform so-called Italian attacks [22, 23]: even a passive adversary, who merely sees
the full tally, is able to easily coerce any voter to vote in a specific (unlikely) way and then use the tally
to check whether the voter complied.

These issues can be mitigated or resolved by hiding (part of) the tally, except for the election result. Voting
systems with this property are called tally-hiding. We classify them as follows, depending on their specific
objectives and approaches.
Fully and Partially Tally-Hiding. Several (verifiable) e-voting systems, see, e.g., [24, 25, 26, 27, 28, 29],
have been proposed to address all of the aforementioned issues at once. They only publish the actual election
result (e.g., only the name of the winner or the names of the n best candidates), and no party, neither
internal nor external, gets to know any intermediate results. We call this strong notion of tally-hiding fully
tally-hiding. They typically employ heavy-weight cryptography, such as universally verifiable Multi-Party
Computation (MPC). As a result, existing fully tally-hiding e-voting systems are limited to rather simple
voting methods and elections with only a few candidates. They quickly become inefficient for larger numbers
of candidates or complex result functions and voting methods, such as ranked voting, say, via IRV (see
Section 6 for more discussion).

There are also verifiable e-voting systems that focus on specific issues due to publishing the tally, most
notably Italian attacks. They hide exactly those parts of the tally which cause the respective issues (see,
e.g., [30, 22, 23, 1, 31]). We call this approach partially tally-hiding. Such systems can be more efficient
than fully tally-hiding ones. For example, the e-voting system proposed in [1] can handle even complex IRV
elections for real world data. But hiding the tally partially comes with the trade-off that some information
is still revealed, such as the order of candidates, and hence, some of the problems of publishing the tally
remain, such as biased voters and embarrassed candidates (see also Section 6). Thus, these systems are useful
to solve certain aspects, but not others.
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Publicly Tally-Hiding. In this work, we follow an approach that offers a trade-off between privacy and
efficiency which is different from all previous fully and partially tally-hiding solutions. This approach is
motivated by and enhances existing practices: There have been many cases where voting authorities chose
to internally compute but not publish the full tally. They rather only published the final election result,
e.g., the winner of the election or the n best candidates, as they wanted to mitigate some of the above
issues, including privacy issues for voters (Italian attacks), for candidates (embarrassment, weak mandates),
and/or manipulations (gerrymandering). Hence, while the talliers learn the full tally, the public learns only
the election result. We call this approach publicly tally-hiding elections. Such publicly tally-hiding elections
are carried out, among others, by ACM Special Interest Groups (SIG) [32], the German Computer Science
Association [33], CrossRef [34], the Society for Industrial and Applied Mathematics (SIAM) [35], or the
German Research Fund [36], as confirmed by websites and/or personal communication. Civica Election
Services (CES), a large e-voting provider, conducts several dozen elections per year where costumers demand
to obtain only the actual election result from CES [37], according to CES, for example, to protect against
weak mandates or gerrymandering issues. So while publicly tally-hiding elections are quite common, they,
however, so far do not offer verifiability, i.e., it is impossible for a voter or external observer to verify that
the election result was computed correctly.

In this work, we close this gap by proposing the first verifiable voting system that follows the common
practice of publicly tally-hiding elections. More specifically, we propose a publicly tally-hiding e-voting system
which follows a radically different approach than all previous tally-hiding ones. We allow each tallier to learn
the homomorphically aggregated votes, while the public merely learns the final election result.6 This allows
for a completely different design of the e-voting system and the use of different cryptographic techniques
compared to previous systems for tally hiding elections. For example, we can employ relatively lightweight
zero-knowledge proofs as opposed to more heavy-weight universally verifiable MPC. Our publicly tally-hiding
e-voting system achieves practical efficiency for dramatically larger numbers of candidates and more complex
voting methods than all previous fully tally-hiding systems, while still hiding the full tally from the public,
unlike partially tally-hiding systems. This of course comes with the trade-off that now the talliers learn
the aggregated votes. Altogether, our paper opens a new line of research that allows for enhancing already
existing practices, where voting authorities compute but do not publish the tally, with the fundamental and
crucial property of verifiability.
Contributions.

– We formalize the notion of publicly tally-hiding.
– We propose Kryvos, the first provably secure verifiable e-voting system that explicitly targets the common

practice of publicly tally-hiding elections, with the advantages mentioned before. Our system is designed
in a completely different way than previous e-voting systems for (fully) tally-hiding. It builds on general
purpose zero-knowledge proofs, more specifically, the highly efficient Groth16 SNARKs [38]. The core idea
is that talliers prove the correctness of the election outcome according to the result function using these
SNARKs. While the idea itself is simple, putting this idea to practice is non-trivial:
• Kryvos follows the general design philosophy of Helios, one of the most prominent and practical verifiable

e-voting systems which forms the basis of many other systems. Unfortunately, it is not possible to apply
the above idea directly to Helios (cf. Section 2.2). Therefore, Kryvos is a fundamental redesign of Helios.
• To be of practical use, also with performance that improves upon existing fully tally-hiding systems,

the design of Kryvos requires care and dealing with a number of pitfalls (see Section 2 and Section 4).
We carefully evaluate various implementation and design options to come up with a suitable imple-
mentation.

– We provide instantiations of Kryvos for various voting methods, including plurality voting, various forms
of cumulative elections with multiple votes, and ranked elections, such as IRV. These instantiations come
with extensive evaluation and benchmarks, demonstrating the practicality of the system. Among others, we

6 This aggregated tally might still reveal individual votes to the talliers, depending on how ballots are encoded and
aggregations are performed. For simple voting methods, the aggregated tally effectively hides individual votes from
the talliers, but it might not for complex voting methods, such as IRV.

3



test our system with real-world data of complex IRV elections from Australia. Our benchmarks show that
Kryvos can handle all of these voting methods more efficiently than existing fully tally-hiding solutions.

Structure. In Section 2, we sketch our design rationale, discuss various design choices, and derive efficient
realizations of core building blocks. We then, in Section 3, introduce Kryvos, with its implementation and
detailed evaluation presented in Section 4. In Section 5, security and privacy of Kryvos is formally stated and
proven. Related work is discussed in Section 6. We conclude in Section 7. Full details and proofs are given
in the appendix, with the implementation provided in [39].

2 Design Rationale

Many verifiable e-voting systems follow the concept of the prominent Helios system [21]. Helios is based on a
(t,nt)-threshold IND-CPA-secure additively homomorphic public-key encryption scheme, such as exponential
ElGamal. Essentially, given the encrypted votes of the voters, these encrypted votes are homomorphically
aggregated to compute the publicly known encrypted tally Enc(T) consisting of a sequence of ciphertexts con-
taining the total number of votes for each candidate/choice, i.e., there is one ciphertext per candidate/choice.
By aggregating votes, Helios breaks the link between voters and their votes, thereby achieving ballot privacy,
and additionally hides individual votes within the tally T. The talliers then decrypt Enc(T), i.e., all cipher-
texts therein, in a distributed way and publish T along with proofs of correct decryption, which reveals the
full tally T and allows everyone to publicly compute the result of the election fres(T), e.g., the winner of the
election. In systems which aim for full tally-hiding, i.e., where only fres(T), but not T is revealed, talliers
essentially perform certain forms of MPC on Enc(T) in order to compute fres(T). As already mentioned and
further discussed in Section 6, this has several shortcomings, which is why in this work we, for the first time,
directly follow the common approach of public tally-hiding, i.e., while talliers may learn T, everybody else
should only learn fres(T).

Intuitively, our idea for Kryvos is to build a system similar to Helios where encrypted votes can still
be publicly aggregated and the talliers can then compute T from Enc(T). The aggregation guarantees that
talliers do not learn more about individual votes than talliers in a regular privacy-preserving (non tally-
hiding) system, such as Helios. However, instead of publishing T, talliers rather internally compute and then
publish only the result fres(T). To still obtain verifiability in this situation, we employ non-interactive zero-
knowledge proofs (NIZKPs) to let (one of) the talliers show that fres(T) was computed correctly from Enc(T).
Since NIZKPs are rather lightweight compared to MPC, the hope and rationale is that this should allow for
constructing more efficient e-voting systems that support more kinds of elections in a (publicly) tally-hiding
way than existing (full) tally-hiding systems. To support a multitude of existing election types with different
result functions, we make use of recent advances in the field of general purpose zero knowledge proof systems
(cf. Section 2.1), which allow for proving statements with respect to essentially arbitrary functions. While
this general idea might seem conceptually simple, it requires careful design and optimization to achieve not
only a secure but also a practical solution as outlined in this section and Section 4.

2.1 General Purpose Proof Systems

A general purpose proof system takes as input an arbitrary indicator function fR : {0,1}∗ × {0,1}∗ →
{0,1} for some binary relation R, such that fR(x,w) = 1 iff (x,w) ∈ R for public statement x and secret
knowledge/witness w. It then allows for computing a zero-knowledge proof that proves knowledge of w such
that fR(x,w) = 1. In our setting, a tallier can use x = (Enc(T), y) as public input along with a suitable
witness (which, among others, contains some tally Tw) and the function fR: fR(x,w) = 1 iff Tw corresponds
to the plaintext in Enc(T) and y = fres(Tw). The chosen proof system should be able to handle complex
result functions even for a large number of candidates/choices, which, among others, requires reasonably
low proof creation and verification times. Of the various different general purpose proof systems [40, 41, 42,
43, 44, 38, 45], zero-knowledge succinct non-interactive arguments of knowledge (SNARKs, for short, where
we implicitly assume the zero-knowledge property) currently fit these requirements best. More specifically,
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we use the highly efficient state-of-the-art Groth16 SNARK [38] as, offers constant proof size with constant
verification time (independently of the function fR), while achieving quite fast polynomial proving time and
thus scaling well even for highly complex functions. We briefly discuss our choice of the Groth16 SNARK in
comparison with alternative proof systems in Section 6. We note that our construction is based on arithmetic
circuits (see next paragraph) and hence is not limited to the Groth16 SNARK. In fact, every proof system
which is based on arithmetic circuits (such as [46, 47, 48]) can be used to instantiate Kryvos.

A Groth16 SNARK uses the language of quadratic arithmetic programs (QAPs) to specify the underlying
relation R respectively indicator function fR. Typically, in order to obtain a QAP, fR is first expressed as
an arithmetic circuit which is then converted to a set of constraints that is finally compiled into a QAP
instance. A constraint over n variables is an equation

∑n
i=1 aiui ·

∑n
i=1 aivi =

∑n
i=1 aiwi, where ui, vi and wi

are constants that define the constraint. The overall performance (runtime, bandwidth, memory overhead) of
a Groth16 SNARK is directly determined by the number of constraints and hence the size of the arithmetic
circuit.

A bit simplified, the Groth16 SNARK consists of three algorithms: (Setup,Prove,Verify). The Setup(fR)
algorithm generates two common reference strings, CRSEK (evaluation key CRS, needed to create proofs)
and CRSVK (verification key CRS, needed to verify proofs) that depend on fR. This creates an instance
of Groth16 that is specific to the function fR. The CRSEK can then be used by anyone to create a proof
π

$←− Prove(CRSEK, x, w) with properties as described above. One can use Verify(CRSVK, x, π) to verify the
proof, which requires only a very small CRSVK. We note that Groth16 SNARKs are based on bilinear groups
whose order depends on the size of the input values. The currently most efficient implementation [49], which
we use, uses bilinear groups of size up to 256 bits and supports operations in F∗p with p of size up to 255 bits.

2.2 Public Tally-Hiding for Systems With Homomorphic Encryption

Our approach of obtaining a verifiable publicly tally-hiding e-voting system by having talliers prove in ZK
that fres(T) was computed correctly from Enc(T) does not directly apply to all existing e-voting systems,
which often use homomorphic encryption for tallying votes. For example, simply modifying Helios by letting
talliers publish only fres(T) plus a ZKP showing correctness of the result, instead of publishing T, does not
yield a secure system. Such a ZKP would have to be computed locally by one of the talliers, who would
require as witnesses all private key shares in order to prove knowledge of Tw such that Tw = Dec(Enc(T)).
Revealing those key shares would in turn allow that tallier to decrypt individual votes and hence break ballot
privacy entirely. One interesting option to tackle this problem might be to use the very recent concept of
distributed SNARKs which permit several parties, each holding a share of a witness, to compute a SNARK
in a distributed and privacy preserving fashion [50, 51]. However, to protect the secrecy of witness shares,
these constructions heavily rely on MPC components, so it is unclear whether and in how far this approach
would yield voting systems that are more efficient than fully tally-hiding ones. Indeed, benchmarks by [51]
indicate that currently available distributed SNARKs are still too slow for our purposes.

In this work, we therefore propose a different approach, namely, constructing an e-voting system based on
an additively homomorphic commitment scheme. This follows a line of commitment-based e-voting systems
initiated by [52]. In Section 3 we show that using this approach it is possible to build a publicly tally-hiding
system such that a single tallier is able to locally and thus efficiently compute a SNARK showing correctness
of the result.

2.3 Efficiently Proving Knowledge of the Tally

A SNARK can in principle be used to prove statements for arbitrary NP-relations, however, the resulting
performance (in terms of runtime, memory overhead, bandwidth, etc.) quickly deteriorates and becomes
impractical for large circuits such as, e.g., cryptographic algorithms (see, e.g., [53, 54]). Therefore, a main
challenge in using SNARKs consists of carefully constructing suitable circuits with minimal numbers of
constrains for the intended relations such that the resulting SNARKs are practical. While we discuss the
overall circuits for our SNARKs in Section 4, we need as a central building block for all of our SNARKs an
efficient circuit for verifying decommitments, which we construct in the following.
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Commitment Scheme. We use Pedersen commitments over a group (G, ·) of order q with generator g
as introduced in [55]. Recall that to compute a Pedersen commitment, one first takes an auxiliary value h
defined by h = ga for a uniform a

$←− Fq and then commits to a value v ∈ Fq with Com(v,r) = gvhr using

a uniform r
$←− Fq \ {0}. Pedersen commitments are a standard solution that have a simple structure and

hence also rather small computational complexity.
The choice of the group G significantly affects efficiency of the corresponding SNARK, with some groups

being more favorable than others. We use a Montgomery elliptic curve, specifically Curve25591, which is well
known to provide good synergy with Groth16 SNARKs. Specifically, coordinates of points on this curve use
only 255 bit as provided by [49]. Furthermore, the Montgomery ladder algorithm allows for relatively cheap
exponentiation within the SNARK as discussed next.7

Designing the Circuit. A Pedersen commitment gv · hr requires exponentiations and multiplications,
with exponentiations being the most expensive operation. We leverage results from the C∅C∅-framework [53],
which observes that the highly efficient Montgomery ladder algorithm for exponentiations can be implemented
with relatively few constraints. However, a major limitation of this approach is that the resulting values
cannot directly be multiplied.

We therefore extend this approach to also support efficient multiplication of such values. Among others, we
achieve this by designing small circuits for the fast y-coordinate recovery algorithm by Okeya and Sakurai [56],
conversion between projective and affine coordinates, and point multiplication. We construct the overall
circuit for computing a Pedersen commitment by combining these components, where combinations are
chosen in such a way that they require the least number of constraints. We provide full details of our circuit,
including a discussion of choices, in Appendix A.

Optimizing Constraints. A crucial and labor intensive step for obtaining an efficient SNARK is to optimize
the implementation via constraints (see e.g., [53, 57]). While one can in principle, specify an arithmetic circuit
defined in a suitable language and then automatically compute a representation via constraints, such a generic
conversion results in needlessly large numbers of constraints and can lead to impractical SNARKs. Obtaining
efficient SNARK proofs is crucial for our voting system. We therefore manually implemented and optimized
our circuit via constraints. This includes individual gates and operations such as various comparison and
branching operations, elliptic curve point conversions, and multiplications as well as combinations of those
gates within specific algorithms, like the Montgomery ladder and the Okea-Sakurai algorithm, and within
the overall commitment circuit.

As an example of the many optimizations that we have performed — all of which, even if small, add up
quickly — consider a division gate. For divisions, one has to handle the special case of a divisor of value zero.
Such cases can occur while evaluating a path not taken by the control flow during branching. Using multiple
such divisions is costly. However, it is possible to optimize the number of constraints for the divisions by
reusing intermediate results for specific values for multiple divisions. With this, one only needs to perform the
error handling once. The same technique can be applied for various other error handling cases, for example
for dealing with the point at infinity. Using knowledge of the nesting of the gates allows for even more efficient
error handling. For example, if the output of a gate is an elliptic curve point that cannot be the point at
infinity, independently of the input values, no such checks have to be performed for the following gate.

We have implemented these optimizations resulting in a library with optimized representations via con-
straints of many fundamental elliptic curve operations, available at [39]. This library should hence be useful
also beyond our work, e.g., to obtain an efficient QAP instance of ElGamal.

Further Optimizing The Commitment Circuit. Even with the Montgomery ladder and an optimized
QAP representation, the exponentiation step is still very expensive. In our and similar settings, we can
further improve this step via two additional optimizations:

7 To stay compatible with the usual notation for Pedersen commitments, we denote the group operation on an
elliptic curve with · instead of the usual +. The wording addition and multiplication is consequentially changed to
multiplication and exponentiation.
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N Pedersen Commitments 1 Pedersen Vector Commitment
Choices/ Constraints Prove CRSEK CRSVK Constraints Prove CRSEK CRSVK

N [s] [GB] [MB] [s] [GB] [MB]
1 6,549 0.903 0.01 0.98 6,549 0.903 0.01 0.98
5 32,745 3.472 0.05 4.9 10,077 1.249 0.01 1.5
10 65,490 6.684 0.09 9.8 14,487 1.681 0.02 2.17
25 163,725 13.107 0.18 24 27,717 2.546 0.03 4.15
50 327,450 32.376 0.46 49 49,767 5.142 0.07 7.45
100 654,900 64.491 0.91 98 93,867 9.467 0.13 14
150 982,350 96.606 1.37 147 137,967 13.792 0.19 20
200 1,309,800 128.722 1.82 196 182,067 18.117 0.25 27
250 1,637,250 160.837 2.28 245 226,167 22.442 0.31 34

Table 1: Comparison of Pedersen commitments and Pedersen vector commitments in a single Groth16
SNARK. We consider inputs v of at most 32 bits.

Firstly, we can upper bound the length of the input v of the commitment scheme with 32 bits (instead
of the full 255 bits), which is sufficient for our application. We discuss the effects of this optimization in
Appendix A.

Secondly, as part of our system, we will need to commit to multiple input values vi, say, N many. If
one implements this in a straightforward manner via standard Pedersen commitments, then there will be N
separate commitments com(vi,ri), one per vi. Each of these commitments introduces another exponentiation
for some randomness ri to obtain hri , which becomes very costly for large N (cf. left side of Table 1). We solve
this issue by using Pedersen vector commitments [58]. Essentially, these commitments allow for committing
to a vector v = (v1, . . . ,vN ) with entries in Fq by computing Com(v,r) = gv11 · . . . · g

vN
N · hr for generators

g1, . . . , gN of G chosen uniformly at random. In this case, we say that N is the slot size of the commitment.
One observes that Pedersen vector commitments are also additively homomorphic, perfectly hiding, and
computationally binding under the discrete logarithm assumption [59]. This construction requires just one
exponentiation with randomness of 255 bits to commit to all N inputs. This in turn drastically improves
both the computational cost but also the sizes of the CRSs of the SNARK as shown in Table 1. We will
further discuss the optimal choice of N in the context of our voting scheme in Section 4, with Appendix D
further illustrating possible tradeoffs.

3 The Kryvos System

In this section, we present the Kryvos e-voting system, which is the first verifiable e-voting system which
directly follows the publicly tally-hiding paradigm. Kryvos is a generic framework that supports many different
voting methods and result functions. We present its implementation and benchmarks for specific voting
methods and result functions in Section 4.

3.1 System description

We now describe the Kryvos e-voting system. Our description focuses on those parts of Kryvos that are at the
core of the public tally-hiding property. Well-known and standard enhancements to security, in particular
distributed implementations of bulletin boards (e.g., [60, 61, 62]) and mechanisms to mitigate trust on the
voting devices (e.g., [63, 64]), are orthogonal to and fully compatible with Kryvos.
Participants. The Kryvos protocol is run among a voting authority Auth, voters V1, . . . ,Vnv

, talliers
T1, . . . ,Tnt

, and a bulletin board (BB). We assume that for each party there exists a mutually authenticated
channel to the BB.
Voting method. Kryvos is parameterized by nchoices ∈ N denoting the number of choices of an election and
a set of valid voting options C ⊆ (Fq)nchoices , the choice space over the prime field Fq. Both parameters are
instantiated depending on the specific voting method that should be captured. For example, for a single-vote
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election, where each voter can give a single vote to one out of three candidates, we have nchoices = 3 and the
choice space Csingle = {(a,b,c) | a,b,c ∈ {0,1}, a+ b+ c = 1}.

Kryvos is further parameterized by a deterministic polynomial time function fres : {0,1}∗ → {0,1}∗ which
computes the final result of the election based on a set of aggregated votes, i.e., the tally of the election. For
example, if we are interested only in the winner/winners of the election, then fres returns the index/indices
of the highest entry/entries. The tuple (C, fres) defines the abstract voting method for which we describe
Kryvos; specific instantiations are given in Section 4.
Setup phase. In this phase, all election parameters are fixed and posted on the BB by Auth: the list
id of eligible voters, opening and closing times, the election ID idelection, and the voting method (C, fres).
Additionally, Auth publishes a decomposition nchoices = ntuples ·N that induces a decomposition on the choice
space C ⊆ (Fq)nchoices = (Fq)N × . . . × (Fq)N yielding a splitting of a vote v ∈ C into ntuples tuples, each of
size N . The reason for this splitting lies in the usage of homomorphic vector commitments as introduced in
Section 2. Splitting allows for decomposing a commitment to a vote v into ntuples vector commitments with
N slots. We will argue in Section 4 that this decomposition can be necessary for very large values of nchoices.
A vote v = (v1, . . . , vntuples

) then contains in v1 the respective entries for the first N choices, in v2 the next
N choices and so on.8 This assignment is published by Auth on B. Furthermore, Auth creates and publishes
the CRSs required for the Groth16 SNARK proofs on B. Each tallier Tk runs the key generation algorithm
KeyGenE of an IND-CCA2-secure public-key encryption scheme E = (KeyGenE ,Enc,Dec) to generate its
public/private (encryption/decryption) key pair (pkk, skk) and posts (k, pkk) on B.
Voting phase. Let mi = (mi,1, . . . ,mi,nchoices) ∈ C be the vote of voter Vi. The voter creates full-threshold
secret sharings of every component mi,j of her vote to share mi,j among the nt talliers:

(mi,j
1 , . . . ,mi,j

nt
) with

nt∑
k=1

mi,j
k mod q = mi,j .

Then, for each tallier Tk, the voter decomposes (mi,1
k , . . . ,mi,nchoices

k ) into (ti,1k , . . . , t
i,ntuples

k ), where nchoices =
ntuples ·N is as defined by Auth in the setup phase (see above). Now the voter creates a commitment to each
tuple:

ci,lk ← Com(ti,lk ; ri,lk ).

Observe that since the commitment scheme is additively homomorphic, the commitment ci,l :=
∑nt

k=1 c
i,l
k

opens to the tuple (mi,1+(l−1)·N , . . . ,mi,l·N ), i.e., the votes for the choices belonging to the l-th factor in the
decomposition of (Fq)nchoices specified by Auth, using opening value ri,l :=

∑nt

k=1 r
i,l
k . That is, one can obtain

commitments on the original vote of Vi by combining all of the commitments on the full-threshold shares.
To guarantee the well-formedness of all commitments and the vote contained therein, the voter creates

a Groth16 SNARK proof Πi
ballot proving that (ci,1, · · · , ci,ntuples) commits to a vote mi ∈ C; we provide more

information, including formal definitions of the relations shown by the proof, in Appendix B.
For each tallier Tk, the voter uses Tk’s public key pkk to securely send the opening values for (ci,1k , . . . ,c

i,ntuples

k )
to Tk:

eik ← Enc(pkk, ((t
i,1
k , . . . , ti,nchoices

k ), (ri,1k , . . . , r
i,ntuples

k ))).9

To complete the voting process, Vi submits her ballot bi = (i, (ci,lk )l,k, Π
i
ballot, (e

i
k)k) to the bulletin board.

B then verifies that i) the voter is eligible to vote, ii) has not submitted a valid ballot before, iii) the voter’s
SNARK proof is valid, and iv) no voter has previously submitted a vector containing any of the ciphertexts
in (eik)k.

10 If all checks succeed, then the BB adds bi to the list of ballots b and publicly updates b.

8 If nchoices is not divisible by N , we can artificially grow the choice space so that nchoices is a multiple of N by
appending zeros to a vote.

9 We assume that all plaintexts have fixed length. This can easily be guaranteed here. This is necessary to provide
privacy for the votes.

10 This so-called ballot weeding process prevents malicious voters from submitting ballots that are related to the
ballots from honest voters, which would break privacy. In particular, due to the CCA2-secure encryption, which
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Now, the list b needs to be prepared by the talliers for the tallying phase. Each tallier Tk decrypts every
eik posted on B:

((t̃i,1k , . . . , t̃
i,ntuples

k ), (r̃i,1k , . . . , r̃
i,ntuples

k ))← Dec(skk, e
i
k).

Then Tk checks whether each pair (t̃i,lk , r̃
i,l
k ) is a valid opening for ci,lk . If this is not the case, then Tk publishes

a NIZKP of correct decryption of eik on B so that one can verify that eik is invalid; as a consequence, the
corresponding ballot will not be counted.11 All of the following steps, including the tallying phase, are
performed only for those ballots that have passed this check; for simplicity of presentation, we therefore
assume that all voters have submitted a valid ballot.
Tallying phase. Everyone can homomorphically aggregate the public commitments on B by computing

c⊥,l ←
nt∑
k=1

nv∑
i=1

ci,lk

for each 1 ≤ l ≤ ntuples. In parallel, the talliers homomorpically aggregate the corresponding opening values.
First, each tallier Tk internally computes for each 1 ≤ l ≤ ntuples

t⊥,lk ←
nv∑
i=1

ti,lk ; r⊥,lk ←
nv∑
i=1

ri,lk ,

where the ti,lk ’s and ri,lk ’s are the opening values decrypted above. Next, each tallier Tk shares (t⊥,lk )l and
(r⊥,lk )l with the other talliers so that for each 1 ≤ l ≤ ntuples, the trustees can internally compute

t⊥,l ←
nt∑
k=1

t⊥,lk ; r⊥,l ←
nt∑
k=1

r⊥,lk .

After this step, all talliers can compute the (aggregated) tally of all votes T := (m⊥,1, . . . ,m⊥,nchoices), where
m⊥,j is the total number of votes for choice j.

The final step is then performed by a designated tallier. First, this tallier computes the election result
res← fres(T). She then computes a Groth16 SNARK on public inputs c⊥,1, . . . , c⊥,ntuples and res that proves
knowledge of T (as well as knowledge of randomness) such that c⊥,1, . . . , c⊥,ntuples is a list of commitments on
T and res is the output of fres(T) (cf. Appendix B.1 for the formal definition of the relation). The result res
and the SNARK proof are then published on the BB.
Public verification phase. In this phase, every participant, including the voters or external observers, can
verify the correctness of the tallying procedure, in particular, the correctness of all ZKPs. Note in particular
that homomorphic aggregations of commitments can be re-computed by external observers without knowing
any openings.

3.2 Discussion

Using SNARKs to prove ballot validity. Using a general Groth16 SNARK to prove ballot validity
has the advantage that Kryvos can support essentially arbitrary choice spaces and hence voting methods,
including very complex ones such as ranked voting methods and methods that assign points from a specific
set and according to certain rules to each candidate. As we show in Section 4.2, this approach is indeed
practical. This support for arbitrary ballot formats is also of interest beyond the area of (publicly) tally-
hiding systems. For example, as far as we are aware Kryvos is the first e-voting system that supports ZKPs

must contain the correct randomness for the commitments, the only way to submit a valid related ballot is by
creating a new ballot that re-uses some of the (unmodified) ciphertexts from the honest ballots. This is caught by
the ballot weeding procedure if at least one tallier is honest (which is always assumed for privacy).

11 For example, one can combine the IND-CCA2-secure PKE by Cramer-Shoup [65] with the NIZKP by Camenisch-
Shoup [66]. See Appendix B.1 for the precise relation to be proven.
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for Borda tournament style ballots. For Condorcet ballots, Kryvos improves over previous efficient ZKPs that
even required talliers to perform part of the proof [67].

Kryvos can in principle also be combined with other existing ZKPs for ballot correctness that are designed
for a specific choice space, where such ZKPs are available (e.g., [68]).

Generating CRSs. Note that our system requires honestly generated CRSs for the Groth16 SNARKs.
There are several well-known mechanisms that are practical with the parameters we need, such as distributed
generation of the CRS by multiple parties. We briefly discuss such mechanisms in Appendix C for complete-
ness. For simplicity and since this is an orthogonal issue, we here compute CRSs on a local computer.

4 Implementation of Kryvos and Evaluation

We provide a proof of concept implementation of Kryvos that we have instantiated for a wide range of both
simple and complex voting methods as well as various result functions; our implementation is available at
[39]. We make use of the libsnark library [49] for the Groth16 SNARK. While in Section 3 we gave a high-level
description of Kryvos, there are various ways in how Kryvos can be implemented, involving among others
fixing a slot size N , a suitable choice space, designing and optimizing circuits for both ballot and tallying
SNARKs. Coming up with an efficient implementation needs care. We follow various implementation paths,
carefully evaluate them, and by this develop a practical implementation.

All of the following benchmarks, were obtained using Ubuntu 20.04 with 16 GB of RAM and eight cores.
All benchmarks are performed without leveraging parallelism, i.e., we use just a single core to make the
results independent of the specific core count, thereby making it easier to compare with other benchmarks.
Of course, in practice one would parallelize, e.g., if multiple SNARK proofs need to be computed, thereby
reducing the overall runtime depending on the number of cores available.

4.1 The Optimal Slot Size

Recall from Section 3.1 that Kryvos uses Pedersen vector commitments, where the number of inputs (slot
size) N can be chosen arbitrarily and in particular independently of the number of choices nchoices. Before we
present our concrete instantiations, we first discuss and evaluate the choice of N in relationship to nchoices.

The slot size N heavily influences the circuit size for proving a correct opening of the commitments, which
is also the main determining factor for the size and hence the performance of the overall ballot and tallying
SNARKs (cf. in Section 4.2). Hence, the runtime and bandwidth of ballot/tallying SNARKs for N = 1 and
N = nchoices roughly corresponds to the left and right columns of Table 1, with each row indicating a possible
value for nchoices. We have evaluated the exact performance of showing an opening of an entire ballot/tally
(possibly consisting of several separate commitments) via a SNARK not just for these extremes but also for
possible intermediate choices, e.g., having two commitments with N = nchoices

2 , and provide full results with
an in-depth discussion in Appendix D and Figure 6.

To summarize our findings, the combined runtime and bandwidth used for ballot and tallying SNARKs for
both proving correctness of a ballot and correctness of SNARKs is minimal for N = nchoices. As per Table 1,
this yields practical performance up to nchoices = 250 choices, which is sufficient for most of our use cases
and will therefore be used in what follows. The only exception are IRV elections, where nchoices � 250 (e.g.,
nchoices = 1,957 for 6 candidates). The limiting factor in this setting is the ballot SNARK: For N = nchoices,
computing the SNARK would require downloading a CRS of size 2.4 GB and computing 170 seconds, which
is typically not considered acceptable for a voter. By setting N to instead be a large fraction of nchoices,
say, N = nchoices

8 , the overall runtime for proving knowledge of a ballot will be slightly larger but one can
compute this statement in parallel using multiple much smaller SNARKs. This leads to a smaller CRS and
reduces overall runtime to an acceptable level for voters with multi core CPUs. We discuss this in detail in
Section 4.3.
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4.2 Implementation and Evaluation of Kryvos for various voting methods/result functions

We have instantiated and evaluated Kryvos for a variety of voting systems and result functions. As it turns
out, there are essentially two main requirements for a voting method to be supported by Kryvos in practice:
Firstly, the voting method must support a ballot format that allows for homomorphic aggregation of ballots.
This is necessary to protect the privacy of voters against the talliers. Secondly, it must be possible to define
a choice space such that the resulting ballots, including the corresponding ballot SNARKS, can be created
efficiently.

We note that a voting method essentially defines a choice space which is in turn required for proving
ballot validity. More precisely, proving ballot validity includes proving that a vote belongs to the respective
choice space. An election result function, however, does not (only) depend on the voting method and its
corresponding choice space. Some result functions only make sense for certain choice spaces though. For
systems like Single-Vote and Multi-Vote, we consider various result functions that e.g. compute only the
candidate with the most votes or all candidates that gained at least a certain threshold of votes. The chosen
result function only influences the tallying SNARK but not the ballot SNARK.

Concretely, we have implemented the following popular and widely used voting methods and result
functions for Kryvos with full details provided in Appendix E: (i) Single-Vote and Multi-Vote with the result
functions Most Votes, Vote Threshold and Best n (unordered), (ii) Borda Count (as used in the Eurovision
Song Contest [69] and for parliamentary elections in the Republic of Nauru [70]) with the same result functions
as Single-Vote and Multi-Vote, (iii) Majority Judgement [71] (used for example in political research polling in
the US, France and Germany [72]) with result functions to compute a Median Grade and complete Majority
Judgement Evaluation, (iv) Condorcet Methods (as used for internal elections by the Debian Project [73])
with a result function for the computation of the Smith Set, (v) and Instant Runoff-Voting (IRV) (as used
used for example in political elections in Australia [2], India [3], the UK [4], and the US [5]) where we
implemented the result function used for the New South Wales Legislative Assembly election [2].

In what follows, we give an overview of our benchmarking results. The IRV election method is then
discussed in detail in Section 4.3. Full details of the remaining voting methods and result functions, including
descriptions of those methods and formal definitions of the corresponding choice spaces, are available in
Appendix E.
Tallying for various result functions. The tallying phase mainly consists of aggregating the ballots
and computing the final Groth16 SNARK proof that shows correctness of the election result. Aggregation of
Pedersen (vector) commitments is very fast and can mostly be performed already during the previous voting
phase. Hence, the driving factor and focus of our benchmarks lies in the final Groth16 SNARK creation. For
all result functions, the tallying SNARK essentially takes the aggregated commitment(s) on the tally and
the election result as public input, the commitment opening(s) as secret input, and then proves that the
opening corresponds to the commitment and that the election result was obtained by applying fres to the
tally contained in the opening. In Appendix B.1, we provide formal definitions of all relations shown by the
SNARKs and NIZKPs (for the encryptions of the ballots) used for our instantiations.

The runtime for computing the resulting tallying SNARKS for all of our result functions, including IRV,
is shown in Figure 1, where the runtime scales linearly in the number of choices nchoices. Our benchmarks
show that SNARK computation and hence the tallying phase of Kryvos is very fast even for large numbers
of choices, e.g., almost all voting methods and result functions (green line) require only about 100s for
nchoices = 1000 choices. Furthermore, we can see that in most cases the result function has only a negligible
impact on the overall runtime, which is rather dominated by proving knowledge of a decommitment and
hence practically identical in almost all cases. The only exception is the majority judgment voting method
with 6 grades and full result evaluation returning a single winner. The algorithm for computing the result is
so complex that it has a small but noticeable effect on the overall runtime, as can between seen in Figure 1.
Figure 1 also shows the runtime of the tallying phase of two instantiations of Ordinos, the most current
fully implemented and provably secure verifiable and fully tally-hiding voting system, which illustrates that
Kryvos indeed achieves its goal of much better performance over fully tally-hiding systems. We give a more
detailed comparison of Kryvos with Ordinos and the system by Canard et al. [28] for Majority Judgement in
Section 6.
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Fig. 1: Benchmarks of all implemented election result functions in comparison to Ordinos. Note that the
x-axis uses the number of choices instead of the number of candidates.

Fig. 2: Benchmarks of Different Election Result Functions.

While in many voting methods, such as single and multi vote elections, a single choice directly corresponds
to one candidate, this is not always the case. E.g., the in case of majority judgement with r grades, we need
r choices to represent each candidate (essentially, the voter sets one out of r choices to 1 with all other
choices being 0 to indicate a grade in such a way that it can be aggregated). In the case of Condorcet
voting, which is a ranked voting method where every candidate is compared with every other candidate, the
number of choices is even quadratic in the number of candidates. Therefore, Figure 2 translates the runtime
results of Figure 1 from numbers of choices nchoices to the corresponding number of supported candidates.
Additionally, Figure 2 also shows the sizes of the CRSs. As can be seen, in most cases even elections with
more than 80 candidates can still be tallied in under 3 minutes. This candidate size should already cover most
elections from practice. But our system also scales quite well for much larger numbers. The only exceptions
are IRV (not shown in this figure but discussed separately in Section 4.3) and Condorcet (with the Smith
set evaluation function, but the same should also apply for other result functions), which scales worse due
to the quadratic translation from choices to candidates. We note, however, that Condorcet elections are
typically performed only for small to moderate numbers of candidates (less than a dozen) since voters have
to fully rank all candidates on their ballot, which beyond already 20 candidates becomes very tedious and
impractical. So for practical purposes the performance of Kryvos when applied to Condorcet appears to be
sufficient.
Ballot validity. To show validity of a ballot (for all voting methods except IRV, which is discussed in
Section 4.3), a voter computes a single Groth16 SNARK that takes the single Pedersen vector commitment
of slot size N = nchoices obtained by aggregating the commitments on all vote shares of a voter as public
input, the opening as secret input, and then proves that the opening is from the correct choice space and
corresponds to the commitment. Just as for the tallying SNARK, the runtime for computing a ballot SNARK
is dominated by proving knowledge of a decommitment. Hence, runtime is linear in the number of choices
nchoices and essentially independent of the choice space. In Figure 3, we show the runtime translated to the
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Fig. 3: Benchmarks of SNARKs for proving Ballot validity. Note that the line for Single-Vote coincides with
the line for Multi-Vote.

number of candidates as well as the sizes of the CRSs. As this figure shows, voters can efficiently prove the
validity of their ballots for all voting methods. Even in the worst case of Condorcet in an election with, say,
20 candidates (which is at the very high end for Condorcet), a voter can prove ballot validity in less than 40
seconds using a CRSEK of less than 0.5 GB.
Public Verification Phase. Each Groth16 SNARK proof can be verified in ∼ 15 ms using the smaller
CRSVK, where a single proof is of size ∼ 5 KB. As an example, consider a single vote election (Csingle) with an
arbitrary number of talliers and up to nchoices = 1,000 candidates and nv = 100,000 voters. Such an election
requires 100,000 Groth16 SNARK proofs for showing well-formedness of ballots and a single Groth16 SNARK
proof for showing correctness of the election result. In total, the size of all proofs is ∼500 MB with a total
sequential verification time of ∼25 minutes. Verification requires two CRSVKs, both of them having size less
than 150 MB. We note that this verification can be highly parallelized and also already performed while
other phases, such as the voting phase, are still running.

4.3 Instantiation of Instant-Runoff Voting

Instant-runoff-voting (IRV) is a quite complex ranked voting method used for example in political elections
in Australia [2], India [3], the UK [4], and the US [5]. In IRV, the ballot of a voter contains a (full or
partial) ranking of all of the candidates according to her preferences. Tallying of these ballots is then done in
multiple rounds: in each round, if a candidate is ranked first by an absolute majority of voters, this candidate
immediately wins the election. Otherwise, the candidate who is ranked first by the least number of voters
is eliminated. As a result of this elimination, all ballots are edited by removing the eliminated candidate,
allowing all of the following candidates to move up in the ranking. This process is then iterated. To handle
possible ties, IRV versions include different tie-breaker mechanisms to decide how the round proceeds. One
of the more complex versions of IRV is used for the New South Wales Legislative Assembly election [2]
(called NSW-IRV in the following), which not only supports partial rankings of candidates but also includes
a sophisticated tie-breaking mechanism (cf. Appendix F). We therefore use NSW-IRV for our benchmarks.

For an IRV instantiation of Kryvos, we need to be able to aggregate the tally. This ensures a minimal
level of vote privacy towards the talliers and that runtime of the tallying phase is independent of the number
of voters. We achieve this by using the choice space Csingle from the single vote method but interpret each
choice as a (full or partial) ranking of candidates. For example, for ncand = 5, we have nchoices = 120(= 5!)
choices for fully ranked IRV, where each choice represents a permutation of the full set of candidates, and
nchoices = 326 for partially ranked IRV (as in NSW-IRV), where each choice represents a permutation of a
partial set of candidates. The result function fres of Kryvos is set to capture the multiple tallying rounds,
including modifications to the ballots after each round as well as tie breaker mechanisms of the specific IRV
version.

However, this choice space grows exponentially in the number of candidates and thus quickly leads to
situations where voters cannot prove validity of their ballots in reasonable time (for the slot size N = nchoices).
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E.g., while the case of ncand = 5 and hence nchoices = 326 is still manageable for voters (the ballot SNARK
requires only 30 seconds to compute), for ncand = 6 and hence nchoices = 1,957 computing the ballot SNARK
already requires 3 minutes, which is typically not considered acceptable. One option to try and improve
this situation would be to replace the ballot SNARKs with traditional specialized ZKPs that are optimized
for the choice space Csingle. However, as we show in Appendix F, this approach only improves ballot ZKP
runtime for very small slot sizes N close to 1, in which case the runtime of the tallying SNARK becomes
entirely impractical.

However, we can actually improve the runtime of the ballot SNARK by splitting the ballot into a small
number of parts and then showing multiple SNARKs in parallel. Specifically, encoding a ballot via ntuples > 1
separate commitments, each having slot size N ≈ nchoices/ntuples, one can show the well-formedness of a ballot
belonging to Csingle := {(x1, . . . , xnchoices

) | xi ∈ {0,1},
∑nchoices

i=1 xi = 1}12 via multiple sub-statements, where
each statement is concerned only with one commitment, namely:

(a) For each commitment ci,j , 1 ≤ j < ntuples:
all slots x(j−1)·N+1, . . . , xj·N in ci,j are either 0 or 1.

(b) For ci,ntuples : the first slots x(ntuples−1)·N+1, . . . , xnchoices
are either 0 or 1, and all remaining slots xnchoices+1, . . . ,

xntuples·N are 0.
(c) For ci :=

∑ntuples

j=1 ci,j : The commitment contains a single slot with value 1 and all other slots are 0.13

In Appendix F we describe a mechanism that allows for using single CRS for showing all of the above
statements, instead of having three separate CRS each of them with roughly the same size.

Using this method, we have to determine a suitable slot sizeN (and hence corresponding ntuples). A smaller
N allows for higher parallelism up to the number of CPU cores available and hence improves runtime for the
ballot SNARK. At the same time, a smaller N increases the combined runtime of all ballot sub-SNARKs
(as shown in Section 4.1 but also since (c) introduces an additional decommitment over a new aggregated
commitment, which is not necessary if all statements are shown in a single SNARK) and of the single tallying
SNARK, which cannot be parallelized. Table 2 shows the benchmarks for various possible slot sizes for an
IRV election with 6 candidates. The line “Ballot SNARK: Prove” indicates the runtime for computing a
single substatement and hence also indicates the overall runtime if all statements (1 statement for ntuples = 1
and ntuples + 1 statements otherwise due to the addition of (c)) can be computed in parallel. The line
“Ballot SNARK: Total Time” gives the combined sequential runtime. As the table shows, even if we use only
ntuples = 3 and hence N ≈ nchoices/3, then a voter with a commonly available quad core CPU can already
construct a ballot in less than a minute, which is manageable. The performance progressively improves as a
larger number of cores is available, while the tallying SNARK remains almost as efficient as for ntuples = 1,
i.e., N = nchoices. Hence, using the above construction Kryvos can also handle IRV elections with 6 candidates.

Following the case study of [1], we illustrate the overall performance of Kryvos by using real election
data from the 2015 New South Wales state election for the Legislative Assembly [74]. More specifically,
we consider the electoral districts of Albury (five candidates) and Auburn (six candidates), which were
also target elections for a partially tally-hiding election system proposed in [1]. Our results are given in
Table 3, showing that such (complex) elections can be performed in a publicly tally-hiding way using Kryvos.
considered.

5 Security

In this section, we formally show that Kryvos enjoys verifiability and privacy properties as desired. For this
purpose, we, for the first time, define the notion of publicly tally-hiding e-voting (Section 5.3).
12 This approach is also applicable to certain other choice spaces.
13 While (a), (b), and (c) in conjunction prove the well-formedness of a ballot in ZK, they actually do not prove

knowledge of a witness. Intuitively, this is because one can re-arrange the components of a ballot with valid proofs
to create a new ballot with valid proofs, even without knowing the contents of the commitments. However, Kryvos
actually only requires a zero knowledge proof of correctness in order to be secure (cf. Section 5). Alternatively, one
could add the position of each commitment as additional public input.
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# Commitments (= ntuples) 1 2 3 5 10
Slot Size N 1,957 979 653 392 196

Ballot SNARK: # Constraints 1,741,532 874,046 584,884 353,377 179,525
Ballot SNARK: CRSEK [GB] 2.42 1.22 0.81 0.49 0.25
Ballot SNARK: CRSVK [MB] 261 131 88 53 27
Ballot SNARK: Prove [s] 171 85 57 34 17
Ballot SNARK: Total Time 171 257 230 209 196
Tallying SNARK: # Constraints 1,748,926 1,755,475 1,762,024 1,774,240 1,802,575
Tallying SNARK: CRSEK [GB] 2.43 2.44 2.45 2.47 2.5
Tallying SNARK: CRSVK [MB] 262 263 264 266 270
Tallying SNARK: Prove [s] 171 172 173 174 177

Table 2: Comparison of various slot sizes for NSW-IRV with ncand = 6 and thus nchoices = 1,957.

District Albury Auburn
Number of Candidates 5 6

Number of Voters 46347 43783

Kryvos [1] Kryvos [1]
Tallying 30 s 2h 177 s 15 h

Tallying: SNARK Proof [s] 30 177
Tallying: SNARK CRSEK Size [MB] 450 2,500
Tallying: SNARK CRSVK Size [MB] 47 270

Table 3: Benchmarks of NSW-IRV. We note that the benchmarks of [1] are taken directly from [1] which
uses a setup comparable to the one we used for Kryvos, cf. Appendix F. For Kryvos, we used a slot size of
196.

5.1 Computational Model of Kryvos

We start by formally modeling Kryvos using a general and established computational framework (see, e.g.,
[75, 76, 20]) that we can use both for analyzing verifiability and privacy of Kryvos.

The computational model introduces the notion of a process which can be used to model protocols
(we recall some details in Appendix H). Essentially, a process π̂P modeling some protocol P is a set of
interacting ppt Turing machines which capture the honest behavior of protocol participants. The protocol P
runs alongside an adversary A, modeled via another process πA, which controls the network and may corrupt
protocol participants; here we assume static corruption. We write π=(π̂P‖πA) for the combined process.

Kryvos can be modeled in a straightforward way as a protocol PKryvos(nv,nt,C,fres,µ) in the above sense.
Recall from Section 3 that we denote the number of voters by nv, the number of talliers by nt, and the
voting method by (C,fres). By µ we denote a probability distribution over C according to which each honest
voter makes her choice. (Note that by this we model that the adversary knows this distribution.) This choice
is called the actual choice of the voter. Besides the parties mentioned above, Kryvos contains a BB. In our
model of Kryvos, the voting authority Auth is part of an additional agent, the scheduler S. Besides playing
the role of the authority, S schedules all other agents in a run according to the protocol phases. The trust
assumptions are as explained and motivated at the beginning of Section 3.1 and the end of Section 3.2.
In particular, we assume that the voting authority Auth (more generally, the scheduler S) and the BB are
honest, i.e., are not corrupted by the adversary.

5.2 Verifiability

In this section, we establish the level of verifiability provided by Kryvos. To this end, we use the generic and
widely used verifiability definition proposed in [75] which we briefly recall first. This definition has already
been applied to numerous e-voting protocols and building blocks thereof [24, 77, 8, 78, 79, 76, 75, 80, 81].
Verifiability Framework. The verifiability definition [75] assumes a “virtual” entity, called the judge J,
whose role is to either accept or reject a protocol run. In a real election, the program of the judge can be
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executed by any party, including external observers and even voters themselves. The judge takes as input
solely public information (e.g., the zero-knowledge proofs in Kryvos published on the BB to perform certain
checks). In the context of e-voting, for verifiability to hold, the judge should only accept a run if “the
announced election result corresponds to the actual choices of the voters”. This statement is formalized via
the notion of a goal γ of a protocol P. A goal γ is simply a set of protocol runs for which the mentioned
statement is true, where the description of a run contains the description of the protocol, the adversary with
which the protocol runs, and the random coins used by these entities.

Now, following [75] (see also Appendix J), we say that a goal γ is verifiable by the judge J in a protocol
P, if the probability that J accepts a run r of P even though the goal γ is violated (i.e., r /∈ γ) is negligible
in the security parameter.
Analysis. We prove the verifiability result for Kryvos under the following assumptions:
(V1) The encryption scheme is correct, the commitment scheme is homomorphic and computationally bind-
ing, and all NIZKPs are (computationally) sound.
(V2) The scheduler S, the judge J (see Appendix K), and the BB are honest: ϕ = hon(S)∧hon(J)∧hon(B).14

Note that an arbitrary number of voters and talliers may be controlled by the adversary.
We instantiate the verifiability definition with the goal γ(ϕ) proposed in [20], which captures the intuition

of γ given before and with ϕ as above (see Appendix J).

Theorem 1 (Verifiability). Under the assumptions (V1) and (V2), the goal γ(ϕ) is verifiable by the judge
J in the protocol PKryvos(nv, nt, C, fres, µ).

Our formal proof of the verifiability theorem is provided in Appendix K. This result mainly uses the
soundness of the NIZKPs/SNARKs employed in Kryvos. The underlying relations of these proofs (see Ap-
pendix B.1) yield a “global” relation which effectively ensures the goal γ(ϕ).

5.3 Privacy

Our privacy analysis of Kryvos makes use of the privacy definition for e-voting protocols proposed in [76].
This definition is particularly useful for our purposes as it allows us to measure the level of privacy a protocol
provides, especially compared to protocols that publish the full tally, unlike other definitions (see, e.g., [82]).
We first briefly recall the privacy definition from [76] (Definition 1). We then formally introduce the novel
notion of publicly tally-hiding e-voting (Definition 2) and show that Kryvos meets this notion.
Privacy Framework. The definition proposed in [76] formalizes privacy of an e-voting protocol as the
inability of an adversary to distinguish whether some voter Vobs (the voter under observation) who runs her
honest program voted for choice m0 or choice m1.

To define this notion formally, we first introduce the following notation for an arbitrary e-voting protocol
P for voting method (C,fres). Given a voter Vobs and m ∈ C, we consider instances of P of the form
(π̂Vobs

(m)‖π∗‖πA) where π̂Vobs
(m) is the honest program of the voter Vobs under observation who takes m as

her choice, π∗ is the composition of programs of the remaining parties in P, and πA is the program of the
adversary. In the case of Kryvos, π∗ includes the scheduler, the BB, all other voters, and all talliers.

Let Pr[(π̂Vobs
(m)‖π∗‖πA)(`) 7→ 1] denote the probability that the adversary writes the output 1 on some

dedicated tape in a run of (π̂Vobs
(m)‖π∗‖πA) with security parameter ` and somem ∈ C, where the probability

is taken over the random coins used by the parties in (π̂Vobs
(m)‖π∗‖πA).

Now, vote privacy is defined as follows, where for Kryvos we quantify over all adversaries πA which neither
corrupt the BB nor the scheduler S.

Definition 1 (Privacy). Let P be a voting protocol, Vobs be the voter under observation, and δ ∈ [0,1].
Then, P achieves δ-privacy, if for all choices m0,m1 ∈ C and all adversaries πA the difference

Pr[(π̂Vobs(m0)‖π∗‖πA)
(`) 7→ 1]− Pr[(π̂Vobs(m1)‖π∗‖πA)

(`) 7→ 1]

14 See Appendix J for more details on ϕ.
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is δ-bounded as a function of the security parameter 1`.15

In other words, the level δ is an upper bound of an arbitrary adversary’s advantage to “break” vote privacy.
Therefore, δ should be as small as possible. Note, however, that even for an ideal e-voting protocol with a
completely passive adversary, δ might not be 0 (depending on the result function): for example, if the full
tally is published as part of the result, then there might be a non-negligible chance that all honest voters,
including the voter under observation, voted for the same candidate, in which case the adversary can easily
derive from the final tally how the voter under observation voted.
Ideal Privacy. Often, and this will also be the case for Kryvos, formal privacy results are formulated
w.r.t. the privacy level δideal

(nv,nh
v ,µ)

(C, fres) an ideal voting protocol Ivoting(nv, nhv , C, fres, µ) for voting method
(C,fres) provides. In this protocol (cf. Figure 11 in Appendix I), honest voters pick their choices according to
the distribution µ. In every run, there are nhv many honest voters and nv voters overall. The ideal protocol
collects the votes of the honest voters and the dishonest ones (where the latter ones are independent of the
votes of the honest voters) and outputs the result according to the function fres.

A generic formula of δideal
(nv,nh

v ,µ)
(C, fres) for arbitrary voting methods (C, fres) was published in [24]. In

this work, for the first time, we instantiate δideal
(nv,nh

v ,µ)
(C, fres) for complex ranked-choice voting methods,

such as IRV. We depict concrete values of the ideal privacy level for the IRV function fIRV for two different
distributions in Figure 4. While one distribution is uniform, the other is modeled more realistically: we
sorted the candidates into a political spectrum and assumed that if a voter chooses a candidate as her first
preference, she will most likely rank a candidate with a similar political opinion as rank 2 (see Appendix G
for details). As the figure shows, revealing the full tally leads to a very low level of privacy, as expected,
causing severe privacy issues, like for example Italian attacks. Comparing these levels with the ones revealing
only the winner demonstrates that voting systems which hide the tally for ranked-choice voting methods
provide dramatically better vote privacy than those voting systems which always reveal the complete tally.
Even more: we see that hiding the tally is in fact necessary to achieve a reasonable privacy level for IRV
elections that include more than just a few candidates. For simple voting methods, privacy levels comparing
tally-hiding and non-tally-hiding systems can be found in [24].

0

0.2

0.4

0.6

0.8

1

1 10 50 100 200 500
number of honest voters (without the observed voter)

pr
iv
ac
y
le
ve
l(
δ) fIRVcomplete (uniform)

fIRV (uniform)
fIRVcomplete (non-uniform)

fIRV (non-uniform)

Fig. 4: Level of privacy (δ) for the ideal protocol with 5 candidates, IRV voting, and no dishonest voters.
fIRVcomplete reveals the complete tally and fIRV only reveals the winner of the election.

Publicly Tally-Hiding. We now introduce the novel notion of publicly tally-hiding e-voting. Intuitively,
an e-voting protocol P (like Kryvos) is publicly tally-hiding for some voting method (C, fres) if the following
two conditions hold true:

1. Public privacy: Under the assumption that all talliers are honest, P provides the same level of privacy as
the ideal voting protocol Ivoting for voting method (C, fres), which reveals nothing but the actual election
result by definition. That is, no one, except for the talliers, learns anything beyond the published election
result.

15 A function f is δ-bounded if, for every c > 0, there exists `0 such that f(`) ≤ δ + `−c for all ` > `0. Also see e.g.
[83] for an explicit formula for δ.

17



2. Internal privacy: Under the assumption that less talliers than a certain threshold t are dishonest, P pro-
vides the same level of privacy as the ideal voting protocol Ivoting for voting method (C, fcomplete), where
fcomplete is the function that returns the full tally (e.g., the number of votes for all choices/candidates).
In other words, the talliers do not learn more than they would for a non-tally-hiding secure e-voting
protocol.

We now define this notion formally. We assume some set T of talliers and some threshold t; for Kryvos we
have T = {T, . . . ,Tnt

} and t = nt.

Definition 2 (Publicly Tally-Hiding). Let P be a voting protocol with a set of talliers T and t ≤ |T |.
We say that P is (δp, δi)-publicly tally-hiding w.r.t. (T , t) iff the following two conditions hold true:

Public Privacy: If all parties T ∈ T are honest, then P achieves δp-privacy.
Internal Privacy: If at most t− 1 parties T ∈ T are dishonest, then P achieves δi-privacy.

We call δp the public and δi the internal privacy level.

As explained, the public and internal privacy levels of a secure protocol should correspond to privacy levels
of the ideal protocols mentioned above. However, we do not explicitly require this in the definition in order
to be able to use this definition to measure the privacy level of an e-voting system. Moreover, we note that
for all “reasonable” publicly tally-hiding voting protocols, the public privacy level δp should be much better
(closer to 0) than the internal privacy level δi.
Analysis. To analyze the publicly tally-hiding property of Kryvos, we make the following assumptions about
the primitives we use (see also Section 3):

(P1) The public-key encryption scheme is IND-CCA2-secure, the SNARKs and the NIZKPs are perfectly
zero-knowledge, and the commitment scheme is perfectly hiding.

(P2) An adversary πA does neither corrupt the scheduler S nor the BB, and at least nhv voters are honest.

Theorem 2 (Publicly Tally-Hiding). Let T = {T, . . . ,Tnt} and t = nt. Then, assuming (P1) and
(P2) hold, the voting protocol PKryvos(nv, nt, C, fres, µ) is (δideal(nv,nh

v ,µ)
(C, fres), δ

ideal
(nv,nh

v ,µ)
(C, fcomplete))-publicly

tally-hiding w.r.t. (T ,nt).

The previous theorem essentially states that the public privacy level δp of Kryvos is the ideal one for
(C,fres), and its internal privacy level δi is the ideal one for (C,fcomplete) where fcomplete returns the number
of votes for each choice/candidate. Figure 4 illustrates that for IRV Kryvos dramatically improves public
privacy compared to non-tally-hiding systems (for which δi = δp ≥ δideal(C, fcomplete)).

The formal proof of Theorem 2 is provided in Appendix I. The proof is based on two sequences of games,
one for internal and one for public privacy, respectively.

6 Related Work

In this section, we discuss and compare Kryvos with related e-voting systems that were designed to be tally-
hiding [25, 26, 29, 27, 28, 24, 84, 85] or to protect against Italian attacks [30, 22, 23, 1, 29, 31], respectively.
We also briefly discuss our choice of the Groth16 SNARK in comparison with alternative proof systems.
Fully tally-hiding e-voting. The idea of fully tally-hiding e-voting and the first such system was proposed
by Benaloh [25]. Hevia and Kiwi [26] published a fully tally-hiding e-voting system specifically tailored to
jury votings. Wen and Buckland were the first to show how the tally can be fully hidden in IRV elections [29].
However, unlike Kryvos, the aforementioned protocols [25, 26, 29] were neither formally proven secure nor
were they implemented to show their practicality (e.g., the computational complexity of [29] suggests that it
is actually not truly practical). Another fully tally-hiding e-voting protocol has been proposed by Szepieniec
and Preneel [27], but unfortunately, their protocol is insecure. The authors discuss some mitigations but do
not solve the problem (see [27], Appendix A, for details). Cortier et al. [85] have proposed fully tally-hiding
MPC components for the tallying phase of a multitude of result functions and studied their asymptotic
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complexity but do not provide an implementation for showing their practicality. We therefore concentrate
our discussion regarding fully tally-hiding systems on [28, 24] in what follows. The design of these systems
is quite different to Kryvos as they are based on MPC.

Canard et al. [28] proposed a fully tally-hiding e-voting system specifically for Majority Judgement.
However, there is a non-negligible chance that the system does not output a result.16 They implemented
their system and provide benchmarks which demonstrate that their system can handle large numbers of
voters, just like Kryvos. While their system needs almost 20 minutes to tally 5 candidates with 5 possible
grades and up to 220− 1 voters, Kryvos can handle all practically relevant numbers of candidates and grades
with up to 232 − 1 voters, as shown in Figure 2. For example, 7 candidates and 6 grades are evaluated in
5.678 seconds. Hence, Kryvos shows for the first time that publicly tally-hiding systems can not only realize
majority judgement but also, as initially hoped, indeed achieve much better efficiency than a fully tally
hiding system (by providing weaker privacy towards talliers). We further note that, in contrast to Kryvos,
the security of [28] was not formally analyzed and the implementation was not tested in a distributed network
but on a single computer only. Due to the online complexity of the underlying MPC protocol employed in [28],
it is not clear how [28] performs in real-world distributed tallying scenarios.

Ordinos [24, 84] is the first provably secure verifiable fully tally-hiding e-voting system. It has been
implemented for a wide range of voting methods and result functions with detailed benchmarks provided
in [24, 84]. The main difference between Kryvos and Ordinos is their balance between efficiency and the
tally-hiding property they provide: Ordinos provides the stronger notion of fully tally-hiding and is practical
for rather simple voting methods (single and certain multi votes), simple result functions, and only a limited
number of choices (yet large numbers of voters), whereas Kryvos provides the relaxed notion of public tally-
hiding and is practical even for very complex voting methods (e.g., Borda or Condorcet methods) and result
functions (e.g., IRV) and large numbers of possible choices. This is also illustrated in Figure 1 where we
compare the runtime of various result functions of Ordinos and Kryvos. Unlike for Kryvos, the result function
has a strong impact on performance in Ordinos. The benchmarks of the vote threshold result function
of Ordinos provide a lower bound for all other result functions that Ordinos supports. We also include
benchmarks of the Condorcet Smith set result function from the extension of Ordinos [84] to illustrate that
this is indeed the case.

We again note that both publicly tally-hiding and fully tally-hiding protocols offer the same level of
privacy w.r.t. the public. However, fully tally-hiding protocols offer a better level of privacy w.r.t. talliers,
whereas publicly tally-hiding systems can provide better efficiency, as demonstrated by Kryvos.

Partially tally-hiding e-voting. A number of partially tally-hiding protocols have been proposed that
solve the long-standing issue of Italian attacks for complex voting methods, such as Condorcet, Borda, IRV,
and STV (e.g., [30, 22, 23, 1, 31]). In fact, as far as we are aware, all existing partially tally-hiding systems
focus on mitigating Italian attacks. Some of these systems are quite efficient and able to handle real world
elections, such as [1], which is one of the most efficient ones and has been shown to be practical for the 2015
New South Wales IRV elections.

As already described in Section 1, partially and publicly tally-hiding systems offer different trade-offs
between privacy and efficiency compared to fully tally-hiding ones. These trade-offs lead to incomparable
privacy properties. Specifically, while publicly tally hiding protocols hide the full tally from the public,
partially tally-hiding systems still reveal some intermediate information about the tally to the public. For
example, in the voting protocol for IRV elections by Ramchen et al. [1], the public learns, among others, the
order of the weakest candidates, which might embarrass those candidates. On the other hand, partially tally-
hiding protocols hide parts of the tally even from internal parties, whereas publicly tally-hiding protocols
reveal the full aggregated tally to the talliers. Hence, Kryvos does not protect against Italian attacks performed
by (one of) the talliers. This is in contrast to the partially and fully tally-hiding systems mentioned above,
which protect against Italian attacks also in this situation.

16 The reason for this is due to the underlying evaluation algorithm that does not provide a result for every possible
tally. Kryvos uses a different algorithm that always outputs the correct result.
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In terms of efficiency, Table 3 illustrates that Kryvos is well able to handle the same real world IRV elections
as [1]. Hence, both protocols are practical solutions for IRV elections that provide different incomparable
balances in terms of privacy.
Regarding the choice of the Groth16 SNARK. There are many other possibilities for instantiating
the zero-knowledge proofs for Kryvos. However, in comparison with Groth16, many existing constructions
have significantly worse benchmarks in terms of proof size and/or verification time [46, 47]. Furthermore,
constructing a secure e-voting system requires care and not every proof system is directly applicable in this
context. For example, [86] tries to construct a secure e-voting system based on Commit-and-Prove SNARKs
[87] but faces several challenges when breaking the link between a casted ballot and a voter.

However, we emphasize that the (results for the) efficient combination of algorithms for computing Ped-
ersen commitments will also carry over to other SNARKs as long as the base field of the elliptic curve for
the Pedersen commitments is compatible with the base field of the SNARK. This is the case for Groth16,
but might require some work for other SNARKs.

7 Conclusion

With Kryvos, we proposed the first provably secure verifiable e-voting system which directly follows the
common practice of publicly tally-hiding elections. This enabled us to come up with a radically different
design which offers a new, practically relevant balance between privacy and efficiency compared to all previous
approaches.

Along the way, we presented and carefully evaluated various design and implementation options for
publicly tally-hiding systems, which does motivate and justify the current system.

We finally note that Kryvos is of interest also beyond its tally-hiding property since it is the first verifiable
homomorphic e-voting system that supports very complex ballot formats, along with complex well-formedness
conditions. By this, Kryvos also opens new options for homomorphic e-voting systems in general.
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A Designing Circuits for QAPs

A.1 Efficiently Proving Knowledge of the Tally

A SNARK can in principle be used to prove statements for arbitrary relations, however, the resulting perfor-
mance (in terms of runtime, memory overhead, bandwith, ...) quickly deteriorates and becomes impractical
for large circuits such as, e.g., cryptographic algorithms (see, e.g., [53, 54]). Therefore, a main challenge of
using SNARKs consists of carefully constructing suitable circuits with minimal numbers of constrains for
the intended relations such that the resulting SNARKs are practical. While we discuss the overall circuits
for our SNARKs in Section 4, we need as a central building block for all of our SNARKs an efficient circuit
for verifying decommitments, which we construct in the following.
Commitment Scheme. We use Pedersen commitments over a group (G, ·) of order q with generator g
as introduced in [55]. Recall that to compute a Pedersen commitment, one first takes an auxiliary value h
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defined by h = ga for a uniform a
$←− Fq and then commits to a value v ∈ Fq with Com(v,r) = gvhr using a

uniform r
$←− Fq \{0}. Pedersen commitments are a standard solution that have a simple structure and hence

also rather small computational complexity. Furthermore, they are additively homomorphic and perfectly
hiding.

The choice of the group G significantly affects efficiency of the corresponding SNARK, with some groups
being more favorable than others. For example the first natural choice G = Fq for a prime q of secure bit
length at least 2,048, is a priori incompatible with the underlying proof system, which supports only values
of up to 255 bits. While it is possible to circumvent this problem, e.g., by splitting each value (of at least
2,048 bits) into chunks of at most 255 bits, the resulting circuit would be too inefficient for our use case (cf.
the benchmarks for RSA encryption in [53]). We therefore use an elliptic curve G, where sufficient security
guarantees are already available at a much lower length q.

We choose specifically Curve25519 which is a Montgomery curve that works over Fq with q = 2255 − 19
prime and curve equation y2 = x3 + Ax2 + x for some A ∈ Fq with A2 6= 4. The exact value of A does
not affect the efficiency of the SNARK in terms of the number of constraints representing the corresponding
arithmetic circuit and can therefore be chosen freely (under the requirement A2 6= 4 of the curve). We use
A = 486,662 as done in [88]. The coordinates of this curve can be represented by 255 bits and therefore do
not require a splitting approach.

Optimizing the circuit. A Pedersen commitment gv · hr requires exponentiations and multiplications,17
with exponentiations being the most expensive operation.

The chosen Montgomery curve allows to compute the exponentiation of a point g of G purely based on
the first (affine) coordinate of g = (gx,gy) ∈ Fq × Fq and therewith we do not require a splitting approach.
Furthermore, exponentiation on a Montgomery curve can be realized very efficiently with the ladder algo-
rithm [89], [90] and this efficiency transfers to the SNARK—an observation already made in [53]. To fully
use the efficency advantage of the ladder algorithm we have to work with projective coordinates for the
exponentiation, since the resulting circuit does not have to seperately check special cases related to ∞ then.
For other operation however, e.g. for multiplication, we use affine coordinates. Generally, we chose for each
algorithm, the representation that allows the most efficient execution of this specific algorithm.

Unlike previous results, e.g. the C∅C∅-framework which focuses on a Diffie-Hellman key exchange inside
a SNARK, Pedersen commitments do not only require exponentiations of points inside the SNARK, but
also the multiplication of different curve points gv and hr in order to compute Com(v,r) = gv · hr. For
this multiplication we do however need the y-coordinate of both gv and hr, which are not provided by the
Montgomery ladder. There is however a standard way to reconstruct a y-coordinate by Okeya and Sakurai
[56]. Their algorithm (y-Rec) takes the output of a Montgomery ladder, which is apart from (gv)x also
(gv+1)x, as well as both coordinates of the original input g, and outputs the y-coordinate of (gv)y.

After we recovered both coordinates, we perform the before mentioned switch from projective to affine
coordinates to prepare for the final multiplication of gv and hr.18 The multiplication of gv and hr is then
done in the standard way for Montgomery curves.

Altogether, we get the circuit illustrated in Figure 5 for the computation a Pedersen commitment.
Table 4 shows micro benchmarks of these operations inside the SNARK. Essentially, the recovery of the

y-coordinate, the conversion, and the point multiplication are rather negligible compared to the complexity
of the Montgomery ladder. This also shows that a Montgomery curve is a suitable choice in our setup, since
the advantage of the efficient exponentiation on this curve easily compensates for the additional Okeya and
Sakurai algorithm.

In principle, we have now obtained a way to represent a Pedersen commitment through an arithmetic
circuit. However, as Table 4 shows, even with our design choices, representing a single Pedersen commitment
still costs 11,701 constraints, which still turns out to be too expensive for our application.

17 To stay compatible with the usual notation for Pedersen commitments, we denote the group operation on an
elliptic curve with · instead of the usual +. The wording addition and multiplication is consequentially changed to
multiplication and exponentiation.

18 The coordinate transformation costs 15 constraints.
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Fig. 5: Circuit of a Pedersen commitment. By g.x resp. g.y we denote the affine x-coordinate and the affine y-
coordinate of g, while upper case letters denote the respective projective coordinates. Additionally, projective
coordinates are illustrated in blue.

Operation Constraints
Montgomery Ladder [89] (255 bits Exponent) 5,084
Montgomery Ladder [89] (32 bits Exponent) 624

y-Coordinate Recovery (Okeya-Sakurai Algorithm [56]) 39
Point Multiplication 86

Conversion (Projective to Affine Coordinates) 16
Pedersen Commitment (v of 255 bits, r of 255 bits) 11,701
Pedersen Commitment (v of 32 bits, r of 255 bits) 6,549

Table 4: Number of (QAP) constraints for various operations.

Hence, we will now discuss further optimizations.

A.2 Further Performance Improvements

As discussed before, even with the introduced design choices, the resulting arithmetic circuit for computing a
commitment is still too large for our purposes. Hence, we will now introduce further necessary optimizations
that drastically reduce the number of constraints required for computing the commitments that correspond
to T (recall that in the basic approach one commitment contains the number of votes for one choice, so T is
represented by nchoices commitments). From Table 4 we can see that even when using a Montgomery curve
and the Montgomery ladder, the main factor for the complexity of computing a Pedersen commitment inside
a SNARK are still the exponentiations gv and hr. However, recall that in our application the input v is
actually the aggregated number of votes for a certain candidate/choice and hence v will typically be rather
small and not require the entire 255 bits (for example, in a single-vote election v will not exceed the number
of eligible voters). As indicated by Table 4, limiting v to 32 bits already almost halves the constraints required
to express the computation of a Pedersen commitment inside the SNARK.19 Regarding the randomness r,
however, we will need an exponentiation with up to 255 bits for security reasons.

Next, recall that as part of our system we want to compute commitments corresponding to the tally
T, where T is a list of the aggregated votes vi for each candidate/choice i. If one implements this in a
straightforward manner via standard Pedersen commitments, then there will be one separate commitment
com(vi,ri) per vi (just as Helios uses one ciphertext per choice). Each of these commitments introduces
another exponentiation for some randomness ri to obtain hri , which also needs to be computed in the
arithmetic circuit in order to prove knowledge of T. Since each randomness requires the full 255 bits, this
can become very costly in elections with multiple choices/candidates (cf. left side of Table 1). We solve this
issue by instead using Pedersen vector commitments as described in [58]. Essentially, these commitments
allow for committing to a vector v = (v1, . . . ,vN ) with entries in Fq by computing

Com(v,r) = gv11 · . . . · g
vN
N · h

r

19 Note that the circuit also ensures that the input values are of correct size.
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for generators g1, . . . , gN of G chosen uniformly at random. In this case, we say that N is the slot size of the
commitment. One observes that Pedersen vector commitments are also additively homomorphic, perfectly
hiding, and computationally binding under the discrete logarithm assumption [59]. By setting N to the
number of choices, this construction requires just one exponentiation with randomness of 255 bits to commit
to the full set of choices. This in turn drastically improves both the computational cost but also the size of
the CRS as shown in Table 1. E.g., for committing to 250 values, moving from computing one commitment
per value to computing one commitment for all values in a single SNARK, reduces the amount of required
constraints by more than 1.4 million, which drastically reduces the proof time as well as the CRS size.

All in all, the various presented optimizations allow for proving knowledge of an opening inside a SNARK
efficiently, which we can use in order to prove of knowledge of T in our approach for publicly tally-hiding
e-voting. We can also use this technique to allow voters to prove validity of their ballot. As we will see in
the Section 3, we will need both of these applications in Kryvos.

B Non-Interactive Zero-Knowledge Arguments

The following definition of non-interactive zero-knowledge arguments of knowledge follows [38].
Let R be a relation generator that given a security parameter λ in unary returns a polynomial time

decidable binary relation R. For pairs (x,w) ∈ R, we call x the (public) statement and w the (secret) witness.
We define Rλ to be the set of possible relations R that the relation generator may output given 1λ. We will
in the following assume that λ can be deduced from the description of R. The relation generator may also
output some side information, an auxiliary input z, which will be given to the adversary. An efficient prover
publicly verifiable non-interactive argument for R is a tuple of ppt algorithms (Setup,Prove,Verify,Sim) such
that:

– (CRS, τ)← Setup(R): The setup produces a common reference string (CRS) CRS and a simulation trap-
door τ for the relation R.

– π ← Prove(R,CRS, x, w): The prover algorithm takes as input a common reference string CRS and (x,w) ∈
R and returns an argument π.

– 0/1 ← Verify(R,CRS, x, π): The verification algorithm takes as input a common reference string CRS, a
statement x, and an argument π, and returns 0 (reject) or 1 (accept).

– π ← Sim(R, τ, x): The simulator takes as input a simulation trapdoor τ and statement x, and returns an
argument π.

Definition 3. We say that (Setup,Prove,Verify,Sim) is a perfect non-interactive zero-knowledge argument of
knowledge for R if it has perfect completeness, perfect zero-knowledge and computational knowledge soundness
as described below.

In what follows, we describe the main idea of the respective properties and refer to [38] for the formal
definitions:

– Perfect zero-knowledge: We say that an argument is zero-knowledge if it does not leak any information
besides the truth of the statement.

– Computational soundness: We say that (Setup,Prove,Verify,Sim) is sound if it is not possible to prove a
false statement.

– Computational knowledge soundness: We say that (Setup,Prove,Verify,Sim) is an argument of knowledge
if there is an extractor that can compute a witness whenever the adversary produces a valid argument.

B.1 Zero-Knowledge Proof Relations

In this section, we precisely define the relations for the NIZKPs that are used in Kryvos. We refer to Section 3
for the parameters.
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Well-formed ballot. Let m = (m1, . . . ,mnchoices) be the choice of the voter she wants to commit to. As
specified by Auth, depending on the voting function, this choice is split into ntuples blocks, each of size N .
Thus, the actual committed value is m̃ := (m1, . . . ,mntuples

). Let c := (c1, . . . , cntuples) be these commitments
with randomness vector r := (r1, . . . , rntuples

)
The following relation describes that a vector c is a (vector) commitment to a valid choice m ∈ C with

randomness vector r.

RCballot = {(c, (m̃,r)) : c = Com(m̃; r) ∧m ∈ C}

We denote the SNARK for this relation by Πballot.
Correct final result. Let x = (c⊥,1, . . . , c⊥,ntuples , res) and w = (T, r⊥,1, . . . , r⊥,ntuples). By t⊥,i we denote
the ntuples tuples that represent the tally for the commitments.

The following relation describes that the final result res is correctly computed w.r.t. the commitments
(c⊥,1, . . . , c⊥,ntuples) and result function fres.

Rfres = {((c⊥,1, . . . , c⊥,ntuples , res), (T, r⊥,1, . . . , r⊥,ntuples)) :

(t⊥,0, . . . , t⊥,ntuples) = T, res = fres(T),
∀i ∈ {1, . . . , ntuples} : c⊥,i = Com(t⊥,i; r⊥,i)}

We denote the SNARK for this relation by Πfres .
Correct decryption. The following relation describes that e is an encryption of message m under public
key pk:

Rdec = {((e,m, pk), sk) : m = Dec(e, pk)∧
(∃r : (pk, sk) = KeyGen(r))}

We denote the NIZKP for this relation by Πdec.

C CRS Generation

If the CRSs for the Groth16 SNARKs used in Kryvos are not generated honestly by the voting authority Auth
but were rather generated maliciously (subverted), then the soundness and/or the zero-knowledge properties
of the SNARKs break down.

This trust assumption can be mitigated using standard techniques: To allow for verifying that a CRS
provides the zero-knowledge property, one only has to add some additional elements to the CRS during its
generation, as detailed in [91],[92]. We note that these additional elements do not have to be downloaded in
order to compute a proof, i.e., this mechanism does not add to the overall size that a voter needs to download
in order to submit a ballot. To additionally retain the soundness property, one can let the talliers use MPC
to generate the CRS in a distributed fashion [93], [94], [95]. Under the assumption that at least one tallier
is honest, which we have to make for privacy anyways, the resulting CRS provides soundness.

We note that distributed CRS generation is indeed practical for the parameters used in the Kryvos
instantiations from Section 4: The benchmarks of Bowe et al. [94] for a system with 221 constraints show
that generating and checking the CRS took approximately an hour. The SNARKs used in our system are
quite similar to those benchmarked in [94] (in particular we use approximately 5 million constraints). We
therefore estimate our case to be in the same order of magnitude. Since CRS generation can be performed
far ahead of time, and needs to be performed only exactly once for each voting method, distributed CRS
generation is a viable option.

Alternatively, in cases where trusting a hardware manufacturer is an option (e.g., small low stake elections
such as boardroom voting), one can use trusted execution environments (TEEs) such as [96] or [97] to generate
a CRS in an honest manner. The TEE should be chosen suitably, in particular it should have access to true
randomness and a sufficient amount of memory.
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Fig. 6: Benchmarks of SNARKs that compute commitment(s) with different slot sizes to 100 values. Each
point represents a single SNARK that uses commitments with the given number of slots to commit to 100
values.

D The Optimal Number of Slots per Commitment

As discussed in Section 4.1, the slot size of the Pedersen vector commitments used in Kryvos mainly influences
the circuit size of the SNARKs that prove the correct opening of the commitments. These SNARKs appear
at two parts of Kryvos: Firstly, the SNARKs for proving ballot well-formedness in the voting phase. Such
SNARK proofs are created by each voter. Secondly, the SNARK in the evaluation phase used to prove the
correct computation of the result function on the aggregated tally. This proof is created by the designated
tallier. The SNARK for the evaluation always takes as input the complete aggregated tally and computes
the election result based on the values of the aggregated tally. One natural question is to determine the
slot size N used by the vector commitments for optimizing the computation of these SNARKs. Figure 6
shows benchmarks of monolithic SNARKs (i.e., one single SNARK proof is used to prove the correctness of
the openings of nchoices = 100 values) in dependency of the slot size N per commitment (which is equal to
100/#commitments in this case). For N < nchoices, such a monolithic SNARK needs to be computed by the
talliers in order to prove the correct computation of the result function on the aggregated tally. The voters,
however, can create an individual SNARK proof for each commitment.20

As explained in Section 2.3, each additional commitment introduces the computation of another expo-
nentiation with some randomness inside the SNARK, which becomes very costly for large slot sizes. While
in Table 1 we only considered the extreme cases of N = 1 and N = nchoices, we see that the benchmarks in
Figure 6 confirm the intuition that for proving the correct opening using a monolithic SNARK it is in general
more efficient to use less commitments of higher slot size than using many commitments of smaller slot size
for the same number of values. Thus, for the tallying SNARK (which is always a monolithic SNARK), we
want to use the maximum slot size N = nchoices such that all choices fit into a single commitment.

On the other hand, it is crucial that the ballots can be created efficiently. For this, we require that the
creation of the SNARK proof of the ballot’s well-formedness is practical for the voters. As the benchmarks
in Section 4 show, using one Pedersen vector commitment of maximal slot size containing the ballot inside a
monolithic SNARK proof is usually also efficient enough for proving the ballot’s well-formedness. However,
one exception to this is Instant-Runoff Voting (IRV), where nchoices can become particularly high and hence
the size of CRSEK as well as the time necessary to create a proof using a monolithic SNARK can become
inpractical. In these cases we opt for letting voters use multiple commitments of smaller slot size as well
as multiple SNARK proofs even though these multiple commitments only allow for less efficient tallying
SNARKs. However, as already described in Section 4.3, e.g. using a slot size of N = nchoices/10 allows for
computing the SNARK proofs of ballot well-formedness as well as the monolithic tallying SNARK efficiently.

20 Note that using commitments of different slot sizes would require the voters to use a different CRSEK for each
commitment of different size. For this reason, if we want to use multiple commitments and multiple SNARKs, we
always use commitments of equal slot size and adapt the relation to be proved in a way such that the voters need
exactly one CRS for all SNARK proofs (see also Section 4.3 for more details on this relation).
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Fig. 7: Extended Benchmarks of SNARKs for proving Ballot validity.

Fig. 8: Extended Benchmarks of Different Election Result Functions.

E Instantiation for Common Voting Methods

In this section we provide detailed descriptions, including the respective choice spaces, of the voting methods
for which we instantiated Kryvos and provided and discussed benchmarks in Section 4. We provide extended
benchmarks in Figures 7 and 8.
Single-Vote and Multi-Vote. The most straightforward type of elections are single vote elections, where
every voter can give a single vote to one candidate/choice. The votes are then aggregated and used to
compute the final result based on some result function fres, e.g., the candidate with the most votes. This is
easy to capture in Kryvos by using fres along with the choice space Csingle as defined in Section 3.1, where
each choice corresponds to a single candidate.

A generalization of this election type is called multi-vote, where every voter may distribute nvotes votes
among all candidates, potentially even allowing multiple votes for the same candidate. This variant can be
captured by Kryvos using the choice space

Cmulti :=
{
(x1, . . . , xnchoices

) | xi ∈ [0,b],

nchoices∑
i=1

xi = nvotes

}
,

where [0,b] denotes the set {0,1, . . . , b}, b is the maximal number of votes allowed for each candidate and
each choice corresponds to one candidate.

As can be seen from the general discussion in Section 4 (see also Figure 2 and Figure 3 and Figure 7
and Figure 8), Kryvos is quite efficient for both single and multi-vote elections using essentially arbitrary
result functions fres. For example, using an arbitrary number of talliers, nv = 500,000 voters, and up to
nchoices = 1,000 candidates, then each voter needs under 100 seconds to cast a vote and the tallying phase
also takes less than 100 seconds irrespective of fres. In comparison, Ordinos [24] takes more than 90 minutes
to evaluate the same result functions with three trustees and 40 candidates. A more in-depth comparison of
Kryvos and Ordinos is given in Section 6.
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Borda voting is a prominent ranked voting method, which is famously used for determining the winner of
the grand final in the Eurovision Song Contest [69], but also for national elections, e.g., for parliamentary
elections in the Republic of Nauru [70]. In Borda voting, a voter ranks the candidates according to her
preferences and each candidate receives a number of points that depends on the position in the ranking.
There are many ways how these points are determined. For Kryvos, we implemented and benchmarked two
of them - nevertheless, other variants are also viable and can be realized with Kryvos. We implemented a
generalization of the method that is used for the Eurovision Song Contest and for the Republic of Nauru
(we call this variant point list), and the tournament style variant. We allowed arbitrary ties in both variants
(Ties are typically only allowed for the last place in the ranking of Borda elections). All Borda variants
aggregate the points for each candidate, an arbitrary result function can be applied to determine the winner
of the election (for example, the candidate with the most points wins).

The point list ballot format works as follows. Each rank corresponds to a unique number of points defined
via a list P ∈ Nnpoints , where in the standard case, npoints = nchoices is the number of candidates and P[1] is
the number of points assigned to the candidate that is ranked first and so on. The standard version of Borda
requires candidates to be assigned a unique rank (i.e., unique number of points), advanced variants allow for
assigning multiple candidates the same rank, i.e., the same number of points. In that case, if i candidates
are assigned the same rank r, then the next lower candidate is required to start at rank r + i (instead of
r + 1, as is the case when ranks are assigned uniquely).

This is captured by the following choice space, where we interpret P both as a list and a set. Note that
for simplicity we assume that npoints ≤ nchoices.

CBordaPointList(P) =
{
(x1, . . . , xnchoices

)
∣∣∣ ∀i : xi ∈ P ∧

∀r ∈ [1, npoints],∀i ∈ [2, σ(r)] :

@j ∈ [1, nchoices] : xj = P[r + i− 1]

∧ (r + σ(r) ≤ npoints

⇒ ∃j ∈ [1, nchoices] : xj = P[r + σ(r)])
}
,

where σ(r) ∈ [1, nchoices] denotes the number of occurrences of P[r] in (x1, . . . , xnchoices
). Using CBordaPointList(P),

standard Borda can be derived by additionally requiring σ(r) = 1 for all values of r. Further straightforward
variations include allowing the voter to submit only a partial ranking.

The tournament style ballot format works as follows. Based on the ranking of the candidates by a voter,
each candidate receives two points per candidate that is ranked lower, and one point for each other candidate
with the same rank. This is captured by the following choice space:

CBordaTournamentStyle =
{
(x1, . . . , xnchoices

)
∣∣∣ ∀i :

xi = 2 · |{j ∈ [1, nchoices] : xj < xi}|

+ |{j ∈ [1, nchoices] \ {i} : xj = xi|
}
.

As shown in Figures 3 and 7, voters in Kryvos can efficiently prove that their ballots are well-formed.
For example, for up to nchoices = 400 candidates, a prover requires a total runtime of 100 seconds. The
performance of the tallying phase is analogous to single/multi vote.
Condorcet methods are voting methods that can be used for single-seat elections. Among others, Con-
dorcet methods are used for internal elections by the Debian project [73]. All Condorcet methods have the
goal of determining a so-called Condorcet winner, that is a candidate that would win against each other
candidate in direct comparison. However, there is no guarantee that a Condorcet winner even exits, as it is
easily possible that no candidate is preferred by a majority of voters over each other candidate. Therefore
several methods have been proposed in order to loosen the restriction for the election result to only consist-
ing of the Condorcet winner whenever a Condorcet winner exists, while still yielding an election result if no
Condorcet winner exists.
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The most simple idea, as described in [98], is to declare multiple winners. A basic method for this is to
declare a set of winners - the so-called Smith set - as the smallest set of candidates that win against each
candidate outside of the set. Clearly, if an election has a Condorcet winner, then the Smith set will consist
of exactly this candidate.

Kryvos supports elections based on the Condorcet method with Smith set. We allow each voter to indicate
her preferred candidate for each pair of candidates, i.e. a ballot is of the form of an (ncand × ncand)-matrix
A with entries 0 or 1 where ncand denotes the number of candidates, i.e., we have nchoices = ncand · ncand. A
1 at position (i,j) indicates that the voter prefers candidate ci over cj and a 0 indicates that she prefers cj
over ci. In the standard case, we do not allow two candidates to be tied. Furthermore, for such a ballot to
be valid, we require it to be transitive, i.e. if a voter prefers a candidate c1 over c2 and c2 over c3, then we
expect her to prefer candidate c1 over c3.

The corresponding choicespace C is given by

CCondorcet =
{
A ∈ {0,1}ncand×ncand

∣∣∣∀i,j,k ∈ [1, ncand] :

i 6= j =⇒ Aij +Aji = 1 ∧ Aij = Ajk = 1⇒ Aik = 1
}

As indicated in Figures 3 and 7, computing the Ballot SNARKs for elections with above choice space
in Kryvos is comparable to the computation of the other presented Ballot SNARKs and thus feasible. We
note that - without the use of SNARKs - proving well-formedness of the ballots for Condorcet-voting in
zero-knowledge is complex (see, for example, [67]).

Ballots are then aggregated by adding all nv matrices. The designated tallier then computes and publishes
the Smith set. It is used as public input for the SNARK. The generated SNARK proof allows for verifying
that no candidate outside of the Smith set wins against any candidate inside the Smith set and that the set
of winners is minimal. Interestingly, the naive approach, using the Smith set as input and simply checking
that no candidate outside the Smith set wins against any candidate inside the Smith set, is not secure. The
talliers can increase the input set by additional candidates that win against all other candidates outside the
Smith set. The checks will still pass, but the input set is not minimal, and thus by definition not the Smith
set. Instead, we carefully designed another algorithm for the computation of the Smith set as an arithmetic
circuit. We iteratively build the Smith set over multiple rounds such that in each round, candidates that
win against any candidate in the current set, is also added to the possible Smith set. For details about the
algorithm, see [39]. As indicated by the Benchmarks given in Figures 2 and 8, the evaluation is performed
efficiently in Kryvos.

Majority Judgment is a voting system in which the voter grades each candidate independently from
a predefined set of grades [71]. There are two main variants for the evaluation, First, one can output for
each candidate her median grade (called “Median Grade” in the benchmarks in Section 4). Second, if one
wants to get one winning candidate, one can find the candidate with the best median grade. If no such
unique candidate exists, this evaluation method (called “Full” in the benchmarks in Section 4) is carried
out over multiple rounds. In each round, the best obtained median grade is computed. All candidates that
currently have a worse median grade are eliminated. Then, one vote to this median grade is removed for
every remaining candidate. For the next round, the median grades are updated accordingly to the removal
of the single vote. This procedure is repeated until only one candidate is left, who is declared as winner of
the election.

Using this description, the algorithm is highly inefficient due to the fact that the number of rounds is
based on the number of voters (since in each round, only one vote is removed). One can, however, as described
in [71], use an alternative algorithm that only scales in the number of candidates and grades, and not in the
number of voters. The algorithm still computes the same winner as the algorithm above does. Even more,
this algorithm allows for aggregation of the votes. For this, the ballots are a matrix of the candidates and
grades, where entry Aij is set to one if candidates i receives grade j, and zero otherwise. This is captured
by the following choicespace:
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CMajorityJudgement =
{
A ∈ {0,1}ncand×ngrades

∣∣∣
∀i ∈ [1, ncand], j ∈ [1, ngrades] :

Aij ∈ {0, 1} = 1

∧ ∀i ∈ [1, ncand] :
∑

j∈[1,ngrades]

Aij = 1
}

A comparison between Kryvos and [28] is given in Section 6.

F Optimizations and Insights for IRV

In this section we give some more insights on our implementation of NSW-IRV for Kryvos and the benchmarks
we obtained.
Tie Breaking in NSW-IRV. The version of IRV that is used for the New South Wales Legislative
Assembly election [2] (NSW-IRV), includes a sophisticated tie-breaking mechanism: If, in any evaluation
round r, two (or more) candidates are tied for elimination, then both candidates are compared based on the
ballots from round r − 1. The candidate that was ranked first by the least number of votes in that round is
then eliminated. If both candidates are still tied in that round, then the process is repeated with round r−2,
and so on. In rare cases were candidates are tied in all previous rounds, a lot decides who is eliminated. We
model these rare cases where the ties are broken by lot in the deterministic function for the evaluation by
using additional input: For each round, each candidate receives a public value, which is then used to break
ties.
Optimizing the CRS for IRV. If implemented naively, each of the statements (a), (b), and (c) from
Section 4.3 requires its own Groth16 SNARK instance and hence own CRS. Note, however, that all of these
Groth16 SNARK instances are for quite similar functions: they first check that the secret input w is a valid
opening for the public commitment c by re-computing that commitment, and then also show that w has
specific properties. Re-computing the commitment actually accounts for almost the full size of the CRS,
whereas performing any additional checks on w barely affects the size of the CRS. Hence, we can use the
following optimization: we consider a Groth16 SNARK for a function that takes as public input not just
the commitment c but also an additional flag flag ∈ N. This Groth16 SNARK instance allows for creating a
single proof that shows that, on the one hand, the secret input w is an opening for c, and on the other hand,
depending on flag , that w fulfills various additional properties. If nchoices is not a multiple of N , we could
also let the last commitment have a smaller slot size than the previous ones. However, then each voter would
need an additional CRSEK to create a proof for (b). Thus, if nchoices is not a multiple of N , we artificially
increase the slot size of the last commitment in order to be able to use a single CRS for the ballot SNARK.
Comparison of our Setup with the Setup from [1] We have given a comparison of our benchmarks
for the evaluation of NSW-IRV with the benchmarks from [1] in Table 3. We now briefly discuss the setup
that [1] used for obtaining their benchmarks. The benchmarks of [1] are taken directly from [1] which uses
a setup comparable to the one we used for Kryvos, consisting of an Intel i7-6770HQ, 2.6 GHz, with 4 cores
(8 threads) and 32 GB RAM. While the benchmarks of Kryvos are obtained using a single core, [1] does
not state whether a single core or multiple cores were used. Note that the timings given for [1] are actually
lower bounds since they exclude the runtime required for computing some of the NIZKPs during the tallying
phase.
Specialized ZKPs for Ballot Well-Formedness for IRV. As described in Section 4, for Instant-Runoff
Voting, we make use of the choice space for single-vote. This allows for using a specialized ZKP [68] for
showing the ballot well-formedness instead on relying on SNARK proofs. In this section, we want to explore
this possibility.

Specialized ZKPs for Csingle usually work as follows. The ZKP consists of various sub zero-knowledge
proofs that allow for testing of one specific plaintext value of a ciphertext (or commitment):
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Fig. 9: Comparison between specialized ZKPs and SNARK proofs for IRV and Csingle with ncand = 6 and
thus nchoices = 1,957. The benchmarks show the runtime to create a complete proof of ballot well-formedness
without the use of parallelization.

Rvalue
x,pk = {(c, r) | c = Compk(x, r)}

These sub ZKPs are then combined via an OR protocol. In the typical setting with N = 1, i.e., one
commitment contains one value, the ZKP is constructed as follows:

– For each commitment ci, i ∈ [1, ncand]: OR(ci ∈ LRvalue
0,pk

, ci ∈ LRvalue
1,pk

)

– For the aggregated commitment c :=
∑
i∈[1,ncand]

: OR(c ∈ LRvalue
0,pk

, c ∈ LRvalue
1,pk

)

This construction can be extended to support Pedersen vector commitments. For this, the OR protocols
have to test each possible combination of the values in the commitment. Therefore, the number of statements
that are expressed inside each OR protocol increases, while the overall number of OR protocols decreases.
Additionally, increasing the slot size increase the cost handling a commitment, since it contains multiple
values and for each an exponentiation and a multiplication needs to be performed.

Figure 9 shows a comparison of the benchmarks for the specialized ZKPs for Csingle as described above
and SNARK proofs for the same relation for different slot sizes. The benchmarks show that the specialized
ZKPs are more efficient than SNARK proofs, as long as we use small slot sizes. After very few slots per
commitment, the SNARK proofs are more efficient. Thus, one interesting question is to investigate how
efficient the SNARK for the evaluation of the result function is. As shown in Figure 6, using commitments
with more slots is more efficient than using many commitments with less slots. Figure 10 shows benchmarks
for the evaluation of the NSW-IRV result function for 6 candidates using different slot sizes. The benchmarks
show that using a low slot size requires much more computation power for the tallying SNARK. Therefore,
we recommend using SNARKs to show the ballot well-formedness in order to allow for an efficient tallying
SNARK.

G Non-Uniform Distribution for IRV Privacy

The non-uniform distribution in Figure 4 is as follows: the probabilities for the first rank are (0.3, 0.2, 0.2, 0.12, 0.18).
If the first rank is candidate 1, the probability that the second rank is candidate 2 is 0.95. Analogously for
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Fig. 10: Benchmarks of SNARK evaluating NSW-IRV.

the pairs of first and second rank (2,1),(4,5),(5,4). All remaining choices are taken uniformly at random.
More precisely:

Pr(1,2, ∗ , ∗ ,∗) = 0.3 · 0.95 · 3−1 · 2−1

Pr(2,1, ∗ , ∗ ,∗) = 0.2 · 0.95 · 3−1 · 2−1

Pr(1,3/4/5, ∗ , ∗ ,∗) = 0.3 · 0.05 · 3−1 · 3−1 · 2−1

Pr(2,3/4/5, ∗ , ∗ ,∗) = 0.2 · 0.05 · 3−1 · 3−1 · 2−1

Pr(3, ∗ , ∗ , ∗ ,∗) = 0.2 · 4−1 · 3−1 · 2−1

Pr(4,1/2/3, ∗ , ∗ ,∗) = 0.12 · 0.05 · 3−1 · 3−1 · 2−1

Pr(4,5, ∗ , ∗ ,∗) = 0.12 · 0.95 · 3−1 · 2−1

Pr(5,1/2/3, ∗ , ∗ ,∗) = 0.18 · 0.05 · 3−1 · 3−1 · 2−1

Pr(5,4, ∗ , ∗ ,∗) = 0.18 · 0.95 · 3−1 · 2−1.

H General Computational Model

In this section, we explain the computational model for our security analysis (Section 5) in more detail.
Process. A process is a set of probabilistic polynomial-time interactive Turing machines (ITMs, also called
programs) which are connected via named tapes (also called channels). Two programs with a channel of
the same name but opposite directions (input/output) are connected by this channel. A process may have
external input/output channels, those that are not connected internally. At any time of a process run, one
program is active only. The active program may send a message to another program via a channel. This
program then becomes active and after some computation can send a message to another program, and so
on. Each process contains a master program, which is the first program to be activated and which is activated
if the active program did not produce output (and hence, did not activate another program). If the master
program is active but does not produce output, a run stops.

We write a process π as π = p1‖ · · · ‖pl, where p1, . . . , pl are programs. If π1 and π2 are processes, then
π1‖π2 is a process, provided that the processes are connectible: two processes are connectible if common
external channels, i.e., channels with the same name, have opposite directions (input/output); internal chan-
nels are renamed, if necessary. A process π where all programs are given the security parameter 1` is denoted
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by π(`). In the processes we consider, the length of a run is always polynomially bounded in `. Clearly, a run
is uniquely determined by the random coins used by the programs in π.
Protocol. A protocol P is modeled via a process, where different participants and components are rep-
resented via one ITM each. Typically, a protocol contains a scheduler S as one of its participants which
acts as the master program of the protocol process (see below). The task of the scheduler is to trigger the
protocol participants and the adversary in the appropriate order. For example, in the context of e-voting,
the scheduler would trigger protocol participants according to the phases of an election.

The honest programs of the agents of P are typically specified in such a way that the adversary A can
corrupt the programs by sending the special message c. Upon receiving such a message, the agent reveals
all or some of its internal state to the adversary and from then on is controlled by the adversary. Some
agents, such as the scheduler, will typically not be corruptible, i.e., they would ignore c messages. Also,
agents might only accept c messages upon initialization, modeling static corruption. This is the case for our
security analysis of Kryvos.

We say that an agent a is honest in a protocol run r if the agent has not been corrupted in this run, i.e.,
has not accepted a c message throughout the run. We say that an agent a is honest if for all adversarial
programs πA the agent is honest in all runs of π̂P‖πA, i.e., a always ignores all c messages.
Property. A property γ of P is a subset of the set of all runs of P.21 By ¬γ we denote the complement of γ.

I Privacy Proof

In this section, we prove Theorem 2 which establishes the public and internal privacy levels of Kryvos. These
levels can be expressed using the privacy level of the voting protocol with ideal privacy (see Figure 11).

I.1 Overview

Recall that, in order to prove the theorem for the protocol Kryvos with nv voters, nt talliers, voting method
(C, fres), voting distribution µ, and voter under observation Vobs, we have to show the following two condi-
tions:

– Internal privacy : For all m0,m1 ∈ C, for all programs π∗ of the remaining parties such that at least nhv
voters and at least one tallier are honest in π∗ (excluding the voter under observation Vobs), we have that

|Pr[(π̂Vobs
(m0)‖π∗) 7→ 1]− Pr[(π̂Vobs

(m1)‖π∗) 7→ 1]|

is δideal
(nv,nh

v ,µ)
(C, fcomplete)-bounded as a function of the security parameter `, where fcomplete is the function

that returns the full/complete tally.
– Public privacy : For all m0,m1 ∈ C, for all programs π∗ of the remaining parties such that at least nhv

voters and all talliers are honest in π∗ (excluding the voter under observation Vobs), we have that

|Pr[(π̂Vobs
(m0)‖π∗) 7→ 1]− Pr[(π̂Vobs

(m1)‖π∗) 7→ 1]|

is δideal
(nv,nh

v ,µ)
(C, fres)-bounded as a function of the security parameter `, where fres is the actual (tally-

hiding) result function.

We can split up the composition π∗ in its honest and its (potentially) dishonest part. Let HV be the
set of all honest voters (without the voter under observation) and π̂HV be the composition of their honest
programs. Recall that the judge J, the scheduler S, the bulletin board B, and at least one (in case of internal
privacy) out of or all (in case of public privacy) nt talliers are honest, respectively (w.l.o.g., we assume that

21 Recall that the description of a run r of P contains the description of the process π̂P‖πA (and hence, in particular
the adversary) from which r originates. Therefore, γ can be formulated independently of a specific adversary.
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Ivoting(nv, nhv , C, f, µ)

Parameters:

– Function f : {0,1}∗ → {0,1}∗
– Probability distribution µ over C
– Numbers of voters nv and honest voters nhv
– I ← ∅ (initially)

On (init, honest) from S do:

1. ∀i ∈ {1, . . . , nhv}: store mi
µ←− C

2. I ← I ∪ {1, . . . , nhv}
3. Return success

On (setChoice, i,m) from S do:

1. If i /∈ {nhv + 1, . . . , nv} or m /∈ C, return ⊥.
2. Store mi ← m
3. I ← I ∪ {i}
4. Return success

On (compute, b) from S do:

1. If b = 0, return ⊥.
2. Return res← f((mi)i∈I)

Fig. 11: Ideal voting protocol.

the first tallier T1 is honest in both cases). Therefore, we denote the honest part for the internal privacy
result by

π̂H = π̂J‖π̂B‖π̂S‖π̂T1
‖π̂HV,

and for the public privacy result by

π̂H = π̂J‖π̂B‖π̂S‖π̂T1
‖ . . . ‖π̂Tnt

‖π̂HV.

By π̂H(m) we will denote the composition of all honest programs including the program of the voter
under observation Vobs, i.e., π̂H(m) = π̂H‖π̂Vobs

(m). All remaining parties are subsumed by the adversarial
process πA. This means that we can write π̂Vobs

(m)‖π∗ as π̂H(m)‖πA.
In order to prove the result, we use two sequences of games (one for internal and one for external privacy).

We fix m ∈ C and start with Game 0 which is simply the process π̂H(m)‖πA. Step by step, we transform
Game 0 into Game x which is the composition π̂xH(m)‖πA for some process π̂xH(m) and the same adversarial
process πA. Game x will be proven indistinguishable from Game 0 from the adversary’s point of view, which
means that ∣∣Pr[(π̂0

H(m)‖πA) 7→ 1]− Pr[(π̂xH(m)‖πA) 7→ 1]
∣∣

is negligible for a fixed m ∈ C (as a function of the security parameter).
Furthermore, it will be straightforward to show that in Game x for arbitrary m0,m1 ∈ C, the distance

|Pr[(π̂xH(m0)‖πA) 7→ 1]− Pr[(π̂xH(m1)‖πA) 7→ 1]|

is bounded by δideal
(nv,nh

v ,µ)
(C, fcomplete) (internal privacy) or δideal

(nv,nh
v ,µ)

(C, fres) (public privacy), respectively.
The reason is that π̂xH(m0) and π̂xH(m1) use the ideal voting protocol for voting method (C, fcomplete) (internal
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privacy) or (C, fres), respectively, with nhv honest voters. Using the triangle inequality, we can therefore deduce
that

|Pr[(π̂H(m0)‖πA) 7→ 1]− Pr[(π̂H(m1)‖πA) 7→ 1]|

is bounded by δideal
(nv,nh

v ,µ)
(C, fcomplete) (internal privacy) or δideal

(nv,nh
v ,µ)

(C, fres) (public privacy) for all m0,m1 ∈
C (as a function of the security parameter `).
Notation. We write π̂1

H(m) for π̂H(m) and consider π̂1
H(m) as one atomic process (one program) and not as

a composition of processes.22 Now, the original Kryvos program is the process π̂1
H(m)‖πA. For both sequences

of games below, we describe how to modify the previous protocol so that any (ppt) adversary is not able
to distinguish which of these two protocols he is communicating with. For each Game j), we denote the
respective honest part of the protocol by π̂jH(m). Let Ih be the set of indices of honest voters (excluding the
voter under observation).

I.2 Internal privacy

We use a sequence of games to prove that the internal privacy level of Kryvos is δideal
(nv,nh

v ,µ)
(C, fcomplete) under

the assumptions (P1) and (P2) (see Section 5.3) and that at least one tallier is honest (w.l.o.g., we assume
that T1 is honest). The ultimate goal of the proof is to employ the ideal voting functionality to compute
the honest voters’ aggregated choice. We exploit the ZK property of the ZKPs, the semantic security of
the PKE scheme, and the hidingness of the commitment to simulate the honest participants in such a way
that the honest participants (in particular the voters) do no longer create (and know) the individual honest
votes. Instead, the honest participants only use the (aggregated) honest result obtained from the ideal voting
functionality. Therefore, even if the adversary is able to control all honest participants, he only gets to know
the aggregated output from the ideal voting functionality. At the same time, we show that all modifications
are indistinguishable from the adversary’s perspective. This proves that the internal privacy level of Kryvos is
negligibly close to the one of the ideal voting functionality which is δideal

(nv,nh
v ,µ)

(C, fcomplete). More precisely,
our proof works as follows:

Game 0 π̂0
H(m) is the original Kryvos protocol.

Game 1 In π̂1
H(m), we modify the specification of the (honest) trustee T1 as follows. If the ciphertext ei1 of

an arbitrary honest voter Vi decrypts to an invalid opening, then T1 aborts. Apart from this modifica-
tion, the specification of T1 does not change.
Due to the correctness of the public-key encryption scheme E , Game 0 and Game 1 are perfectly indis-
tinguishable from the adversary’s perspective.

Game 2 In π̂2
H(m), we modify the specification of all honest voters Vi (i ∈ Ih) and the voter under obser-

vation Vobs as follows. Each Vi (i ∈ Ih) and Vobs encrypt (the dummy message) 0w under the honest
trustee’s, i.e., T1’s, public key pk1; precisely: ei1 ← Enc(pk1, 0

w) (where w is the fixed plaintext size).
Apart from this modification, the specification of Vi (i ∈ Ih) and Vobs does not change. Furthermore,
we modify the specification of the honest trustee T1 as follows. Instead of decrypting the honest voters’
ciphertexts ei1 (which now encrypt useless dummy messages), the honest trustee T1 receives the honest
voters’ opening values from the honest voters internally (inside of the simulator which subsumes all
honest parties).
Due to the IND-CCA-security of the public-key encryption scheme E and the removal of ciphertext
duplicates, Game 1 and Game 2 are computationally indistinguishable from the adversary’s perspective.

Game 3 In π̂3
H(m), we modify the specification of the (honest) voting authority Auth as follows. Recall that

the voting authority runs the setup algorithm Setup of the SNARK Πballot, which is used to prove
well-formedness of the voters’ commitments, to obtain a pair of common reference string/trapdoor
(CRSballot, τballot). Now, instead of keeping the trapdoor secret, the authority internally (inside of the
simulator) forwards the trapdoor τballot to the voter under observation Vobs and all honest voters Vi

22 This is w.l.o.g. since every (sub-)process can be simulated by a single program.
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(i ∈ Ih).
It is clear that Game 2 and Game 3 are perfectly indistinguishable from the adversary’s perspective.

Game 4 In π̂4
H(m), we modify the specification of all honest voters Vi (i ∈ Ih) and the voter under ob-

servation Vobs as follows. Instead of using the common reference string CRSballot to run the prover al-
gorithm Prove(Rballot,CRSballot, x, w), the honest voters Vi (i ∈ Ih) and the voter under observation
Vobs use the trapdoor τballot (received by Auth in the previous game) to run the simulator algorithm
Sim(Rballot, τballot, x) of the SNARK Πballot, where (x,w) denotes the respective voter’s pair of public
input and witness. Apart from these modifications, the specification of Vi (i ∈ Ih) and Vobs does not
change.
Game 3 and Game 4 are perfectly indistinguishable from the adversary’s perspective due to the perfect
zero-knowledge property of the SNARK Πballot.

Game 5 In π̂5
H(m), we modify the specification of the honest trustee T1 as follows. The trustee T1 simulates

the NIZKP of correct decryption Πdec (if any).
Due to the perfect zero-knowledge property of the NIZKP Πdec, Game 4 and Game 5 are perfectly
indistinguishable.

Game 6 In π̂6
H(m), we modify the specification of all honest voters Vi (i ∈ Ih) and the voter under obser-

vation Vobs as follows. The voter under observation Vobs computes mi µ←− C for all honest voters i ∈ Ih,
sets m̂h ←

∑
i∈Ih m

i, and runs the voting algorithm with “choice” m̂← m̂h+m instead of her choice m.
This means that the “choice” contained in Vobs’s ballot is an aggregation of all honest voters’ choices plus
the one of the voter under observation. At the same time, all honest voters Vi (i ∈ Ih) run the voting
algorithm with dummy “choice” 0.23
Because the commitment scheme is unconditionally hiding, ciphertext duplicates are removed, and full-
threshold secret sharing is employed, Game 5 and Game 6 are computationally indistinguishable from
the adversary’s perspective.

Game 7 In π̂7
H(m), we modify the specification of the voter under observation Vobs as follows. The voter

under observation Vobs invokes the ideal voting functionality Ivoting (see Figure 11) to obtain the honest
voters’ aggregated choice m̂ ← Ivoting(nhv + 1, nhv + 1, C, fcomplete, µ

′), where the voting distribution µ′

always returns m for the first (honest) voter and equals µ for the remaining nhv (honest) voters.
Because the ideal voting functionality creates m̂ in the same way as Vobs did in the previous step, Game
6 and Game 7 are perfectly indistinguishable from the adversary’s perspective.

In Game 7, we have that for arbitrary m0,m1 ∈ C, the distance∣∣Pr[(π̂7
H(m0)‖πA) 7→ 1]− Pr[(π̂7

H(m1)‖πA) 7→ 1]
∣∣

is bounded by δideal
(nv,nh

v ,µ)
(C, fcomplete). Since we have proved above that Game 1 (the original Kryvos protocol)

and Game 7 are computationally indistinguishable (under the assumptions made, in particular that T1 is
honest), we can conclude that

|Pr[(π̂H(m0)‖πA) 7→ 1]− Pr[(π̂H(m1)‖πA) 7→ 1]|

is bounded by δideal
(nv,nh

v ,µ)
(C, fcomplete) for all m0,m1 ∈ C (as a function of the security parameter `).

I.3 Public privacy

We use a sequence of games to prove that the external privacy level of Kryvos is δideal
(nv,nh

v ,µ)
(C, fres) under

the assumptions (P1) and (P2) (see Section 5.3) and that all talliers are honest (w.l.o.g., we assume that
there exists a single T and that this trustee is honest). The ultimate goal of the proof is to employ the ideal
voting functionality which takes as input the dishonest voters’ choices to compute the (tally-hiding) result

23 Recall that all voters’ choices are homomorphically aggregated in the tallying phase. Therefore, it is inconsequential
how the honest voters’ aggregated choice is split among the homomorphic commitments.
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function fres. We exploit the ZK property of the ZKPs, the semantic security of the PKE scheme, and the
hidingness of the commitment to simulate the honest participants in such a way that the honest participants
(in particular the voters) do no longer create (and know) the individual honest votes. Instead, the honest
participants only use the tally-hiding result obtained from the ideal voting functionality. Therefore, even if
the adversary is able to control all honest participants, he only gets to know the tally-hiding output from
the ideal voting functionality. At the same time, we show that all modifications are indistinguishable from
the adversary’s perspective. This proves that the external privacy level of Kryvos is negligibly close to the
one of the ideal voting functionality which is δideal

(nv,nh
v ,µ)

(C, fres). More precisely, our proof works as follows:

Game 0 π̂0
H(m) is the original Kryvos protocol.

Game 1 In π̂1
H(m), we modify the specification of the (honest) trustee T as follows. If the ciphertext ei of

an arbitrary honest voter Vi decrypts to an invalid opening, then T aborts. Apart from this modification,
the specification of T does not change.
Due to the correctness of the public-key encryption scheme E , Game 0 and Game 1 are perfectly indis-
tinguishable from the adversary’s perspective.

Game 2 In π̂2
H(m), we modify the specification of all honest voters Vi (i ∈ Ih) and the voter under obser-

vation Vobs as follows. Each Vi (i ∈ Ih) and Vobs encrypt (the dummy message) 0w under the trustee’s
public key pk1; precisely: ei ← Enc(pk, 0w) (where w is the fixed plaintext size). Apart from this modifica-
tion, the specification of Vi (i ∈ Ih) and Vobs does not change. Furthermore, we modify the specification
of the trustee T as follows. Instead of decrypting the honest voters’ ciphertexts ei (which now encrypt
useless dummy messages), the trustee T receives the honest voters’ opening values from the honest voters
internally (inside of the simulator which subsumes all honest parties).
Due to the IND-CCA-security of the public-key encryption scheme E and the removal of ciphertext
duplicates, Game 1 and Game 2 are computationally indistinguishable from the adversary’s perspective.

Game 3 In π̂3
H(m), we modify the specification of the honest trustee T as follows. The trustee T simulates

the NIZKP of correct decryption Πdec (if any).
Due to the perfect zero-knowledge property of the NIZKP Πdec, Game 2 and Game 3 are perfectly
indistinguishable.

Game 4 In π̂4
H(m), we modify the specification of the (honest) voting authority Auth as follows. Recall that

the voting authority runs the setup algorithm Setup of the SNARKΠfres which is used to prove correctness
of the final (tally-hiding) result to obtain a pair of common reference string/trapdoor (CRSfres , τfres). Now,
instead of keeping the trapdoor secret, the authority internally (inside of the simulator) forwards the
trapdoor τfres to the trustee T.
It is clear that Game 3 and Game 4 are perfectly indistinguishable from the adversary’s perspective.

Game 5 In π̂5
H(m), we modify the specification of the trustee T as follows. Instead of using the common

reference string CRSfres to run the prover algorithm Prove(Rfres ,CRSfres , x, w), the trustee uses the trap-
door τfres (received by Auth in the previous game) to run the simulator algorithms Sim(Rfres , τfres , x),
where (x,w) denotes the trustee’s pair of public input and witness. Apart from these modifications, the
specification of T does not change.
Game 4 and Game 5 are perfectly indistinguishable from the adversary’s perspective due to the perfect
zero-knowledge property of the SNARK Πfres .

Game 6 In π̂6
H(m), we modify the specification of the (honest) voting authority Auth as follows. Recall that

the voting authority runs the setup algorithm Setup of the SNARK Πballot, which is used to prove
well-formedness of the voters’ commitments, to obtain a pair of common reference string/trapdoor
(CRSballot, τballot). Now, instead of keeping the trapdoor secret, the authority internally (inside of the
simulator) forwards the trapdoor τballot to the voter under observation Vobs and all honest voters Vi
(i ∈ Ih).
It is clear that Game 5 and Game 6 are perfectly indistinguishable from the adversary’s perspective.

Game 7 In π̂7
H(m), we modify the specification of all honest voters Vi (i ∈ Ih) and the voter under ob-

servation Vobs as follows. Instead of using the common reference string CRSballot to run the prover al-
gorithm Prove(Rballot,CRSballot, x, w), the honest voters Vi (i ∈ Ih) and the voter under observation
Vobs use the trapdoor τballot (received by Auth in the previous game) to run the simulator algorithm
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Sim(Rballot, τballot, x) of the SNARKΠballot, where (x,w) denotes the respective voter’s pair of public in-
put and witness. Apart from these modifications, the specification of Vi (i ∈ Ih) and Vobs does not
change.
Game 6 and Game 7 are perfectly indistinguishable from the adversary’s perspective due to the perfect
zero-knowledge property of the SNARK Πballot.

Game 8 In π̂8
H(m), we modify the specification of the honest trustee T as follows. The trustee T sets md

to be the (aggregated) dishonest choices (observe that T can decrypt/open all dishonest voters’ valid
choices). For all i ∈ Ih, the trustee computes m̂i µ←− C. Then, T sets m̂h ←

∑
i∈Ih m̂

i and m̂← m̂h +m,
and returns the final result res← fres(m̂ ∪md).
Because the commitment scheme is unconditionally hiding, Game 7 and Game 8 are perfectly indistin-
guishable from the adversary’s perspective.

Game 9 In π̂9
H(m), we modify the specification of all honest voters Vi (i ∈ Ih) and the voter under obser-

vation Vobs as follows. All honest voters Vi (i ∈ Ih) and the voter under observation Vobs run the voting
algorithm with dummy “choice” 0.
Because the commitment scheme is unconditionally hiding, Game 8 and Game 9 are perfectly indistin-
guishable from the adversary’s perspective.

Game 10 In π̂1
H0(m), we modify the specification of the trustee T as follows. Trustee T invokes the ideal

voting functionality to obtain res← Ivoting(nv, nhv +1, C, fres, µ
′), where the voting distribution µ′ always

returns m for the first (honest) voter and equals µ for the remaining nhv (honest) voters, and where the
dishonest choices are extracted from md.
Because the ideal voting functionality creates res in the same way as T did in the previous step, Game
9 and Game 10 are perfectly indistinguishable from the adversary’s perspective.

In Game 10, we have that for arbitrary m0,m1 ∈ C, the distance∣∣Pr[(π̂10
H (m0)‖πA) 7→ 1]− Pr[(π̂10

H (m1)‖πA) 7→ 1]
∣∣

is bounded by δideal
(nv,nh

v ,µ)
(C, fres). Since we have proved above that Game 1 (the original Kryvos protocol) and

Game 10 are indistinguishable (under the assumptions made, in particular that all talliers are honest), we
can conclude that

|Pr[(π̂H(m0)‖πA) 7→ 1]− Pr[(π̂H(m1)‖πA) 7→ 1]|

is information-theoretically bounded by δideal
(nv,nh

v ,µ)
(C, fres) for all m0,m1 ∈ C.

J Verifiability

In this section, we recall the formal definition of the verifiability notion from [75] and of the goal γ(ϕ)
from [20] which we use to analyze verifiability of Kryvos (see Section 5.2).
Verifiability definition. In the following definition of verifiability (which is a bit shortened for brevity
of presentation), we denote by Pr[(π̂P‖πA)(`) 7→ ¬γ, (J : accept)] the probability that a run of the protocol
along with an adversary πA (and a security parameter `) produces a run which is not in γ but in which J
(nevertheless) returns accept. This probability should be negligible.

Definition 4 (Verifiability [75]). We say that a goal γ is verifiable by the judge J in a protocol P if for
all adversaries πA, the probability Pr[(π̂P‖πA)(`) 7→¬γ, (J : accept)] is negligible as a function of `.

Goal γ(ϕ). The goal γ(ϕ) is defined as follows for an arbitrary voting method (C, fres). The parameter ϕ is
a Boolean formula to describe which protocol participants are assumed honest. Let Ih and Id denote the set
of honest and dishonest voters, respectively, in a given protocol run. Then, γ(ϕ) consists of all those runs of
a voting protocol P where either

– ϕ is false (e.g., the adversary corrupted a voter that is assumed to be honest), or
– ϕ holds true and there exist (valid) dishonest choices (mi)i∈Id such that the election result equals
fres((mi)i∈Ih∪Id), where (mi)i∈Ih are the honest voters’ choices.
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K Verifiability Proof

In this section, we prove Theorem 1 (Verifiability) from Section 5.2. The judging procedure of Kryvos is very
simple. The judge reads all data from the bulletin board B and accepts the run if and only if all NIZKPs on B
are valid (and only eligible voters voted, at most once): the voters’ NIZKPs Πi

ballot to prove well-formedness
of ballots, the talliers’ NIZKP Πfres to prove correctness of the final result, and (if any) the talliers’ NIZKP
Πdec to prove that a voters’ ciphertext does not decrypt to a valid opening of her commitments.

Recall that, at a high level, we need to prove the following property. If the final result res does not equal
fres((m

i)i∈I), where (mi)i∈I consists of all honest voters’ choices and at most one (valid) choice per dishonest
voter, then the judge J rejects the result.

Essentially, Theorem 1 follows from the NIZKPs employed in Kryvos (recall Appendix B.1 for the precise
definition of the respective relations).

In what follows, we denote the set of indices of honest voters by Ih and the set of indices by dishonest
voters by Id. Let (bi)i∈Ivalid be the set of ballots that have not been discarded prior to the homomorphic
aggregation at the end of voting phase.

The first Lemma states that honest ballots cannot be discarded prior to the homomorphic aggregation
and that there exists at most one ballot per dishonest voter in the remaining (non-discarded) ballots.

Lemma 1. Let Ivalid be defined as above. Then, we have that Ih ⊆ Ivalid and Id ⊇ (Ivalid \Ih) holds true (with
overwhelming probability in the security parameter `).

Proof. Observe that i ∈ Ivalid holds true for a given ballot bi if and only if the test executed by the bulletin
board B for incoming ballots (specified at the end of the voting phase, cf. Sec. 3.1) was successful and no
trustee Tk published a valid NIZKP proving that eik decrypts to an invalid opening.

Now, to see that Ih ⊆ Ivalid holds true, observe that the voter’s program defined in Sec. 3.1, which each
honest voter runs, ensures that the relation of well-formedness RCballot is satisfied. Therefore, each honest
voter’s proof Πballot is valid. Furthermore, due to the IND-CCA2-security of the PKE encryption scheme
(and because the number of voters is polynomially bounded), the probability that an honest voter creates
a partially identical ballot to a different voter’s one is negligible (in the security parameter). This ensures
that each honest voter’s ballot bi is appended by the bulletin board (which we assume to be honest, see
assumption (V2) in Sec. 5.2) to the list of ballots b. Since the NIZKP of correct decryption Πdec is sound and
the (honest) voter’s program guarantees that each ciphertext eik encrypts a correct opening for the respective
commitments, a (possibly dishonest) trustee Tk is not able to create a valid NIZKP for claiming that an
honest voter’s ciphertext eik decrypts to an invalid opening. Hence, Ih ⊆ Ivalid follows (with overwhelming
probability).

The fact that Id ⊇ (Ivalid \ Ih) holds true follows from the checks (precisely, the eligibility and re-voting
check) executed by the bulletin board B before it adds a ballot to b.

The following Lemma states that all ballots which are not discarded prior to the homomorpic aggregation
are well-formed (i.e., “contain” a valid choice from C) and contain commitments with sufficiently small
randomness.

Lemma 2. Let Ivalid be defined as above. Then (with overwhelming probability in the security parameter `),
for all i ∈ Ivalid, there exists (ri,lk )k∈[nt],l∈[ntuples] and m

i = (mi,j)j∈[nchoices] ∈ C such that for all j ∈ [nchoices],
there exists (mi,j

k )k∈[nt] such that

1. ∀j ∈ [nchoices] :
∑nt

k=1m
i,j
k mod q = mi,j, and

2. ∀k ∈ [nt] ∀l ∈ [ntuples] :

ci,lk = Com((m
i,(l−1)·N+1
k , . . . ,mi,l·N

k ); ri,lk ).

Proof. Recall that the bulletin board (which we assume to be honest) verifies whether each incoming ballot
bi contains valid NIZKP Πballot, and rejects bi if this is not the case. Therefore, if i ∈ Ivalid for a given bi, it
follows that bi contains valid ZKP Πballot. Hence, fact (1) and (2) follow from the computational soundness
of Πballot.
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The following Lemma states that the homomorpically aggregated commitments correctly open to the
total numbers of votes per choice, as determined by Ivalid.

Lemma 3. Let Ivalid be defined as above. Let (c⊥,lk )k∈[nt],l∈[ntuples] be the input commitments to the tallying
phase. Then (with overwhelming probability in the security parameter `), for all l ∈ [ntuples], there exists
(mi,l)i∈Ivalid and r⊥,l such that

c⊥,l = Com(
∑
i∈Ivalid

mi,l; r⊥,l).

Proof. This fact follows from Lemma 2 and the homomorpic property of the commitment scheme.

Since the talliers’ SNARK Πfres (correct result) is computationally sound, we can conclude from Lemma 3
that if the final result does not equal fres((mi)i∈Ivalid), then the judge J rejects the result (with overwhelming
probability). Hence, Theorem 1 follows from Lemma 1.
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