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Abstract

We explore a bitwise modification in Ajtai’s one-way function. Our
main contribution is to define the higher-bit approximate inhomogeneous
short integer solution (ISIS) problem and prove its reduction to the ISIS
problem. In this new instance, our main idea is to discard low-weighted
bits to gain compactness.

As an application, we construct a bitwise version of a hash-and-sign
signature in the random oracle model whose security relies on the (Ring)-
LWE and (Ring)-ISIS assumptions. Our scheme is built from the hash-
and-sign digital signature scheme based on the relaxed notion of approxi-
mate trapdoors introduced by Chen, Genise and Mukherjee (2019). Their
work can be interpreted as a bitwise optimization of the work of Miccian-
cio and Peikert (2012). We extend this idea and apply our technique to
the scheme by discarding low-weighted bits in the public key. Our modifi-
cation brings improvement in the public key size but also in the signature
size when used in the right setting.

However, constructions based on the higher-bit approximate ISIS save
memory space at the expense of loosening security. Parameters must be
set in regards with this trade-off.

1 Introduction

1.1 Background

Since Peter Shor’s breakthrough work in 1994 [25], it became clear that quantum
computers are able to break usual cryptographic primitives based on number
theory assumptions. For instance, a quantum computer can break factoring-
based cryptography in polynomial time of the security parameter. This results
threaten usual cryptography and reveal a need for efficient post-quantum secure
cryptography. In 2017, NIST launched its still ongoing post-quantum cryptog-
raphy (PQC) standardization process [22]. It illustrates the necessity of finding
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efficient and realistic post-quantum secure cryptographic constructions in order
to guarantee the confidentiality and integrity of digital communications.

One high potential candidate for PQC is lattice-based cryptography. It has
been an active area of research since Ajtai’s groundbreaking work in 1996 which
demonstrates strong worst-case to average-case reductions on lattices problems
[2, 3]. Worst-case to average-case hardness is very important in cryptographic
constructions since it needs to be hard to attack a construction for random
instances. Moreover, underlying lattice problems provide strong security even
for quantum adversaries (no polynomial attack is known).

The attractiveness of lattice-based cryptography comes from its elegant
constructions and efficiency improvements obtained using lattices with alge-
braic structure [14, 20]. It also enjoys great versatility afforded by the learning
with errors (LWE) problem [24]. A lot of lattice-based cryptographic primitives
has been studied such as fully homomorphic encryption schemes [12], public-
key encryption [14, 15] but also attribute-based encryption and (hierarchical)
identity-based encryption [1, 7].

In this work, we focus on lattice-based signatures among lattice-based
cryptographic schemes. Even if there has been early attempts at lattice-based
digital signatures, it is only in 2008 that the first direct constructions of lattice-
based signatures appeared. A ”hash-and-sign” signature scheme was constructed
by Gentry, Peikert and Vaikuntanathan [13]. At the same time, a provably se-
cure one-time signature using ideal lattices was constructed by Lyubashevsky
and Micciancio [17]. Both schemes enjoys security based on the hardness of
worst-case lattice problems. Even if both schemes achieved short signatures,
they still had several disadvantages. These constructions led the way to two
lines of research. First, Lyubashevsky used the Fiat-Shamir transform to im-
prove the one-time signature [17] in several subsequent works [16]. Several of
the best candidates in NIST PQC standardization procedure are based on the
rejection sampling method [4, 10, 22]. On the other hand, the GPV ”hash-and-
sign” signature scheme [13] is not very practical. In their work, Gentry, Peikert
and Vaikuntanathan show how to sample solutions following a distribution sim-
ulatable without knowing the secret to avoid any information leakage. In order
to do so, they use a gaussian sampler which leads to various difficulties and com-
plexity. A more satisfactory solution to this problem was given by Micciancio
and Peikert [21]. Their work brought several improvements both for security
and efficiency in GPV scheme line of work.

1.2 Related work

In this work, we study constructions based on Ajtai’s one-way function and
trapdoor [3]. In lattice-based hash-and-sign GPV signature [13], a signer is
assigned a uniformly random public matrix A ∈ Zn×m

q along with a trapdoor
S ∈ Zm×m

q which verifies AS = 0 (mod q). The trapdoor S is usually a basis
of short lattice vectors solution to the SIS problem with regards to A. Thus,
using S, one can find short preimages for the Ajtai’s function defined by A and
sign a message. The resulting signature’s norm depends on the norms of the
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columns in S. In order to further optimize and improve this kind of digital
signature, it is highly relevant to improve the algorithms for trapdoor and key
generation.

At first, improvements of Ajtai’s trapdoor generation algorithm [5, 23] were
rather complex and inefficient. Only in 2012, the introduction by Micciancio
and Peikert of their elegant G-trapdoor construction [21] enabled faster and
shorter signatures. However, even using the G-trapdoor construction, hash-
and-sign signature based on Ajtai’s function is still impractical due to large keys
and signatures sizes. For instance, when compared to lattice-based signatures
candidates of NIST PQC standardization process [4, 10, 11], the hash-and-sign
signature instantiated with G-trapdoors has about six times larger public keys
and signatures sizes for a same level of security.

In order to reduce this difference, Chen, Genise and Mukherjee constructed
a F -trapdoor [9] from the G-trapdoor [21]. The innovation in their work is the
definition of the approximate ISIS problem which reduces to the ISIS problem.
It allows a certain error when sampling a preimage for Ajtai’s function. By
allowing a little error, the G-trapdoor is reduced to an approximate version
called F -trapdoor. The hash-and-sign signature instantiated with F -trapdoors
enjoys sEU-CMA security and much smaller public keys and signatures sizes
than the one with G-trapdoors. However, these sizes are still too large when
compared with state-of-the-art digital signatures based on NTRU lattices [11]
or on the rejection sampling approach [4, 10].

1.3 Contributions

Our main contribution is the definition of the higher-bit approximate ISIS prob-
lem along with its reduction to the ISIS problem. This newly defined problem
permits improvements in constructions based on the ISIS problem. It is based
on discarding low-weighted bits of coefficients in the matrix A which defines
Ajtai’s function. As an application of the higher-bit approximate ISIS prob-
lem, we adapt the hash-and-sign signature by Chen, Genise and Mukherjee [9]
: we construct a sEU-CMA secure hash-and-sign digital signature along with
adapted trapdoor generation and preimage sampling algorithms.

In our application, the public key A is constructed from the high-weighted
bits of the public key in [9]. This idea fits in the approximate setting. Further-
more, with the right parameters setting, discarding low-weighted bits in the
public key allows for a possible similar optimization of the signature. Our con-
struction seems like a natural following of the F -trapdoor signature scheme [9].
Indeed, the gadget matrix F is basically defined as the gadget matrix G [21]
but without low-weighted bits entries.

With our modification, the public key belongs to Zn×m
q

bd
rather than Zn×m

q

(where q = bk, d < k). This is a direct consequence of using the higher-bit
approximate ISIS problem as the underlying hardness problem. Moreover, the
signature is in Zm

q

bd
rather than Zm

q . Applying our technique to the F -trapdoor

signature scheme allows to save n × m × d⌈log2 b⌉ bits in the public key and
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m× d⌈log2 b⌉ bits in the signature.
However, this setting implies a trade-off between security and memory

space. This trade-off is due to the reduction loss when using the higher-bit
approximate ISIS rather than the approximate ISIS. In order to assess this trade-
off, we give some concrete parameters and results. We expect our construction
to reduce the public key size by about half and significantly reduce the signature
size at the expense of a reasonable drop in the security level. Moreover, providing
a higher security parameter, we estimate 155-bit security level rather than 88-
bit security as given in [9] for about the same or smaller key sizes. We may
note that optimization based on discarding low-weighted bits can be seen in the
lattice-based signature CRYSTALS-Dilithium [10].

We note that our hash-and-sign signature construction in the random or-
acle model can translate to the Ring setting under Ring-LWE and Ring-SIS
assumptions [18].

1.4 Organization

In Section 3, we define and study the higher-bit approximate ISIS problem and
its reduction to the ISIS problem. In section 4, we introduce our main idea
for a new construction based on the higher-bit approximate ISIS. In Section
5, we construct new trapdoor generation and preimage sampling algorithms
and study the resulting distributions. Finally, in Section 6, we instantiate a
sEU-CMA secure hash-and-sign signature using our algorithms.

2 Preliminaries

2.1 Notations and Linear Algebra

We denote the set of real numbers by R, the set of integers by Z and the set
of positive integers by N. Denote Z/qZ by Zq. We use the notation x← U(S)
when a variable x is drawn uniformly at random from the set S. Moreover, we
use ≈s as the abbreviation for statistically close. A vector v is always in column
form and represented in lower-case bold letters. A matrix A is always repre-
sented in upper-case bold letters. For a vector v, we denote the ith component of
v as vi. We do the same for a matrix A and denote the ith component of the jth

column of A as ai,j . We denote the lp-norm of a vector v as ∥v∥p := (
∑

vpi )
1
p .

The norm of a matrix is the norm of its longest column : ∥A∥p := maxi∥ai∥p.
By default we use l2-norm. A short vector is a vector whose norm is small but
not necessarily its dimension.

If a symmetric matrix Σ ∈ Rn×n verifies that for all x ∈ Rn, xtΣx > 0
(≥0) then Σ is positive (semi)-definite. For two positive (semi)-definite matrices
Σ1 and Σ2, we note Σ1 > Σ2 (≥) if Σ1 − Σ2 is positive (semi)-definite.

√
Σ

designates any full rank matrix T such that Σ = TT t.
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2.2 Lattices Background

A m-dimensional lattice Λ of rank k ≤ m is a discrete additive subgroup of Rm.
It is generated by all linear combinations with integers coefficients of k linearly
independant basis vectors B = {b1, ..., bk}.

In many cryptographic work, we use q-ary integer lattices. For some posi-
tive integers m,n ∈ N, q ≥ 2, u ∈ Zn

q and A ∈ Zn×m
q we can define the following

m-dimensional full rank q-ary lattices :

Λ⊥(A) = Λ⊥
q (A) := {x ∈ Zm : A.x = 0 (mod q)};

Λ⊥
u (A) := {x ∈ Zm : A.x = u (mod q)}.

In this work, we study vectors distributions obtained when sampling in
q-ary lattices. To do so, we first need to define what is a discrete Gaussian
distribution over a lattice Λ.

Definition 1 (Gaussian function on Rn with parameter s : ρs [9]). For any
s > 0,

∀x ∈ Rn, ρs(x) = e−π||x||2/s2

Definition 2 (Discrete Gaussian distribution DΛ+c,s [9]). For any c ∈ Rn, real
s > 0, and n-dimensional lattice Λ,

∀x ∈ Λ + c, DΛ+c,s(x) =
ρs(x)∑

a∈Λ+c ρs(a)

When omitted, s and c are taken to be 1 and 0 respectively.

This definition of discrete Gaussian distribution can be extended to non-
spherical Gaussians [9]. However we do not make use of this definition in our
work, thus we omit it here.

Moreover, in this work, some conditions on the parameters are set in re-
gards with the smoothing parameter. We recall its definition.

Definition 3 (Smoothing parameter [19]). For any lattice Λ and positive real
ϵ > 0, the smoothing parameter ηϵ(Λ) is the smallest real s > 0 such that
ρ1/s(Λ

∗{0}) ≤ ϵ.

Definition 4 ([9]). For a positive semi-definite Σ = TT t, ϵ > 0, and lattice Λ
with span(Λ) ⊆ span(Σ), we say ηϵ(Λ) ≤

√
Σ if ηϵ(T

+Λ) ≤ 1.

2.3 LWE, SIS, ISIS and Approximate ISIS

First we recall the definition of the learning with errors problem.
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Definition 5 (Decisional learning with errors [24]). For n,m ∈ N and modulus
q ≥ 2, distributions θ, π, χ ⊆ Zq. An LWE sample is obtained from sampling
secret vector s← θn, public matrix A← πn×m, and error vector e← χm, and
outputting (A,yt := stA+ et (mod q)).

We say that an algorithm solves LWEn,m,q,θ,π,χ if it distinguishes the LWE
sample from a random sample distributed as πn×m × U(Zm

q ) with probability
greater than 1/2 plus non-negligible.

Lemma 1 ([6]). For n,m, q, s chosen as LWE hardness is based on GapSVP
and SIVP,

LWEn,m′,q,DZ,s,U(Zq),DZ,s is as hard as LWEn,m,q,U(Zq),U(Zq),DZ,s for m′ ≤
m− (16n+ 4 log log q).

Now we recall the SIS and ISIS problems.

Definition 6 (SIS [2]). For any n,m ∈ N, q ∈ Z and β ∈ R, define the short
integer solution problem SISn,m,q,β as follows: Given A ∈ Zn×m

q , find a non-zero
vector x ∈ Zm such that ∥x∥ ≤ β, and

Ax = 0 (mod q)

Definition 7 (ISIS). For any n,m ∈ N, q ∈ Z and β ∈ R, define the inhomoge-
neous short integer solution problem ISISn,m,q,β as follows: Given A ∈ Zn×m

q ,
y ∈ Zn

q , find a vector x ∈ Zm such that∥x∥ ≤ β, and

Ax = y (mod q)

In their work, Chen, Genise and Mukherjee introduce a relaxed notion of
the ISIS problem. We will be using their approximate setting in our work.

Definition 8 (Approx.ISIS [9]). For any n,m ∈ N, q ∈ Z and α, β ∈ R, define
the approximate inhomogeneous short integer solution problem
Approx.ISISn,m,q,α,β as follows: Given A ∈ Zn×m

q , y ∈ Zn
q , find a vector x ∈ Zm

such that ∥x∥ ≤ β, and there is a vector z ∈ Zn satisfying

∥z∥ ≤ α and Ax = y + z (mod q)

With the right parameters, we have the following reductions [9] :

• LWEn,m,q,θ,U(Zq),χ ≤p Approx.ISISn,m,q,α,β

• ISISn,n+m,q,β ≥p Approx.ISISn,m,q,α+β,β

• ISISn,n+m,q,α+β ≤p Approx.ISISn,m,q,α,β

An approximate trapdoor for a public matrix A ∈ Zn×m
q is a string that

allows one to solve efficiently the Approx.ISIS and LWE problems w.r.t A.
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2.4 Recall : F-trapdoors [9]

The work of Chen, Genise and Mukherjee is itself based on the gadget-based
trapdoor generation and preimage sampling algorithms of Micciancio and Peik-
ert [21]. In their work on approximate trapdoors, Chen, Genise and Mukherjee
create a new gadget matrix F which is an adaptation of the G-gadget matrix
from [21] where the l lower-orders entries are dropped.

The integer b ≥ 2 defines the base for the F -lattice and q the modulus
(k = ⌈logb q⌉).

The gadget matrix F is chosen such that it is easy to sample a short ap-
proximate preimage from Λ⊥

u (F ). To do so, the approximate gadget-vector is

set as f t := (bl, bl+1, ..., bk−1)t ∈ Z(k−l)
q . Let w = n(k − l) be the number of

columns of the approximate gadget matrix F := In ⊗ f t ∈ Z(n×w)
q . The num-

bers of columns of A as defined below is m := 2n+w. (To sample approximately
from Λ⊥

u (F ), we first sample from Λ⊥
u (G) as described in [21].)

Recall that the public matrix A is defined as :

A = [Ā|F − ĀR] ∈ Zn×m
q with Ā = [In, Â] ∈ Zn×2n

q

where R is a secret, trapdoor matrix with small random entries. R is
sampled from the distribution χ2n×w where χ ⊆ Z is chosen to be a distribution
such that LWEn,n,q,χ,U(Zq),χ is hard. Â is sampled from U(Zn×n

q ). Doing so,
A is pseudorandom.

In order to sample a short approximate preimage of u, we use the trapdoor
R to map short approximate coset representatives of Λ⊥(F ) to short approxi-
mate coset representatives of Λ⊥(A) by the relation

A

[
R
I

]
= F

However, using this relation alone would leak information about the secret trap-
door R. To avoid this, the perturbation-based Gaussian sampler technique of
[21] is used. The covariance of the perturbation p is defined as the positive

definite matrix Σp := s2Im− σ2

[
RRt R
Rt I

]
where σ is at least ηϵ(Λ

⊥(G)) and

s is a parameter. This perturbation can be computed offline as p← DZm,
√

Σp
.

To approximately sample from Λ⊥
u (A), first define v = u−Ap and sample

a vector z following the distribution DΛ⊥
v (F ),σ as described in [21] . Finally, the

approximate preimage is set to be :

y := p+

[
R
I

]
z.
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3 Hardness of higher-bit version problems

In this work, we aim at optimizing the memory space used to store elements in
cryptographic constructions based on Ajtai’s function upon some slight approxi-
mation. Our main idea is to use the base decomposition of elements in Zq. Using
this decomposition, we discard low-weighted bits and only keep high-weighted
ones.

To create such bitwise setting, we define the higher-bit approximate inho-
mogeneous short integer problem as well as the higher-bit near collision resis-
tance of Ajtai’s function. These instances are defined in regard to a higher-bit
version of Ajtai’s function.

3.1 Notations - High/low order bits functions

Let b ≥ 2 be the base used in decomposition and q ∈ Z (k = ⌈logb q⌉). Let d
be an integer s.t 0 ≤ d < k. d is chosen as the turning point exponent between
high order and low order bits.

Definition 9 (Decomposition in base b). For z ∈ Zq, define the decomposition
in base b of z as the elements {αz,r}k−1

r=0 in [|0, b− 1|] s.t :

z =

k−1∑
r=0

αz,rb
r

Definition 10 (HighBits and LowBits functions). For z ∈ Zq,

HighBitsd(z) =

k−1∑
r=d

αz,rb
r

LowBitsd(z) =

d−1∑
r=0

αz,rb
r

In introducing these definitions, our goal is to apply them to matrices in
Zn×m
q and vectors in Zm

q (n,m ∈ N). Thus, we extend these definitions as in
the following.

Definition 11. For y ∈ Zn
q ,

yH = (HighBitsd(yi))0≤i<n and yL = (LowBitsd(yi))0≤i<n

For A ∈ Zn×m
q ,

AH = (HighBitsd(ai,j))0≤i<n;0≤j<m and AL = (LowBitsd(ai,j))0≤i<n;0≤j<m

8
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3.2 Hardness of higher-bit approximate ISIS

Let b ≥ 2 be the base used in decomposition.

Definition 12. For any n,m ∈ N, q ∈ Z, α, β ∈ R and d ∈ N (d < ⌈logb q⌉),
define the higher-bit approximate inhomogeneous short integer solution problem
H.Approx.ISISn,m,q,d,α,β as follows :

Given A ∈ Zn×m
q

bd
, y ∈ Zn

q , find a vector x ∈ Zm such that ∥x∥ ≤ β and

there is a vector z ∈ Zn satisfying :

∥z∥ ≤ α and bdAx = y + z (mod q).

We show that the higher-bit approximate ISIS problem is as hard as the
standard ISIS. We know that the approximate ISIS is as hard as the standard
ISIS under the right parameters setting (see section 2). Thus, we only need to
show the reductions between the higher-bit approximate ISIS and the approxi-
mate ISIS.

Lemma 2.

Approx.ISISn,m,q,α,β ≥p H.Approx.ISISn,m,q,d,α,β ;

H.Approx.ISISn,m,q,d,α,β ≥p Approx.ISISn,m,q,α+
√
nbdβ,β.

Proof. The first reduction is straightforward.
Suppose there is a polynomial time algorithm A that solves

H.Approx.ISISn,m,q,d,α,β , we build a polynomial time algorithm B that solves
Approx.ISISn,m,q,α+

√
nbdβ,β . Given an Approx.ISIS instance (A ∈ Zn×m

q , y ∈
Zn
q ), B passes (A

H

bd
∈ Zn×m

q

bd
, y) to A and get x ∈ Zm

q such that :

AHx = y + z (mod q) with ∥x∥ ≤ β, ∥z∥ ≤ α.

We do :

Ax = y + z +ALx (mod q)

Moreover,

∥z +ALx∥ ≤ ∥z∥+ ∥ALx∥
≤ α+ ∥AL∥∥x∥
≤ α+

√
nbdβ

since all coefficients in AL are less than bd.
So x is a valid solution to Approx.ISISn,m,q,α+

√
nbdβ,β .

9
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Theorem 1.

ISISn,n+m,q,β ≥p H.Approx.ISISn,m,q,d,α+β,β ;

H.Approx.ISISn,m,q,d,α,β ≥p ISISn,n+m,q,α+(
√
nbd+1)β.

Proof. We can prove this Theorem by using both Lemma 2 above and reductions
from [9] (see section 2).

3.3 The near collision resistance of higher-bit Ajtai’s func-
tion

Let b ≥ 2 be the base used in decomposition.

Lemma 3 (The near-collision-resistance of Ajtai’s function [9]). For any n,m, q ∈
N and α, β ∈ R,

If there is an efficient adversary A that given A← U(Zn×m
q ), finds x1 ̸=

x2 ∈ Zm such that :

∥x1∥ ≤ β and ∥x2∥ ≤ β and ∥Ax1 −Ax2 (mod q)∥ ≤ 2α

Then there is an efficient adversary B that solves SISn,n+m,q,2(α+β).

Lemma 4. For any n,m, q ∈ N, α, β ∈ R and d ∈ N (d < ⌈logb q⌉),
If there is an efficient adversary A that given A← U(Zn×m

q

bd
), finds x1 ̸=

x2 ∈ Zm such that :

∥x1∥ ≤ β and ∥x2∥ ≤ β and ∥bdAx1 − bdAx2 (mod q)∥ ≤ 2α

Then there is an efficient adversary B that given A ← U(Zn×m
q ), finds

x1 ̸= x2 ∈ Zm such that :

∥x1∥ ≤ β and ∥x2∥ ≤ β and ∥Ax1 −Ax2 (mod q)∥ ≤ 2(α+
√
nbdβ)

Proof. Suppose B gets A ∈ Zn×m
q . B sends AH

bd
to A and gets back x1 ̸= x2 ∈

Zm such that :

∥x1∥ ≤ β and ∥x2∥ ≤ β and ∥AHx1 −AHx2 (mod q)∥ ≤ 2α

We define z = AHx1 −AHx2 (mod q),

Ax1 −Ax2 = z +ALx1 −ALx2 (mod q)

Thus ,

10



A. Le Dévéhat et al. On the Higher-Bit Version of Approximate ISIS

∥Ax1 −Ax2 (mod q)∥ ≤ ∥z∥+ ∥ALx1∥+ ∥ALx2∥
≤ 2(α+

√
nbdβ)

Theorem 2 (The near collision resistance of higher-bit Ajtai’s function). For
any n,m, q ∈ N, α, β ∈ R and d ∈ N (d < ⌈logb q⌉),

If there is an efficient adversary A that given A← U(Zn×m
q

bd
), finds x1 ̸=

x2 ∈ Zm such that :

∥x1∥ ≤ β and ∥x2∥ ≤ β and ∥bdAx1 − bdAx2 (mod q)∥ ≤ 2α

Then there is an efficient adversary B that solves SISn,n+m,q,2[α+(
√
nbd+1)β]

Proof. We can prove this Theorem using both lemma 3 [9] and lemma 4 above.

4 New construction - Main idea

We construct an application of the higher-bit approximate ISIS problem. Our
goal is to reduce the sizes of both the matrix A ∈ Zn×m

q generated with an ap-
proximate trapdoor as in the algorithms of [9], and of the sampled approximate
preimage y ∈ Zm

q by Ajtai’s Function defined by A.
Let b be the base for the matrix F of [9] with parameter l. As mentioned

above, we will be using the decomposition in base b (k = ⌈logb q⌉). Let d be an
integer s.t 0 ≤ d ≤ l.

4.1 Modification in the public matrix A

Modification in the construction.
We recall that in [9], the public matrix A is defined as :

A := [Ā|F − ĀR] ∈ Zn×m
q

where F is the public approximate gadget matrix and R is the approximate
trapdoor associated with the Ajtai’s Function defined by A (see section 2.4).

The selected modification on A is straightforward. We construct Anew ∈
Zn×m

q

bd
by doing the same as above and applying the HighBits function on A.

Anew =
AH

bd
where AH = [Ā

H |(F − ĀR)H ]
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In the following work, we need to isolate F . We observe that F is already in a
higher-bit form since F = In ⊗ (bl, bl+1, ..., bk−1)t and d ≤ l.

We use this property to express AH while keeping F untouched :

AH = [Ā
H |F + (−ĀR)H ]

It is easy to see that Anew ∈ Zn×m
q

bd
.

Optimization in the public matrix size. Using this modification, we save n ×
m× d⌈log2 b⌉ bits in the public matrix Anew memory space.

4.2 Repercussion on the security and underlying problem

This change in the public matrix A implies a modification in the hardness of
the underlying problem. In this construction, security relies on the higher-bit
approximate ISISn,m,q,d,α,β problem. As seen in Theorem 1, there is a reduction
from this problem to the SISn,m,q,α+

√
nbdβ problem. For same α and β as in the

original construction from [9], we need to deal with an additional
√
nbd factor

in the SIS problem solution length.

5 New construction - Algorithms

Let n,m, q, k and d be defined as in section 4.
In the following section, we present our compact approximate trapdoor

generation algorithm and approximate preimage sampling algorithm. Our algo-
rithms use those from [9]. Our method generates a pseudorandom A ∈ Zn×m

q

bd

along with an approximate trapdoor R which allows to sample an approximate
preimage y ∈ Zm

q

bd
for higher-bit Ajtai’s function defined by A.

5.1 The higher-bit version algorithms

We consider that HIGHBITS and LOWBITS are two functions implemented as
described in section 3.1.
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Algorithm 1: HIGHBITS.APPROX.TRAPGENχ

Input: Security parameter λ.
Output: Matrix-approximate trapdoor pair (A,R)∈ Zn×m

q

bd
× Z2n×w ;

matrix AL
0 ∈ Zn×m

bd

1 (A0,R)= APPROX.TRAPGENχ(λ) // Algorithm from [9]

2 AH
0 ,AL

0 = HIGHBITS(A0, d), LOWBITS(A0, d)

3 A = A0
H

bd

4 return ((A,R),AL
0 )

Algorithm 2: HIGHBITS.APPROX.SAMPLEPRE

Input: (A,AL
0 ,R,u,s).

Output: An approximate preimage of u ∈ Zn
q for bdA : y ∈ Zm

q

bd

1 y0= APPROX.SAMPLEPRE(bdA+AL
0 ,R,u,s) // A0 = bdA+AL

0 ;

// Algorithm from [9]

2 y = LOWBITS(y0, k − d)
3 return y

Figure 1: Pseudocode for the higher-bit version approximate trapdoor gener-
ation and approximate preimage sampling algorithms. The distribution χ is
chosen so that LWEn,n,q,χ,U(Zq),χ is hard. For the sake of optimization in Algo-

rithm 2, we need to set q = bk.

Algorithm 1 . This algorithm is instantiated such as described in section
4. The overall goal is to use only the high-weighted bits of the previous public
matrix A0 as our new public key. Doing so, we induce a bd-approximation on
every coefficient of the resulting public key A when compared to A0.

One should note that this algorithm does not only generate a matrix-
approximate trapdoor pair. It also returns the low-weighted bits of the original
matrix A0. This information is given to the approximate preimage sampling
algorithm. We should notice that information onAL

0 leaks through the error dis-
tribution. However this is not a problem because it does not leak information on
the secret trapdoor R since AL

0 is pseudorandom as we will see in subsection 5.2.

Algorithm 2. This algorithm samples an approximate preimage y ∈ Zm
q

bd

of u ∈ Zn
q by the higher-bit Ajtai’s function A ∈ Zn×m

q

bd
.

First, we sample an approximate preimage y0 ∈ Zm
q of the Ajtai’s function

defined by A0 using the algorithm from [9].
Secondly, in order to reduce the signature size, we use a little trick. It

relies on the following lemma :

Lemma 5. For z ∈ Zq, q = bk, and integers d, j such that j ≥ d,

13
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bjz = bjLowBitsk−d(z) (mod q)

Proof.

bjz = bj−d
k−1∑
r=d

αz,r−db
r (mod q) = bj

k−1−d∑
r=0

αz,rb
r (mod q)

Using lemma 5 and the fact that bdA is in a higher-bit form, we see that
the d highest bits of y0 have no impact on the product bdAy0.

Theorem 3. For A ∈ Zn×m
q

bd
and y0 ∈ Zm, q = bk,

bdAy = bdAy0 (mod q) where y = LowBitsk−d(y0)

Therefore, our modification in the public key A allows for an optimization
in the approximate preimage.

Remark. The norm of the approximate preimage is decreased by this modifica-
tion. Thus, if y0 is short then y is too.

Remark. This optimization needs the additional condition q = bk. If this con-
dition is not met, we should use the approximate preimage y0 from [9].

Optimization in the preimage size. Using this modification, we save m ×
d⌈log2 b⌉ bits in the approximate preimage memory space.

Remark. An idea to optimize the preimage size even more would be to apply
the HighBits function on y in the same way as for A. However, doing so would
increase a lot more the error term and thus impact security. We decide not to
add such modification as a trade-off between size and security.

Error term. We define the error e ∈ Zn
q as e = u− bdAy (mod q).

e0 defines the error term induced by y0 i.e e0 = u−A0y0 (mod q).

The error term e can be expressed as :

e = e0 + enew (mod q) where enew = AL
0 y0 (mod q)

Proof.

e = u− bdAy (mod q)

= u−AH
0 y0 (mod q) Theorem 3

= u− (A0 −AL
0 )y0 (mod q)

= u−A0y0︸ ︷︷ ︸
e0

+AL
0 y0︸ ︷︷ ︸

enew

(mod q)

14
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Remark. If we had chosen to calculate y0 with regard to bdA rather than A0,

the error term e would be e = e0 +AL
0

[
R
I

]
z (z is an approximate preimage

for F ). We observe that AL
0

[
R
I

]
= Ā

L
R + (−ĀR)L + F . Thus, information

on the secret R would leak from the distribution of e. Even though the norm
of e is decreased by this method, the security is compromised.

5.2 Study of the resulting distributions

The results of this subsection are summarized in the following Theorem.

Theorem 4. There exist probabilistic, polynomial time algorithms
HIGHBITS.APPROX.TRAPGENχ and HIGHBITS.APPROX.SAMPLEPRE sat-
isfying the following :

1. HIGHBITS.APPROX.TRAPGENχ(λ) returns a matrix-approximate trap-

door pair (A,R)∈ Zn×m
q

bd
× Z2n×n(k−l) along with a matrix AL

0 ∈ Zn×m
bd

.

The matrices A and AL
0 are pseudorandom assuming the hardness of

LWEn,n,q,χ,U(Zq),χ.

2. Let ((A,R),AL
0 ) be generated by HIGHBITS.APPROX.TRAPGENχ(λ).

The following two distributions are statistically indistinguishable :

{(A,y,u, e) :u← U(Zn
q ),

y ← HIGHBITS.APPROX.SAMPLEPRE(A,AL
0 ,R,u, s),

e = u− bdAy (mod q)}

and

{(A,y,u, e) :y0 ← DZm,s, e0 ← DZn,σ
√

(b2l−1)/(b2−1)
(mod q),

y = LowBitsk−d(y0), e = e0 +AL
0 y0 (mod q),

u = bdAy + e (mod q)}

for any σ ≥
√
b2 + 1.w(

√
log n) and s ≳

√
b2 + 1

s21(R)
s2n(R)ηϵ(Z

nk).

Proof. The proof is described in the end of this section. We use the distributions
study results in Theorem 4 from [9].

15
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5.2.1 Distributions of A and AL
0 .

Lemma 6. For any matrix M with distribution U(Zn×m
q ),

MH

bd
follows the distribution U(Zn×m

q

bd
) and ML follows the distribution

U(Zn×m
bd

). The distributions of MH

bd
and ML are independent.

Proof. Let i,j be two integers s.t 0 ≤ i ≤ n and 0 ≤ j ≤ m. Let x be an integer
in [|0, q

bd
− 1|].

P

(
mH

i,j

bd
= x (mod

q

bd
)

)
= P(HighBitsd(mi,j) = bdx (mod q))

=
∑

l0∈[|0,bd−1|]

P(mi,j = bdx+ l0 (mod q))

=
∑

l0∈[|0,bd−1|]

1

q
=

bd

q
=

1
q
bd

Using the same kind of reasoning, we can find that for any x ∈ [|0, bd−1|],
P(mL

i,j = x (mod bd) ) = 1
bd

MH and ML do not share any random sources thus their distributions
are independent.

We know that A0 is computationally indistinguishable from random as-
suming LWEn,n,q,χ,U(Zq),χ [9].

Thus, using lemma 6, we deduce thatA ≈s U(Zn×m
q

bd
) andAL

0 ≈s U(Zn×m
bd

).

5.2.2 Distribution of y.

We know that the distribution of
y0 ← APPROX.SAMPLEPRE(A0,R,u, s) is statistically indistinguishable
from y0 ← DZm,s for a random target. Since y = LowBitsk−d(y0), we can
say that the distribution of y is statistically indistinguishable from {y0 ←
DZm,s,y = LowBitsk−d(y0)} for a random target.

Thus, the distribution of y is simulatable without knowing the secret R
nor the public key A.

5.2.3 Distribution of e.

We know that the distribution of
{y0 ← APPROX.SAMPLEPRE(A0,R,u, s), e0 = u−A0y0} is statistically
indistinguishable from {y0 ← DZm,s, e0 ← DZn,σ

√
(b2l−1)/(b2−1)

(mod q)} for

a random target u. Since e = e0 + AL
0 y0 (mod q) , we can say that the
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A. Le Dévéhat et al. On the Higher-Bit Version of Approximate ISIS

distribution of e is statistically indistinguishable from {y0 ← DZm,s, e0 ←
DZn,σ

√
(b2l−1)/(b2−1)

(mod q), e = e0 +AL
0 y0 (mod q)} for a random target.

Thus, the distribution of e is simulatable without knowing the secret R.
Compared to [9], we need to know AL

0 to simulate e. However, as seen in
5.2.1, AL

0 is computationally indistinguishable from random and thus do not
leak information about R.

6 Hash-and-Sign Signature

This section is dedicated to the construction of a sEU-CMA secure [9] hash-and-
sign signature scheme instantiated with the algorithms and parameters from
figure 1. Let σ, s ∈ R+ be the discrete Gaussian widths of the distributions over
the cosets of Λ⊥

q (G) [21] and approximate Λ⊥
q (A0) [9] respectively. We choose

a distribution χ to sample R so that LWEn,n,q,χ,U(Zq),χ is hard.

6.1 Construction of a hash-and-sign signature

The following construction is written in the same way as the one in section 5
from [9]. This shows how it is adjusted to fit the ”higher-bit setting”.

Construction 1. Given the algorithms from Theorem 4, a hash function H =
{Hλ : {0, 1}∗ → Zn

q } modeled as a random oracle, we build a signature scheme
as follows.

• Gen(1λ) : The key-generation algorithm samples A ∈ Zn×m
q

bd
together with

its (α, β)-approximate trapdoor R and the matrix AL
0 ∈ Zn×m

bd
from

HIGHBITS.APPROX.TRAPGENχ(λ). It outputs A as the verification

key, keeps R as the secret signing key and gives AL
0 to the signing algo-

rithm.

• Sig(R,m) : The signing algorithm checks if the message-signature pair
(m,xm) has been produced before. If so, it outputs xm as the signature of
m; if not, it computes u = H(m), and samples an approximate preim-
age xm ← HIGHBITS.APPROX.SAMPLEPRE(A,AL

0 ,R,u, s). It
outputs xm as the signature and stores (m,xm) in the list.

• Ver(A,m,x) : The verification algorithm checks if ∥x∥ ≤ β and ∥bdAx−
H(m)∥ ≤ α. If so, it outputs accept; otherwise, it outputs reject.

6.2 Correctness

It is straightforward to verify that construction 1 is correct with overwhelming
probability by the settings of the parameters and definitions of our algorithms.
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6.3 Proof of security

For a random target, the preimage and error term are simulatable from distri-
butions without knowing the secret key R (see Theorem 4). We denote these
distributions by Dpre and Derr. To prove that our construction satisfies sEU-
CMA security, we rely on Theorem 2 about ”higher-bit near-collision-resistance”
property for Ajtai’s function. We use the same definition for sEU-CMA security
as defined in [9].

Theorem 5. Construction 1 is strongly existentially unforgeable under a chosen-
message attack in the random oracle model assuming the hardness of
SISn,n+m,q,2[α+(

√
nbd+1)β] and LWEn,n,q,χ,U(Zq),χ.

Proof. Assume that there is an adversary A which breaks the sEU-CMA se-
curity of construction 1 in polynomial time. We describe a polynomial time
adversary B invoking A that breaks the higher-bit near-collision-resistance of
Ajtai’s function, which is as hard as SISn,n+m,q,2[α+(

√
nbd+1)β] (Theorem 2).

B receives the matrix A as a challenge for ”the higher-bit near-collision-
resistance of Ajtai’s function”. B runs A on input pk A. B answers hash queries
to random oracle H and signing queries as follows. We note that its answers are
indistinguishable from the real ones due to the properties of Dpre and Derr, and
that a real public key is indistinguishable from random under LWEn,n,q,χ,U(Zq),χ.

Simulation of hash queries. We assume that B has chosen a random AL
0

to calculate Derr. A’s hash query H(m) on a message m is answered by B as
follows : B samples x← Dpre, gives u := bdAx+Derr (mod q) to A as H(m).

B stores (m,u) in the random oracle storage, (m,x) in the message-
signature pair storage.

Simulation of signing queries. Assume that on A’s signature query m, m
has been queried to the random oracle before. B generates the signature x by
finding (m,x) in the message-signature pair storage.

Forgery. Generality is equivalent to assumption that before A’s attempt
to forge a signature on m∗, A has queried H on m∗. We denote (m∗,u∗) and
(m∗,x∗) as the pairs prepared by B in the random oracle storage and message-
signature pair storage respectively. A forges a signature x on m∗. By the
definition of a correct signature, we have ∥bdA(x− x∗) (mod q)∥ ≤ 2α.

In the case where m∗ has been queried to the signing oracle, x ̸= x∗ by
the definition of a successful forgery. Otherwise, we know that DZm,s is set
with high min-entropy. Thus, Dpre is also with high min-entropy since Dpre

means compressing bd points to one point when using DZm,s. So, x ̸= x∗ with
overwhelming probability.

6.4 Implementation and analysis

The results in Theorem 4 induce the following length bounds on the signature
x and error term e : ||x|| ≤ s and ||e|| ≤ blσ +

√
nbds.
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We need to respect these bounds to set the parameters α and β of the
underlying security problem. Thus, combining with the results in Theorem 5,
we observe a trade-off between security and memory space. This trade-off is due
to the increase in the norm of a solution to the SIS problem. It is summarized
in figure 2 for the matrix setting.

F -trapdoor [9] This work

Norm of a short solution in SIS problem 2(s+ blσ) 2(s+ blσ) + 4
√
nbds

in the underlying SIS problem
Signature size (in bits) m× k × log2(b) m× (k − d)× log2(b)
Public key size (in bits) m× n× k × log2(b) m× n× (k − d)× log2(b)

Figure 2: The parameters are for a fixed lattice dimension n, vector dimension
m, a base b, a modulus q where k = ⌈logb q⌉. Parameters l, s and σ are the same
as in [9].

Proof-of-concept implementation. Due to this trade-off, we need to analyse
the benefits of our construction for different parameters sets. To do so, we
implement our construction for different concrete parameters. The code used in
this implementation is provided by Dr. Chen [8]. We get our security assuming
the hardness of Ring-LWE and Ring-SIS. Our goal in doing this implementation
is to compare our construction for different parameters choices with the two
best reference implementations from [9]. We realize an exhaustive search on all
parameters combinations from the following sets :

• n ∈ {512; 1024; 2048}

• b ∈ {2; 4; 8}

• k ∈ {16; 20; 22; 24}/log2b

• l ∈ {1; 2; ...; k − 1}

• d ∈ {1; 2; ...; l}

In the end, we obtained 1245 experiment results each with a different
parameters set. We conducted a comparison between all of these results in
terms of security and storage to find the best choices.

6.4.1 Analysis

In Figure 3 , we list experiment results for three selected groups of parameters.
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F -trapdoor [9] F -trapdoor [9] This work This work This work

n 512 1024 512 1024 1024
k = ⌈logb q⌉ 8 9 16 16 8

b 4 4 2 2 4
l 4 5 11 11 3
d - - 11 11 3
τ 2.6 2.8 2.6 2.8 2.8
s 2505.6 3733.1 1453.0 2163.9 3989.3
m 3072 6144 3584 7168 7168
||y||2 138244.3 296473.0 1072.2 1535.5 50533.7
||e||2 20627.9 1502259.7 428806.9 607601.6 596704.5

PK (kB) 5.12 11.52 1.92 3.84 7.68
Sig (kB) 4.5 9.4 2.25 4.5 8.98
LWE 104.7 192.7 104.7 192.7 192.7
AISIS 87.8 183.7 75.0 155.4 153.9

Figure 3: Some concrete parameters. LWE and AISIS refers to the security
levels of breaking the associated problems. ||y|| and ||e|| are the norms of the
preimage and error term. τ is the Gaussian width of R.

Figure 3 shows that, for a same security parameter n, we can expect our
construction to reduce the public key and signature sizes at least by half at
the expense of a reasonable drop in the security level. Our implementation
shows that an estimation of 75-bit security could be achieved for a public key
size of 1.92kB and a signature size of 2.25kB. Our construction brings a quite
important gain in storage.

For a same security parameter n, it is difficult to obtain different levels of
security as it is quite fixed by it. Furthermore, we do not have a lot of choices for
n. Indeed, in order to increase this parameter (which leads to better security),
there is no choice than doubling it. This problem is the same in the construction
by Chen, Denise and Mukherjee. Thus, the higher-bit approximate setting can
also be considered as a solution for obtaining other security levels than [9] along
with optimized object sizes.

Last but not least, if we increase the security parameter n compared to
[9], we obtain a better security along with better public key and signature sizes.
This can be seen as a win-win scenario for security and storage. For example,
we obtain an estimation of 155-bit security for smaller public key and signature
than those in 88-bit security reference implementation of [9]. The only downside
is that doubling the security parameter n can lead to bigger algorithms running
times. The impact on running times and how to decrease it remains as an open
problem for future works.

When realizing this implementation, a bigger security drop was expected.
However, as it turns out we are able to achieve an interesting scenario. A pos-
sible explanation for this result relies on the fact that using the higher-bit ap-
proximate setting allows for some bigger parameters. Namely, our construction
allows us to use a bigger l than compared to [9]. In F-trapdoors construction,
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such a big parameter l would lead to a very big drop in the security as the
approximation error grows really big. However, in our construction, this bigger
error in the trapdoor is counterbalanced by having a much smaller approximate
preimage size which leads to better security. That is why recommended and op-
timized parameters sets in the higher-bit approximate setting are different than
the ones in the approximate setting [9]. For information, experience results for
the same parameters as F-trapdoors construction are given in Figure 4 below.
It might helps one to understand better the impact of this work.

Remark. In our construction of the higher-bit approximate setting, the param-
eter d is different than l which defines the gadget-matrix F . It is set in order to
allow more parameter choices. Indeed, the induced error grows as d gets bigger.
Thus, a bigger d implies a bigger reduction loss and reduced security. However,
it appears that as long as it is decided to use the higher-bit approximate set-
ting, one should always set d as big as possible (i.e d = l). Indeed, the biggest
security loss is already caused just by using the higher-bit algorithms (due to
the
√
n factor). Thus, security drop implied by setting a bigger d is negligible

and should be ignored in parameters choices.

F -trapdoor [9] F -trapdoor [9] This work This work

n 512 1024 512 1024
k = ⌈logb q⌉ 8 9 8 9

b 4 4 4 4
l 4 5 4 5
d - - 4 5
τ 2.6 2.8 2.6 2.8
s 2505.6 3733.1 2494.5 3741.7
m 3072 6144 3072 6144
||y||2 138326.9 296473.0 8273.1 11534.9
||e||2 19793.8 1502259.7 433381.2 2422789.0

PK (kB) 5.12 11.52 2.56 5.12
Sig (kB) 4.5 9.4 3.09 6.14
LWE 104.7 192.7 104.7 192.7
AISIS 87.8 183.7 75.0 140.5

Figure 4: Some concrete parameters. The size of PK is measured in kB. LWE
and AISIS refers to the security levels of breaking the associated problems. ||y||
and ||e|| are the norms of the preimage and error term. τ is the Gaussian width
of R.
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