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Abstract. Bilinear pairings have been used in different cryptographic
applications and demonstrated to be a key building block for a plethora of
constructions. In particular, some Succinct Non-interactive ARguments
of Knowledge (SNARKs) have very short proofs and very fast verifi-
cation thanks to a multi-pairing computation. This succinctness makes
pairing-based SNARKs suitable for proof recursion, that is proofs veri-
fying other proofs. In this scenario one requires to express efficiently a
multi-pairing computation as a SNARK arithmetic circuit. Other com-
pelling applications such as verifying Boneh–Lynn–Shacham (BLS) sig-
natures or Kate–Zaverucha–Goldberg (KZG) polynomial commitment
opening in a SNARK fall into the same requirement. The implementation
of pairings is challenging but the literature has very detailed approaches
on how to reach practical and optimized implementations in different
contexts and for different target environments. However, to the best of
our knowledge, no previous publication has addressed the question of ef-
ficiently implementing a pairing as a SNARK arithmetic circuit. In this
work, we consider efficiently implementing pairings in Rank-1 Constraint
Systems (R1CS), a widely used model to express SNARK statements. We
show that our techniques almost halve the arithmetic circuit depth of the
previously best known pairing implementation on a Barreto–Lynn–Scott
(BLS) curve of embedding degree 12, resulting in 70% faster proving
time. We also investigate and implement the case of BLS curves of em-
bedding degree 24.

1 Introduction

A SNARK is a cryptographic primitive that enables a prover (Alice) to prove
to a verifier (Bob) the knowledge of a satisfying witness to a Non-deterministic
Polynomial (NP) statement by producing a proof π such that the size of π and
the cost to verify it are both sub-linear in the size of the witness. If π does not
reveal anything about the witness we refer to the cryptographic primitive as a
zero-knowledge (zk) SNARK.

Building on ideas from the pairing-based doubly-homomorphic encryption
scheme [8], Groth, Ostrovsky and Sahai [26] introduced the pairing-based non-
interactive zero-knowledge proofs, yielding the first linear-size proofs based on
standard assumptions. Groth [23] combined these techniques with ideas from



interactive zero-knowledge proofs to give the first constant-size proofs which
are based on constructing a set of polynomial equations and using pairings to
efficiently verify these equations. Follow-up works improved on these techniques
leading to the most succinct and widely implemented pairing-based SNARK [24].
This, however, comes with the drawback of a statement-specific setup.

More recently, a new kind of SNARKs was introduced, where the setup is
not specific to a given statement but is rather universal in that sense. Groth et
al. [25] proposed a universal SNARK with a single setup to prove all statements
of a given bounded size. Sonic [36] built on that to construct the first practical
universal SNARK. This work inspired many researchers and practitioners who
then came up with new and elegant universal constructions such as PLONK [19]
and Marlin [13]. A key building block of these universal constructions is the use
of polynomial commitment (PC) schemes. While there are different PC schemes
with trade-offs, the pairing-based Kate–Zaverucha–Goldberg (KZG) scheme [32]
remains the most efficient.

By exploiting their succinctness, both these constructions are good candi-
dates for recursive proof composition. Such proofs could themselves verify the
correctness of (a batch of) other proofs. To this end, one should express the
verification algorithm as a new SNARK statement to prove. Both Groth16 and
KZG-based universal SNARKs rely on multi-pairing computations to verify a
proof. That is, one should efficiently write a pairing as a SNARK circuit. Other
applications fall into the same problem and motivate further this work. For ex-
ample, Celo blockchain needs to generate a Groth16 proof that verifies a BLS
signature [9] which is also a multi-pairings equation. This is already used in pro-
duction and this work would allow to significantly speedup the proof generation.
Another example is the decentralized private computation (DPC) as introduced
in ZEXE [11]. This is used by the Aleo and Espresso systems [45] and could ben-
efit directly from this work. A last example is the zk-rollup which is an active
area of research and development within the Ethereum blockchain community.
It aims at solving the platform scalability problem by proving a batch of trans-
actions and only submitting the proof to the consensus layer. A promising line of
work is the zk-EVM rollup (e.g. a specification by ConsenSys [34]) uses a KZG-
based scheme to prove the Ethereum Virtual Machine (EVM) correct execution.
This requires proving pairing computations and this work would increase the
number of transactions that can fit in a zkEVM circuit.

While the traditional implementation of pairings was thoroughly considered
in the literature, very little work and no previous publication has addressed the
question of efficiently implementing a pairing as a SNARK arithmetic circuit.
In this work, we consider efficiently implementing pairings in Rank-1 Constraint
Systems (R1CS), a widely used model to express SNARK statements.

Organization. Section 2 provides some preliminaries on pairing-based SNARKs
and rank-1 constraint systems. Sections 3, 5 and 4 lay out mathematical results
on bilinear pairings, pairing-friendly 2-chains and algebraic tori. The contribu-
tions of the paper are Sections 6 and 7. First, we investigate efficient techniques
to express a pairing in R1CS and next we provide an optimized implementation
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Fig. 1. zk-SNARK algorithms. Public parameters are in blue and private ones in red.
Anyone (trusted)

(σp, σv)← Setup(F , τ , 1λ)

Alice (prover) Bob (verifier)

σp σv

π ← Prove(a, b, w, σp) Verify(a, b, π, σv)?
π

in the context of the Groth16 [24] proof system. Finally, we discuss relevant
applications and future work.

2 Pairing-based SNARKs

In the following, we mainly focus on preprocessing pairing-based zk-SNARKs
for Non-deterministic Polynomial (NP) languages for which we give a basic al-
gorithmic overview. Given a public NP program F , public inputs a and b and
a private input w, such that the program F satisfies the relation F (a,w) := b,
a zk-SNARK consists in proving this relation succinctly without revealing the
private input w. Given a security parameter λ, it consists of the Setup, Prove
and Verify algorithms (cf. 1):

(σp, σv)← Setup(F, 1λ)

π ← Prove(a, b, w, σp)

0/1← Verify(a, b, π, σv)

where σp is the proving key which encodes the program F for the prover, σv
the verification key which encodes F for the verifier and π the proof. If the
Setup algorithm is trapdoored an additional secret input τ is required (σp, σv)←
Setup(F, τ, 1λ).

Two pairing-based schemes are particularly widely implemented in different
projects. Groth16 [24] using a circuit-specific setup and PLONK [19] using a
universal setup for the KZG polynomial commitment. Table 1 gives the cost of
Setup, Prove and Verify for these two schemes.

2.1 Rank-1 Constraint System

The first step in SNARK proving an arbitrary computation is to arithmetize it,
that is to reduce the computation satisfiability to an intermediate representation
satisfiability. Many problems in cryptography can be expressed as the task of
computing some polynomials. Arithmetic circuits are the most standard model
for studying the complexity of such computations.
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Table 1. Cost of Setup, Prove and Verify algorithms for [24] and PLONK. m =
number of wires, n = number of multiplication gates, a = number of addition gates
and ` = number of public inputs. MG = multiplication in G and P=pairing. FFT=Fast
Fourier Transform.

Setup Prove Verify

Groth16 3n MG1

m MG2

(3n+m− `) MG1

n MG2

7 FFT

3 P
` MG1

PLONK (KZG)
d≥n+a MG1

1 MG2

8 FFT

9(n+ a) MG1

8 FFT
2 P

18 MG1

Fig. 2. Arithmetic circuit encoding the computation x3 + x + 5 = 35 for which the
(secret) solution is x = 3.

x 5

⊗

⊗

⊕

⊕

35

x2

x3

x3 + x

x3 + x+ 5

Arithmetic circuits. An arithmetic circuit A over the field F and the set of
variables X = {x0, . . . , xn} is a directed acyclic graph such that the vertices of A
are called gates, while the edges are called wires. Arithmetic circuits of interest
to many SNARKs and most applicable to this work are those with two incoming
wires and one outcoming wire (cf. Fig. 2 for an example).

R1CS. SNARKs, such as [24], express these arithmetic circuits as a set of
quadratic constraints called Rank-1 Constraint system (R1CS). It consists of
two set of constraints: multiplication gates and linear constraints in terms of the
circuit variables. There are two kinds of variables in the constraint system: the
input secrets v and the internal inputs and outputs of the multiplication gates.
Each multiplication gate takes two inputs and outputs their multiplication. That
relation for n gates is represented as

~aL ◦ ~aR = ~aO,

where ~aL is the vector of the first (left) input to each gate, ~aR the vector of
the second (right) input to each gate and ~aO the vector of the output. Linear
constraints are expressed using a vector of equations that use linear combinations
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of the variables as

( ~WL ◦ ~aL) · ( ~WR · ~aR) + ( ~WO ◦ ~aO) = ( ~Wv ◦ ~v) + c,

where ~WL, ~WR and ~WO are weights applied to the respective inputs and outputs
of the internal variables, ~Wv are weights applied to the inputs variables ~v and ~c
is a vector of constant terms used in the linear constraints.

SNARK-friendly computations. Many SNARK constructions model com-
putations to prove as R1CS where the variables are in F, a field where the
discrete logarithm is hard. In pairing-based SNARKs the field is chosen to be
Fr, where r is the prime subgroup order on the curve. The size of these variables
and particularly the multiplication gates variables is what determines the prover
complexity. For example, Groth16 prover complexity is dominated by the multi-
scalar-multiplications (in G1 and G2) of sizes n (the number of multiplication
gates). With this in mind, additions and constant-scalar multiplications in Fr,
which are usually expensive in hardware, are essentially free. While more tra-
ditional hardware-friendly computations (e.g. XORing 32-bit numbers) are far
more costly in R1CS. The following two observations, noted in earlier works [33],
are the key to lower the number of multiplication gates of a SNARK circuit:

– Additions and multiplications by constants in Fr are free and
– the verification can be sometimes simpler than forward computation. The

SNARK circuits do not always have to compute the result, but can instead
represent a verification algorithm. For example a multiplicative inversion
circuit (1/x ?

= y) does not have to encode the computation of the inversion
(1/x) but can instead consist of a single multiplication constraint (x · y) on
the value provided (precomputed) by the prover (y) and checks the equality
(x · y ?

= 1).

This is basically a computation model where inversions cost (almost) as much
as multiplications. For pairing-based proof recursion we need to implement effi-
ciently pairings in the R1CS model.

3 Background on pairings

We briefly recall elementary definitions of pairings and present the computation
of two pairings used in practice, the Tate and ate pairings. All elliptic curves
discussed below are ordinary (i.e. non-supersingular).

Let E be an elliptic curve defined over a field Fp, where p is a prime power. Let
πp be the Frobenius endomorphism: (x, y) 7→ (xp, yp). Its minimal polynomial is
X2 − tX + p where t is called the trace. Let r be a prime divisor of the curve
order #E(Fp) = p + 1 − t. The r-torsion subgroup of E is denoted E[r] :=
{P ∈ E(Fp), [r]P = O} and has two subgroups of order r (eigenspaces of πp in
E[r]) that are useful for pairing applications. We define the two groups G1 =
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E[r]∩ker(πp− [1]) with a generator denoted by G1, and G2 = E[r]∩ker(πp− [p])
with a generator G2. The group G2 is defined over Fpk , where the embedding
degree k is the smallest integer k ∈ N∗ such that r | pk − 1.

We recall the Tate and ate pairing definitions, based on the same two steps:
evaluating a function fs,Q at a point P , the Miller loop step [37], and then raising
it to the power (pk − 1)/r, the final exponentiation step. The function fs,Q has
divisor div(fs,Q) = s(Q)− ([s]Q)− (s− 1)(O) and satisfies, for integers i and j,

fi+j,Q = fi,Qfj,Q
`[i]Q,[j]Q

v[i+j]Q
,

where `[i]Q,[j]Q and v[i+j]Q are the two lines needed to compute [i+j]Q from [i]Q
and [j]Q (` intersecting the two points and v the vertical). We compute fs,Q(P )
with the Miller loop presented in Algorithm 10. The Tate and ate pairings are

Algorithm 1: MillerLoop(s, P,Q)
Output: m = fs,Q(P ) for s =

∑t
i=0 si2

i

1 m← 1; S ← Q;
2 for b from t− 1 to 0 do
3 `← `S,S(P ); S ← [2]S; // DoubleLine
4 v ← v[2]S(P ); // VerticalLine
5 m← m2 · `/v; // Update1
6 if sb = 1 then
7 `← `S,Q(P ); S ← S +Q; // AddLine
8 v ← vS+Q(P ); // VerticalLine
9 m← m · `/v; // Update2

10 return m;

defined by

Tate(P,Q) := fr,P (Q)(p
k−1)/r; ate(P,Q) := ft−1,Q(P )(p

k−1)/r

where P ∈ G1 and Q ∈ G2. The final exponentiation kills any element which lives
in a strict subfield of Fpk [5]. In case the embedding degree k is even, the vertical
lines vS+Q(P ) and v[2]S(P ) live in a strict subfield of Fpk so these factors will
be eliminated by the final exponentiation. Hence, in this situation we ignore the
VerticalLine steps and remove the divisions by v in Update1 and Update2
steps.

It is also important to recall some results with respect to the complex multi-
plication (CM) equation 4p = t2 +Dy2 with discriminant −D and some integer
y. When −D = −3, the curve has CM by Q(ω) where ω2 + ω + 1 = 0. In
this case, a twist of degree 6 exists. It has a j-invariant 0 and is of the form
Y 2 = X3 + b (a = 0). When E has d-th order twist for some d | k, then
G2 is isomorphic to E′[r](Fpk/d) for some twist E′ in this case of the form
Y 2 = X3 + b′. We denote by ψ the twisting isomorphism from E′ to E. When
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Fig. 3. A 2-chain of elliptic curves.

E2(Fp2)

E1(Fp1)

#E2(Fp2) = h · p1

−D = −3, there are actually two sextic twists, one with p + 1 − (−3y + t)/2
points on it, the other with p + 1 − (3y + t)/2, where y =

√
(4p− t2)/3. Only

one of these is the “right” twist, i.e. has an order divisible by r. Let ν be a
quadratic and cubic non-residue in Fpk/d and X6 − ν an irreducible polynomial,
the “right” twist is either with b′ = b/ν (D-type twist) or b′ = bν (M-type
twist). For the D-type, ψ : E′ → E : (x, y) 7→ (ν1/3x, ν1/2y). For the M-type,
ψ : E′ → E : (x, y) 7→ (ν2/3x/ν, ν1/2y/ν). For other d-twisting ψ formulas,
see [42].

4 Pairing-friendly 2-chains

Following [18], a SNARK-friendly 2-chain of elliptic curves is a set of two curves
as in Definition 1.

Definition 1. A 2-chain of elliptic curves is a list of two distinct curves E1/Fp1
and E2/Fp2 where p1 and p2 are large primes and p1 = r2 | #E2(Fp2). Both
curves should:

– be pairing-friendly and
– have a highly 2-adic subgroup, i.e. r1 ≡ r2 ≡ 1 mod 2L for a large L ≥ 1.

In a 2-chain, the first curve is denoted the inner curve, while the second curve
whose order is the characteristic of the inner curve, is denoted the outer curve
(cf. Fig. 3).

Inner curves from polynomial families. The best pairing-friendly ellip-
tic curve amenable to efficient pairing implementations arise from polynomial
based families. These curves are obtained by parameterizing the CM equation
with polynomials p(x), t(x), r(x) and y(x). The authors of [18] showed that the
polynomial-based pairing-friendly Barreto–Lynn–Scott families of embedding de-
grees k = 12 (BLS12) and k = 24 (BLS24) [6] are the most suitable to construct
inner curves in the context of pairing-based SNARKs. They showed that these
curves are always of the form E(Fp) : Y 2 = X3 + 1 and requiring the seed x
to satisfy x ≡ 1 mod 3 · 2L is sufficient to have the 2-adicity requirement with
respect to both r and p. These curves have −D = −3 (cf. Sec. 3).

7



Outer curves with the Brezing–Weng and Cocks-Pinch methods. The
papers [29,18] consider 2-chains from a BLS12 and a BLS24 curve. The authors
describe a general framework for all 2-chains made with a Brezing–Weng curve
of embedding degree 6 (BW6) from a BLS12 curve and resp. all 2-chains of a
BW6 curve from a BLS24 curve. In the sequel, we focus on efficiently proving a
pairing over BLS12 and BLS24 curves in a SNARK instantiated with a BW6.

Pairings over inner BLS12 and BLS24 curves. Table 2 summarizes the
salient parameters of BLS12 and BLS24 curves and Table 3 gives the concrete
parameters of the curves suggested in [18] and their security, namely the BLS12-
377 and BLS24-315. Next we will focus on efficient Miller loop computation and

Table 2. Polynomial parameters of BLS12 and BLS24 families.

Family k −D ρ r(x) p(x) t(x)

BLS12 12 −3 3/2 x4 − x2 + 1 (x6 − 2x5 + 2x3 + x+ 1)/3 + x x+ 1

BLS24 24 −3 5/4 x8 − x4 + 1
(x10 − 2x9 + x8 − x6 + 2x5−

x4 + x2 + x+ 1)/3
x+ 1

Table 3. Security level estimates of BLS12-377 and BLS24-315 curves from [11,18],
with seeds x377 = 0x8508c00000000001, x315 = −0xbfcfffff,

curve k −D ref r
bits

p
bits

pk

bits
DL cost
in Fpk

BLS12-377, x377 12 -3 [11] 253 377 4521 2126

BLS24-315, x315 24 -3 [18, Tab. 10] 253 315 7543 2160

final exponentiation from the literature for the case of BLS curves. The most
efficient pairing on BLS curves is the optimal ate pairing [44]. Given P ∈ G1

and Q ∈ G2, it consists in computing

e(P,Q) = fx,Q(P )(p
k−1)/r

where x is the curve’s seed and k the curve’s embedding degree (12 for BLS12
and 24 for BLS24). The Miller loop computation (Alg. 10) boils down to G2

arithmetic ([2]S and S +Q), line computations and evaluations in Fpk (`S,S(P )
and `S,Q(P )), squarings in Fpk (m2) and sparse multiplications in Fpk (m·`). The
vertical lines (v[2]S(P ) and vS+Q(P )) are ignored because eliminated later by the
final exponentiation since they are in a proper subgroup when the embedding
degree k is even. These operations are best optimized following [1] for a single
pairing and [41] for a multi-pairing.

8



Fpk towering and arithmetic. The extension field Fpk can be constructed in dif-
ferent ways. A pairing-friendly towering is built using a sequence of quadratic
and cubic extension fields. An appropriate choice of irreducible polynomials is
recommended to efficiently implement Karatsuba [31] and Chung–Hasan formu-
las [14]. The tower Fp12 can be built as

Fp Fp2
u2 − α

Fp6

Fp4

Fp12

Fp12

v3 − β

v2 − β

w2 − γ

w3 − γ

Both options have Fp2 as a subfield, needed to compress G2 coordinates.
The arithmetic on the first option is usually slightly faster while the second one
allows a better compression ratio (1/3 instead of 1/2) for GT elements via XTR
or CEILIDH [43] (instead of Lucas or T2 [43]). The tower Fp24 can be built as

Fp Fp2 Fp4
Fp8

Fp12 Fp24

Fp24

u2 − α v2 − β w3 − γ

w2 − γ

i2 − δ

i3 − δ

The same remarks apply to the towering options here, this time with Fp4 as
the subfield needed to compress G2 coordinates for BLS24.

G2 arithmetic and line evaluations. It was shown in [16,4,22,1] that the choice
of homogeneous projective coordinates is advantageous at the 128-bit security
level. This is due to the large inversion/multiplication ratio and the possibility
to maximize the shared intermediate computations between the G2 arithmetic
and the line evaluations. In [1], the authors also suggest to multiply the line by
w3 (in case of Fp12 towering for instance) which is eliminated later by the final
exponentiation. This is to obtain a fast sparse multiplication by the lines. Given
S = (XS , YS , ZS) ∈ G2

∼= E′[r](Fpk/d), the derived formulas are

X[2]S = XSYS(Y 2
S − 9b′Z2

S)/2; Y[2]S = ((Y 2
S + 9b′Z2

S)/2)2 − 27b′Z4
S ; Z[2]S = 2Y 3

SZS .

When the curve has a D-type twist given by the twisting isomorphism ψ :
E′(Fpk/d) → E(Fpk), the tangent line evaluated at (xP , yP ) can be computed
with

g[2]ψ(S)(P ) = −2YSZS · yP + 3X2
S · xPw + (3b′Z2

S − Y 2
S )w3 .

Similarly, if S = (XS , YS , ZS) and Q = (xQ, yQ) ∈ E′(Fpk/d) are points in
homogeneous projective and affine coordinates, respectively, one can compute
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the mixed addition S +Q as follows

XS+Q = λ(λ3 + ZSθ
2 − 2XSλ

2); YS+Q = θ(3XSλ
2 − λ3 − ZSθ2)− YSλ3; ZS+Q = ZSλ

3

where θ = YS − yQZS and λ = XS − xQZS . In the case of a D-type twist for
example, the line evaluated at P = (xP , yP ) can be computed with

gψ(S+Q)(P ) = −λyP − θxPw + (θx2 − λy2)w3 .

For multi-pairings
∏n−1
i=0 e(Pi, Qi), one can share the squaring m2 ∈ Fpk between

the different pairs. Scott [41] further suggested storing and then multiplying to-
gether the lines ` 2-by-2 before multiplying them by the Miller loop accumulator
m. This fully exploits any sparsity which may exist in either multiplicand.

The final exponentiation. After the Miller loop, an exponentiation in Fpk to the
fixed (pk − 1)/r is necessary to ensure the output uniqueness of the (optimal)
ate (and Tate) pairings. For BLS curves, many works have tried to speed this
computation up by applying vectorial addition chains or lattice-based reduction
approaches [28,2,20]. It is usually divided into an easy part and a hard part, as
follows:

pk − 1

r
=

pk − 1

Φk(p)︸ ︷︷ ︸
easy part

· Φk(p)

r︸ ︷︷ ︸
hard part

(1)

= (pd − 1)

∑e−1
i=0 p

id

Φk(p)︸ ︷︷ ︸
easy part

· Φk(p)

r︸ ︷︷ ︸
hard part

where Φk is the k-th cyclotomic polynomial and k = d ·e. For BLS12 and BLS24
curves, the easy part is (pk/2− 1)(pk/d + 1). It is made of Frobenius powers, two
multiplications and a single inversion in Fpk . The most efficient algorithms for
the hard part stem from [28], which we suggest to implement as in Alg. 2 and
Alg. 3 (3 · Φk(p)/r).

10



Algorithm 2: Final
exp. hard part for BLS12
curves.
Input: m = fx,Q(P ) ∈ Fp12
Output: m3·Φ12(p)/r ∈ GT

1 t0 ← m2

2 t1 ← mx // exp. to the fixed

seed x

3 t2 ← m̄ // conjugate

4 t1 ← t1 · t2
5 t2 ← tx1
6 t1 ← t̄1
7 t1 ← t1 · t2
8 t2 ← tx1
9 t1 ← tp1 // Frob.

10 t1 ← t1 · t2
11 m← m · t0
12 t0 ← tx1
13 t2 ← tx0

14 t0 ← tp
2

1 // Frob. square

15 t1 ← t̄1
16 t1 ← t1 · t2
17 t1 ← t1 · t0
18 m← m · t1
19 return m

Algorithm 3: Final
exp. hard part for BLS24
curves.
Input: m = fx,Q(P ) ∈ Fp24
Output: m3·Φ24(p)/r ∈ GT

1 t0 ← m2

2 t1 ← mx // exp. to the fixed

seed x

3 t2 ← m̄ // conjugate

4 t1 ← t1 · t2
5 t2 ← tx1
6 t1 ← t̄1
7 t1 ← t1 · t2
8 t2 ← tx1
9 t1 ← tp1 // Frob.

10 t1 ← t1 · t2
11 m← m · t0
12 t0 ← tx1
13 t2 ← tx0

14 t0 ← tp
2

1 // Frob. square

15 t2 ← t0 · t2
16 t1 ← tx2
17 t1 ← tx1
18 t1 ← tx1
19 t1 ← tx1

20 t0 ← tp
4

2 // Frob. quad

21 t0 ← t0 · t1
22 t2 ← t̄2
23 t0 ← t0 · t2
24 m← m · t0
25 return m;

Since the elements are in a cyclotomic subgroup after the easy part ex-
ponentiation, the squarings are usually implemented using the Granger–Scott
method [21]. The dominating cost of the hard part is the exponentiation to the
fixed seed m 7→ mx which is usually implemented with a short addition chain of
plain multiplications and cyclotomic squarings. Further savings, when the seed
is even [20], do not apply to inner BLS because the seed is always odd (x ≡ 1
mod 3 · 2L).

Theoretical cost of a full pairing. The exact cost depends on the particular choice
of the seed x. In any case, it boils down to the cost of Fpk and G2 arithmetic
operations. We follow the estimate in [27] for these operations. We model the cost
of arithmetic in a degree 12, resp. degree 24 extension in the usual way, where
multiplications and squarings in quadratic and cubic extensions are obtained
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recursively with Karatsuba and Chung–Hasan formulas, summarized in Table 4.
We denote by mk, sk, ik and fk the costs of multiplication, squaring, inversion,
and p-th power Frobenius in an extension Fpk , and bym = m1 the multiplication
in a base field Fp. We neglect additions and multiplications by small constants.
This estimation does not include the new interleaved multiplication in extension
fields by Longa [35].

Table 4. Cost from [27, Tab. 6] of mk, sk and ik for field extensions Fpk . Inversions in
Fpik come from i2k = 2mk + 2sk + ik and i3k = 9mk + 3sk + ik. Fp12 , resp. Fp24 always
have a first quadratic, resp. quartic extension, i24 = 2m12 + 2s12 + i12 = 293m+ i with
i12 = 9m4+3s4+i4, and for Fp12 , i12 = 2m6+2s6+i6 = 97m+i with i6 = 9m2+3s2+i2.

k 1 2 3 4 6 8 12 24

mk m 3m 6m 9m 18m 27m 54m 162m
sk m 2m 5m 6m 12m 18m 36m 108m
fk 0 0 2m 2m 4m 6m 10m 22m

scyclo
k − 2s − 4m 6m 12m 18m 54m

ik − i1 0 2m + 2s 9m + 3s 14m 34m 44m 97m 293m
ik, with i1 = 25m 25m 29m 37m 39m 59m 69m 119m 318m

Table 5. Miller loop cost in non-affine, Weierstrass model [16,4]. For 6 | k, two sparse-
dense multiplications cost 26mk/6 whereas one sparse-sparse and one multiplication
cost 6mk/6 + mk = 24mk/6.

k −D curve DoubleLine
and AddLine

ref SparseM and
SparseSparseM

6 | k −3 Y 2 = X3 + b′
3mk/6 + 6sk/6 + (k/3)m
11mk/6 + 2sk/6 + (k/3)m

[4, §4] 13mk/6

6mk/6

5 Algebraic tori and pairings

An algebraic torus is a type of commutative affine algebraic group that we will
need in optimizing the pairing computation in R1CS. Here we give a basic defi-
nition and some useful results from the literature [40] and [39].

Definition 2. The norm of an element α ∈ Fpk with respect to Fp is defined as
NF

pk
/Fp

= ααp · · ·αpk−1

= α(pk−1)/(p−1). For a positive integer k and a subfield
F ⊂ Fpk , the torus is

Tk(Fp) =
⋂

Fp⊆F⊂Fpk

ker(NF
pk
/F )
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In this case, F = Fpd for d | k and NF
pk
/F

pd
= α(pk−1)/(pd−1). Thus, equivalently,

we have

Tk(Fp) = {α ∈ Fpk |α(pk−1)/(pd−1) = 1} and |Tk(Fp)| = Φk(p) .

Lemma 1 ([39, Lemma 1]). Let α ∈ F∗pk , then α
(pk−1)/Φk(p) ∈ Tk(Fp) .

Lemma 2 ([39, Lemma 2]). d | k =⇒ Tk(Fp) ⊆ Tk/d(Fpd) .

Corollary 1. After the easy part of the final exponentiation in the pairing com-
putation (Eq. 1), elements are in the torus Tk(Fp) and thus in each torus Tk/d(Fpd)
for d | k, d 6= k.

5.1 Torus-based arithmetic

After the easy part of the final exponentiation the elements are in a proper
subgroup of Fpk that coincides with some algebraic tori as per Corollary 1.
Rubin and Silverberg introduced in [40] a torus-based cryptosystem, called T2.

Let q = pk/2 (q odd) and Fq2 = Fq[w]/(w2−γ). Let Gq,2 = {m ∈ Fq2 |mq+1 =
1}, which means that if m = m0 + wm1 ∈ Gq,2 then m2

0 − γm2
1 = 1. This norm

equation characterizes the cyclotomic subgroup where the result of the easy part
lies. When m1 = 0, then m0 must be 1 or −1. The authors define the following
compression/decompression maps on Gq,2 \ {−1, 1}

Compress ζ : Gq,2 \ {−1, 1} → F∗q

m 7→ 1 +m0

m1
= g;

Decompress ζ−1 : F∗q → Gq,2 \ {−1, 1}

g 7→ g + w

g − w
.

In T2-cryptography, one compresses Gq,2\{−1, 1} elements into F∗q (half their
size) using ζ and performs all the arithmetic in F∗q without needing to decom-
press back into Gq,2 (ζ−1). Given g, g′ ∈ F∗q where g 6= −g′, one defines the
multiplication as

Multiply (g, g′) 7→ g · g′ + γ

g + g′
.

One can derive other operations in compressed form such as

13



Inverse g 7→ −g;

Square g 7→ 1
2 (g + γ/g);

Frobenius map g 7→ gp
i

γ(pi−1)/2
.

6 Pairings in R1CS

In Section 4, we presented results from the literature that yield the most effi-
cient pairing computation on inner BLS curves. Porting these results mutatis-
mutandis to the R1CS model would result in a circuit of approximately 80000
multiplication gates in the case of the BLS12-377 curve. Next, we present an
algorithm and implementation that yield the smallest number of constraints so
far in the literature (around 11500 for the BLS12-377 curve). In the sequel, we
will denote by C the number of multiplication gates and take the example of a
BLS12 curve.

6.1 Miller loop

G2 arithmetic. Since inversions cost almost as much as multiplications in R1CS,
it is better to use affine coordinates in the Miller loop. Over Fp (base field of the
inner BLS12 which is the SNARK field of the outer BW6 curve), an inversion
1/x = y costs 2C. First 1C for the multiplication x · y where y is provided as
an input and then 1C for the equality check x · y ?

= 1. For division, instead of
computing an inversion and then a multiplication as it is custom, one would
compute directly the division in R1CS. The former costs 3C while the later costs
2C as for x/z = y =⇒ x

?
= z · y. A squaring costs as much as a multiplication

over Fp (x = y).
The same observations work over extension fields Fpe except for squaring

where the Karatsuba technique can be specialized. For example over Fp2 , a
multiplication costs 3C, a squaring 2C, an inversion and a division 5C (2C for the
equality check).

Point doubling and addition in affine coordinates is as follows:

Double: [2](xS , yS) = (x[2]S , y[2]S)

λ = 3x2S/2yS

x[2]S = λ2 − 2xS

y[2]S = λ(xS − x[2]S)− yS

Add : (xS , yS) + (xQ, yQ) =
(xS+Q, yS+Q)

λ = (yS − yQ)/(xS − xQ)

xS+Q = λ2 − xS − xQ
yS+Q = λ(xQ − xS+Q)− yQ

For BLS12 curves, G2 coordinates are over Fp2 and Table 6 summarizes the
cost of G2 arithmetic in R1CS. Note that a doubling is more costly in R1CS

14



Table 6. G2 arithmetic cost in R1CS over Fp2

Div (5C) Square (2C) Mul (3C) total
Double 1 2 1 12C
Add 1 1 1 10C

than an addition because the tangent slope λ requires a squaring and a division
instead of just a division. The Miller function parameter is constant — the seed-
x for BLS. Counter-intuitively in this case, we generate a short addition chain
that maximizes the number of additions instead of doublings using the addchain
Software from McLoughlin: https://github.com/mmcloughlin/addchain.

It turns out we can do better: when the seed x bit is 1, a doubling and an
addition [2]S + Q (22C) is computed but instead we can compute (S + Q) + S
which costs 20C. Moreover, we can omit the computation of the y-coordinate of
S +Q as pointed out in a different context in [17].

Double-and-Add : [2](xS , yS) + (xQ, yQ) = (x(S+Q)+S , y(S+Q)+S)

λ1 = (yS − yQ)/(xS − xQ)

xS+Q = λ21 − xS − xQ
λ2 = −λ1 − 2yS/(xS+Q − xS)

x(S+Q)+S = λ22 − xS − xS+Q
y(S+Q)+S = λ2(xS − x(S+Q)+S)− yS

which costs 17C in total (2 Div, 2 Square and 1 Mul).

Line evaluations. For BLS12, a line ` in Fp2 is of the form ay + bx + c = 0.
In the Miller loop, we need to compute the lines that go through the untwisted
G2 points [2]S and S +Q and to evaluate them at P ∈ G1. That is, `ψ([2]S)(P )
and `ψ(S+Q)(P ) where ψ : E′(Fp2) → E(Fp12) is the untwisting isomorphism.
Following [1], both lines are sparse elements in Fp12 of the form ayP+bxP ·w+c·w3

with a, b, c ∈ Fp2 . In R1CS, we precompute 1/yP and xP /yP for 1C each and
represent the lines by 1 + b′xP /yP · w + c′/yP · w3. This does not change the
final result because 1/a is in a proper subfield of Fpk . A full multiplication in
Fp12 costs 54C and a sparse multiplication as in [1] costs 39C, while with this
representation it costs only 30C with a single 2C precomputation.

We adapt the “G2 arithmetic and line evaluations” formulas from the previous
section (pairing out-circuit) to the affine setting together with the optimizations
in this section.

Let S = (xS , yS), Q = (xQ, yQ) ∈ G2
∼= E′[r](Fpk/d) and P = (xP , yP ) ∈

E[r](Fp). For a D-type twist, in the double step, the tangent line to S evaluated
at P is computed with

g[2]ψ(S)(P ) = 1− λ · xP /yPw + (λxS − yS)/yP · w3

15
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where λ = 3x2P /2yP .
In the double-and-add step, the line through S and Q evaluated at P is

computed with

gψ(S+Q)(P ) = 1− λ1 · xP /yPw + (λ1xS − yS)/yP · w3

and the line through S +Q and S is computed with

gψ((S+Q)+S)(P ) = 1− λ2 · xP /yPw + (λ2xS − yS)/yP · w3

where λ1 = (yQ − yS)/(xQ − xS) and λ2 = −λ1 − 2yS/(xS+Q − xS).

Fpk towering and arithmetic. For the towering of Fp12 , we choose the option
where Fp12 is a quadratic extension of Fp6 to be able to use T2 arithmetic as we
will show later. The arithmetic costs in terms of constraints are summarized in
Table 7.

Table 7. Fp12 arithmetic cost in R1CS

Mul Square Div sparse Mul
Fp12 54C 36C 66C 30C

6.2 Final exponentiation

Easy part. The easy part (Eq. 1) consists in raising the Miller loop output
m ∈ Fp12 to the power (p6− 1)(p2 + 1), which is usually implemented as follows:

t ← m̄ (0C)
m ← 1/m (66C)
t ← t ·m (54C)

m ← tp
2

(0C)
m ← t ·m (54C)

where t ∈ Fp12 is a temporary variable. The conjugate m̄ and the Frobenius map
tp

2

are essentially free because they only involve multiplications by constants.
We further merge the inversion (66C) and the multiplication (54C) in a division
operation (66C). The total cost is 120C instead of 174C.

Hard part. The most efficient implementation is described in Alg. 2. Only the
multiplications and cyclotomic squarings increase the number of constraints.
Squarings in cyclotomic subgroups are well studied in the literature and in Ta-
ble 8 we give the best algorithms in the R1CS model. It can be seen that for a
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single square or two squares in a row, Granger-Scott algorithm [21] is preferred
while compression-based methods are better for other cases. For 3 squares in a
row the SQR12345 variant of the Karabina method [30] is preferred while for
more than 4 the SQR234 variant yields the smallest number of constraints. Usu-
ally, out-circuit, we would use the Granger-Scott method because of the inversion
cost in the decompression due to Karabina method but in R1CS inversions are
not costly.

Table 8. Squaring costs in the cyclotomic subgroup of Fp12 in R1CS

Compress Square Decompress
Karatsuba + Chung–Hasan 0 36C 0
Granger-Scott [21] 0 18C 0

Karabina [30]
(SQR2345) 0 12C 19C

Karabina [30]
(SQR12345) 0 15C 8C

T2 arithmetic. Corollary 1 states that after the easy part of the final exponen-
tiation, the result lies in T2(Fp6) and thus T2 arithmetic can be used to further
reduce the number of constraints in the hard part. We first compress the element,
use squarings and multiplications in the compressed form and finally decompress
the result following the cost in Table 9. The T2 formulas are well defined over

Table 9. T2 arithmetic cost in R1CS.

Compress Square Mul Decompress
T2 24C 24C 42C 48C

Gq,2 \ {−1, 1} but for pairings we only consider Gq,2 \ {1} as both exception
values are mapped to 1 after the final exponentiation. We can even get rid of the
one-time cost of compression and decompression. First, the decompression is not
needed as the applications we are interested in do not require the exact value of
the pairing but just to check a multi-pairing equation, i.e.

∏n−1
i=0 e(Pi, Qi)

?
= 1.

In this case, the equality check can be performed in the compressed form costing
even less constraints (kC vs. k/2C). For the compression, it can be absorbed in
the easy part computation as it was shown in [39]. Let m = m0 +wm1 ∈ Fp12 be
the Miller loop result. We do not consider the exception casem = 1 as this would
mean that the points are co-linear which is not the case for pairs correctly in G1

and G2 (we assume this is verified out-circuit). The easy part is m(p6−1)(p2+1)
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where

mp6−1 = (m0 + wm1)p
6−1

= (m0 + wm1)p
6

/(m0 + wm1)

= (m0 − wm1)/(m0 + wm1)

= (−m0/m1 + w)/(−m0/m1 − w)

Hence we can absorb the T2 compression cost when carrying the easy part com-
putation

ζ(m(p6−1)(p2+1)) = (−m0/m1)p
2+1

= (−m0/m1)p
2

· (−m0/m1)

This costs only 60C in comparison of 120C previously. In [39], the authors noted
that one can perform the whole Miller loop in T2. The original motivation was
to compress the computation for constrained execution environments but in our
case the motivation would be to benefit from the T2 arithmetic that costs less
R1CS constraints than the plain computation. However, having to deal with the
exception case m = 1 separately is very costly in R1CS. In fact, conditional
statements are carried through polynomials which vanish at the inputs that are
not being selected. As an example, we show how to perform a 2-input (bits) 1-
output conditional statement in R1CS in Alg. 5. This is a constant 2-bit lookup

Algorithm 4: Lookup2: 2-bit lookup table in R1CS
Input: bits (b0, b1), and constants (c0, c1, c2, c3)

Output: r =


c0, if b0 = 0, b1 = 0

c1, if b0 = 1, b1 = 0

c2, if b0 = 0, b1 = 1

c3, if b0 = 1, b1 = 1

1 t1, t2 ← temporary variables;
2 (c3 − c2 − c1 + c0)× b1 = t1 − c1 + c0;
3 t1 × b0 = t2;
4 (c2 − c0)× b1 = r − t2 − c0;
5 return r;

table that costs 3C. This technique can be applied for larger window tables,
but the multiplicative depth of the evaluation increases exponentially. For the
m = 1 ∈ Fp12 conditional statement, we need at least a 6-bit lookup table to
check that m1 = 0 ∈ Fp6 , making this idea not worth investigating further.
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7 Implementation and benchmark

To the best of our knowledge, there are only two implementations of pairings
in R1CS. One in libsnark [7] for Miyaji–Nakabayashi–Takano [38] curves of em-
bedding degrees 4 (MNT4) and 6 (MNT6) and one for BLS12-377 in arkworks [15].
The first one was written in C++ and used previously in the Mina blockchain
but is now obsolete as these MNT4/6 curves are quite inefficient at the 128-bit
security level. More discussion on this can be found in this survey paper [3, Sec-
tion 5]. The second implementation is in Rust and corresponds exactly to the
problem we investigate in this paper. It uses a BW6-761 curve to SNARK-prove
an optimal ate pairing over BLS12-377 in more than 19000 constraints.

We choose to implement our work in Go using the open-source gnark ecosys-
tem [10]. We both implement a pairing over BLS12-377 in a BW6-761 SNARK
circuit and a BLS24-315 in a BW6-633 SNARK circuit. For this, we make
use of all ideas discussed in this paper to implement finite field arithmetic in
Fp2 ,Fp4 ,Fp6 ,Fp12 and Fp24 , G1 and G2 operations and optimal ate pairings on
BLS12 and BLS24. Moreover, as applications, we implement and optimize cir-
cuits for Groth16 [24] verification, BLS signature verification and KZG polyno-
mial commitment opening. Tables 10 and 11 give the overall cost of these circuits
in terms of number of constraints C, which is almost half the best previously
known implementation cost. We also include Fig. 4 which profiles the number of
constraints of every sub-function in the pairing computation on BLS12-377.

https://github.com/ConsenSys/gnark

Table 10. Pairing cost for BLS12-377 and BLS24-315 in R1CS.

Miller loop Final exponentiation total
arkworks (BLS12-377) ≈ 6000C ≈ 13000C ≈ 19000C
gnark (BLS12-377) 5519C 6016C 11535C
gnark (BLS24-315) 8132C 19428C 27608C

Table 11. Pairing-based circuits costs in R1CS for BLS12-377 and BLS24-315.

Groth16 verif. BLS sig. verif. KZG poly. commit.
gnark (BLS12-377) 19378C 14888C 20691C
gnark (BLS24-315) 40275C 32626C 57331C

Note that the BLS signature verification circuit excludes the hash-to-curve
cost and that the KZG circuit needs a scalar multiplication in G2 which we
implement in 3.5C per bit of the scalar following [12, Sec. 6.2 - Alg. 1].

Timings. The number of constraints is independent of the choice of a program-
ming language and the usual software concerns. However, to better highlight the
consequence of this work, we report in Fig. 5 the timings of the Groth16 Prove
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Fig. 4. Constraints profiler of the pairing computation on BLS12-377

algorithm corresponding to a single pairing, multi-pairings and pairing-based cir-
cuits on a AMD EPYC 7R32 AWS (c5a.24xlarge) machine. We use the Groth16
implementation in the open-source library gnark [10] where we implemented the
pairings circuits for BLS12-377 and BLS24-315. We run the benchmark with hy-
perthreading, turbo and frequency scaling disabled. We note that these timings
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Fig. 5. Number of constraints (a) and Groth16 proving times (b) for multi-pairings on
BLS12-377 and BLS24-315 curves.
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are slower for BLS24-317 because of the R1CS cost of Fp24 arithmetic, which is
3 times more compared to Fp12 .

8 Conclusion

The application of pairing-based cryptography in modern zero-knowledge proof
systems has energized research efforts well beyond traditional use of pairings. In
recursive pairing-based proof systems one requires to efficiently prove a pairing
computation. To this end researchers have come up with new tailored construc-
tions of elliptic curves to allow proving a pairing efficiently in a generic-purpose
proof system. However, once these curves are constructed, so little work was
conducted in order to optimize the pairing computation in the arithmetization
model of the proof system. In this work we considered the Rank-1 constraint
system as a widely used arithmetization model and reduced the computational
cost beyond the state-of-the-art. As a future work, we are looking to consider
other models such as the PLONK [19] arithmetization where additions are not
free but where we can build custom gates and lookup tables for some specific
intermediate computations.
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