
TRIFORS: LINKable Trilinear Forms Ring Signature

Giuseppe D’Alconzo∗ and Andrea Gangemi†

Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy

Abstract

We present TRIFORS (TRIlinear FOrms Ring Signature), a logarithmic post-quantum
(linkable) ring signature based on a novel assumption regarding the equivalence of alter-
nating trilinear forms. The basis of this work is the construction by Beullens, Katsumata
and Pintore from Asiacrypt 2020 to obtain a linkable ring signature from a cryptographic
group action. The group action on trilinear forms used here is the same employed in the
signature presented by Tang et al. at Eurocrypt 2022. We first define a sigma protocol
that, given a set of public keys, the ring, allows to prove the knowledge of a secret key
corresponding to a public one in the ring. Furthermore, some optimisations are used to
reduce the size of the signature: among others, we use a novel application of the combina-
torial number system to the space of the challenges. Using the Fiat-Shamir transform, we
obtain a (linkable) ring signature of competitive length with the state-of-the-art among
post-quantum proposals for security level 128.

Keywords— Tensor Isomorphism, Alternating Trilinear Forms, Ring Signatures, Linkable Ring
Signatures

1 Introduction

Ring signatures. Ring signatures were introduced in 2001 by Rivest, Shamir and Tauman [RST01].
They are a simplified variant of group signature schemes [CvH91] and are useful when the involved
members do not want to cooperate. A key element in these schemes is the ring : a set of R public keys
which belong to different users. The signature is then produced by a single user, exploiting all the R
public keys of the ring. Ring signatures must satisfy two key properties, anonymity and unforgeability.
Shortly, the former means that the verifier should not be able to identify the signer of a transaction
in a ring of size R with a probability greater than 1

R
, while the latter tells us that in order to produce

a valid signature, it is necessary to know at least one secret key associated to one of the R public
keys of the ring. In a ring signature, after the key generation phase, where each user will receive a
secret/public key pair (sk, pk), the signer I will produce the signature σ starting from a message msg,
the ring containing the R public keys and his secret key, skI . A verifier will then be able to check the
correctness, knowing only the message msg, the ring and the signature σ. Moreover, a ring signature
can also be linkable. In this case, an additional value τ will be produced during the sign phase. This
value will not change if it is computed starting from the same secret key, so if the same user produces
two different signatures, they will be linked. Formal definitions about ring signature properties can be
found in Section 2.
Several ring signatures were proposed in these years. [RST01] described two different protocols based
on the RSA and Rabin assumption, while Liu, Wei and Wong [LWW04] introduced in 2004 a new group
signature algorithm known as Linkable Spontaneous Anonymous Group (LSAG), based on the Discrete
Logarithm Problem. More digital signatures based on this assumption have been introduced in recent
years and have found application for example within the Monero blockchain [NM+16; GNB19].
Nowadays, ring signatures schemes have an application in cryptocurrencies and e-voting [PNH+22].

∗giuseppe.dalconzo@polito.it
†andrea.gangemi@polito.it

1

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

Post-quantum cryptography and group actions. With recent developments that are bring-
ing us closer to the advent of quantum computing, many cryptographic algorithms can no longer be
considered secure. For example, all the signatures described in the previous paragraph are based on
cryptographic assumptions that are broken by the well known Shor’s algorithm [Sho94].
In the last years, NIST launched a Post-Quantum Standardisation Contest, now come to an end,
that aimed to find protocols based on cryptographic assumptions that appear to be resistant even in
case the quantum computer arrives. The most promising ones are based on lattice-based cryptogra-
phy, multivariate cryptography, hash-based cryptography, isogeny-based cryptography and code-based
cryptography.
Other interesting post-quantum assumptions derive from Cryptographic Group Actions, introduced
by Alamati, De Feo, Montgomery and Patranabis [AFMP20] in 2020. Group actions are an inter-
esting tool to generalise some well-known assumptions like the Discrete Logarithm Problem. The
most promising and studied post-quantum cryptographic group action is CSIDH [CLM+18], but the
topic has received a lot of interest, both in theoretical and applied fashion [GQ21; BBPS21; TDJ+22;
JQSY19; BKV19; BKP20; DG19].

Concurrent works. In recent years, various digital ring signatures based on post-quantum as-
sumptions have been proposed. In 2019, Esgin, Zhao, Steinfeld, Liu and Liu proposed MatRiCT
[EZS+19], while Lu, Au and Zhang described Raptor [LAZ19]; both signatures are based on lattices
assumptions, more precisely the former is based on Module Shortest Integer Solution (MSIS) and
Module Learning With Errors (MLWE), while the latter is based on the NTRU assumption. Shortly
after, Beullens, Katsumata and Pintore proposed two different ring signatures, known as Calamari
and Falafl [BKP20]: Calamari is up to date the only ring signature based on isogenies, more precisely
on the CSIDH assumption, while Falafl is again based on the MSIS and MLWE assumptions. In 2021
were proposed two non-linkable schemes, both based on MSIS and MLWE. The first one by Lyuba-
shevsky, Nguyen and Seiler is called SMILE [LNS21] and is based on set membership proofs. The
second one, DualRing [YEL+21], uses an innovative construction based on two rings. In the same
year, Esgin, Steinfeld and Zhao presented a follow-up work optimizing MatRiCT [ESZ22]. By fol-
lowing the same line of research of [BKP20], Barenghi, Biasse, Ngo, Persichetti and Santini proposed
the (linkable) ring version [BBN+22] of LESS [BBPS21], a signature whose security assumption is
based on the code equivalence problem. Recently Bellini, Esser, Sanna and Verbel proposed MRr-DSS
[BESV22], a non-linkable ring signature based on the MinRank problem. Finally, in a simultaneous
work [CDN+22], Chen, Duong, Nguyen, Qiao, Susilo and Tang, besides analysing a particular class of
signatures in the Quantum Random Oracle Model, use the construction in [BKP20] to obtain a ring
signature from alternating trilinear forms.

Our contribution. In this work we present TRIFORS, a logarithmic post-quantum (linkable) ring
signature based on a novel assumption regarding equivalence of alternating trilinear forms. This work
is built starting from the digital signature presented by Tang et al. [TDJ+22] at EUROCRYPT 22 and
the construction introduced by Beullens, Katsumata and Pintore [BKP20] to obtain a linkable ring
signature from a group action. The signature is based on a novel cryptographic assumption, stating
that the search Alternating Trilinear Form Equivalence (sATFE) problem is intractable. We design a
base OR Sigma protocol, having soundness error of 1/2. The term “OR” refers to the fact that the
prover knows at least a secret key for the public keys in the ring. Given a security parameter λ, we
decrease the soundness error to 1/2λ, running the protocol in parallel and using some optimisations. In
particular, we use a fixed-weight challenge and, via a well-known combinatorial technique, we compress
it in a string of length ∼ λ bits. To the best of our knowledge, we are the first applying this technique
to shorten the signatures, without affecting the security of the scheme. We present what we called
“main OR Sigma protocol” in two versions, with and without tag. Applying the Fiat-Shamir transform
[FS86], we get two constructions: a ring signature from the OR sigma protocol without tag, called
TRIFORS, and a linkable ring signature Link-TRIFORS from the version with tag.
Our post-quantum ring signature has logarithmic length in the size of the ring and competes with the
state-of-the-art, as shown in Table 1 for the non-linkable version: the only scheme having signatures
significantly shorter than ours (for small rings) is Calamari [BKP20], but it pays the heavy computation
induced by isogenies. Recent proposals based on lattice assumptions [ESZ22; YEL+21] achieve very
short signatures for small rings; however, they are comparable to our scheme for medium-size rings.
Moreover, TRIFORS performs even slightly better than the novel ring signature on codes [BBN+22].
Finally, Table 2 reports the length of a public key for all the ring signatures just described. It can
be seen that a public key in TRIFORS is smaller than in most competitors, so the length of the ring
signature-public key pair is competitive even for rings of lower cardinality. For practical purposes, it

2

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

is useful to compare R|pk|+ |σR|, where R is the cardinality of the ring, |pk| is the size of the public
key and |σR| is the size of the signature obtained using R public keys. Indeed, to check a signature,
the verifier needs all the public keys in the ring.
This work is organized as follows: Section 2 sets some notations and recalls some preliminaries, while
in sections 3 and 4 we define the two sigma protocols on which the (linkable) ring signature given
in Section 5 is based. In Section 6 is given an overview on the attacks and finally, in Section 7 are
reported some optimal parameters of the scheme. We also give some hints for possible future works.

Scheme Assumption
R

21 23 25 26 210 212 215 221

TRIFORS sATFE 9.1 10.6 12.0 12.8 15.7 17.2 19.4 23.8
Calamari [BKP20] CSIDH-512 3.5 5.4 - 8.2 - 14 - 23
Falafl [BKP20] MSIS, MLWE 29 30 - 32 - 35 - 39

MatRiCT+ [ESZ22] MSIS, MLWE 5.4 8.2 11 12.4 18 20.8 25 33.4
DualRing-LB [YEL+21] MSIS, MLWE 4.5 4.6 - 6 - 55 - -

SMILE [LNS21] MSIS, MLWE - - 16 - 17.3 - 18.7 -
Ring LESS [BBN+22] Perm. Code Eq. - 10.8 - 13.7 - 19.7 - 28.6
MRr-DSS [BESV22] MinRank - 27 32 36 145 422 - -

Table 1: Size in KB of the signatures, where the security parameter λ is 128 and R is the size
of the ring.

Scheme Assumption pk
TRIFORS sATFE 0.3

Calamari [BKP20] CSIDH-512 0.1
Falafl [BKP20] MSIS, MLWE 2.2

MatRiCT+ [ESZ22] MSIS, MLWE 3.4
DualRing-LB [YEL+21] MSIS, MLWE 2.8 ∼ 3.4

SMILE [LNS21] MSIS, MLWE 3.3
Ring LESS [BBN+22] Perm. Code Eq. 11.6
MRr-DSS [BESV22] MinRank R

Table 2: Size in KB of the public keys, where the security parameter λ is 128 and R is the size
of the ring.

2 Preliminaries

2.1 Notation

Let N = {1, 2, . . . } and R be the sets of natural and real numbers, respectively. We denote with
λ the security parameter. We denote with poly(·) a function that is polynomial in its argument, i.e.
there exists a positive integer m such that poly(x) = O(xm). A function ϵ : N→ R is negligible if there
exists n0 such that for every n > n0 we have ϵ(n) ≤ 1/p(n) for every polynomial p. A function not
having this propriety is called non-negligible. The probability of an event is overwhelming if it is equal
to 1− ϵ, where ϵ is a negligible function. We say that an adversary has an advantage a when playing
a game against a challenger if its probability of winning that game is 1

2
+ a. For a prime power q, Fq

is the finite field with q elements, and (Fq)n is the n-dimensional vector space over Fq. The group of
invertible n × n matrices with coefficients in Fq is denoted with GLn(q). The Hamming weight of a
vector x is the number of its non-zero coordinates, and its denoted with w(x). With || we denote the
concatenation of strings or vectors. Given a binary string x, |x| denotes the bit length of x.
We denote the Random Oracle with RO and we augment it with some functionalities:

• a commitment functionality ROCom(x, r) where x is the committed value and r a random string;

• a seed expansion functionality ROE(seed), where the output is defined by the context;

• a collision-free hash function ROH with output length 2λ.

In the pseudocode “←$ ” denotes the random sampling, “←” is a variable assignment and “=” is the
equality check.

3

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

2.2 Alternating trilinear forms

Here we define alternating trilinear forms and the cryptographic assumptions at the base of our
protocol.

Definition 1. Given positive integers k, n,m and a prime power q, a map

ϕ : (Fq)n × · · · × (Fq)n︸ ︷︷ ︸
k times

→ (Fq)m

can be

1. alternating : if ϕ is equal to the zero vector whenever two of its arguments are equal;

2. k-linear : if ϕ is linear in each of its k arguments.

If m = 1, i.e. the codomain of ϕ is the field Fq, we say that ϕ is a form.
An alternating trilinear form is a map

ϕ : (Fq)n × (Fq)n × (Fq)n → Fq

that is alternating and trilinear. The set of alternating trilinear forms over (Fq)n is denoted with
ATF(q, n).

It is known that ATF(q, n) is a linear space over Fq of dimension
(
n
3

)
. This implies that any

alternating trilinear form can be represented and stored with
(
n
3

)
⌈log2 q⌉ bits.

Starting from GLn(q), the group of n×n invertible matrices over Fq, a group action over ATF(q, n)
can be defined.

Definition 2. The group action (GLn(q),ATF(q, n), ⋆) is defined by

⋆ : GLn(q)×ATF(q, n)→ ATF(q, n)

(A, ϕ) 7→ ϕ ◦At.
(1)

In other words, the alternating trilinear form (A ⋆ ϕ) (x, y, z) is the map

ϕ(Atx,Aty,Atz).

The group action above defines an equivalence, indeed we say that ϕ and A ⋆ ϕ are equivalent. Given
two alternating trilinear forms, we can define the problem of deciding if there is an equivalence, and
the problem of finding a matrix that sends one into the other. We formalize this in the following
definition.

Definition 3. The Alternating Trilinear Form Equivalence (ATFE) problem is given by

• Input : ϕ, ψ in ATF(q, n).

• Output : YES if there exists A in GLn(q) such that ϕ = A ⋆ ψ and NO otherwise.

The search Alternating Trilinear Form Equivalence (sATFE) problem is given by

• Input : ϕ, ψ in ATF(q, n) such that they are equivalent.

• Output : A in GLn(q) such that ϕ = A ⋆ ψ.

The assumption that the sATFE problem is intractable comes from the fact that its decisional
counterpart ATFE is TI-complete: the TI complexity class [GQ21] contains all those problems reducible
to d-Tensor Isomorphism for some positive integer d. The ATFE problem is polynomially equivalent
to d-Tensor Isomorphism for d ≥ 3, hence by definition it is TI-complete. This implies that ATFE is as
hard as all TI-complete problems from [GQ21]. At the moment, no polynomial-time algorithm solving
any TI-complete problem is known.

2.3 Sigma protocols

Given an NP-relation R, a sigma protocol is a three-move interactive protocol between a prover
P = (Pcom,Presp) and a verifier V. We assume that the prover uses some fixed randomness for its
algorithms (Pcom,Presp), and they share their internal states. The output of V is assumed to be in
{0, 1}. More formally, given a pair (x,w) ∈ R where x is the instance and w is the witness for x, the
protocol follows the flow in Figure 1. We assume that both the parties have access to a random oracle
RO and the verifier accepts if the algorithm V returns 1. The transcript of the protocol is defined as
the triple (com, ch, resp). The challenge ch is sampled from the space Sch.

To be suitable for our application, a sigma protocol must present the following security properties.

4

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

ProverRO (x,w) VerifierRO (x)

seed←$ {0, 1}λ

com← PRO
com (seed, x) com

ch ch←$Sch

resp← PRO
resp (seed, x, w, com, ch)

resp return VRO (x, com, ch, resp)

Figure 1: Generic Sigma Protocol

Definition 4. A sigma protocol is correct if, for all (x,w) ∈ R we have

P

VRO (com, ch, resp) = 1

∣∣∣∣∣
com← PRO

com (seed, x) ,

ch←$Sch,

resp← PRO
resp (seed, x, w, com, ch)

 = 1.

Definition 5. A sigma protocol has special 2-soundness if there exists a polynomial-time algorithm E
called extractor such that, given two accepting transcripts (com, ch1, resp1) and (com, ch2, resp2) with
ch1 ̸= ch2, we have that the probability

P
[
(x,w) ∈ R : w ← ERO (x, (com, ch1, resp1), (com, ch2, resp2))

]
is overwhelming.

Definition 6. A sigma protocol has special zero-knowledge if there exists a probabilistic polynomial-
time algorithm S, the simulator, with access to the random oracle RO such that for any (x,w) ∈ R,
ch ∈ Sch and any adversary A making at most a polynomial number of queries to RO, we have that,
if P denotes the pair of algorithms (Pcom,Presp), then∣∣∣P [ARO(PRO(x,w, ch)) = 1

]
−P

[
ARO(SRO(x, ch)) = 1

]∣∣∣
is negligible in the security parameter λ.

Definition 7. A sigma protocol has high min-entropy if for any (x,w) ∈ R and any adversary A, the
probability

P

[
com1 = com2

∣∣∣∣∣ com1 ← PRO
com (seed, x, w) ,

com2 ← ARO(x,w)

]
is negligible in the security parameter λ.

A useful property for obtaining a short signature when applying the Fiat-Shamir transform is the
following.

Definition 8. A sigma protocol is commitment reproducible if there exists a PPT algorithm RecCom
such that, for any pair (x,w) in R, we have that

P

RecCom(x, ch, resp) = com

∣∣∣∣∣
com← PRO

com (seed, x) ,

ch←$Sch,

resp← PRO
resp (seed, x, w, com, ch) ,

VRO (com, ch, resp) = 1


is overwhelming in λ.

This property allows to send as signature only the challenge ch and the response resp, reducing its
size. The verifier can reconstruct the commitment com using the algorithm RecCom.

5

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

2.4 Ring signatures

We define what a ring signature is and some additional properties that will be useful for the later
sections of this paper.

Definition 9. A ring signature consists of four probabilistic polynomial-time (PPT) algorithms Setup,
KGen, Sign and Verify such that:

• Setup: it takes as input the security parameter of length λ and it returns the public parameters
pp used by the scheme.

• KGen: it takes as inputs the public parameters pp and some random coins rr. It returns the
secret/public key pair (sk, pk).

• Sign: it takes as inputs a secret key skI , where I ∈ {1, . . . , R} is the index of the signer in the
ring, the message msg and the ring Ω = {pk1, . . . , pkR}. The public key obtained starting from
skI must belong to the ring, that is pkI ∈ Ω. The output of the algorithm is the signature σ.

• Verify: it takes as inputs the ring Ω = {pk1, . . . , pkR}, the message msg and the signature σ. It
returns 1 (accept) if the signature is valid and 0 (refuse) otherwise.

Ring signatures must satisfy three core properties: correctness, anonymity and unforgeability.

Definition 10. A ring signature is correct if for every security parameter λ ∈ N, for every ring Ω
composed of R = poly(λ) public keys, for every index I ∈ {1, . . . , R} and for every message msg, we
have that

P

Verify(Ω,msg, σ) = 1

∣∣∣∣∣
pp← Setup(1λ),

(ski, pki)← KGen(pp, rri) ∀i ∈ {1, . . . , R},
Ω := {pk1, . . . , pkR},
σ ← Sign(skI ,msg,Ω).

 = 1.

Informally, this means that the verification algorithm of a signature generated correctly will always
output 1.

Definition 11. A ring signature is anonymous if for every security parameter λ ∈ N and for every
ring composed of R = poly(λ) public keys, any PPT adversary A has at most a negligible advantage
when playing the following game against a challenger:

(A) The challenger first runs the algorithm Setup that outputs pp and then the algorithm KGen,
together with random coins rri, to obtain R secret/public key pairs (ski, pki), i ∈ {1, . . . , R}. He
samples a bit b←$ {0, 1}.

(B) The challenger gives pp and the list of random coins (rr1, . . . , rrR) to A.
(C) A sends to the challenger a challenge (Ω,msg, i0, i1). The ring Ω must contain the public keys

pki0 and pki1 . The challenger computes the signature σ∗ ← Sign(skib ,msg,Ω) and sends it to
A.

(D) A outputs a bit b∗ and wins if b = b∗.

This property means that it should not be possible to guess the secret key that was used to produce
a signature, even if the adversary knows all the secret keys that were used to generate the public keys
in the ring.

Definition 12. A ring signature is unforgeable if for every security parameter λ ∈ N and for every
ring composed of R = poly(λ) public keys, any PPT adversary A has at most a negligible advantage
when playing the following game against a challenger:

(A) The challenger first runs the algorithm Setup that outputs pp and then the algorithm KGen,
together with random coins rri, to obtain R secret/public key pairs (ski, pki), i ∈ {1, . . . , R}.
He calls V = {pk1, . . . , pkR} the set with the public keys. He finally initialises two empty sets S
and C.

(B) The challenger gives pp and the set V to A.
(C) A can create signing and corruption queries a polynomial number of times:

– (AdvSign, i,msg,Ω): the challenger checks if pki ∈ Ω ⊆ V . If that is true, he computes
σ ← Sign(pki,msg,Ω). The challenger gives σ to A and adds (i,msg,Ω) to S.

– (AdvCorrupt, i): the challenger adds pki to C and returns rri to A.

6

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

(D) A outputs (Ω∗,msg∗, σ∗). If Ω∗ ⊂ V \ C, (·,msg∗,Ω∗) /∈ S and Verify(Ω∗,msg∗, σ∗) = 1, then
the adversary wins.

Finally, this property means that it should be impossible to forge a valid signature without know-
ing one secret key corresponding to one of the public keys in the ring.

Moreover, a ring signature can have the additional property of being linkable, that is everyone can
check if two signatures were produced by the same signer (i.e., by the same secret key).

Definition 13. A linkable ring signature is a scheme that consists of the four PPT algorithms previ-
ously described for a classic ring signature scheme, plus the following PPT algorithm:

• Link: the inputs are two different signatures σ0 and σ1. The algorithm outputs 1 if the two
signatures were produced starting from the same secret key and 0 otherwise.

Furthermore, a linkable ring signature must satisfy the following additional properties: linkability,
linkable anonymity and non-frameability. Notice that the correctness property must be slightly modi-
fied: if the same user generates two signatures correctly, both the Verify and the Link algorithms will
always output 1.

Definition 14. A linkable ring signature is linkable if for every security parameter λ ∈ N and for every
ring composed of R = poly(λ) public keys, any PPT adversary A has at most a negligible advantage
when playing the following game against a challenger:

(A) The challenger runs the algorithm Setup that outputs pp and gives it to A.
(B) A runs the algorithm KGen and outputs the set V = {pk1, . . . , pkR} and the set of tuples

{(σ1,msg1,Ω1), . . . , (σR+1,msgR+1,ΩR+1)}.
(C) A wins if these three conditions hold:

– ∀i ∈ {1, . . . , R+ 1}, we have Ωi ⊆ V .

– ∀i ∈ {1, . . . , R+ 1}, we have that the algorithm Verify(Ωi,msgi, σi) outputs 1.

– ∀i, j ∈ {1, . . . , R+ 1} such that i ̸= j, we have Link(σi, σj) = 0.

The linkability property tells us that if an adversary produces more than k signatures with a set
of k public keys, then the Link algorithm will output 1 for at least one pair of signatures.

Definition 15. A linkable ring signature is linkable anonymous if for every security parameter λ ∈ N
and for every ring composed of R = poly(λ) public keys, any PPT adversary A has at most a negligible
advantage when playing the following game against a challenger:

(A) The challenger first runs the algorithm Setup that outputs pp and then the algorithm KGen,
together with random coins rri, to obtain R secret/public key pairs (ski, pki), i ∈ {1, . . . , R}. He
calls V = {pk1, . . . , pkR} the set with the public keys. He also samples a bit b←$ {0, 1}.

(B) The challenger gives to the adversary pp and the set V .

(C) The adversary chooses and outputs two public keys (pk∗0, pk
∗
1) ∈ V . We denote with (sk∗0, sk

∗
1)

the respective secret keys.

(D) The challenger gives to A all the random coins rri related to the public keys pki ∈ V \{pk∗0, pk∗1}.
(E) A queries for signatures, giving as inputs to the challenger a public key pk ∈ {pk∗0, pk∗1}, a

message msg and a ring Ω that contains pk∗0 and pk∗1:

– If pk = pk∗0, the challenger outputs σ ← Sign(sk∗b ,msg,Ω).

– If pk = pk∗1, the challenger outputs σ ← Sign(sk∗1−b,msg,Ω).

(F) A outputs a bit b∗, and he wins the game if b = b∗.

This property says that an adversary cannot guess which secret key was used to produce signatures.
Differently from the anonymity property, in this case the adversary does not have access to all the
secret keys, otherwise he could use the linkability to understand who was the signer.

Definition 16. A linkable ring signature is non-frameable if for every security parameter λ ∈ N,
for every ring composed of R = poly(λ) public keys, any PPT adversary A has at most a negligible
advantage when playing the following game against a challenger:

7

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

(A) The challenger first runs the algorithm Setup that outputs pp and then the algorithm KGen,
together with random coins rri, to obtain R secret/public key pairs (ski, pki), i ∈ {1, . . . , R}.
He calls V = {pk1, . . . , pkR} the set with the public keys. He finally initialises two empty sets S
and C.

(B) The challenger gives pp and the set V to the adversary A.
(C) A can create signing and corruption queries a polynomial number of times:

– (AdvSign, i,msg,Ω): the challenger checks if pki ∈ Ω ⊆ V . If that is true, he computes
σ ← Sign(ski,msg,Ω). The challenger gives σ to A and adds (i,msg,Ω) to S.

– (AdvCorrupt, i): the challenger adds pki to C and returns rri to A.

(D) A outputs (Ω∗,msg∗, σ∗); he wins if these two conditions hold:

– Verify(Ω∗,msg∗, σ∗) = 1 and (·,msg∗,Ω∗) /∈ S;
– Link(σ∗, σ) = 1 for some signature σ given by the challenger starting from a query of the

form (i,msg,Ω) ∈ S with pki ∈ V \ C.

Finally, this property tells us that it should not be possible for an adversary to create a valid
signature that is linked to a signature produced by an honest party.

2.5 Index-hiding Merkle trees

A Merkle tree [Mer87] is a well known data structure used for cryptography applications. It is a
binary tree, where each leaf contains the hashes {a1, . . . , aM} of some data that we want to hide, and
every other node which is not a leaf is given by the hash of the concatenation of the values of its two
children. The root of the tree represents its commitment. Suppose the tree has depth c: to efficiently
check that ai is a leaf of the tree, the prover must send to the verifier one information for each level
of the tree: the verifier will then compute c different hashes, and check if the final value he obtains
equals the committed root.
For our applications, we will consider complete balanced Merkle trees, that is trees where each node
has exactly two children, excluding the leaves, whose number is equal to M = 2c for some positive
integer c. Moreover, we consider a slight modification of the construction we have just described, so
that the prover, in addition to proving that an element ai is in the list, does not reveal its position
within the tree. We call this structure index-hiding Merkle tree.
Following the notation used in [BKP20], we define the Merkle tree algorithms that will be later used
to define our Sigma protocol.

• MerkleTree: the input of this algorithm is the list ofM elements A = {a1, . . . , aM}, that represent
the leaves of the tree. It computes the nodes of the whole binary tree up to its root. To get any
internal node b, the algorithm computes the hash of the concatenation of its two children bleft and
bright. However, to obtain a index-hiding Merkle tree we need to concatenate the two elements
following the lexicographical order, that is b = hash(bleft||bright)lex. Proof of this fact is given in
[BKP20]. The two outputs of the algorithm are its root root, together with a representation of
the whole tree, tree.

• getMerklePath: the two inputs of this algorithm are the Merkle tree tree and a certain index
i ∈ {1, . . . ,M}. The output will be a list path, that contains an information about the sibling
of ai (i.e. the node with the same parent of ai), together will all the siblings of any ancestor of
ai, ordered by decreasing height.

• ReconstructRoot: the inputs of this algorithm are the list of M elements A = {a1, . . . , aM} and
the path path, which is the output of the previous algorithm getMerklePath. The output is the
reconstructed root root of the Merkle tree.

2.6 Seed trees

A seed tree is yet again a complete balanced binary tree, but its construction is different with
respect to the Merkle tree one given is Section 2.5. In this case, the tree is built starting from its
root as follows: given a node T represented by a binary string, its two children T1, T2 are given by
Ti = ROE(T, i) for i = 1, 2, obtained via a 2λ hash evaluated in the value of T . Each binary string has
finally length equal to λ. In this way, to compute the leaves of any subtree with root T , it is sufficient
to know T .
Seed trees have been used recently as a clever optimisation to decrease the length of the signature
[BBN+22; BKP20; BESV22]. We follow again the notation used in [BKP20] to introduce the algo-
rithms that will later be used to optimise our Sigma protocol:

8

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

• SeedTree: the inputs of this algorithm are a binary string seedroot of length λ, which represents
the root of the tree, and an integerM , the number of leaves of the tree. It computes the complete
balanced binary tree with M leaves, where every node is computed expanding recursively the
seed of the previous level of the tree. The algorithm returns a list that contains M seed values,
one for each leaf.

• ReleaseSeeds: the inputs of this algorithm are a binary string seedroot of length λ, which represents
the root of the tree, and a challenge c, a binary string of lengthM . The algorithm outputs the set
S containing the seeds that belong to the leaves with index equal to 1 in the challenge. In order
to send less information, we can exploit the seed tree structure and send a subset seedsint ⊆ S
of nodes, where the seeds computed starting from the set seedsint is equal to the seeds contained
in the set S.

• RecoverLeaves: the inputs of the algorithm are the set seedsint and the binary challenge c of
length M . The output is given by the set of all the seeds belonging to the leaves that can be
computed starting from the set seedsint, that is the binary strings corresponding to the ones of
the challenge c.

• SimulateSeeds: the input of the algorithm is a binary challenge c of length M . It computes the
leaves with index equal to 1 and then it samples a random seed of length λ for each of these
leaves. The output is the set seedsint.

3 The Base OR Sigma Protocol

In this section we define the sigma protocol on which our ring signature is based. Let R be a
positive integer. Fix an element ϕ in ATF(q, n) and let ϕi = Ai ⋆ ϕ, where Ai is a randomly generated
matrix from GLn(q) for each i = 1, . . . , R. The NP-relation for the protocol is the following:

R = {({ϕ1, . . . , ϕR}, A) | ∃I ∈ {1, . . . , R} s.t. ϕI = A ⋆ ϕ} .

In the signature, if we see AI as the secret key for the public key ϕI = AI ⋆ ϕ, the above relation
models that the witness is the knowledge of at least a secret key for one of the public keys ϕ1, . . . , ϕR
in the ring.

The problem induced by the relation R is a variation of sATFE.

Definition 17. Let R be a positive integer and ϕ a public element of ATF(q, n). The R-search
Alternating Trilinear Form Equivalence (R-sATFE) problem is given by

• Input : ϕ1, . . . , ϕR in ATF(q, n) such that they are pairwise equivalent.

• Output : A in GLn(q) and distinct i, j in {1, . . . , R} such that ϕj = A ⋆ ϕi.

We can adapt the proof from [BBPS21] Theorem 3, reducing tightly R-sATFE to sATFE.

Proposition 18. Given an algorithm Alg that solves R-sATFE with probability ϵ, there exists a poly-
nomial algorithm Alg′, using Alg as an oracle, that solves sATFE with probability ϵ/2.

Proof. Given the instance (ϕ, ψ) of sATFE, we want to find A in GLn(q) such that ϕ = A⋆ψ. Without
loss of generality let R be even. The algorithm Alg′ uniformly samples B1, . . . , BR from GLn(q) and
sets

ϕi =

{
Bi ⋆ ϕ for i ∈

{
1, . . . , R

2

}
Bi ⋆ ψ for i ∈

{
R
2
+ 1, . . . , R

}
.

(2)

After a random permutation π, Alg′ asks the query
{
ϕπ(i)

}
i=1,...,R

to Alg. Observe that every ϕi is

equivalent to both ϕ and ψ and then there is no way to decide if it is obtained from ϕ or ψ. The oracle
Alg returns a matrix C and indexes h, k such that ϕh = C ⋆ ϕk for k ̸= h.
With probability 1

2
, k and h are not in the same partition from Equation (2). Suppose that this is the

case, then this implies ϕk = Bk ⋆ ϕ and ϕh = Bh ⋆ ψ (here we assume without loss of generality that
π is the identity, otherwise apply its inverse on the indices of the B’s). The algorithm Alg′ returns
B−1
k CBh. Otherwise, if k and h are in the same partition, Alg′ outputs a rejection.

Observe that Alg′ is a polynomial-time algorithm and solves sATFE with probability ϵ/2 using Alg as
oracle.

9

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

3.1 The protocol

The construction is the same used in [BKP20], with minor changes, for example, here we do not
need to abort. The idea on which we build our base OR sigma protocol is the following: given a
public trilinear form ϕ, secret keys {A1, . . . , AR} and public keys ϕ1 = A1 ⋆ ϕ, . . . , ϕR = AR ⋆ ϕ, the
prover wants to show to the verifier that he knows at least a secret key AI among the public keys of
the ring {ϕ1, . . . , ϕR}. In order to prove that, for each i ∈ {1, . . . , R} he generates random matrices
Bi and computes ψi = Bi ⋆ ϕi for each public key ϕi in the ring, then he sends these elements in a
random order to the verifier that replies with a random bit b. If b = 0, the response resp is BIAI
and the verifier checks that resp ⋆ ϕ is in {ϕ1, . . . , ϕR}. If b = 1, the response consists of B1, . . . , BR
and the verifier checks the set equality {B1 ⋆ ψ1, . . . , BR ⋆ ψR} = {ϕ1, . . . , ϕR}. To make the proof
size logarithmic in R, since the matrices B1, . . . , BR are generated at random, the prover can send the
seed that generates them as response if b = 1. We can also use a Merkle tree to commit instead of
sending all the elements ψ1, . . . , ψR and send the Merkle root as commitment. In this way, when the
challenge is b = 0, the prover appends a path of the Merkle tree to retrieve the root. Moreover, we
can use the same matrix B instead of R different matrices B1, . . . , BR without affecting the security
of the scheme. All these considerations lead to the OR sigma protocol showed below.

We model a commitment scheme as a random oracle ROCom, where the input is the committed
value x and a random string r. We assume that the randomness produced by the prover derives
from a seed seed expanded by the random oracle ROE . The base OR Sigma protocol, using algorithms
described in Figure 2, has the standard flow of every Sigma protocol: the prover sends the commitment
com returned by PB

RO
com to the verifier, that replies with a random challenge ch in {0, 1}; then, the prover

computes its response running PB
RO
resp and sends it to the verifier, that accepts or rejects according to

VBRO.

PB
RO
com (seed, {ϕ1, . . . , ϕR}) :

(B, r1, . . . , rR)← ROE(seed)

for i = 1, . . . , R do

Ci ← ROCom(B ⋆ ϕi, ri)

(root, tree)← MerkleTree(C1, . . . , CR)

com← root

return com

PB
RO
resp (seed, AI , tree, ch) :

(B, r1, . . . , rR)← ROE(seed)

if ch = 0 then

D ← BAI

path← getMerklePath(tree, I)

resp← (D, path, rI)

else

resp← seed

return resp

VBRO (com, ch, resp) :

if ch = 0 then

(D, path, r)← resp

ϕ̃← D ⋆ ϕ

r̃oot← ReconstructRoot(path,ROCom(ϕ̃, r))

else

(B, r1, . . . , rR)← ROE(resp)

for i = 1, . . . , R do

C̃i ← ROCom(B ⋆ ϕi, ri)

(r̃oot, t̃ree)← MerkleTree(C̃1, . . . , C̃R)

if com = r̃oot then

return accept

return reject

Figure 2: Algorithms for the base OR Sigma protocol

Theorem 19. The base OR Sigma protocol with algorithms in Figure 2 is correct, special 2-sound and
possesses special zero-knowledge in the Random Oracle Model under the assumption that R-sATFE is
intractable.

The proof of the theorem is standard and similar to the ones from [BKP20], and it is reported in
Appendix A.

10

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

4 Optimisations and the Main OR Sigma Protocol

In this section we modify the base Sigma protocol from Section 3 to decrease the soundness error
from 1/2 to 1/2λ, for a security parameter λ. A straightforward strategy is to run the protocol in
parallel λ times. Moreover, we report some modification to this protocol to obtain shorter responses.

4.1 Using fixed weight challenges

Instead of picking the challenge uniformly from the space {0, 1}λ, we can force the number of ones
to be a certain value, since the response for ch = 1 is just a λ-bits seed, and is shorter compared to
the response when ch = 0. Let M be the length of the challenge and K be the number of zeros in the
challenge. In this way we want to chose parameters such that

(
M
K

)
> 2λ and M > λ. The challenge

space becomes CM,K , the set of binary strings of length M and weight M −K (or, equivalently, with
exactly K zeros). This technique is well-known in literature.

We propose another optimization: instead of sending the challenge as a string in CM,K , we can
enumerate such

(
M
K

)
strings and send the integer Jch referring to the position of the challenge ch

in such ordering. To convert an integer into a fixed weight binary string we use the combinatorial
number system [Knu05]. In this way only log2

(
M
K

)
bits per challenge are sent at the cost of a negligible

increment of the computational effort in the signing and the verify processes. Note that usually the
number of ones is fixed to be less than M/2, but here we want the reverse, i.e. we want a string with
a large number of ones and few zeros; because of this, we use the reverse lexicographic order. To
sample an element from CM,K we simply sample an integer J from {0, . . . ,

(
M
K

)
− 1} and see this as

the position of the challenge chJ in the lexicographic order in CM,K . The challenge is encoded by the
algorithm Unrank in Figure 3, having complexity O(M).

Given an integer 0 ≤ J <
(
M
K

)
return chJ in CM,K

Unrank(J) :

ch← (1, . . . , 1)

m←M

I ← J

for i = 0, . . . ,K − 1 do

while

(
m

K − i

)
≥ I do

m← m− 1

I ← I −

(
m

K − i

)
chm ← 0

m← m− 1

return ch

Figure 3: Unranking algorithm

The inverse procedure of computing the index Jch from the challenge ch in CM,K is not needed in
our protocol, but we report it for completeness. Let j1, . . . , jK be the support of ch, i.e. the positions
of the ones. The index Jch is given by

∑K
i=1

(
M−ji
K+1−i

)
.

Observe how this technique can also be used to shorten the length of any signature derived starting
from sigma protocols, when one response is shorter than the other.

4.2 Seed tree

We use a seed tree to communicate the seed seed for each repetition of the base sigma protocol
having challenge bit ch = 1. Due to Section 4.1, the challenge has a larger number of ones, and this
structure allows to reduce the response size.

Given a seed tree withM leaves, if we want to sendM−K leaves, the upper bound on the number
of sent nodes is given by the following proposition. This fact is given in [GPS22] without a proof, that

11

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

we instead give in Appendix C. Observe that if the number of leaves is not a power of 2, we can add
dummy leaves to reach the next power of 2 and complete the binary tree. We can exclude the case
K = 0 since in that case it is sufficient to send the root, so we just send one node.

Proposition 20. Given a seed tree with M = 2c leaves, if we want to send M−K leaves, with K ̸= 0,
we transmit at most K log2M −K⌈log2K⌉+ 2⌈log2K⌉ −K seeds.

To give a more accurate estimate of the signature length, we also study the minimal number of
nodes we have to transmit for a tree with M leaves, if we want to send M −K leaves. The proof of
this result is reported in Appendix C. For any non-negative integer K, we denote with b(K) its binary
representation and with w(b(K)) the number of ones in b(K).

Proposition 21. Given a seed tree with M = 2c leaves, if we want to send M−K leaves, with K ̸= 0,
we transmit at least c− w(b(K − 1)) seeds.

Given the lower bound and the upper bound of the number of nodes of the seed tree that we must
send, we want now to answer the following question: Given M = 2c and given M −K the number of
leaves we want to send, how many nodes of the tree will be transmitted on average? An analysis given
in [PB06], about the average number of encryption in a CST broadcast encryption scheme, gives us
the answer to the above question. In fact, the structure of our seed tree is the same as the key tree
used in that protocol, and sending a seed coincides with giving a user the privilege of decrypting data.
We can reformulate [PB06, Th. 8] to obtain the following result on seed trees.

Theorem 22. Given a seed tree with M = 2c leaves, if we want to send M −K leaves, the average
number of seeds to transmit is given by

⌊log2(M−K)⌋∑
k=0

M −K
2k

·
(

M−2k

M−K−2k

)
−
(

M−2k+1

M−K−2k+1

)(
M−1

M−K−1

) .

We use these bounds to estimate and minimize the length of the signature in Section 7.

4.3 Salting

In [BKP20] they point out that to make tight reductions a salt is needed when we call the RO.
Moreover for each repetition i, 1 ≤ i ≤ M , of the base sigma protocol, we use the “salted” random
oracle ROi(·) = RO(salt||i||·), with a random string salt of 2λ bits.

4.4 The main OR sigma protocol

In this protocol we run the base OR sigma protocol in parallel to achieve a lower soundness error.
Moreover we introduce some of the optimizations cited in this section, namely the use of a fixed weight
challenge, the seed tree and the salting. The scheme is presented in Figure 4. Let M be the length of
the challenge and K be the number of zeroes. Both M and K are chosen accordingly to the security
parameter λ. The challenge space Sch is the set {0, . . . ,

(
M
K

)
− 1}.

Theorem 23. The main OR Sigma protocol with algorithms in Figure 4 is correct, special 2-sound,
and possesses both high min-entropy and special zero-knowledge in the Random Oracle Model under
the assumption that R-sATFE is intractable.

4.5 Tags and linkability

Following the construction in [BKP20], we add “tags” to our sigma protocol. Given the group
action of GLn(q) over ATF(q, n) from Definition 2, we need another action of GLn(q) on a set Y .
Invertible matrices can act on a huge variety of sets, such as spaces of matrices or tensors [GQ21]. We
use and define the following action, similar to ICE from [BBN+22].

Definition 24. The group action (GLn(q),ATF(q, n), •) is defined by

• : GLn(q)×ATF(q, n)→ ATF(q, n)

(A, ϕ) 7→ ϕ ◦A−1.
(3)

This action leads to the following problem.

Definition 25. The Inverse Alternating Trilinear Form Equivalence (IATFE) problem is given by

12

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

PM
RO
com ({ϕ1, . . . , ϕR}) :

seed←$ {0, 1}λ

salt←$ {0, 1}2λ

RO′ ← RO(salt||·)

(seed(1), . . . , seed(M))← SeedTreeRO
′
(seed,M)

for i = 1, . . . ,M do

ROi ← RO′(i||·)

com(i) ← PB
ROi

com

(
seed(i), {ϕ1, . . . , ϕR}

)
endfor

com← (salt, (com(i))i=1,...,M)

return com

PM
RO
resp (AI , Jch) :

ch← Unrank(Jch)

for i s.t. chi = 0 do

retrieve tree(i) and seed(i)

resp(i) ← PB
ROi

resp

(
seed(i), AI , tree

(i), chi
)

endfor

seedsint ← ReleaseSeedsRO
′
(seed, ch)

resp← (seedsint, (resp
(i))chi=0)

return resp

VMRO (com, Jch, resp) :

ch← Unrank(Jch)

RO′ ← RO(salt||·)

(seedsint, (resp
(i))chi=0)← resp

(resp(i))chi=1 ← RecoverLeavesRO
′
(seedsint, ch)

for i = 1, . . . ,M do

if VBRO′ (
com(i), chi, resp

(i)
)
rejects then

return reject

endif

endfor

return accept

Figure 4: Algorithms for the main OR Sigma protocol

• Input : ϕ, ψ in ATF(q, n).

• Output : YES if there exists A in GLn(q) such that ϕ = A • ψ and NO otherwise.

The search Inverse Alternating Trilinear Form Equivalence (sIATFE) problem is given by

• Input : ϕ, ψ in ATF(q, n) such that they are equivalent.

• Output : A in GLn(q) such that ϕ = A • ψ.

Given two fixed elements ϕ, ψ in ATF(q, n) and a set of secret keys {A1, . . . , AR} corresponding to
public keys {ϕ1, . . . , ϕR} such that ϕi = AI ⋆ ϕ for each i from 1 to R, we define the “tag” associated
to the I-th public key as τI = AI • ψ. When the I-th user signs a message, he appends its tag to the
signature. A verifier can link two signatures if they possess the same tag. The OR sigma protocol
is modified to add the proof that τI is generated by the same secret key AI . We present the base
OR Sigma protocol with tags using the same structure of the base Sigma protocol in Figure 2 with
algorithms from Figure 5. The main differences with the protocol of Section 3 is the introduction
of the proof of knowledge for the tag τI and the replacement of the commitment as the hash of the
concatenation of root and the masked tag τ ′.

Starting from the base Sigma protocol with tags, we can reduce the soundness error from 1
2
to

1
2λ

, for a security parameter λ, performing parallel repetitions of the protocol. We adopt the same
optimisations used for the main Sigma protocol, obtaining the algorithms PML,com,PML,resp and VML.
We do not report the full protocol here since it is straightforward.

Observe that both the base and the main OR sigma protocol with tag share the same security
properties of Theorem 19 and Theorem 23. The proofs can be easily adapted from the ones given in
Appendix A, having care of the tag τ .

5 The (Linkable) Ring Signature Scheme

Given the main OR sigma protocol of the previous section, we apply the Fiat-Shamir transform
to achieve a ring signature. We observe that our sigma protocol is commitment reproducible if we add

13

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

PB
RO
L,com (seed, {ϕ1, . . . , ϕR}, τ) :

(B, r1, . . . , rR)← ROE(seed)

for i = 1, . . . , R do

Ci ← ROCom(B ⋆ ϕi, ri)

(root, tree)← MerkleTree(C1, . . . , CR)

τ ′ ← B • τ
return ROH(root, τ ′)

PB
RO
L,resp (seed, AI , tree, ch) :

(B, r1, . . . , rR)← ROE(seed)

if ch = 0 then

D ← BAI

path← getMerklePath(tree, I)

resp← (D, path, rI)

else

resp← seed

return resp

VBRO
L (τ, com, ch, resp) :

if ch = 0 then

(D, path, r)← resp

ϕ̃← D ⋆ ϕ

r̃oot← ReconstructRoot(path,ROCom(ϕ̃, r))

τ̃ ← D • ψ
else

(B, r1, . . . , rR)← ROE(resp)

for i = 1, . . . , R do

C̃i ← ROCom(B ⋆ ϕi, ri)

τ̃ ← B • τ

(r̃oot, t̃ree)← MerkleTree(C̃1, . . . , C̃R)

if com = ROH(r̃oot, τ̃) then

return accept

return reject

Figure 5: Algorithms for the base OR Sigma protocol with tag

the salt used by the prover. We report the algorithms RecCom to recover the commitment, both for
the main OR sigma protocol and for the main OR sigma protocol with tags, in Appendix B, Figure 8.
In this way, the signing algorithm Sign returns the challenge and the response, reducing the size of the
signature. The scheme uses an hash function HFS with digest in the challenge space {0, . . . ,

(
M
K

)
− 1},

modelled by a Random Oracle. We report the (non-linkable) ring signature scheme TRIFORS in
Figure 6. The algorithm Setup sets the public parameters accordingly to the analysis of Section 7;
moreover, alternating trilinear forms ϕ and ψ are sampled at random from ATF(n, q).

Setup(1λ) :

pp← (q, n,M,K, ϕ)

return pp

KGen(pp) :

A←$ GLn(q)

sk← A

pk← A ⋆ ϕ

return (sk, pk)−−−−−−−−−

Sign (skI ,msg, {pk1, . . . , pkR}) :

com← PM
RO
com({pk1, . . . , pkR})

(salt, (comi)i=1,...,M)← com

Jch ← HFS(msg, {pk1, . . . , pkR}, com)

ch← Unrank(Jch)

resp← PM
RO
resp(skI , ch)

return σ ← (salt, Jch, resp)

Verify ({pk1, . . . , pkR},msg, σ) :

(salt, Jch, resp)← σ

com← RecCom (salt, {pk1, . . . , pkR}, Jch, resp)
J ′ ← HFS (msg, {pk1, . . . , pkR}, com)

return J ′ = Jch ∧ VMRO(com, Jch, resp)

Figure 6: TRIFORS algorithms.

Using standard techniques, we can prove the following result on the security of TRIFORS.

Theorem 26. The ring signature TRIFORS from Figure 6 is correct, unforgeable and non-frameable
in the Random Oracle Model under the assumption that R-sATFE is intractable.

We can use the same techniques to obtain a linkable ring signature from the main OR sigma
protocol with tags. The construction is the same as the non-linkable scheme, this time using the main

14

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

OR sigma protocol with tags of Subsection 4.5. We call it Link-TRIFORS and it is reported in Figure
7.

SetupL(1
λ) :

pp← (q, n,M,K, ϕ, ψ)

return pp

KGenL(pp) :

A←$ GLn(q)

sk← A

pk← A ⋆ ϕ

return (sk, pk)

SignL (skI ,msg, {pk1, . . . , pkR}) :
τ ← skI • ψ
com← PM

RO
L,com({pk1, . . . , pkR}, τ)

(salt, (comi)i=1,...,M)← com

Jch ← HFS(msg, {pk1, . . . , pkR}, τ, com)

ch← Unrank(Jch)

resp← PM
RO
L,resp(skI , ch)

return σ ← (salt, τ, Jch, resp)

LinkL (σ1, σ2) :

(salt1, τ1, ch1, resp1)← σ1

(salt2, τ2, ch2, resp2)← σ2

if τ1 = τ2 then

return true

return false

VerifyL ({pk1, . . . , pkR},msg, σ) :

(salt, Jch, resp)← σ

com← RecComL (salt, {pk1, . . . , pkR}, τ, Jch, resp)
J ′ ← HFS (msg, {pk1, . . . , pkR}, τ, com)

return J ′ = Jch ∧ VMRO
L (τ, com, Jch, resp)

Figure 7: Link-TRIFORS algorithms.

Theorem 27. The linkable ring signature Link-TRIFORS from Figure 7 is correct, linkable, linkable
anonymous and non-frameable in the Random Oracle Model under the assumption that both R-sATFE
and sIATFE are intractable.

The proof of the above theorem is quite common in the literature and is a slight modification of
the one given in [BKP20].

6 Solving sATFE to Attack the Schemes

We distinguish two scenarios: attacking the ring signature scheme and attacking the linkable ring
signature scheme. Forging the non-linkable ring signature can be reduced to attacking the construction
from [TDJ+22], while the linkable version involves additional information regarding the tag τ .

6.1 Attacks to the ring signature TRIFORS

A possible approach to solve a generic instance (ϕ, ψ) of sATFE is solving the following polynomial
system {

XY = In

ϕ(Xu,Xv,w) = ϕI(u, v, Y w).
(4)

Here, the public key A is represented by variables X, imposed to be invertible with inverse Y , while
the second row models how the matrix A acts on the form ϕ. This leads to a system of n2 +

(
3
n

)
quadratic equations in 2n2 variables.

In [TDJ+22] is showed an estimation of the complexity of the F5 algorithm for the above system.
They obtain an upper bound of O(26ωn log2 n), where ω is the matrix multiplication exponent, taken
equal to 2 for conservative reasons.

From [TDJ+22, Sect. 5.2], we recall the heuristic attack Grobner basis with partial information
that solves sATFE in time

O(q2n/3 · n2ω · log2(q)). (5)

A collision finding approach is used to find partial information, based on the birthday attack. The
“partial information” means that a column of A, and hence of X, is known. This implies constrains

15

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

also on variables in Y , leading to a system of polynomials in 2(n2 − n) variables. Some experiments
show that this new system is solvable in polynomial time but finding the partial information needed
is still an exponential task, leading to the overall complexity given in Eq. (5).

In [Beu22], various improvements of the approach presented above are presented. The author
focuses on the particular cases where n = 9, 10, 11, improving the way of finding “partial information”
in order to solve the system 4 easily. We report the results in Table 3.

n Complexity Note
9 O(q) -
10 O(q6) -
10 O(1) For 1/q of the keys
11 O(q4) -

n > 10 even O(q
n
2 +c) Conjectured, c constant

Table 3: Attacks to sATFE from [Beu22].

These are the best-known attacks to the problem and we will select the parameters according to
it. We have chosen n ≥ 10 and, when n = 10, to avoid the costant-time attack, in the setup phase we
check that the selected origin ϕ does not fall in the 1/q fraction of weak keys. This means that the
randomly generated trilinear form ϕ should not have a rank-4 point (see [Beu22] for further details
and definitions). This computation needs to be performed just once, in the Setup algorithm. We then
generate q such that

• 2λ ≤ q2/3 · n2ω · log2(q), from Eq (5);

• q2/3 ≤ n12, from the F5 algorithm analysis;

• q6 ≥ 2λ for n = 10 and q
n
2 ≥ 2λ for n > 10 even, from Table 3.

6.2 Attacks to the linkable ring signature Link-TRIFORS

In the case of the linkable scheme, the use of the action • gives more information about the secret
key A. We can use the same approach of the previous section, building the system

XY = In

ϕ(Xu,Xv,w) = ϕI(u, v, Y w)

ψ(Y u, Y v, w) = τ(u, v,Xw)

(6)

where τ is the tag and is given by the action of the inverse of A, that is modelled by variables Y . This
system has n2 + 2

(
3
n

)
quadratic equations in 2n2 variables.

Using the estimation of the degree of regularity, we have that it is asymptotically 3
2
n. Hence the F5

algorithm runs in time at most

O
(
(2n2)ωn3/2

)
= O

(
n3ωn)

The number of equations is less than the double of equations in the case without linkability and
the analysis done before can be adapted here, since the collision finding argument from [TDJ+22] does
not involve the number of equations and is only based on the secret matrix A.
We can conclude that, even in this case, in generale the best-known algorithm attacking the scheme
runs in time

O(q2n/3 · n2ω · log2(q)).
Even in this case, we need to take into account the attacks from [Beu22] in Table 3. We will use the
same preventive measures given in the non-linkable case (Subsection 6.1): for n = 10, the choice of the
forms ϕ and ψ must be careful in order to avoid weak instances of the sIATFE and sATFE problems.
Furthermore, additional information on the secret key, in the form of how its inverse acts on the
trilinear form ϕ, could be crucial for devising an efficient attack: this fact requires further analysis in
the future. For the linkable scheme, we select n ≥ 10 and q such that

• 2λ ≤ q2/3 · n2ω · log2(q), from Eq (5);

• q2/3 ≤ n6, from the F5 algorithm analysis;

• q6 ≥ 2λ for n = 10 and q
n
2 ≥ 2λ for n > 10 even, from Table 3.

16

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

7 Parameters and Conclusions

Signature length and parameters. Given a security parameter λ, we want to find parameters
n, q, M and K that minimise the signature size. Using the analysis done in Section 6, we want that
the best known attack to sATFE has a running time greater than 2λ. We can also refer to the analysis
reported in [TDJ+22; Beu22] for the choice of parameters q and n.
The size in bits of the (linkable) ring signature, with respect to parameters n, q, M and K is given by
the following values:

• the secret key sk, an invertible matrix A with coefficients in Fq represented by n2⌈log2 q⌉ bits;
• the public key pk, an alternating trilinear form which can hence be stored with

(
n
3

)
⌈log2 q⌉ bits;

• the signature length, given by

|salt|+ |tag|+ |ch|+K
∣∣respchi=0

∣∣+ ∣∣respchi=1

∣∣.
We have that:

• the length of the salt is taken as the double of λ: |salt| = 2λ;

• a tag is an alternating trilinear form: |tag| =
(
n
3

)
⌈log2 q⌉;

• the challenge is a positive integer smaller than
(
M
K

)
: |ch| =

⌈
log2

(
M
K

)⌉
;

• whenever the challenge is 0, the response contains an invertible n × n matrix D, a path in the
Merkle tree with R leaves, where R is the size of the ring, and λ random bits r, hence we have∣∣respchi=0

∣∣ = |D|+ |path|+ |r| = n2⌈log2 q⌉+ 2λ⌈log2R⌉+ λ;

• whenever the challenge is 1, the response is equal to the set of internal nodes of the seed tree
needed to obtain the associated leaves. The number of such nodes is studied in Subsection 4.2
and we can follow different approaches: minimising the average, the best case or the worst case.
In our tests, the best choice of the parameters is not affected by which approach has been chosen.
For this reason, we report here the worst case:∣∣respchi=1

∣∣ = λ
(
K⌈log2M⌉ −K⌈log2K⌉+ 2⌈log2K⌉ −K

)
.

Hence, the (non-linkable) signature has a bit length of

2λ+

⌈
log2

(
M

K

)⌉
+K

(
n2⌈log2 q⌉+ 2λ⌈log2R⌉+ λ

)
+ λ

(
K⌈log2M⌉ −K⌈log2K⌉+ 2⌈log2K⌉ −K

)
.

(7)

Observe that in the case of a linkable ring signature we add the size of a tag
(
n
3

)
⌈log2 q⌉ in the above

equation.
Given a security parameter λ, values for n, q, M and K minimizing Eq. (7) have been found such
that they match the security required. Since n = 9 is broken [Beu22], we choose n = 10 with the
requirement that the origin ϕ generated in the Setup algorithm does not fall in the fraction of weak
keys reported in [Beu22]. Since parameters M and K contribute as

⌈
log2

(
M
K

)⌉
(∼ λ) and only K is

involved linearly in Eq. (7), the number of repetitions M is selected to be not too high, to avoid a
slowdown in the performance.
Proposed parameters and signature lengths for λ = 128 bits of security are reported in Table 4.
The approach behind the second set of parameters is conservative, taking into account the conjecture
from [Beu22, Sect. 5]. Observe that the sizes refer to the non-linkable ring signature scheme: if the
linkability is needed the tag must be included in the signature, adding

(
n
3

)
⌈log2 q⌉ bits. Concretely,

for the first set of parameters and for a ring of cardinality R, the upper bound on the signature length
consists of a fixed part of 8.4 KB, plus a variable part, depending logarithmically on the size of the
ring, of 0.7⌈log2R⌉ KB. Moreover, the average length is given by 8.1+0.7⌈log2R⌉ KB. The dimension
of the public key is 330 Bytes, while the private key is 275 Bytes. Alternatively, since the secret key
consists of a random invertible matrix, it can be generated expanding a λ bit seed, hence its size can
be reduced to λ bits. For λ = 128, we have a 0.016 KB secret key.

17

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

λ q n M K
R

21 23 26 212 221

128 222 − 3 10 512 23 8.3± 0.8 9.8± 0.8 12.0± 0.8 16.4± 0.8 23.0± 0.8
128 222 − 3 12 512 23 11.1± 0.8 12.6± 0.8 14.8± 0.8 19.2± 0.8 25.8± 0.8

Table 4: Parameters and signature sizes in KB of the non-linkable ring signature. R is the size
of the ring.

Conclusions and future work. In this paper we have described TRIFORS, a logarithmic post-
quantum (linkable) ring signature based on the assumption that the sATFE problem is intractable.
To obtain the digital signature, we followed the construction of Beullens, Katsumata and Pintore
[BKP20]: starting from the base OR sigma protocol, we first modified it to reduce the soundness error
from 1

2
to 1

2λ
, where λ is the security parameter, obtaining the so called main OR sigma protocol, and

finally we applied the Fiat-Shamir transform to obtain the ring signature TRIFORS. We also modified
the base OR sigma protocol, adding a tag that is always the same when using the same private key,
and, by repeating the same steps above, we obtained the linkable ring signature Link-TRIFORS.
The length of the signature produced by TRIFORS is logarithmic with respect to ring size and is
competitive with the state-of-the-art. More precisely, having fixed the security parameter λ, we cal-
culated the optimal M and K parameters to minimise the signature length. These parameters can be
found in Table 4. For example, for λ = 128 our construction is competitive with the state-of-the-art
of post-quantum ring signature: only Calamari [BKP20] obtains smaller signatures, but the price to
pay is the less practical time required to compute isogenies. Lattice-based schemes like MatRiCT+
[ESZ22] and DualRing [YEL+21] performs slightly better for small rings. However, for huge rings,
our signature turns out to be the shortest one. This result is also due to an additional optimisation
we have introduced: in fact, the combinatorial number system is used on the space of the challenges
to further reduce the length of the signature.
As future work, we plan to implement this signature to estimate performances, varying certain param-
eters such as the size of the ring or the number of zeros in the challenge. Furthermore, one must not
forget that the assumptions on which the entire work is based is very recent, and further cryptanalysis
is necessary to be convinced of the security of the signature.

Acknowledgments

Both authors are members of GNSAGA of INdAM and of CrypTO, the group of Cryptography
and Number Theory of Politecnico di Torino. The first author acknowledges support from TIM S.p.A.
through the PhD scholarship. The authors would like to thank Antonio J. Di Scala for his comments
and suggestions.

References

[AFMP20] N. Alamati, L. D. Feo, H. Montgomery, and S. Patranabis, “Cryptographic group
actions and applications,” in International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Springer, 2020, pp. 411–439.

[BBN+22] A. Barenghi, J.-F. Biasse, T. Ngo, E. Persichetti, and P. Santini, “Advanced sig-
nature functionalities from the code equivalence problem,” International Journal
of Computer Mathematics: Computer Systems Theory, vol. 7, no. 2, pp. 112–128,
2022.

[BBPS21] A. Barenghi, J.-F. Biasse, E. Persichetti, and P. Santini, “Less-fm: Fine-tuning
signatures from the code equivalence problem,” in International Conference on
Post-Quantum Cryptography, Springer, 2021, pp. 23–43.

[BESV22] E. Bellini, A. Esser, C. Sanna, and J. Verbel, “Mr-dss–smaller minrank-based
(ring-) signatures,” Cryptology ePrint Archive, 2022.

[Beu22] W. Beullens, “Graph-theoretic algorithms for the alternating trilinear form equiv-
alence problem,” Cryptology ePrint Archive, 2022.

18

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

[BKP20] W. Beullens, S. Katsumata, and F. Pintore, “Calamari and falafl: Logarithmic
(linkable) ring signatures from isogenies and lattices,” in International Conference
on the Theory and Application of Cryptology and Information Security, Springer,
2020, pp. 464–492.

[BKV19] W. Beullens, T. Kleinjung, and F. Vercauteren, “Csi-fish: Efficient isogeny based
signatures through class group computations,” in International Conference on the
Theory and Application of Cryptology and Information Security, Springer, 2019,
pp. 227–247.

[CDN+22] Z. Chen, D. H. Duong, N. T. Nguyen, Y. Qiao, W. Susilo, and G. Tang, “On digital
signatures based on isomorphism problems: Qrom security and ring signatures,”
Cryptology ePrint Archive, 2022.

[CILS17] D. Chistikov, S. Iván, A. Lubiw, and J. Shallit, “Fractional coverings, greedy
coverings, and rectifier networks,” in 34th Symposium on Theoretical Aspects of
Computer Science, 2017.

[CLM+18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes, “Csidh: An ef-
ficient post-quantum commutative group action,” in International Conference on
the Theory and Application of Cryptology and Information Security, Springer,
2018, pp. 395–427.

[CvH91] D. Chaum and E. van Heyst, “Group signatures,” in Workshop on the Theory and
Application of of Cryptographic Techniques, Springer, 1991, pp. 257–265.

[DG19] L. De Feo and S. D. Galbraith, “Seasign: Compact isogeny signatures from class
group actions,” in Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Springer, 2019, pp. 759–789.

[ESZ22] M. F. Esgin, R. Steinfeld, and R. K. Zhao, “Matrict+: More efficient post-quantum
private blockchain payments,” in 2022 IEEE Symposium on Security and Privacy
(SP), IEEE, 2022, pp. 1281–1298.

[EZS+19] M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu, “Matrict: Efficient,
scalable and post-quantum blockchain confidential transactions protocol,” in Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 567–584.

[FS86] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identifi-
cation and signature problems,” in Conference on the theory and application of
cryptographic techniques, Springer, 1986, pp. 186–194.

[GNB19] B. Goodell, S. Noether, and A. Blue, “Concise linkable ring signatures and forgery
against adversarial keys,” Cryptology ePrint Archive, 2019.

[GPS22] S. Gueron, E. Persichetti, and P. Santini, “Designing a practical code-based signa-
ture scheme from zero-knowledge proofs with trusted setup,” Cryptography, vol. 6,
no. 1, p. 5, 2022.

[GQ21] J. A. Grochow and Y. Qiao, “On the complexity of isomorphism problems for
tensors, groups, and polynomials i: Tensor isomorphism-completeness,” in 12th
Innovations in Theoretical Computer Science Conference (ITCS 2021), Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[JQSY19] Z. Ji, Y. Qiao, F. Song, and A. Yun, “General linear group action on tensors: A
candidate for post-quantum cryptography,” in Theory of Cryptography Confer-
ence, Springer, 2019, pp. 251–281.

[Knu05] D. E. Knuth, Generating all combinations and partitions, volume 4, fascicle 3 of
the art of computer programming, 2005.

[LAZ19] X. Lu, M. H. Au, and Z. Zhang, “Raptor: A practical lattice-based (linkable) ring
signature,” in International Conference on Applied Cryptography and Network
Security, IEEE, 2019, pp. 110–130.

19

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

[LNS21] V. Lyubashevsky, N. K. Nguyen, and G. Seiler, “Smile: Set membership from
ideal lattices with applications to ring signatures and confidential transactions,”
in Annual International Cryptology Conference, Springer, 2021, pp. 611–640.

[LWW04] J. L. Liu, V. K. Wei, and D. S. Wong, “Linkable spontaneous anonymous group
signature for ad hoc groups,” in Australasian Conference on Information Security
and Privacy, Springer, 2004, pp. 325–335.

[Mer87] R. C. Merkle, “A digital signature based on a conventional encryption function,”
in Conference on the theory and application of cryptographic techniques, Springer,
1987, pp. 369–378.

[NM+16] S. Noether, A. Mackenzie, et al., “Ring confidential transactions,” Ledger, vol. 1,
pp. 1–18, 2016.

[OEI22] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, Published
electronically at http://oeis.org, 2022.

[PB06] E. Park and I. F. Blake, “On the mean number of encryptions for tree-based broad-
cast encryption schemes,” Journal of Discrete Algorithms, vol. 4, no. 2, pp. 215–
238, 2006.

[PNH+22] M. N. S. Perera, T. Nakamura, M. Hashimoto, H. Yokoyama, C.-M. Cheng, and
K. Sakurai, “A survey on group signatures and ring signatures: Traceability vs.
anonymity,” Cryptography, vol. 6, no. 1, p. 3, 2022.

[RST01] R. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,” in International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Springer, 2001, pp. 552–565.

[Sho94] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and fac-
toring,” in Proceedings 35th annual symposium on foundations of computer sci-
ence, Ieee, 1994, pp. 124–134.

[TDJ+22] G. Tang, D. H. Duong, A. Joux, T. Plantard, Y. Qiao, and W. Susilo, “Practical
post-quantum signature schemes from isomorphism problems of trilinear forms,”
in Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Springer, 2022, pp. 582–612.

[YEL+21] T. H. Yuen, M. F. Esgin, J. K. Liu, M. H. Au, and Z. Ding, “Dualring: Generic con-
struction of ring signatures with efficient instantiations,” inAdvances in Cryptology–
CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16–20, 2021, Proceedings, Part I, 2021, pp. 251–281.

A Security Proofs

A.1 Proof of Theorem 19

Proof. • Correctness. Given a pair ((ϕ1, . . . , ϕR), AI) such that ϕI = AI ⋆ ϕ, if the protocol is
executed honestly, the verifier accepts with probability 1 by construction. If ch = 0, the verifier
computes

D ⋆ ϕ = BAI ⋆ ϕ = B ⋆ ϕI

and uses it to reconstruct the root of the Merkle tree using the path given in the response resp.
When ch = 1, the response is the seed used by the prover, and the verifier repeats the same
computations of the prover getting the root of the Merkle tree.

• Special 2-soundness. Given two transcripts (root, 0, (D, path, rI)) and (root, 1, seed), the ex-
tractor E acts as follows. It expands the seed using ROE to obtain the random matrix B, and
use it to compute the secret key AI = B−1D.

• Special zero-knowledge. We want to show that there exists a simulator S such that, for any
((ϕ1, . . . , ϕR), AI) with ϕI = AI ⋆ ϕ, for any ch = 0, 1, and for any adversary A making at most
a polynomial number of queries Q to the random oracle, we have that∣∣∣P [ARO(PB

RO((ϕ1, . . . , ϕR), AI , ch) = 1
]
−P

[
ARO(S((ϕ1, . . . , ϕR), ch)) = 1

]∣∣∣ (8)

20

http://oeis.org

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

is negligible in λ. The simulator S is defined as follows:

– ch = 1: it runs the prover and outputs a valid transcript, since in this case the witness AI
is not used in the computation, the response consists of seed.

– ch = 0: it picks a random invertible matrix D and a random string r of λ bits, then
it computes the commitment C1 = ROCom(D ⋆ ϕ, r). The simulator randomly generates
R−1 dummy commitments C2, . . . , CR in {0, 1}2λ and creates the Merkle tree (root, tree) =
MerkleTree(C1, . . . , CR). Finally, it outputs (root, 0, (D, path, r)).

We prove that Eq. (8) is at most 2Q

2λ
, where Q is the number of queries of A to the random oracle.

In order to prove the above statement, we introduce a sequence of simulators S1,S2,S3,S4, where
S1 = PB, S4 = S and the other are defined below. Fix a pair ((ϕ1, . . . , ϕR), AI) with ϕI = AI ⋆ϕ
and an adversary A. The case ch = 1 is straightforward, since the witness AI is not used in the
response, then, for ch = 0, Eq. (8) becomes∣∣∣P [ARO(SRO

1 ((ϕ1, . . . , ϕR), AI , 0) = 1
]
−P

[
ARO(SRO((ϕ1, . . . , ϕR), 0) = 1

]∣∣∣.
The second simulator S2 behaves like both algorithms of the prover PB, except that, instead of
expanding the seed with the random oracle ROE(seed), it picks B and r1, . . . , rR uniformly at
random. This does not change the view of A unless it queries to the oracle the same input seed
in {0, 1}λ. This happens with probability at most Q

2λ
and we have∣∣∣P [ARO(SRO

1 ((ϕ1, . . . , ϕR), AI , 0) = 1
]
−P

[
ARO(SRO

2 ((ϕ1, . . . , ϕR), AI , 0) = 1
]∣∣∣ ≤ Q

2λ
.

The thirds simulator S3 acts the same as S2, except that commitments Ci, for i ̸= I, are chosen
uniformly at random. The adversary A does not notice this unless it queries ROCom on input
(ψi, ri), where ψi = B⋆ϕi, for i ̸= I. Let Qψi be the number of queries of the form ROCom(ψi, ·),
since ri has λ bits of min-entropy, the probability that A asks ROCom on input (ψi, ri) is at

most
Qψi
2λ

. Without loss of generality we can assume that all the public keys {ϕ1, . . . , ϕR} are

distinct, and so are {ψ1, . . . , ψR}. This implies that
∑R
i=1

Qψi
2λ
≤ Q

2λ
and∣∣∣P [ARO(SRO

2 ((ϕ1, . . . , ϕR), AI , 0) = 1
]
−P

[
ARO(SRO

3 ((ϕ1, . . . , ϕR), AI , 0) = 1
]∣∣∣ ≤ Q

2λ
.

The fourth simulator S4 is the same as S3 but instead of computing ψI = B ⋆ ϕI , it picks a
uniformly random invertible matrix B′ and sets ψI = B′ ⋆ ϕI . Moreover it uses I = 1 instead of
the value of I given in the witness. From [BKP20, Lemma 2.10], we have that the index-hiding
property of the Merkle trees used in the scheme does not change the view of the adversary A
and we have∣∣∣P [ARO(SRO

3 ((ϕ1, . . . , ϕR), AI , 0) = 1
]
−P

[
ARO(SRO

4 ((ϕ1, . . . , ϕR), 0) = 1
]∣∣∣ = 0.

Combining all the results gives us∣∣∣P [ARO(PB
RO((ϕ1, . . . , ϕR), AI , ch) = 1

]
−P

[
ARO(SRO((ϕ1, . . . , ϕR), ch) = 1

]∣∣∣ ≤ 2Q

2λ

and the thesis is proven since Q is polynomial in λ and hence 2Q

2λ
is negligible.

A.2 Proof of Theorem 23

Proof. • Correctness. Since the main OR sigma protocol is a parallel repetition of the base OR
sigma protocol with some optimisations, the correctness is implied by Theorem 19 and by the
correctness of the algorithms of the seed trees.

• High min-entropy. Since the commitment com depends on a sandom salt of 2λ bits and on a
λ bits seed, the scheme has high min-entropy.

• Special 2-soundness. Let (com, ch, resp) and (com, ch′, resp′) be two accepting transcripts,
where com = (salt, (root(i))i=1,...,M) and ch ̸= ch′. We define the extractor E as follows. Since
ch ̸= ch′, there exists j such that the j-th bits of ch and ch′ are different. Without loss of
generality let chj = 0 and ch′j = 1. By construction, we have resp = (seedsint, (resp

(i))chi=0)),

with resp(j) = (D(j), path(j), r
(j)
I). Moreover, resp′ = (seeds′int, (resp

(i))ch′i=0)) and from seeds′int,
the extractor E retrieves the seed for the j-th parallel execution of the protocol, computing
seed(j) = RecoverLeaves(seeds′int, ch

′). In this way, if we proceed as in the proof of Theorem 19,
the extractor can retrieve the secret key AI .

21

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

• Special zero-knowledge. We want to show that there exists a simulator S such that, for any
((ϕ1, . . . , ϕR), AI) with ϕI = AI ⋆ ϕ, for any ch, and for any adversary A making at most a
polynomial number of queries Q to the “salted” random oracle (the oracle having as prefix the
string salt given in the transcript), we have∣∣∣P [ARO(PM

RO((ϕ1, . . . , ϕR), AI , ch) = 1
]
−P

[
ARO(S((ϕ1, . . . , ϕR), ch)) = 1

]∣∣∣ (9)

is negligible in λ. The simulator S is defined as follows:

– it generates at random the 2λ bit string salt. Then it computes seedsint using the algorithm
SimulateSeeds(ch), and then (seed(i))chi=1 are given by RecoverLeaves(seedsint, ch).

– For chi = 0 the simulator behaves as the simulator of the base OR sigma protocol from
the proof of Theorem 19, outputting (com(i), 0, resp(i)).

– For chi = 1, the simulator S computes the root of the Merkle tree root(i) from seed(i).

– Then S outputs the transcript

((salt, (comi)i=1,...,M), ch, (seedsint, (respi)chi=0)).

We prove that Eq. (9) is at most 3Q

2λ
, introducing a sequence of simulators S1 = PM,S2,S3 = S.

Fix a pair ((ϕ1, . . . , ϕR), AI) with ϕI = AI ⋆ ϕ and an adversary A.
The second simulator S2 behaves like the prover PM, except the way it generates seed(i) for
i = 1, . . . ,M . The simulator runs SimulateSeeds and RecoverLeaves as explained above, hence
it determines (seedi)chi=1. Then it picks uniformly at random the remaining seeds (seedi)chi=1.
Using [BKP20, Lemma 2.11] we obtain that∣∣∣P [ARO(SRO

1 ((ϕ1, . . . , ϕR), AI , ch) = 1
]
−P

[
ARO(SRO

2 ((ϕ1, . . . , ϕR), AI , ch) = 1
]∣∣∣ ≤ Q

2λ
.

The thirds simulator S3 acts the same as S2, except that uses the simulator for the base OR
sigma protocol to compute com(i) and resp(i) for chi = 0. Using the zero-knowledge property of
the latter, we have that the advantage of any adversary A for distinguishing the simulator from
a honest prover is at most 2Qi

2λ
, where Qi is the number of queries of the form RO(salt||i||·) that

A makes to the random oracle. Hence we have∣∣∣P [ARO(SRO
2 ((ϕ1, . . . , ϕR), AI , ch) = 1

]
−P

[
ARO(SRO

3 ((ϕ1, . . . , ϕR), ch) = 1
]∣∣∣ ≤ ∑

i s.t.
chi=0

2Qi
2λ

,

and moreover,
∑

i s.t.
chi=0

2Qi
2λ
≤ 2Q

2λ
.

Combining these results gives us∣∣∣P [ARO(PB
RO((ϕ1, . . . , ϕR), AI , ch) = 1

]
−P

[
ARO(SRO((ϕ1, . . . , ϕR), ch) = 1

]∣∣∣ ≤ 3Q

2λ

and the thesis is proven since Q is polynomial in λ and hence 3Q

2λ
is negligible.

B Commitment Reproducibility

Here we show the algorithms for the commitment reproducibility. A sigma protocol is commitment
reproducible if, given an accepting transcript (com, ch, resp), there exists a polynomial time algorithm
RecCom such that, on input ch and resp, returns the commitment com with overwhelming probability.
In Figure 8 we present the algorithms for both the main OR sigma protocol and the version with tag.

C Seed Trees Estimations

We use a seed tree to communicate the seed seed for each repetition of the base sigma protocol
having challenge bit ch = 1. Due to Section 4.1, the challenge has a larger number of ones, and this
structure allows to reduce the size of the response.

Given a seed tree with M leaves, if we want to send M −K leaves, we transmit at most

K⌈log2M⌉ −K⌈log2K⌉+ 2⌈log2K⌉ −K.

This fact is given in [GPS22] without a proof, here we prove it using the next technical lemma.

22

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

RecCom (salt, {pk1, . . . , pkR}, Jch, resp) :

{ϕ1, . . . , ϕR} ← {pk1, . . . , pkR}
RO′ ← RO(salt||·)
ch← Unrank(Jch)

(seedsint, (resp
(i))chi=0)← resp

for i s.t. chi = 0 then

ROi ← RO′(i||·)

(D(i), path(i), r(i))← resp(i)

ϕ(i) ← D(i) ⋆ ϕ

c(i) ← ROCom(ϕ(i), r(i))

root(i) ← ReconstructRoot(path(i), c(i))

(seed(i))ch=1 ← RecoverLeaves(seedsint, ch)

for i s.t. chi = 1 then

ROi ← RO′(i||·)

(B(i), r
(i)
1 , . . . , r

(i)
R)← ROiE(seed

(i))

for j = 1, . . . , R do

C
(i)
j ← ROiCom(B(i) ⋆ ϕj , r

(i)
j)

(root(i), tree(i))← MerkleTree(C
(i)
1 , . . . , C

(i)
R)

com← (root(i))i=1,...,M

return com

RecComL (salt, {pk1, . . . , pkR}, τ, Jch, resp) :

{ϕ1, . . . , ϕR} ← {pk1, . . . , pkR}
RO′ ← RO(salt||·)
ch← Unrank(Jch)

(seedsint, (resp
(i))chi=0)← resp

for i s.t. chi = 0 then

ROi ← RO′(i||·)

(D(i), path(i), r(i))← resp(i)

ϕ(i) ← D(i) ⋆ ϕ

c(i) ← ROCom(ϕ(i), r(i))

root(i) ← ReconstructRoot(path(i), c(i))

(seed(i))ch=1 ← RecoverLeaves(seedsint, ch)

for i s.t. chi = 1 then

ROi ← RO′(i||·)

(B(i), r
(i)
1 , . . . , r

(i)
R)← ROiE(seed

(i))

for j = 1, . . . , R do

C
(i)
j ← ROiCom(B(i) ⋆ ϕj , r

(i)
j)

(root(i), tree(i))← MerkleTree(C
(i)
1 , . . . , C

(i)
R)

ι← i s.t. chi = 1

τ ′ ← B(ι) • τ

com← (ROiH(root(i), τ ′))i=1,...,M

return com

Figure 8: Commitment Reproducibility algorithms

Lemma 28. Let b(n) be the binary entropy function [OEI22, A003314] given by

b(n) =

{
0 if n = 1

mini=1,...,n−1{n+ b(n− i) + b(i)} if n > 1
,

then, for each natural number n we have

b(n) = n+ n⌈log2 n⌉ − 2⌈log2 n⌉.

Proof. Set a(n) = n + n⌈log2 n⌉ − 2⌈log2 n⌉. Using the characterization of b(n) reported in [CILS17,
Cor. 5], we can write

b(n) = n⌊log2 n⌋+ 2n− 2 · 2⌊log2 n⌋.
Observe that, for any n power of 2, we have ⌈log2 n⌉ = ⌊log2 n⌋, otherwise, if n is not a power of 2,
then ⌈log2 n⌉ − ⌊log2 n⌋ = 1. This implies that for every n we have a(n) = b(n).

Now we can show the above claim. Observe that if the number of leaves is not a power of 2, we
can add dummy leaves to reach the next power of 2 and complete the binary tree. We can exclude the
case K = 0 since the number of nodes to be sent is equal to 1.

Proposition 29. Given a seed tree with M = 2c leaves, if we want to send M−K leaves, with K ̸= 0,
we transmit at most K log2M −K⌈log2K⌉+ 2⌈log2K⌉ −K seeds.

Proof. Set f(c,K) to be the function counting the maximum number of nodes to be transmitted in a
tree with 2c leaves, hiding K leaves. It is easy to see that

f(c,K) = max
i=1,...,K−1

{f(c− 1,K − i) + f(c− 1, i)} (10)

23

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

and we proceed by induction on c.
The base step is given by c = 1 and it is easy to check. Now let c > 1 and suppose

f(c′,K) = Kc′ −K⌈log2K⌉+ 2⌈log2K⌉ −K

for every c′ < c and every K = 1, . . . , c′ − 1. Equation (10) gives us

f(c,K) = max
i=1,...,K−1

{(K − i)(c− 1)− (K − i)⌈log2(K − i)⌉+ 2⌈log2(K−i)⌉

− (K − i) + i(c− 1)− i⌈log2 i⌉+ 2⌈log2 i⌉ − i}

and rearranging the terms we have

f(c,K) = Kc+ max
i=1,...,K−1

{−2K − (K − i)⌈log2(K − i)⌉+ 2⌈log2(K−i)⌉ − i⌈log2 i⌉+ 2⌈log2 i⌉}.

Now we can take the minimum changing the signs in the parentheses

f(c,K) = Kc− min
i=1,...,K−1

{2K + (K − i)⌈log2(K − i)⌉ − 2⌈log2(K−i)⌉ + i⌈log2 i⌉ − 2⌈log2 i⌉}

and setting a(n) = n+ n⌈log2 n⌉ − 2⌈log2 n⌉ we obtain

f(c,K) = Kc− min
i=1,...,K−1

{K + a(K − i) + a(i)}.

Using Lemma 28, we have that

f(c,K) = Kc−K⌈log2K⌉+ 2⌈log2K⌉ −K.

To give a more accurate estimate of the signature length, we study the minimal number of nodes
to send for a tree with M leaves, if we want to transmit M −K leaves. For any non-negative integer
K, we denote with b(K) its binary representation and with w(b(K)) the number of ones in b(K).

Proposition 30. Given a seed tree with M = 2c leaves, if we want to send M−K leaves, with K ̸= 0,
we transmit at least c− w(b(K − 1)) seeds.

Proof. Suppose to transmit M −K leaves in a seed tree with M = 2c leaves. Denote with g(c,K) the
smallest number of nodes to send, depending on the position of the K leaves that should kept secret.
Given K leaves to hide, the best scenario is when they are close to each other as much as possible.
Without loss of generality we can assume that these K leaves are all on the right. The height of the
largest subtree having only leaves to keep secret is r = ⌊log2K⌋. If we examine the tree vertically,
from the root to the leaves, we send a node for each level from c − 1 to r + 2 plus g(r,K − 2r), the
minimal number of node to send having a tree of height r with K − 2r leaves to hide. A graphic
example is reported in Figure 9: we send a node for each level from c − 1 to r + 2, without sending
the node at level r + 1. Then we iterate on the small sub-tree on the left.

•

•
. . .

⌊l
o
g
2
K

⌋
c
−

⌊l
o
g
2
K

⌋
−

1

Figure 9: Red sub-trees contains only leaves to hide. Black circles are nodes that we send.

24

Giuseppe D’Alconzo, Andrea Gangemi TRIFORS: LINKable Trilinear Forms Ring Signature

Considering the base case g(c, 0) = 1, where we can send the root, we obtain the following equation:

g(c,K) =

1 if K = 0

c− ⌊log2K⌋ − 1 + g
(
⌊log2K⌋,K − 2⌊log2K⌋

)
if K > 0

. (11)

For K > 0 we can write g(c,K) = c− d(K), where d(K) = ⌊log2K⌋+1− g
(
⌊log2K⌋,K − 2⌊log2K⌋

)
.

Let b(K) =
(
b0, . . . , b⌊log2K⌋

)
be the binary expansion of K =

∑⌊log2K⌋
i=0 bi2

i and let a1 < · · · < at be

its support. We have that t = w(b(K)) and ⌊log2K⌋ = at. Then K can be written as K =
∑t
i=1 2

ai .
We claim that d(K) = a1 + t− 1. To show this, we define

gj = g

(
aj ,

j−1∑
i=1

2ai

)
∀j = 1, . . . , t,

in particular g1 = g(a1, 0) = 1 by (11). Then, from (11) we have gj − gj−1 = aj − aj−1 − 1 and
summing over all indices j from 2 to t, we have

t∑
j=2

(gj − gj−1) =

t∑
j=2

(aj − aj−1 − 1) .

The left hand side is gt− g1 = gt− 1, while the right hand side gives at− a1− (t− 1). Combining this
results we have gt = at − a1 − t+ 2. From the definition of d we can write

d(K) = ⌊log2K⌋+ 1− gt = at + 1− gt = a1 + t− 1,

and the claim is proven.
It is known that a1 = 1 + w(b(K − 1))− w(b(K)) [OEI22, A007814]. Using this fact, we have

d(K) = a1 + t− 1 = 1 + w(b(K − 1))− w(b(K)) + t− 1 = w(b(K − 1))

and this concludes the proof.

25

	Introduction
	Preliminaries
	Notation
	Alternating trilinear forms
	Sigma protocols
	Ring signatures
	Index-hiding Merkle trees
	Seed trees

	The Base OR Sigma Protocol
	The protocol

	Optimisations and the Main OR Sigma Protocol
	Using fixed weight challenges
	Seed tree
	Salting
	The main OR sigma protocol
	Tags and linkability

	The (Linkable) Ring Signature Scheme
	Solving sATFE to Attack the Schemes
	Attacks to the ring signature TRIFORS
	Attacks to the linkable ring signature Link-TRIFORS

	Parameters and Conclusions
	Security Proofs
	Proof of Theorem 19
	Proof of Theorem 23

	Commitment Reproducibility
	Seed Trees Estimations

