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Abstract. Side channel evaluations benefit from sound characterisa-
tions of adversarial leakage models, which are the determining factor
for attack success. Two questions are of interest: can we define and es-
timate a quantity that captures the ideal adversary (who knows all the
distributions that are involved in an attack), and can we define and es-
timate a quantity that captures a concrete adversary (represented by a
given leakage model)?

Existing work has led to a proliferation of custom quantities to measure
both types of adversaries, which can be data intensive to estimate in
the ideal case, even for discrete side channels and especially when the
number of dimensions in the side channel traces grows.

In this paper, we show how to define the mutual information between
carefully chosen variables of interest and how to instantiate a recently
suggested mutual information estimator for practical estimation. We ap-
ply our results to real-world data sets and are the first to provide a mu-
tual information-based characterisation of ideal and concrete adversaries
utilising up to 30 data points.

1 Introduction

Mutual information (MI) enables us to quantify the amount of information that
we obtain about one random variable by observing another random variable.
This is a useful concept in the context of side channels because it enables us to
quantify how much information we get about a secret (key-dependent) device
state by observing e.g. the device power consumption. As a consequence, the
mutual information appears across various areas in side channel research, such
as in proofs about the security of masking, e.g. Grosso et al. [17,12,33]5, in the
context of side channel distinguishers, e.g. Heuser et al. [20], and in the context of
reasoning about the quality of so-called leakage models, e.g. Durvaux et al. [13]
— the latter applications are the focus of our work.

5 Proofs show that the informativeness of the side channel decreases exponentially in
the number of shares.

https://orcid.org/0009-0006-1469-763X
https://orcid.org/0000-0002-3284-7076
https://orcid.org/0000-0001-9363-7585
https://orcid.org/0000-0001-7502-3184


1.1 Evaluating Device Security via Leakage Certification

Leakage models are important ingredients in side channel attacks. Side channel
attacks are highly configurable, but they always require the extraction of in-
formation of small portions of the secret key from some observed side channel
traces following a divide-and-conquer principle. The extraction of key informa-
tion from the observable side channel traces can be achieved with a wide range
of statistical and machine learning tools, which use as inputs a (key-dependent)
leakage model and the observed side channel traces. It is well known that the use
of an accurate leakage model is necessary for optimal information extraction [8].

From an adversarial point of view, the best leakage model would evidently
be equal to the distribution of the side channel that the device emits. We call
an adversary ideal if they know this distribution. To understand the worst case
security of a device, an evaluator, acting as a concrete adversary wishes to assess
the strength of this ideal adversary. Thus, they wish to assess the amount of
information they can extract with their (estimated) model where they may use
the model as a predictor or classifier in an attack. In the context of physical
side channels such as the power consumption, the EM emanation, or device
timing characteristics, the exact distribution of the observable side channel is
unknown—both adversaries and evaluators can only work with estimations.

State of the art. Side channel evaluations can take very different forms: “in-
house” evaluations are often performed by software/hardware developers, and
are based on a mix of leakage detection testing [16] and performing concrete
attacks. Evaluations that are part of a formal certification scheme (e.g. FIPS
140-3 [21,22], and CC [9,38,39]) are typically structured and must follow scheme
specific guidance. Informally speaking, an evaluation seeks to establish the “secu-
rity level” of a device: in-house evaluations typically understand this by checking
if a specific countermeasure has the desired effect; evaluations under certification
schemes have complex rule books and application guidelines that define a “secu-
rity level”. Clearly, any evaluation seeks to produce evidence for how strongly a
well resourced adversary can perform: we call any adversary that can be instanti-
ated in practice a “concrete adversary”. Any comprehensive evaluation will also
try and understand how close such a concrete adversary is to the ideal adversary.
Recently, Azouaoui et al. [2] advocated to do this in the context of “worst case”
evaluation assumptions: they argue, that it is advantageous to give an evaluator
as much control and information as possible in an evaluation, an idea that has
been picked up in the latest guidelines by the German certifier BSI [7]. These
guidelines provide best practices for evaluations under the Common Criteria
umbrella; in their latest version, the guidelines also include MI estimation (for
leakage quantification) based on a new approach by Gao et al. [14].

Leakage certification. An evaluator seeks to understand how good their (esti-
mated) leakage model (representing a concrete adversary) is (both in compari-
son with other models and in relation to the ideal adversary), which is a task
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that was described by Durvaux et al. [13] as leakage certification, drawing on the
earlier work of Renauld et al. [36].

Essentially, leakage certification is about assessing the gap between the amount
of information that can be extracted by the ideal adversary and the amount of
information that can be extracted by a concrete adversary. Durvaux et al. [13]
capture the strength of the ideal adversary via the mutual information (between
a key-dependent intermediate value, and the observed leakage) and they put
forward a notion for the concrete adversary called the Perceived Information
(PI), i.e. a quantity initially introduced in Renauld et al. [36], which relates a
concrete leakage model with the observed leakage. Renauld et al.’s approach [36]
was qualitative and proposed a statistical test to check whether the model of the
concrete adversary can be distinguished from the model of the ideal adversary,
i.e. the PI significantly differs from the MI. Bronchain et al.’s follow-up [6] made
a first attempt to make certification quantitative and to estimate and bound the
gap between the MI and the PI. For this purpose, they suggest working with the
empirical distribution of the observed trace data, and they showed that the em-
pirical PI (ePI) is a lower bound of the MI and that the empirical Hypothetical
Information (eHI), defined as the amount of information that would be extracted
from a hypothetical device exactly following the empirical model distribution, is
an upper bound of the MI. Unfortunately, the convergence of the eHI and ePI
metrics was shown experimentally to be (extremely) slow, which was then for-
mally confirmed/analysed by Masure et al. [28]. This last work further showed
that the hypothetical information cannot be unbiased if not working with the
empirical model and therefore focused on the restricted goal of upper bounding
the information that can be extracted by a concrete adversary (i.e., the PI) with
the notion of Training Information (TI). Cutting to the chase, the state of the
art leaves us with limited tools to evaluate the ideal adversary quantitatively.
Two problems of practical interest remain.

Problem 1. Physical side channels are typically not univariate. The estimation
of the HI and PI becomes completely inefficient for multivariate traces, and some
of the estimators suggested in the past behave badly: Masure et al. [28] show
that the gHI (which is a specific estimator of the HI) is not guaranteed to be
an upper bound for the PI when the PI is estimated via the gPI, and that the
eHI suffers from very slow convergence especially in multivariate settings. We
remark at this point, that non-parametric estimators such as the eHI and ePI
become computationally infeasible as the number of dimensions increases.

Problem 2. Physical side channels are typically not discrete. Even though physi-
cal side channels such as power and EM are measured by digital oscilloscopes that
use an analogue to digital converter, modern digital oscilloscopes offer sophis-
ticated signal amplification and de-noising settings which produce continuous
outputs: assuming that devices are only used in their most basic setting under-
estimates real-world adversaries. Secondly, implementations that use masking
countermeasures are often analysed after further software processing, including
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filtering, and mean-free product-combining [34], which again create continuous
outputs.

The resulting disconnection between practice (working with continuous side
channel traces) and theory (only considering MI, PI, HI, TI, LI for discrete
traces) was already mentioned in literature [6,28] in the context of characterising
the ideal adversary.

1.2 Contributions and Outline

Our main contribution is an approach, utilising the estimator by Gao et al. [14],
for both tasks in leakage certification: we wish to highlight that our approach is
the first to effectively deal with quantifying a multi-variate ideal adversary. Our
approach is inspired by an alternative representation of the PI, that we develop
in this paper. Doing so enables us to give novel definitions for model quality,
considering both cases where models are used as classifiers and where models
are used as predictors. We link the case where models are used as classifiers
to the machine learning concept of conditional cross entropy and provide an
MI based definition for model quality and comparison, therefore enabling the
assessment of the ideal adversary as well as concrete adversaries. In the case
where models are used as predictors we prove that in many practical cases, for
a given intermediate step in a cryptographic algorithm, we can compute the MI
that characterises the ideal adversary without the need to explicitly have access
to the device leakage function. We provide our fast implementations of the Gao
estimator, as well as scripts to replicate experiments via a public repository:
https://github.com/sca-research/Leakage-Certification-Made-Simple.

Implications for practice.

Alternatives to full attacks. We explained before that current evaluations often
require to perform complete attacks, i.e. a full instantiation of a concrete adver-
sary. Studies exploring the distribution of attack outcomes (via the key rank,
e.g. [26]) show that outcomes of identically configured attacks can have a huge
variance, in other words, there can be both “lucky” and “unlucky” adversaries.
To produce a statistically robust quantification of how well a concrete adversary
performs, a large number of repetitions (at least 100, see [26]) of the same attack
must be performed. This is entirely infeasible in practice where already a sin-
gle attack can be extremely expensive because of the presence of well designed
countermeasures. Consequently, alternative approaches to evaluating the success
of full attacks with the aid of information theoretic quantities are valuable and
previous work already established a sound link between the mutual information
characterising the ideal adversary and the success rate [8].

Enabling a more informed profiling step. Concrete adversaries use leakage mod-
els, which must be estimated from side channel traces. The quality of leakage
models needs to be assessed: of course, this can be done by performing a full
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attack, which leads to the problem of requiring a large number of repetitions.
Alternative quantities are thus useful in practice and the approach of leakage
certification of models does just that. In addition to evaluating the quality of
an estimated model, previous work also showed that observing the convergence
properties of MI quantities expressing model quality can guide evaluators with
regard to the question of how many traces should be used to estimate a good
model.

Limitations. Whilst our contribution represents a meaningful development in the
area of leakage certification, there remain challenges to be solved. For instance,
our best implementation can currently work with multivariate data of up to 30
dimensions. This is often sufficient to reason about the model relating to a single
intermediate value (in both software and hardware implementations), however,
it is clear that a higher dimensionality would be desirable. An aspect of practical
importance is that of imperfect measurement setups: our approach does not help
to spot them or rectify them. Finally, whilst leakage models are a key factor for
attack success, their quality interplays with that of the intermediate value that
they relate to: our contribution does not address this interplay.

Outline. After introducing notation, reviewing the side channel setting, recap-
ping mutual information estimation, and reviewing the state of the art in leakage
certification in Sect. 2, we spell out our framework for mutual information based
leakage certification, in Sect. 3, by providing the relevant definitions alongside
practical considerations. We demonstrate the efficiency of our framework via one
set of simulations, and real-world datasets in Sect. 4 and Sect. 5.

2 Preliminaries

Following convention, we represent random variables with upper case letters,
and their realisations with the corresponding lower case letters and sets are
denoted with calligraphic typefaces. For two functions g and h, g ◦h denotes the
composition of the functions.

We denote the probability density function (pdf) and cumulative distribution
function (cdf) of a continuous random variable with f and F respectively. For
a discrete random variable, p denotes its probability mass function (pmf); for a
continuous random variable, P denotes its probability density function. When-
ever necessary, in a pdf, cdf or pmf we will make the corresponding random
variable explicit in the subscript (e.g. fX or FX). In particular p(X,Y ) refers to
the joint distribution (pmf in this case) of the variables X and Y .

For any random variable X, E(X) and resp. EX denote the expectation of X.
The conditional distribution of X given Y is X|Y . For simplicity, we denote the
conditional expectation of random variableX|Y = y by EX|y and its distribution
by PX|Y . We refer to an estimated quantity by using the sample size n in the
subscript, e.g. In refers to a mutual information estimate obtained from a sample
with size n, fX,n or pX,n denote the estimated pdf or pmf corresponding to a
random variable X using n samples.
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Fig. 1: Relationships between variables for the side channel scenario. The dashed
lines indicate the random processes and variables, and the dotted line visualises
that L might depend on some input and key-dependent randomness S.

The indicator function for a realisation x of X, is denoted as IX=x. We use
N (µ, σ) to denote the Gaussian distribution with mean µ and variance σ2. We
use L(0, σ) to denote a Laplacian distribution with mean 0 and variance 2σ2.
For any d-dimensional vector (x1, . . . , xd) ∈ Rd the ℓ∞ or max norm is defined
as max{|xi| : i = 1, . . . , d}.

When working with functions, we overload notation and use the same variable
for both the function, as well as the result of the function, and we may adapt
the inputs to the context, e.g. L(X,K) is a function, we also interpret L as a
random variable, i.e. l is the realisation of L with some concrete inputs x, k.

2.1 The Side Channel Setting

In the side channel setting, we work with random variables that represent input-
s/intermediates/outputs of cryptographic processes and leakage observations:
we use x ∈ X for the input, which is mapped according to the cryptographic
process via the application of some (cryptographic) target function(s) C and an
(unknown) key k∗ ∈ K to an intermediate y ∈ Y. Implementations process cryp-
tographic keys in “chunks”, thus K and X have small support. The intermediate
value is then mapped via a (noisy) device leakage function to the observable side
channel trace t, see Fig. 1. A side channel trace t is a vector of leakage points.
Each point corresponds to the physical processes that happen inside the device.
Some of the physical processes depend on the input and key and we capture
their contribution to the observable traces with the leakage function L and de-
pendent noise S. Other processes are independent of the input and the key and
we capture them via the independent noise variable R.

An adversary can observe (sometimes control) the inputs x, she knows the
cryptographic function C and she observes traces t. An evaluator has the same
knowledge plus the knowledge (and control) of the secret key k∗. Both do not
know the device leakage function L, and thus use a so-called leakage model M .

Leakage functions. The leakage function L for a specific step in the execution
of an algorithm can be simple. For instance, it can be determined by the number
of bits changing within a register, or on a bus, in the case of a memory instruction,
in which case it can be understood as a deterministic function. In other words,
for a given input x and a fixed key k∗, it will always produce the same value
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L(x, k∗), and the distribution of L(x, k∗) is completely determined by the current
state (x, k∗).

However, the leakage function for a specific step in the execution of an al-
gorithm can also be complex. For instance, in dedicated hardware, the power
consumption depends on a complex interaction between many gates, which can
result in data dependent glitches, cross-talk, etc. In this case, for a given input x
and a fixed key k∗, we may see different values L(x, k∗) upon repeat execution.
The distribution of L thus depends on x, k∗, and some unknown randomness
S(x, k∗) that depends on x, k∗, but not on the independent noise R. Such a
leakage function is probabilistic in (x, k∗). We provide Fig. 1 as a visual aid to
understand the relationship between the variables, based on the functions that
act on them.

We wish to emphasise the need to capture all types of leakage functions
in the context of leakage certification because an evaluator does not know the
leakage function(s) that a device exhibits and thus needs a methodology that
always returns correct results.

For the rest of this paper, we have that T should always be understood as
a continuous multivariate variable (or a mixture with a continuous component)
to allow for the greatest flexibility. Whenever estimators require discrete inputs,
we make this explicit by writing [T ] to indicate that discretisation of T must
take place. Whenever the probabilistic nature of the leakage is not relevant,
i.e. a statement holds irrespective of S and thus irrespective of whether L is
deterministic or probabilistic, we drop S in the text for readability.

Leakage models. A leakage model is a function M that maps x, k under a
target function C to Rd. A model can be assumed based on device knowledge, or
it can be estimated from real trace data. For example, a very popular standard
leakage model is the Hamming Weight function, i.e.M(x, k, C) = HW (C(x, k)).
In many practical cases, the leakage model is not known and must be estimated
from the available trace data, typically by isolating some “points of interest” in
each trace which are then used for model building (via statistical or machine
learning methods).

Models can be used as predictors or as classifiers. In a predictive use, the
adversary applies the model to the intermediate value (i.e. they compute M(Y )
and then uses a comparison based distinguisher [40]. Another use case for predic-
tive models is in the context of leakage simulators [30]. When used as a classifier,
the adversary applies the model to a new side channel observation to obtain a
posterior distribution for the intermediate value, i.e. Ŷ = (Y |T )M .

2.2 Measuring Dependency

The mutual information (MI) quantifies what we can learn about a variable X
upon observing another variable Y . In other words, it quantifies a relationship
between the distribution X and the distribution of X|Y . In the context of eval-
uating side channel security, we can use the MI to quantify how much we can
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learn about a secret (key-dependent) device state upon observing the device’s
side channel (possibly by using a model; we call the adversary who knows the
device’s leakage characteristics the ideal adversary.

For general random variables X,Y (with marginal distributions PX , PY and
joint distribution PXY ), the MI is defined via the Radon-Nikodym derivative [41]:

I(X;Y ) =

∫
X×Y

log
dPXY

dPXPY
dPXY

The definition via the Radon-Nikodym derivative links the mutual informa-
tion also with the Kullback-Leibler divergence DKL as it can be expressed as
I(X;Y ) = DKL(dPXY ||dPXdPY ), see [41].

If either both variables are discrete, or both variables are continuous, then the
MI can be expressed via the marginal and joint or conditional entropies6, leading
to the well known “2H” and “3H” expressions (owing to how many entropies are
in the formulae) for MI, see Eq. (1).

I(X;Y ) = H(X)−H(X|Y ) (1)

= H(X) +H(Y )−H(X,Y ) (2)

If one variable is discrete and one is continuous, or if one variable is a mix-
ture, then the conditional density in the 2H formula, and the joint density in the
3H formula, may not be well defined unless the involved conditional distribu-
tions satisfy specific conditions 7, see [31]. Consequently, in situations where the
distributions are unknown, and thus one cannot verify that the conditional/joint
entropies are well defined, the conservative choice is to utilise an estimator that
estimates the mutual information via the Radon-Nikodym derivative.

Estimating Mutual Information. The crucial property of any MI estimator
is how well it “approximates” the true MI. This property is called the conver-
gence of the estimator, and it describes the behaviour of the estimator when
we supply it with increasing amounts of data. The weakest notion is conver-
gence in probability A stronger notion is convergence in mean-square. Despite
converging, an estimator can be biased. Bias in an estimator refers to the possi-
bility that the estimator’s expected value remains different from the true quan-
tity being estimated. There are different approaches to estimating the MI (non-
parametrically). One can either estimate the entropies in the 2H/3H formulas, or
one can estimate the Radon-Nikodym derivative; we review them starting from
the oldest techniques and leading up to the most recent advancements.

6 We remind the reader that H(X) = EX [− log f(X)] if X continuous, and H(X) =
EX [− log p(X)], ifX is discrete; the definitions are extended naturally for conditional
and joint distributions

7 Observe that in such cases, we have a term that corresponds to a discrete entropy
which is always positive, and a term that corresponds to a differential entropy which
can be negative. Furthermore, the conditional distribution in the 2H formulae might
not exist.
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Entropy based MI estimation. Density based estimators directly estimate the
densities in the 2H/3H formulae, whereas the k-NN based estimators estimate
the distribution of the k-NN distance as a proxy for the density itself [25]. The
previously mentioned limitations of 2H/3H estimators (i.e. both variables must
either be discrete or continuous) initially applied to both approaches. A comple-
mentary approach based on using deep learning was published by Belghazi et
al. [5] in 2018. It was suggested to be used for side channel tasks in Christiani et
al. [10] but shortly thereafter McAllester and Stratos [29] highlighted problems
with the approach. Antos and Kontoyiannis proved convergence for the plug-in
estimator [1].

Integral estimators are well examined in the wider statistical literature, we
refer to Györfi and van Meulen [18], Hall and Morton [19] (for the specific case of
histogram density estimators), as seminal papers showing convergence results for
low dimensions. No such guarantees can be given for higher dimensions because
either the efficiency drops significantly or (to the best of our knowledge) no proof
has been found.

In the side channel literature, based on the simplifying assumption of having
discrete traces, the study of Batina et al. [3] uses an integral estimate [4]. Later,
the notions of HI and eHI were developed as a means to bound the MI by
Bronchain et al. [6], see Eq. (3 and 4) (the HI is thus a quantity to assess the
ideal adversary).

HI(X; [T ]; [M ]) = H(X) +
∑
x∈X

pX(x)
∑
t∈[T ]

p(X,[M ])(t|x) log2 p(X,[M ])(x|t) (3)

eHIn(X; [T ]) = H(X) +
∑
x∈X

pX(x)
∑
t∈[T ]

ẽn(t|[x]) log2 ẽn(x|[t]) (4)

The HI defines a quantity that measures the relationship between a vari-
able X (which in [6] is set to be either the key variable, K or the intermediate
Y = C(X,K)), and the observed (discrete or discretised) traces [T ] under a given
model density [M ]. It holds that HI(X; [T ]; [M ]) = I(X; [M ]) and if [M ] = [T ]
then HI is equal to I(X;T ). The empirical HI (eHI) uses the empirical distribu-
tion ẽn(x, [t]) in place of the modelM , which can be estimated from the observed
traces [T ]. Bronchain et al. [6] show that with some assumptions the eHI con-
verges in probability to the MI, thereby rediscovering the result by Antos and
Kontoyiannis [1].

Nearest neighbour estimator for MI. Motivated by the need for a non-parametric
MI estimator that applies even to high-dimensional/multivariate problems, Krasov
et al. [24] introduced the idea of using a k-nearest neighbour (short k-NN) based
estimator.

A recent contribution by Gao et al. [14] made a further significant step by
estimating the Radon-Nikodym derivative requiring only local joint densities:
their estimator does no longer require the existence of a joint density for the
entire probability space. Their estimator essentially deals with two cases that
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can occur for the joint distribution: either the sample (x, y) is discrete (this
can be detected by checking the k-NN distance), then one can use the plug-
in estimator for the Radon-Nikodym derivative; or the sample (x, y) is locally
continuous, in which case they estimate the Radon-Nikodym derivative based
on Eq. (5). They furthermore show that if either x or y are mixed, then the
continuous case applies. Consequently, their estimator can deal with any form
of mixture. The GKOV estimator is defined as given in Eq. (5).

In(X;Y ) =
1

n

n∑
i=1

Îi = log n+
1

n

n∑
i=1

(ψ(k̃i)− log(nx,i + 1)− log(ny,i + 1)) (5)

where ψ(u) is the digamma function ψ(u) = d
du logΓ (u) ≈ log u− 1

2u . The details

of how to compute the quantities nx,i, ny,i and k̃i can be found in Algorithm 1
in Appendix A.

With a suitable choice of kn the GKOV estimator has the same convergence
rate in the univariate setup as existing pmf/pdf based mutual information esti-
mators, it provides strong convergence (convergence in mean-square, asymptotic
unbiasedness) in all settings, and it can be generalised to multivariate variables.
We refer to Appendix A for a discussion about choosing, kn, as well as for the
precise results of Gao et al. relating to convergence and bias.

2.3 Leakage Certification using HI and PI

We already defined the HI in Eq.(3). The PI, in Eq. (6)), was first introduced in
Renauld et al. [36] as a measure for the quality of a leakage model.

PI(Y ; [T ]; [M ]) = H(Y ) +
∑
y∈Y

pY (y) ·
∑
t∈[T ]

p(Y,[T ])(t|y) log2 p(Y,[M ])(y|t) (6)

In the latest work, the process of comparing MI and PI, has been formalised
via the concept of the Regret for a model M in Masure et al. [28, Definition 4]:

R(M) = I(Y ;T )− PI(Y ;T ;M). (7)

With the regret, the two tasks in leakage certification can be formalised as fol-
lows.

Definition 1 (PI based model quality). Given a discrete model M and dis-
crete traces T , we define the quality of the model as the regret R(M).

Via a natural extension, we can also compare two different leakage models
using the regret.

Definition 2 (PI based model comparison.). Given two (discrete) leakage
models [M ]1 and [M ]2, we say that [M ]1 is a better leakage model than [M ]2 for
a (discrete) trace distribution [T ] if

R(M1) < R(M2).
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In practice, the process of leakage certification proceeds in the following way.
The evaluator estimates I(Y ;T ) via an estimator for the HI, which is taken
to be an upper bound of the ideal adversary. The evaluator also estimates the
PI(Y ;T ;M), which represents a concrete adversary and is thus taken to be a
lower bound for the ideal adversary. We remark at this point that existing eHI
and ePI require discrete data, whereas often side channel traces are representa-
tive of (multivariate) continuous variables. We offer a deeper discussion of the
adverse impact of discretisation in Appendix B.

Considering the worst-case adversary. Azouaoui et al. [2] advocate that in real
world evaluations, the evaluator is given as much power as technically feasible,
e.g. control over device internal randomness, control over keys, knowledge of
implementation details, etcetera. They argue that such an approach is likely to
come close to an “optimal attack”, and consequently they call the corresponding
adversary the “worst case adversary”.

The quantities to assess both the ideal adversary as well as any concrete
adversary need to be estimated by an evaluator. In the spirit of Azouaoui et al.,
an evaluator may strive to do this in a “worst case” context. In our concrete
experiments later on in this paper, we do utilise worst-case assumptions in the
context of software implementations when defining a concrete adversary based on
Gaussian templates (we assume access to randomness during Gaussian template
building); we do not make this assumption for adversaries based on deep nets.
We do not utilise any worst-case assumptions in the context of the hardware
implementation.

3 Towards Simple Leakage Certification

3.1 PI and Regret Revisited

The PI is a quantity that has no correspondence to any known quantity in the
wider machine learning community. We next develop an alternative represen-
tation of the PI, that will aid and motivate our simpler leakage certification
approach.

Lemma 1. The PI between the three variables Y, [M ], [T ], and all distributions
defined for all y ∈ Y, can be written as:

PI(Y ; [T ]; [M ]) = I(Y ; [T ])− E[DKL((Y |[t], [T ])||(Y |[t], [M ]))]

Proof. To get the above equation, we use the substitution

p(Y,[M ])(y|t) = p(Y,[M ])(y|t)
p(Y,[T ])(y|t)
p(Y,[T ])(y|t)

in the expression of PI(Y ; [T ]; [M ]). The

detailed derivation is provided in Appendix C. ⊓⊔

With this result, it is much clearer that for the PI to be well defined, we
need that if p(Y,[M ])(y|t) = 0 then also p(Y,[T ])(y|t) = 0 otherwise we have
p(Y,[T ])(y|t) log2 0, which is not well defined. This case may occur for models
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that are bad representations of the unknown leakage, implying that the PI is
not ideally suited to deal with models that are a poor approximation.

The above lemma makes apparent that the PI is indeed a quantity that is
smaller or equal to I(Y ; [T ]), because the expected value of the KL divergence is
positive. If M = L then the expected value of the KL divergence is 0, and thus
the PI equals to I(Y ; [T ]). If M ̸= L then the KL divergence is larger than zero
and thus the PI measures, intuitively speaking, the amount of information lost
on average if a specific model M is used.

Let us consider this alternative definition jointly with the PI based model
quality Definition 1. This means the evaluator judges the model quality via the
regret, i.e. they compute (with suitable estimators)

R([M ]) = I(Y ; [T ])− PI(Y ; [T ]; [M ])

= I(Y ; [T ])− I(Y ; [T ]) + E[DKL((Y |[t], [T ])||(Y |[t], [M ]))]

= E[DKL((Y |[t], [T ])||(Y |[t], [M ]))]. (8)

Equation 8 shows that the PI-based model quality only depends on the aver-
age KL divergence between the joint distributions (Y |t, [M ]) and (Y |t, [T ]). This
motivates another definition for the regret, which is based on mutual information
quantities that relate the intermediate and the resp. conditional probability.

3.2 MI based Model Quality (classifiers)

We mentioned before that leakage models can be used as predictors as well
as classifiers. The PI-based model quality definition relates to the use case of
classifiers: a model M is used to derive the posterior distribution Y |T ; Masure
et al. [28] make this explicit by the term “discriminative model”. This fits well
with the use case of deep learning models.

Reasoning about the quality of Y |T using a model M is in fact a common
machine learning problem, and it links with the concept of conditional cross-
entropy, which in turn directly links to the mutual information, see McAllester
and Stratos [29], by

I(T ;Y ) = H(Y )− inf
PY |TM

H(PY |T , PY |TM
)

=⇒ I(T ;Y ) ≥ H(Y )−H(PY |T , PY |TM
) ∀PY |TM

(9)

If and only if M = T then this equality can actually be achieved, otherwise the
I(T ;Y ) is an upper bound to the right hand side of Eq. 9.

Therefore, we suggest that the ideal adversary in the case where the model
is used as a classifier should be defined as the left side of Eq. 9, and the quality
of a given model should be defined via the right side of Eq. 98.

8 We leave it as an open problem to qualitatively compare this notion with the notion
of regret from previous work.
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Definition 3 (MI-based classification-model quality). Given any model
M and traces T , we define the quality of the model as the difference:

δ(T,M) = I(T ;Y )−
(
H(Y )−H(PY |T , PY |TM

)
)
.

Via a natural extension, we can also compare two different leakage models.

Definition 4 (MI-based classification-model comparison.). Given two leak-
age models [M ]1 and [M ]2, we say that [M ]1 is a better leakage model than [M ]2
for a (discrete) trace distribution [T ] if

δ(T,M1) < δ(T,M2).

These two definitions thus enable us to characterise concrete adversaries.

3.3 MI based Model Quality (predictors)

As explained before, leakage models can also be used as predictors, thus are
used via application to Y as M(Y ). The best possible model would evidently be
the case where M = T , which implies M = L (because T = L + R, and R is
independent of L).

We characterise the notion of the “best possible leakage model” via the best
MI, referred to as Ib:

Ib = I(L(Y );T ). (10)

The challenge is that the evaluator does not know L, and that for different
C, there will be different L. As a consequence, we wish to be able to estimate
this quantity efficiently for many points (possibly jointly) in side channel traces.

An evaluator can however estimate the mutual information between the input
and key and the observable traces, and we call this quantity Ik:

Ik = I((X,K);T ). (11)

The connection between Ib and Ik is via the unknown leakage function L and
the cryptographic target function C, which maps the key and input value to an
intermediate value Y = C(X,K). Using the data processing inequality [41], we
know that Ik ≤ Ib because the variables in Fig. 1 form a Markov chain.

From the data processing inequality, we can also infer that equality holds if
L◦C is one-to-one, which we cannot expect to hold in practice. However, the data
processing inequality is a very crude tool to reason about these two quantities,
and we later show that equality holds under much more realistic conditions.

With this in mind, we define the MI-based quality of a predictive model.

Definition 5 (MI-based predictive-model quality). Given any model M
and traces T , we define the quality of the model as the difference:

∆(T,M) = Ib − I(M(Y );T ).

Definition 6 (MI-based predictive-model comparison). Given any two
models M1 and M2 and traces T , we say that M1 is better than M2 if

∆(T,M1) < ∆(T,M2).
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Proof that Ib = Ik in many realistic scenarios We prove that Ib = Ik for
a fixed cryptographic target C under some mild conditions, which we can expect
to hold in many practical settings. This equality implies that in many practical
cases, Ib can be obtained via estimating Ik and thus without the need to know
or even estimate L. The full proof of this result can be found in Appendix D,
and for the sake of readability, we only provide the proof outline in the following.

Based on the characteristics of the leakage functions (explained in Sect. 2.1),
three cases must be considered in the proof:

– L is discrete and deterministically depends on the realisations of X and K.
which means, T = L ◦ C(X,K) +R.

– L is discrete and probabilistically depends on the values of X and K. i.e.,
T = L(S,C(X,K)) +R, where, S follows a discrete distribution.

– Lastly, L is continuous and probabilistically depends on the realisations of
X and K. i.e., T = L(S,C(X,K)) + R, where, S follows a continuous dis-
tribution.

Now, consider Z = L◦C(X,K), when L is deterministic and Z = L(C(X,K), S),
when L is probabilistic, then the MI for the ideal adversary, Ib, can be repre-
sented as I(T ;Z) = H(T )−H(T |Z), while the MI between the random inputs
and the observable trace can be written as:

– Ik = I(T ; (X,K)) = H(T )−H(T |(X,K))
– Ik = I(T ; (X,K, S)) = H(T )−H(T |(X,K, S))

Clearly, Ib and Ik only differ from each other in the conditional entropy term.
Consequently, our proof argument is based on establishing the conditions under
which these two conditional distributions are equal, in all three cases. A basic
assumption is thus that the conditional entropy exists. A further assumption for
the probabilistic leakage functions is that the entropy of the noise distribution
is independent of a shift in location.

Remark 1 (Must we check the condition for the distribution of R?). We wish to
point out that the distributional assumption (entropy is location independent)
about the noise R holds for all the distributions that so far have been men-
tioned in the existing side channel literature, e.g. [20]. In particular, the entropy
condition applies to distributions like Gaussian, Laplacian, Cauchy, Uniform,
etc.

However, it is possible to check this assumption efficiently if this is desirable.
One can evaluate the entropy criterion for a given set of traces and intermediate
values by, for example, applying the Kolmogorov-Smirnov test [27] for goodness
of fit on samples of the leakage partition (T |Y = y) to identify which distribution
they belong to.

3.4 Practical MI Estimation Using the GKOV Method

We now turn our attention to the practical aspects of estimating MI quantities,
by leveraging the recent estimator proposed by Gao et al. [14]. For complete-
ness, we briefly summarise our implementation choices in this section and show
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some convergence results of the estimator in the higher dimensions: this aspect
was theoretically discussed only in the original publication, while we provide
simulation experiments specific to the side channel setting.

Fast implementation of Alg.1. Gao et al. [14] provide a Python implemen-
tation of their estimator9. However, we developed a much more efficient and
generic implementation that works for high-dimensional data, which is impor-
tant for side channel analysis. For our C++ implementation, we used the popular
machine learning library mlpack. The library offers several in-built distance met-
rics including the option of providing a custom distance metric. From the avail-
able options of efficient nearest neighbour search algorithms, we used VPTree

and BallTree. For all experiments, we used an Intel(R) Core(TM) i7-8700 CPU
3.20GHz system having 6 CPU cores and Ubuntu operating system.

For calculating distances of each sample point from all other points which
is necessary beyond the NN search, we have used OpenMP to parallelize the
computation. Note that the OpenMP library can also be used by mlpack if it is
available on the system. A particular observation on this part of our experiment
is that for multidimensional leakage, computing the ℓ∞ norm with an unrolled
loop is more efficient than using the looped version or the mlpack library function
for the same.

We investigated specific choices for the kn function and settled for kn = log n.
We provide experiments and a brief discussion in Appendix A.

Remark 2. A consistent property of the Gao et al. [14], that we noticed in our
experiments, is that it approaches the theoretical MI value from below. This
implies that for MI values close to zero, the estimator takes negative values.

Convergence in a multivariate setting. The GKOV estimator does elegantly
generalise to multiple points because its only configuration parameter is the
function kn (which is based on the sample size n but no other feature of the
data). For higher dimensional data, a parallel or vectorised tree search can be
applicable for the efficient implementations of the k-NN search algorithm.

We provide representative experimental results that show how the dimension-
ality of data impacts on the convergence behaviour of the GKOV estimator. It
is simple to calculate the closed form of the true MI for a multivariate Gaussian
distribution, thus we are simulating the pair (X,Y ) for X drawn from differ-
ent dimensions dx = 5, 10, while maintaining that Y is univariate dy = 1. This
choice reflects the nature of real-world side channel experiments, where the in-
termediate value is univariate, but the traces are multivariate. Figures 2a and 2b
demonstrate that the estimator converges quickly, e.g., for dx = 10: the variance
approaches zero as, obviously, the number of traces increases.

9 https://github.com/wgao9/mixed_KSG/blob/master/mixed.py
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(a) Convergence of Bias (b) Convergence of variance

(dx = 5, dy = 1): , (dx = 10, dy = 1): , I(X;Y ):

Fig. 2: Convergence of GKOV MI in multivariate setup

3.5 Characterising the Ideal Adversary using GKOV

Like in previous work, we use simulations to produce fully controlled experi-
ments, so that the mutual information can both be calculated as well as esti-
mated. All experiments are based on a single bijective target function, which
is the AES SubBytes mapping, y = C(x, k) = Sbox(x ⊕ k); this keeps our ex-
periments comparable with previous works. To compute the non-parametric MI
estimates (eHI and ePI) from previous work, we use the scripts10 that were pro-
vided by Bronchain et al. [6]. Note that the ePI and eHI are only defined for use
with two discrete random variables, and the scripts include a step where traces
are discretised.

In our simulations, we vary the device leakage function as well as the type and
magnitude of the noise distribution, and we consider univariate and multivariate
analyses. The considered leakage functions are the Hamming weight (HW), the
Hamming distance (HD, between Y and the target C(Y )), the non-linear func-
tion given by the first DES S-box when applied to the 6 least significant bits of
Y , and a linear function given as a weighted sum of the bits of Y . The noise R
follows either a Gaussian (N (0, σ)), a Laplacian (L(0, σ)) or a discrete-Laplacian
(discrete L(0, σ)) distribution. In our experiments, we consider σ ∈ [2.8, 10]. In
the multivariate simulations, the simulated trace points are either based on the
HW or the HD leakage of some bits of Y . We give the exact specifications as
part of the respective figures representing the experimental results.

We run a large number of simulated experiments and include a representative
subset of outcomes in Figures 3a-3d. In all figures, the black line corresponds to
the true MI, the blue lines, correspond to the ePI and eHI, and the red line shows
GKOV. We also include the non-parametric estimator based on histogram-pdf
estimation from Antos and Kontoyiannis [1] as a reference for a provably consis-
tent estimator specific to discrete data. The four figures cover several different
scenarios, whereby the two lower plots show a bi-variate experiment and a tri-
variate experiment.

10 https://github.com/obronchain/Leakage_Certification_Revisited
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(a) L : HD, R ∼ N (0, 4) (b) L: non-linear, R ∼ N (0, 10)

(c) L : (HW,HD), R ∼ N (0, 4) (d) L : (HW,HW,HD), R ∼ N (0, 2)

In
hist: , eHI: , I((X,K);T ) : , In

GKOV: , ePI:

Fig. 3: Ideal Adversary: eHI-ePI vs Ik

Interpretation of results. The results show that the GKOV estimator (red line)
converges to the true mutual information value (black line) faster than the other
MI estimates. According to the figures, it is evident that as the dimension in-
creases, the eHI convergence rate deteriorates more dramatically than GKOV.
Gao et al. [14] already analyse the asymptotic complexity of their estimator,
which shows that the trace complexity is not dependent on the number of di-
mensions of the data. We provide a summary of their reasoning in App. A.

In the results, we can observe that the regret (i.e. the difference between MI
estimated via the eHI and the PI) increases when we move towards multivariate
side channel observations. It is obvious from the experiments that a more trace-
efficient estimator for the eHI and ePI is needed. One might question why the
simulations here are limited to at most three dimensions (after all, we ran exper-
iments for up to 10 dimensions before). This is only because we were unable to
run ePI, eHI, and the histogram-based estimator for four or more shares. This is
not a shortcoming of our implementation — because they need to explicitly cre-
ate a multivariate pmf, making any higher order analysis highly computationally
and memory intensive; they suffer much more from the “curse of dimensional-
ity”. Our observations further motivate interest in the recent results of Masure
et al. [28].
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4 Case study: LPC1313

In this section, we use a data set that was acquired from executing a two-shares
masked AES SubBytes implementation (written in Thumb Assembly Language)
on an ARM Cortex M3 processor core from NXP (LPC1313). This implies that
no single point leaks information about the unshared intermediate value, further
confirmed via leakage detection. We use a custom measurement board (Picoscope
5243D), which provides good measurements (at 250 MSa/s, and the working
frequency is set to 2 MHz). We use our scope in a basic setting to avoid any
trace processing (de-noising) and extract discrete traces (n = 106), where each
point is represented by 8 bits.

The purpose of this case study is to show that the GKOV estimator correctly
returns MI estimates, and therefore characterises the ideal adversary, in a real
world setting.

4.1 Characterising the Ideal Adversary

To assess the ideal adversary, a bivariate MI estimation must be carried out,
which we do via the ePI-eHI as well as via estimating the MI via GKOV.

Figure 4a shows the results of this experiment. Each point in this trace is the
result of applying the ePI, eHI, and GKOV estimator to two points of the power
traces (to produce this picture we selected a small number of trace points from
the dataset). We can see that the ePI is always lower than the eHI (as expected)
and that GKOV returns negative values for trace points that have a very low
MI (as expected).

It is however striking that there are trace points that are highlighted by the
GKOV estimate for Ik = I((X,K);T ) as showing a high MI, which are missed
by eHI− ePI (we highlight two of these with a rectangle).

Interpretation of the results. Our simulations in the previous section already
demonstrated that the eHI and ePI return biased results in the case of multi-
variate data, which indicates that also in this bivariate experiment, they may, at
times, return misleading results. However, we also must consider the possibility
that with a larger number of traces, the eHI and ePI may eventually indicate a
non-zero MI as well.

Thus, we run convergence experiments at two highlighted MI points (51 and
108) resulting in the bottom plots in Figures 4b and 4c. These outcomes clearly
show that when increasing the number of traces, the ePI and eHI estimators even
more strongly indicate a zero MI, and GKOV clearly keeps indicating a non-
zero MI. Given that GKOV is asymptotically unbiased, we may conclude that it
provides the correct result. As independent verification for this interpretation,
we performed a further analysis: we estimate the MI after applying the classical
mean-free product combination function to the two points in the original dataset,
implying we do a univariate MI estimation: now all three estimators agree on
the same non-zero MI. Thus, the discrepancy in the bivariate analysis is indeed
caused by the eHI and ePI estimation.
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(a) Bivariate discrete real device leakage

(b) Sample point = 51 (top: preprocess-
ing, bottom: no preprocessing)

(c) Sample point = 108 (top: preprocess-
ing, bottom: no preprocessing)

Fig. 4: Characterisation of the Ideal Adversary for masked software AES

Investigating this issue further, we noticed that the distributions of the two
trace points, which are used in the bivariate MI estimation, are markedly dif-
ferent to the distributions of points that the script by Bronchain was designed
for. Therefore, we implemented our own adaptive binning strategy: this means
that for each pair of data-points we now first analyse their distribution, and then
specifically select a binning strategy for each pair. This is possible for this data
set, where each trace point can at most take 256 values. With this adaptation,
the eHI/ePI estimators return bounds indicating a non-zero MI, as clearly visible
in Fig. 5a. We also provide convergence plots for the two trace points in Fig. 5b
and Fig. 5b. With this binning strategy, the eHI/ePI bounds concur with the
GKOV estimate.
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(a) Bivariate discrete real device leakage with adaptive binning

(b) Sample point = 51 (with adaptive
binning)

(c) Sample point = 108 (with adaptive
binning)

Fig. 5: Correct eHI/ePI estimates via adaptive binning during estimation

5 Case Study: AES-HD

In this section, we use the AES-HD dataset11. This dataset was gathered using
a Xilinx Virtex-5 FPGA implementation of AES-128. This unprotected imple-
mentation was first introduced by Picek et al. [32]. The 1250 time points that
represent the target’s electromagnetic emanations (EM) are used in the side
channel measurements. In total, 500,000 traces were captured when the target
encrypted 500,000 randomly generated plaintexts with a fixed key. From these
500,000 measurements, we select the first 450,000 as profiling traces and the last
50,000 as attack traces. The purpose of this case study is to demonstrate how
our framework can be used to assess concrete adversaries, both relatively as well
as in comparison to the ideal adversary. This time we also include uni-variate
predictive models in our study.

We assess concrete adversaries that build leakage models for the last round’s
Sbox output as it overwrites a previous value in the corresponding register: thus

the intermediate value is Y (i) = Sbox−1[C
(i)
j ⊕k∗]⊕C(i)

j′ , where C
(i)
j and C

(i)
j′ are

11 https://github.com/AISyLab/AES_HD_Ext
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two ciphertext bytes corresponding to the i-th trace, and k∗ is the corresponding
round key byte. The relation between j and j′ is given by the ShiftRows operation
of AES and we consider j = 12 and j′ = 8. We utilise MI estimations using our
GKOV implementation to determine 30 points of interest for model estimation,
and we characterise the ideal adversary for these 30 points.

5.1 Comparing predictive models

We have examined three predictive uni-variate leakage models: a classical Gaus-
sian template model (GT), a linear regression based on a model that includes
linear terms only (LR), and a model that is based on the 6-least significant bits
of the intermediate value. Figure 6a shows estimated MI values for the three val-
ues; the red line gives the best MI, In(Y, T ); we can see that the regression model
and Gaussian template perform roughly equally well, while the 6LSB model is
clearly not a good choice.

Interpretation of results. Both the regression model and Gaussian template
model capture, in fact, the same information because we restrict both models
to only capture the linear components of the leakage; thus they perform nearly
identically across all data points. The 6LSB model ignores two bits of informa-
tion and is therefore inappropriate. We can also observe that those data points
with the highest MI values then give the best models.

5.2 Comparing classification models

We now consider two deep net classifiers (M∗
1 ,M

∗
2 ). For both networks, we use

an MLP with four hidden layers (with 64, 32, 16 and 4 neurons, respectively)
and one output layer. We train these for two different numbers of epochs such
that theM∗

1 one should be better thanM∗
2 . In Fig. 6b, we plot the MI estimators

În(Y ;Y |TM∗
i
) for i = 1 and 2 , where Y |TM∗

i
denotes the predicted label related

to the conditional probability distribution PY |TM∗
i

obtained from the classifier

M∗
i . We also evaluate the multivariate MI estimator corresponding to 30 time

points (plotted as a red line) and the intermediate, which represents the actual
information leakage and finally compare with the MI estimators corresponding
to two different classifiers. It is clear from the plot that M∗

1 is better than M∗
2 .

Interpretation of results. In contrast to the predictive models, our classifica-
tion models now take advantage of the information of all 30 data points, they
thus capture considerably more information as demonstrated by the higher MI
values. We can observe that the model that we ran for more epochs performs
asymptotically better, which is what we would expect.

5.3 Comparing profiling complexity

A question of practical relevance is often related to how much effort should be
put into learning a leakage model. An evaluator will often start with several
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(a) Predictive Models (b) Classification Models

(c) Comparing profiling complexity

Fig. 6: Model Comparison, AES-HD Dataset

model building approaches (typically including classical statistical models and
often a deep learning model) and then needs to decide at which point each of the
resulting models is “as good as it will get”, i.e. such that the estimation error
is as small as the approach allows, and thus training can stop. To demonstrate
the efficacy of our quantities and estimator, we now show an experiment where
we fix the number of traces for validation of a model and vary the number
of traces for training the model and plot MI estimates as well as PI and TI
estimates (we draw on the work and implementation of Masure et al. [28]) in
Fig. 6c. The green lines correspond to an MLP with four hidden layers (with
64, 32, 16 and 4 neurons, respectively) and one output layer. The blue and
orange lines correspond to logistic regression and Gaussian templates (dotted
lines are for comparing classification models, full lines are the TI estimates and
dashed lines are the PI estimates). All learning approaches take 10 informative
points (selected from the 30 points that we considered for comparing predictive
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models). We also plot the best estimate that we have for these 10 points of the
MI characterising the ideal adversary.

Interpretation of results. All estimated quantities conclude that for the selected
learning methods (and trace points) the logistic regression leads to the best
model; however, all models are very close and converge roughly at the same
speed. Given that the MI characterising the ideal adversary is considerably
higher than the MI quantities characterising the concrete adversaries, we can
conclude that none of these models is particularly good. The classical learning
approaches offer little room for improvement, but the MLP architecture should
be improved to extract more information from the trace points.
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A The GKOV estimator

Gao et al. [14] proved that for k̃i = k ∀i, the bias of In(X;Y ) is equal to

O

(
(logn)

(1+δ)

(
1+ 1

dx+dy

)

n
1

dx+dy

)
, where, δ > 0 is very small and dx, dy are the finite

dimensions of random vectors X and Y , respectively (for details, see Theorem
4,5 of [15]). They also showed that the variance of fixed k-NN MI estimator is

independent over the dimension of the data as it is equal to O
( (logn)2

n

)
. The

computation of di,xy, nx,i, ny,i in Algorithm 1 can be done using any nearest
neighbour binary tree search algorithm. Using then the efficient ball tree algo-
rithm12 the overall complexity of the GKOV MI estimator is O((dx+dy)n log n).
To combat the inevitable “curse of dimensionality” in the k-NN algorithm (as
described in [23]) one could further use a parallel ball tree construction (as pro-
posed in [35]).

Choice of parameter kn: according to Gao et al.’s Theorem 1 [14], the param-
eter kn, should be chosen such that as n → ∞, kn → ∞ and both (kn log n)/n,

12 https://scikit-learn.org/stable/modules/neighbors.html#unsupervised-nei

ghbors
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Algorithm 1 Non-parametric I(X;Y ) estimation for mixed r.v.s (X,Y ) [14]

Require: {xi, yi}ni=1 and kn = k
1: for i = 1, . . . , n do
2: di,xy = k-th smallest distance from{dij = max{∥xj − xi∥, ∥yj − yi∥} : i ̸= j}
3: if di,xy = 0 then
4: k̃i = |{j : dij = 0}|
5: else
6: k̃i = k
7: end if
8: nx,i = |{j : ∥xj − xi∥ ≤ di,xy}|
9: ny,i = |{j : ∥yj − yi∥ ≤ di,xy}|
10: αi = ψ(k̃i)− log(nx,i + 1)− log(ny,i + 1)
11: end for
12: return 1

n

∑
i αi + log(n)

(a) L: linear, R ∼ L(0, 8) (b) L: non-linear, R ∼ N (0, 10)

kn = log(n): , kn = log210(n): , I((X,K);T ):

Fig. 7: Convergence experiments for different choices of kn.

(kn log n)
2/n converge to zero. In our experiments, we consider kn using this

criterion. It is important to note that unlike a plug-in (histogram) estimator,
which requires data-dependent parameter tuning, the choice of the parameter
kn can be pre-determined based only on the sample size n. Moreover, the choice
of kn only affects the rate of convergence, i.e. the efficiency of the estimation,
unlike histogram based estimators, where a wrong choice can lead to bias.

A.1 Establishing Practical Choices for kn

For simulated side channel experiments, we select kn equal to log n and log210 n
for comparison. Figure 7 shows some representative experimental results for the
GKOV estimator as implemented (via Alg. 1) in different situations. To create
these plots, we performed a number of simulations where we varied both device
leakage functions and noise distributions.

The results in Fig. 7 illustrate that the convergence rate for kn = log n has
a smaller advantage over the other one. In the remaining practical experiments,
we will thus show results for kn = log n.
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An observation is that the GKOV estimator approaches the true MI from
below. There is no formal proof for this in [14], but in all our experiments we
observed this behaviour. This implies that if an MI quantity is close to zero,
then the GKOV estimator will take negative values until enough samples are
available and it crosses the zero line and is positive. This behaviour is not a sign
of bias (note that [14] shows the asymptotic unbiasedness of their estimator).

B Considering Discretisation

B.1 The Impact of Discretisation

The convergence guarantee for the eHI towards the MI requires the assumption
that the traces are discrete (but typically they are not). Discretisation divides the
range of a continuous random variableX into possibly an infinite or finite number
of intervals. Drawing on Darbellay and Vajda’s results [11, cf. Proposition 1],
we now provide a concrete mathematical characterisation for the MI between a
discrete and a discretised continuous random variable.

Darbellay and Vajda [11] consider two (continuous) random variables X,Y
and the use of a simple partitioning of the space X×Y into rectangles. Typically,
such a partitioning P is a product partitioning i.e. P = I × J where I and J
are partitioning of X and Y respectively 13. We denote the discretised random
variables obtained from such partitioning as XI , Y J .

We can now show that the MI which is based on the discretised leakage is
smaller or equal to the MI based on the non-discretised leakage. This implies that
an evaluator who discretises traces for the estimation of mutual information will
underestimate the strength of an adversary who works with the non-discretised
traces.

Proposition 1. Let X,Y be two random variables with pmf pX and pdf fY
respectively. Let P = I×J be the product partitioning of X×Y as described above
(the partitioning I is defined by the discrete X). Then I(X;Y ) ≥ I(XI ;Y J ).

Proof. We assume that the joint distribution exists. As explained by Darbellay
and Vajda [11, Section II], for the product partition P we can write that

I(X;Y ) = I(XI ;Y J ) +DP(X;Y )

where DP(X;Y ) is the residual divergence, see [11, cf. Proposition 1] for the
definition.

From their argument, we observe that the residual divergence DP(X;Y ) ≥ 0
for any partition P(including the specific partition that is given by a discrete
X). Thus, the result follows. ⊓⊔
13 In the side channel community, a similar method is often implemented by partitioning

the leakage into a countably finite number of intervals, which then define the bins for
histogram based estimation techniques—this is also the method used by Bronchain
et al.[6] for the eHI.
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(a) L: linear, R ∼ N (0, 10) (b) L: non-linear, R ∼ N (0, 4)

In
GKOV((X,K);T ): , In

GKOV((X,K); [T ]): , I((X,K);T ): , eHI:

Fig. 8: The impact of discretisation on the MI and its estimation via the eHI.

Proposition 2 of Darbellay and Vajda [11, Section II] goes on to develop that the
residual divergence converges to zero asymptotically for increasingly finer prod-
uct partitions. Consequently, in practice when we set the number of partitions
to finite, the residual divergence is strictly larger than zero, and thus we always
lose information upon discretisation:

I(X;T ) > I(X; [T ]) = lim
n→∞

E[eHIn(X; [T ])] (12)

In the next section, we provide practical experiments that show the effect of
Prop. 1 in action. Proposition 1 also implies that the eHI is not necessarily an
upper bound to the MI in the context of any arbitrary continuous traces (it also
depends on the bias that it has, which is different in different settings).

B.2 Practical Demonstration

Before moving away from simulations, we briefly demonstrate the information
loss that is incurred by the discretisation of traces.

We simulate traces with Gaussian noise and a linear leakage function, as well
as a non-linear leakage function, applied to an intermediate value resulting from
the SubBytes function. Because all distributions are known, we can compute the
MI theoretically.

Figure 8a shows what happens when we use GKOV to estimate the mu-
tual information In((X,K);T ) and In((X,K); [T ]). The theoretical MI value for
I((X,K);T ) is also provided. We can clearly observe that the mutual informa-
tion estimate for the discretised traces is considerably lower than the estimate
that uses the traces “as they are”.

Figure 8b shows a plot that includes the eHI: because it approaches the true
value from above, and since it is biased, it remains, in this case, an upper bound
for the true MI.
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C Proof of Lemma 1

Result 1. The PI between the three variables Y, [M ], [T ], and all distributions
defined for all y ∈ Y, can be written as:

PI(Y ; [T ]; [M ]) = I(Y ; [T ])− E[DKL((Y |t, T )||(Y |t,M))]

Proof. From Eq. 6 (see Page 10), we have

PI(Y ; [T ]; [M ]) = H(Y ) +
∑
y∈Y

pY (y) ·
∑
t∈[T ]

p(Y,[T ])(t|y) log2 p(Y,[M ])(y|t)

We substitute p(Y,[M ])(y|t) = p(Y,[M ])(y|t)
p(Y,[T ])(y|t)
p(Y,[T ])(y|t)

and finally can write:

= H(Y ) +
∑
y∈Y

pY (y) ·
∑
t∈[T ]

p(Y,[T ])(t|y) log2
(
p(Y,[M ])(y|t)

p(Y,[T ])(y|t)
p(Y,[T ])(y|t)

)

= H(Y ) +
∑
y∈Y

pY (y) ·
∑
t∈[T ]

p(Y,[T ])(t|y)
(
log2 p(Y,[T ])(y|t) + log2

p(Y,[M ])(y|t)
p(Y,[T ])(y|t)

)
= H(Y ) +

∑
y∈Y

pY (y) ·
∑
t∈[T ]

p(Y,[T ])(t|y) log2 p(Y,[T ])(y|t)

+
∑
t∈[T ]

p[T ](t) ·
∑
y∈Y

p(Y,[T ])(y|t) log2
p(Y,[M ])(y|t)
p(Y,[T ])(y|t)

= I(Y ; [T ])− E[DKL((Y |t, [T ])||(Y |t, [M ]))]

⊓⊔

D Relating Ib to Ik

D.1 Equality of Ib and Ik when L is discrete

Characterising the conditional distributions. We first study the condi-
tional distribution of T |Z. It is easy to see that this conditional distribution is
completely defined by the distribution of R:

FT |Z(t|z) = P (T ≤ t|Z = z)

= P (Z +R ≤ t|Z = z)

= P (z +R ≤ t) (as, Z is independent of R)

= FR(t− z) ∀t ∈ R (13)

Consequently, the pdf fT |Z of the conditional variable T |Z is given by the
pdf of R.
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We now consider the conditional distribution of T |(X,K) when L is deter-
ministic (i.e. depends only on X,K and the cryptographic function C).

FT |(X,K)(t|(x, k)) = P (T ≤ t|(X,K) = (x, k))

= P (L ◦ C(X,K) +R ≤ t|(X,K) = (x, k))

= FR(t− L ◦ C(x, k)) ∀t ∈ R (14)

It follows again that the pdf of T |(X,K) is given by the pdf of R. This observa-
tion has been formalised before [20, Corollary 3.]. Note that, by using the same
technique as above it is also obvious that when L is discrete and probabilistic,

FT |(X,K,S)(t|(x, k, s)) = FR(t− L(s, C(x, k))) ∀t ∈ R (15)

Now, with these properties of conditional distributions, we show that Ib is equal
to Ik for both cases when L is deterministic and probabilistic, respectively.

Proposition 2. If L is discrete and T = L ◦ C(X,K) + R, then for any well-
defined 14 function C(·), the following equality will hold

Ib = I(T ;Z) = I(T ; (X,K)) = Ik

Proof. We recall that Z = L ◦ C(X,K), and suppose it has m realisations. It is
clear that the probability of Z = zi is given by the number of pairs (x, k) that
map to zi. Thus, we have

pZ(zi) = P (Z = zi) = P{(X,K) = (x, k) : L(C(x, k)) = zi}

=
∑
(x,k):

L(C(x,k))=zi

p(X,K)(x, k) for i = 1, 2, ..,m (16)

14 An assignment of values y to elements x ∈ X is said to be a well-defined function
f : X → Y if it satisfies the following three properties:

– Totality: For every x ∈ X , ∃ y such that f(x) = y.

– Existence: For every x ∈ X , f(x) ∈ Y.

– Uniqueness: For every x ∈ X , there is only y ∈ Y such that f(x) = y.
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(Here, every pair (x, k) maps to exactly one zi, because C is well defined). We
use this observation to rewrite Ib :

Ik = I(T ; (X,K))

= H(T )−
∑

(x,k)∈(X×K)

p(X,K)(x, k)ET |(x,k)
[
− log2(fT |(X,K)(t|(x, k)))

]
Eq.(14)
= H(T )−

m∑
i=1

∑
(x,k):

L(C(x,k))=zi

p(X,K)(x, k)ER [− log2(fR(t− L ◦ C(x, k)))]

Eq.(16)
= H(T )−

m∑
i=1

pZ(zi)ER [− log2(fR(t− zi))]

Eq.(13)
= H(T )−

m∑
i=1

pZ(zi)ET |zi
[
− log2(fT |Z(t|zi))

]
= Ib⊓⊔

Proposition 3. Suppose, R follows a distribution with the location and scaling
parameters µ and σ (> 0) respectively. Let X,K denote the discrete plaintext
and uniformly drawn discrete key (both are independently distributed), and the
leakage function L is discrete such that T = L(S,C(X,K))+R. If, the differential
entropy of R is independent of location shift15 (i.e., H(R) = ϕ(σ), where ϕ
depends only on the pdf fR), then the following equality holds:

Ib = I(T ;Z) = I(T ; (X,K, S)) = Ik

Proof. First, we compute Ib:

Ib = I(T ;Z) = H(T )−H(T |Z)

= H(T )−
∑
z∈Z

pZ(z)ET |z
[
− log2(fT |Z(t|z))

]
Eq.(13)
= H(T )−

∑
z∈Z

pZ(z)ER [− log2(fR(t− z))]

Second, we derive Ik:

Ik = I(T ; (X,K, S))

= H(T )−
∑
x,k,s

p(X,K,S)(x, k, s)H(T |(x, k, s))

= H(T )−
∑
x,k,s

p(X,K,S)(x, k, s)ET |(x,k,s)
[
− log2(fT |(X,K,S)(t|(x, k, s)))

]
Eq.(15)
= H(T )−

∑
x,k,s

p(X,K,S)(x, k, s)ER [− log2(fR(t− L(s, C(x, k)))]

15 An illustration of location independent entropy:
Suppose, X1,X2 follow univariate normal distribution with different means µ1 and
µ2, respectively but have same variance σ2. Then, H(X1) = H(X2) =

1
2
log2(2πeσ

2)

29



Clearly, we already know from the entropy condition that H(R) = ϕ(σ), when
R ∼ fR(t − z) or when R ∼ fR(t − L(s, C(x, k))). Hence, we can say that
ER [− log2(fR(t− z))] is equal to ER [− log2(fR(t− L(s, C(x, k))))], which im-
plies Ib = Ik. ⊓⊔

D.2 Equality of Ib and Ik when L is Continuous

Characterising the conditional distributions. The continuity of L is due
to some randomness of the continuous variable S that depends on X,K and
the target function C but importantly we still have the independence between
Z = L(Y ) and R. To derive the distribution of T |Z and later T |(x, k, s), we need
a little bit more machinery than before because L is continuous. This scenario
was not covered by Heuser et al. [20, Corollary 3.].

Given their joint distribution, the distribution of a function of two random
variables can be derived by a technique that is known as “change of variables”[37].
The trick works as follows, given two variables (X1, X2) and two functions
u1 and u2 such that Y1 = u1(X1, X2) and Y2 = u2(X1, X2), with inverses
X1 = v1(Y1, Y2) and X2 = v2(Y1, Y2); the joint pdf of (Y1, Y2) is given by
f(Y1,Y2)(y1, y2) = |J | · f(X1,X2)(x1, x2)

∣∣
{x1=v1(y1,y2),x2=v2(y1,y2)}

. The value |J |

is the absolute value of the Jacobian J =
∣∣∣∂(x1,x2)
∂(y1,y2)

∣∣∣ = ∣∣∣∣∣
∂(x1)
∂(y1)

∂(x1)
∂(y2)

∂(x2)
∂(y1)

∂(x2)
∂(y2)

∣∣∣∣∣. Knowledge

of the joint distribution (Y1, Y2) enables to derive the distributions of Y1 (and
Y2 respectively) by marginalisation.

We first derive the distribution of T |Z. Hence we apply the change of variables
technique to derive the distribution of T = Z + R, Z, and choose Y1 = Z + R,
Y2 = Z. Hence |J | = 1, and this gives

fT,Z(t, z) = 1 · fR,Z(t− z, z) = 1 · fZ(z) · fR(t− z) = fZ(z) · fR(t− z)

⇒ fT |Z(t, z) =
fT,Z(t, z)

fZ(z)
=
fZ(z) · fR(t− z)

fZ(z)
= fR(t− z) (17)

Using the same trick, we can also derive the pdf of T |(x, k, s), which will
give us fR(t− L(s, C(x, k))). To achieve this, we have to consider the following
change of variables for each pair (x, k) ∈ (X ,K):

(R,S) → (T, S) : T = L(S,C(x, k)) +R

And the Jacobian of the transformation J = 1

| ∂(t,s)
∂(r,s) |

= 1 under the condition

that the mapping L : S → L(S,C(x, k)) is one-to-one, which is a criterion for

the existence of the partial derivative ∂(t)
∂(s) (for details see [37]).

Using this property of conditional distribution we now proof the equality
between Ib and Ik exactly as same as we did in Proposition 3.

Proposition 4. Suppose, R follows a distribution with the location and scaling
parameters µ and σ (> 0) respectively. Let X,K denote the discrete plaintext
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and uniformly drawn discrete key (both are independently distributed), and the
leakage function L is continuous such that T = L(S,C(X,K)) + R. If, the dif-
ferential entropy of R is independent of location shift (i.e., H(R) = ϕ(σ), where
ϕ depends only on the pdf fR), then the following equality holds:

Ib = I(T ;Z) = I(T ; (X,K, S)) = Ik

Proof. We prove this proposition simply by using the characterisation of con-
ditional distribution (discussed in Section D.2 on Page 30) in exactly the same
way as in Proposition 3. We start with the derivation of Ib:

Ib = I(T ;Z) = H(T )−H(T |Z)

= H(T )−
∫
z

fZ(z)H(T |z)dz

= H(T )−
∫
z

fZ(z)ET |z
[
− log2(fT |Z(t|z))

]
dz

= H(T )−
∫
z

fZ(z)ER [− log2(fR(t− z))] dz

We now derive Ik as in the following:

Ik = I(T ; (X,K, S))

= H(T )−
∑
x,k

∫
s

f(X,K,S)(x, k, s)H(T |x, k, s)ds

= H(T )−
∑
x,k

∫
s

f(X,K,S)(x, k, s)ET |(x,k,s)
[
− log2(fT |(X,K,S)(t|x, k, s))

]
ds

= H(T )−
∑
x,k

∫
s

f(X,K,S)(x, k, s)ER [− log2(fR(t− L(s, C(x, k))))] ds

Based on the entropy criteria of R it is known that H(R) = ϕ(σ) irrespective of
whether R ∼ fR(t− z) or R ∼ fR(t− L(s, C(x, k))). Therefore, we have

ER [− log2(fR(t− z))] = ϕ(σ) = ER [− log2(fR(t− L(s, C(x, k))))]

=⇒ Ib = H(T )− ϕ(σ) = Ik

⊓⊔
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