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Abstract. Cube attacks exploit the algebraic properties of symmetric
ciphers by recovering a special polynomial, the superpoly, and subse-
quently the secret key. When the algebraic normal forms of the corre-
sponding Boolean functions are not available, the division property based
approach allows to recover the exact superpoly in a clever way. However,
the computational cost to recover the superpoly becomes prohibitive as
the number of rounds of the cipher increases. For example, the nested
monomial predictions (NMP) proposed at ASIACRYPT 2021 stuck at
round 845 for Trivium. To alleviate the bottleneck of the NMP tech-
nique, i.e., the unsolvable model due to the excessive number of mono-
mial trails, we shift our focus to the so-called valuable terms of a specific
middle round that contribute to the superpoly. Two new techniques are
introduced, namely, Non-zero Bit-based Division Property (NBDP) and
Core Monomial Prediction (CMP), both of which result in a simpler
MILP model compared to the MILP model of MP. It can be shown that
the CMP technique offers a substantial improvement over the monomial
prediction technique in terms of computational complexity of recovering
valuable terms. Combining the divide-and-conquer strategy with these
two new techniques, we catch the valuable terms more effectively and
thus avoid wasting computational resources on intermediate terms con-
tributing nothing to the superpoly. As an illustration of the power of
our techniques, we apply our framework to Trivium, Grain-128AEAD,
Kreyvium and Acorn. As a result, the computational cost of earlier at-
tacks can be significantly reduced and the exact ANFs of the superpolies
for 846-, 847- and 848-round Trivium, 192-round Grain-128AEAD, 895-
round Kreyvium and 776-round Acorn can be recovered in practical
time, even though the superpoly of 848-round Trivium contains over
500 million terms; this corresponds to respectively 3, 1, 1 and 1 rounds
more than the previous best results. Moreover, by investigating the in-
ternal properties of Möbius transformation, we show how to perform key
recovery using superpolies involving full key bits, which leads to the best
key recovery attacks on the targeted ciphers.
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1 Introduction

The cube attack, proposed by Dinur and Shamir at EUROCRYPT 2009 [9], is
one of the most powerful cryptanalytic techniques against symmetric ciphers.
Typically, any output bit of a cipher can be regarded as a polynomial of the
public input x = (x0, x1, . . . , xn−1) and the secret input k = (k0, k1, . . . , km−1),
denoted by f(x,k). For a chosen term xu =

∏
ui=1 xi,u,x ∈ Fn

2 , f(x,k) can be
uniquely expressed as

f(x,k) = p(x[ū],k) · xu + q(x,k) ,

where p(x[ū],k) is a Boolean function of k, x[ū] = {xi : ui = 0} and each term in
q(x,k) misses at least one variable from {xi : ui = 1}. The polynomial p(x[ū],k)
is called the superpoly of the cube term xu. After assigning a static value to k
and x[ū], the value of p(x[ū],k) can be computed by summing f(x,k) over a
structure called cube, denoted as Cu, composed of all possible 0/1 combinations
of {xi : ui = 1}.

To mount a cube attack, one first recovers the superpoly in an offline phase.
Then, the value of the superpoly is obtained by querying the encryption oracle
and computing the summation. From the equation between the superpoly and
its value, information of the secret key can be revealed. Therefore, the superpoly
recovery is a central step in the cube attack.

Traditional cube attacks [9,20,10,36] regard ciphers as black boxes so the su-
perpolies are recovered experimentally. Only linear or quadratic superpolies are
applicable. In [25], Todo et al. introduced cube attacks based on the Conven-
tional Bit-based Division Property (CBDP). New methods based on CBDP [27]
were proposed to efficiently identify secret variables that are not involved in the
superpoly. After removing these uninvolved key bits and collecting the remain-
ing key bits into a set J , the truth table of the superpoly can be recovered with
time complexity 2|I|+|J|, where the set I = {i : ui = 1} is called cube indices.
In [29], Wang et al. improved the precision of CBDP by considering cancellation
characteristics of constant 1 bits, thus further lowering the complexity.

Exact superpoly recovery. Although the CBDP never produces a false posi-
tive error [17], it cannot accurately predict the existence of a monomial in the su-
perpoly. A substantial amount of works have been carried out to get around this
point. At Asiacrypt 2019, Wang et al. [30] managed to recover the exact super-
poly for the first time with the pruning technique combined with the three-subset
bit-based division property. However, the value of this technique is limited as it
requires the assumption that almost all elements in the so-called 1-subset can
be pruned. In [31], Ye and Tian introduced the recursively-expressing method,
which recursively splits the output bits into intermediate terms of smaller rounds
and filters out these useless terms that contribute nothing to the superpoly. As
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a result, several superpolies recovered in [29] are proved to degenerate to con-
stants. In [12,13], Hao et al. proposed the three-subset division property without
unknown subsets (3SDPwoU) to recover the exact superpolies from the perspec-
tive of counting the number of three-subset trails. In [17], Hu et al. established
the equivalence between monomial prediction and 3SDPwoU from the viewpoint
of monomial propagations. In [37], Ye and Tian also developed a pure algebraic
method to recover the exact superpoly. However, as the number of rounds of the
cipher increases, such useful cubes are hard to find. Last year, Hu el al. embed-
ded the monomial prediction technique into a nested framework, which allows
them to recover massive superpolies [16] that contain almost 20 million terms.
Nested monomial predictions. In terms of structure, the nested monomial
prediction [16] consists of two components, namely the coefficient solver and
the term expander. Given a cube term xu, the coefficient solver is designed to
compute the superpoly of xu for a term of the current round, and the term ex-
pander is responsible for expressing unsolved terms as terms of a deeper round.
At first, from top to bottom, the target output bit is expressed as a polynomial
of the state bits of an intermediate round, then by iteratively calling the coeffi-
cient solver and expanding unsolved terms into terms of deeper rounds, the final
superpoly can be recovered.

As mentioned, the cube attack is one of the powerful tools to evaluate the
security of stream ciphers. It is important to explore its limits by recovering su-
perpolies for as many rounds as possible. While the nested monomial predictions
is efficient for massive superpolies (e.g., it can recover a superpoly for 845-round
Trivium that contains 19,967,968 terms), it has been stuck at 845 rounds of
Trivium. In order to recover superpolies for more rounds, novel techniques are
required.

Contributions. This paper provides new efficient methods to recover super-
polies for more initialization rounds of stream ciphers such as Trivium [6],
Grain-128AEAD [15], Kreyvium [7] and the authenticated encryption algorithm
Acorn [32].

Recall that the framework of nested monomial predictions consists of two
components, i.e., the coefficient solver and the term expander; we design two
algorithms to greatly improve the efficiency of both of them.

– Two-step strategy for the coefficient solver. Unlike the monomial prediction,
our coefficient solver takes two steps to compute the superpoly. During the
first stage, the intermediate monomials related to the superpoly are deter-
mined utilizing a new technique called core monomial prediction. Next, by
applying the monomial prediction to these intermediate monomials and col-
lecting the results, the final superpoly can be recovered quickly.

– Fast-descent algorithm for the term expander. Instead of expressing the cur-
rent terms as a polynomial of indistinguishable terms of a deeper round and
then testing them one by one, our term expander uses Gurobi’s callback
function to automatically filter out the useless terms internally during each
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Table 1: Verification and comparison of superpolies for 843-, 844- and 845-round
Trivium† from [16].

I Round Status TimeCost([16]) TimeCost(ours)

I0 843 Verified(✓)

Less than
2 weeks

2 hours

I1 843 Verified(✓) 4 hours

I2 843 Verified(✓) 1 hour

I3 843 Verified(✓) 1.5 hours

I4 843 Verified(✓) 1 day and 17 hours

I2 844 Verified(✓) 17 hours 5 hours

I3 844 Verified(✓) 6 hours 2.5 hours

I2 845 Verified(✓) about 16 days 19.5 hours

I3 845 Verified(✓) 4 days and 9 hours 8.5 hours

†: The time consumption of the superpoly recovery of 843-, 844-round Trivium
is stated as ‘less than two weeks’ in [16]. The concrete time cost for 844- and
845-round Trivium was obtained by rerunning the code provided by [16] on our
platform.

expansion, which makes the number of rounds drop faster and reduces the
time spent on useless terms.

Our new framework offers substantial efficiency improvements in recovering
superpolies compared to the nested monomial prediction. We verified superpolies
for Trivium recovered in [16]. As a result, our framework allows to recover
superpolies in a few hours rather than in weeks. The comparison is illustrated
in Table 1.

More importantly, our framework is able to recover superpolies for more
initialization rounds of high profile symmetric-key ciphers including Trivium
(ISO/IEC standard [6,3]), Grain-128AEAD (a member of the ten finalist candi-
dates of the NIST LWC standardization process [15]), Kreyvium (designed for
Fully Homomorphic Encryption [7]) and Acorn (a member of the final portfolio
of the CAESAR competition for Lightweight applications [32]). For Trivium,
we are the first to obtain superpolies for up to 848-round Trivium. We also
recovered the superpolies of 192-round Grain-128AEAD, 895-round Kreyvium
and 776-round Acorn, all penetrating one more round than the previous best
results. By investigating the internal properties of Möbius transformation, we
propose a novel method to perform key recovery inside Möbius transformation.
The summary of our cube attack results and the previous best results are pro-
vided in Table 2.

All source codes for recovering the superpolies in this paper are provided in
the anonymous git repository https://github.com/viocently/ekignrb9lc.
git.
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Table 2: Summary of our cube attack results and the previous best re-
sults. #Cube means the number of cubes whose superpolies are recov-
ered.
Cipher Rounds #Cube Cube size Time complexity Attack types Reference

Trivium

≤ 806 - - Practical key recovery [9,20,10,38,23]

808 37 39-41 Practical key recovery [23]

≤ 844 - - 275 ∼ 279.6 key recovery [23,16,17,12,13,19]
[26,39,30,38,36,10]

845 2 54-55 278 key recovery [16]
846 6 51-54 279 key recovery Section 6.1
847 2 52-53 279 key recovery Section 6.1
848 1 52 279 key recovery Section 6.1

Grain‡

169 - - Practical Condit. Diff. [18]

- - - Practical State recovery [8]

≤ 190 - - 2123 ∼ 2129 key recovery [25,26,29,12,13]

191 2 95-96 2127 key recovery [16]
192 1 94 2127 key recovery Section 6.2

Kreyvium
≤ 893 - - 2119 ∼ 2127 key recovery [26,29,12,13,11,23]

894 1 119 2127 key recovery [16]
895 1 120 2127 key recovery Section 6.3

Acorn

≤ 774 - - 2127 key recovery [26,12,11,29]

775 6 127 2127 distinguisher [35]
775 5 126 2126 distinguisher [34]
775 1 126 2127 key recovery [34]
776 2 126 2127 key recovery Section 6.4

‡: Grain-128a or Grain-128AEAD.

2 Division Property and Monomial Prediction

2.1 Notations and Definitions

We use bold italic lowercase letters to represent bit vectors. For an n-bit vector
u = (u0, · · · , un−1) ∈ Fn

2 , its complementary vector is denoted by ū, where
ui ⊕ ūi = 1 for 0 ≤ i < n. The Hamming weight of u is wt(u) = |{i : ui = 1}|.
The concatenation of u0 and u1 is denoted by u0||u1. For u,x ∈ Fn

2 , x[u] denotes
a sub-vector of x with respect to u as x[u] = (xi0 , xi1 , . . . , xiwt(u)−1

) ∈ Fwt(u)
2 ,

where ij ∈ {0 ≤ i ≤ n − 1 : ui = 1} and (i0, . . . , iwt(u)−1) is arranged from the
least to the greatest. For any n-bit vectors u and u′, we define u ⪰ u′ if ui ≥ u′i
for all i. Similarly, we define u ⪯ u′ if ui ≤ u′i for all i. Bold italic lowercase
letters with superscript are used to represent the bitvector in a certain round.
Particularly, u(i) represents a bitvector in round i. We use 0n or 1n to represent
an all-zeros or all-ones vector of length n.

5



Blackboard bold uppercase letters (e.g. S,K,U, . . .) are used to represent sets
of bit vectors. In the propagation of some algebraic properties such as CBDP,
the set generated in the i-th round is denoted as S(i).

Boolean Function. Let f : Fn
2 → F2 be a Boolean function whose algebraic

normal form (ANF) is

f(x) = f(x0, x1, . . . , xn−1) =
⊕
u∈Fn

2

au

n−1∏
i=0

xui
i ,

where au ∈ F2, and

xu = πu(x) =

n−1∏
i=0

xui
i with xui

i =

{
xi, if ui = 1 ,

1, if ui = 0 ,

is called a monomial. If the coefficient of xu in f is 1, i.e., xu is contained by f ,
then we denote it by xu → f . Otherwise, we denote the absence of xu in f by
xu ↛ f . In this work, we will use xu and πu(x) interchangeably to avoid using

the awkward notation x(i)u
(j)

when both x and u have superscripts.

Vectorial Boolean Function. Let f : Fm
2 → Fn

2 be a vectorial Boolean func-
tion with y = (y0, y1, . . . , ym−1) = f(x) = (f0(x), f1(x), . . . , fn−1(x)). For
v ∈ Fn

2 , we use yv to denote the product of some coordinates of y:

yv =

m−1∏
i=0

yvii =

m−1∏
i=0

(fi(x))
vi ,

which is a Boolean function in x.

2.2 Conventional Bit-based Division Property

The word-based division property [24] was proposed by Todo originally as a
generalization of integral attack. Subsequently, by shifting the propagation of
the division property to the bit level, Todo and Morii [27] introduced the bit-
based division property (CBDP).

Definition 1 (Conventional bit-based division property (CBDP) [27]).
Let X be a multiset whose elements take a value of Fm

2 and k ∈ Fm
2 . When the

multiset has the division property D1m

K , the following conditions are fulfilled:

⊕
x∈X

xu =

{
unknown, if there exists k ∈ K s.t. u ⪰ k,

0, otherwise.

In [33], Xiang et al. introduced the mixed integer linear programming (MILP)
method to search for integral distinguishers of block ciphers based on CBDP.
They first introduced the division trail as follows.
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Definition 2 (Division Trail of CBDP [33]). Let DK(i) be the division prop-
erty of the input for the ith round function. Consider the propagation of the
division property {k} = K(0) → K(1) → K(2) → · · · → K(r). For any bitvec-
tor k(i+1) ∈ K(i+1), there must exist a bitvector k(i) ∈ K(i+1) such that k(i)

can propagate to k(i+1) by the propagation rules of CBDP. Furthermore, for
(k(0),k(1), ...,k(r)) ∈ (K(0)×K(1)×· · ·×K(r)), we call (k(0) → k(1) → · · · → k(r))

an r-round division trial if k(i) can propagate to k(i+1) for all i ∈ {0, 1, · · · , r−1}.

For a stream cipher, three fundamental operations, i.e., COPY, AND, and XOR
are sufficient to cover all division trails. Xiang et al. showed how to model these
three operations by inequalities. We present their MILP models in Sup.Mat. B.

In our work, we use k(0) Kf
⇝ k(r) to denote the existence of at least one division

trail from k(0) to k(r) through the function f . The set of all division trails from

k(0) to k(r) is denoted as k(0) Kf

1 k(r), whose size is denoted by |k(0) Kf

1 k(r)|.
When f is not explicitly given or can be inferred from the context, we use
k(0) K
⇝ k(r) and k(0) K

1 k(r) for simplicity.

2.3 Monomial Prediction

Let f : Fn0
2 → Fnr

2 be a composite vectorial Boolean function built by composi-
tion from a sequence of vectorial Boolean functions f (i) : Fni

2 → Fni+1

2 , 0 ≤ i ≤
r − 1 whose ANFs are known, i.e.,

f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0). (1)

Let x(i) ∈ Fni
2 and x(i+1) ∈ Fni+1

2 be the input and output variables of f (i)

respectively. We call an i-round monomial πu(i)(x(i)) (1 ≤ i ≤ r − 1) an in-
termediate monomial or an intermediate term1. Starting from a monomial of
x(0), say πu(0)(x(0)), all monomials of x(1) satisfying πu(0)(x(0)) → πu(1)(x(1))
can be derived; for every such πu(1)(x(1)), we then find all πu(2)(x(2)) satisfying
πu(1)(x(1)) → πu(2)(x(2)); such forward expansions continue until we arrive at
the monomials of x(r). Each transition from πu(0)(x(0)) to πu(r)(x(r)) denoted
by

πu(0)(x(0))→ πu(1)(x(1))→ · · · → πu(r)(x(r)).

is called a monomial trail [17], denoted by πu(0)(x(0))⇝ πu(r)(x(r)), which is also
used to indicate the existence of at least one monomial trail from πu(0)(x(0)) to
πu(r)(x(r)). All the trails from πu(0)(x(0)) to πu(r)(x(r)) are denoted by πu(0)(x(0))
1 πu(r)(x(r)), which is the set of all trails. Whether πu(0)(x(0))→ πu(r)(x(r)) is
determined by the size of πu(0)(x(0)) 1 πu(r)(x(r)), represented as |πu(0)(x(0)) 1
πu(r)(x(r))|. If there is no trail from πu(0)(x(0)) to πu(r)(x(r)), we say πu(0)(x(0)) ̸⇝
πu(r)(x(r)) and accordingly |πu(0)(x(0)) 1 πu(r)(x(r))| = 0.

1 In this paper, ‘monomial’ and ‘term’ have the same meaning.
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Theorem 1 (Integrated from [12,13,14,17]). Let f = f (r−1) ◦f (r−2) ◦ · · · ◦
f (0) defined as above. πu(0)(x(0))→ πu(r)(x(r)) if and only if

|πu(0)(x(0)) 1 πu(r)(x(r))| ≡ 1 (mod 2).

Propagation Rules of the Monomial Prediction. Each symmetric cipher
can be decomposed into a sequence of the basic operations XOR, AND and
COPY, hence it is sufficient to give propagation rules of the monomial prediction
for these basic operations. To model the propagation of the monomial prediction
for a vectorial Boolean function, a common method is to list all the possible
(input, output) tuples according to the definition of the monomial prediction [17].
These tuples can be transformed into a set of linear inequalities [22,21,5], which
are suitable for MILP modeling. The concrete propagation rules and models of
the monomial prediction are provided in Sup.Mat. B.
Gurobi’s PoolSearchMode and Callback Functions. In our work, we choose
the Gurobi solver [1] as our MILP tool. Since our coefficient solver follows the
idea of counting propagation trails similar to [12,13,17], we turn on Gurobi’s
PoolSearchMode with M.PoolSearchMode← 1 to extract all possible solutions
of a model. By adding a lazy constraint to the MILP model from within a
callback function, Gurobi allows users to cut off a feasible solution during the
search. We useM.LazyConstraints← 1 to turn on lazy constraints. For more on
Gurobi’s callback functions and PoolSearchMode, readers are requested to refer
to the Gurobi manual [2]. We would like to mention that the callback function
is also used in the code provided by [12,13].

2.4 Cube Attack

In the context of the cube attack, the output bit of a symmetric cipher is typically
regarded as a parameterized Boolean function f : Fn+m

2 → F2 whose inputs are
the public variables x ∈ Fn

2 and the secret ones k ∈ Fm
2 . For a constant bitvector

u ∈ Fn
2 indexed by I = {0 ≤ i ≤ n− 1 : ui = 1} ⊆ {0, 1, . . . , n− 1}, the ANF of

f(x,k) can be uniquely represented as

f(x,k) = p(x[ū],k) · xu + q(x,k),

where each term of q(x,k) misses at least one variable from {xi : ui = 1}.
xu is called a cube term, and Cu (or CI) is called a cube, which is the set
{x ∈ Fn

2 : x ⪯ u}. The sum of f over all values of the cube Cu is⊕
x∈Cu

f(x,k) =
⊕
x∈Cu

(p(x[ū],k) · xu ⊕ q(x,k)) = p(x[ū],k),

which is exactly the coefficient of xu in f(x,k), denoted by Coe (f(x,k),xu) in
our work. If we assign a fixed value to x[ū], then Coe (f(x,k),xu) becomes a
Boolean function of k.
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As mentioned, the superpoly recovery is of significant importance in the
cube attack. If the recovered superpoly is constant 0 or 1, we actually find a
distinguisher for the cipher. If the superpoly is a Boolean function of k, then key
bits can be extracted. In particular, a balanced superpoly always contains one
bit of information on average. The remaining key bits can be recovered through
exhaustive search.

2.5 Superpoly Recovery with the Monomial Prediction/3SDPwoU

To the best of our knowledge, monomial prediction/3DSPwoU [17,12,13] can
reach the perfect accuracy in determining the existence of a certain monomial
in f . To recover the superpoly of a cube term xu with the monomial predic-
tion/3DSPwoU, the initial state variables of the MILP model are divided into
three parts: the public input (plaintext, IV or tweak), the secret input (the key
bits) and the constant input.

The public input variables are constrained to be equal to u. The secret input
variables are left as free variables without any constraints. For the constant 0
bits, we constrain the corresponding MILP variables to 0, while for the constant 1
bits, we let their variables be free. We then model the propagation of monomial
trails to f . Each solution of the model is a valid monomial trail of the form
kwxu ⇝ f . By collecting monomials kwxu occurring an odd number of times
in all solutions and adding them, we can obtain the superpoly of xu as

Coe (f,xu) =
⊕

|kwxu1f |≡1 (mod 2)

kw.

In [17], Hu et al. observed that for the composite function f , where

f = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0),

if πu(0)(x(0))⇝ f , then for 0 < i < r,

|πu(0)(x(0)) 1 f | ≡
∑

π
u(r−i) (x(r−i))→f

∣∣∣πu(0)(x(0)) 1 πu(r−i)(x(r−i))
∣∣∣ (mod 2).

Instead of computing |πu(0)(x(0)) 1 f | for a large r, we can compute |πu(0)(x(0)) 1
πu(r−i)(x(r−i))| for all πu(r−i)(x(r−i)) satisfying πu(r−i)(x(r−i))→ f with a lower
computational difficulty. In practice, such a divide-and-conquer strategy resulted
in a significant speed-up of the search.

3 Nested Monomial Predictions (NMP)

At Asiacrypt 2021, Hu et al. proposed a nested framework, called Nested Mono-
mial Predictions, to recover the superpoly of Trivium up to 845 rounds. In
this section, we briefly introduce the workflow of this framework and divide the
structure of this framework into two parts, namely the coefficient solver and the
term expander.
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3.1 The Workflow

Given a parameterized Boolean function which consists of a sequence of simple
vectorial Boolean functions as

f(x,k) = f (r−1) ◦ f (r−2) ◦ · · · ◦ f (0)(x,k),

let the output of f (i) be s(i+1). Assume we want to compute Coe (f,xu). The
nested monomial predictions works as follows:

1. Initialize a variable rl = r and a set S(rl)u = {f}.
2. Choose rn such that 0 < rn < rl according to some criterion.
3. Express each term in S(rl)u as a polynomial of s(rn) using the monomial

prediction technique and save the terms of this polynomial in a multiset
T(rn).

4. Count the number of occurrences for each element in T(rn) and add the
elements occurring an odd number of times to a set S(rn).

5. For each term πt(rn)(s(rn)) ∈ S(rn), construct a MILP model of the monomial
prediction and invoke Gurobi to solve it. If the model has solutions and
is successfully solved, then this term is partitioned into S(rn)p and we can
compute Coe

(
πt(rn)(s(rn)),xu

)
, which is collected as a part of Coe (f,xu);

if the model has no solutions, then this term is partitioned into S(rn)0 and
discarded; if the model isn’t solved in limited time, we partition this term
into the set S(rn)u .

6. If the set S(rn)u is not empty, we update the variable rl = rn and regard
the set S(rn)u as S(rl)u , then jump to step 2. Otherwise we have successfully
compute Coe (f,xu).

In step 2 of NMP, rn is chosen as the round that makes the size of T(rn) larger
than N for the first time, where N can take the value 10 000 or 100 000. Interested
readers can refer to [16] for more details.

3.2 The Structure of the Nested Monomial Prediction

In terms of the structure, the nested monomial prediction consists of two com-
ponents. In Sect. 3.1, step 3 and 4 are responsible for expanding terms in S(rl)u

into terms of a deeper round rn represented by S(rn), while the step 5 attempts
to compute Coe

(
πt(rn)(s(rn)),xu

)
for each term πt(rn)(s(rn)) in S(rn). This leads

to the following two concepts.

Term Expander. For an algorithm H of a specific cryptographic algorithm X, if
given the last round rl, the set S(rl)u containing terms of round rl, the next round
rn and other auxiliary parameters as input, the algorithm H can always output
all πt(rn)(s(rn))s satisfying

∑
π
t(rl)

(s(rl))∈S(rl)u
|πt(rn)(s(rn)) 1 πt(rl)(s

(rl))| ≡ 1

(mod 2), then we say H is a term expander of X.

Coefficient Solver. For an algorithm H of a specific cryptographic algorithm
X, if given the last round rl, a term πt(rl)(s

(rl)) of round rl, u indicating the
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Algorithm 1: Generic structure of the nested monomial predictions [16]

1 Procedure SuperpolyRecFramework(the target output bit f(x,k), the target round r, u
indicating the cube term):

2 Prepare a polynomial p = 0

3 Initialize rl = r, S(rl)u = {f}
4 while S(rl)u ̸= ∅ do
5 rn = ChooseRiX(S(rl)u , rl, ...)

6 S(rn) = TermExpanderX(S(rl)u , rl, rn, ...)

7 for π
t(rn) (s

(rn)) ∈ S(rn) do
8 τ = ChooseTiX(rn)

9 (status, p(rn)) = CofSolverX(π
t(rn) (s

(rn)), rn,u, τ, ...)

10 if status = SOLVED then
11 p = p⊕ p(rn)

12 else if status = TIMEOUT then
13 Insert π

t(rn) (s
(rn)) into S(rn)

u

14 rl ← rn

15 S(rl)u ← S(rn)
u

16 return p

cube term xu(or other parameters that can identify the cube), the time limit
τ and other auxiliary parameters as input, the algorithm H can always output
either Coe

(
πt(rl)(s

(rl)),xu
)
, no solution or timeout, then we sayH is a coefficient

solver of X.

In this paper, we denote the term expander and the coefficient solver by
TermExpanderX(S(rl)u , rl, rn, ...) and CofSolverX(πt(rl)(s

(rl)), rl,u, τ, ...) respec-
tively, where we use ... to represent arbitrary auxiliary parameters. TermExpanderX
returns a set containing all πt(rn)(s(rn))s satisfying

∑
π
t(rl)

(s(rl))∈S(rl)u
|πt(rn)(s(rn))

1 πt(rl)(s
(rl))| ≡ 1 (mod 2). CofSolverX returns a 2-tuple (status, result),

where status takes SOLVED, NOSOLUTION or TIMEOUT and result repre-
sents Coe

(
πt(rl)(s

(rl)),xu
)

only when status = SOLVED. Using these notions,
the generic structure of the nested monomial predictions can be described in
Algorithm 1, where ChooseRiX and ChooseTiX represent the process of selecting
rn and τ .

Following the generic structure, the nested monomial predictions utilizes the
monomial prediction technique to build the term expander and the coefficient
solver. As a result, the superpoly recovery of the target output bit is divided into
superpoly recoveries of thousands of terms of fewer rounds, thereby reducing
the computational difficulty. Our work in this paper also follows the generic
structure, but with a more efficient term expander and coefficient solver.

11



4 New Coefficient Solver

4.1 Motivation

Although the monomial prediction technique can reach perfect accuracy in de-
tecting if kwxu → f , it requires counting the number of monomial trails. Such a
task is impractical for a high number of rounds of a well-designed cryptographic
algorithms, as the number of monomial trails grows almost exponentially with
the number of rounds.

As mentioned in Sect. 2.5, the divide-and-conquer strategy can speed up the
search compared with counting the number of monomial trails directly. Inspired
by this, we construct a new coefficient solver that first divides the output bit of
the current round into terms of a quite deep round, then solve these terms using
the monomial prediction technique.

4.2 The Theory

For simplicity, we assume the term of the current round is πt(r)(s
(r)) and we want

to compute Coe
(
πt(r)(s

(r)),xu
)

with the coefficient solver. We divide πt(r)(s
(r))

into terms of a reduced number rm < r of rounds. Naturally, we introduce the
concept of valuable terms to capture those terms in round rm that contribute to
Coe

(
πt(r)(s

(r)),xu
)
.

Valuable terms. According to the divide-and-conquer strategy, the monomial
trails of the form kwxu ⇝ πt(r)(s

(r)) can be divided into monomial trails of the
form kwxu ⇝ πt(rm)(s(rm)) for each πt(rm)(s(rm)) satisfying πt(rm)(s(rm)) →
πt(r)(s

(r)), e.g.,

|kwxu 1 πt(r)(s
(r))| ≡

∑
π
t(rm) (s(rm))→π

t(r)
(s(r))

|kwxu 1 πt(rm)(s(rm))| (mod 2).

(2)
Note that if |kwxu 1 πt(rm)(s(rm))| = 0, πt(rm)(s(rm)) contributes nothing to
|kwxu 1 πt(r)(s

(r))|. Therefore, to make it precise we rewrite the Eqn. (2) as

|kwxu 1 πt(r)(s
(r))| ≡

∑
π
t(rm) (s

(rm))→π
t(r)

(s(r))

kwxu⇝π
t(rm) (s

(rm))

|kwxu 1 πt(rm)(s(rm))| (mod 2).

(3)
Terms satisfying (A) πt(rm)(s(rm)) → πt(r)(s

(r)), (B) ∃kw such that kwxu ⇝
πt(rm)(s(rm)) are called valuable terms of round rm, denoted by V T (rm). Usually
rm is chosen not too large, say 90 for Trivium. Once we have recovered all
V T (rm)s, we can compute Coe

(
πt(r)(s

(r)),xu
)

easily by applying the monomial
prediction to compute Coe

(
V T (rm),xu

)
for each V T (rm). Briefly speaking, the

workflow of our coefficient solver is as follows:

1. Develop a method to recover V T (rm)s within the time limit τ . If it times
out, return TIMEOUT; else if no V T (rm) could be recovered, return NOSO-
LUTION; otherwise, if V T (rm)s are recovered successfully, go to step 2.
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2. Apply the monomial prediction to each V T (rm) to compute Coe
(
V T (rm),xu

)
.

3. Sum all Coe
(
V T (rm),xu

)
s to compute Coe

(
πt(r)(s

(r)),xu
)

and return SOLVED.

How to recover V T (rm). If a term πt(rm)(s(rm)) is a V T (rm), then two condi-
tions are necessary and sufficient, namely πt(rm)(s(rm))→ πt(r)(s

(r)) (Condition
A) and ∃kw s.t. kwxu ⇝ πt(rm)(s(rm)) (Condition B). We need to construct a
MILP model to describe these two conditions simultaneously.

At a first glance, both conditions can be described by the monomial prediction
with the following structure

rm rounds︷ ︸︸ ︷
kwxu MP−−→ πt(rm)(s(rm)) =

r−rm rounds︷ ︸︸ ︷
πt(rm)(s(rm))

MP−−→ πt(r)(s
(r)) , (4)

where MP−−→ means the propagation is described according to the propagation
rules of MP. However, since we need to incorporate these two conditions into one
MILP model, such a structure is equivalent to computing Coe

(
πt(r)(s

(r)),xu
)

by
the monomial prediction directly. We do not gain efficiency improvement from
valuable terms.

Note that when describing Condition B, the monomial prediction is so ac-
curate that we can even determine whether ∃kw s.t. kwxu → πt(rm)(s(rm)).
Therefore, a natural idea is to sacrifice some accuracy in exchange for efficiency.
In next section, we provide two variants of bit-based division properties for effi-
cient descriptions of Condition B. The first variant is called non-zero bit-based
division property (NBDP): it simply excludes the propagation of CBDP related
to constant 0 bits. The second is called the core monomial prediction (recall that
the monomial prediction is an explanation of division properties): it ignores the
role of constant bits and attempts to establish a set of rules to characterize those
non-constant bits. Both variants play important roles in our new algorithms for
recovering superpolies.

5 Two Variants of the Division Property for Describing
Condition B

In this section, we present two techniques to describe Condition B under the
assumption that non-cube public variables are set to 0. For convenience, we
always consider an rm-round cryptographic function f : Fn0

2 → Fn1
2 → · · · →

Fnrm
2 (n0 = n + m) with x,k as input and s(i+1) as output of the i-th round

(0 < i ≤ rm − 1), where x ∈ Fn
2 and k ∈ Fm

2 denote the public and secret
variables, respectively. Let the cube term be xu. The output term of round rm is
represented as πt(rm)(s(rm)). Correspondingly, Condition B should be expressed
as ∃kw s.t. kwxu ⇝ πt(rm)(s(rm)).

Flag Technique. Similar to [29], we propose a flag technique to classify bits.
In our work, we treat k as non-zero constants and set x[ū] to 0, then each bit
involved in the round function of f can be represented as an ANF of k and x[u].
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For each involved bit b, we assign it an additional flag b.F ∈ {1c, 0c, δ}. 0c means
b is constant 0; δ means the ANF of b involves x[u], i.e., it contains a monomial
associated with at least one cube variable; 1c means b is non-zero and its ANF
doesn’t involve x[u]. Since the ANF will become intractable as the number of
rounds increases, these flags are precomputed according to COPY, XOR and
AND without considering the effect of cancellation characteristics. Note that the
computation of our flags does not require the help of MILP models, and the flags
in [29] can be handled in the same way, although the authors of [29] encoded the
flags into their MILP models. We define =, ⊕ and × operations for the elements
of set {1c, 0c, δ} corresponding to the basic operations COPY, XOR and AND,
respectively. The = operation sets one element equal to another element. The ⊕
operation follows the rules:

1c ⊕ 1c = 1c ,

0c ⊕ x = x⊕ 0c = x for arbitrary x ∈ {1c, 0c, δ} ,

δ ⊕ x = x⊕ δ = δ for arbitrary x ∈ {1c, 0c, δ} .

The × operation follows the rules:
1c × x = x× 1c = x for arbitrary x ∈ {1c, 0c, δ} ,

0c × x = x× 0c = 0c for arbitrary x ∈ {1c, 0c, δ} ,

δ × δ = δ .

Bits flagged by x (x ∈ {1c, 0c, δ}) are referred to as x bits in this paper. For a
bit vector t(j), suppose the state bits in the j-th round are denoted by s(j), we
use Λ1c(t(j)), Λ0c(t(j)), Λδ(t(j)) to divide t(j) into three bit vectors according
to the 1c, 0c, δ part of s(j) respectively, i.e.,

Λx
i (t

(j)) = t
(j)
i ∀ s

(j)
i .F = x, otherwise Λx

i (t
(j)) = 0

for arbitrary x ∈ {1c, 0c, δ}. When introducing MILP models, for a MILP vari-
able v ∈M.var assigned to the bit b, we may use v.F to represent b.F implicitly.
Once the cube term is given, the flags of all state bits of f are determined. A
specific example of our flag computation can be found in Example 1.

5.1 Non-zero Bit-based Division Property (NBDP)

First, we revisit the roles of CBDP in recovering the superpoly from a perspective
of the monomial propagation.

Proposition 1. Given a term πt(rm)(s(rm)) of round rm. Assuming the initial
CBDP D1m+n

{0m||u} propagates to D1nrm

K(rm) after evaluating f through rm rounds, if

∃k(rm) ∈ K(rm) such that k(rm) ⪯ t(rm), then there must ∃w ⪰ 0m,u′ ⪰ u s.t.
kwxu′

⇝ πt(rm)(s(rm)). The converse is also true.
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Proof. Let the input and output multisets of CBDP be X(0) and X(r) respectively.
According to the definition of CBDP, we assume

∑
k||x∈X(0) k

wxu′
is unknown

for any w||u′ ⪰ 0m||u and
∑

k||x∈X(0) k
wxu′

= 0 for any w||u′ ̸⪰ 0m||u.
If ∃w ⪰ 0,u′ ⪰ u s.t. kwxu′

⇝ πt(rm)(s(rm)), then
∑

s(rm)∈X(rm) πt(rm)(s(rm))

must be unknown, which means ∃k(rm) ∈ K(rm) such that k(rm) ⪯ t(rm). Con-
versely, if ∃k(rm) ∈ K(rm) such that k(rm) ⪯ t(rm), then

∑
s(rm)∈X(rm) πt(rm)(s(rm))

must be unknown. We can deduce there exists w ⪰ 0m,u′ ⪰ u s.t. kwxu′
⇝

πt(rm)(s(rm)), because otherwise
∑

s(rm)∈X(rm) πt(rm)(s(rm)) would be 0 rather
than unknown. ⊓⊔

Based on Proposition 1, a natural idea to describe Condition B is to exclude
all division trails related to x[ū]. Since x[ū] is set to constant 0, we only need
to handle constant 0 bits during the propagation of CBDP. A lot of work has
been conducted on this research line ([25,29]). In our work, to deal with constant
0 bits, we follow three rules that are described in [29] for Copy, And and Xor,
but with our flag technique. These three rules are slightly adjusted and listed
in Sup.Mat. C, together with some additional constraints that can be added to
remove redundancy.

In addition, to describe Condition B, the partial order in CBDP should also
consider the effect of constant 0 bits, so we modify the partial order in CBDP.

Definition 3 (The Partial Order). Let v′ and v be two bit vectors. We say
v′ ⪰̂ v on y or simply yv′ ⪰̂ yv, if{

v′i = vi = 0 yi.F = 0c

v′i ≥ vi yi.F ̸= 0c
.

We denote this variant of CBDP as non-zero bit-based division property (NBDP).
Using NBDP, if ∃kw such that kwxu ⇝ πt(rm)(s(rm)), then there must exist
k(rm) propagated from 0m||u such that k(rm) ⪯̂ t(rm) on s(rm). Hence, we can
construct a MILP model to recover V T (rm)s as follows:

rm rounds︷ ︸︸ ︷
k0xu NBDP−−−−−→ πk(rm)(s(rm)) ⪯̂

r−rm rounds︷ ︸︸ ︷
πt(rm)(s(rm))

MP−−→ πt(r)(s
(r)), (5)

where NBDP propagates from 0m||u to k(rm) in the first rm rounds. Such a
MILP model is described as NBDP-MPModelX in Algorithm 4. After extract-
ing all solutions of this MILP model, for each πt(rm)(s(rm)) we can count the
number of monomial trails between πt(rm)(s(rm)) and πt(r)(s

(r)) to determine if
πt(rm)(s(rm))→ πt(r)(s

(r)), then determine if this term πt(rm)(s(rm)) is a V T (rm).
In this way, a new coefficient solver can be developed by first recovering V T (rm)s
and then applying the monomial prediction to each V T (rm), as stated in Sect.
4. We did test such a new coefficient solver for 846-round Trivium by setting
rm = 90, combined with the term expander used in NMP. As a result, the su-
perpoly of the cube term I3 in Table 5 is recovered in about two days on our
platform. However, apart from this result, no other superpolies were recovered.
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The bottleneck of recovering V T (rm)s based on Eqn. (5). The number of
solutions of NBDP-MPModelX can be expressed as∑

k(rm)∈Fnrm
2 ,t(rm)∈Fnrm

2

k(rm) ⪯̂ t(rm) on s(rm)

|0m||u K
1 k(rm)| · |πt(rm)(s(rm)) 1 πt(r)(s

(r))|,

where k(rm) and t(rm) take all allowed values. Note that for a specific t(rm)

satisfying |πt(rm)(s(rm)) 1 πt(r)(s
(r))| > 0 with a high hamming weight, the sum

of all |0m||u K
1 k(rm)| satisfying k(rm) ⪯̂ t(rm) on s(rm) may be extraordinarily

large, which makes it hard to extract all solutions of NBDP-MPModelX within
limited time.

5.2 Core Monomial Prediction (CMP)

To overcome the bottleneck of recovering V T (rm)s based on Eqn. (5), we next
propose an alternative approach to characterize Condition B from the perspec-
tive of monomial propagation. This new technique is called Core Monomial Pre-
diction (CMP), which can be regarded as a relaxed version of monomial predic-
tion.

Generalization of Condition B. Notice that given a non-zero term πt(rm)(s(rm)),
what determines whether Condition B holds is Λδ(t(rm)). Moreover, denoting the
initial term kw||xu in Condition B by πt(0)(s

(0)), notice that πΛδ(t(0))(s
(0)) =

k0||xu and πΛ1c (t(0))(s
(0)) = kw||x0. Let Λ1c(1n0) indicate the 1c bits of the ini-

tial state (round 0), that is, Λ1c
i (1n0) = 1 if s(0)i .F = 1c, otherwise Λ1c

i (1n0) = 0.
Obviously Λ1c(1n0) = 1m||0n. Considering in Condition B we only require the
existence of w, w can be any vector satisfying w ⪯ Λ1c(1n0). Therefore, we can
give a generalization of Condition B by

∃w ⪯ Λ1c(1n0), such that πΛδ(t(0))⊕w(s(0))⇝ πΛδ(t(rm))(s
(rm)). (6)

Naturally, we study how to describe

∃w ⪯ Λ1c(1ni), such that πΛδ(t(i))⊕w(s(i))⇝ πΛδ(t(j))(s
(j))

for arbitrary i < j. Note that in the process of generalizing Condition B, we
aggressively assume that πt(rm)(s(rm)) ̸= 0, whereas in practice, it is entirely
possible that πt(rm)(s(rm)) equals to 0. Recalling that NBDP is derived by con-
sidering the effect of constant 0 bits in the propagation and partial order of
CBDP, whose propagation rules are established first, it is reasonable that we
first study the case where constant 0 bits are not taken into account.

The definition and propagation of CMP. Let g : Fnin
2 → Fnout

2 be a vec-
torial Boolean function mapping z = (z0, · · · , znin−1) to y = (y0, · · · , ynout−1)
with yi = gi(z). In [17], the monomial prediction is defined as the problem of
determining the presence or absence of a particular monomial zu in yv, that
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is, whether zu → yv. Similarly, the core monomial prediction is defined as the
problem of determining whether πΛδ(v)(y) contains at least one monomial, say
zu, whose δ part (πΛδ(u)(z)) is a particular monomial. We denote this prob-

lem by whether πΛδ(u)(z)
Core→ πΛδ(v)(y). Similar to the monomial trail, the

definition of CMP gives rise to the concept of the core monomial trail.

Definition 4 (Core Monomial Trail). Given the cube term xu, let πΛδ(t(0))(s
(0))

= k0||xu and s(i+1) = f (i)(s(i)) for 0 ≤ i < r. We call a sequence of monomi-
als (πΛδ(t(0))(s

(0)), πΛδ(t(1))(s
(1)), . . . , πΛδ(t(r))(s

(r))) an r-round core monomial
trail connecting πΛδ(t(0))(s

(0)) and πΛδ(t(r))(s
(r)) with respect to the composite

function f = f (r−1) ◦ f (i−2) ◦ · · · ◦ f (0) if

πΛδ(t(0))(s
(0))

Core→ · · · Core→ πΛδ(t(i))(s
(i))

Core→ · · · Core→ πΛδ(t(r))(s
(r)),

If there is at least one core monomial trail connecting πΛδ(t(0))(s
(0)) to πΛδ(t(r))(s

(r)),

we write πΛδ(t(0))(s
(0))

Core
⇝ πΛδ(t(r))(s

(r)). All core monomial trails between

πΛδ(t(0))(s
(0)) and πΛδ(t(r))(s

(r)) are denoted by the set πΛδ(t(0))(s
(0))

Core
1 πΛδ(t(r))(s

(r)).

The monomial prediction determines whether πt(0)(s
(0)) → πt(r)(s

(r)) by
counting the number of monomial trails between πt(0)(s

(0)) and πt(r)(s
(r)). How-

ever, the number of core monomial trails between πΛδ(t(0))(s
(0)) and πΛδ(t(r))(s

(r))

can not reflect precisely whether πΛδ(t(0))(s
(0))

Core→ πΛδ(t(r))(s
(r)), i.e., whether

there exists a w ⪯ Λ1c(1n0) such that πΛδ(t(0))⊕w(s(0))→ πΛδ(t(r))(s
(r)). Since

the information of 1c bits is ignored by the core monomial trail, we can only
draw a weaker conclusion from the existence of a core monomial trail, that is,
∃w ⪯ Λ1c(1n0) such that πΛδ(t(0))⊕w(s(0))⇝ πΛδ(t(r))(s

(r)). Notice that this is
exactly the generalization of Condition B, which means the existence of a core
monomial trail between πΛδ(t(0))(s

(0)) and πΛδ(t(rm))(s
(rm)) is another equivalent

description of Condition B.
To better understand how core monomial trails are generated, we give a

concrete example.

Example 1. Let z = (z0, z1) = f (1)(y0, y1) = (y0y1, y0 + y1 + 1), y = (y0, y1) =

f (0)(x0, x1, x2, k0, k1) = (k0x0 + k1x0x2 + k0 + k1, k0k1x1 + k0k1x0 + k0). Con-
sider the cube term (x0, x1, x2)

(1,1,0) = x0x1. First, we can compute the flags of
x,k,y, z, i.e.,

x0.F = x1.F = δ, x2.F = 0c. k0.F = k1.F = 1c.

y0.F = 1c × δ ⊕ 1c × δ × 0c ⊕ 1c ⊕ 1c = δ.

y1.F = 1c × 1c × δ ⊕ 1c × 1c × δ ⊕ 1c = δ.

z0.F = δ × δ = δ. z1.F = δ ⊕ δ ⊕ 1c = δ.

Since the ANF of f (0) is available, we can compute all monomials of y (x2 is set
to 0), i.e.,

(y0, y1)
(0,0) = 1, (y0, y1)

(1,0) = y0 = k0x0 + k0 + k1.

17



(y0, y1)
(0,1) = y1 = k0k1x1 + k0k1x0 + k0.

(y0, y1)
(1,1) = y0y1 = k0k1x0x1 + k0k1x0 + k0x0 + k0 + k0k1.

Considering (y0, y1)
Λδ((1,1)) = y0y1, then x0x1

Core→ y0y1 is the only core mono-
mial trail of f (0) connecting x0x1 and the δ part of monomials of y. Similarly,
we can compute all monomials of z as follows,

(z0, z1)
(0,0) = 1, (z0, z1)

(1,0) = z0 = y0y1, (z0, z1)
(0,1) = z1 = y0 + y1 + 1,

(z0, z1)
(1,1) = z0z1 = y0y1.

Since z0.F = z1.F = δ, we have (z0, z1)
Λδ((1,0)) = z0 and (z0, z1)

Λδ((1,1)) = z0z1.
Finally, we obtain two core monomial trails of f connecting x0x1 and the δ part
of monomials of z:

x0x1
Core→ y0y1

Core→ z0, x0x1
Core→ y0y1

Core→ z0z1.

Recalling in [17], the propagation rules of 3SDPwoU are revisited from the
algebraic perspective according to the definition of the monomial prediction. In
a similar way, the propagation rules of the core monomial prediction can be
derived from its definition. And we only give the rule of COPY an algebraic
proof, as the others can be interpreted in a same way. As mentioned, we do not
take constant 0 bits into account, so we assume the bits of z and y below are
all non-zero, i.e., their flags are not 0c.

Rule 1 (COPY) Let z = (z0, z1, . . . , zn−1) and y = (z0, z0, z1, z2, . . . , zn−1) be
the input and output vector of a COPY function. Let Λδ(u) = (u′0, . . . , u

′
n−1)

and Λδ(v) = (v′0, . . . , v
′
n). πΛδ(u)(z)

Core→ πΛδ(v)(y) only when Λδ(v) satisfies

Λδ(v) =

{
(0, 0, . . . , u′n−1), if u′0 = 0 ,
(0, 1, . . . , u′n−1), (1, 0, . . . , u

′
n−1), (1, 1, . . . , u

′
n−1), if u′0 = 1 .

Proof. Let z.F = (z0.F, . . . , zn−1.F ) and y.F = (y0.F, . . . , yn.F ). πΛδ(v)(y) can

be expressed as πΛδ(v)(y) = z
v′
0∨v

′
1

0 z
v′
2

1 · · · z
v′
n

n−1. πΛδ(u)(z)
Core→ πΛδ(v)(y) only

when Λδ((v′0∨v′1, v′2, . . . , v′n)) = (u′0, u
′
1, . . . , u

′
n−1), where Λδ((v′0∨v′1, v′2, . . . , v′n))

depends on z.F .
Notice that Λδ((v′0, . . . , v

′
n)) = (v′0, . . . , v

′
n) according to y.F and yi.F =

zi−1.F for 2 ≤ i ≤ n, therefore v′i = u′i−1 for 2 ≤ i ≤ n. Next we consider
z0.F . If z0.F = y0.F = y1.F = 1c, then v′0 = v′1 = 0 and u′0 = 0; otherwise
if z0.F = y0.F = y1.F = δ, we can deduce that v′0 ∨ v′1 = u′0. To sum up, the
propagation rule of COPY can be concluded as v′0 ∨ v′1 = u′0 and v′i = u′i−1 for
2 ≤ i ≤ n. ⊓⊔

Rule 2 (AND) Let z = (z0, z1, . . . , zn−1) and y = (z0 ∧ z1, z2, . . . , zn−1) be
the input and output vector of an AND function. Let Λδ(u) = (u′0, . . . , u

′
n−1)
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and Λδ(v) = (v′0, . . . , v
′
n−2). πΛδ(u)(z)

Core→ πΛδ(v)(y) only when Λδ(u),Λδ(v)
satisfies

(v′0, v
′
1, . . . , v

′
n−2) = (u′0 ∨ u′1, u

′
2, . . . , u

′
n−1) ,

v′0 = u′0, if z0.F = δ ,

v′0 = u′1, if z1.F = δ .

Rule 3 (XOR) Let z = (z0, z1, . . . , zn−1) and y = (z0 ⊕ z1, z2, . . . , zn−1) be
the input and output vector of a XOR function. Let Λδ(u) = (u′0, . . . , u

′
n−1)

and Λδ(v) = (v′0, . . . , v
′
n−2). πΛδ(u)(z)

Core→ πΛδ(v)(y) only when Λδ(v) satisfies

Λδ(v) =

{
(v′0, u

′
2, . . . , u

′
n−1) with v′0 ≥ u′0 + u′1, if {z0.F, z1.F} = {1c, δ} ,

(u′0 + u′1, u
′
2, . . . , u

′
n−1), otherwise .

The MILP models corresponding to propagation rules can be easily derived,
as shown in Sup.Mat. D. Next we consider the effect of constant 0 bits. In
the propagation of CMP, we treat constant 0 bits in the same way as NBDP.
Namely, we follow the rules listed in Sup.Mat. C. Recall in the generalization of
Condition B, we assume πt(rm)(s(rm)) is non-zero. However, πΛδ(t(0))(s

(0))
Core
⇝

πΛδ(t(rm))(s
(rm)) cannot guarantee πt(rm)(s(rm)) ̸= 0. Therefore, like the pro-

posal of the new partial order in NBDP, we propose a new partial order to
impose stricter constraints on πt(rm)(s(rm)).

Definition 5 (New Partial Order of CMP). Let v′ and v be two bit vectors.
We say v′ ⪰̃ v on y or simply yv′ ⪰̃ yv, if

v′i = vi = 0 yi.F = 0c ,

v′i ≥ vi yi.F = 1c ,

v′i = vi yi.F = δ .

Then, the generalization of Condition B (6) holds if and only if πΛδ(t(0))(s
(0))

Core
⇝ πΛδ(t(rm))(s

(rm)) and πt(rm)(s(rm)) ⪰̃ πΛδ(t(rm))(s
(rm)).

Recovering V T (rm)s with CMP. Based on the discussion above, we can con-
struct a MILP model using CMP to recover V T (rm)s as follows:

rm rounds︷ ︸︸ ︷
k0xu CMP−−−−→ πΛδ(t(rm))(s

(rm)) ⪯̃

r−rm rounds︷ ︸︸ ︷
πt(rm)(s(rm))

MP−−→ πt(r)(s
(r)) . (7)

A MILP model based on the structure in Eqn. (7) is described as CMP-MPModelX
in Algorithm 5.

CMP versus MP. We can prove that the MILP model based on Eqn. (7) has
fewer solutions than the MILP model based on Eqn. (4). The number of solutions
of the MILP model based on Eqn. (7) can be represented by∑

t(rm)∈Fnrm
2

|k0xu Core
1 πΛδ(t(rm))(s

(rm))| · |πt(rm)(s(rm)) 1 πt(r)(s
(r))|.
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The number of solutions of the MILP model based on Eqn. (4) can be represented
by ∑

t(rm)∈Fnrm
2 ,w∈Fm

2

|kwxu 1 πt(rm)(s(rm))| · |πt(rm)(s(rm)) 1 πt(r)(s
(r))|.

Notice that we can always map a rm-round monomial trail kwxu → πt(1)(s
(1))→

· · · → πt(rm)(s(rm)) to a rm-round core monomial trail k0xu Core→ πΛδ(t(1))(s
(1))

Core→ · · · Core→ πΛδ(t(rm))(s
(rm)). Furthermore, notice that whether Condition B

holds can be determined by checking whether k0xu Core
⇝ πΛδ(t(rm))(s

(rm)), which
means this mapping is surjective. As a result, for a specific non-zero monomial
πt(rm)(s(rm)), we have∑

w∈Fm
2

|kwxu 1 πt(rm)(s(rm))| ≥ |k0xu Core
1 πΛδ(t(rm))(s

(rm))|,

meaning the model based on Eqn. (7) has fewer solutions.
In addition, recall that when modeling Condition B, the propagation model of

CMP only describes the δ part of monomials, and the 1c or 0c bits are constrained
to 0, while the propagation model of MP needs to consider not only the δ part,
but it also need to track the propagation of the 1c bits. The difference between
CMP and MP can be seen most intuitively from their algebraic interpretation,
which was described earlier in this paper.

Naturally, we believe the MILP model based on Eqn. (7) can be solved faster
than the model based on Eqn. (4). Indeed, taking the MILP model based on
Eqn. (7) as the core component of our coefficient solver, we successfully recovered
the superpoly of 848-round Trivium, a result that can not be achieved by the
model based on Eqn. (4).

Proposition 2 (A property of CMP). Let g = π
t
(i)
0
(s(i)) ⊕ π

t
(i)
1
(s(i)) with

π
t
(i)
0
(s(i)) and π

t
(i)
1
(s(i)) being two non-zero monomials. If Λδ(t

(i)
0 ) ⪰ Λδ(t

(i)
1 )

and k0xu Core
⇝ π

Λδ(t
(i)
1 )

(si)
Core→ g, then k0xu Core

⇝ π
Λδ(t

(i)
0 )

(si)
Core→ g. In other

words, to evaluate whether k0xu Core
⇝ g, it is sufficient to evaluate whether

k0xu Core
⇝ π

Λδ(t
(i)
0 )

(si)
Core→ g and the role of π

t
(i)
1
(s(i)) can be ignored.

Let πΛδ(w)(z) and πΛδ(v)(y) be two intermediate monomials involved in a
core monomial trail between k0xu and πΛδ(t(rm))(s

(rm)), with z = (z0, z1, . . . , zn−1)
and y = (z0 ⊕ z1, z2, . . . , zn−1) being the input and output of a XOR function.
yv contains two monomials of z, namely zv00 zv12 · · · z

vn−2

n−1 and zv01 zv12 · · · z
vn−2

n−1 . We
denote these two monomials by zv0 and zv1 . Consider {z0.F, z1.F} = {1c, δ}.
Suppose z0.F = δ and z1.F = 1c, then πΛδ(v0)(z) ⪰ πΛδ(v1)(z). According to
Proposition 2, ignoring πΛδ(v1)(z) won’t affect whether k0xu can propagate to
πΛδ(v)(y) by CMP. In the MILP model based on Eqn. (7), we are only concerned

20



about whether k0xu Core
⇝ πΛδ(t(rm))(s

(rm)), therefore we can ignore πΛδ(v1)(z).
Using the notion of Rule 3, the propagation rule of XOR can be reduced to

Λδ(v) = (u′0 + u′1, u
′
2, . . . , u

′
n−1).

Considering the existence of a division trail of NBDP can also be used to de-
scribe Condition B, whose equivalent description is k0xu Core

⇝ πΛδ(t(rm))(s
(rm)),

therefore Proposition 2 is also applicable during the propagation of NBDP. We
will show how to simplify the models of NBDP and CMP using Proposition 2
when discussing the application to Acorn in Sect. 6.4.

Towards new coefficient solver and term expander. Finally, we choose
the MILP model based on Eqn. (7) to recover V T (rm)s in a more efficient way
than the monomial prediction. Notice that if πt(rm)(s(rm)) is a V T (rm), we can
split πt(rm)(s(rm)) into 1c part and δ part, namely

πt(rm)(s(rm)) = πΛδ(t(rm))(s
(rm)) · πΛ1c (t(rm))(s

(rm)).

πΛ1c (t(rm))(s
(rm)) is the product of some 1c bits whose ANFs can be computed

beforehand, hence the monomial prediction technique is only applied to δ part of
πt(rm)(s(rm)) to compute Coe

(
πΛδ(t(rm))(s

(rm)),xu
)
. Such a strategy can speed

up the coefficient solver for some ciphers.
Combined with the callback function interface provided in Gurobi, MILP

models based on Eqn. (7) and Eqn. (5) can also be extended to construct a new
term expander. However, we prefer this to be an implementation improvement
rather than a theoretical innovation. In other words, even if we use the term
expander in NMP with our new coefficient solver, we can still get the results
listed in this paper, but it might take slightly more time. For this reason, we put
the introduction of our term expander in Sup.Mat. E.

6 Applications

Using our designed term expander and coefficient solver, we can assemble a new
nested framework according to Algorithm 1. We apply this new nested framework
to four NLFSR-based ciphers, namely Trivium, Grain-128AEAD, Kreyvium
and Acorn. As a result, the exact ANFs of the superpolies for 846-, 847- and
848-round Trivium, 192-round Grain-128AEAD, 895-round Kreyvium and 776-
round Acorn are recovered. All experiments are performed using Gurobi Solver
(version 9.1.2) on a work station with high-speed processors, (totally 32 cores
and 64 threads). The source code (as well as some superpolies we recovered) is
available in our git repository.

In [12,13,16], the MILP models of Trivium, Grain-128AEAD, Kreyvium,
and Acorn for tracing the three-subset division/monomial trails are proposed.
In this section, the propagation models of monomial trails in Sup.Mat. G are
directly borrowed from [12,13,16] and we adjust them slightly to fit our new
framework. The MILP models of basic operations that NBDP and CMP rely
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on are provided in Sup.Mat. F. As pointed out before, NBDP-MPModelX in Algo-
rithm 4 and CMP-MPModelX in Algorithm 5 are the most important parts in the
framework, so next we only describe how to construct these two MILP models
for a specific cipher, along with the selection of related parameters.

6.1 Superpoly Recovery for Trivium up to 848 Rounds

As shown in Sup.Mat. H, we applied our framework to Trivium and verified the
correctness of some previous superpolies with significantly less time cost.

Superpoly Recovery for 846-, 847- and 848-Round Trivium. To the
best of our knowledge, currently there is no effective method for choosing a
good cube, hence we heuristically choose cubes with similar structure to I0–
I4. Finally, we find some other cubes applicable to Trivium up to 848 rounds.
They are listed in Table 3. Since the sizes of these superpolies are too large, we
only provide our codes in the git repository. The details of these superpolies are
given in Table 4. The balancedness of each superpoly is estimated by testing 215

random keys.

Table 3: Cube indices for the superpoly recovery of Trivium up to 848 rounds
I |I| Indices

I5 53
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55,
57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I6 52
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57,
60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I7 51
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55, 57, 60,
62, 64, 66, 68, 70, 72, 77, 75, 79

I8 53
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55,
57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I9 53
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 28, 30, 31, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53, 55,
57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

6.2 Superpoly Recovery for 192-Round Grain-128AEAD

In Sup.Mat. I, we introduce the specification of Grain-128AEAD and apply our
new framework to it. We successfully verified the results given in [16]. For 192-
round Grain-128AEAD, we heuristically choose a 94-dimensional cube indexed
by {0, 1, 2, . . . , 95}\{42, 43}. The superpoly of this cube for 192-round Grain-
128AEAD is recovered in about 45 days using our new framework. The superpoly
is a 34-degree polynomial involving 534 077 971 terms and 128 key bits. The
balancedness is estimated to be 0.49 after testing 215 random keys. Since the size
of this superpoly is too large, we only provide our codes in the git repository.
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Table 4: Details related to the superpolies of 846-, 847- and 848-round Trivium.
I Round Status #Involved Key Bits Balancedness TimeCost

I3 846 New 80 0.50 1 day and 12 hours

I5 846 New 80 0.50 16 hours

I6 846 New 80 0.50 5 hours

I7 846 New 80 0.50 11 hours

I8 846 New 80 0.50 5 hours

I9 846 New 80 0.50 1 day and 17.5 hours

I6 847 New 80 0.50 9 days and 20.5 hours

I7 847 New 80 0.50 2 days

I6 848 New 80 0.50 11 days

6.3 Superpoly Recovery for 895-Round Kreyvium

As can be seen in Sup.Mat. J, we verified the superpoly of the 119-dimensional
cube given in [16] with our new framework. For 895-round Kreyvium, we heuris-
tically choose a 120-dimensional cube indexed by

I2 = {0, 1, . . . , 127}\{66, 72, 73, 78, 101, 106, 109, 110}.

The superpoly of I2 for 895-Round Kreyvium is recovered in about two weeks
using our nested framework. The superpoly is a 7-degree polynomial that involves
19411 terms and 128 key bits. The balancedness is estimated to be 0.50 after
testing 215 random keys.

6.4 Superpoly Recovery for Acorn up to 776 Rounds

As can be seen in Sup.Mat. K, we verified the results given in [34] with our new
framework. For 776-round Acorn, we heuristically choose two 127-dimensional
cubes indexed by I1 = {0, 1, . . . , 127}\{1, 28} and I2 = {0, 1, . . . , 127}\{2, 28}.
The superpoly recoveries of these two cubes are completed after about 8 days
using our nested framework.

The superpoly of I1 is an 8-degree polynomial involving 123 key bits and
2 464 007 terms, with k104, k105 and k115 as single balanced bits. Bits not in-
volved are k100, k103, k106, k114 and k126. The superpoly of I2 is an 8-degree poly-
nomial involving 121 key bits and 2 521 399 terms, with k104 and k126 as single
balanced bits. Bits not involved are k99, k100, k101, k103, k106, k110 and k112. The
concrete expressions of these two superpolies, denoted by pI1 and pI2 , are shown
in Sup.Mat. N, where they are represented by 1c bits of 256th round.

7 Towards Efficient Key-recovery Attacks

Though we have recovered more than one superpolies for 846- and 847-round
Trivium, how to recover the information of key bits from multiple superpolies
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remains a problem. We briefly discuss several previous approaches to this prob-
lem in Sup.Mat. L.

Cube attacks against 776-round Acorn. Since the two superpolies of 776-
round Acorn do not involve full key bits, we can mount a key recovery attack
against 776-round Acorn as follows:

1. We can obtain the real values of the two superpolies during the online phase,
which requires 2127 Acorn calls.

2. We guess the values of {k0, ..., k127}\{k100, k103, k106} and check if the values
of the two superpolies are correct. As mentioned in Sup.Mat. K, one evalua-
tion of the superpoly of Acorn is equivalent to one 256-round Acorn call
or approximately 1

3 776-round Acorn call, so the complexity of this step is
about 2× 2125 × 1

3 ≈ 2124.4 776-round Acorn calls.
3. For the remaining 2126 candidates of key bits, we can find the correct key by

an exhaustive search with time complexity of 2126 776-round Acorn calls.

Therefore, the final complexity is slightly more than 2127 776-round Acorn calls
to recover all the secret key bits. Next we show how to mount the cube attack
using the superpoly involving full key bits.

Revisiting Möbius transformation. Let f(x0, x1, . . . , xn−1) be a Boolean
function on x0, x1, ..., xn−1. The ANF of f is obtained by writing:

f =
⊕

(c0,...,cn−1)∈Fn
2

g0(c0, . . . , cn−1) ·
n−1∏
i=0

xci
i . (8)

The process of Möbius transformation on f from ANF to truth table can be
represented by Algorithm 2, where t represents the t-th step and gn is exactly
f . For simplicity, we also use gt(e)(0 ≤ t ≤ n) to represent gt(c0, . . . , cn−1),
where e = c0 + c12

1 + · · · + cn−12
n−1 and (c0, . . . , cn−1) is called the binary

representation of e. We assume in this paper that Möbius transformation requires
n× 2n−1 bitwise XORs and 2n-bits memory complexity.

Algorithm 2: Möbius transformation on f in Eqn. (8)

1 Procedure MobiusTransformation(The ANF of f):
2 for t = 1 to n do
3 Initialize gt to be the same as gt−1

4 for j = 0 to 2n−t − 1 do
5 for k = 0 to 2t−1 − 1 do
6 gt(2

tj + 2t−1 + k) = gt−1(2
tj + 2t−1 + k) + gt−1(2

tj + k)

7 return gn
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Proposition 3. Let f, g0, g1, . . . , gn be defined as above. After the t-th (1 ≤ t ≤
n− 1) step of Möbius transformation on the ANF of f , if we represent f as

f =
∑

(ct,...,cn−1)∈Fn−t

p(ct,...,cn−1)(x0, . . . , xt−1) ·
n−1∏
i=t

xci
i , (9)

where p(ct,...,cn−1)(x0, . . . , xt−1) is a Boolean polynomial of (x0, . . . , xt−1) deter-
mined by (ct, . . . , cn−1), then for any value of (ct, . . . , cn−1),

gt(x0, . . . , xt−1, ct, . . . , cn−1) = p(ct,...,cn−1)(x0, . . . , xt−1).

An intuitive description of Eqn. (9) is, we regard (xt, . . . , xn−1) as variables and
(x0, . . . , xt−1) as constants, then p(ct,...,cn−1)(x0, . . . , xt−1) is exactly the coeffi-
cient of the monomial

∏n−1
i=t xci

i .

Proof. It can be easily verified that when t = 1, the conclusion holds. Assume
the conclusion holds for t = l (1 ≤ l ≤ n− 2), next we prove that the conclusion
is also true for t = l + 1.

According to Eqn. (9), p(cl+1,...,cn−1)(x0, . . . , xl) can be expressed as the sum
of p(0,cl+1,...,cn−1)(x0, . . . , xl−1) and p(1,cl+1,...,cn−1)(x0, . . . , xl−1) · xl, that is,

gl(x0, . . . , xl−1, 0, cl+1, . . . , cn−1) + gl(x0, . . . , xl−1, 1, cl+1, . . . , cn−1) · xl.

Considering that xl takes 0 or 1, p(cl+1,...,cn−1)(x0, . . . , xl) is equal to{
gl(x0, . . . , xl−1, 0, cl+1, . . . , cn−1), if xl = 0,

gl(x0, . . . , xl−1, 0, cl+1, . . . , cn−1) + gl(x0, . . . , xl−1, 1, cl+1, . . . , cn−1), if xl = 1.

This is the same as how gl+1(x0, . . . , xl, cl+1, . . . , cn−1) is generated during the
process of Möbius transformation. Hence, gl+1(x0, . . . , xl, cl+1, . . . , cn−1) is ex-
actly p(cl+1,...,cn−1)(x0, . . . , xl). By mathematical induction, the conclusion is true
for all t (1 ≤ t ≤ n− 1). ⊓⊔

Example 2. Let f(x0, x1, x2, x3) = x0x1x2 + x2x3 + x1x3 + x2. The process of
Möbius transformation on the ANF of f is shown in the following table, where
each row is the truth table of gt (0 ≤ t ≤ 4).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

g0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0

g1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0

g2 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1

g3 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0

g4 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 0

Consider g2. We regard (x0, x1) as constants and (x2, x3) as variables, f can be
expressed as f = (x0x1+1) ·x2+x1 ·x3+1 ·x2x3. Then g2(x0, x1, 0, 0) = 0, which
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is the coefficient of x0
2x

0
3 in f ; g2(x0, x1, 1, 0) = x0x1 +1, which is the coefficient

of x1
2x

0
3; g2(x0, x1, 0, 1) = x1, which is the coefficient of x0

2x
1
3; g2(x0, x1, 1, 1) = 1,

which is the coefficient of x1
2x

1
3. This corresponds to truth table of g2. Note that

g2(j) = g2(x0, x1, x2, x3), where j = x0 + x12
1 + x22

2 + x32
3.

We can further simplify Möbius transformation exploiting Proposition 3 and
the degree of f . Since this would not affect our final complexity, we discuss it in
Sup.Mat. M.

Key recovery during Möbius transformation. Let f be as defined in
Eqn. (8) and (x0, . . . , xn−1) be n secret key variables. It can be deduced from
Proposition 3 that if (ct, . . . , cn−1) = (0, . . . , 0), f(x0, . . . , xt−1, 0, . . . , 0) is equal
to gt(x0, . . . , xt−1, 0, . . . , 0), therefore after t steps of Möbius transformation, we
can already obtain the function values of f(x0, . . . , xt−1, 0, . . . , 0). Using this
property, we can recover the key during Möbius transformation. We use Exam-
ple 3 to illustrate our basic idea.

Example 3. Let f and its Möbius transformation be as defined in Example 2.
Now we want to recover the key from the equation f(x0, x1, x2, x3) = a.
1. At the beginning, f(0) = g0(0). If f(0) = a, we test whether (0, 0, 0, 0) is the
correct key by one encryption call. And if it is incorrect, we go to next step.
2. Compute g1(1) = g0(0) + g0(1), g1(0) = g0(0), then f(1) = g1(1). If f(1) = a,
we test whether (1, 0, 0, 0) is the correct key by one encryption call. And if it is
incorrect, go to next step.
3. First, we compute g1(3) = g0(2) + g0(3), g1(2) = g0(2). Compute g2(2) =
g1(2) + g1(0), g2(3) = g1(3) + g1(1), g2(0) = g1(0), g2(1) = g1(1), then f(2) =
g2(2), f(3) = g2(3). If f(2) = a, we test if (0, 1, 0, 0) is the correct key by one en-
cryption call; if f(3) = a, we test if (1, 1, 0, 0) is the correct key by one encryption
call. And if none of them is correct, go to next step.
4. First, we compute g1(i) (i = 4, 5, 6, 7) from g0(i) (i = 4, 5, 6, 7) and g2(i) (i =
4, 5, 6, 7) from g1(i) (i = 4, 5, 6, 7). Compute g3(j) (j = 0, . . . , 7) from g2(j) (j =
0, . . . , 7), then f(i) = g3(i) (i = 4, 5, 6, 7). If f(i) = a (i = 4, 5, 6, 7), we test if
the binary representation of i is the correct key by one encryption call. And if
none of them is correct, go to next step.
5. First, we compute g1(i) (i = 8, . . . , 15) from g0(i) (i = 8, . . . , 15), g2(i) (i =
8, . . . , 15) from g1(i) (i = 8, . . . , 15) and g3(i) (i = 8, . . . , 15) from g2(i) (i =
8, . . . , 15). Compute g4(j) (j = 0, . . . , 15) from g3(j) (j = 0, . . . , 15), then
f(i) = g4(i) (i = 8, . . . , 15). If f(i) = a (i = 8, . . . , 15), we test if the binary
representation of i is the correct key by one encryption call. And if none of them
is correct, we claim this equation has no solution.

In each step, we use the minimum memory and the least XOR operations to
calculate the necessary bits. In step 1, only 1-bit memory (g0(0)) is sufficient. In
step 2, 1 XOR and 2-bits memory (g1(1), g1(0)) are sufficient. In step 3, 2 + 1
XORs and 4-bits memory (g2(i) (i = 1, 2, 3, 4)) are sufficient. In step 4, 2+2+4
XORs and 8-bits memory (g3(j) (j = 0, . . . , 7)) are sufficient. Finally in step 5,
4 + 4 + 4 + 8 XORs and 16-bits memory (g4(j) (j = 0, . . . , 15)) are sufficient.
Note that in each step, the first computation can be regarded as performing
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Möbius transformation on part of the ANF of f . For example, in step 4, we
first compute g2(i) (i = 4, 5, 6, 7) iteratively from g0(i) (i = 4, 5, 6, 7). This can
be regarded as performing Möbius transformation on the ANF of p(1,0)(x0, x1),
namely x0x1 + 1.

We summarize our key recovery strategy in Algorithm 3, which can be seen
as embedding the key testing procedure into a Möbius transformation with an
adjusted computational order. Though a more accurate estimation of the average
complexity can be given, here we roughly estimate the time cost (only considering
the loop starting at Line 8) of Algorithm 3 as one Möbius transformation together
with required encryption calls, that is, q · 2n encryption calls + n · 2n−1 XORs,
where q denotes the probability that f(x0, . . . , xn−1) = a. The cost of the com-
parison is ignored. The memory complexity in the worst case is 2n bits. Compar-
ing with the traditional key recovery method of first constructing a large truth
table and then performing queries, our method naturally saves the query cost.

Algorithm 3: Recover the key from the equation f(x0, . . . , xn−1) = a

1 Procedure RecoverKey(The ANF of f):
2 for t = 1 to n do
3 Precompute the ANF of p(1,0,...,0)(x0, . . . , xt−2) from the ANF of f

4 if g0(0, . . . , 0) = a then
5 Check if (0, . . . , 0) is the correct key by calling the encryption oracle once
6 if The check passes then
7 return (0, . . . , 0)

8 for t = 1 to n do
9 Perform Möbius transformation on the ANF of p(1,0,...,0)(x0, . . . , xt−2) to obtain the

truth table of gt−1(x0, . . . , xt−2, 1, 0, . . . , 0)
/* When t = 1, we assume p(ct−1,...,cn−1)(x0, . . . , xt−2) = g0(ct−1, . . . , cn−1) */

10 for k = 0 to 2t−1 − 1 do
11 gt(2

t−1 + k) = gt−1(2
t−1 + k) + gt−1(k)

12 if gt(2
t−1 + k) = a then

13 Let (c0, . . . , cn−1) be the binary representation of 2t−1 + k
14 Check if (c0, . . . , cn−1) is the correct key by calling the encryption oracle once
15 if The check passes then
16 return (c0, . . . , cn−1)

17 gt(k) = gt−1(k)

18 return no solution found

Key recovery attacks on 848-round Trivium. Our further evaluation
shows that the superpoly of 848-round Trivium, denoted by p(k0, ..., k79), is a
polynomial whose degree is upper bounded by 25. It contains about 230.5 terms,
but is still very sparse compared with a random polynomial (a random polyno-
mial may contain about 279 terms). A natural idea is to treat p(k0, ..., k79) as f
in Algorithm 3. However, Möbius transformation also incurs memory access cost.
In the worse case, Algorithm 3 requires 280-bits memory and the memory access
cost of such a big table is unbearable. To address this difficulty, we propose the
following strategies:
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1. We guess the values of (k40, . . . , k79). Let (v40, . . . , v79) denote the values
of (k40, . . . , k79), then the equation p(k0, . . . , k79) = a can be reduced to
p′(k0, ..., k39) = p(k0, . . . , k39, v40, . . . , v79) = a.

2. For each guess, treat p′(k0, ..., k39) as f and apply Algorithm 3 to it. Once Al-
gorithm 3 returns the correct values of (k0, ..., k39), denoted by (v0, . . . , v39),
the correct key is found as (v0, . . . , v79).

Assuming reducing p(k0, . . . , k79) to p′(k0, ..., k39) for all guesses requires 240 ×
230.5 = 270.5 XORs, the final time complexity is approximately 279 Trivium
calls and 40× 279 XORs. Assuming one 848-round Trivium call is equivalent to
848 × 9 = 7632 XORs, finally our key recovery strategy requires slightly more
than 279 848-round Trivium calls, but only about 240-bits memory. Similarly,
we can recover the key of 192-round Grain-128AEAD and 895-round Kreyvium
with time complexity 2127 and 2127, respectively.

8 Conclusion

In this paper, we revisit the two core components of nested monomial predictions,
namely the coefficient solver and the term expander. The coefficient solver is re-
sponsible for performing the superpoly recovery for a given term, while the term
expander is used to transform output bits into multiple terms of fewer rounds.
We try to improve the coefficient solver by first recovering valuable intermediate
terms of a middle round, then applying the monomial prediction to each of them.
This idea gives rise to two techniques called NBDP and core monomial prediction
that identify the necessary condition that a valuable intermediate term should
satisfy. The core monomial prediction presents a substantial improvement over
monomial prediction in terms of efficiency of enumerating solutions, hence we
choose it to build our coefficient solver. Besides, we construct an improved term
expander using NBDP in order to spend less time on useless terms of fewer
rounds. We apply our new framework to Trivium, Grain-128AEAD, Acorn
and Kreyvium and recover superpolies for reduced-round versions of the four
ciphers with 848, 192, 776 and 895 rounds. This results in attacks that are more
efficient and cover more rounds than earlier work.

Acknowledgment. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions to improve the quality of the paper.
The research leading to these results has received funding from the National Nat-
ural Science Foundation of China (Grant No. 62002201, Grant No. 62032014),
the National Key Research and Development Program of China (Grant No.
2018YFA0704702), and the Major Basic Research Project of Natural Science
Foundation of Shandong Province, China (Grant No. ZR202010220025). Bart
Preneel was supported by CyberSecurity Research Flanders with reference num-
ber VR20192203. Kai Hu is supported by the "ANR-NRF project SELECT".
The scientific calculations in this paper have been done on the HPC Cloud Plat-
form of Shandong University.

28



References

1. Gorubi Optimization. https://www.gurobi.com.
2. Gorubi Optimization Reference Manual. https://www.gurobi.com/wp-content/

plugins/hd_documentations/documentation/9.1/refman.pdf.
3. ISO/IEC 29192-3:2012: Information technology — Security techniques —

Lightweight cryptography — part 3: Stream ciphers. https://www.iso.org/
standard/56426.html.

4. Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: a new
version of Grain-128 with optional authentication. Int. J. Wirel. Mob. Comput.,
5(1):48–59, 2011.

5. Christina Boura and Daniel Coggia. Efficient MILP modelings for sboxes and
linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol., 2020(3):327–361,
2020.

6. Christophe De Cannière and Bart Preneel. Trivium. In Matthew J. B. Robshaw
and Olivier Billet, editors, New Stream Cipher Designs - The eSTREAM Finalists,
volume 4986 of LNCS, pages 244–266. Springer, 2008.

7. Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María Naya-
Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A practical solution
for efficient homomorphic-ciphertext compression. J. Cryptol., 31(3):885–916, 2018.

8. Donghoon Chang and Meltem Sönmez Turan. Recovering the key from the internal
state of Grain-128AEAD. IACR Cryptol. ePrint Arch., 2021:439, 2021.

9. Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In
Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 278–299.
Springer, 2009.

10. Pierre-Alain Fouque and Thomas Vannet. Improving key recovery to 784 and 799
rounds of trivium using optimized cube attacks. In Shiho Moriai, editor, FSE 2013,
volume 8424 of LNCS, pages 502–517. Springer, 2013.

11. Yonglin Hao, Lin Jiao, Chaoyun Li, Willi Meier, Yosuke Todo, and Qingju Wang.
Links between division property and other cube attack variants. IACR Trans.
Symmetric Cryptol., 2020(1):363–395, 2020.

12. Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. Mod-
eling for three-subset division property without unknown subset - improved cube
attacks against Trivium and Grain-128AEAD. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, volume 12105 of LNCS, pages 466–495. Springer,
2020.

13. Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. Mod-
eling for three-subset division property without unknown subset. J. Cryptol.,
34(3):22, 2021.

14. Phil Hebborn, Baptiste Lambin, Gregor Leander, and Yosuke Todo. Lower bounds
on the degree of block ciphers. In Shiho Moriai and Huaxiong Wang, editors,
ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 537–566. Springer, 2020.

15. Martin Hell, Thomas Johansson, Willi Meier, Jonathan Sönnerup, and Hirotaka
Yoshida. Grain-128AEAD - A lightweight AEAD stream cipher. NIST Lightweight
Cryptography, Round, 3, 2019.

16. Kai Hu, Siwei Sun, Yosuke Todo, Meiqin Wang, and Qingju Wang. Massive super-
poly recovery with nested monomial predictions. In Mehdi Tibouchi and Huaxiong
Wang, editors, Advances in Cryptology – ASIACRYPT 2021, pages 392–421, Cham,
2021. Springer International Publishing.

29

https://www.gurobi.com
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.1/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.1/refman.pdf
https://www.iso.org/standard/56426.html
https://www.iso.org/standard/56426.html


17. Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formulation
of the division property: Revisiting degree evaluations, cube attacks, and key-
independent sums. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT
2020, Part I, volume 12491 of LNCS, pages 446–476. Springer, 2020.

18. Michael Lehmann and Willi Meier. Conditional differential cryptanalysis of Grain-
128a. In Josef Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis, editors, CANS
2012, volume 7712, pages 1–11. Springer, 2012.

19. Meicheng Liu. Degree evaluation of NFSR-based cryptosystems. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, volume 10403 of LNCS, pages
227–249. Springer, 2017.

20. Piotr Mroczkowski and Janusz Szmidt. The cube attack on stream cipher Trivium
and quadraticity tests. Fundam. Informaticae, 114(3-4):309–318, 2012.

21. Yu Sasaki and Yosuke Todo. New algorithm for modeling s-box in MILP based
differential and division trail search. In Pooya Farshim and Emil Simion, editors,
SecITC 2017, volume 10543 of LNCS, pages 150–165. Springer, 2017.

22. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Auto-
matic security evaluation and (related-key) differential characteristic search: Ap-
plication to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block
ciphers. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I,
volume 8873 of LNCS, pages 158–178. Springer, 2014.

23. Yao Sun. Automatic search of cubes for attacking stream ciphers. IACR Transac-
tions on Symmetric Cryptology, 2021(4):100–123, Dec. 2021.

24. Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, volume 9056 of LNCS,
pages 287–314. Springer, 2015.

25. Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on
non-blackbox polynomials based on division property. In Jonathan Katz and Ho-
vav Shacham, editors, CRYPTO 2017, volume 10403 of LNCS, pages 250–279.
Springer, 2017.

26. Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier. Cube attacks on non-
blackbox polynomials based on division property. IACR Cryptol. ePrint Arch.,
2017:306, 2017.

27. Yosuke Todo and Masakatu Morii. Bit-based division property and application to
Simon family. In Thomas Peyrin, editor, FSE 2016, volume 9783 of LNCS, pages
357–377. Springer, 2016.

28. Jianhua Wang, Baofeng Wu, and Zhuojun Liu. Improved degree evaluation and
superpoly recovery methods with application to trivium. CoRR, abs/2201.06394,
2022.

29. Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and Willi
Meier. Improved division property based cube attacks exploiting algebraic proper-
ties of superpoly. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO
2018, volume 10991 of LNCS, pages 275–305. Springer, 2018.

30. SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. MILP-aided
method of searching division property using three subsets and applications. In
Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, volume 11923
of LNCS, pages 398–427. Springer, 2019.

31. SenPeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. A practical method
to recover exact superpoly in cube attack. IACR Cryptology ePrint Archive,
2019:259, 2019.

32. Hongjun Wu. Acorn v3. Submission to CAESAR competition, 2016.

30



33. Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
method to searching integral distinguishers based on division property for 6
lightweight block ciphers. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, volume 10031 of LNCS, pages 648–678. Springer, 2016.

34. Jingchun Yang and Dongdai Lin. Searching cubes in division property based cube
attack: Applications to round-reduced acorn. Cryptology ePrint Archive, Report
2020/1128, 2020. https://ia.cr/2020/1128.

35. Jingchun Yang, Meicheng Liu, and Dongdai Lin. Cube cryptanalysis of round-
reduced acorn. Cryptology ePrint Archive, Report 2019/1226, 2019. https://ia.
cr/2019/1226.

36. Chen-Dong Ye and Tian Tian. A new framework for finding nonlinear superpolies
in cube attacks against trivium-like ciphers. In Willy Susilo and Guomin Yang,
editors, ACISP 2018, volume 10946 of LNCS, pages 172–187. Springer, 2018.

37. Chen-Dong Ye and Tian Tian. Algebraic method to recover superpolies in cube
attacks. IET Inf. Secur., 14(4):430–441, 2020.

38. Chen-Dong Ye and Tian Tian. A practical key-recovery attack on 805-round triv-
ium. IACR Cryptol. ePrint Arch., 2020:1404, 2020.

39. Chendong Ye and Tian Tian. Revisit division property based cube attacks: Key-
recovery or distinguishing attacks? IACR Trans. Symmetric Cryptol., 2019(3):81–
102, 2019.

31

https://ia.cr/2020/1128
https://ia.cr/2019/1226
https://ia.cr/2019/1226


Supplementary Material

A

A.1 MILP Models Based on the structure of Eqns. (5) and (7)

Algorithm 4: The MILP model based on the structure of Eqn. (5)
1 Procedure NBDP-MPModelX(the number of rounds r, t(r) indicating the output bit

π
t(r)

(s(r)), u indicating the cube term xu, the middle round rm):
2 Declare an empty MILP model M
3 Declare k0 as n+m MILP variables ofM corresponding to public and secret variables
4 M.con← k0i = 1 ∀ ui = 1

5 M.con← k0i = 0 ∀ ui = 0

6 M.con← k0i+n = 0 ∀ i ∈ {0, 1, . . . ,m− 1}
7 Update k0 according to the propagation rules of NBDP through rm rounds to krm

8 Declare srm as nrm MILP variables of M
9 M.con← k

rm
i = s

rm
i = 0 ∀ s

(rm)
i .F = 0c

10 M.con← k
rm
i ≤ s

rm
i ∀ s

(rm)
i .F ̸= 0c

11 Update srm according to the propagation rules of the monomial prediction through
r − rm rounds to sr

12 M.con← sri = 0 ∀ t
(r)
i = 0

13 M.con← sri = 1 ∀ t
(r)
i = 1

14 returnM

Algorithm 5: The MILP model based on the structure of Eqn. (7)
1 Procedure CMP-MPModelX(the number of rounds r, t(r) indicating the output bit

π
t(r)

(s(r)), u indicating the cube term xu, the middle round rm):
2 Declare an empty MILP model M
3 Declare k0 as n+m MILP variables ofM corresponding to public and secret variables
4 M.con← k0i = 1 ∀ ui = 1

5 M.con← k0i = 0 ∀ ui = 0

6 M.con← k0i+n = 0 ∀ i ∈ {0, 1, . . . ,m− 1}
7 Update k0 according to the propagation rules of CMP through rm rounds to krm

8 Declare srm as nrm MILP variables of M
9 M.con← k

rm
i = s

rm
i = 0 ∀ s

(rm)
i .F = 0c

10 M.con← k
rm
i ≤ s

rm
i ∀ s

(rm)
i .F = 1c

11 M.con← k
rm
i = s

rm
i ∀ s

(rm)
i .F = δ

12 Update srm according to the propagation rules of the monomial prediction through
r − rm rounds to sr

13 M.con← sri = 0 ∀ t
(r)
i = 0

14 M.con← sri = 1 ∀ t
(r)
i = 1

15 returnM

A.2 Cubes in [16]
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Table 5: Cube indices used in [16]
I |I| Indices

I0 56
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 45, 47, 49,
51, 53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I1 57
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 40, 42, 45, 47,
49, 51, 53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I2 55
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51,
53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I3 54
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40, 42, 45, 47, 49, 51, 53,
55, 57, 60, 62, 64, 66, 68, 70, 72, 77, 75, 79

I4 76

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 77, 79

B Propagation Rules and MILP Models for XOR, AND
and COPY

B.1 CBDP

MILP models of XOR, AND and COPY. The division trails can be traced
using the following MILP models:

Model 1 (XOR [33]) Let (a0, a1, . . . , an−1)
XOR−−−→ b be a propagation trail of

XOR. The following inequalities suffice to describe all the valid trails for XOR:{
M.var ← a0, a1, . . . , an−1, b as binary;
M.con← b = a0 + a1 + · · ·+ an−1;

Model 2 (AND [33]) Let (a0, a1, . . . , an−1)
AND−−−→ b be a propagation trail of

AND. The following inequalities suffice to describe all the valid trails for AND:
M.var ← b, a0, a1, . . . , an−1 as binary;
M.con← a0 + a1 + · · ·+ an−1 ≥ b;

M.con← b ≥ ai, ∀i ∈ {0, 1, . . . , n− 1}.

If the MILP solver supports the OR (∨) operation, then the model can also be
represented by {

M.var ← b, a0, a1, . . . , an−1 as binary;
M.con← b = a0 ∨ a1 ∨ · · · ∨ an−1;

Model 3 (COPY [33]) Let a
COPY−−−−→ (b0, b1, . . . , bn−1) be a propagation trail

of AND. The following inequalities suffice to describe all the valid trails for
COPY:
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{
M.var ← a, b0, b1, . . . , bn−1 as binary;
M.con← a = b0 + b1 + · · ·+ bn−1;

B.2 Monomial Prediction

Propagation Rules of XOR, AND and COPY. According to [12], the rules
for XOR, AND and COPY are the following:

Rule 1 (XOR [12,13] ) Let x = (x0, x1, . . . , xn−1) and y = (x0⊕x1, x2, . . . , xn−1)
be the input and output vector of a XOR function. Considering a monomial of
x as xu, the monomials yv of y meet the condition that xu → yv only when v
satisfies

v = (u0 + u1, u2, . . . , un−1), (u0, u1) ∈ {(0, 0), (0, 1), (1, 0)}.

Rule 2 (AND [12,13] ) Let x = (x0, x1, . . . , xn−1) and y = (x0∨x1, x2, . . . , xn−1)
be the input and output vector of an AND function. Considering a monomial of
x as xu, the monomials yv of y meet the condition that xu → yv only when v
satisfies

v = (u0, u2, . . . , un−1), (u0, u1) ∈ {(0, 0), (1, 1)}.

Rule 3 (COPY [12,13] ) Let x = (x0, x1, . . . , xn−1) and y = (x0, x0, x1, x2, . . . , xn−1)
be the input and output vector of a COPY function. Considering a monomial
of x as xu, the monomials yv of y meet the condition that xu → yv only when
v satisfies

v =

{
(0, 0, u2, . . . , un−1), if u0 = 0
(0, 1, u2, . . . , un−1), (1, 0, u2, . . . , un−1), (1, 1, u2, . . . , un−1), if u0 = 1

MILP Models of the Propagation Trails. The propagation trails of the
monomial prediction can be traced using the following MILP models:

Model 1 (XOR [12,13]) Let (a0, a1, . . . , an−1)
XOR−−−→ b be a propagation trail

of XOR. The following inequalities suffice to describe all the valid trails for
XOR: {

M.var ← a0, a1, . . . , an−1, b as binary;
M.con← b = a0 + a1 + · · ·+ an−1;

Model 2 (AND [12,13]) Let (a0, a1, . . . , an−1)
AND−−−→ b be a propagation trail

of AND. The following inequalities suffice to describe all the valid trails for
AND: {

M.var ← a0, a1, . . . , an−1, b as binary;
M.con← b = ai, ∀i ∈ {0, 1, . . . n− 1}.
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Model 3 (COPY [12,13]) Let a
COPY−−−−→ (b0, b1, . . . , bn−1) be a propagation

trail of COPY. The following inequalities suffice to describe all the valid trails
for COPY: 

M.var ← a, b0, b1, . . . , bn−1 as binary;
M.con← b0 + b1 + · · ·+ bn−1 ≥ a;

M.con← a ≥ bi, ∀i ∈ {0, 1, . . . , n− 1}.

If the MILP solver supports the OR (∨) operation, then the model can also be
represented by: {

M.var ← a, b0, b1, . . . , bn−1 as binary;
M.con← a = b0 ∨ b1 ∨ · · · ∨ bn−1;

C Details of NBDP

Rules of handling constant 0 bits. As mentioned in [29], the constant 0 bits
mainly affect the AND operation, so once the input of AND involves contant
0 bits, the propagation of AND should be prevented. As for COPY or XOR, if
the input bits are all 0’s, we can choose to prevent the propagation, or simply
declare that the output bits are also all 0s.

Rule 1 (zero bits in COPY [29]) Let a COPY−−−−→ (b0, b1, . . . , bn−1) be a prop-
agation trail of COPY. If a.F = 0c, then we do not model this operation or
simply add the constraint bi = 0 for i ∈ {0, 1, . . . , n− 1}. Otherwise, we use the
MILP model of COPY to model this operation.

Rule 2 (zero bits in AND [29]) Let (a0, a1, . . . , an−1)
AND−−−→ b be a propa-

gation trail of AND. If ∃ 0 ≤ i ≤ n−1 s.t. ai.F = 0c, then we do not model this
operation. Otherwise, we use the MILP model of AND to model this operation.

Rule 3 (zero bits in XOR [29]) Let (a0, a1, . . . , an−1)
XOR−−−→ b be a propa-

gation trail of XOR. If ∃ 0 ≤ i ≤ n − 1 s.t. ai.F ̸= 0c, then we collect these
non-zero input bits, say an0

, an1
, . . . , ank

, and use the MILP model of XOR to
model (an0

, an1
, . . . , ank

)
XOR−−−→ b. Otherwise, we do not model this operation or

simply add the constraint b = 0.

Additional constraints in NBDP. Consider the composition of the operations
COPY and AND : (a, b) COPY−−−−−−−−−−−−−→

a→(a0,a1),b→(b0,b1)
(a0, a1, b0, b1)

AND−−−−−−→
(a1,b1)→c

(a0, b0, c),

denoted by (a, b)
K
⇝ (a0, b0, c). Then (1, 1)

K
⇝ (0, 1, 1), (1, 1)

K
⇝ (1, 0, 1) and

(1, 1)
K
⇝ (0, 0, 1) are all valid. The former two transitions are redundant and

thus can be eliminated by adding the following constraints:

M.con← a1 = a ∧ c,
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M.con← b1 = b ∧ c.

These two constraints indicate that if c = 1, a = 1 (resp. c = 1, b = 1), then
a1 = 1 (resp. b1 = 1) must also hold.

D Details of CMP

MILP Models of Core Monomial Trails. Based on the propagation rules
of CMP, we can easily derive the MILP models corresponding to COPY, AND
and XOR. When modeling the propagation of CMP, the flags are computed
according to the cube term ahead of time, hence the introduction of the flag
technique doesn’t affect the efficiency at all.

Model 1 (XOR) Let (a0, a1, . . . , an−1)
XOR−−−→ b be a propagation trail of XOR.

The following inequalities suffice to describe all the valid trails for XOR:
M.var ← a0, a1, . . . , an−1, b as binary;
M.con← b ≥ a0 + a1 + · · ·+ an−1, if {1c, δ} ⊆ {a0.F, a1.F, . . . , an−1.F};
M.con← b = a0 + a1 + · · ·+ an−1, otherwise .

Model 2 (AND) Let (a0, a1, . . . , an−1)
AND−−−→ b be a propagation trail of AND.

The following inequalities suffice to describe all the valid trails for AND:
M.var ← b, a0, a1, . . . , an−1 as binary;
M.con← a0 + a1 + · · ·+ an−1 ≥ b;

M.con← b ≥ ai, ∀i ∈ {0, 1, . . . , n− 1};
M.con← b = ai, ∀i ∈ {0, 1, . . . , n− 1} and ai.F = δ.

If the MILP solver supports the OR (∨) operation, then the model can also be
represented by:

M.var ← b, a0, a1, . . . , an−1 as binary;
M.con← b = a0 ∨ a1 ∨ · · · ∨ an−1;

M.con← b = ai, ∀i ∈ {0, 1, . . . , n− 1} and ai.F = δ.

Model 3 (COPY) Let a
COPY−−−−→ (b0, b1, . . . , bn−1) be a propagation trail of

AND. The following inequalities suffice to describe all the valid trails for COPY:
M.var ← a, b0, b1, . . . , bn−1 as binary;
M.con← b0 + b1 + · · ·+ bn−1 ≥ a;

M.con← a ≥ bi, ∀i ∈ {0, 1, . . . , n− 1}.

If the MILP solver supports the OR (∨) operation, then the model can also be
represented by: {

M.var ← a, b0, b1, . . . , bn−1 as binary;
M.con← a = b0 ∨ b1 ∨ · · · ∨ bn−1;
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E Our Term Expander Exploiting Callback Functions

In this section, we propose a new term expander to work with the new designed
coefficient solver proposed in Sect. 5.

E.1 Motivation

As mentioned in Sect. 3, after computing S(rn) from S(rl)u using the term ex-
pander, the coefficient solver is applied to each term in S(rn). In our experiment
with NMP, we found most terms in S(rn) are partitioned into S(rn)0 , while the
term expander can’t recognize this fact. These useless terms that are later parti-
tioned into S(rn)0 not only lead to a lot of wasted time, but also cause the number
of rounds to drop slowly.

Consider the following conditions :

Condition C:
∑

π
t(rl)

(s(rl))∈S(rl)u

|πt(rn)(s(rn)) 1 πt(rl)(s
(rl))| ≡ 1 (mod 2),

Condition D: ∃kw s.t. kwxu ⇝ πt(rn)(s(rn)).

While the term expander of NMP only captures those πt(rn)(s(rn))’s satisfying
Condition C, our new term expander aims to include πt(rn)(s(rn))s satisfying
both Condition C and D into S(rn). If we continue to obey similar rules in NMP
for selecting rn, i.e., the expansion doesn’t stop until the size of S(rn) is larger
than N for the first time, it can be predicted that our term expander will select
a rn that is farther away from rl than the term expander of NMP. As a result,
we save time for the coefficient solver while ensuring a fast drop in the number
of rounds, which helps to increase the recovery speed of superpoly.

E.2 The theory

Specifically, we can calculate πt(rn)(s(rn))s satisfying Condition C and Condition
D by the following steps:

1. For each πt(rl)(s
(rl)) ∈ S(rl)u , recover πt(rn)(s(rn))s satisfying πt(rn)(s(rn))⇝

πt(rl)(s
(rl)) and Condition D, and add πt(rn)(s(rn))s to a multiset T(rn).

2. Count the number of occurrences for each element in T(rn) and add elements
occurring an odd number of times to S(rn), then S(rn) is exactly what we
want.

How to recover πt(rn)(s(rn))s satisfying πt(rn)(s(rn)) ⇝ πt(rl)(s
(rl)) and Condi-

tion D has been discussed in Sect. 5 and two MILP models have been proposed
to solve it provided that enumerating all solutions of the MILP model is fea-
sible. Since πt(rl)(s

(rl)) is partitioned into S(rl)u , enumerating all the solutions
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turns out to be infeasible here. To circumvent this requirement, we attempt to
list all possible values of πt(rn)(s(rn)) one by one for the MILP model based on

rc rounds︷ ︸︸ ︷
k0xu NBDP−−−−−→ πk(rc)(s

(rc)) ⪯̂

rl−rc rounds︷ ︸︸ ︷
πt(rc)(s

(rc))
MP−−→ πt(rn)(s

(rn))
MP−−→ π

t(rl)
(s(rl)), (10)

or
rc rounds︷ ︸︸ ︷

k0xu CMP−−−−→ πΛδ(t(rc))(s
(rc)) ⪯̃

rl−rc rounds︷ ︸︸ ︷
πt(rc)(s

(rc))
MP−−→ πt(rn)(s

(rn))
MP−−→ π

t(rl)
(s(rl)),

(11)
where rc is an arbitrary round close to rn satisfying 0 < rc ≤ rn. Every time we
obtain a solution of πt(rn)(s(rn)), we remove it from the solution space and check
if πt(rn)(s(rn)) → πt(rl)(s

(rl)) using the monomial prediction manually, which
can be implemented by callback functions in Gurobi. Such a strategy, also used
in [28], entails repeatedly finding one solution for a MILP model. If even finding
one solution for the MILP model is impossible, which usually happens for a large
rl, say rl = 800 for Trivium, then we have to resort to the expansion strategy in
NMP2. A threshold value Rs of the number of rounds is set to determine when
the expansion strategy of NMP should be used. When our expansion strategy
fails, i.e, the time to find a solution exceeds our preset time limit, we also fall
back to the expansion strategy of NMP. In our experiment, we found that the
MILP model of Eqn. (10) performed better than the one of Eqn. (11) in callback
mode, so we decide to use NBDP in the first rc rounds.

The choice of rn. When implementing our term expander in practice, we select
a moderate value of ε for the cipher and attempt to recover πt(rl−tε)(s(rl−tε))s
satisfying Condition C and D for a t that starts from 1 and is incremented. rn is
chosen as the first value of rl − tε that makes the size of S(rl−tε) larger than N ,
where N is equal to 10 000 or 15 000. Note that once the selection of rn is over,
S(rn) has also been calculated.

To sum up, an intuitive description of our term expander and how to select
rn is present in Algorithm 6, where we use ChooceRCiX(rn) to represent the
procedure of selecting rc and τ ′ to represent the preset time limit for our term
expander.

2 The expansion strategy of NMP is independent of the number of rounds, but it will
generate thousands of useless terms, which leads to more time consumption.
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Algorithm 6: New term expander and how to choose rn

1 Procedure ChooseRiX(S(rl)u , rl,u indicating the cube term xu, ε):
2 if rl > Rs then
3 Call the term expander in NMP to expand π

t(rl)
(s(rl)) into S(rn)

4 return rn

5 S(rl) ← S(rl)u

6 do
7 rn ← rl − ε
8 rc = ChooceRCiX(rn)

9 Initialize an empty set S(rn)

10 Prepare a hash table J(rn) whose key is a term of rn-th round and the value is an
integer

11 for π
t(rl)

(s(rl)) ∈ S(rl) do
12 Prepare an empty set P(rn)

13 M = NBDP-MPModelX(rl, t(rl),u, rc) /* See Algorithm 4 */
14 Solve the MILP model M within the time limit τ ′

15 Loop
16 if Find a solution for M then
17 Extract the solution corresponding to π

t(rn) (s
(rn)) as πp(s

(rn))

18 Remove πp(s
(rn)) from the solution space

19 Solve a MILP model of the monomial prediction to determine if
πp(s

(rn))→ π
t(rl)

(s(rl))

20 if πp(s
(rn))→ π

t(rl)
(s(rl)) then

21 Add πp(s
(rn)) to P(rn)

22 Continue to solve M
23 else if M has no solution then
24 Break the loop

25 else if M reaches the time limit then
26 Clear P(rn) and call the term expander of NMP to expand

π
t(rl)

(s(rl)) into P(rn)

27 Break the loop

28 for each π
t(rn) (s

(rn)) in P(rn) do
29 Increase J(rn)[π

t(rn) (s
(rn))] by 1

30 for each π
t(rn) (s

(rn)) whose J(rn)[π
t(rn) (s

(rn))] is an odd-number do
31 S(rn) = S(rn) ∪ π

t(rn) (s
(rn))

32 S(rl) ← S(rn)

33 rl ← rn

34 while |S(rl)| ≤ N
35 return rn

36 Procedure TermExpanderX(S(rl)u , rl, rn,u indicating the cube term xu, ε):
37 Notice that once rn is selected, S(rn) is already determined, so we extract the set

S(rn) directly from ChooseRiX(S(rl)u , rl,u, ε).
38 return S(rn)
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F Basic Models and Functions Used for NBDP and CMP

Algorithm 8: Basic models for CMP
1 Procedure CMPCopy(M, x):
2 M.var ← y, z as binary
3 M.con← x = y ∨ z
4 return (M, y, z)

5 Procedure CMPAnd1(M, x, the set of M.var’s V):
6 if x.F ̸= 0c then
7 (M, y, z) = CMPCopy(M, x)
8 Add z to V
9 else

10 y = x

11 return (M, y,V)
12 Procedure CMPAnd2(M, x0, x1, the set of M.var’s V):
13 if x0.F ̸= 0c and x1.F ̸= 0c then
14 (M, y0, z0) = CMPCopy(M, x0), (M, y1, z1) = CMPCopy(M, x1)
15 M.con← a = z0 ∨ z1
16 for xi ∈ {x0, x1} for which xi.F = δ do
17 M.con← a = zi

18 Add a to V
19 else
20 y0 = x0, y1 = x1

21 return (M, y0, y1,V)
22 Procedure CMPAnd3(M, x0, x1, x2, the set of M.var’s V):
23 if x0.F ̸= 0c, x1.F ̸= 0c and x2.F ̸= 0c then
24 (M, y0, z0) = CMPCopy(M, x0), (M, y1, z1) = CMPCopy(M, x1)
25 (M, y2, z2) = CMPCopy(M, x2)
26 M.con← a = z0 ∨ z1 ∨ z2
27 for xi ∈ {x0, x1, x2} for which xi.F = δ do
28 M.con← a = zi

29 Add a to V
30 else
31 y0 = x0, y1 = x1, y2 = x2

32 return (M, y0, y1, y2,V)
33 Procedure CMPAnd4(M, x0, x1, x2, x3, the set of M.var’s V):
34 if x0.F ̸= 0c, x1.F ̸= 0c, x2.F ̸= 0c and x3.F ̸= 0c then
35 (M, y0, z0) = CMPCopy(M, x0), (M, y1, z1) = CMPCopy(M, x1)
36 (M, y2, z2) = CMPCopy(M, x2), (M, y3, z3) = CMPCopy(M, x3)
37 M.con← a = z0 ∨ z1 ∨ z2 ∨ z3
38 for xi ∈ {x0, x1, x2, x3} for which xi.F = δ do
39 M.con← a = zi

40 Add a to V
41 else
42 y0 = x0, y1 = x1, y2 = x2, y3 = x3

43 return (M, y0, y1, y2, y3,V)
44 Procedure CMPXor(M, the set of M.var’s V):
45 M.var ← o as binary
46 if |V| = 0 then
47 M.con← o = 0

48 else
49 Initialize a linear expression nv = 0
50 for v ∈ V do
51 nv += v

52 M.con← o = nv

53 return (M, o)
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Algorithm 7: Basic models for NBDP
1 Procedure NBDPCopy(M, x):
2 M.var ← y, z as binary
3 M.con← x = y + z
4 return (M, y, z)

5 Procedure NBDPAnd1(M, x, the set of M.var’s V):
6 if x.F ̸= 0c then
7 (M, y, z) = NBDPCopy(M, x)
8 Add z to V
9 else

10 y = x

11 return (M, y,V)
12 Procedure NBDPAnd2(M, x0, x1, the set of M.var’s V):
13 if x0.F ̸= 0c and x1.F ̸= 0c then
14 (M, y0, z0) = NBDPCopy(M, x0), (M, y1, z1) = NBDPCopy(M, x1)
15 M.con← a = z0 ∨ z1
16 M.con← z0 = a ∧ x0, z1 = a ∧ x1
17 Add a to V
18 else
19 y0 = x0, y1 = x1

20 return (M, y0, y1,V)
21 Procedure NBDPAnd3(M, x0, x1, x2, x3, the set of M.var’s V):
22 if x0.F ̸= 0c, x1.F ̸= 0c and x2.F ̸= 0c then
23 (M, y0, z0) = NBDPCopy(M, x0), (M, y1, z1) = NBDPCopy(M, x1)
24 (M, y2, z2) = NBDPCopy(M, x2)
25 M.con← a = z0 ∨ z1 ∨ z2
26 M.con← z0 = a ∧ x0, z1 = a ∧ x1, z2 = a ∧ x2
27 Add a to V
28 else
29 y0 = x0, y1 = x1, y2 = x2

30 return (M, y0, y1, y2,V)
31 Procedure NBDPAnd4(M, x0, x1, x2, the set of M.var’s V):
32 if x0.F ̸= 0c, x1.F ̸= 0c, x2.F ̸= 0c and x3.F ̸= 0c then
33 (M, y0, z0) = NBDPCopy(M, x0), (M, y1, z1) = NBDPCopy(M, x1)
34 (M, y2, z2) = NBDPCopy(M, x2), (M, y3, z3) = NBDPCopy(M, x3)
35 M.con← a = z0 ∨ z1 ∨ z2 ∨ z3
36 M.con← z0 = a ∧ x0, z1 = a ∧ x1, z2 = a ∧ x2, z3 = a ∧ x3
37 Add a to V
38 else
39 y0 = x0, y1 = x1, y2 = x2, y3 = x3

40 return (M, y0, y1, y2, y3,V)
41 Procedure NBDPXor(M, the set of M.var’s V):
42 M.var ← o as binary
43 if |V| = 0 then
44 M.con← o = 0

45 else
46 Initialize a linear expression nv = 0
47 for v ∈ V do
48 nv += v

49 M.con← o = nv

50 return (M, o)
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G Borrowed Models and Functions from [12,13]

G.1 Trivium

Algorithm 9: MILP Model for monomial trails of the update function
in Trivium
1 Procedure MPTriviumCore( M, x0, x1, . . . , x287, i1, i2, i3, i4, i5):
2 M.var ← yi1 , yi2 , yi3 , yi4 , yi5 , z1, z2, z3, z4, a as binary
3 M.con← xij = yij ∨ zj for all j ∈ {1, 2, 3, 4}
4 M.con← a = z3
5 M.con← a = z4
6 M.con← yi5 = xi5 + a + z1 + z2
7 for i ∈ {0, 1, . . . , 287} w/o i1, i2, i3, i4, i5 do yi = xi
8 return (M, y0, y1, . . . , y287)

9 Procedure MPTriviumUpdate(M, si0, . . . , s
i
287):

10 (M, x0, . . . , x287) = MPTriviumCore(M, si0, . . . , s
i
287, 65, 170, 90, 91, 92)

11 (M, y0, . . . , y287) = MPTriviumCore(M, x0, . . . , x287, 161, 263, 174, 175, 176)
12 (M, z0, . . . , z287) = MPTriviumCore(M, y0, . . . , y287, 242, 68, 285, 286, 287)
13 (si+1

0 , . . . , si+1
287 ) = (z287, z0, . . . , z286)

14 return (M, si+1
0 , . . . , si+1

287 )

G.2 Kreyvium

Algorithm 10: MILP Model for monomial trails of the update function
in Kreyvium
1 Procedure MPLFSR( M, x0, . . . , x127):
2 M.var ← a, b as binary
3 M.con← x0 = a ∨ b
4 (y0, . . . , y127) = (x1, . . . , x126, a)
5 return (M, y0, y1, . . . , y127, b)

6 Procedure MPKreyviumUpdate( M, si0, . . . , s
i
287, K

∗,i
0 , . . . , K∗,i127 , IV

∗,i
0 , . . . , IV∗,i127 ):

7 (M, K∗,i+1
0 , . . . , K∗,i+1

127 , ai)← MPLFSR(M, K∗,i0 , . . . , K∗,i127 )

8 (M, IV∗,i+1
0 , . . . , IV∗,i+1

127 , bi)← MPLFSR(M, IV∗,i0 , . . . , IV∗,i127 )

9 (M, x0, . . . , x287) = MPTriviumCore(M, si0, . . . , s
i
287, 65, 170, 90, 91, 92)

10 (M, y0, . . . , y287) = MPTriviumCore(M, x0, . . . , x287, 161, 263, 174, 175, 176)
11 (M, z0, . . . , z287) = MPTriviumCore(M, y0, . . . , y287, 242, 68, 285, 286, 287)
12 M.var ← ti1, t

i
3 as binary

13 M.con← ti1 = z92 + bi

14 M.con← ti3 = z287 + ai

15 (si+1
0 , . . . , si+1

287 ) = (ti3, z0, . . . , z91, t
i
1, z93, . . . , z286)

16 return (M, si+1
0 , . . . , si+1

287 , K∗,i+1
0 , . . . , K∗,i+1

127 , IV∗,i+1
0 , . . . , IV∗,i+1

127 )
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G.3 Acorn

Algorithm 11: MILP Models for monomial trails of Maj and Ch in
Acorn
1 Procedure MPMaj(M, x0, . . . , x292, i, j, k):
2 M.var ← a, b, c, yi, yj, yk, o as binary
3 M.con← xi = a ∨ b ∨ yi
4 M.con← xj = a ∨ c ∨ yj
5 M.con← xk = b ∨ c ∨ yk
6 M.con← o = a + b + c
7 for i ∈ {0, 1, . . . , 292} w/o i, j, k do yi = xi
8 return (M, y0, y1, . . . , y292, o)

9 Procedure MPCh(M, x0, . . . , x292, i, j, k):
10 M.var ← a, b, c, yi, yj, yk, o as binary
11 M.con← xi = a ∨ b ∨ yi
12 M.con← xj = a ∨ yj
13 M.con← xk = b ∨ c ∨ yk
14 M.con← o = a + b + c
15 for i ∈ {0, 1, . . . , 292} w/o i, j, k do yi = xi
16 return (M, y0, y1, . . . , y292, o)

Algorithm 12: MILP Models for monomial trails of the LFSR in
Acorn
1 Procedure MPxorFB(M, x0, . . . , x292, i, j, k):
2 M.var ← b, c, yj, yk, yi as binary
3 M.con← xj = b ∨ yj
4 M.con← xk = c ∨ yk
5 M.con← yi = xi + b + c
6 for i ∈ {0, 1, . . . , 292} w/o i, j, k do yi = xi
7 return (M, y0, y1, . . . , y292)

Algorithm 13: MILP Models for monomial trails of ksg128 and fbk128
in Acorn
1 Procedure MPksg128(M, x0, . . . , x292):
2 (M, y0, y1, . . . , y292, c) = MPMaj(M, x0, . . . , x292, 235, 61, 193)
3 (M, z0, z1, . . . , z292, d) = MPCh(M, y0, . . . , y292, 230, 111, 66)
4 M.var ← a, b, t12, t154, o as binary
5 M.con← z12 = a ∨ t12
6 M.con← z154 = b ∨ t154
7 M.con← o = a + b + c + d
8 for i ∈ {0, 1, . . . , 292} w/o 12, 154 do ti = zi
9 return (M, t0, t1, . . . , t292, o)

10 Procedure MPfbk128(M, x0, . . . , x292):
11 (M, y0, y1, . . . , y292, d) = MPMaj(M, x0, . . . , x292, 244, 23, 160)
12 M.var ← a, b, c, t0, t107, t196, o as binary
13 M.con← y0 = a ∨ t0
14 M.con← y107 = b ∨ t107
15 M.con← y196 = c ∨ t196
16 M.con← o ≥ a + b + c + d
17 for i ∈ {0, 1, . . . , 292} w/o 0, 107, 196 do ti = yi
18 return (M, t0, t1, . . . , t292, o)
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Algorithm 14: MILP Models for monomial trails of the update func-
tion in Acorn
1 Procedure MPgenM(M, k0, . . . , k127, v0, . . . , v127, r):
2 M.var ← a, x as binary
3 if r < 128 then
4 M.con← kr = a ∨ x

5 k′r = x

6 for i ∈ {0, 1, . . . , 127} w/o r do k′i = ki

7 return (M, k′0, . . . , k
′
127, v0, . . . , v127, a)

8 else if r < 256 then
9 M.con← vr−128 = a ∨ x

10 v′r−128 = x

11 for i ∈ {0, 1, . . . , 127} w/o r − 128 do v′i = vi

12 return (M, k0, . . . , k127, v
′
0, . . . , v

′
127, a)

13 else
14 M.con← kr mod 128 = a ∨ x

15 k′r mod 128 = x

16 for i ∈ {0, 1, . . . , 127} w/o r mod 128 do k′i = ki
17 if r ̸= 256 then
18 return (M, k′0, . . . , k

′
127, v0, . . . , v127, a)

19 else
20 M.var ← o as binary
21 M.con← o ≥ a

22 return (M, k′0, . . . , k
′
127, v0, . . . , v127, o)

23 Procedure MPAcornUpdate(M, si0, . . . , s
i
292, k

i
0, . . . , k

i
127, v

i
0, . . . , v

i
127):

24 (M, t0, . . . , t292) = MPxorFB(M, si0, . . . , s
i
292, 289, 235, 230)

25 (M, u0, . . . , u292) = MPxorFB(M, t0, . . . , t292, 230, 196, 193)
26 (M, w0, . . . , w292) = MPxorFB(M, u0, . . . , u292, 193, 160, 154)
27 (M, l0, . . . , l292) = MPxorFB(M, w0, . . . , w292, 154, 111, 107)
28 (M, x0, . . . , x292) = MPxorFB(M, l0, . . . , l292, 107, 66, 61)
29 (M, y0, . . . , y292) = MPxorFB(M, x0, . . . , x292, 61, 23, 0)
30 (M, a0, . . . , a292, e) = MPksg128(M, y0, . . . , y292)
31 (M, z0, . . . , z292, b) = MPfbk128(M, a0, . . . , a292)

32 (M, ki+1
0 , . . . , ki+1

127 , vi+1
0 , . . . , vi+1

127 , m) = MPgenM(M, ki0, . . . , k
i
127, v

i
0, . . . , v

i
127, i)

33 M.var ← o as binary
34 M.con← o = e + m + b
35 M.con← z0 = 0

36 (si+1
0 , . . . , si+1

292 ) = (z1, z2, . . . , z292, o)

37 return (M, si+1
0 , . . . , si+1

292 , ki+1
0 , . . . , ki+1

127 , vi+1
0 , . . . , vi+1

127 )

G.4 Grain-128AEAD
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Algorithm 15: MILP Models for monomial trails of XOR and AND in
Grain-128AEAD
1 Procedure MPAND(M, b0, . . . , b127, s0, . . . , s127, I, J):
2 M.var ← b′i, xi ∀ i ∈ I as binary
3 M.var ← s′j, yj ∀ j ∈ J as binary
4 M.var ← z as binary
5 M.con← bi = b′i ∨ xi ∀ i ∈ I

6 M.con← si = s′j ∨ yj ∀ j ∈ J

7 M.con← z = xi ∀ i ∈ I
8 M.con← z = yj ∀ j ∈ J

9 for i ∈ {0, 1, . . . , 127}\I do s′i = si

10 for j ∈ {0, 1, . . . , 127}\J do b′j = bj

11 return (M, b′0, . . . , b
′
127, s

′
0, . . . , s

′
127, z)

12 Procedure MPXOR((M, b0, . . . , b127, s0, . . . , s127, I, J):
13 M.var ← b′i, xi ∀ i ∈ I as binary
14 M.var ← s′j, yj ∀ j ∈ J as binary
15 M.con← z as binary
16 M.con← bi = b′i ∨ xi ∀i ∈ I

17 M.con← sj = s′j ∨ yj ∀j ∈ J

18 M.con← z =
∑

i∈I xi +
∑

j∈J yj

19 for i ∈ {0, 1, . . . , 127}\I do b′i = bi
20 for j ∈ {0, 1, . . . , 127}\J do s′j = sj

21 return (M, b′0, . . . , b
′
127, s

′
0, . . . , s

′
127, z)

Algorithm 16: MILP Models for monomial trails of the NFSR and
LFSR in Grain-128AEAD
1 Procedure MPfuncZ( M, b0, . . . , b127, s0, . . . , s127):
2 (M, b0, . . . , b127, s0, . . . , s127, a1) = MPAND(M, b0, . . . , b127, s0, . . . , s127, {12}, {8})
3 (M, b0, . . . , b127, s0, . . . , s127, a2) = MPAND(M, b0, . . . , b127, s0, . . . , s127,∅, {13, 20})
4 (M, b0, . . . , b127, s0, . . . , s127, a3) = MPAND(M, b0, . . . , b127, s0, . . . , s127, {95}, {42})
5 (M, b0, . . . , b127, s0, . . . , s127, a4) = MPAND(M, b0, . . . , b127, s0, . . . , s127,∅, {60, 79})
6 (M, b0, . . . , b127, s0, . . . , s127, a5) = MPAND(M, b0, . . . , b127, s0, . . . , s127, {12, 95}, {94})
7 (M, b0, . . . , b127,∅, x1) = MPXOR(M, b0, . . . , b127,∅, {2, 15, 36, 45, 64, 73, 89},∅)
8 (M,∅, s0, . . . , s127, x2) = MPXOR(M,∅, s0, . . . , s127,∅, {93})
9 M.var ← z as binary

10 M.con← z = x1 + x2 +
∑5

i=1 ai
11 return (M, b0, . . . , b127, s0, . . . , s127, z)

12 Procedure MPfuncF(M, s0, . . . , s127):
13 (M,∅, s0, . . . , s127, f) = MPXOR(M,∅, s0, . . . , s127,∅, {0, 7, 38, 70, 81, 96})
14 return (M, s0, . . . , s127, f)

15 Procedure MPfuncG(M, b0, . . . , b127):
16 (M, b0, . . . , b127,∅, a1) = MPAND(M, b0, . . . , b127,∅, {3, 67},∅)
17 (M, b0, . . . , b127,∅, a2) = MPAND(M, b0, . . . , b127,∅, {11, 13},∅)
18 (M, b0, . . . , b127,∅, a3) = MPAND(M, b0, . . . , b127,∅, {17, 18},∅)
19 (M, b0, . . . , b127,∅, a4) = MPAND(M, b0, . . . , b127,∅, {27, 59},∅)
20 (M, b0, . . . , b127,∅, a5) = MPAND(M, b0, . . . , b127,∅, {40, 48},∅)
21 (M, b0, . . . , b127,∅, a6) = MPAND(M, b0, . . . , b127,∅, {61, 65},∅)
22 (M, b0, . . . , b127,∅, a7) = MPAND(M, b0, . . . , b127,∅, {68, 84},∅)
23 (M, b0, . . . , b127,∅, a8) = MPAND(M, b0, . . . , b127,∅, {88, 92, 93, 95},∅)
24 (M, b0, . . . , b127,∅, a9) = MPAND(M, b0, . . . , b127,∅, {22, 24, 25},∅)
25 (M, b0, . . . , b127,∅, a10) = MPAND(M, b0, . . . , b127,∅, {70, 78, 82},∅)
26 (M, b0, . . . , b127,∅, x) = MPAND(M, b0, . . . , b127,∅, {0, 26, 56, 91, 96},∅)
27 M.var ← g as binary
28 M.con← g = x +

∑10
i=1 ai

29 return (M, b0, . . . , b127, g)
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Algorithm 17: MILP Models for monomial trails of the update func-
tion in Grain-128AEAD
1 Procedure MPGrainUpdate(M, br−1

0 , . . . , br−1
127 , sr−1

0 , . . . , sr−1
127 ):

2 (M, b′0, . . . , b
′
127, s

′
0, . . . , s

′
127, z

r−1) = MPfuncZ(M, br−1
0 , . . . , br−1

127 , sr−1
0 , . . . , sr−1

127 )
3 M.var ← zg, zf as binary
4 M.con← zr−1 = zg ∨ zf

5 (M, b′′0 , . . . , b
′′
127, g) = MPfuncG(M, b′0, . . . , b

′
127)

6 (M, s′′0 , . . . , s
′′
127, f) = MPfuncF(M, s′0, . . . , s

′
127)

7 for i = 0 to 126 do
8 bri = b′′i+1

9 sri = s′′i+1

10 M.var ← br127, s
r
127 as binary

11 M.con← b′′0 = 0

12 M.con← br127 = g + s′′0 + zg
13 M.con← sr127 = f + zf

/* Additional constraint in [12] */
14 M.con← sr−1

0 + zr−1 ≤ 1
15 return (M, br0, . . . , b

r
127, s

r
0, . . . , s

r
127)

H Application to Trivium

Trivium is an NLFSR-based stream cipher designed by De Cannière and Pre-
neel [6]. Its initial state is represented by a 288-bit state (s0, s1, . . . , s287). In the
initialization phase, the 80-bit key is loaded to the first register and the 80-bit
IV is loaded to the second register. The other state bits are set to 0 except the
last three bits in the third register. Namely, the initial state bits are given by

(s0, s1, . . . , s92)← (K0,K1, . . . ,K79, 0, . . . , 0)

(s93, s95, . . . , s176)← (IV0, IV1, . . . , IV79, 0, . . . , 0)

(s177, s179, . . . , s287)← (0, . . . , 0, 1, 1, 1) .

Then from the initial state, the state is updated 1152 times without producing
an output. This process can be represented by the following pseudo-code:

for i = 0 to 1151 do
t1 ← s65 ⊕ s90 · s91 ⊕ s92 ⊕ s170

t2 ← s161 ⊕ s174 · s175 ⊕ s176 ⊕ s263

t3 ← s242 ⊕ s285 · s286 ⊕ s287 ⊕ s68

(s0, s1, . . . , s92)← (t3, s0, s1, . . . , s91)

(s93, s95, . . . , s176)← (t1, s93, s94, . . . , s175)

(s177, s178, . . . , s287)← (t2, s177, s178 . . . , s286)

end for

After the initialization, one key stream bit is produced by z = s65⊕ s92⊕ s161⊕
s176⊕s242⊕s287 during each iteration. This paper studies reduced-round variants
of Trivium in which the number of state updates in the initialization is reduced
to r.
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MILP Model. The MILP model of monomial trails of the update function
in Trivium is illustrated as MPTriviumUpdate in Algorithm 9. For the term
expander, the MILP model NBDP-MPModelTrivium is illustrated in Algorithm 18.
For the coefficient solver, the MILP model CMP-MPModelTrivium is presented in
Algorithm 20.

Parameters. For the term expander, we fix ε,Rs, N, τ ′ to 20, 600, 15000, 3000
respectively. rc is chosen to be the same value as rn according to the procedure
ChooseRCiTrivium, as shown in Algorithm 19. For the coefficient solver, τ is
selected in the same way as in [16], as shown in Algorithm 21. rm is fixed to 90
in CMP-MPModelTrivium to ensure all V T (90)s can be solved by the monomial
prediction.

Superpoly Verification for 843-, 844- and 845-Round Trivium. In [16],
five cube indices are chosen heuristically to construct the new cubes, as shown in
Table 5 in Sup.Mat. A.2. We verified their results by our new nested framework,
but with a much lower time complexity. The verification results are present in
Table 1.
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Algorithm 18: MILP model for the term expander when applying our
nested framework to Trivium
1 Procedure NBDPTriviumCore(M, x0, x1, . . . , x287, i1, i2, i3, i4, i5):
2 Initialize an empty set V of M.var
3 (M, yi1 ,V) = NBDPAnd1(M, xi1 ,V)
4 (M, yi2 ,V) = NBDPAnd1(M, xi2 ,V)
5 (M, yi3 , yi4 ,V) = NBDPAnd2(M, xi3 , xi4 ,V)
6 if xi5 .F ̸= 0c then
7 Add xi5 to V
8 (M, yi5 ) = NBDPXor(M,V)
9 for i ∈ {0, 1, . . . , 287} w/o i1, i2, i3, i4, i5 do yi = xi

10 return (M, y0, y1, . . . , y287)

11 Procedure NBDPTriviumUpdate(M, si0, . . . , s
i
287):

12 (M, x0, . . . , x287) = NBDPTriviumCore(M, si0, . . . , s
i
287, 65, 170, 90, 91, 92)

13 (M, y0, . . . , y287) = NBDPTriviumCore(M, x0, . . . , x287, 161, 263, 174, 175, 176)
14 (M, z0, . . . , z287) = NBDPTriviumCore(M, y0, . . . , y287, 242, 68, 285, 286, 287)
15 (si+1

0 , . . . , si+1
287 ) = (z287, z0, . . . , z286)

16 return (M, si+1
0 , . . . , si+1

287 )

17 Procedure NBDP-MPModelTrivium(the number of rounds r, t(r) indicating the output bit
π
t(r)

(s(r)), u indicating the cube term xu, the middle round rm):
18 Declare an empty MILP Model M
19 M.var ← s0i for i ∈ {0, 1, . . . , 287}
20 for i = 0 to 92 and i = 93 + 80 to 287 do M.con← s0i = 0
21 for i = 93 to 172 do
22 M.con← s0i = 1 ∀ ui−93 = 1

23 M.con← s0i = 0 ∀ ui−93 = 0

24 for i = 0 to rm − 1 do
25 (M, si+1

0 , . . . , si+1
287 ) = NBDPTriviumUpdate(M, si0, . . . , s

i
287)

26 M.var ← ss
rm
i for i ∈ {0, 1, . . . , 287}

27 for i = 0 to 287 do
28 if s

(rm)
i .F = 0c thenM.con← s

rm
i = ss

rm
i = 0

29 elseM.con← s
rm
i ≤ ss

rm
i

30 for i = rm to r − 1 do
31 (M, ssi+1

0 , . . . , ssi+1
287 ) = MPTriviumUpdate(M, ssi0, . . . , ss

i
287)

32 for i = 0 to 287 do
33 if t

(r)
i = 0 thenM.con← ssri = 0

34 elseM.con← ssri = 1

35 returnM

Algorithm 19: ChooseRCiTrivium
1 Procedure ChooseRCiTrivium(rn):
2 rc = rn
3 return rc
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Algorithm 20: MILP model for the coefficient solver when applying
our nested framework to Trivium
1 Procedure CMPTriviumCore(M, x0, x1, . . . , x287, i1, i2, i3, i4, i5):
2 Initialize an empty set V of M.var
3 (M, yi1 ,V) = CMPAnd1(M, xi1 ,V)
4 (M, yi2 ,V) = CMPAnd1(M, xi2 ,V)
5 (M, yi3 , yi4 ,V) = CMPAnd2(M, xi3 , xi4 ,V)
6 if xi5 .F ̸= 0c then
7 Add xi5 to V
8 (M, yi5 ) = CMPXor(M,V)
9 for i ∈ {0, 1, . . . , 287} w/o i1, i2, i3, i4, i5 do yi = xi

10 return (M, y0, y1, . . . , y287)

11 Procedure CMPTriviumUpdate(M, si0, . . . , s
i
287):

12 (M, x0, . . . , x287) = CMPTriviumCore(M, si0, . . . , s
i
287, 65, 170, 90, 91, 92)

13 (M, y0, . . . , y287) = CMPTriviumCore(M, x0, . . . , x287, 161, 263, 174, 175, 176)
14 (M, z0, . . . , z287) = CMPTriviumCore(M, y0, . . . , y287, 242, 68, 285, 286, 287)
15 (si+1

0 , . . . , si+1
287 ) = (z287, z0, . . . , z286)

16 return (M, si+1
0 , . . . , si+1

287 )

17 Procedure CMP-MPModelTrivium(the number of rounds r, t(r) indicating the output bit
π
t(r)

(s(r)), u indicating the cube term xu, the middle round rm):
18 Declare an empty MILP Model M
19 M.var ← s0i for i ∈ {0, 1, . . . , 287}
20 for i = 0 to 92 and i = 93 + 80 to 287 do M.con← s0i = 0
21 for i = 93 to 172 do
22 M.con← s0i = 1 ∀ ui−93 = 1

23 M.con← s0i = 0 ∀ ui−93 = 0

24 for i = 0 to rm − 1 do
25 (M, si+1

0 , . . . , si+1
287 ) = CMPTriviumUpdate(M, si0, . . . , s

i
287)

26 M.var ← ss
rm
i for i ∈ {0, 1, . . . , 287}

27 for i = 0 to 287 do
28 if s

(rm)
i .F = 0c thenM.con← s

rm
i = ss

rm
i = 0

29 else if s
(rm)
i .F = 1c thenM.con← s

rm
i ≤ ss

rm
i

30 elseM.con← s
rm
i = ss

rm
i

31 for i = rm to r − 1 do
32 (M, ssi+1

0 , . . . , ssi+1
287 ) = MPTriviumUpdate(M, ssi0, . . . , ss

i
287)

33 for i = 0 to 287 do
34 if t

(r)
i = 0 thenM.con← ssri = 0

35 elseM.con← ssri = 1

36 returnM

Algorithm 21: ChooseTiTrivium
1 Procedure ChooseTiTrivium(rn):
2 if rn ≥ 600 then τ = 40 seconds
3 else if rn ≥ 500 then τ = 80 seconds
4 else if rn ≥ 400 then τ = 160 seconds
5 else if rn ≥ 300 then τ = 320 seconds
6 else if rn ≥ 200 then τ = 640 seconds
7 else if rn ≥ 100 then τ = 1200 seconds
8 else if rn ≥ 20 then τ = 3600 seconds
9 else if rn ≥ 0 then τ =∞

10 return τ
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I Application to Grain-128AEAD

Grain-128AEAD [15] is an authenticated encryption algorithm and also one of
the ten finalist candidates of the NIST LWC standardization process. The design
of Grain-128AEAD inherits from Grain-128a, which was proposed in 2011 [4].
Hereinafter, we follow the assumption in [12,13] that the first bit of the pre-
output key stream can be observed, so there is no difference between Grain-128a
and Grain-128AEAD under this assumption.

The initial state of Grain-128AEAD can be represented by two 128-bit states,
(b0, b1, ..., b127) and (s0, s1, . . . , s127). The 128-bit key is loaded to the first register
b and the 96-bit initialization vector is loaded to the second register s. The other
state bits of s are set to 1 except the least one bit. Namely, the initial state bits
are represented as

(b0, b1, . . . , b127) = (K0,K1, . . . ,K127),

(s0, s1, . . . , s127) = (N0, N1, . . . , N95, 1, . . . , 1, 0).

The pseudo code of the update function in the initialization is given as follows.

g ← b0 ⊕ b26 ⊕ b56 ⊕ b91 ⊕ b96 ⊕ b3b67 ⊕ b11b13 ⊕ b17b18 ⊕ b27b59 ⊕ b40b48

⊕b61b65 ⊕ b68b84 ⊕ b88b92b93b95 ⊕ b22b24b25 ⊕ b70b78b82,

f ← s0 ⊕ s7 ⊕ s38 ⊕ s70 ⊕ s81 ⊕ s96,

h← b12s8 ⊕ s13s20 ⊕ b95s42 ⊕ s60s79 ⊕ b12b95s94,

z ← h⊕ s93 ⊕ b2 ⊕ b15 ⊕ b36 ⊕ b45 ⊕ b64 ⊕ b73 ⊕ b89,

(b0, b1, . . . , b127)← (b1, . . . , b127, g ⊕ s0 ⊕ z),

(s0, s1, . . . , s127)← (s1, . . . , s127, f ⊕ z).

In the initialization phase, the 256-bit state is updated 256 times without pro-
ducing an output. After the initialziation, z is used as a pre-output key instead
of being fed to the state. We study the variant of Grain-128AEAD whose ini-
tialization phase is reduced to r rounds.

MILP Model. The MILP model for monomial trails of the update function is
illustrated as MPGrainUpdate in Algorithm 17, whose supporting functions such
as MPfuncZ, MPfuncG and MPfuncF are directly borrowed from [12,13] and shown
in Algorithm 16. For the term expander, the MILP model NBDP-MPModelGrain
presented in Algorithm 24 corresponds to Eqn. (5), which is built based on
MPGrainUpdate and NBDPGrainUpdate in Algorithm 23. The MILP models of
supporting functions are provided in Algorithm 22. For the coefficient solver,
the MILP model CMP-MPGrainUpdate in Algorithm 28 corresponds to Eqn. (7).
The MILP model of core monomial trails of the update function is shown in
Algorithm 27.

Parameters. For the term expander, we fix ε,Rs, N, τ ′ to 1, 131, 15000, 3600
respectively. rc is chosen to be the same value as rn according to the procedure
ChooseRCiGrain, as shown in Algorithm 25. For the coefficient solver, the choice
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of τ is shown in Algorithm 29. rm is fixed to 40 in CMP-MPModelGrain to ensure
the second stage of the coefficient solver can be completed quickly.

Superpoly verification for 191-Round Grain-128AEAD. In [16], the su-
perpolies of two cubes indexed by {0, 1, 2, . . . , 95} and {0, 1, 2, . . . , 95}\{30} are
recovered for Grain-128AEAD reduced to 191 rounds. We verified their results
with our new framework and it took us about 3 days.

Algorithm 22: MILP Models for division trails of NBDP of the NFSR
and LFSR in Grain-128AEAD
1 Procedure NBDPfuncZ(M, b0, . . . , b127, s0, . . . , s127):
2 Initialize a empty set V of M.var
3 (M, b12, s8,V) = NBDPAnd2(M, b12, s8,V)
4 (M, s13, s20,V) = NBDPAnd2(M, s13, s20,V)
5 (M, b95, s42,V) = NBDPAnd2(M, b95, s42,V)
6 (M, s60, s79,V) = NBDPAnd2(M, s60, s79,V)
7 (M, b12, b95, s94,V) = NBDPAnd3(M, b12, b95, s94,V)
8 (M, s93,V) = NBDPAnd1(M, s93,V)
9 (M, bi,V) = NBDPAnd1(M, bi,V) ∀i ∈ {2, 15, 36, 45, 64, 73, 89}

10 (M, z) = NBDPXor(M,V)
11 return (M, b0, . . . , b127, s0, . . . , s127, z)

12 Procedure NBDPfuncF(M, s0, . . . , s127):
13 Initialize a empty set V of M.var
14 (M, si,V) = NBDPAnd1(M, si,V) ∀i ∈ {0, 7, 38, 70, 81, 96}
15 (M, f) = NBDPXor(M,V)
16 return (M, s0, . . . , s127, f)

17 Procedure NBDPfuncG(M, b0, . . . , b127):
18 Initialize a empty set V of M.var
19 (M, b3, b67,V) = NBDPAnd2(M, b3, b67,V)
20 (M, b11, b13,V) = NBDPAnd2(M, b11, b13,V)
21 (M, b17, b18,V) = NBDPAnd2(M, b17, b18,V)
22 (M, b27, b59,V) = NBDPAnd2(M, b27, b59,V)
23 (M, b40, b48,V) = NBDPAnd2(M, b40, b48,V)
24 (M, b61, b65,V) = NBDPAnd2(M, b61, b65,V)
25 (M, b68, b84,V) = NBDPAnd2(M, b68, b84,V)
26 (M, b88, b92, b93, b95,V) = NBDPAnd4(M, b88, b92, b93, b95,V)
27 (M, b22, b24, b25,V) = NBDPAnd3(M, b22, b24, b25,V)
28 (M, b70, b78, b82,V) = NBDPAnd3(M, b70, b78, b82,V)
29 (M, bi,V) = NBDPAnd1(M, bi,V) ∀i ∈ {0, 26, 56, 91, 96}
30 (M, g) = NBDPXor(M,V)
31 return (M, b0, . . . , b127, g)
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Algorithm 23: MILP Models for division trails of NBDP of the update
function in Grain-128AEAD
1 Procedure NBDPGrainUpdate(M, br−1

0 , . . . , br−1
127 , sr−1

0 , . . . , sr−1
127 ):

2 (M, b′0, . . . , b
′
127, s

′
0, . . . , s

′
127, z

r−1) = NBDPfuncZ(M, br−1
0 , . . . , br−1

127 , sr−1
0 , . . . , sr−1

127 )
3 M.var ← zg, zf as binary
4 M.con← zr−1 = zg + zf

5 (M, b′′0 , . . . , b
′′
127, g) = NBDPfuncG(M, b′0, . . . , b

′
127)

6 (M, s′′0 , . . . , s
′′
127, f) = NBDPfuncF(M, s′0, . . . , s

′
127)

7 for i = 0 to 126 do
8 bri = b′′i+1

9 sri = s′′i+1

10 M.var ← br127, s
r
127 as binary

11 M.con← b′′0 = 0

12 M.con← br127 = g + s′′0 + zg
13 M.con← sr127 = f + zf

/* Additional constraint in [12] */
14 M.con← sr−1

0 + zr−1 ≤ 1
15 return (M, br0, . . . , b

r
127, s

r
0, . . . , s

r
127)

Algorithm 24: MILP model for the term expander when applying our
nested framework to Grain-128AEAD
1 Procedure NBDP-MPModelGrain(the number of rounds r, t(r) indicating the output bit

π
t(r)

(s(r)), u indicating the cube term xu, the middle round rm):
2 Declare a empty MILP Model M
3 M.var ← b0i for i ∈ {0, 1, . . . , 127} as binary
4 M.var ← s0i for i ∈ {0, 1, . . . , 127} as binary
5 for i = 96 to 127 do M.con← s0i = 0

6 for i = 0 to 127 do M.con← b0i = 0
7 for i = 0 to 95 do
8 M.con← s0i = 1 ∀ ui = 1

9 M.con← s0i = 0 ∀ ui = 0

10 for r = 0 to rm − 1 do
11 (M, br+1

0 , . . . , br+1
127 , sr+1

0 , . . . , sr+1
127 ) = NBDPGrainUpdate(M, br0, . . . , b

r
127, s

r
0, . . . , s

r
127)

12 M.var ← bb
rm
i for i ∈ {0, 1, . . . , 127} as binary

13 M.var ← ss
rm
i for i ∈ {0, 1, . . . , 127} as binary

/* s(rm) = (s
(rm)
0 , . . . , s

(rm)
256 ) denotes the concatenation of b(sm) and s(rm) */

14 for i = 0 to 127 do
15 if s

(rm)
i .F = 0c thenM.con← bb

rm
i = b

rm
i = 0

16 elseM.con← bb
rm
i ≥ b

rm
i

17 if s
(rm)
i+128.F = 0c thenM.con← ss

rm
i = s

rm
i = 0

18 elseM.con← ss
rm
i ≥ s

rm
i

19 for r = rm to r − 1 do
20 (M, br+1

0 , . . . , br+1
127 , sr+1

0 , . . . , sr+1
127 ) = MPGrainUpdate(M, br0, . . . , b

r
127, s

r
0, . . . , s

r
127)

/* t(r) = (t
(r)
0 , . . . , t

(r)
256) corresponds to bbr and ssr */

21 for i = 0 to 127 do
22 if t

(r)
i = 0 thenM.con← bbri = 0

23 elseM.con← bb
rm
i = 1

24 if t
(r)
i+128 = 0 thenM.con← ssri = 0

25 elseM.con← ss
rm
i = 1

26 returnM

52



Algorithm 25: ChooseRCiGrain
1 Procedure ChooseRCiGrain(rn):
2 rc = rn
3 return rc

Algorithm 26: MILP Models for core monomial trails of the NFSR
and LFSR in Grain-128AEAD
1 Procedure CMPfuncZ(M, b0, . . . , b127, s0, . . . , s127):
2 Initialize a empty set V of M.var
3 (M, b12, s8,V) = CMPAnd2(M, b12, s8,V)
4 (M, s13, s20,V) = CMPAnd2(M, s13, s20,V)
5 (M, b95, s42,V) = CMPAnd2(M, b95, s42,V)
6 (M, s60, s79,V) = CMPAnd2(M, s60, s79,V)
7 (M, b12, b95, s94,V) = CMPAnd3(M, b12, b95, s94,V)
8 (M, s93,V) = CMPAnd1(M, s93,V)
9 (M, bi,V) = CMPAnd1(M, bi,V) ∀i ∈ {2, 15, 36, 45, 64, 73, 89}

10 (M, z) = CMPXor(M,V)
11 return (M, b0, . . . , b127, s0, . . . , s127, z)

12 Procedure CMPfuncF(M, s0, . . . , s127):
13 Initialize a empty set V of M.var
14 (M, si,V) = CMPAnd1(M, si,V) ∀i ∈ {0, 7, 38, 70, 81, 96}
15 (M, f) = CMPXor(M,V)
16 return (M, s0, . . . , s127, f)

17 Procedure CMPfuncG(M, b0, . . . , b127):
18 Initialize a empty set V of M.var
19 (M, b3, b67,V) = CMPAnd2(M, b3, b67,V)
20 (M, b11, b13,V) = CMPAnd2(M, b11, b13,V)
21 (M, b17, b18,V) = CMPAnd2(M, b17, b18,V)
22 (M, b27, b59,V) = CMPAnd2(M, b27, b59,V)
23 (M, b40, b48,V) = CMPAnd2(M, b40, b48,V)
24 (M, b61, b65,V) = CMPAnd2(M, b61, b65,V)
25 (M, b68, b84,V) = CMPAnd2(M, b68, b84,V)
26 (M, b88, b92, b93, b95,V) = CMPAnd4(M, b88, b92, b93, b95,V)
27 (M, b22, b24, b25,V) = CMPAnd3(M, b22, b24, b25,V)
28 (M, b70, b78, b82,V) = CMPAnd3(M, b70, b78, b82,V)
29 (M, bi,V) = CMPAnd1(M, bi,V) ∀i ∈ {0, 26, 56, 91, 96}
30 (M, g) = CMPXor(M,V)
31 return (M, b0, . . . , b127, g)

Algorithm 27: MILP Models for core monomial trails of the update
function in Grain-128AEAD
1 Procedure CMPGrainUpdate(M, br−1

0 , . . . , br−1
127 , sr−1

0 , . . . , sr−1
127 ):

2 (M, b′0, . . . , b
′
127, s

′
0, . . . , s

′
127, z

r−1) = CMPfuncZ(M, br−1
0 , . . . , br−1

127 , sr−1
0 , . . . , sr−1

127 )
3 M.var ← zg, zf as binary
4 M.con← zr−1 = zg ∨ zf

5 (M, b′′0 , . . . , b
′′
127, g) = CMPfuncG(M, b′0, . . . , b

′
127)

6 (M, s′′0 , . . . , s
′′
127, f) = CMPfuncF(M, s′0, . . . , s

′
127)

7 for i = 0 to 126 do
8 bri = b′′i+1

9 sri = s′′i+1

10 M.var ← br127, s
r
127 as binary

11 M.con← b′′0 = 0

12 M.con← br127 = g + s′′0 + zg
13 M.con← sr127 = f + zf

/* Additional constraint in [12] */
14 M.con← sr−1

0 + zr−1 ≤ 1
15 return (M, br0, . . . , b

r
127, s

r
0, . . . , s

r
127)
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Algorithm 28: MILP model for the coefficient solver when applying
our nested framework to Grain-128AEAD
1 Procedure CMP-MPModelGrain(the number of rounds r, t(r) indicating the output bit

π
t(r)

(s(r)), u indicating the cube term xu, the middle round rm):
2 Declare a empty MILP Model M
3 M.var ← b0i for i ∈ {0, 1, . . . , 127} as binary
4 M.var ← s0i for i ∈ {0, 1, . . . , 127} as binary
5 for i = 96 to 127 do M.con← s0i = 0

6 for i = 0 to 127 do M.con← b0i = 0
7 for i = 0 to 95 do
8 M.con← s0i = 1 ∀ ui = 1

9 M.con← s0i = 0 ∀ ui = 0

10 for r = 0 to rm − 1 do
11 (M, br+1

0 , . . . , br+1
127 , sr+1

0 , . . . , sr+1
127 ) = CMPGrainUpdate(M, br0, . . . , b

r
127, s

r
0, . . . , s

r
127)

12 M.var ← bb
rm
i for i ∈ {0, 1, . . . , 127} as binary

13 M.var ← ss
rm
i for i ∈ {0, 1, . . . , 127} as binary

/* s(rm) = (s
(rm)
0 , . . . , s

(rm)
256 ) denotes the concatenation of b(sm) and s(rm) */

14 for i = 0 to 127 do
15 if s

(rm)
i .F = 0c thenM.con← bb

rm
i = b

rm
i = 0

16 else if s
(rm)
i .F = 1c thenM.con← bb

rm
i ≥ b

rm
i

17 elseM.con← bb
rm
i = b

rm
i

18 if s
(rm)
i+128.F = 0c thenM.con← ss

rm
i = s

rm
i = 0

19 else if s
(rm)
i+128.F = 1c thenM.con← ss

rm
i ≥ s

rm
i

20 elseM.con← ss
rm
i = s

rm
i

21 for r = rm to r − 1 do
22 (M, br+1

0 , . . . , br+1
127 , sr+1

0 , . . . , sr+1
127 ) = MPGrainUpdate(M, br0, . . . , b

r
127, s

r
0, . . . , s

r
127)

/* t(r) = (t
(r)
0 , . . . , t

(r)
256) corresponds to bbr and ssr */

23 for i = 0 to 127 do
24 if t

(r)
i = 0 thenM.con← bbri = 0

25 elseM.con← bb
rm
i = 1

26 if t
(r)
i+128 = 0 thenM.con← ssri = 0

27 elseM.con← ss
rm
i = 1

28 returnM

Algorithm 29: ChooseTiGrain
1 Procedure ChooseTiGrain(rn):
2 if rn ≥ 120 then τ = 60 seconds
3 else if rn ≥ 110 then τ = 120 seconds
4 else if rn ≥ 100 then τ = 180 seconds
5 else if rn ≥ 10 then τ = 360 seconds
6 else if rn ≥ 0 then τ =∞
7 return τ
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J Application to Kreyvium

Specification of Kreyvium. Kreyvium is a stream cipher designed for the use
of Fully Homomorphic Encryption [7]. Kreyvium accepts a 128-bit IV and sup-
ports 128-bit security with an internal structure similar to Trivium. Kreyvium
is composed of 5 registers. Two of them are LFSRs, denoted by K∗ and IV ∗,
respectively. The remaining three ones are NFSRs that are identical to those of
Trivium. The initial state of Kreyvium is set as

(s0, s1, . . . , s92)← (K0,K1, . . . ,K92)

(s93, s95, . . . , s176 ← (IV0, IV1, . . . , IV83)

(s177, s179, . . . , s287)← (IV85, . . . , IV127, 1, . . . , 1, 0)

(IV ∗
127, . . . , IV

∗
0 )← (IV0, . . . , IV127)

(K∗
127, . . . ,K

∗
0 )← (K0, . . . ,K127) .

Then, the state is updated over 1152 rounds using the following update function:

for i = 0 to 1151 do
t1 ← s65 ⊕ s92, t2 ← s161 ⊕ s176, t3 ← s242 ⊕ s287 ⊕K∗

0

zi ← t1 ⊕ t2 ⊕ t3

t1 ← t1 ⊕ s90s91 ⊕ s170 ⊕ IV ∗
0

t2 ← t2 ⊕ s174s175 ⊕ s263

t3 ← t3 ⊕ s285s286 ⊕ s68

t4 ← K∗
0 , t5 ← IV ∗

0

(s0, s1, . . . , s92)← (t3, s0, s1, . . . , s91)

(s92, s93, . . . , s176)← (t1, s93, s94, . . . , s175)

(s177, s178, . . . , s287)← (t2, s177, s178, . . . , s286)

(K∗
127,K

∗
126, . . . ,K

∗
0 )← (t4,K

∗
127,K

∗
126, . . . ,K

∗
1 )

(IV ∗
127, IV

∗
126, . . . , IV

∗
0 )← (t5, IV

∗
127, IV

∗
126, . . . , IV

∗
1 )

end for

After the initialization phase, the key stream bit zi (i ≥ 1152) is output. We an-
alyze the variant of Kreyvium whose initialization phase is reduced to r rounds,
where the key stream bit is denoted by zr.

MILP Model. The MILP model of monomial trails of the update function in
Kreyvium is illustrated as MPKreyviumUpdate in Algorithm 10. NBDPKreyviumUpdate
in Algorithm 30 and CMPKreyviumUpdate in Algorithm 31 model the propaga-
tion of NBDP and CMP for the update function of Kreyvium respectively. They
are embedded as subroutines when introducing the MILP models for the term
expander and coefficient solver in Algorithm 32 and Algorithm 33.

Parameters. For the term expander, we fix ε,Rs, N, τ ′ to 20, 420, 10000, 14400,
respectively. rc is chosen to be the same value as rn according to the procedure
ChooseRCiKreyvium in Algorithm 34. For the coefficient solver, the procedure
ChooseTiKreyvium for selecting the time limit is presented in Algorithm 35.
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In CMP-MPModelKreyvium, rm is fixed to 120 to ensure the second stage of the
coefficient solver can be completed quicly.

Superpoly verification for 894-Round Kreyvium. In [16], the superpoly
of a 119-dimensional cube indexed by

I = {0, 1, . . . , 127}\{6, 66, 72, 73, 78, 101, 106, 109, 110}

is recovered for 894-round Kreyvium. We verified this result by our nested frame-
work, which took about two weeks.

Algorithm 30: MILP model for division trails of NBDP of the update
function in Kreyvium
1 Procedure NBDPLSFR( M, x0, . . . , x127):
2 M.var ← b as binary
3 if x0.F ̸= 0c then
4 M.var ← a as binary
5 M.con← x0 = a + b
6 (y0, . . . , y127) = (x1, . . . , x127, a)

7 else
8 (y0, . . . , y127) = (x1, . . . , x127, x0)
9 M.con← b = 0

10 return (M, y0, y1, . . . , y127, b)

11 Procedure NBDPKreyviumUpdate( M, si0, . . . , s
i
287, K

∗,i
0 , . . . , K∗,i127 , IV

∗,i
0 , . . . , IV∗,i127 ):

12 (M, K∗,i+1
0 , . . . , K∗,i+1

127 , ai)← NBDPLSFR(M, K∗,i0 , . . . , K∗,i127 )

13 (M, IV∗,i+1
0 , . . . , IV∗,i+1

127 , bi)← NBDPLSFR(M, IV∗,i0 , . . . , IV∗,i127 )

14 (M, x0, . . . , x287) = NBDPTriviumCore(M, si0, . . . , s
i
287, 65, 170, 90, 91, 92)

15 (M, y0, . . . , y287) = NBDPTriviumCore(M, x0, . . . , x287, 161, 263, 174, 175, 176)
16 (M, z0, . . . , z287) = NBDPTriviumCore(M, y0, . . . , y287, 242, 68, 285, 286, 287)
17 M.var ← ti1, t

i
3 as binary

18 M.con← ti1 = z92 + bi

19 M.con← ti3 = z287 + ai

20 (si+1
0 , . . . , si+1

287 ) = (ti3, z0, . . . , z91, t
i
1, z93, . . . , z286)

21 return (M, si+1
0 , . . . , si+1

287 , K∗,i+1
0 , . . . , K∗,i+1

127 , IV∗,i+1
0 , . . . , IV∗,i+1

127 )
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Algorithm 31: MILP model for core monomial trails of the update
function in Kreyvium
1 Procedure CMPLSFR( M, x0, . . . , x127):
2 M.var ← b as binary
3 if x0.F ̸= 0c then
4 M.var ← a as binary
5 M.con← x0 = a ∨ b
6 (y0, . . . , y127) = (x1, . . . , x127, a)

7 else
8 (y0, . . . , y127) = (x1, . . . , x127, x0)
9 M.con← b = 0

10 return (M, y0, y1, . . . , y127, b)

11 Procedure CMPKreyviumUpdate( M, si0, . . . , s
i
287, K

∗,i
0 , . . . , K∗,i127 , IV

∗,i
0 , . . . , IV∗,i127 ):

12 (M, K∗,i+1
0 , . . . , K∗,i+1

127 , ai)← CMPLSFR(M, K∗,i0 , . . . , K∗,i127 )

13 (M, IV∗,i+1
0 , . . . , IV∗,i+1

127 , bi)← CMPLSFR(M, IV∗,i0 , . . . , IV∗,i127 )

14 (M, x0, . . . , x287) = CMPTriviumCore(M, si0, . . . , s
i
287, 65, 170, 90, 91, 92)

15 (M, y0, . . . , y287) = CMPTriviumCore(M, x0, . . . , x287, 161, 263, 174, 175, 176)
16 (M, z0, . . . , z287) = CMPTriviumCore(M, y0, . . . , y287, 242, 68, 285, 286, 287)
17 M.var ← ti1, t

i
3 as binary

18 M.con← ti1 = z92 + bi

19 M.con← ti3 = z287 + ai

20 (si+1
0 , . . . , si+1

287 ) = (ti3, z0, . . . , z91, t
i
1, z93, . . . , z286)

21 return (M, si+1
0 , . . . , si+1

287 , K∗,i+1
0 , . . . , K∗,i+1

127 , IV∗,i+1
0 , . . . , IV∗,i+1

127 )
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Algorithm 32: MILP model for the term expander when applying our
nested framework to Kreyvium
1 Procedure NBDP-MPModelKreyvium(the number of rounds r, t(r) indicating the output bit

π
t(r)

(s(r)), u indicating the cube term xu, the middle round rm):
2 Declare an empty MILP Model M
3 M← s0i ∀ i ∈ {0, 1, . . . , 287} as binary
4 M← xi ∀ i ∈ {0, 1, . . . , 127} as binary
5 M← ki ∀ i ∈ {0, 1, . . . , 127} as binary
6 for i = 0 to 127 do
7 M.con← x0i = 1 ∀ ui = 1

8 M.con← x0i = 0 ∀ ui = 0

9 M.con← k0i = 0

10 M← K
∗,0
i ∀ i ∈ {0, 1, . . . , 127} as binary

11 M← IV
∗,0
i ∀ i ∈ {0, 1, . . . , 127} as binary

12 M.con← K
∗,0
i = 0 for i = 0, . . . , 127

13 M.con← s0i = 0 for i = 0, . . . , 92 and i = 93 + 128, . . . , 287

14 M.con← xi = IV
∗,0
128−i + s093+i for i = 0, . . . , 127

15 for i = 0 to rm − 1 do
16 (M, si+1

0 , . . . , si+1
287 , K∗,i+1

0 , . . . , K∗,i+1
127 , IV∗,i+1

0 , . . . , IV∗,i+1
127 ) =

NBDPKreyviumUpdate(M, si0, . . . , s
i
287, K

∗,i
0 , . . . , K∗,i127 , IV

∗,i
0 , . . . , IV∗,i127 )

17 M← ss
rm
i ∀ i ∈ {0, 1, . . . , 287} as binary

18 M← KK
∗,rm
i ∀ i ∈ {0, 1, . . . , 127} as binary

19 M← VV
∗,rm
i ∀ i ∈ {0, 1, . . . , 127} as binary

/* s(rm) = (s
(rm)
0 , . . . , s

(rm)
543 ) denotes the concatenation of rm-round state,

IV ∗,rm and K∗,rm */
20 for i = 0 to 127 do
21 if s

(rm)
i+128.F = 0c thenM.con← IV

∗,rm
i = VV

∗,rm
i = 0

22 elseM.con← IV
∗,rm
i = VV

∗,rm
i

23 for i = 0 to 287 do
24 if s

(rm)
i+256.F = 0c thenM.con← s

rm
i = ss

rm
i = 0

25 elseM.con← s
rm
i ≤ ss

rm
i

26 for i = rm to r − 1 do
27 (M, ssi+1

0 , . . . , ssi+1
287 , KK∗,i+1

0 , . . . , KK∗,i+1
127 , VV∗,i+1

0 , . . . , VV∗,i+1
127 ) =

MPKreyviumUpdate(M, ssi0, . . . , ss
i
287, KK

∗,i
0 , . . . , KK∗,i127 , VV

∗,i
0 , . . . , VV∗,i127 )

/* t(r) = (t
(r)
0 , . . . , t

(r)
543) corresponds to KK∗,r, VV∗,r, ssr */

28 for i = 0 to 127 do
29 if t

(r)
i = 0 thenM.con← KK

∗,r
i = 0

30 elseM.con← KK
∗,r
i = 1

31 for i = 0 to 127 do
32 if t

(r)
i+128 = 0 thenM.con← VV

∗,r
i = 0

33 elseM.con← VV
∗,r
i = 1

34 for i = 0 to 287 do
35 if t

(r)
i+256 = 0 thenM.con← ssri = 0

36 elseM.con← ssri = 1

37 returnM
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Algorithm 33: MILP model for the coefficient solver when applying
our nested framework to Kreyvium
1 Procedure CMP-MPModelKreyvium(the number of rounds r, t(r) indicating the output bit

π
t(r)

(s(r)), u indicating the cube term xu, the middle round rm):
2 Declare an empty MILP Model M
3 M← s0i ∀ i ∈ {0, 1, . . . , 287} as binary
4 M← xi ∀ i ∈ {0, 1, . . . , 127} as binary
5 M← ki ∀ i ∈ {0, 1, . . . , 127} as binary
6 for i = 0 to 127 do
7 M.con← x0i = 1 ∀ ui = 1

8 M.con← x0i = 0 ∀ ui = 0

9 M.con← k0i = 0

10 M← K
∗,0
i ∀ i ∈ {0, 1, . . . , 127} as binary

11 M← IV
∗,0
i ∀ i ∈ {0, 1, . . . , 127} as binary

12 M.con← K
∗,0
i = 0 for i = 0, . . . , 127

13 M.con← s0i = 0 for i = 0, . . . , 92 and i = 93 + 128, . . . , 287

14 M.con← xi = IV
∗,0
128−i ∨ s093+i for i = 0, . . . , 127

15 for i = 0 to rm − 1 do
16 (M, si+1

0 , . . . , si+1
287 , K∗,i+1

0 , . . . , K∗,i+1
127 , IV∗,i+1

0 , . . . , IV∗,i+1
127 ) =

CMPKreyviumUpdate(M, si0, . . . , s
i
287, K

∗,i
0 , . . . , K∗,i127 , IV

∗,i
0 , . . . , IV∗,i127 )

17 M← ss
rm
i ∀ i ∈ {0, 1, . . . , 287} as binary

18 M← KK
∗,rm
i ∀ i ∈ {0, 1, . . . , 127} as binary

19 M← VV
∗,rm
i ∀ i ∈ {0, 1, . . . , 127} as binary

/* s(rm) = (s
(rm)
0 , . . . , s

(rm)
543 ) denotes the concatenation of rm-round state,

IV ∗,rm and K∗,rm */
20 for i = 0 to 127 do
21 if s

(rm)
i+128.F = 0c thenM.con← IV

∗,rm
i = VV

∗,rm
i = 0

22 else if s
(rm)
i+128.F = 1c thenM.con← IV

∗,rm
i ≤ VV

∗,rm
i

23 elseM.con← IV
∗,rm
i = VV

∗,rm
i

24 for i = 0 to 287 do
25 if s

(rm)
i+256.F = 0c thenM.con← s

rm
i = ss

rm
i = 0

26 else if s
(rm)
i+256.F = 1c thenM.con← s

rm
i ≤ ss

rm
i

27 elseM.con← s
rm
i = ss

rm
i

28 for i = rm to r − 1 do
29 (M, ssi+1

0 , . . . , ssi+1
287 , KK∗,i+1

0 , . . . , KK∗,i+1
127 , VV∗,i+1

0 , . . . , VV∗,i+1
127 ) =

MPKreyviumUpdate(M, ssi0, . . . , ss
i
287, KK

∗,i
0 , . . . , KK∗,i127 , VV

∗,i
0 , . . . , VV∗,i127 )

/* t(r) = (t
(r)
0 , . . . , t

(r)
543) corresponds to KK∗,r, VV∗,r, ssr */

30 for i = 0 to 127 do
31 if t

(r)
i = 0 thenM.con← KK

∗,r
i = 0

32 elseM.con← KK
∗,r
i = 1

33 for i = 0 to 127 do
34 if t

(r)
i+128 = 0 thenM.con← VV

∗,r
i = 0

35 elseM.con← VV
∗,r
i = 1

36 for i = 0 to 287 do
37 if t

(r)
i+256 = 0 thenM.con← ssri = 0

38 elseM.con← ssri = 1

39 returnM

59



Algorithm 34: ChooseRCiKreyvium
1 Procedure ChooseRCiKreyvium(rn):
2 rc = rn
3 return rc

Algorithm 35: ChooseTiKreyvium
1 Procedure ChooseTiKreyvium(rn):
2 if rn ≥ 600 then τ = 60 seconds
3 else if rn ≥ 500 then τ = 120 seconds
4 else if rn ≥ 400 then τ = 180 seconds
5 else if rn ≥ 300 then τ = 360 seconds
6 else if rn ≥ 200 then τ = 720 second
7 else if rn ≥ 0 then τ =∞
8 return τ
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K Application to Acorn

Specification of Acorn. Acorn [32] is a stream cipher for authenticated en-
cryption, which has been selected as one of the finalists in CAESAR competition.
Acorn has a 128-bit key and a 128-bit IV, denoted by K and IV respectively.
Its internal state is represented by a 293-bit state s = (s0, s1, . . . , s292). The
update function is composed of two component functions ks = ksg128(s) and
f = fbk128(s, ca, cb) that are defined as

ks = s12 ⊕ s154 ⊕maj(s235, s61, s193)⊕ ch(s230, s111, s66),

f = s0 ⊕ (s107 ⊕ 1)⊕maj(s244, s23, s160)⊕ (ca ∧ s196)⊕ (cb ∧ ks).

ks is the key stream bit, and maj and ch are defined as

maj(x, y, z) = xy + xz + yz, ch(x, y, z) = xy + xz + z.

Initialized as s(0) = (0, 0, . . . , 0), the state of r-th round is generated by the
following update function:

s
(r−1)
289 ← s

(r−1)
289 ⊕ s

(r−1)
235 ⊕ s

(r−1)
230 , s

(r−1)
230 ← s

(r−1)
230 ⊕ s

(r−1)
196 ⊕ s

(r−1)
193 (12)

s
(r−1)
193 ← s

(r−1)
193 ⊕ s

(r−1)
160 ⊕ s

(r−1)
154 , s

(r−1)
154 ← s

(r−1)
154 ⊕ s

(r−1)
111 ⊕ s

(r−1)
107 (13)

s
(r−1)
107 ← s

(r−1)
107 ⊕ s

(r−1)
66 ⊕ s

(r−1)
61 , s

(r−1)
61 ← s

(r−1)
61 ⊕ s

(r−1)
23 ⊕ s

(r−1)
0 (14)

ks(r−1) = ksg128(s(r−1)), f (r−1) = fbk128(s(r−1), 1, 1) (15)

s(r) = (sr0, . . . , s
r
292)← (s

(r−1)
1 , . . . , s

(r−1)
292 , f (r−1) ⊕m(r−1)) (16)

The bit mt is generated according to following rules:

m(t) =


Kt for t ∈ {0, . . . , 127}
IVt−128 for t ∈ {128, . . . , 255}
K0 ⊕ 1 for t = 256

Kt mod 128 for t ∈ {257, . . . , 1791}

.

Two tricks. When recovering the superpoly of Acorn, we use two tricks based
on the structure of Acorn to speed things up. We take an example to illustrate
the first trick. For the function maj = xy+xz+yz, if x.F = δ, y.F = δ, z.F = 1c,
then according to Proposition 2, when modeling maj using NBDP or CMP based
on the structure of Eqn. (5) or (7), we only need to model maj = xy and the
role of xz, yz can be ignored. For convenience, we call xy a nice term. Such an
optimization is also applicable to ch.

Second, assuming the cube term is denoted by xu and the state of 256th
round Acorn is denoted by s(256), we find that for some cubes, there exists
only one core monomial trail from k0||xu to the δ part of monomials of s(256).
Let this core monomial trail be

k0||xu Core→ πΛδ(t(1))(s
(1))

Core→ · · · Core→ πΛδ(t(255))(s
(255))

Core→ π
l
(256)
u

(s(256)),
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where l(256)u is a specific vector with respect to the cube. This means we can
regard the key stream bit ks(r) as a polynomial of δ bits of s(256) with 1c
bits of s(256) as the coefficients. We then attempt to recover the coefficient of
π
l
(256)
u

(s(256)), denoted by Coe
(
ks(r), π

l
(256)
u

(s(256))
)
, which should be a polyno-

mial of 1c bits of s(256) and can be further expanded to be a polynomial with
respect to k. Considering each t(256) satisfying kwxu ⇝ πt(256)(s

(256)) must
satisfy Λδ(t(256)) = l(256)u , the superpoly of xu can be computed as the prod-
uct of Coe

(
ks(r), π

l
(256)
u

(s(256))
)

and Coe
(
π
l
(256)
u

(s(256)),xu
)
. The latter can be

computed quickly by the monomial prediction technique, and l(256)u can be de-
termined by following the propagation of CMP from k0||xu through 256 rounds.

We have confirmed using CMP that the second trick is applicable to all cube
terms of Acorn we mentioned, then the problem of computing Coe

(
ks(r),xu

)
is reduced to the problem of recovering the coefficient of π

l
(256)
u

(s(256)) in ks(r),
hence all our MILP models for Acorn are built from the 256th round.

Fast Evaluation of a Superpoly. For the superpoly of a cube that satisfies the
condition of the second trick, i.e., each t(256) satisfying kwxu ⇝ πt(256)(s

(256))

must satisfy Λδ(t(256)) = l(256)u , we can evaluate the superpoly by evaluating
Coe

(
ks(r), π

l
(256)
u

(s(256))
)

and Coe
(
π
l
(256)
u

(s(256)),xu
)

respectively.

For all cube terms of Acorn we mentioned, we experimentally found that
Coe

(
π
l
(256)
u

(s(256)),xu
)

is always equal to 1. This is reasonable because from the
128th round to the 256th round, each IV bit is inserted into the last bit (s292) of
the state as a linear term (IVt−128). Coe

(
ks(r), π

l
(256)
u

(s(256))
)

is a polynomial

of 1c bits of s(256) and its expression can be figured out during the superpoly
recovery, therefore each time we assign values to K, we can first compute the val-
ues of 1c bits of s(256) and then compute the value of Coe

(
ks(r), π

l
(256)
u

(s(256))
)

quickly.
Consequently, the cost of evaluating a superpoly once is equal to one 256-

round Acorn call, together with one evaluation of Coe
(
ks(r), π

l
(256)
u

(s(256))
)
.

For our cubes I1 and I2 mentioned in Sect. 6.4, their Coe
(
ks(r), π

l
(256)
u

(s(256))
)

only contain 484 and 280 terms respectively, so in this paper we assume one
evaluation of the superpoly of Acorn is equivalent to one 256-round Acorn
call.

MILP Model. The MILP model describing the monomial propagation of the
update function in Acorn is shown in Algorithm 14. The subroutines are de-
scribed in Algorithm 11, 12, 13, where xorFB denotes the procedure of LFSR
update (12) and genM denotes the procedure of generating m(t). These models
are directly adapted from [12,13,16].

Algorithm 36, 37, 38 and Algorithm 42, 43, 44 provide the propagation model
of NBDP and CMP for the components of Acorn. Using these components,
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the propagation of NBDP and CMP in the update function of Acorn can be
traced, as shown in Algorithm 39 and 45. According to the second trick above,
they are constructed from round 256. Finally, the MILP models used for the term
expander and coefficient solver are presented in Algorithm 41 and 47 respectively.

Parameters. For the term expander, we fix ε,Rs, N, τ ′ to 5, 540, 15000, 7200,
respectively. rc is chosen to be min(rn − 25, 350) according to the procedure
ChooseRCiAcorn in Algorithm 40. For the coefficient solver, the procedure ChooseTiAcorn
for selecting the time limit is present in Algorithm 46. In CMP-MPModelAcorn,
rm is fixed to 350 to ensure the second stage of the coefficient solver can be
completed quickly.

Superpoly verification for 775-Round Acorn. In [34], the superpoly of a
126-dimensional cube indexed by

I = {0, 1, . . . , 127}\{1, 26}

is recovered. Besides, superpolies of five 126-dimensional cubes indexed by

I = {0, 1, . . . , 127}\{i, j}, {i, j} ∈ {{1, 2}, {1, 11}, {1, 18}, {2, 18}, {11, 18}},

are found to be constants. It took us about 6 days to verify the correctness of
these results.

Algorithm 36: MILP Models for division trails of NBDP of Maj and
Ch in Acorn
1 Procedure NBDPMaj(M, x0, . . . , x292, i, j, k):
2 Initialize an empty set V of M.var

/* Suppose i, j, k correspond to the bit xi, xj , xk */
3 if xixj is a nice term then
4 (M, yi, yj,V) = NBDPAnd2(M, xi, xj,V)
5 if xixk is a nice term then
6 (M, zi, yk,V) = NBDPAnd2(M, yi, xk,V)
7 if xjxk is a nice term then
8 (M, zj, zk,V) = NBDPAnd2(M, yj, yk,V)
9 (M, o) = NBDPXor(M,V)

10 for i ∈ {0, 1, . . . , 287} w/o i, j, k do zi = xi
11 return (M, z0, z1, . . . , z292, o)

12 Procedure NBDPCh(M, x0, . . . , x292, i, j, k):
13 Initialize an empty set V of M.var

/* Suppose i, j, k correspond to the bit xi, xj , xk */
14 if xixj is a nice term then
15 (M, yi, zj,V) = NBDPAnd2(M, xi, xj,V)
16 if xixk is a nice term then
17 (M, zi, zk,V) = NBDPAnd2(M, yi, xk,V)
18 (M, o) = NBDPXor(M,V)
19 for i ∈ {0, 1, . . . , 287} w/o i, j, k do zi = xi
20 return (M, z0, z1, . . . , z292, o)
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Algorithm 37: MILP Models for division trails of NBDP of the LFSR
in Acorn
1 Procedure NBDPxorFB(M, x0, . . . , x292, i, j, k):
2 Initialize an empty set V of M.var
3 Add xi to V
4 (M, yj,V) = NBDPAnd1(M, xj,V)
5 (M, yk,V) = NBDPAnd1(M, xk,V)
6 (M, yi) = NBDPXor(M,V)
7 for i ∈ {0, 1, . . . , 292} w/o i, j, k do yi = xi
8 return (M, y0, y1, . . . , y292)

Algorithm 38: MILP Models for division trails of NBDP of ksg128
and fbk128 in Acorn
1 Procedure NBDPksg128(M, x0, . . . , x292):
2 Initialize an empty set V of M.var
3 (M, y0, y1, . . . , y292, c) = NBDPMaj(M, x0, . . . , x292, 235, 61, 193)
4 (M, z0, z1, . . . , z292, d) = NBDPCh(M, y0, . . . , y292, 230, 111, 66)
5 (M, t12,V) = NBDPAnd1(M, z12,V)
6 (M, t154,V) = NBDPAnd1(M, z154,V)
7 Add c, d to V
8 (M, o) = NBDPXor(M,V)
9 for i ∈ {0, 1, . . . , 292} w/o 12, 154 do ti = zi

10 return (M, t0, t1, . . . , t292, o)

11 Procedure NBDPfbk128(M, x0, . . . , x292):
12 Initialize an empty set V of M.var
13 (M, y0, y1, . . . , y292, d) = NBDPMaj(M, x0, . . . , x292, 244, 23, 160)
14 (M, t0,V) = NBDPAnd1(M, y0,V)
15 (M, t107,V) = NBDPAnd1(M, y107,V)
16 (M, t196,V) = NBDPAnd1(M, y196,V)
17 Add d to V
18 (M, o) = NBDPXor(M,V)
19 for i ∈ {0, 1, . . . , 292} w/o 0, 107, 196 do ti = yi
20 return (M, t0, t1, . . . , t292, o)

Algorithm 39: MILP Models for division trails of NBDP of the update
function in Acorn
1 Procedure NBDPAcornUpdateFrom256(M, si0, . . . , s

i
292):

2 (M, t0, . . . , t292) = NBDPxorFB(M, si0, . . . , s
i
292, 289, 235, 230)

3 (M, u0, . . . , u292) = NBDPxorFB(M, t0, . . . , t292, 230, 196, 193)
4 (M, w0, . . . , w292) = NBDPxorFB(M, u0, . . . , u292, 193, 160, 154)
5 (M, l0, . . . , l292) = NBDPxorFB(M, w0, . . . , w292, 154, 111, 107)
6 (M, x0, . . . , x292) = NBDPxorFB(M, l0, . . . , l292, 107, 66, 61)
7 (M, y0, . . . , y292) = NBDPxorFB(M, x0, . . . , x292, 61, 23, 0)
8 (M, a0, . . . , a292, e) = NBDPksg128(M, y0, . . . , y292)
9 (M, z0, . . . , z292, b) = NBDPfbk128(M, a0, . . . , a292)

10 M.var ← o as binary
11 M.con← o = e + b
12 M.con← z0 = 0

13 (si+1
0 , . . . , si+1

292 ) = (z1, z2, . . . , z292, o)

14 return (M, si+1
0 , . . . , si+1

292 )
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Algorithm 40: ChooseRCiAcorn
1 Procedure ChooseRCiAcorn(rn):
2 rc = rn − 25
3 return rc

Algorithm 41: MILP model for the term expander when applying our
nested framework to Acorn
1 Procedure NBDP-MPModelAcorn(the number of rounds r, t(r) indicating the output bit

π
t(r)

(s(r)), Λδ(t(256)) indicating the cube term π
Λδ(t(256))

(s(256)), the middle round

rm(rm > 256)):
2 Declare an empty MILP Model M
3 M← s256i ∀ i ∈ {0, 1, . . . , 292} as binary
4 for i = 0 to 292 do
5 M.con← s256i = 1 ∀ Λδ

i (t
(256)) = 1

6 for i = 256 to rm − 1 do
7 (M, si+1

0 , . . . , si+1
287 ) = NBDPAcornUpdateFrom256(M, si0, . . . , s

i
287)

8 M← ss
rm
i ∀ i ∈ {0, 1, . . . , 292} as binary

9 M← v
rm
i ∀ i ∈ {0, 1, . . . , 127} as binary

10 M← k
rm
i ∀ i ∈ {0, 1, . . . , 127} as binary

11 for i = 0 to 292 do
12 if s

(rm)
i .F = 0c thenM.con← s

rm
i = ss

rm
i = 0

13 elseM.con← s
rm
i ≤ ss

rm
i

14 for i = rm to r − 1 do
15 (M, ssi+1

0 , . . . , ssi+1
292 , ki+1

0 , . . . , ki+1
127 , vi+1

0 , . . . , vi+1
127 ) =

MPAcornUpdate(M, ssi0, . . . , ss
i
292, k

i
0, . . . , k

i
127, v

i
0, . . . , v

i
127)

/* t(r) = (t
(r)
0 , . . . , t

(r)
549) corresponds to ssr, vr, kr */

16 for i = 0 to 127 do
17 if t

(r)
421+i = 0 thenM.con← kri = 0

18 elseM.con← kri = 1

19 for i = 0 to 127 do
20 if t

(r)
293+i = 0 thenM.con← vri = 0

21 elseM.con← vri = 1

22 for i = 0 to 292 do
23 if t

(r)
i = 0 thenM.con← ssri = 0

24 elseM.con← ssri = 1

25 returnM
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Algorithm 42: MILP Models for core monomial trails of Maj and Ch
in Acorn
1 Procedure CMPMaj(M, x0, . . . , x292, i, j, k):
2 Initialize an empty set V of M.var

/* Suppose i, j, k correspond to the bit xi, xj , xk */
3 if xixj is a nice term then
4 (M, yi, yj,V) = CMPAnd2(M, xi, xj,V)
5 if xixk is a nice term then
6 (M, zi, yk,V) = CMPAnd2(M, yi, xk,V)
7 if xjxk is a nice term then
8 (M, zj, zk,V) = CMPAnd2(M, yj, yk,V)
9 (M, o) = CMPXor(M,V)

10 for i ∈ {0, 1, . . . , 287} w/o i, j, k do zi = xi
11 return (M, z0, z1, . . . , z292, o)

12 Procedure CMPCh(M, x0, . . . , x292, i, j, k):
13 Initialize an empty set V of M.var

/* Suppose i, j, k correspond to the bit xi, xj , xk */
14 if xixj is a nice term then
15 (M, yi, zj,V) = CMPAnd2(M, xi, xj,V)
16 if xixk is a nice term then
17 (M, zi, zk,V) = CMPAnd2(M, yi, xk,V)
18 (M, o) = CMPXor(M,V)
19 for i ∈ {0, 1, . . . , 287} w/o i, j, k do zi = xi
20 return (M, z0, z1, . . . , z292, o)

Algorithm 43: MILP Models for core monomial trails of the LFSR in
Acorn
1 Procedure CMPxorFB(M, x0, . . . , x292, i, j, k):
2 Initialize an empty set V of M.var
3 Add xi to V
4 (M, yj,V) = CMPAnd1(M, xj,V)
5 (M, yk,V) = CMPAnd1(M, xk,V)
6 (M, yi) = CMPXor(M,V)
7 for i ∈ {0, 1, . . . , 292} w/o i, j, k do yi = xi
8 return (M, y0, y1, . . . , y292)
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Algorithm 44: MILP Models for core monomial trails of ksg128 and
fbk128 in Acorn
1 Procedure CMPksg128(M, x0, . . . , x292):
2 Initialize an empty set V of M.var
3 (M, y0, y1, . . . , y292, c) = CMPMaj(M, x0, . . . , x292, 235, 61, 193)
4 (M, z0, z1, . . . , z292, d) = CMPCh(M, y0, . . . , y292, 230, 111, 66)
5 (M, t12,V) = CMPAnd1(M, z12,V)
6 (M, t154,V) = CMPAnd1(M, z154,V)
7 Add c, d to V
8 (M, o) = CMPXor(M,V)
9 for i ∈ {0, 1, . . . , 292} w/o 12, 154 do ti = zi

10 return (M, t0, t1, . . . , t292, o)

11 Procedure CMPfbk128(M, x0, . . . , x292):
12 Initialize an empty set V of M.var
13 (M, y0, y1, . . . , y292, d) = CMPMaj(M, x0, . . . , x292, 244, 23, 160)
14 (M, t0,V) = CMPAnd1(M, y0,V)
15 (M, t107,V) = CMPAnd1(M, y107,V)
16 (M, t196,V) = CMPAnd1(M, y196,V)
17 Add d to V
18 (M, o) = CMPXor(M,V)
19 for i ∈ {0, 1, . . . , 292} w/o 0, 107, 196 do ti = yi
20 return (M, t0, t1, . . . , t292, o)

Algorithm 45: MILP Models for core monomial trails of the update
function in Acorn
1 Procedure CMPAcornUpdateFrom256(M, si0, . . . , s

i
292):

2 (M, t0, . . . , t292) = CMPxorFB(M, si0, . . . , s
i
292, 289, 235, 230)

3 (M, u0, . . . , u292) = CMPxorFB(M, t0, . . . , t292, 230, 196, 193)
4 (M, w0, . . . , w292) = CMPxorFB(M, u0, . . . , u292, 193, 160, 154)
5 (M, l0, . . . , l292) = CMPxorFB(M, w0, . . . , w292, 154, 111, 107)
6 (M, x0, . . . , x292) = CMPxorFB(M, l0, . . . , l292, 107, 66, 61)
7 (M, y0, . . . , y292) = CMPxorFB(M, x0, . . . , x292, 61, 23, 0)
8 (M, a0, . . . , a292, e) = CMPksg128(M, y0, . . . , y292)
9 (M, z0, . . . , z292, b) = CMPfbk128(M, a0, . . . , a292)

10 M.var ← o as binary
11 M.con← o = e + b
12 M.con← z0 = 0

13 (si+1
0 , . . . , si+1

292 ) = (z1, z2, . . . , z292, o)

14 return (M, si+1
0 , . . . , si+1

292 )

Algorithm 46: ChooseTiAcorn
1 Procedure ChooseTiAcorn(rn):
2 if rn ≥ 600 then τ = 600 seconds
3 else if rn ≥ 500 then τ = 1800 seconds
4 else if rn ≥ 400 then τ = 3600 seconds
5 else if rn ≥ 300 then τ = 7200 seconds
6 else if rn ≥ 200 then τ =∞
7 return τ
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Algorithm 47: MILP model for the coefficient solver when applying
our nested framework to Acorn
1 Procedure CMP-MPModelAcorn(the number of rounds r, t(r) indicating the output bit

π
t(r)

(s(r)), Λδ(t(256)) indicating the cube term π
Λδ(t(256))

(s(256)), the middle round

rm(rm > 256)):
2 Declare an empty MILP Model M
3 M← s256i ∀ i ∈ {0, 1, . . . , 292} as binary
4 for i = 0 to 292 do
5 M.con← s256i = 1 ∀ Λδ

i (t
(256)) = 1

6 for i = 256 to rm − 1 do
7 (M, si+1

0 , . . . , si+1
287 ) = CMPAcornUpdateFrom256(M, si0, . . . , s

i
287)

8 M← ss
rm
i ∀ i ∈ {0, 1, . . . , 292} as binary

9 M← v
rm
i ∀ i ∈ {0, 1, . . . , 127} as binary

10 M← k
rm
i ∀ i ∈ {0, 1, . . . , 127} as binary

11 for i = 0 to 292 do
12 if s

(rm)
i .F = 0c thenM.con← s

rm
i = ss

rm
i = 0

13 else if s
(rm)
i .F = 1c thenM.con← s

rm
i ≤ ss

rm
i

14 elseM.con← s
rm
i = ss

rm
i

15 for i = rm to r − 1 do
16 (M, ssi+1

0 , . . . , ssi+1
292 , ki+1

0 , . . . , ki+1
127 , vi+1

0 , . . . , vi+1
127 ) =

MPAcornUpdate(M, ssi0, . . . , ss
i
292, k

i
0, . . . , k

i
127, v

i
0, . . . , v

i
127)

/* t(r) = (t
(r)
0 , . . . , t

(r)
549) corresponds to ssr, vr, kr */

17 for i = 0 to 127 do
18 if t

(r)
421+i = 0 thenM.con← kri = 0

19 elseM.con← kri = 1

20 for i = 0 to 127 do
21 if t

(r)
293+i = 0 thenM.con← vri = 0

22 elseM.con← vri = 1

23 for i = 0 to 292 do
24 if t

(r)
i = 0 thenM.con← ssri = 0

25 elseM.con← ssri = 1

26 returnM
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L Previous Methods to Recover Key Bits from Multiple
Superpolies

We now recall existing methods that can recover key bits from multiple super-
polies:

Linear or quadratic superpolies. As mentioned, in the early stage of cube
attacks [9,20,10,36], the superpolies recovered have to be extremely simple (typ-
ically linear or quadratic functions). Even in [38], Ye and Tian et al. extended
the practical key-recovery attack on Trivium to 806 rounds, the superpolies
they are concerned about are still linear. The time to solve a linear system of
equations is negligible. As for solving quadratic equations, this can be done by
hand since the form of superpoly is usually very simple. However, we have to
admit that with the increase of the number of rounds, the probability that a
superpoly is linear or quadratic will become lower and lower.

Superpolies with balanced secret variables. In [23], Yao et al. proposed a
heuristic algorithm to search for superpolies with balanced bits using monomial
predictions. After solving the linear equations in previous works to obtain some
values of secret variables, they finally ended up with a nonlinear or non-quadratic
system of equations. The presence of balanced bits provides an opportunity to
iteratively transform the nonlinear equation into a linear equation by guessing
bits in order, so such a system can also be solved soon. However, with the number
of rounds grows, the balanced secret variables tend to disappear in a superpoly.

Superpolies not involving all secret variables. In many previous cube
attacks on such as [17,12,13,29,25], the recovered superpoly tends not to carry all
secret variables. Suppose for a balanced superpoly of the cube whose dimensions
are not larger than t, the involved key bits are represented by a set J , then
one bit information can be recovered with time complexity 2|J|+2t. For m such
superpolies, we can recover m bit information with time complexity m·(2|J|+2t).
As long as this time complexity is lower than the complexity of exhaustive search,
the cube attack is considered successful.

The disjoint set. In [16], Hu el al. recovered more than one superpolies for 843-
, 844- and 845-round Trivium, and these superpolies involve all key bits with
a balancedness estimated to be almost 0.50. The previous methods no longer
work for these superpolies. To extract as much information as possible from
superpolies, they split each superpoly p(k) into the following form according to
a disjoint set D = {ki0 , ki1 , . . . , kim−1}:

p(k) =
( ⊕
0≤i<m

ki · pi(J)
)
⊕ pm(J),

where J = {k0, k1, . . . , kn−1}/D. In the offline phase, the true table of each
pi(J) is computed by the Möbius transformation. Then in the online phase, after
computing the value of p(k) and guessing the values of secret variables in J , we
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can obtain a system of linear equations involving secret variables in D, which
should be solved quickly. In other words, the disjoint set reduces the problem
of solving a system of nonlinear or non-quadratic equations to the problem of
solving 2|J| systems of linear equations. However, as the number of rounds grows,
even a disjoint is hard to find. Since the superpolies of 846- and 847-round
Trivium are not linear or quadratic and involve all secret variables, we tried to
search a disjoint set for them. Unfortunately, no disjoint set was found.

M Simplified Möbius Transformation

Let the degree of f be d (d > 0). If wt(ct, . . . , cn−1) > d, then p(ct,...,cn−1)(x0, . . . , xt−1)
= 0. According to Proposition 3, we have gt(x0, . . . , xt−1, ct, . . . , cn−1) = 0 if
wt(ct, . . . , cn−1) > d. Recall in the process of Möbius Transformation shown in
Algorithm 2, gt(2tj + 2t−1 + k) is updated as

gt−1(2
tj + 2t−1 + k) + gt−1(2

tj + k).

We can skip this update step if gt−1(2tj + k) = 0. This inspires us to design a
algorithm to simplify the process of Möbius transformation, as shown in Algo-
rithm 48. Usually n is large and the structure of f is sparse, which means we
can neglect the cost of Line 4, therefore the time complexity of the simplified
Möbius transformation is at most

n∑
t=1

2t−1 ×
((n− t

0

)
+

(
n− t

1

)
+ · · ·+

(
n− t

d

))
3

bitwise XORs, while the memory complexity remains 2n bits. In [16], the au-
thor also proposed an improved variant of Möbius Transformation using sparse
ANFs, as a result, the time complexity of Möbius Transformation was reduced
to n× 2n−2 XORs. It is hard to compare our variant of Möbius Transformation
with their variant, we therefore hope that this may provide new inspiration for
optimizing Möbius Transformation on a sparse f .

3 (
0
0

)
= 1 and

(
n
r

)
= 0 if r > n.

70



Algorithm 48: Simplified Möbius transformation on f of degree d in Eqn. (8)

1 Procedure MobiusTransformation(The ANF of f):
2 for t = 1 to n do
3 Initialize gt to be the same as gt−1

4 Express f as

f =
∑

(ct−1,...,cn−1)∈Fn−t+1
2

p(ct−1,...,cn−1)(x0, . . . , xt−2) ·
n−1∏

i=t−1

x
ci
i .

/* When t = 1, we assume p(ct−1,...,cn−1)(x0, . . . , xt−2) = g0(ct−1, . . . , cn−1) */
5 for (0, ct, . . . , cn−1) whose p(0,ct,...,cn−1)(x0, . . . , xt−2) ̸= 0 do
6 Let (ct, . . . , cn−1) be the binary representation of j

/* When t = n, we assume (0, ct, . . . , cn−1) = (0) and j = 0 */
7 for k = 0 to 2t−1 − 1 do
8 gt(2

tj + 2t−1 + k) = gt−1(2
tj + 2t−1 + k) + gt−1(2

tj + k)

9 return gn
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