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Abstract. Randomized cache architectures have proven to significantly increase
the complexity of contention-based cache side-channel attacks and therefore pre-
sent an important building block for side-channel secure microarchitectures. By
randomizing the address-to-cache-index mapping, attackers can no longer triv-
ially construct minimal eviction sets which are fundamental for contention-based
cache attacks. At the same time, randomized caches maintain the flexibility of
traditional caches, making them broadly applicable across various CPU types.
This is a major advantage over cache partitioning approaches.
A large variety of randomized cache architectures has been proposed. However,
the actual randomization function received little attention and is often neglected
in these proposals. Since the randomization operates directly on the critical path
of the cache lookup, the function needs to have extremely low latency. At the
same time, attackers must not be able to bypass the randomization which would
nullify the security benefit of the randomized mapping. In this paper, we propose
SCARF (Secure CAche Randomization Function), the first dedicated cache ran-
domization cipher which achieves low latency and is cryptographically secure in
the cache attacker model. The design methodology for this dedicated cache ci-
pher enters new territory in the field of block ciphers with a small 10-bit block
length and heavy key-dependency in few rounds.

1 Introduction

In the recent past, we have witnessed a significant increase in attacks on the microar-
chitectural level of widely deployed desktop- and server-grade CPUs for which cache
side-channel attacks play an important role. By measuring the latency of a memory
access, attackers can observe if the access was served from the cache or main mem-
ory. This ability has been exploited to leak secret keys from many cryptographic algo-
rithms, among others, including the widely used encryption schemes AES [6,39] and
RSA [35,62]. Cache-based keyloggers that observe the activity of keystroke handlers in
the cache to leak user input on co-located VMs have been presented in [62,18]. More-
over, cache side-channel attacks are a commonly used building block for speculative
execution attacks like Spectre [21] and Meltdown [27]. A variety of cache attack primi-
tives including FLUSH+RELOAD [62] and PRIME+PROBE [39,56] have been proposed.
Using these primitives, attackers can reliably observe the access behavior of a victim
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process and hence, leak sensitive information like secret key material. Cache side-
channel attacks can be categorized in two distinct groups. The first group, flush-based
attacks like FLUSH+RELAOD [62] and FLUSH+FLUSH [18], require shared memory
between the attacker and the victim process. Furthermore, the attacker must be able to
flush targeted entries from the cache using a special instruction. Such attacks can be
prevented by either making the flushing instruction privileged on the ISA level, or by
duplicating shared memory addresses in the cache [41]. The second group, contention-
based cache attacks, exploit the internal architecture of caches and are therefore signif-
icantly harder to prevent.

In an effort to design side-channel secure cache architectures that prevent contention-
based attacks, two approaches have emerged: cache partitioning and cache randomiza-
tion. The former splits the cache into n distinct partitions for different security domains
to avoid leakage across domain boundaries [40]. The main disadvantage of partition-
ing is the limited flexibility and therefore large performance overhead. For dynamically
partitioned caches, adjusting the size of partitions has shown to be difficult under se-
curity considerations [59]. As a consequence, randomization-based cache designs have
received more attention in response to such attacks [60,42,43,61,51,45,47,53]. These
designs randomize the address-to-cache-index mapping and therefore prevent the at-
tacker from efficiently finding addresses that collide with the victim address. All these
designs use a randomization function that takes the memory address as input and returns
a set of pseudorandom cache indices. The exact instantiation of the randomization func-
tion varies between the schemes for which designers carefully consider performance
interests versus security requirements. Since the randomization process is within the
critical path of the cache lookup, low latency is extremely important. At the same time,
if the attacker can construct conflicting pairs of addresses, the security of the scheme
collapses and PRIME+PROBE-like attacks become feasible again [41]. A conservative
choice in terms of security is to use a low-latency block cipher like PRINCE [12] as pro-
posed in [61,45,53]. However, full encryption of the address using a 64-bit block cipher
is not ideal for two reasons: First, a 64-bit block cipher introduces significant storage
overhead in the tag computation since the address contains offset bits that must not be
used for the randomization. Second, the attacker never observes the ciphertext since the
cache functions as a black-box; i.e., the attacker will never observe the actual output
of the randomization function. The only opportunity for an attacker to learn something
about the randomization function is when two addresses map to the same randomized
index. Hence, the randomization could in principle be simpler than a full block cipher.
However, previous work has demonstrated that randomization functions with insuffi-
cient cryptographic properties can easily be broken by an attacker [9]. Specifically, the
Feistel-structure proposed to be used in CEASER [42] has shown to be insufficient for
secure randomization. Bodduna et al. [9] demonstrate an attack on the randomization
scheme and conclude: “This [attack] opens up a need for specialized low-latency en-
cryption techniques that are exclusively designed for cache address encryption, that
can provide the security guarantees with acceptable performance overheads.” Simi-
larly, Purnal et al. [41] state that “it is still an open challenge to choose a strong and
fast encryption algorithm for randomized caches.”

In this paper, we present SCARF, the first cryptographically sound, tailor-made
cache cipher. We define the attacker model for cache randomization functions and an-
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alyze and discuss design requirements. We carefully design SCARF to minimize the
latency and thoroughly evaluate its security thanks to our new framework. We evaluate
the latency and area requirements of SCARF on ASIC hardware through logic synthesis
with the 45 nm and 15 nm Nangate open cell libraries (OCLs). Consequently, we con-
firm that SCARF achieves a latency of less than half of that of PRINCE (the pioneering
low-latency block cipher), MANTIS, and QARMA (state-of-the-art low-latency tweak-
able block ciphers) with practical security. For further validation, we also evaluate and
compare SCARF to some representative symmetric primitives including (variants of)
some final-round candidates of NIST LWC competition [37] and round-reduced low-
latency ciphers in an appendix. In addition, we quantify the performance of SCARF
in comparison to the above low-latency (tweakable) block ciphers in the cache setting
using the gem5 simulator [30].

1.1 Related Work

Different randomized cache architectures have been presented in [60,42,43,61,51,45,47,53].
Purnal et al. generalize the idea of randomized cache architectures in [41] and present a
generic algorithm to construct generalized eviction sets for solely randomization-based
caches. Several designs [61,45,53,9] use the PRINCE [12] block cipher for randomiza-
tion. The authors of PhantomCache [51] introduce a randomization function based on
Toeplitz hashes [23] but do not investigate the security properties of this function in
the cache application. The randomized cache architecture CEASER presented a custom
low-latency randomization function for their cache design [42]. However, the proposed
randomization function did not contain nonlinear functions. An attack on the random-
ization function of CEASER has been presented by Bodduna et al. [9]. Ribes-González
et al. [44] formally define security properties of randomized caches. For the formal
proofs, they assume an abstract randomization function based on a PRF.

Format-preserving encryption algorithms have been presented in [5,4,46]. These
encryption algorithms map a given plaintext to a ciphertext of the same length and
hence, preserve the format. However, these schemes usually do not target low-latency
use cases like SCARF. The K-Cipher has been presented by Kounavis et al. in [22]
and allows encryption with arbitrary ciphertext lengths between 24 and 1024 bits. The
K-Cipher has been used in the context of memory safety in [26]. Recent analysis has
revealed a practical key-recovery attack of the K-Cipher with a block size of 24 bit in
time 229 encryptions [31].

2 Background and Requirements

In this section we introduce background on caches and cache attacks. We introduce the
concept of cache randomization as a side-channel countermeasure and provide reason-
ing for the design and parameter choices of SCARF.

2.1 Caches

Due to the large performance gap between the CPU and main memory, modern CPUs
store frequently accessed data in small memory modules in close physical proximity
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to the core. Most modern processors divide this cache memory into multiple levels
ranked from the smallest and fastest L1 cache to the largest and slowest L3 cache.
Each physical core is equipped with private L1 and L2 caches whereas the L3 cache is
typically shared among all CPU cores. When the CPU attempts to read from or write
to a memory address, the caches are queried using this address. If the data associated
with the requested address is stored in the cache, a cache hit occurs and it is returned
directly. In this case, the CPU does not need to wait for the main memory. If the data
is not cached, a cache miss occurs and the data is loaded from memory. To determine
if the data belonging to a given address is cached, part of the address is stored as a tag
alongside the data. Upon access, the cache is searched for the tag and the corresponding
data is returned if the access resulted in a hit. For small L1 caches, one can simply
search the entire cache for the given tag upon access. Caches implementing this search
strategy are called fully-associative. For larger caches like the L2 and L3 cache which
often store multiple megabytes of data, searching the entire cache upon access is not
feasible for performance reasons. Therefore, most caches deployed in real CPUs use
a set-associative addressing scheme. The set-associative layout can be imagined as a
table structure with m-byte entries. The table rows are called sets and the columns are
called ways. The accessed address is split into a tag, an index, and an offset. The offset is
determined by the log2(m) least-significant bits of the address and selects which word
within the m-byte entry is returned. Most caches feature 64-byte entries and therefore
an offset width of 6 bits. The address bits above the offset are used for the index and
select the set in which the data is placed (i.e., the table row). The width depends on the
number of available cache sets. Many recent CPUs feature 210 cache sets, and hence, an
index width of 10 bits [52]. By using a different number of cache ways and instantiating
multiple cache slices (load-balanced parallel caches) CPU designers can still create
arbitrary-sized caches with a fixed number of cache sets. The remaining bits of the
address are stored as a tag alongside the data and are used in combination with the index
which is implicitly stored by the location to uniquely identify the address. When an
address is accessed, all cache ways at the index of the requested address are searched for
the corresponding tag. On a cache hit, the correct data is returned. If a cache miss occurs,
the data is loaded from memory or other cache levels. In this case, the replacement
policy is used to select one entry from the selected cache set to be evicted and replaced
by the new data. In many cases, this replacement policy selects the least-recently used
(LRU) entry for replacement.

Most L3 caches use a write-back policy for memory writes. When the CPU writes
to an address, the data is not directly modified in main memory. Instead, the respective
cache entry is flagged as dirty (modified) and the data is updated in the cache. Only
when the entry is evicted from the cache, the modified data is written to main memory.
The write-back policy reduces the load on the memory bus and can therefore accelerate
the execution.

2.2 Cache Attacks and Randomization

The timing difference between a cache hit and a cache miss can be measured from user-
level code. This allows attackers to observe the cache behavior of co-located processes.
While the L1- and L2 cache are private to each core, the L3 cache is shared among
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all cores and therefore, the attacker can mount cross-core cache attacks. There are two
main categories of cache attacks. Flush-based attacks like FLUSH+RELOAD [62] and
derivatives [18] are based on the assumption that the attacker and the victim share some
memory addresses, e.g., due to a shared library. Moreover, the attacker must be able
to evict addresses from the cache using a specialized instruction like clflush in x86.
The attacker would flush the shared address from the cache, then wait for the victim to
execute, and finally access the address and measure whether a cache hit occurs. If so, the
victim accessed the shared address. This simple attack has for example been used to leak
secret keys from an encryption using GnuPG [62]. Flush-based attacks can be prevented
by duplicating shared memory in the cache as proposed by Werner et al. [61]. Opposed
to flush-based attacks, contention-based attacks neither rely on shared memory nor the
ability to flush specific addresses from the cache. Instead, the attacker exploits the set-
associative structure of the cache. Therefore, the attacker constructs a so-called eviction
set, i.e., a set of addresses that have the same index bits as the target address. Even
though the addresses used for cache addressing are not directly visible to the attacker
due to the virtual memory abstraction, constructing minimal eviction sets can be done
very efficiently for set-associative caches [57,48,52]. In a w-way cache, an eviction set
with exactly w addresses is called minimal. The most common example of contention-
based cache attacks is PRIME+PROBE [39,56]. There, the attacker first constructs a
minimal eviction set that collides with the target address. Then, the attacker primes the
cache set by accessing all addresses from the eviction set. This step is comparable to the
flush step of FLUSH+RELOAD since the eviction set addresses replace all other entries
from the set. Next, the attacker triggers the victim program which might access the
target address. Finally, during the probe phase, the attacker re-accesses all entries from
the eviction set. If a cache miss occurs, the attacker learns that the victim did access the
target address. Like FLUSH+RELOAD, PRIME+PROBE has, among others, been used
for key-recovery attacks against GnuPG [29]. There are many more cache attacks used
against a large variety of targets, see [50].

In recent years, many countermeasures against contention-based cache attacks have
been proposed. Thereby, cache randomization has emerged as a promising solution with
low overhead in performance and complexity and wide applicability across many CPU
sizes [42,43,61,51,45,47,53]. These designs randomize the mapping of addresses to
cache entries and therefore, massively increase the complexity of the eviction set con-
struction [41]. Most recent proposals utilize a randomization function that takes the
index- and the tag section of an address as input and compute a pseudorandom index
at which the data is stored. A schematic overview of a randomized cache is shown in
Figure 1. The randomization is applied to the address in each cache way. This way it
is possible to have different mappings in each way by selecting a unique random key.
Since the cache can only be searched for the queried address after the randomization
function is complete, the latency of the randomization function is crucial both in the
hit-, and the miss scenario. At the same time, it must not be possible for an attacker
to break the randomization since in this case, the construction of eviction sets becomes
trivial.

The security of cache randomization at system-level has been thoroughly studied
in [61,41,53]. Purnal et al. [41] discovered a generic attack on cache architectures that
purely rely on randomization such as e.g., SCATTERCACHE [61]. By priming the cache
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Fig. 1. Schematic overview of a 2-way randomized cache architecture with 10-bit indices.

with a set of addresses k, the attacker is able to observe conflicts between addresses from
k and the victim address. Though the victim address is usually not directly controlled
by the attacker, there are scenarios where the attacker can influence the victim address,
e.g., heap shaping attacks [38]. The attacker then constructs a generalized eviction set G
which contains addresses that collide with the victim address in at least one cache way.
The generalized eviction set can be used to evict the victim address with probability pe
and can therefore be used similarly to a traditional eviction set. In an ideal randomized
cache, the attacker’s best chance of obtaining two colliding addresses is guessing. The
profiling effort of PRIME+PRUNE+PROBE is significant and hence, frequent re-keying
of pure randomization designs like SCATTERCACHE [61] can prevent attackers from
being able to construct generalized eviction sets. More recent randomized cache archi-
tectures use additional measures to increase the complexity of PRIME+PRUNE+PROBE
attacks beyond feasible boundaries [45,53]. In Appendix D we summarize the effect of
cache randomization on system-level in greater detail.

2.3 (Tweakable) Block Ciphers

A block cipher takes two inputs, a plaintext P ∈ Fn
2 and a key K ∈ Fk

2, and produces a
ciphertext C ∈ Fn

2. A tweakable block cipher is a cryptographic primitive that extends
block ciphers [28] by allowing an additional input T ∈Ft

2 (called tweak) that, along with
the plaintext P and the key K, produces the ciphertext C. The idea is that a tweakable
block cipher is a family of independent block ciphers, one for every tweak T . Many
dedicated tweakable block ciphers have recently been proposed, such as Skinny and
MANTIS [3], Deoxys [19], and QARMA [1].
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2.4 Design Rationales

Caches are used in all kinds of CPUs ranging from small embedded devices to high-end
server clusters. Due to the vastly different requirements, sizes and placement policies
vary drastically. Since the randomization function depends on these cache parameters,
there cannot be one function that suits all caches perfectly. As motivated above, we
chose to design SCARF targeting recent desktop-grade CPUs which typically feature
64-bit addresses and write-back caches with 210 cache sets. We assume a cache with
64 Byte entries. Thus, the address is divided into a 48-bit tag, a 10-bit index, and a 6-bit
offset section. Our approach and results can be used as groundwork for further cache
randomization functions with different parameters.

The write-back policy requires the randomization function to be invertible so that
modified cache entries can be written back to their original address in main memory.
Since each entry only holds the data and the 48-bit tag, the index bits need to be derived
implicitly from the location of the entry. In non-randomized caches, this is trivial since
the index is equivalent to the cache set. However, if the randomization function is a one-
way function (i.e., a PRF), it is not possible to reconstruct the original index bits from
the location of the entries. While one could store the original index bits as part of the tag,
this creates a 10-bit overhead in every cache entry and increases the complexity of the of
comparing the tag of a cache entry with the tag of a accessed address, i.e., determining
whether an access results in a cache hit. This part of the cache is very critical in regards
to latency. Therefore, we designed SCARF to be invertible. The randomization should
furthermore be dependent on a secret key so that an attacker does not know the mapping.
Hence, we designed SCARF as a tweakable block cipher.

Low latency is a key requirement for a cache randomization function. This holds
especially for the encryption since the randomization function is applied on the critical
path of every cache access. Part of the accessed address is used as plaintext and the result
of the encryption is used to determine the cache lookup. The latency of the decryption
function is less critical since it is only used to write back dirty entries from the cache to
main memory. This usually happens on a cache miss where the CPU needs to wait for
the slow main memory to respond with new data before the cache entry can be replaced.
The decryption of the index (and therefore, the reconstruction of the original address)
can be executed in parallel to the cache miss.

Several directions can be taken for designing SCARF. A straightforward way could
take an ordinary 64-bit block cipher and optimize it for low latency. However, the 6
offset bits select the offset within the cache entry and are therefore not used for ran-
domization. With a 64-bit cipher, the ciphertext hence includes 6 additional bits that
need to be stored as part of the tag, increasing the overall storage overhead and lookup
complexity. To overcome this issue, a 58-bit block cipher could be used where 10 bits
of the ciphertext are used as randomized input. Since the attacker is only interested in
collisions on these 10 index bits, the security of partial ciphertext collisions of such a
cipher needs to be well understood. While the addition of additional rounds would ease
this analysis, this contradicts the low latency goal for a cache randomization function.
In response to that, we designed SCARF to operate on a small 10-bit block size and
uses the tag as a 48-bit tweak. This separation enables the definition of a comprehen-
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sive attacker model which is described in Section 3. It furthermore allows considerable
optimization for low latency which is a key advantage of SCARF over other designs.

SCARF features a nominal security level of 80 bits (even though the key used is
240 bits). Hence, an attacker must perform at least 280 encryptions or decryptions for
a successful attack in the given attacker model (see Section 3). The 80-bit security
level is often taken as a practical complexity limit for brute force attacks on modern
hardware, although a higher security level is required for general-purpose block ciphers
to cover future developments. However, since in the cache use-case the key is short-
lived and the attacker cannot record ciphertexts for later analysis, it is sufficient for our
use-case. We also limit the data complexity by the attacker to 240. Since each unique
address (ignoring the offset bits) maps 64 bytes of memory on the device under attack,
these limitations are irrelevant for the cache use-case. 240 addresses would map about
70 terabytes of RAM which is far beyond current system configurations. Hence, the
attacker is constrained by the available addresses for attacks on the randomization key
and the chosen limits leave a healthy security margin.

3 Attacker Model

One of the most interesting aspects of this work is the definition of the attacker model.
From a system-perspective, we define the cache as a black-box which the attacker can
query with arbitrary physical addresses. For each access, the attacker can observe the
timing whether a cache hit or cache miss ocurred. Moreover, we assume that two ad-
dresses are sufficient for the attacker to tell if they map to the same cache set. In reality,
the attacker would have to find up to w+ 1 addresses that map to the same cache set
before observing this. The attacker cannot observe other cache internals which espe-
cially includes the set-index of a given address. From a cryptographic point of view,
this corresponds to an attacker that can choose plaintexts (index part of the address)
and tweaks (tag part of the address) to be encrypted. However, ciphertexts will not be
revealed. So collisions of ciphertexts are the exclusive source of information for the
attacker. Formally, we require the following security property for SCARF.

Security Requirement 1 Let Oreal be the oracle in the real world that takes addresses
(x1,T1) and (x2,T2), and returns 1 if ET1(x1) = ET2(x2) and 0 otherwise, where E is
SCARF. Let Oideal be the oracle in the ideal world that takes addresses (x1,T1) and
(x2,T2), and returns 1 if ΠT1(x1) = ΠT2(x2) and 0 otherwise, where Π is a tweakable
random permutation with the same input/tweak/output lengths to SCARF. An adversary
is allowed to make at most 240 queries. Then, the adversary running in time at most 280

cannot distinguish the real from the ideal world.

In other words, this requirement implies that SCARF is as secure as the random-
ization by an ideal cache randomizing function. Note that SCARF only outputs even
permutations like other modern block ciphers. Thus, to sound this security definition,
the counterpart, i.e., ideal tweakable random permutations, is also restricted to even
permutations.

Notice that in reality, Security Requirement 1 is more complex since the attacker
can learn small bits of information that are not covered in the formal requirement. For
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example, the attacker can access two distinct sets of addresses that do not contain con-
flicting addresses within each set. By accessing first Set 1, then Set 2, and then Set 1
again, the attacker can learn if there are addresses from Set 2 that collide with addresses
from Set 1. In general, this strategy does not reveal which exact address pairs collide.
However, there are more severe limiting factors due to the more complex reality which
outweigh the benefits for the attacker. Most notably, this is due to the assumption that
the attacker is able to observe cache conflicts given only two addresses. In reality, the
replacement policy selects one out of w candidates to be replaced in a w-way cache.
Therefore, in a practical attack one would need to access many more addresses to find
a collision pair. If the attacker does not observe a conflict for a pair of addresses, this
does not mean that they do not collide in the cache but only that the replacement pol-
icy did not assign them to the same cache way. Another limiting factor for an attacker
is the control over the addresses that are queried since only the page offset bits (e.g.,
the least significant 12 bits) are accessible from userspace. Even with huge pages, the
attacker does not gain control over the full address space and is still restricted to the
queried tags. Furthermore, the attacker needs to cope with additional noise from con-
current processes, depending on the target device. The impact of noise increases with
an attacker accessing large sets of addresses at once. Note that our security requirement
underestimates the information provided by the oracle (e.g., the oracle I/O) but it also
overestimates the abilities of the attacker (e.g., choosing addresses and telling apart
colliding from non-colliding addresses with only two addresses). We designed Secu-
rity Requirement 1 such that in practice, the overestimation of the attacker outweighs
the simplified oracle. This allows us to analyze the security of SCARF w.r.t. Security
Requirement 1, designing a secure cipher under real-world constraints.

From a designer perspective, Security Requirement 1 does not allow to use many
well-understood cryptanalysis arguments and techniques that have led to the design of
modern block ciphers. Therefore, we now address this problem by framing the attacker
setting in the cache scenario in a novel and convenient way. In fact, by observing a
random conflict, the attacker can learn if two addresses collide in the cache, i.e., if two
plaintexts P1 and P2 and two tweaks T1 and T2 lead to the same ciphertext and hence
satisfy

ET1(P1) = ET2(P2).

P1

E

C1 =

T1

P2

E T2

C2

?

Then, and this is a key point of our work, P2 is actually the decryption of C1 = C2
under T2, where Ci = ETi(Pi) (i = 1,2). Indeed, the attacker learns the evaluation of the
function

E−1
T2
◦ET1(P1) = P2

in case of a collision and learns that

E−1
T2
◦ET1(P1) 6= P2
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in case there is no collision. In other words, we can turn the attacker’s view actually
into the following view that will guide our design approach.

P1

ET1

P2

E−1 T2

So, as designers, we simplify this situation by assuming that the attacker is allowed
to query

ẼT1,T2(P) := E−1
T2
◦ET1(P) =C

directly for chosen P, and tweak pairs T1,T2. Note that, in practice, querying this func-
tion actually requires the attacker to perform a non-negligible amount of work by basi-
cally randomly searching for those collisions.

Assume we design E as an iterative function using r rounds. The great advantage of
this attacker model and the designer’s view is that we have to implement and consider
the latency of r rounds, while the attacker actually faces a primitive consisting of 2r
rounds. This, among other ideas and insights described below, is the reason why SCARF
enables security with exceptionally small latency.

Note that, even if ET is an ideal tweakable block cipher, ẼT1,T2 is not. The easiest
way to see that is to note that there is an important special choice of the tweak pair.
Indeed

ẼT1,T1(P) = P

for all P, i.e., for identical tweaks, the function is the identity. While this constitutes
weak-tweaks for the tweakable block cipher Ẽ, it does not correspond to any knowledge
the attacker gains as this just means that the same plaintext with the same tweak always
yields the same ciphertext using E.

There are more examples of non-ideal behaviour of ẼT1,T2 , e.g., it holds for all
T1,T2,T3 that

ẼT3,T1 ◦ ẼT2,T3 ◦ ẼT1,T2

is the identity function. It follows that Ẽ cannot be an ideal tweakable block cipher.
In fact, we can translate Security Requirement 1 into the following security require-

ment for Ẽ.

Security Requirement 2 Let Õreal be the oracle in the real world that takes a plaintext
P and a pair of tweaks T1,T2 as input and returns C such that C = E−1

T2
◦ET1(P), where

E is SCARF. Let Õideal be the oracle in the ideal world that takes a plaintext P and a
pair of tweaks T1,T2 as input and returns C such that C = Π

−1
T2
◦ΠT1(P), where Π is a

tweakable random permutation with the same input/tweak/output lengths to SCARF. An
adversary is allowed to make at most 240 queries. Then, the adversary running in time
at most 280 cannot distinguish the real from the ideal.

Again, since SCARF only outputs even permutations, the counterpart, i.e., ideal tweak-
able random permutations, is also restricted to even permutations.
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The oracle
∼
O of Security Requirement 2 is stronger than the oracle O of Security

Requirement 1. It is possible to construct the oracle
∼
O from O. For each query to

∼
O,

the oracle needs to query multiple addresses to O. Thus, given that in both cases the
query complexity is limited to 240, Security Requirement 2 is a stronger requirement
than Security Requirement 1.

If we use a traditional block cipher to encrypt both the address and tag instead of the
tweakable block cipher, the above simplification is no longer possible. In fact, a cache
hit would then imply only a partial collision of the ciphertexts, so we cannot model the
target cipher as encryption-then-decryption as in the tweakable case. Thus, we conclude
that the security of a round-reduced version of a secure block cipher like PRINCE is
questionable without careful analysis.

Finally note that, as a matter of fact, designing a secure tweakable block cipher as
E−1

T2
◦ET1 , where ET has r rounds, is more challenging than designing a secure 2r-round

tweakable block cipher. Even if we would design a secure tweakable block cipher, it
is unlikely that a half-round reduced version would yield a suitable solution for our
setting. The target cipher in our attack model must have the structure E−1

T2
◦ET1 , and

without taking special care, it is likely that tweaks can be chosen by the attacker such
that the last rounds of ET1 are canceled by the first rounds of E−1

T2
.

4 SCARF

We now present SCARF (Secure Cache Randomization Function), a tweakable block
cipher with a 48-bit tweak and 10-bit block size. SCARF uses a 240-bit secret key. An
overview of SCARF is shown in Figure 2. The cipher consists of a tweakey schedule
and a data encryption path. Before giving the detailed specification of the design, we
discuss the security we expect from SCARF. Reference implementations are available
at https://github.com/Chair-for-Security-Engineering/SCARF.

4.1 Security Claims

We claim that SCARF satisfies Security Requirement 1 against any adversary running
in time at most 280 using at most 240 queries. We also claim that SCARF satisfies
Security Requirement 2 against any adversary running in time at most 280 using at most
240 queries. Note that the latter is a significantly stronger claim for the actual use case
of SCARF because the real attacker never gets corresponding plaintexts with a query
complexity 1. The purpose of the claim is to encourage cryptanalysis and gain a better
understanding of the security of SCARF.

The 240-bit key is generated randomly during boot time using the TRNGs present
on most CPUs. Therefore, we do not claim security against related- or known-key at-
tacks. Indeed, there is no specific relation between keys when the key is always gener-
ated randomly.

The 240-bit key is maintained by the hardware which is responsible for storing it
in a secure manner, e.g., a dedicated SRAM module. If the attacker has compromised
the system in a way that allows extracting the key from SRAM, there is no need for a
cache attack (e.g., the attacker could just dump all content of the cache which is also

https://github.com/Chair-for-Security-Engineering/SCARF
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SRAM memory). Due to the dense packaging of modern CPUs, physical side-channel
attacks (e.g., power or EM) on SCARF are immensely difficult to carry out. With re-
spect to the huge effort for such attacks, the gain of breaking the cache randomiza-
tion mechanism via physical side channels is comparatively small. Since a new key is
freshly generated at every boot, such attacks would furthermore have no long-lasting
effect. We therefore consider physical side-channels out-of-scope for SCARF. While
recent CPUs feature software-level voltage monitoring that can be used for software-
based power side-channel attacks [34], the values are not actually measured but instead
extrapolated from the CPU load. Hence, these measurements cannot leak information
about the SCARF key.

We designed SCARF to be indistinguishable from the case that we use an ideal
cache randomization function given the oracle specified in Security Requirements 1 and
2. The overall robustness of a randomized cache against side-channel attacks heavily
relies on the architectural design, see e.g., [61,41,53,45]. These designs require a secure
randomization function to achieve the system-level security goals stated, and SCARF is
indistinguishable from the secure randomization function. We discuss the security and
performance of recent designs in Appendix D.

4.2 Specification of SCARF

The Round Function R1 and R2. The round function R1 has a 10-bit input x and a
30-bit subkey k generated by the tweakey schedule. The input x is divided into two
halves, i.e., x = xL‖xR of 5 bits each. The subkey k is also divided into six 5-bit values
as k = k6‖k5‖k4‖k3‖k2‖k1. Let τi be an i-bit left rotation, i.e., τi(x) = x ≪ i. Then, the
round function R1 updates (xL,xR) as follows:

y = G(xL,k1,k2,k3,k4,k5)⊕ xR,

xR = S(xL⊕ k6),

xL = y,

where G is

G(x,k1,k2,k3,k4,k5) =

[
4⊕

i=0

(τi(x)∧ ki+1)

]
⊕ (τ1(x)∧ τ2(x))

and S is

S(x) =
(
(τ0(x)∨ τ1(x))∧ (τ3(x)∨ τ4(x))

)
⊕
(
(τ0(x)∨ τ2(x))∧ (τ2(x)∨ τ3(x))

)
.

The round function R2 is a slight variation of R1. Specifically, the order of applying
the S-box and XORing the subkey is swapped, and the last swap is omitted. The round
functions are depicted in Figure 3.

xR = G(xL,k1,k2,k3,k4,k5)⊕ xR,

xL = S(xL)⊕ k6.
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Fig. 2. Overview of SCARF

The Tweakey Schedule. The tweakey schedule generates four 60-bit subkeys T i

from a 48-bit tweak T and a 240-bit secret key K4‖K3‖K2‖K1:

T 1 = expansion(T )⊕K1,

T 2 = Σ(SL(T 1))⊕K2,

T 3 = SL(π(SL(T 2)⊕K3)),

T 4 = SL(Σ(T 3)⊕K4),

each subkey T i is split into two parts of 30 bits. Those 30 bits are then used as actual
round keys in two consecutive rounds, e.g., T 1 provides the round keys for rounds 1
and 2.

In the following, the bits of the states T [i] are also labeled starting from 1, from
right to left. The tweakey schedule first expands the 48-bit tweak to a 60-bit value as
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Fig. 3. Function R1(x,k) and R2(x,k)

follows:

expansion(T ) =0 ‖ T [48] ‖ T [47] ‖ T [46] ‖ T [45] ‖
0 ‖ T [44] ‖ T [43] ‖ T [42] ‖ T [41] ‖· · ·‖
0 ‖ T [4] ‖ T [3] ‖ T [2] ‖ T [1].

The function SL applies 12 identical 5-bit S-boxes S in parallel, where S is the same
S-box as in the round function. The function Σ is a linear function defined as

Σ(x) = x⊕ τ6(x)⊕ τ12(x)⊕ τ19(x)⊕ τ29(x)⊕ τ43(x)⊕ τ51(x),

and the function π is a bit permutation, where xi is mapped to xpi and pi is represented
as:

p =1,6,11,16,21,26,31,36,41,46,51,56,
2,7,12,17,22,27,32,37,42,47,52,57,
3,8,13,18,23,28,33,38,43,48,53,58,
4,9,14,19,24,29,34,39,44,49,54,59,
5,10,15,20,25,30,35,40,45,50,55,60.

Finally, rki denotes a subkey for the i-th round.

rk2‖rk1 = T 1, rk4‖rk3 = T 2,

rk6‖rk5 = T 3, rk8‖rk7 = T 4.

5 Design Rationale

We provide details on the design rationale of SCARF.
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Fig. 4. Two-round structure of SCARF. The position of S equivalently moves from the left branch
to the right branch due to an easy understanding of the parallel application of two S-boxes.

5.1 Overall Structure

SCARF is a dedicated tweakable block cipher for randomizing the cache. It was de-
signed only for this specific use case and achieves a substantial improvement of the
latency compared not only to common block ciphers like AES, but also to existing low-
latency block ciphers like PRINCE or QARMA. We first present two exclusive design
philosophies on which SCARF is built.

Very Short Block Length. One of the essential differences between SCARF from
a common block cipher is its short block length. To the best of our knowledge, SCARF
is the first block cipher with such a short block length. The small block length makes
SCARF well suited for cache randomization but not for other classical uses, e.g., as a
symmetric-key encryption scheme or an authenticated encryption.

We first discuss the choice of the structure for the design of a block cipher. There are
two most prominent structures: Substitution-Permutation-Network (SPN) and Feistel
structures. AES is an example of a SPN cipher, while DES is an example of a Feistel
cipher. Many low-latency block ciphers such as PRINCE [11] or MANTIS [3] adopt the
SPN structure. Indeed, the SPN is suited to the low-latency design because it updates
the entire state nonlinearly with a simultaneous operation. However, it usually uses
subkey XOR, which means that at most a number of subkey bits equal to the block
length can be absorbed every round. This would be problematic for our purpose since
the block length is only 10 bits. Furthermore, adding extra bijective functions to absorb
more subkey bits would work against our low-latency goal. On the other hand, the
Feistel structure only uses a half-block length nonlinear operation every round, thus
having a generally higher latency than the SPN. However, it can absorb many subkey
bits efficiently because a non-bijective nonlinear function can be used.

In light of the above observations, we adopted a new structure that combines the
advantages of the SPN and Feistel structures. We can also view the new structure as
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a modification of the MISTY structure [33]. Figure 4 shows our two-round structure.
Similar to the MISTY structure, two S-boxes can be computed in parallel. Unlike the
MISTY structure, it has the G function. The main purpose of the G function is to result
in high key-dependency, i.e., absorb many subkey bits with minimal latency. Note that
the G function does not need to be bijective, which allows for a more flexible design.

One of the most interesting aspects of this structure is that the S-box does not lie
in the critical path when the latency of the Sbox is smaller than the latency of two
consecutive G functions. In fact, as depicted in Figure 4, it is the two G functions that
make up the critical path in the encryption.

Taking the Attack Model into Account. Most modern block ciphers are designed
under the assumption that plaintexts and ciphertexts can be observed by potential at-
tackers. However, as motivated in Section 3, ciphertexts of ET are not observable in the
cache use case. As mentioned in Section 3, the target of an attacker using ciphertexts is
then ẼT1,T2 = E−1

T2
◦ET1 and not ET .

We designed the round function and the tweakey schedule to reflect this attack
model. As explained above, special care has to be taken in order to avoid the inter-
nal cancellation of rounds. When the subkeys for the last round of ET1 and ET2 are the
same, two rounds in the middle of E−1

T2
◦ET1 are cancelled by each other. We call this a

last-round cancellation. We counter the last-round cancellations in two ways: first, we
make finding such T1,T2 as hard as guessing the subkey involved in the computation
of the last round function. For this, we adopted a nonlinear tweakey schedule, and the
last subkey is generated as a “ciphertext”, i.e., an encrypted tweak by the secret key.
Secondly, SCARF guarantees that the last two rounds behave differently if the 60-bit
subkeys are different. Note that the tweakey schedule always generates different 60-bit
subkeys from different tweaks. In addition to the typical case like the last-round can-
cellation, as a general rule, the tweakey schedule should generate, on different tweaks,
subkeys whose Hamming distance is as far as possible. Indeed, if the Hamming dis-
tance was close, the applied round function would be almost the same, and it might
cause many fixed points in Ẽ. To avoid this, the tweakey schedule guarantees that the
Hamming distance of the subkeys generated by different tweaks is at least 17. Besides,
since we guarantee that the differential characteristic probability is low enough in the
tweakey schedule, it is not easy for the attackers to choose the subkey difference by
controlling the tweak difference.

5.2 Design of the Round Function

The round function is the main component in the data encryption. The design is based
on a modified MISTY structure that additionally has a low-latency G function absorbing
many subkey bits.

The G function. The main goal of the G function is to absorb many subkey bits
very quickly. It is well known that the AND / NAND gate has lower latency than XOR
/ XNOR gate. Thus, an initial idea for designing the G function is G(x,k) = x∧ k,
but it involves only a 5-bit subkey. To absorb more subkey bits, we use bit rotations,
AND gates, and their sum, i.e., G(x,k1,k2,k3,k4,k5) =

⊕4
i=0(τi(x)∧ki+1). It can absorb

5× 5 = 25-bit subkey. To avoid G being the zero function for a specific choice of the



SCARF: A Secure Cache Randomization Function

subkey and add nonlinearity, we additionally XOR τ1(x)∧ τ2(x).

G(x,k1,k2,k3,k4,k5) = (τ1(x)∧ τ2(x))⊕
[

4⊕
i=0

(τi(x)∧ ki+1)

]
.

Then, G is described by the sum of six 5-bit values. Including XORing with xR, it is
described by the sum of seven 5-bit values. In other words, the critical path of G and
XORing with xR is one AND gate and an XOR tree of depth three.

The S-Box. The S-box is the main component to randomize the data nonlinearly.
We design the S-box so that the critical path of the data encryption is still the iterative
application of the G function. We adopt the following design criteria, where we give
more importance to the algebraic degree than to the linearity and differential uniformity
when designing the S-box because the MISTY structure is potentially weak against the
integral / higher-order differential attack [55]:

– The latency is competitive with two consecutive applications of XOR so the latency
of S and XORing of the key is competitive with three consecutive XOR (that is,
competitive with G). Thus, we can expect that this S-box is not on the critical path.

– Algebraic degree is 4.

In order to satisfy the above criteria, we have followed the ideas used for the de-
sign of the S-box of SPEEDY [25], and opted to search for S-boxes that are obtained
by the composition of a OAI gate (that is, the gate that represents the logic function
(A,B,C,D) 7→ (A∨B)∧ (C∨D)) followed by an XOR, that is

S(x) = ((τa(x0)∨ τb(x1))∧ (τc(x2)∨ τd(x3)))⊕ ((τe(x4)∨ τ f (x5))∧ (τg(x6)∨ τh(x7)))

for some 0 ≤ a,b,c,d,e, f ,g,h ≤ 4 and xi ∈ {x,x}. Among all S-boxes fulfilling those
properties, we choose the ones that provided the best resistance against linear and dif-
ferential attacks, i.e., that had minimal differential uniformity and linearity. We found
15 different S-boxes that satisfied the above criteria with minimal differential unifor-
mity and linearity and chose S to be the one given by the first (a,b,c,d,e, f ,g,h) in
lexicographic order. In particular, the differential uniformity and linearity of S are 4 and
12, respectively.

No Last-Round Cancellation. Considering the model ẼT1,T2 = E−1
T2
◦ET1 , the last

round of ET1 and ET2 can be cancelled out when the last 30-bit subkeys rk8 are the same,
resulting in effectively reducing ẼT1,T2 by two rounds. The existence of tweak pairs that
make the subkeys collide is unfortunately unavoidable since the size of the tweak is 48
bits. However, we can prove that the full cancellation can only happen in this case.

Proposition 1. For any k,k′ ∈ F30
2 and i = 1,2, then Ri(·,k) 6= Ri(·,k′) if k 6= k′.

Proposition 1 guarantees that Ri (and R2 in particular) always generate different
maps for different 30-bit subkeys so that we can rule out the possibility of the full last-
round cancellation. The proof of this result is given in Appendix A.3.

Note that Proposition 1 does not exclude the possibility of a partial last-round can-
cellation, i.e., the existence of many fixed points. However, we expect that this does not
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cause critical vulnerability because our tweakey schedule is nonlinear, and generated
subkeys have good Hamming distance with different tweaks.

No Last-Two-Round Cancellation. While we cannot avoid that the last round of
ET is canceled, we can show that it is impossible to cancel more rounds. In particular,
we now consider the possibility of the last two rounds of ET1 and ET2 being the same
map, effectively reducing ẼT1,T2 by four rounds. As we have seen, if the collisions are
only in the subkeys rk8 or only in the subkeys rk7, this is not a problem thanks to
Proposition 1. However, partial collisions in subkeys rk7 and rk8 cannot result in full
round cancellation. In fact, an analogous of the above result for Ri can be proved for
R2 ◦R1 (see Proposition 2), so that the cancellation of the last two rounds of ET1 and ET2
can only occur when both rk7 and rk8 collide fully, which cannot happen for different
tweaks, thanks to the fact that the tweakey schedule is a permutation on the set of
tweaks.

5.3 Design of the Tweakey Schedule

The tweakey schedule generates subkeys from a tweak and the secret key which are
used by the data encryption. We carefully designed the tweakey schedule such that it
does not affect the critical path of the block cipher to meet the low-latency requirement.

For the design of the tweakey schedule, there are two possibilities: linear or nonlin-
ear. The low-latency block cipher PRINCE [11,12] and the lightweight tweakable block
cipher Skinny [3] use linear tweakey / key schedules. On the other hand, AES uses a
nonlinear key schedule. With linear tweakey schedules, attackers can generate tweak
pairs such that they yield a given subkey difference at no cost. In particular, the attacker
can immediately construct two tweaks such that rk8 are identical. In other words, they
can cause the last-round cancellation with no real effort. To avoid such a potential risk,
SCARF uses a nonlinear tweakey schedule.

We design the tweakey schedule using a block-cipher-design paradigm, i.e., the
tweak is linearly / nonlinearly updated while XORing the secret key. The tweakey
schedule first expands the 48-bit tweak to a 60-bit value by expansion, i.e., double the
size of the subkey of each round.

The nonlinear layer SL is given by twelve parallel applications of the S-box S. These
outputs are diffused by the linear layer Σ, which is represented by the sum of 7 bits.
Including the key XOR, it consists of the sum of 8 bits, and the critical path is an XOR
tree of depth three. We impose the following security criteria on security to pick a good
linear layer:

– bijectivity;
– word-wise (5 bits) branch number of 8;
– word-wise (5 bits) branch number of 9 when the Hamming weight of the input is

more than 1.

These criteria imply at least 8+9 = 17 active S-boxes when the tweak is active. In other
words, the Hamming distance of (30×6)-bit subkeys generated by different tweaks is
at least 17. Moreover, we can guarantee low differential and linear characteristic prob-
abilities when the tweak is active. In particular, the maximum differential characteristic
probability in the tweakey schedule is at most 2−3×17 = 2−51, while the maximum
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squared linear trail correlation in the tweakey schedule is at most 2−2.83×17 = 2−48.11.
Both probabilities are lower than 2−48.

We chose the bit permutation π such that each output bit of a single S-box becomes
an input bit of a different S-box.

6 Security

In this section, we discuss the cryptanalysis of ẼT1,T2 against some major attacks such
as the differential [8], linear [32], impossible differential [7], integral [14,20], and meet-
in-the-middle attacks [15]. As we will see, no key-recovery or distinguishing attack
works for ẼT1,T2 . This in particular implies that the Security Requirements 1 and 2 are
achieved.

In the following, we will indicate the round-reduced version of ET to r rounds as
r-round SCARF, while the round-reduced version of ẼT1,T2 = E−1

T2
◦ET1 to r rounds of

ET1 and r rounds of E−1
T2

as (r+ r)-round SCARF.
More details on the cryptanalysis conducted to assess the security of SCARF can be

found in Appendix B.

6.1 Statistical Attacks

Statistical attacks are among the most popular cryptanalysis techniques, based on ob-
servable statistical properties that should not be exhibited by randomly chosen func-
tions, therefore making the attacked primitive distinguishable from random.

In order to show the security margins of SCARF against the most prominent fami-
lies of statistical attacks, we can take advantage of the small block size that allows us to
carry out experiments that are normally not possible for the more common block sizes,
like the possibility of computing the Difference Distribution Table (DDT) or the Lin-
ear Approximation Table (LAT) of the entire cipher for fixed tweak and key. For most
of these families (differential, linear, boomerang, and differential-linear), we have con-
ducted experiments that study the distribution of the relevant statistical property (like
the linearity or differential uniformity) for T 7→ ET and (T1,T2) 7→ ẼT1,T2 , by computing
it experimentally for 210 different tweaks and comparing it to the distribution obtained
by drawing 210 random permutations.

In this way, we can avoid any of the typical independency assumptions made for
estimating the probability of such distinguishers with larger block sizes for a fixed
tweakey. Besides, we can also observe what happens when considering weak tweaks
and how frequently we can expect them. For example, we will see that whenever the
last 5 bits of the subkey of ET1 and ET2 are the same, the composition of the respec-
tive last rounds becomes an affine function (see Section A for details). It allows for the
existence (every 25 pairs of tweaks) of longer trails than what is expected assuming
independence.

On the other hand, the rather limited amount of tweaks used for our experiments
cannot fully capture the dependency between T1 and T2. For instance, the fact that for
every 25 pairs of tweaks we expect a collision in the last 5-bit subkey, and thus the
existence of a differential distinguisher for (3+3)-round Ẽ, implies the existence of a
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differential distinguisher for 4+4 rounds every 235 tweaks. In fact, this is to be expected
whenever the last 30-bit round key collides (canceling two rounds of Ẽ), as well as the
last 5-bit subkey of the last but one round, making the composition of the last two rounds
(that is, four rounds of Ẽ) an affine function. Even though such rare (and unavoidable)
collisions cannot clearly be observable when considering 210 tweaks, we expect that
the existence of such rare dependencies does not pose a threat to the security of SCARF
when the data is limited to 240, given the ample margin of security provided by the
chosen number of rounds.

A more detailed analysis of the resistance of SCARF against linear and differential
attacks (as well as boomerang, differential-linear, and impossible differential attacks)
and how SCARF compares to ideal permutations is discussed in Appendix B.

Related-Tweak Attacks. When considering related-tweak attacks, we can no longer
assess the security experimentally because the domain size becomes 48+10 = 58 bits.
We therefore assume the usual independence assumption, under which we can estimate
a low enough probability. As discussed in Sect. Section 5.3, the tweakey schedule guar-
antees at least 17 active S-boxes in the related-tweak differential/linear attacks. The
probability is less than 2−48. Therefore, we expect that related-tweak differential/linear
attacks do not threaten SCARF.

Multiple-Tweak Attacks. We now focus on the multiple-tweak attack to SCARF.
It exploits the fact that the block length of SCARF is smaller than the tweak length
and significantly smaller than the security level so that a significantly smaller bias than
what is commonly considered in cryptanalysis can be observed over multiple tweaks.
Similar attacks have been discussed by Patarin et al. for the Feistel cipher whose F func-
tion is a random function/permutation [36]. Recently, with a focus on format-preserving
encryption, they have been discussed in [16]. We adopt here to the case of SCARF.

As a concrete example, the classical differential attack exploits a certain differential
property that can be observed with a probability of p � 2−n, where n is the block
length. The multiple-tweak variant exploits the fact that a certain differential property
with a probability 2−n + ε can be observed even though ε� 2−n. In fact, since the
tweak length is relatively large compared to the block length, it is possible to collect a
number of pairs satisfying a certain differential property that is also many times larger
than the block length, allowing to observe biases that are extremely small with respect
to n. Furthermore, the technique explained in Appendix A.1 can also be used to collect
significantly more data than the amount that is queried.

We estimate that the multiple-tweak differential over (5+5)- and (6+6)-round SCARF
has a bias of about 2−30 and 2−40, respectively. The data limitation does not allow to
collect more than 251 and 267 pairs satisfying a certain differential in Security Require-
ments 1 and 2, respectively (see Appendix A.1). Therefore, even for the bold security
claim (Security Requirement 2), distinguishing the (6+6)-round SCARF with a signifi-
cantly higher advantage is non-trivial. Besides, even if (6+6) rounds were distinguish-
able, a 60-bit subkey guess is required to attack the full (8+8) rounds. Therefore, we
believe SCARF provides a sufficient margin for 80-bit security, particularly for Security
Requirement 1. We refer to Appendix B.5 for a more detailed analysis and experiments.
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6.2 Impossible Differential Attack

SCARF has the full diffusion in 3 rounds for any subkey. It implies that miss-in-the-
middle approach finds at most 3+ 3 = 6-round impossible differential. In our attack
model, Ẽ consists of (8+8) rounds. Thus, there is plenty of security margin against the
impossible differential.

6.3 Integral Attack

The integral attack (also known as higher-order differential attack) exploits the low
degree of a cipher. Given an encryption network, we use the division property [54]
to detect such distinguishers. We evaluated all integral distinguishers using 29 chosen
plaintexts. As a result, we found 3-round integral distinguishers, where the left branch
is balanced in any 9th-order differential. On the other hand, we do not find any 4-round
integral distinguisher.

We also considered an extension to the related-tweak setting, where we focus on the
sum of many ciphertexts with multiple tweaks. The highest cost distinguisher is con-
structed by 29 chosen plaintexts and 248 tweaks. Again, we used the division property
and found 4-round related-tweak integral distinguishers. However, even this extension
cannot detect any 5-round distinguishers because the tweakey schedule is a nonlinear
function with a high degree.

6.4 Meet-in-the-Middle Attacks

In a Meet-in-the-Middle (MitM) attack, an attacker guesses subkeys for fixed T1 and T2
and checks the following equation

ET1(P) = ET2(C).

The attacker can evaluate ET1 and ET2 independently. When κ1 and κ2 bits are involved
to check this equation for ET1 and ET2 , respectively, the attack requires N× (2κ1 +2κ2),
where N is the number of required plaintexts / ciphertexts.

SCARF uses subkeys that involve independently-generated secret-key bits. There-
fore, each bit of the subkey is independent. The size of the involved key material is
8× 30 = 240 bits, and it is unlikely that such a straightforward MitM attack works.
When we use the 1-bit matching instead of the 10-bit matching, we can bypass guess-
ing subkey bits in the last few rounds. For example, when we focus on the MSB, it is
enough to guess only rk7,1, rk7,2, rk7,3, rk7,4, rk7,5, and rk8,6 in the last two rounds. The
size of involved subkey bits is reduced from 60 bits to 30 bits. Even if we assume the
attacker can have the last-round cancellation at no additional cost, the attack would still
involve 30×5+30 = 180-bit subkey. Therefore, we expect that the MitM attack does
not invalidate the 80-bit security.

There are several kinds of variants of the MitM attack. In a multi-dimensional meet-
in-the-middle (MD-MitM) attack [63], an attacker guesses the intermediate state and
applies the MitM with multiple dimensions. In a 3-subset meet-in-the-middle [10], an
attacker guesses subkey bits in one subset, and applies the MitM by guessing each
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remaining subset independently. These variants need to exploit the key schedule. In
particular, very simple key schedules are required to successfully apply the attack. The
tweakey schedule of SCARF is however nonlinear, and each subkey bit involves many
secret key bits. Moreover, SCARF uses a 240-bit random secret key for the 80-bit secu-
rity. Therefore, we expect that such variants cannot be successfully applied to SCARF.

7 Evaluation

In this section, we evaluate the efficiency of SCARF in hardware and analyze the effects
on the system performance when SCARF is used to randomize the cache indexing.

7.1 Hardware Efficiency

We first evaluate and validate the hardware performance of SCARF through a logic
synthesis. We implemented SCARF hardware in a fully-unrolled manner, meaning that
our implementation including all round functions and key scheduling datapaths is a
solely combinational circuit with registers only to store the plaintext P, the initial key
K, the tweak T , and the encryption result (i.e., ciphertext) C. Note that these reg-
isters are used for defining the timing constraints at logic synthesis and evaluating
the critical path delay / maximum operational frequency. For the logic synthesis, we
employed Synopsys Design Compiler Q-2019.12SP-1 and Nangate 45 nm and 15 nm
Open Cell Libraries (OCLs). We synthesized the circuits using a command compile

-boundary_optimization -map_effort high without the hierarchy broken (which
is suitable to unrolled implementations), and did not apply incremental syntheses.

Table 1 reports the synthesis results of SCARF, where “Latency” denotes the crit-
ical path delay which corresponds to a latency of one block encryption and “Area”
denotes the circuit area in gate equivalents (GE). Note that Latency includes that for
a D-FF (i.e., register) to store plaintext / key / tweak / ciphertext and related control
logic. We utilized an area optimization option and a speed optimization (i.e., a fre-
quency constraint that minimizes the latency as much as possible) for the synthesis.
For comparison, the table also reports the results of PRINCE, MANTIS, and QARMA
implemented and synthesized in the same manner, as PRINCE is the pioneering con-
ventional low-latency block cipher and MANTIS and QARMA are state-of-the-art low-
latency tweakable block ciphers. We focused on the 64-bit 12-round version of MAN-
TIS (i.e., MANTIS6-64, or MANTIS6 in short) and 10-round version of QARMA (i.e,
QARMA5-64-σ0, or QARMA5 in short). MANTIS6 was recommended for security against
practical attacks, and QARMA5 was recommended for practical security regarding
some specific use-cases such as ciphertext truncation in [1]. Note that, for the synthe-
sis of each cipher, the speed optimization was set such that its latency is minimized.
The synthesis results confirm that the latency of SCARF is less than half of that of
PRINCE, MANTIS6, and QARMA5, which reveals the advantage of SCARF for the
low-latency application including the cache-randomization. Moreover, the SCARF crit-
ical path lies on the round datapath in addition to the first key-tweak XOR, whereas
there is a little difference in latency between round and key schedule datapaths. To put
these numbers into context, we refer to the benchmarks by Gelas [17] who reports a L3
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Table 1. Synthesis results using Nangate OCLs

Technology 45 nm 15 nm
Latency [ns] Area [GE] Latency [ps] Area [GE]

PRINCE 4.74 12,554 628.49 17,484
MANTIS6 4.73 13,129 630.07 17,641
QARMA5 4.40 13,915 563.62 18,455
SCARF 2.26 7,335 305.76 8,118

cache access time of 10.27 ns. Thus, SCARF would reduce the overhead for a cache
lookup from about 6% to 3%. Additionally, the area overhead is halved as well. This
shows that SCARF would be reasonable as a low-latency tweakable block cipher for
the block, key, and tweak lengths. For further validation, an evaluation and comparison
of existing symmetric primitives including some variants of NIST LWC finalists [37]
and round-reduced QARMAs are conducted in Appendix C.

7.2 Performance Benchmark
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Fig. 5. Performance improvement of SCARF compared to PRINCE in percent using the PARSEC
benchmark suite.

To evaluate the performance of SCARF, we implement a randomized cache using
PRINCE [12] and SCARF in the gem5 simulator [30]. We simulate a two level cache
hierarchy with a 16 kB L1 data cache, 16 kB L1 instruction cache and 1 MB unified L2
cache. The L1 caches have 8 ways, and the L2 cache has 16 ways. The system is clocked
at 2 GHz (500 ps period) and equipped with 2 GB memory with 100 ns (±10 ns) la-
tency. The default (non-randomized) caches have a tag-latency of 1 clock cycle for the
L1 caches and 10 clock cycles for the L2 cache. In Section 7.1 we found that SCARF
has a latency of about 306 ps and PRINCE has a latency of 628 ps in 15 nm technology.
Hence, for the simulation, we assume that SCARF adds one clock cycle delay to the L2
cache access and PRINCE adds two cycles.

Figure 5 shows the performance results of the PARSEC benchmark suite using
SCARF and PRINCE for cache randomization in comparison to a traditional, non-
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randomized cache. We averaged the benchmarks over 10 executions with random keys
to account for differences in scheduling decisions and noise from parallel processes.
The first observation is that despite the added delay for the randomized caches, some
benchmarks are faster than in the non-randomized setup. This is consistent with prior
work [61] and an artifact of frequent evictions within the data used by the benchmarks.
For example, if a given benchmark uses w+ 1 addresses that map to the same cache
index frequently, many cache misses occur in a w-way cache which slows down the
computation. In the randomized setting, the probability that all those addresses map to
the exact same entries is very small. Hence, it is more likely that the addresses can be
co-located in the cache without causing frequent evictions.

Despite the speedup that is achieved for some of the benchmarks, the results indi-
cate in general that the cache is a very timing-sensitive part of the CPU. Even as little
as two added clock cycles in the latency result in up to 0.53% reduced overall perfor-
mance. On average, our simulation using PRINCE results in a 0.11% overhead while
SCARF causes on average a 0.003% performance increase. In combination with the
reduced area requirements of SCARF, this is an important improvement on the way to
randomized cache architectures in real-world CPUs.

8 Conclusion

In this work we presented SCARF, the first purpose-built cache randomization func-
tion. Our design uses a 10-bit tweakable block-cipher that allows for an elegant at-
tacker model, contributing to the crucial low-latency property. We implement SCARF
in hardware and compare it to other low-latency block ciphers. Our design outperforms
other block ciphers by a factor of two, both in area and performance. We implemented
SCARF in gem5 to evaluate the effect on system-level performance. Using SCARF,
the overhead of cache randomization can be compensated entirely, matching the perfor-
mance of traditional caches.

Finally, our findings and design approach can be used as groundwork for specific
cache randomization designs with other parameter sizes.
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A Some Properties of SCARF

In this section, we are going to discuss some notable properties that arise when consid-
ering the security of Ẽ. For better readability, we are going to add a prime symbol for
the later part of ẼT,T ′ = E−1

T ′ ◦ET , e.g., rk′8 denotes the subkey of the 8th round function
of ET ′ .
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A.1 Learning Full Queries with Birthday Queries

A unique property that arises from the attacker model (and is not due to the design of
SCARF, as discussed in Section 3) is structural queries that can collect N2 plaintext-
ciphertext pairs by only N queries to SCARF. In fact, when a fixed tweak T1 and a
plaintext P1 are chosen, we can query P1 to ẼT1,Ti with chosen tweak Ti and get Pi =
ẼT1,Ti(P1). Then, N queries allows us to lean about N2 queries, i.e., Pj = ẼTi,Tj(Pi) =

ẼT1,Tj ◦ ẼTi,T1(Pi) for any i ∈ {1,2, . . . ,N} and j ∈ {1,2, . . . ,N}.
Note that we cannot always use these structural queries in arbitrary cases. For ex-

ample, an attacker can choose P1 and Ti but cannot choose Pi for i ≥ 2. Therefore,
when we learn Pj = ẼTi,Tj(Pi), the attacker can make use of these additional queries in
a known-plaintext attack.

More importantly, this also has implications for chosen-ciphertext attacks by query-
ing the full code-book every tweak. In fact, suppose the adversary queries the full
code-book for 2 ·NT different tweaks divided into two disjoint sets T and T ′. The at-
tacker then queries ẼT1,T ′ for some fixed T1 ∈ T and for all T ′ ∈ T ′. Similarly, they
query ẼT,T ′1

for all T ∈ T and some fixed T ′1 ∈ T ′. This requires 2 · 210 ·NT − 210

queries. However, the attacker can learn the full code-book for all T ∈ T ,T ′ ∈ T ′ since
ẼT,T ′ = ẼT1,T ′ ◦ ẼT1,T ′1

◦ ẼT,T ′1
. In other words, the attacker can then learn 210 ·N2

T pairs
with ·210 ·NT −210 queries.

In Security Requirement 2, an attacker can query Ẽ 240 times. It implies that the
attacker can learn the full code-book for 229+29 = 258 tweaks, i.e., 268 data.

On contrary, in Security Requirement 1, an attacker can query the oracle, which
returns 0 or 1 only. For fixed T and T ′, we need to ask about 218 (P,T,P′,T ′) to the
oracle to get the full code-book. With NT = 221, the query complexity is close to 2×
NT ×218 = 240. It implies that the attacker can learn the full code-book for 221×221 =
242 tweaks, i.e., 252 data.

Note that the structure, ẼTi,Tj , itself never causes critical vulnerability, e.g., it does
not allow short-cut key recovery attack. Given an ideal tweakable block cipher E, an
adversary can construct ẼTi,Tj just querying a plaintext to ETi and querying the returned
ciphertext to E−1

Tj
. If Ẽ allows any short-cut key recovery attack, the original E also

allows the same short-cut key recovery attack.

A.2 Partial Last-Two-Round Cancellation

One of the most notable properties when considering the security of Ẽ is the so-called
last-round cancellation shown in Sect.5. Since SCARF has 8 rounds, when rk8 = rk′8,
the last round is canceled out in the composition. Therefore, the total number of rounds
of ẼT,T ′ decreases to 7+7 rounds. Due to the property of the tweakey schedule, there is
no chance that rk7‖rk8 = rk′7‖rk′8 implying that two rounds cannot be canceled out, as
we show in Proposition 2. However, partial collisions can still happen.

We first consider tweak pairs with a 35-bit collision, rk7,6‖rk8 = rk′7,6‖rk′8. Let

(x′L,x
′
R) = (R′−1

1 ◦R′−1
2 ◦R2 ◦R1)(xL,xR) representing the last 2+2 rounds, then in the

case of collision this function is actually the following key-dependent affine transfor-
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Fig. 6. The function (∆L,∆R)(x) = R2(x,k)⊕R2(x,k′).

mation

x′L = xL,

x′R = xR⊕
[

4⊕
i=1

(τi(xL)∧ (rk7,i+1⊕ rk′7,i+1))

]
⊕ (rk7,1⊕ rk′7,1).

The 35-bit collision derives the left-branch collision in the input of the 7th round
function. Moreover, when the jth bit of rk7,i collides with the jth bit of rk′7,i for all
i ∈ {1,2,3,4,5}, the jth bit of the right-branch also collides in the input of the 7th
round function. In other words, (35+ 5c)-bit subkey collision derives a 5-bit collision
in the left branch and a c-bit collision in the last two rounds.

A.3 No Last-Round Cancellation

In this section, we first prove Proposition 1 and, furthermore, that it is not possible to
cancel the last two rounds of ET1 and ET2 unless the last two subkeys collide, which
implies that T1 = T2.

Proof (Proof of Proposition 1). For simplicity, we are going to prove the result for R2,
since it is the one of interest for our cipher and the proof for R1 is analogous.

We want to show that the function x 7→ (∆L,∆R)(x) = R2(x,k)⊕ R2(x,k′) is the
zero function if and only if k⊕ k′ = 0. This function is shown in Figure 6, where
k = (k1, . . . ,k6) and k′ = (k′1, . . . ,k

′
6) such that k⊕ k′ = (β1, . . . ,β5,γ), for some β =

(β1, . . . ,β5) ∈ F25
2 (difference in the subkeys k1, . . . ,k5) and γ ∈ F5

2 (difference in the
subkey k6). Notice that any non key-dependent component of R2, like τ1(x)∧ τ2(x) in
the G function, gets cancel led out since the difference is in the key.

With these new notations, we show that the function

(∆L,∆R)(x) = R2(x,k)⊕R2(x,(k⊕ (β,γ))
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is the zero function, then β and γ are all zero.
Let Mκ be the 5×5 matrix that represents x 7→⊕4

i=0(τi(x)∧ki+1), with κ=(k1, . . . ,k5)∈
F25

2 . Then, we can write that

∆R(xL,xR) = Mβ(xL).

Then ∆R(xL,xR) 6= 0 for any xL outside the kernel of Mβ; in particular, such an xL does
not exist if and only if Mβ is the zero matrix, that is β = 0. Therefore, ∆R = 0 if and
only if β is the zero difference.

Finally, if β = 0, let us consider

∆L(xL,xR) = γ.

then it is clear that ∆L = 0 if and only if γ = 0. Therefore, we have that ∆L = ∆R = 0 if
and only if β and γ are the zero difference.

Proposition 2. For any k,k′ ∈ F60
2 then R2 ◦R1(·,k) 6= R2 ◦R1(·,k′) if k 6= k′.

Proof. Following the notations of Figure 7 of the last two rounds of SCARF, we are
going to show that for any fixed k ∈ F60

2 , β = (β1,β2,β3,β5) ∈ F25
2 (difference in

rk7,1, . . . ,rk7,5), δ = (δ1,δ2,δ3,δ5) ∈ F25
2 (difference in rk8,1, . . . ,rk8,5) and γ,ε ∈ F5

2
(differences in rk7,6,rk8,6 respectively), then the function

x 7→ (∆L,∆R)(x) = R2 ◦R1(x,k)⊕R2 ◦R1(x,(k⊕ (β,γ,δ,ε))

is the zero function then β,γ,δ,ε are all the zero difference, that is k = k′.
Let Mκ, be the 5× 5 matrix that represents x 7→ ⊕4

i=0(τi(x) ∧ ki+1), with κ =
(k1, . . . ,k5) ∈ F25

2 . Then, if we let yL be the output value of the left branch of R1 with
the key k and y′L with key k′, we have that

y′L = yL⊕Mβ(xL).

Let us consider

∆L(xL,xR) = S(yL)⊕S(yL⊕Mβ(xL))⊕ ε. (1)

If ε 6= 0, given that xR 7→ yL is a bijection for any fixed xL, we can always choose a
yL (and therefore xR) such that S(yL)⊕ S(yL⊕Mβ(xL)) 6= ε, otherwise S would have a
non-trivial differential of probability 1.

Therefore, in order to have ∆L(xL,xR) = 0 for all xL and xR, we must have that
ε = 0. In this case, Equation (1) implies that ∆L(xL,xR) = 0 if and only if yL = y′L, that
is Mβ(xL) = 0. In other words, ∆L(xL,xR) = 0 for all xL,xR if and only if Mβ(xL) = 0,
that is β = 0.

Let us then assume that β and ε are all the zero difference, so that ∆L is the zero
function. Then we can write

∆R(xL,xR) = Mδ(yL)⊕S(xL)⊕S(xL⊕ γ). (2)
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If γ 6= 0, for any fixed xL, we have that S(xL)⊕S(xL⊕ γ) is also non-zero, so that if
we choose yL = 0 (by choosing xR appropriately) we have that

∆R(xL,xR) = S(xL)⊕S(xL⊕ γ) 6= 0

for any xL and δ. Therefore we must have γ = 0. But if γ = 0, we would have from
Equation (2) that ∆R is the zero function if and only if Mδ is also the zero function, that
is δ = 0.

A.4 Impact from the Even Permutation

Without special care, modern block ciphers, including AES, only output an even per-
mutation, and SCARF is also such a case. When it only outputs an even permutation,
it implies that if an attacker obtains 2n− 2 entries of the code book, the attacker can
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deduce the last two. On the other hand, the attacker cannot deduce anything more than
that. The reader might feel it critical for SCARF, whose block length is very short. How-
ever, we decide that we do not care about it considering the use case of SCARF. Again,
SCARF is only used for cache randomization. We suppose the attacker can query pairs
of arbitrary plaintexts/tweaks and learn the equality. However, in practice, after these
learning phases, given the target Tv and Pv, where Tv has not been touched, the attacker
needs to answer P,T satisfying ET (P) = ETv(Pv) without query. In other words, there is
no advantage for the attacker to exploit an even permutation.

B Detailed Cryptanalysis Reports of SCARF

We analyze the statistical behavior of SCARF on well-studied cryptanalysis: differen-
tial, linear, boomerang, and differential-linear attacks. We briefly address the security
of SCARF against invariant attacks.

B.1 Differential Cryptanalysis
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Fig. 8. Cumulative probability distribution for the differential uniformity of SCARF.

A differential attack [8] exploits a non-ideal behavior of a cipher in the propagation
of differences. As a rule of thumb, it is possible to mount a differential attack on E (of
block size n) whenever there exist α,β such that

Pr
x
(E(x)⊕E(x⊕α) = β)> 2−n.

α→ β is then called a differential trail.
The maximum differential probability of the S-box is 4/32 = 2−3. Moreover, the

maximum differential probability of the G function is 16/32 = 2−1. Therefore, for any
subkey, the maximum differential characteristic probability (MDCP) is 2−4 every two



SCARF: A Secure Cache Randomization Function

rounds. The MDCP of the 6-round cipher is lower than 2−10. Namely, we do not expect
that any differential property is observable neither for the 8 rounds of E nor for the 8+8
rounds of Ẽ, with plenty of security margin against differential cryptanalysis.

Figure 8 shows the distribution of the differential uniformity (that is, the maximum
probability of any possible differential trail multiplied by the cardinality of the domain,
210) of E and Ẽ over 210 random tweaks. While for r = 5 and 6 the distribution of
the differential uniformity of E almost perfectly matches the one obtained for random
permutations, the same is not true for Ẽ and r = 3, despite the MDCP being lower than
2−10 for fixed tweakeys. As far as we could tell, this is due to the unavoidable collision
of the last 5-bit subkeys every 25 tweaks. When the last 5-bit subkey of T1 and T2 collide,
the composition of the last two rounds of ET1 and ET2 become an affine function: as a
consequence, for such tweaks there exists differential trails for (3+ 3)-round Ẽ with
p < 2−10, that would not exist otherwise.

Furthermore, we cannot observe any non-ideal behavior of Ẽ for r = 4 for this
amount of tweaks, although this does happen whenever the last 35-bit subkeys collide,
which we expect to happen every 235 pairs of tweaks approximately (for a more detailed
discussion on these partial collisions, we refer to Appendix A.2). We expect that 5+5
rounds cannot be distinguished, even taking into account the observation made in A,
since cancellation of two (or more) last rounds implies a collision of 60-bit subkeys,
that is the 48-bits tweaks are actually the same.

A possible extension of differential attacks for tweakable block ciphers are related-
tweak differential attacks. However, the tweakey schedule of SCARF has many nonlin-
ear components, and the tweakey schedule itself ensures 17 active S-boxes, from which
it follows that the differential probability of a characteristic of the tweakey schedule is
at most 2−51. Therefore, we expect that the related-tweak differential attack is not of
concern.

B.2 Linear Cryptanalysis
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Fig. 9. Cumulative probability distribution for the linearity of SCARF.
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A linear attack on an n-bit block length cipher E is possible whenever there exist
masks α,β such that if

Pr
x
(〈α,x〉⊕〈β,E(x)〉) = 1

2
+

c
2

then the correlation of the linear approximation c must be smaller than 2n/2. We say
that α→ β is a linear trail.

The maximum squared correlation of the 5-bit S-box is (12/32)2 = 2−2.83. More-
over, the maximum squared correlation of the G function is (16/32)2 = 2−2. Since
there is at least one active S-box and active G function every two rounds for any sub-
key, the maximum linear squared trail correlation is 2−4.83 over two rounds, and of
6-round SCARF is lower than 2−14.49. Similarly to the differential attack, we conclude
that 8-round E does not have any non-trivial linear property, as well as (8+8)-round Ẽ.

Figure 9 shows the distribution of the linearity (that is, the maximum absolute cor-
relation over all possible linear trails, multiplied by 210) of E and Ẽ over 210 tweaks.
We observe that for r = 5 and 6 the distribution of the linearity of E, as well as that of
Ẽ with r ≥ 3 matches the one drawn for random permutations very closely.

As for the related-tweak scenario, we observe that any linear characteristic has at
least 17 active Sboxes so its linear probability is at most 2−48.11. Therefore, we expect
that the related-tweak linear attack cannot be applied successfully.

B.3 Boomerang Attacks
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Fig. 10. Cumulative probability distribution for the boomerang uniformity of SCARF.

A boomerang distinguisher [58] of E is given by α,β such that

Pr
x
(E−1(E(x)⊕β,k)⊕E−1(E(x⊕α)⊕β) = α)> 2−n

if n is the block size of E.
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Usually, boomerang distinguishers are obtained by the composition of two differen-
tial trails: for a cipher E = E1 ◦Em ◦E2 can be estimated as p2rq2, where p and q are the
probability of two differential trails for E1 and E2, and r is the probability of connecting
the two trails over Em [13].

As previously mentioned, the MDP of SCARF is 2−4 every two rounds, so that
E1 and E2 cannot both be chosen to cover more than two rounds. Furthermore, the
boomerang uniformity of S is 6 (that is the maximum probability of any possible boom-
erang distinguisher of S, multiplied by the cardinality of the domain 25). Therefore, we
expect that there does not exist a distinguisher over 5 rounds of probability higher than
2−10. Once again, the fact that E is 8 rounds and Ẽ is 8+ 8 rounds guarantees ample
margin of security against this class of attacks.

Figure 10 shows the distribution of the boomerang uniformity of E and Ẽ over 210

tweaks. Once again, for r = 5 and 6 the distribution of the uniformity of E, as well as
that of Ẽ with r ≥ 3 matches the one drawn for random permutations very closely.

B.4 Differential-linear Attacks
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Fig. 11. Cumulative probability distribution for the differential linear uniformity of SCARF.

In a nutshell, a differential-linear attack [24] is obtained by combining a differential
and linear trail. More formally, a differential-linear trail of E is given by α,β such that
the correlation c given by

Pr
x
(β,E(x)⊕E(x⊕α) = 0) =

1
2
+

c
2

is greater than 2−n/2, if n is the block size of E.
Similarly to boomerang attacks, the correlation of such a distinguisher for a cipher

E = E1 ◦Em ◦E2 can be estimated as prq2 where p is the probability of the differential
trail over E1, q is the correlation of the linear trail over E2 and r is the correlation of
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connecting the trails [2]. Despite the maximum DLCT of S being 16, since the MDP
and maximum linear correlation over two rounds are respectively 2−4 and 2−4.83, E1
and E2 cannot be both two or more rounds, so that we do not think it is possible to
find differential-linear distinguishers over 6 rounds with probability higher than 2−10,
leaving a significant margin of security for the 8+8 round-cipher Ẽ against this kind of
attacks.

Figure 11 shows the distribution of the differential linear uniformity (that is, the
maximum absolute correlation of any differential-linear trail, multiplied by the cardi-
nality of the domain 210) of E and Ẽ over 210 tweaks. As expected, for r = 5 and 6 the
distribution of the uniformity of E, as well as that of Ẽ with r ≥ 3, matches the one
drawn for random permutations.

B.5 Multiple-Tweak Differential

The multiple-tweak differential cryptanalysis is one of the most powerful attack strate-
gies against SCARF. As reported in Appendix B.1, with a non-zero α and a non-zero
β,

Pr
x
(E(x)⊕E(x⊕α) = β)

behaves like a random permutation for both ET and ẼT1,T2 . The multiple-tweak differ-
ential cryptanalysis observes slight bias from the random, i.e.,

Pr
x,T1,T2

(ẼT1,T2(x)⊕ ẼT1,T2(x⊕α) = β) =
1

1023
+ ε.

In random tweakable permutation, the probability is 1
1023 because of the permutation,

i.e., ẼT1,T2(x)⊕ ẼT1,T2(x⊕α) 6= 0. To observe a bias ε from a random permutation, we
need at least ε−2× 1

1023 pairs.
There is a very efficient method to experimentally verify the bias of a fixed in-

put/output difference (α,β), thanks to the extremely small block length and peculiar
structure of ẼT1,T2 . Algorithm 1 shows the pseudo code. We first prepare a set of NT
tweaks, T1, construct 29 pairs (P1,P1⊕α) for every tweak, and finally store the number
of appearances of (ET1(P1)‖ET1(P1⊕α)) of all T1 ∈ T1. Similarly, we prepare another
disjoint set of NT tweaks, T2. Then, for every T2 ∈T2, we construct 210 pairs (P2,P2⊕β),
and sum the number of (ET2(P2)‖ET2(P2⊕β)) in the stored above. This technique al-
lows us to observe a bias using N2

T × 29 pairs with a complexity of NT × 210 and 220

memory. Usually, we cannot observe a low bias detected using incredibly many pairs
first. However, this algorithm enables us to catch it, e.g., we can observe the bias using
255 pairs.

Table 2 shows some examples of observed differential bias, where we used NT =
223, i.e., N2

T ×29 = 255 pairs. We generally observe significant biases when α = β and
the left branch of α is inactive. When α 6= β, the bias is lower, and sometimes, it derives
a negative bias.

On our main security claim (Security Requirements 1), the number of collectable
pair is N2

T ×29 = 221+21+9 = 251 even if we use the technique shown in Appendix A.1.
These pairs are not always sufficient to distinguish (5+5)-round SCARF with a sig-
nificant advantage. However, considering the multi-differential, it might be possible to
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Algorithm 1 Efficient algorithm to observe very low bias
1: function COMPUTING_BIAS(NT ,α,β)
2: Store NT random tweaks to T1
3: Store NT random tweaks to T2 and T1∩T2 = φ

4: Prepare an array S of 220 elements.
5: for all T1 ∈ T1 do
6: for all P1 ∈ {0,1}10 do
7: if P1⊕α > P1 then
8: continue
9: end if

10: v = ET1(P1)‖ET1(P1⊕α)
11: S[v]← S[v]+1
12: end for
13: end for
14: num← 0
15: for all T2 ∈ T2 do
16: for all P2 ∈ {0,1}10 do
17: v = ET2(P2)‖ET2(P2⊕β)
18: num← num+S[v]
19: end for
20: end for
21: return num
22: end function

distinguish (5+5)-round SCARF. Nevertheless, we cannot append (3+3)-round key re-
covery to this distinguisher faster than 280 because 3+3 rounds involve a 90-bit key.

On the contrary, our bold security claim (Security Requirements 2) allows to collect
N2

T × 29 = 229+29+9 = 267 pairs. Therefore, (5+5)-round SCARF is distinguishable. It
might allow an attacker to distinguish (6+6)-round SCARF5. Even if we assume that
(6+6) rounds are distinguishable by using 240 oracle queries to Õ, we need to guess the
60-bit key involved in (2+2) rounds to attack the full round. While more effort is needed
to better understand this new class of attacks, we believe that it is not possible to attack
(8+8) rounds in time significantly lower than 280.

B.6 Invariant Attacks

Invariant subspace/nonlinear invariant attacks do not seem to pose a threat to SCARF,
in particular as our tweakey schedule is nonlinear, and we use a 240-bit secret key
generated randomly.

5 Due to computational limitations, we cannot estimate the bias in the 6+6 rounds. However, as
far as we experimentally evaluated the bias of α = β = (0x00,0x01) using NT = 228 once, we
cannot observe a significant bias. It implies that the bias is not significantly higher than 2−37.5

(since no bias was observed using 265 pairs, i.e., its standard deviation is about
√

265−10 =
227.5, and its corresponding probability is 227.5/265 = 2−37.5). We expect it to be about 2−40

heuristically.
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Round α β Bias ε

2+2 (0x00,0x01) (0x00,0x01) 2−9.6792

3+3 (0x00,0x01) (0x00,0x01) 2−14.6761

4+4 (0x00,0x01) (0x00,0x01) 2−24.8467

5+5 (0x00,0x01) (0x00,0x01) 2−29.8025

4+4 (0x00,0x01) (0x00,0x02) 2−29.7363

4+4 (0x00,0x01) (0x00,0x03) −2−29.8138

4+4 (0x00,0x01) (0x00,0x04) 2−26.5813

4+4 (0x00,0x01) (0x00,0x05) −2−30.6340

4+4 (0x00,0x02) (0x00,0x01) 2−30.1689

4+4 (0x00,0x02) (0x00,0x02) 2−24.8833

4+4 (0x00,0x02) (0x00,0x02) 2−24.8833

4+4 (0x00,0x02) (0x00,0x03) −2−27.9966

4+4 (0x00,0x02) (0x00,0x04) 2−30.0152

4+4 (0x00,0x1F) (0x00,0x1C) 2−28.1046

4+4 (0x00,0x1F) (0x00,0x1D) 2−28.1773

4+4 (0x00,0x1F) (0x00,0x1E) 2−27.9916

4+4 (0x00,0x1F) (0x00,0x1F) 2−24.4674

Table 2. Examples of observed differential bias given experimentally: we used NT = 223 to get
these results, i.e., 223+23+9 = 255 pairs.

C Wide Comparisons with Existing Ciphers

Figure 12 summarizes the latency/area of several ciphers synthesized with a Nangate
45 nm OCL under the same condition (where the frequency constraint was set for each
cipher such that its latency was minimized as much as possible). We also evaluated AES
using a LUT-based Sbox in the same platform without the key scheduling datapath; the
resulting latency and area are 8.17 ns and 129,402 GE respectively. We do not plot it
in the Figure due to the huge area. For the cache randomizing function, low latency
is mandatory to save the performance degradation. Besides, a low area is also recom-
mended. Thus, the first priority of the design goal is to minimize the latency and the
second priority is to minimize the area.

As noted, low-latency ciphers such as QARMA, MANTIS, and PRINCE outper-
form AES, lightweight (low area) ciphers, GIFT-64-128 and Skinny-64-64, and the
software-optimized keyed hash function, SipHash. Among them, SCARF outperforms
existing low-latency ciphers. However, note that SCARF is designed as the secure cache
randomization and is never a secure tweakable block cipher. While the designers of ex-
isting low-latency ciphers never recommend such use, we might consider the reduced-
round variants as a possible alternative for cache randomization. Then, we evaluated
the latency/area of the reduced-round QARMA. As a result, QARMA2 cannot outper-
form SCARF, and QARMA1 is only possible. However, QARMA1 might be insecure
because of many probability-1 truncated differential characteristics.
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Fig. 12. Comparisons of the latency and area for the low-latency (full-unrolled) implementation.

D System-Level View on Randomized Caches

In this appendix, we discuss the system-level implications of randomized caches using
SCARF.

D.1 Security and Performance

SCARF is designed to provide a fast and secure foundation for randomized cache ar-
chitectures like ScatterCache [61], Mirage [45], and ClepsydraCache [53]. Each pa-
per provides a comprehensive security- and performance analysis. Additionally, fur-
ther security analysis has been performed by Purnal et al. [41] who discovered the
PRIME+PRUNE+PROBE attack. ScatterCache does not name a specific randomization
function and instead “leave the decision on the actually used primitive to the discre-
tion of the hardware designers that implement ScatterCache.” [61] (for the evaluation,
the authors used Qarma-7 though gem5 does not simulate the exact latency of this
choice). The authors state that for a randomization-latency of 5 clock cycles, the over-
head of ScatterCache is less than 2% using the GAP benchmark suite. As shown in
Appendix C, SCARF is significantly faster and smaller than Qarma which will only
reduce the overhead. In fact, our performance evaluation in Section 7.2 mimics a Scat-
terCache design and the overhead is reduced to 0.003%. As for security, ScatterCache
requires frequent re-keying as pointed out in [41]. This led to more advanced propos-
als which do not require re-keying. Mirage uses 12-rounds of the PRINCE cipher for
randomization. The design splits the tag store from the data store to avoid cache con-
flicts. The performance analysis estimates 4 extra cycles for PRINCE and the indi-
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rection mechanism, resulting in a total overhead of 2%. Again, SCARF outperforms
PRINCE in both area and performance so we expect a lower overhead if SCARF is
used instead of PRINCE. There are currently no known attacks against Mirage and the
authors estimate resistance against classical cache-timing attacks of multiple years. The
impact of the PRIME+PRUNE+PROBE (which was introduced roughly at the same time
as Mirage) has not been studied comprehensively. Finally, ClepsydraCache [53] pro-
poses to use a 3-round PRINCE version for randomization. We expect the latency of
this round-reduced version to be roughly similar to SCARF. The security of a round-
reduced PRINCE is much less clear and would require additional analysis. The de-
sign implements a time-to-live for each entry to prevent cache attacks. The authors
report an average performance overhead of 1.38%. We expect similar results when us-
ing SCARF. As for Mirage, there are currently no known attacks against Clepsydra-
Cache. The authors estimate several hours resistance against cache profiling attacks
like PRIME+PRUNE+PROBE.

D.2 Key Storage and Hardware

Since a new key is chosen randomly at boot time, there is no need to store the key in
nonvolatile memory. Instead, the key can be stored e.g., in SRAM memory close to
the cache. Since the cache itself is also made of SRAM, this has the advantage that
leaking the key through physical attacks is just as expensive as leaking contents from
the cache itself. The key of SCARF is 240 bits. Since each cache way is randomized
using a unique key, the key storage needs to be replicated for each way. Each cache way
contains 210 entries with 64 Bytes of data each. Hence, the overhead of the key storage
is about 0.04%. For the overall hardware overhead of cache randomization, we refer
to TLBCoat [49] which proposes randomized TLB caches. The authors found that the
largest area overhead of randomized caches comes from the randomization function.
Compared to the vast size of modern LLCs, we expect the hardware overhead for the
randomization to be negligible.

D.3 SPEC Benchmarks

Figure 13 shows the benchmark results for the SPEC CPU 2017 benchmark suite. The
configuration is similar to the evaluation in Section 7.2. However, due to the size of
the SPEC benchmarks, we evaluated them using gem5’s syscall-emulation (SE) mode
instead of the full-system mode used before. Moreover, we used test workload sizes
to keep simulation time within practical limits. The results are similar to the previous
Parsec results. The perlbench, mcf and deepsjeng benchmarks did not incur any over-
head by the randomized caches. On the other hand, a more significant overhead occurs
for exchange2 and xalancbmk. For these benchmarks, SCARF reduces the overhead by
more than half.
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Fig. 13. Performance improvement of SCARF compared to PRINCE in percent using the SPEC
benchmark suite.
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