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Abstract—Homomorphic encryption (HE) is a cryptosystem
that allows secure processing of encrypted data. One of the most
popular HE schemes is the Brakerski-Fan-Vercauteren (BFV),
which supports somewhat (SWHE) and fully homomorphic
encryption (FHE). Since overly involved arithmetic operations
of HE schemes are amenable to concurrent computation, GPU
devices can be instrumental in facilitating the practical use of
HE in real world applications thanks to their superior parallel
processing capacity.

This paper presents an optimized and highly parallelized GPU
library to accelerate the BFV scheme. This library includes
state-of-the-art implementations of Number Theoretic Transform
(NTT) and inverse NTT that minimize the GPU kernel function
calls. It makes an efficient use of the GPU memory hierarchy
and computes 128 NTT operations for ring dimension of 214

only in 176.1 µs on RTX 3060Ti GPU. To the best of our
knowlede, this is the fastest implementation in the literature.
The library also improves the performance of the homomorphic
operations of the BFV scheme. Although the library can be
independently used, it is also fully integrated with the Microsoft
SEAL library, which is a well-known HE library that also
implements the BFV scheme. For one ciphertext multiplication,
for the ring dimension 214 and the modulus bit size of 438,
our GPU implementation offers 63.4 times speedup over the
SEAL library running on a high-end CPU. The library compares
favorably with other state-of-the-art GPU implementations of
NTT and the BFV operations. Finally, we implement a privacy-
preserving application that classifies encrpyted genome data for
tumor types and achieve speedups of 42.98 and 5.7 over a
CPU implementations using single and 16 threads, respectively.
Our results indicate that GPU implementations can facilitate
the deployment of homomorphic cryptographic libraries in real
world privacy preserving applications.

Index Terms—Lattice Based Cryptography, Homomorphic En-
cryption, Number Theoretic Transform (NTT), GPU, Parallel
Processing, Secure Computation.

I. INTRODUCTION

Fully Homomorphic Encryption (FHE) enables computation
over encrypted data, which had been considered as the most
sought-after cryptographic primitive for many years. In [1],
Gentry proposed the first functional FHE scheme, which
is described over ideal lattices and permits the homomor-
phic evaluation of arbitrary circuits. Later, more practicable
schemes based on learning with errors problem over rings
(RLWE) [2] were proposed, where plaintext and ciphertext
messages are represented as polynomials and ciphertext con-
tains “noise”, which, increases as homomorphic operations
are applied. Thus, the scheme has a noise budget sufficient
only for certain number of homomorphic operations; and if
noise reaches a certain limit, the homomorphic property will
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not hold and the ciphertext message does not decrypt due to
excessive noise. This scheme is, thus, aptly called somewhat
homomorphic encryption (SHE). To continue with the homo-
morphic operations, a technique referred as bootstrapping was
proposed originally by Gentry [1], whereby the ciphertext is
homomorphically decrypted to obtain a ciphertext with a re-
plenished noise budget. This process can be applied repeatedly
to obtain a fully homomorphic scheme; but bootstrapping is
generally deemed to be a prohibitively expensive operation.

The first implementation of a FHE scheme was realized
by Gentry and Halevi, as explained in [3]. Then, several
FHE realizations were introduced such as those in [4] and
[5]. One of the most promising approaches is the Brakerski-
Fan-Vercauteren scheme [6], and there are several practical
implementations of this and other similar schemes such as
those provided by well-known software libraries SEAL [7],
PALISADE [8], and HELib [9].

However, due to their compute-intensive operations in in-
volved mathematical structures, current FHE implementations
are far from being easily deployable in practice such as in
large-scale practical cloud applications. Besides algorithmic
optimizations and theoretical advances, using hardware accel-
erators is also most viable option for bridging the gap between
FHE performance and the requirements of real-world applica-
tions. GPU, FPGA and ASIC architectures can be profitably
utilized as accelerators [10] [11] [12], to push the boundaries
of FHE performance. A recent announced software library
[13] provides support for hardware acceleration integration
to software implementations of HE schemes using a standard
Hardware Abstraction Layer (HAL).

In this paper, we present algorithms and implementation
techniques to accelerate the BFV scheme of the SEAL library
via NVIDIA GPUs. Our implementation developed in compute
Unified Device Architecture (CUDA) program model [14]
accelerates all homomorphic operations in the BFV scheme
utilizing various parallelizaton strategies that can be applied
on GPU architectures. To the best of our knowledge, ours is
the first work, in which the entire SEAL BFV scheme (in-
cluding addition, multiplication, relinearization, and rotation
operations) can be offloaded onto GPU. Our implementation
achieves a very high level of parallelization on GPU, targeting
the compute-intensive nature of FHE operations.

It is established that multiplication in polynomial rings
(which requires the multiplication of high degree polynomials
and their division by high-degree cyclotomic polynomials) is
the most time and resource critical operation in all FHE and
SHE implementations.



Fortunately, there is a good deal of room for algorithmic
research to accelerate the polynomial multiplication by utiliz-
ing the inherent parallelism in the operation and the hardware
infrastructures (FPGA, ASIC, GPU) to exploit it in different
ways. GPU architectures support many concurrent threads,
which can be employed to perform multiplication of very
high-degree polynomials. Therefore, the noise budget can be
made sufficiently large to homomorphically evaluate relatively
complex circuits without having to use the bootstrapping
method.

Here, we present a GPU implementation for homomorphic
operations of the BFV scheme and show that it can be
used to accelerate real-world applications significantly. Our
work introduces new NTT implementation improvements for
polynomial multiplication adapted to GPU architecture and
proves to be the fastest in comparison to those reported in
the literature. As the main improvement is for the polynomial
multiplication, our implementation can be used to accelerate
existing implementations of other SHE and FHE schemes such
as CKKS and BGV and other more involved homomorphic
operations such as bootstrapping and scheme switching [15].
Although the latency of a single NTT operation of our imple-
mentation is also superior to those of other implementations in
the literature, our NTT implementation is especially optimized
for concurrent execution of many NTT operations, which is a
typical use case scenario of all homomorphic operations and
applications.

The rest of the paper is organized as follows. In Section
II, we briefly explain the notation that we use and the
mathematical background of NTT, Barrett reduction, Residue
Number System (RNS), and homomorphic operations of the
SEAL BFV scheme. In Section III, we present the essential
working principle of the GPU architecture. In Section IV, we
explain our GPU implementation and the algorithms that we
used. In Section V, we discuss our implementation results and
compare the results with state-of-the-art.

II. PRELIMINARIES

This section presents the notation used throughout the paper
and explains the Barrett Reduction, Residue Number System,
Number Theoretic Transform, and FHE operations of the
SEAL BFV scheme.

A. Notation

The SHE scheme used in this work is BFV, one of the
most efficient and widely used cryptographic schemes in the
literature. The scheme is based on the ring learning with errors
(RLWE) problem.

The BFV scheme makes use of the polynomial ring Rq =
Zq/Φ(x), where Zq represents the finite ring {0, 1, . . . , q−1},
in which the arithmetic is performed modulo q. Here, n is
the degree of the cyclotomic polynomial Φ(x), and when its
degree is selected as a power of two, we obtain Φ(x) = xn +
1. Then, the arithmetic in the ring Rq is optimized as the
polynomial division is performed with xn + 1. Abusing the

terminology we sometimes refer n as the dimension of Rq

and use the notation Rq,n to indicate its dimension.
Symbols and operations used in the subsequent parts of the

paper are as follows: ⌈·⌉, ⌊·⌋, ⌈·⌋ represent round up, round
down and round to nearest integer, respectively. The notation,
[a]t, indicates that the integer a lies in [−t/2, t/2] while |a|t
reduces a to the interval [0, t−1]. A polynomial a(x) ∈ Rq can
be treated as a vector of n integers in Zq , which is composed
of its coefficients. When the number theoretic transformation
(NTT), which is a form of discrete Fourier transformation over
rings Zm (section III), is applied to the vector of a(x), a
vector of the same dimension is obtained, which is shown
as ā(x) (or just ā). While the symbols +,− and × (or just ·)
represent addition, subtraction and multiplication, respectively
in either Zq or Rq the symbol ⊙ represents modular pointwise
multiplication for vector representation of the elements of
Rq in the NTT domain. Namely, an element in a vector is
multiplied with the elements of another vector with the same
index value, where multiplications are in Zq (i.e., modulo q
multiplication). λ is the security parameter denoted in unary
notation. a ← Zq stands for the uniform sampling of a from
Zq . χerr, a truncated zero-mean discrete Gaussian distribution,
is used to sample the coefficients of error polynomials. The
distribution is parameterized by the error bound βerr and
standard deviation σ.

B. Barrett Reduction

In the RNS variant of homomorphic cryptographic schemes
such as [16], there is a multitude of modular multiplication
operations that dominate the execution times of all homomor-
phic operations.

The Barrett reduction [17] and the Montgomery reduc-
tion [18] algorithms are two popular algorithms that perform
the modular reduction operation efficiently. Since the Mont-
gomery reduction needs the extra step for transformation of
integers to the Montgomery domain, the Barrett reduction
algorithm is selected here for its simplicity.

The Barret reduction is described in Algorithm 1. Here,
µ is the precomputed value, ⌊ 2

2k

q ⌋, where q is the modulus
and k is the bit length of the modulus. The Barrett reduc-
tion algorithm includes multiplication, shift, and subtraction
operations instead of an expensive division operation, which
is needed in the computation of C mod q by conventional
modular multiplication algorithms.

C. Residue Number System (RNS)

An integer X < M , can be represented using residues xi,
where xi = X mod mi for i = 1, . . . , r, if M =

∏r
i=1mi.

Here, mis forms a set of pair-wise relatively prime integers
that are known as moduli or “base” and a common notation
is that [X]mi = X mod mi. Due to the Chinese Remainder
Theorem (CRT) we have

|X|M =
∣∣∣ ∑r

i=1

∣∣ xi ·M−1
i

∣∣
mi
·Mi

∣∣∣
M
,

where Mi = M
mi

. The RNS is preferred in cryptographic
applications as it allows concurrent arithmetic with a set
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Algorithm 1 Barrett Reduction

Input: C = a× b, where a, b < q; k = ⌈log2(q)⌉; µ = ⌊ 2
2k

q ⌋
Output: Cout (C mod q)

1: r ← C ≫ (k − 2)
2: r ← r · µ
3: r ← r ≫ (k + 2)
4: r ← q · r
5: Cout ← (C − r)
6: if Cout >= 2q then Cout ← Cout − 2q
7: else if Cout >= q then Cout ← Cout − q
8: else Cout ← Cout

9: end if

of small moduli in place of a big modulus; this is useful
especially when the small moduli fit the word length of the
underlying computing platform [19]. It is also showed [20],
that RNS proves to be useful in accelerating the R-LWE based
lattice-base somewhat homomorphic encryption schemes [21],
[22]. Furthermore, RNS-variants of such schemes are pro-
posed [16] and their implementations achieved good speedups
on platforms where the concurrency of RNS is exploited [23].

D. Number Theoretic Transform (NTT)

The number theoretic transform (NTT) is a version of
Discrete Fourier Transform (DFT) over the ring Zq . Any
vector a = [a0, a1, . . . , an−1] which has n elements in the
polynomial domain can be transformed to another vector
ā = [ā0, ā1, . . . , ān−1] which also has n elements in the
NTT domain. The forward and inverse NTTs are defined as
in Eqns 1 and 2:

āi =

n−1∑
j=0

ajω
i×j mod q for i = 0, 1, . . . , n− 1, (1)

ai =
1

n

n−1∑
j=0

ājω
−i×j mod q for i = 0, 1, . . . , n− 1. (2)

The NTT (Eqn 1) and INTT (Eqn 2) calculations require
the powers of a constant value ω ∈ Zq referred as the twiddle
factor. Two types of twiddle factors are used:

• ω ∈ Zq , which is the n-th root of unity in Zq and satisfies
the conditions ωn ≡ 1 (mod q) and ωi ̸= 1 (mod q)
∀i < n, where q ≡ 1 (mod n).

• ψ, where ψ ∈ Zq is the 2n-th root of unity and it
satisfies the conditions ψ2n ≡ 1 (mod q) and ψi ̸= 1
(mod q) ∀i < 2n, where q ≡ 1 (mod n). Note that ω
and ψ are related with ω = ψ2 mod q and ψn mod q =
−1.

As the formulas in Eqns 1 and 2 result in quadratic complexity,
for efficient computation of NTT and its inverse, Algorithms 2
and 3 are utilized [24].

Both algorithms are based on the factorization of the cy-
clotomic polynomial xn + 1 into n degree-1 polynomials as
follows:

Algorithm 2 Merge In-place Forward NTT
Input: a(x) ∈ Zq[x]/(x

n + 1) polynomial standard-order
Input: Ψrev (Powers of Ψ stored in bitverse order)
Input: n = 2l, q (q ≡ 1 mod n)
Output: ā(x) ∈ Zq[x]/(x

n + 1) in bit-reversed order
1: t = n; m = 1
2: do
3: t = t/2
4: for i from 0 by 1 to m do
5: j1 = 2it
6: j2 = j1 + t− 1
7: for j from j1 by 1 to j2 + 1 do
8: U = aj
9: V = aj+t ·Ψbr[m+ i] (mod q)

10: aj = U + V (mod q)
11: aj+t = U − V (mod q)
12: end for
13: end for
14: m = 2×m
15: while m < n

Algorithm 3 Merge In-place Inverse NTT
Input: ā(x) ∈ Zq[x]/(x

n + 1) in bit-reversed order
Input: Ψ−1

rev[k] (power of Ψ−1 stored in bit-reverse
order(Ψ−1

rev[k] = Ψ−br(k) (mod q)))
Input: n = 2l, q (q ≡ 1 mod n)
Output: a(x) ∈ Zq[x]/(x

n + 1) standard-order
1: t = 1; m = n
2: do
3: j1 = 0; h = m/2
4: for i from 0 by 1 to h do
5: j2 = j1 + t− 1
6: for j from j1 by 1 to j2 + 1 do
7: U = āj ; V = āj+t

8: āj = U+V (mod q)
9: āj+t = (U − V ) ·Ψ−1

br [h+ i] (mod q)
10: end for
11: j1 = j1 + 2× t
12: end for
13: t = 2× t
14: m = m/2
15: while m < n
16: Ninv =ModInv(n, q)
17: for i from 0 by 1 to n do
18: āi = (ai ·Ninv) (mod q)
19: end for

xn + 1 ≡
n−1∏
i=0

(x− ψ2i+1) mod q (3)

By reducing a given polynomial a(x) by these degree-
1 polynomials, we obtain n integers, which are, in fact,
the coefficients of ā(x). This computation can be performed
recursively. We first use the following factorization
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(xn + 1) ≡(xn − ψn)

≡(xn/2 − ψn/2)(xn/2 + ψn/2) mod q (4)

and reduce a(x) by polynomials (xn/2−ψn/2) and (xn/2+
ψn/2). Reducing a(x) by the first and second factors can
be realized by employing the equations xn/2 = ψn/2 and
xn/2 = −ψn/2, respectively. This accounts for the addition
and subtraction operations in Steps 11 and 12 of Algorithm 2.

Factorization is further utilized as follows:

(xn/2 − ψn/2) ≡ (xn/4 + ψn/4)(xn/4 + ψn/4) mod q

and

(xn/2 + ψn/2) ≡ (xn/2 − ψn/2+n)

(xn/4 − ψn/4+n/2)(xn/4 + ψn/4+n/2) mod q

The factorization is repeated until degree-1 polynomials are
obtained.

As can be observed from Algorithm 2, different powers of
ψ are stored in the bit-reverse order in the table Ψbr, which
simply means that the ith power of ψ is stored in the (br(i)−
1)th element of Ψbr. For instance, for n = 8 the first element
of Ψbr holds ψ4 as the bit-reversed order of 4 = 100 is 001.

The inverse NTT operation, whose steps are given in
Algorithm 3, is performed following the recursive factorization
of (xn+1) in the reverse order of that applied during the NTT
computation.

To illustrate the inverse NTT algorithm, its last iteration
is demonstrated, which yields the final result. The vector ā
before the last iteration is as follows:

a = (a0 + an/2ψ
n/2), . . . , (an/2−1 + an−1ψ

n/2)

+ (a0 − an/2ψn/2), . . . , (an/2−1 − an−1ψ
n/2) (5)

If the first half is added to the second half, the first
half of the resulting vector multiplied by 2 is obtained,
2(a0, . . . , an/2−1)

Furthermore, if the second half of ā is subtracted from its
first half,

2ψn/2(an/2, . . . , an−1). (6)

is obtained. Thus, the result in Eqn 6 needs to be multiplied
by ψ−n/2. This elaborates the core butterfly operation in
Step 12 of Algorithm 3.

As there are log2 n iterations in the outermost loop of
Algorithm 3 and the vector elements are effectively multiplied
by 2 in every iteration, the result needs to be divided by n
in Zq .

The schoolbook multiplication of polynomials c(x) =
a(x)× b(x), where a(x), b(x) ∈ Rq , can be performed using
the method given in Eqn 7.

c(x) =

n−1∑
i=0

n−1∑
j=0

ai × bj × xi+j mod q (7)

Due to the quadratic complexity of the schoolbook method,
the multiplication in Rq is slow and inefficient. Moreover,

the degree of the resulting polynomial is 2n − 2 as a result
of the multiplication, and thus division with ϕ(x) must be
applied in order to obtain the final result, which is in Rq; i.e.,
a polynomial with degree at most n− 1.

The NTT-based polynomial multiplication operation, on
the other hand, has logarithmic complexity. Recall that the
vector ā is made up of scalar integers reduced by degree-1
polynomials that are factors of (xn + 1). This means that
if two such vectors ā and b̄, where ā = NTT (a(x) and
b̄ = NTT (b(x), are multiplied element-wise in Zq , the result
is c̄ in NTT, where c(x) = a(x)b(x). When the inverse NTT
is applied on c̄, c(x) is obtained.

Consequently, an NTT multiplication algorithm can be
defined for an efficient multiplication in Rq as described in
Eqns. 8 and 9.

c̄(x) = NTTn(a(x))⊙NTTn(b(x)) (8)

c(x) = INTTn(c̄(x)) mod q (9)

Note that NTT operations are n-point and no extra poly-
nomial reduction step by (xn + 1) is needed as (xn + 1)
is factorized into degree-1 polynomials. This makes element-
wise multiplications in Eqn. 8 isomorphic to the multiplication
in Rq .

E. SEAL BFV Scheme

In this section, we first briefly explain four main operations
of the BFV homomorphic encryption scheme; namely key gen-
eration, evaluation key generation, encryption and decryption.
Then, we give more detailed explanation for three fundamental
homomorphic operations that are common in many homomor-
phic cryptographic applications: addition, multiplication and
rotation over encrypted ciphertexts.

1) Key Generation, Encryption and Decryption
For some integer t > 1, where t ≪ q, the ciphertext and

plaintext spaces are taken as Rq,n and Rt,n, respectively. Also,
we note that neither q nor t has to be prime integer. The
key generation, evaluation key generation, encryption and the
decryption operations of the BFV scheme are shown below,
where ∆ = ⌊q/t⌋ and χ, ℓ, and w represent a discrete
Gaussian distribution, the number of evaluation keys, and the
decomposition base, respectively.

• Key Generation: a← Rq,n, s← R2,n and e← χ,
sk = s, pk = (p0, p1) = ([−(as+ e)]q, a)

• Evaluation Key Generation: ai ← Rn,q and ei ← χ

for j = 0, . . . , r − 1; i = 0, . . . , r − 2

where f i = qr−1 mod qi
(evkji [0], evk

j
i [1]) = ([−(ajsj + ej) + f is2j ]qi , aj)

• Encryption: m ∈ Rt,n, u← R2,n and e1, e2 ← χ,
ct = (c[0], c[1]) = ([m ·∆+ p0u+ e1]q, [p1u+ e2]q)

• Decryption: ct = (c[0], c[1]) ∈ Rq,n and Sk ∈ R2,n,
m = [⌊ tq [c[0] + c[1]s]q⌉]t

Note that the evaluation keys, evk, are needed to remove
the “nonlinear” parts c[2] of the ciphertext (c[0], c[1], c[2]) that
occur after homomorphic multiplication operations; a process
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Algorithm 4 BFV Addition
Input: cti, c̄ti ∈ Rqi for 0 ≤ i < r − 1
Output: cti + c̄ti ∈ Rqi for 0 ≤ i < r − 1

1: for i from 0 by 1 to (r − 1) do
2: for k from 0 by 1 to 2 do
3: c̃ti[k] = [cti[k] + c̄ti[k]]qi
4: end for
5: end for
6: return c̃t = c̃t0, . . . c̃tr−1

often referred as relinearization. The number of evaluation
keys are 2r(r−1) in total. Note also that in the RNS variant of
the BFV scheme, all operations have to be repeated for each
prime base qi.

2) Addition
In the BFV scheme, the most straightforward operations are

addition and subtraction. It just consists of modular addition
and subtraction of the coefficients of ciphertext polynomials
that are in Rq,n. As shown in Algorithm 4, two pairs of
ciphertext polynomials in same bases are added or subtracted
coefficient-wise, where the moduli are qi for i = 0, . . . r − 1.
Here, cti stands for the ciphertext pair in the modulus qi for
i = 0, . . . r − 1; namely cti = [ct]qi for ease of notation.

3) Multiplication
In this section, we explain the homomorphic multiplication

operation as illustrated in Figure 1. As pointed out earlier in
the RNS variant of the BFV scheme, a set of smaller moduli
qi is used instead of one large coefficient modulus q for the
ring arithmetic; a technique known as residue number system
(hence, the abbreviation RNS). Using RNS arithmetic allows
to perform operations in parallel and removes the need for
arbitrary-precision arithmetic.

The homomorphic multiplication operation takes two ci-
phertexts as inputs, each of which consists of two polynomials
in Rq,n and performs a tensor product that produces three
polynomials as output in each RNS base.

Due to complications of using RNS arithmetic in homo-
morphic multiplication (see [16] for more details), the SEAL
library uses the base extension technique and introduces ad-
ditional auxiliary base (B and msk) in addition to the RNS
Q base {q0, q1, . . . , qr−1}. The auxiliary base B consists of
{B0, B1, . . . , Bρ−1}, which are pairwise co-prime while msk

is a prime integer. Generally, the auxiliary base B and the
prime msk are joined to form the base Bsk(= B ∪msk).

Thus, the homomorphic multiplication operation in BFV
requires conversion between the Q base and the auxiliary
base Bsk. The conversion is implemented using a technique
known as “fast base conversion”, which can introduce extra
multiples of q in the computations that can lead to error in
the ciphertext. To remedy this, a reduction operation through
another modulus m̃ is required after the fast base conversion
operation is applied.

As shown in Figure 1, the BFV multiplication opera-
tion starts by performing the fast base conversion operation
fastbconv_1, which convert the inputs in Q to the base

 

fastbconv_1

 

sm_mrq

 

fastfloor

 

fastbconv_1

 

sm_mrq

fastfloor fastfloor

  

 

fastbconv_2

 

fastbconv_2

 

fastbconv_2

 

Fig. 1. Homomorphic Multiplication Operation in The BFV Scheme.

{Bsk ∪ m̃}. The fastbconv_1 operation is followed by
the reduction operation, for which the additional base m̃ ise
used; this operation is known as small Montgomery reduction
modulo q, sm_mrq. It limits the impact of the error and
converts the inputs in the {Bsk ∪ m̃} base to the Bsk base.
After the sm_mrq operation, the NTT operation is applied to
all ciphertext components (both in Bsk and Q bases) and ci-
phertext multiplication operation is performed coefficient-wise
to all vectors in all bases. Then, the inverse NTT operation
is performed to convert the result to the polynomial domain.
After the inverse NTT operation, ciphertexts multiplied with
plaintext modulus t. Then, the floor operation is used instead
of rounding operation; via a method is called “fastfloor
function”, and convert the ciphertext in the base {q ∪ Bsk}
bases to the base Bsk as it involves division by q. Finally, the
fastbconv_2 function is used to perform conversion from
the Bsk base back to the original RNS base Q. The reader is
referred to [16] for more detail.

4) Relinearization
The SEAL BFV uses the switchkey technique (Figure 2),

which consists of the mix of three different methods for
relinearization operation [25], [26], [27]. The most current
method of these techniques is the special modulus method,
which improves relinearization in terms of noise performance.
The switch-key method shown in Figure 2 is the main building
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Fig. 2. Switch Key Operation in the BFV Scheme. The symbols +,− and × represent addition, subtraction and multiplication, respectively in either Zq or
Rq while the symbol ⊙ represents modular pointwise multiplication for vector representation of the elements of Rq in the NTT domain.

block of the relinearization and the rotation operations.
As shown in Figure 2, after the homomorphic multiplica-

tion, in addition to ct[0] and ct[1], the third ciphertext compo-
nent ct[2] is obtained. Recall that a ciphertext component is
written in r−1 moduli excluding qr−1 after encryption; cti for
i = 0, . . . , r− 1. Firstly, all cti[2] are transformed to the NTT
domain using all moduli qi in the RNS base to be multiplied
with the evaluation keys that are already in the NTT domain.

The number of NTT operations is, therefore, r(r−1). After
the NTT operations, the ciphertexts are multiplied with the
evaluation keys in the NTT domain, where the multiplication
is component-wise modulo multiplication. The modulus used
in the multiplication is written next to the box that represents
component-wise multiplication in Figure 2. Then, all results
from the multiplication using the same modulus qi in the RNS
base are summed and the resulting vectors are transformed
back to the polynomial domain using inverse NTT operation.
Finally, as shown in Figure 2, necessary operations are applied
to accommodate ct[2] in ct[0] and ct[1]. In the figure the half
mode Hm[i] = [⌊qr−1/2⌋]qi . See Algorithm 9 for the details.

5) Rotation
The rotation operation also uses the switch-key operation as

in the case of relinearization. However, the operation is based
on Galois automorphism [28] and therefore, Galois keys are
used for the switch-key operation. For each power of 2 there
is different set of Galois keys and if the rotation amount is
a power of 2, the switch-key operation is executed using the

corresponding Galois key. On the other hand, if the rotation
amount is not a power of two, the amount is written as the
combination of powers of two, and the switch-key operation is
applied multiple times with different Galois keys. for instance,
if the rotation amount is 10, it can be implemented using two
switch-key operations; the former uses the Galois keys for 8,
the latter for 2.

III. GPU ARCHITECTURE

A graphics processing unit (GPU) is a computing platform,
which consists of many cores that can operate on many
tasks concurrently, which makes it more suitable for parallel
computations. On the other hand, GPU cores are much simpler
than CPU cores and run at lower clock frequencies (cf. AMD
Ryzen7 3800X’s cores working at up to 4.2 GHz and NVIDIA
RTX 3060Ti’s cores working only at 1.66 GHz). Thus, GPUs
become much more favorable for performing many simple
tasks simultaneously. We will show in Section IV that many
time-critical BFV operations can be arranged as independent
for loops, executed in GPU threads simultaneously.

One of the essential parts of GPUs is “streaming multi-
processors” (SMs); a unit of computing cores running the
same GPU kernel. At the highest level of SMs, threads are
combined as a 3-dimensional structure called blocks. Also, a
grid is a group of blocks launched per GPU kernels. Using
kernel launch parameters, one can determine the dimension of
blocks and the number of threads per block as needed.
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Fig. 3. CUDA Memory Model.

As shown in Figure 3, GPUs have different types of logical
memory spaces; namely, shared memory (SMEM), registers,
local memory (LMEM), constant memory (CMEM), texture
memory (TMEM), and global memory (GMEM). They have
different sizes and different usages. For instance, GMEM has
large capacity; however, it has high access latency, especially
in case of low locality of access. As shown in Table I, registers
and SMEM are the fastest types of memory, and their read
and write data speeds are similar to a typical L1 cache of
a CPU. CMEM is a read-only data memory and since it is
accessible from all threads, it performs well when multiple
threads access the same data. Table I compares several aspects
of GPU memory types [29].

TABLE I
VARIABLES AND ACCESS PENALTIES ON MODERN GPUS MEMORY

ARCHITECTURE

Variable Declaration Memory Life Time Performance Penalty

int localVar; Register Thread 1×
int LocalArr[10]; Local Thread 100×

__device__ int GVar; Global Application 100×
__constant__ int CVar; Constant Application 1×
__shared__ int SVar; Shared Block 1×

IV. GPU IMPLEMENTATION

This section presents our implementation technics and meth-
ods for four different homomorphic operations of the SEAL
BFV scheme: addition, multiplication, relinearization, and
rotation. Moreover, we present the implementation of our NTT
and INTT algorithms on GPUs. In all GPU implementations
that are performed in this section, we minimize the number of
kernels. Here, our concern is due to the fact that transferring
data from one kernel to another is only possible by using
the global memory, and accessing the global memory is
prohibitively expensive as explained in Section III. Note that
the global memory is accessed only at the beginning and at the
end of the kernel. Also, we designed the operations within the
kernel in such a way that all required data sharing or exchange

Algorithm 5 Merge in Place Forward NTT on GPU (with
syncthreads)
Input: A[n] , PsiTable[n], q
Output: A[n]

1: Idx = blockIdx.x ∗ blockDim.x+ threadIdx.x
2: for loop from 0 by 1 to log2(n) do
3: t = (n/2)≫ loop
4: m = 2≪ loop
5: address = int(idx/t) ∗ t+ idx
6: Psi = PsiTable[int(idx/t) +m]
7: U = A[address]
8: V = (A[address+ t] ∗ Psi)%q
9: A[addess] = (U + V )%q

10: A[addess+ t] = (U − V )%q
11: __syncthreads()
12: end for

among the threads are facilitated only through shared memory,
which is much faster than the global memory. The optimal use
of global and shared memory decreased the total number of
clock cycles spent in memory accesses and boosted memory
throughput.

A. NTT

The Cooley-Tukey NTT algorithm described in the pre-
liminary section was implemented on the GPU. This section
explains the challenges for fast and efficient implementation
of NTT and presents our solutions to overcome them. Algo-
rithm 5 shows the GPU pseudo-code for the NTT algorithm,
which is essentially the same as the on given in Algorithm 2.
One important adaptation to GPU is synchronization operation
in Step 12, whose effect on the correctness of the computations
will be explained later in this section.

The NTT operation consists of log2 n back-to-back loops,
each of which contains n/2 butterfly operations independent
of each other, which can be performed simultaneously using
n/2 threads on the GPU.

Each GPU can run a certain number of streaming multi-
processors (SM), the number of which depends on the GPU
model and computational capability (version) of GPU. Each
SM consists of 4 warps of 32 threads for all GPU models, so
the total number of physical threads equals ((#SM)×4×32).

When a GPU code is executed, the tasks are performed by
warp groups. For example, if code uses the number of threads
in the range of [96-128], a total of four warps will be needed in
both cases. Also, even if the warps perform the same task, they
may not finish their share of tasks simultaneously. Therefore,
shared data usage among threads can lead to synchronization
problems.

For instance, as the ring dimension n or the number of
simultaneous (I)NTT operations increases, synchronization
problems can occur if proper synchronization operations are
not employed during the execution of Algorithm 5 (suppose
Step 12 of Algorithm 5 is not present). This can be explained
with a simple example. Suppose that we have a hypothetical

7



Iteration: 0

Kernel 1

Iteration: 1

Iteration: 2

Iteration: 3 

Iteration: 4

= Kernel  = Memory  = Block 1  = Block 2  = Block 3  = Block 4  = Iteration

Fig. 4. Execution of Alg. 5 without synchronization in ideal circumstances where n = 32

GPU with a total thread count of 16 and a maximum block size
of 4 threads. Let one warp of this GPU consist of two threads
and let Algorithm 5 without synchronization be executed for
n = 32 on this GPU. Figure 4 portrays a visualization of
the execution of Algorithm 5 without synchronization on the
hypothetical GPU.

The figure shows a total of log2 32 = 5 iterations. 16 threads
are used, whose indexes are between 0 and 15 (T0, . . . , T15).
We use a different color for the oval rectangle that encircles
a block of four threads. Each thread Ti accesses two different
memory locations using the address and address+t val-
ues in Algorithm 5, perform the butterfly operation, writes two
pieces of the results again in the same two memory locations.
When a thread finishes its own task, it moves to the iteration
of the algorithm and performs the same operation, only with a
different value of t this time. Figure 4 represents the execution
of the algorithm in the ideal circumstances as the threads are
assumed to finish their tasks simultaneously.

However, Algorithm 5 does not always execute in ideal
circumstances. Suppose that the number of threads is only 12
for the scenario in Figure 4. Even when the numbers of threads
is less than the number of tasks, incidentally the execution
can still be correct. One such scenario is depicted in Figure 5,
where we only show the first two iterations. As the scenario
requires 16 threads, but the hypothetical GPU has 12 threads,
the number of threads is not sufficient, and the code runs
sequentially after a point. In the figure we use primed letters
to distinguish the multiple assignments of the same thread
to different tasks. For instance, T0 and T ′

0 shows that the
same thread executes two different butterfly operations in the
same iteration sequentially. Incidentally again, this does not
necessarily lead to incorrect execution as shown in Figure 5.

Nevertheless, thread synchronization can be easily in error

as visualized in Figure 6. For instance, suppose four threads in
the dashed red line, namely T ′

2, T
′
3, T

′
6, T

′
7, which are assumed

to be scheduled simultaneously. And, since they operate on the
same memory locations in two consecutive iterations, there
is data dependency between the first two and the last two
threads. This will definitely leads to a race condition, resulting
in incorrect results.

It is impossible to put a barrier between the warps to solve
the aforementioned synchronization problem. Therefore, only
block-level barriers can be used as shown in Step 12 of
Algorithm 5, which resolves all synchronization problems as
long as the ring dimension n is less than or equal to the block
size. Since a block in GPU has maximum of 1024 threads for
all GPU models, the barrier __syncthreads() in Step 12
of Algorithm 5 cannot resolve the synchronization issue for
higher values of n or when performing many NTT operations
in batches1.

The latter issue can be explained over another execution
scenario of Algorithm 5 on the hypothetical GPU, depicted in
Figure 7. The eight threads enclosed the dashed red line belong
to two different blocks as the block size of the hypothetical
GPU is just four. Here, the thread block in the 2nd iteration run
on data that has not yet been completed, leading to incorrect
results.

For n values much higher than the block size and the high
number of multiple NTT operations running simultaneously,
an obvious solution to resolve all synchronization issues is
simply using more than one kernel depending on the size of n
or the number of NTT computations. For example, for n = 32
on our hypothetical GPU, to resolve the synchronization issue

1When multiple and independent NTT operations are executed, the threads
are scheduled as if those independent NTT calculations are combined into a
single big NTT operation.
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Fig. 8. An example of our NTT algorithm where, n = 32 and maximum block size = 4.
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in Figure 7, we can use two consecutively executing kernels
for the first two iterations of the NTT computation.

After the first two iterations are completed, the threads in
one block will never need or use the data processed by another
block and no synchronization problem occurs. Therefore, after
the first two iterations, execution can continue within the third
kernel using shared memory and block synchronization.

However, when more than one kernel is used, the only way
to share data across kernels is to use global memory, which
is the slowest of all GPU memory types (see Section III). As
the value of n increases, this method becomes prohibitively
inefficient as the number of kernels required for NTT will
also increase. This approach is used in [30], and as will show
in the subsequent sections, our new approach in this paper
scales better as n increases.

The approaches described above have either synchroniza-
tion issues or inefficient memory usage, both of which are
efficiently addressed by our new NTT implementation. The
new implementation consists of always two kernels for all
values of n.

An example with n = 32 is visualized in the hypothetical
GPU in Figure 8, where the first two iterations are performed
in the first kernel. Operations of these iterations in the first
kernel are performed sequentially on purpose. In the example
in Figure 8, two blocks and eight threads (recall 2 blocks = 8
threads on the hypothetical GPU) are scheduled twice in the
first two iterations. Each thread in the two blocks writes the
addresses of interest in the global memory to its registers, as
illustrated in Figure 9. Then, each thread performs butterfly
operations using its register memory. When a thread finishes
its task in one iteration, it writes the data in its register
memory to the corresponding global memory. Although the
first kernel seems to be slower because it uses fewer number
of threads than the above mentioned examples, the acceleration
here comes not from the number of threads, but from the
more efficient usage of memory as we minimize the global
memory access. On the other hand, in the approach employed
in [30], the number of kernels along with global memory
access increases as n becomes larger. The pseudo-code for
the algorithm used to implement the operations in the first
kernel is given in Algorithm 6.

In the second kernel in Figure 8, the number of threads
in a block suffices to complete the remaining NTT oper-
ations. Since data sharing among threads within the block
is required, each block has its shared memory consisting of
2×blocksize. This poses no problem as the shared memory
is the fastest type of GPU memory (in fact, as fast as the
register memory). Here, each thread accesses its own part of
the memory using its respective indexes for each iteration,
performs a butterfly operation, and writes the result to the
shared memory of the block it is connected to until the last
iteration. After all threads finishes their executions, the result,
which is in the shared memory, are written to these global
memory, and the NTT operation is terminated. The new NTT
implementation is fast and free of synchronization issues for
all values of n and multiple concurrent NTT computations.

Algorithm 6 Kernel 1 in Figure 8
Input: A[n] , PsiTable[n], q
Output: A[n]

1: Idx = blockIdx.x ∗ blockDim.x+ threadIdx.x
2: m = 1
3: k = n/(blockDim.x× 4)
4: for i from 0 by 1 to n/(blockDim.x× 2) do
5: reg[i] = A[idx+ (i ∗ (blockDim.x× 2))]
6: end for
7: for i from 0 by 1 to 2 do
8: address = int(idx/(i+ 1))
9: for j from 0 by 1 to n/(blockDim.x× 4) do

10: location = i× j + j
11: U = reg[location]
12: V = reg[location+ k]
13: V = (V × PsiTable[address+m]) mod q
14: reg[location] = (U + V ) mod q
15: reg[location+ k] = (U − V ) mod q
16: end for
17: m = m× 2
18: end for
19: for i from 0 by 1 to n/(blockDim.x× 2) do
20: A[idx+ (i ∗ (blockDim.x× 2))] = reg[i]
21: end for

B. SEAL GPU implementation

This section explains our GPU implementations of homo-
morphic addition, multiplication, relinearization and rotation
operations of the BFV homomorphic encryption scheme. Al-
gorithms for all these homomorphic operation are given as
pseudo-codes as implemented in the Microsoft SEAL library.
All of these algorithms are implemented so that they use our
GPU implementation of the NTT algorithm as described in
Section IV-A.

1) Homomorphic Addition/Subtraction
As explained in Section II-E2, addition/subtraction opera-

tions of the BFV scheme are simple and inexpensive and their
implementation consists of only one kernel. In this kernel,
each ring element are represented as a vector over Zqi for each
modulus in the RNS base, and modulo addition/subtraction is
performed over the elements of the vectors.

2) Homomorphic Multiplication
In addition to kernel functions to implement NTT and

INTT operations, ten different CUDA kernel functions are
implemented for the multiplication operation (see Figure 1
for these operations). Each of the kernel functions use a
one-dimensional block and thread indexing. Before the GPU
computation, all necessary parameters are generated on CPU
of the host computer, then sent to GPU. In what follows, we
briefly mention all of them, but provide pseudo-codes for some
important ones in case they are more involved.

The first two CUDA kernel functions are employed to
implement base conversion operation from the RNS base Q
to Bsk. The pseudo-code of the base conversion operation is
given in Algorithm 7, as it is implemented in the Microsoft
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Fig. 9. Register Memory Usage in our NTT Algorithm for n = 32.

Algorithm 7 Fast Convert Array
Input: rni ∈ Rqi,n

Input: Pi = [ qiq ]qi , base c
j
i = [ qqi ]Bskj

Output: ctni ∈ RBsk,n

1: for i from 0 by 1 to r−2 do
2: multni = [rni × Pi]qi
3: end for
4: for i from 0 by 1 to Bsk len− 1 do
5: sumn

i = 0
6: for j from 0 by 1 to r − 2 do
7: for k from 0 by 1 to n− 1 do
8: sumk

i = [sumk
i + (mulki × base c

j
i )]Bskj

9: end for
10: end for
11: ctni = sumn

i

12: end for

SEAL library. In particular, the first kernel implements the
for loop in lines 1-3 of Algorithm 7. As the result of the
for loop is needed in the subsequent operations in lines 4-12
of Algorithm 7 a second kernel is used.

The third CUDA kernel function is implemented to perform
the small Montgomery reduction operation (i.e., sm_mrq

Algorithm 8 Fast Floor
Input: rni ∈ Rqi,n, r

n
j ∈ RBskj ,n, Pi = [ qiq ]qi

Input: base cji = [ qqi ]Bskj

Output: cni ∈ Rqi,n

1: ctni ← fast conv array(rni , Pi, base c
j
i )

2: for i from 0 by 1 to Bsk len− 1 do
3: for k from 0 by 1 to n− 1 do
4: ctki = [rkj − ctki ]Bski

5: cki = [ctki × [q]−1
Bski

)]Bski

6: end for
7: end for

Figure 1), which is employed to eliminate errors due to the
base conversion operation in the previous step. After the NTT
operations are applied to all vectors both in the RNS and
extension bases, the fourth and fifth CUDA kernel functions
are used to perform multiplication of the ciphertexts; the
former in the RNS base Q, multip_q and the latter in the
extension base Bsk, multip_BSK (see the middle block in
Figure 1). Then, the INTT operation follows the multiplication
operation to convert the ciphertexts back to the polynomial
domain. The sixth CUDA kernel function is used to im-
plement the multiplication of ciphertexts with the plaintext
modulus t, multip_t. The seventh CUDA kernel function,
named first_fast_floor, implements the first step of
the fast_floor function (see Algorithm 8 for the pseudo-
code): the results of the multip_t kernel function in Q and
Bsk bases are converted to the Bsk base. The eighth CUDA
kernel function, named second_fast_floor, eliminates
errors with the flooring method instead of the rounding
method. After the fast_floor kernel function, the fast base
conversion function is performed in the ninth and tenth CUDA
kernel functions. The ninth kernel functions performs the
conversion from the extension base Bsk to the RNS baseQ. Fi-
nally, the tenth kernel function, second_fastbdconv_sk
is used to eliminate the rounding errors.

3) Relinearization
The BFV relinearization operation uses switchkey op-

eration as explained in Figure 2, a pseudo-code of which is
given in Algorithm 9 as it is implemented in the Microsoft
SEAL library. The relinerization operation usually follows a
homomorphic multiplication of ciphertexts, which are given
in polynomial domain in BFV. The third component of the
ciphertext, c[2], which are to be multiplied with evaluations
keys are first converted to the NTT domain using our NTT
implementation (see line 5 of Algorithm 9). Then, the multi-
plication with evaluation keys are performed in the lines 2-9
of Algorithm 9, which are implemented in a single kernel
function.

Due to the fact that no polynomial multiplication is needed
after line 9, the results are converted back to the polynomial
domain (see lines 10-13 of Algorithm 9). The lines 14 and 16
are used to implement the arithmetic with the half modulus as
previously described in Figure 2. Lastly, the operation between
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Algorithm 9 Switch Key
Input: ci[0], ci[1], ci[2] ∈ Rqi,n

Input: evkji [k] ∈ Rqj ,n, where k ∈ {0, 1}, 0 ≤ j < r, and
0 ≤ i < (r−1)

Output: cti[0], cti[1] ∈ Rqi,n

1: Āj,k = 1
2: for i from 0 by 1 to r−2 do
3: for j from 0 by 1 to r − 1 do
4: for k from 0 by 1 to 1 do
5: ai,j,k = [NTTn,qj (ci[2])⊙ evk

j
i [k]]qj

6: Āj,k = [Āj,k + ai,j,k]qj
7: end for
8: end for
9: end for

10: for j from 0 by 1 to r do
11: Aj,0 = INTTn,qj (Āj,0)
12: Aj,1 = INTTn,qj (Āj,1)
13: end for
14: half = ⌊ qr−1

2 ⌋
15: for i from 0 by 1 to r−1 do
16: halfmod = [half ]qi
17: for k from 0 by 1 to 1 do
18: tmp = [[Ar−1,k + half ]qr−1

− halfmod]qi
19: tmp = [tmp× q−1

r ]qi
20: cti[k] = [ci[k] + tmp]qi
21: end for
22: end for

Algorithm 10 Apply Galois

Input: galois elt, cji [k] ∈ Rqi,n, where 0 ≤ i < (r − 1)
0 ≤ j < n k = 0, 1

Output: cji [k] ∈ Rqi

1: for i from 0 by 1 to r−2 do
2: for j from 0 by 1 to n− 1 do
3: index raw = j × galois elt
4: index = index raw & (n− 1)
5: for k from 0 by 1 to 1 do
6: r val = cji [k]
7: if (index raw ≫ log2(n)) & 1 then
8: non zero = int(r val ̸= 0)
9: r val = (qi − r val)&(−non zero)

10: end if
11: cji [k] = r val
12: end for
13: end for
14: end for

lines 14 to 22 in Algorithm 9 is implemented with a single
kernel.

4) Rotation
The BFV rotation operation uses the so-called

apply_galois method, whose pseudo-code is given in
Algorithm 10 and the switchkey operation in Algorithm 9.
Before the rotation operation, galois_elt algorithm for a

Algorithm 11 Galois Elt
Input: steps, n
Output: galois elt

1: m32 = n× 2
2: if steps == 0 then
3: return m32− 1
4: else
5: pop steps = abs(steps)
6: if steps < 0 then
7: steps = (n≫ 1)− pop steps
8: else
9: steps = pop steps

10: end if
11: gen = 3
12: galois elt = 1
13: for i from 0 by 1 to steps do
14: galois elt = galois elt× gen
15: galois elt = galois elt & (m32− 1)
16: end for
17: return galois elt
18: end if

given shift amount is executed in CPU using Algorithm 11 and
the result galois_elt is sent to GPU. Then, a single kernel
is used to implement apply_galois algorithm. Finally,
another kernel function is used to implement switchkey
operation as explained in part IV-B3.

V. EXPERIMENTAL RESULTS

In this section, we present our GPU implementation results
and their comparison with state-of-the-art works in the litera-
ture. Also we present the implementation of gradient boosting
framework (XGBoost) [31] using our GPU library to show its
performance in practical real-world applications.

For a fair comparison with GPU and CPU implementations
of NTT and of the homomorphic operations of the BFV
scheme, we used a powerful CPU and two GPU devices,
whose configurations are listed in Table II.

TABLE II
HARDWARE FEATURES OF THE TESTBED ENVIRONMENT

Feature CPU GPU

RTX3060Ti (GPU 1) GTX1080 (GPU 2)

Model AMD Ryzen7 3800X RTX3060Ti GTX1080
Threads 16 4864 2560

Freq. 4.20 GHz 1665 MHz 1733 MHz
RAM 32 GB (3600 MHz) 8 GB 8 GB

Mem. Type - GDDR6 GDDR5X
Mem. Bus - 256 bits 256 bits
Bandwidth - 448 GB/s 320 GB/s

Mem.: Memory.
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TABLE III
COMPARISON RESULTS OF SEAL BFV SCHEME OPERATIONS WITH OUR GPU IMPLEMENTATIONS OF BFV SCHEME OPERATIONS.

GPU [30] GPU with new NTT SEAL T

Operation n log2 q RTX3060Ti GTX1080 RTX3060Ti GTX1080 CPU Ts

Add.

212 109 4 µs 4.6 µs 4 µs 4.6 µs 14 µs 3.5×
213 218 5.1µs 6.2 µs 5.1 µs 6.1 µs 58 µs 11.37×
214 438 12.3 µs 19.4 µs 12.3 µs 19.4 µs 233 µs 18.94×
215 881 44 µs 64.2 µs 44 µs 64.2 µs 778 µs 17.68×

Mult.

212 109 172 µs 259 µs 86 µs 155.8 µs 3212 µs 37.3×
213 218 297 µs 532 µs 202 µs 423.4 µs 11883 µs 58.8×
214 438 1037 µs 2294 µs 768 µs 1856.1 µs 48757 µs 63.4×
215 881 5372 µs 10657 µs 3757 µs - 205295 µs 54.6×

Relin.

212 109 46 µs 82.7 µs 39.51 µs 59.3 µs 625 µs 15.81×
213 218 104 µs 145 µs 88.54 µs 143.4 µs 3100 µs 35.01×
214 438 462 µs 1013 µs 376.61 µs 825.3 µs 18295 µs 48.57×
215 881 3530 µs 6651 µs 3150 µs - 111736 µs 35.47×

Rot.

212 109 51 µs 87 µs 42.1 µs 59.4 µs 642 µs 15.24×
213 218 116 µs 172 µs 103.3 µs 162.7 µs 3157 µs 30.56×
214 438 544 µs 1339 µs 458.7 µs 1067.2 µs 18338 µs 39.97×
215 881 3879 µs 10504 µs 3464.5 µs - 113437 µs 32.74×

Add.:BFV Addition. Mult.:BFV Multiplication. Relin.:BFV Relinearization. Ts: speed up compare to the SEAL with new NTT implemented on RTX
3060Ti ∗: Include relinearization operation.

A. GPU Implementation of NTT Results and Comparison with
related works

Since the BFV scheme used here employs RNS, NTT
must be concurrently calculated for each modulus in RNS.
Therefore, it is essential to simultaneously perform multiple
NTT operations in batches. Naturally, the throughput of NTT
operation is as important as (if not more than) the latency of
a single NTT operation on GPU. In our GPU implementation
we aim to optimize both throughput and latency and we favor
the former over the latter most of the time. In the literature,
there are few works that report results for batch execution
of NTT operations. Thus, in Table IV we included results
from [30], which is the only work in the literature that reports
batch computation results comparable to ours to the best of
our knowledge. Also, the results in [30] represent the state-
of-the-art in GPU implementation of NTT.

While most NTT GPU implementations in the literature use
special form moduli to accelerate NTT operation, our imple-
mentation works with any NTT-friendly modulus and it is still
faster. Furthermore, our implementation, which is optimized
for performing NTT operations in batches, outperforms those
that report only the timings for a single NTT operation in the
literature. To compare our work with those that report only
single NTT and inverse NTT timings, we include Table V,
which shows that, our implementation also outperforms all
works in the literature except for one case when a single
NTT (iNTT) operation is executed.

In [30], the inverse NTT operation is faster than ours for
ring sizes 214 and 215. For the ring size 214, the total time of
NTT and inverse NTT operations of our implementation is less
than that in [30] (compare 42.4 µs and 50 µs). For 215, the

implementation in [30], on the other hand, outperforms ours.
Nevertheless, as Table IV shows that our batch implementation
outperforms the one in [30] for every case. The performance of
batch NTT is much more important as NTT (and inverse NTT)
operations are always executed in batches in all homomorphic
encryption applications.

We also note that the works [33], [34], and [35] use the
special modulus, Q = 264 − 232 + 1 known as goldilock
modulus, to perform NTT operations faster. However, Q
serves as the carrier modulus for the actual moduli used
in RNS arithmetic in homomorphic encryption applications.
Thus, the actual moduli are much smaller due to the constraint
q2i n < Q [36]. For example, for the ring size n = 214, each
moduli in RNS arithmetic can be at most 25 bit. As our work
can employ 64-bit RNS moduli, our actual performance is
much better than the implementations in [33], [34], and [35].
For example, to match our size the implementations in those
works should use at least twice as many RNS moduli.

The implementations in [33] and [34] take 83.3 µs and 57.8
µs, respectively, for 32768 ring size. And the implementation
in [35] takes 66.8 µs for 16384 ring size. Our GPU implemen-
tation takes either 19.4 µs (32-bit implementation) or 35.9 µs
(64-bit implementation) for the 32768 ring size. On the other
hand, when the ring size is 16384, our GPU implementation
takes either 13.8 µs (32-bit implementation) or 19.4 µs (64-
bit implementation) to perform single NTT operations. As the
works in [32], [33], [34] and [35] do not report timing results
for batch execution, these works are not included in Table IV,
which includes only comparison of batch NTT execution.

Table IV lists the GPU timings for NTT and inverse NTT
operations, which are organized into two main columns. On
the left are the GPU timings when the modular multiplication
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TABLE IV
TIMINGS OF GPU IMPLEMENTATION OF NTT AND INVERSE NTT OPERATIONS AND THEIR COMPARISON WITH [30]

32 Bit (Implemented On RTX 3060Ti) 64 Bit (Implemented On RTX 3060Ti)

Forward NTT Inverse NTT Forward NTT Inverse NTT

n NTT count [30] T.W. [30] T.W. [30] T.W. [30] T.W.

212

4 12.3 µs 11 µs 11.2 µs 11.1 µs 19.5 µs 14.3 µs 16 µs 15.4 µs
16 13 µs 11.2µs 12.2 µs 12.2 µs 22.5 µs 17.2 µs 17.8 µs 19.4 µs
32 13.9 µs 17.9 µs 18.4 µs 19.2 µs 23.5 µs 25.2 µs 29.3 µs 26.6 µs
64 23.1 µs 28.6 µs 29.5 µs 29.3 µs 39.9 µs 43 µs 52.9 µs 50.1 µs
128 38.9 µs 46.7 µs 48.1 µs 48.7 µs 75.7 µs 81.6 µs 96.5 µs 91.1 µs

213

4 17.1 µs 12.2 µs 14.1 µs 14.3 µs 24.4 µs 16.6 µs 21.1 µs 20.5 µs
16 18.4 µs 18.4 µs 22.2 µs 20.3 µs 28.2 µs 25.6 µs 34.8 µs 28.6 µs
32 28.6 µs 29.4 µs 34.9 µs 30.3 µs 47.9 µs 44.4 µs 59.4 µs 49.9 µs
64 49.8 µs 46.7 µs 57.3 µs 50.7 µs 97.1 µs 82.1 µs 121.2 µs 93.9 µs
128 88 µs 91.2 µs 124 µs 96.1 µs 170.7 µs 156.4 µs 224.1 µs 173.6 µs

214

4 20.1 µs 15.2 µs 17.6 µs 16.3 µs 29.98 µs 21.76 µs 24.5 µs 24.1 µs
16 33.7 µs 30.5 µs 40.9 µs 30.1 µs 54.4 µs 46.54 µs 65.9 µs 53.2 µs
32 57.3 µs 50.1 µs 64.5 µs 51.8 µs 121.8 µs 84.6 µs 143.3 µs 97.2 µs
64 112.6 µs 96 µs 147.4 µs 99.3 µs 218.5 µs 160.5 µs 266.8 µs 180 µs
128 210.7 µs 176.1 µs 277.1 µs 183 µs 420.8 µs 303.19 µs 511.9 µs 331.7 µs

215

4 25.6 µs 26.4 µs 28.7 µs 25.9 µs 35.8 µs 41.2 µs 47.3 µs 50.3 µs
16 64.1 µs 52.2 µs 74.7 µs 53.2 µs 147.1 µs 100 µs 170.1 µs 95.6 µs
32 136.3 µs 100.3 µs 173 µs 102.4 µs 266.2 µs 191.8 µs 325.5 µs 193.2 µs
64 254.9 µs 192.1 µs 322.2 µs 193.6 µs 514.2 µs 372.2 µs 633.7 µs 377.7 µs
128 491.1 µs 362.4 µs 623.1 µs 364.3 µs 998.9 µs 709.3 µs 1202.9 µs 725.2 µs

T.W:This Work.

(see Barret reduction in Algorithm 1) is done using 32-bit
modulus q, whereas, on the right, the same timings are listed
for a 64-bit q. Note that as the BFV scheme works with
integers, only integer arithmetic is employed for these modular
multiplications.

Note that as the 64-bit implementation uses twice the size
of the modulus than the 32-bit implementations, it can be
advantageous for homomorphic operations. For instance, for
an acceptable level of security, one must use a 218-bit size for
q when n = 213. When we set the sizes of moduli qi to 32
bit, we use seven RNS moduli qi. On the other hand, if the
size of each qi is 64 bit, we use only five such moduli.

In the table, NTT_count represents the number of indepen-
dent NTT operations performed simultaneously. We compared
forward NTT and inverse NTT separately.

Our timing results show a significant acceleration in com-
parison with those of the state-of-the-art GPU implementation
in the literature [30]. For the 32 bit case, the new forward
NTT and inverse NTT are 1.36× and 1.71×, faster than their
counterparts in the work [30], respectively, where n = 215

and NTT_count = 128. The sum of NTT and INTT timings,
which is 726.7µs, is 1.53× faster than that of [30]. For the
64 bit case with n = 215 and NTT_count = 128, the new
forward NTT and inverse NTT are 1.4× and 1.66× faster
than their counterparts in [30], respectively. These perfor-
mance achievements obtained for NTT and INTT operations
help accelerate the operations of the BFV-scheme and any
application using homomorphic encryption as shown in the

following section.

B. GPU Implementations of BFV HE operations Results and
Comparison with related works

There are not many prior works in the literature that presents
GPU implementations of homomorphic operations of the BFV-
scheme, and the existing ones do not give performance results
for all homomorphic operations let alone the homomorphic ap-
plication results. Therefore, the comparison of our work with
other works in the literature cannot be comprehensive. The
work in [35] provides timing results on GPU for homomorphic
applications of an old and completely different homomorphic
encryption scheme, LTV [37], which is not in use today. We
compare the results of our GPU implementation of the BFV-
scheme operations with the work [38], which represents the
state-of-the-art in the literature for GPU implementation of the
BFV scheme. The work [38] provides only the timing results
of homomorphic multiplication, which include those of the
following relinearization operation.

We first provide our timing results separately in Table III,
which includes all major homomorphic artihmetic operations,
typically used in many homomorphic applications. Our GPU
implementation shows significant improvements over the CPU
implementation of the SEAL library running on a CPU. As
shown in Table III the proposed GPU library provides up to
63.4× faster BFV multiplication operation, 48.57× faster BFV
relinearization operation, 39.97× faster BFV rotation opera-
tion, 18.94× faster BFV addition operation, when n = 214
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TABLE V
TIMINGS OF GPU IMPLEMENTATION OF SINGLE NTT AND SINGLE

INVERSE NTT OPERATIONS AND THEIR COMPARISON WITH THE WORKS
IN LITERATURE

Work Device n log2 q NTT INTT

[32] Titan V 214 60 44.1 µs - µs
215 60 84.2 µs - µs

[33] RTX 2080 Ti 215 64⋆ 83.3 µs 96 µs

[34] GTX 1070 214 64⋆ 57.8 µs - µs

[35] GTX 1070 214 64⋆ 66.8 µs - µs

[30]

GTX 980 214 55 51 µs 41 µs
215 55 73 µs 52 µs

GTX 1080 214 55 33 µs 20 µs
215 55 36 µs 24 µs

Tesla V100 214 55 29 µs 21 µs
215 55 39 µs 23 µs

This Work RTX 3060 Ti

212 32 10.2 µs 10.2 µs
213 32 10.9 µs 11.1 µs
214 32 13.8 µs 14.2 µs
215 32 19.4 µs 20.0 µs

212 64 14.0 µs 15.0 µs
213 64 14.9 µs 17.2 µs
214 64 19.1 µs 23.1 µs
215 64 35.9 µs 37.1 µs

⋆: Actual qi is restricted by q2i n < 264 − 232 + 1

and q = 438 with respect to the SEAL library, which is
running on AMD Ryzen7 3800X. The total number of threads
available in our GPU devices account for the optimum results
obtained at n = 214. Since we parallelized all operations, RTX
3060Ti’s threads become fully utilized and, the system cannot
be parallelized more. Since the number threads on GTX 1080
is much fewer than RTX 3060 Ti, the best scenario for GTX
1080 is obtained at n = 213.

Then, we compare our results with the work in [38] only
for homomorphic multiplication including the following re-
linearization operation as it is the only one reported. The
GPU used in [38] has 5120 cores and 16 GB of memory
operating at the clock frequency of 1.380 GHz, which is
comparable to RTX 3060Ti used in our measurements. The
execution times are also measured for the same ciphertext
modulus sizes and the ring dimensions used in the work [38]
for a fair comparison. As observable from Table VI, our GPU
implementation outperforms that in [38] for all cases. For
instance, our multiplication including relinearization imple-
mentation results are 6.31× faster for n = 212, 5.95× faster
for ring size n = 213, 3.04× faster for ring size n = 214,
and 1.67× faster for ring size n = 215 than the work [38],
respectively.

C. Implementation Results of Privacy-Preserving Inference
for Genome Data using XGBoost Trees

Mağara et al. [31] introduced a privacy-preserving gradient
boosting inference framework (XGBoost) algorithm using
homomorphic encryption for the classification of the encrypted

genome data of different tumor types. We implemented their
framework using our GPU library of the BFV scheme. XG-
Boost is a learning algorithm, which uses gradient-boosted tree
ensembles. The model consists of classification trees that are
constructed by training data. Trees of the ensemble evaluate
the test data that are classified into one of the leaves. Lastly, a
final prediction score is formed by summing up the numerical
scores obtained from each tree. To decrease the complexity
of the model and the depth of the corresponding circuit to be
homomorphically evaluated, shallow trees are selected.

TABLE VI
COMPARISON RESULTS OF OUR GPU IMPLEMENTATION WITH

STATE-OF-THE-ART WORK

[38] T.W

Operation n log2 q Tesla V100 RTX 3060Ti T

Mult. + Relin.

212 60 859 µs 136 µs 6.31 ×
213 120 1012 µs 170 µs 5.95 ×
214 360 2010 µs 661 µs 3.04 ×
215 600 4826 µs 2875 µs 1.67 ×

Mult. + Relin:Sum of multiplication and relinearization operations
T.W.:This Work. T :The ratio of work [38] over this work.

As explained in [31], test data is encrypted, and the
XGBoost trees are homomorphically evaluated for a total
of 258 test data points. The total number of homomorphic
multiplications, rotations, subtractions, plain multiplications,
addition and relinearization operations are 1290, 1806, 1806,
1290, 3354, and 2322, respectively.

As shown in Table VII, our GPU library accelerates the
classification operation at least 42.98 times with respect to the
results obtained from AMD Ryzen7 3800X CPU with single
thread. When all threads are used in the CPU, the speedup
will be 5.7.

TABLE VII
IMPLEMENTATION OF GRADIENT BOOSTING FRAMEWORK(XGBOOST)

RESULTS

SEAL T.W

n log2 q S.T. M.T. RTX 3060Ti T S

213 218 25.62 s 3.4 s 0.596 s 42.98× 5.7×
214 438 127.028 s 19.27 s 2.41 s 52.7× 8×

S.T.:Single Thread M.T.:Multi Thread.(16 threads) T.W.:This Work. T :The
ratio of single-thread results over this work. S: The ratio of multi-thread
results over this work.

VI. CONCLUSION

In this paper, we presented a GPU library that features
highly parallelized and optimized implementations of NTT and
inverse NTT operations and homomorphic operations of the
BFV scheme. Although the library can be independently used,
it is also integrated with the Microsoft SEAL library and its
functions can be called from any application code using SEAL.
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Therefore, the library is truly an accelerator for homomorphic
encryption applications.

By reducing the number of GPU kernel function calls and
optimized use of fast memory on GPU, the library offers the
best timing performance for NTT and inverse NTT operations
in the literature. For instance, concurrent executions of 128
NTT and INTT operations for the ring degree of 214 take
303.19 µs and 331.7 µs, respectively, on RTX3060Ti GPU,
which are 1.39 and 1.54 times faster than those of the state-
of-the-art GPU implementation reported in the literature.

Then, all homomorphic operations of the BFV scheme
are also implemented on GPU and compared against the
SEAL library running on a CPU. When compared with CPU
implementation for the ring size of 214 and the modulus
bit size of 438, the GPU library runnning on RTX3060Ti
achieves speedups of 18.94, 63.4, 48.57, and 39.97 for homo-
morphic addition, homomorphic multiplication, relinearization
and homomorphic rotation, respectively. We also compared
our homomorphic multiplication followed by a relinearization
operation with that of the state-of-the art GPU implementation
in the literature, and found that out ours is up to 6.31 times
faster than the latter.

We also showed that the proposed GPU library is profitably
used in homomorphic processing of real data such as the
classification of encrypted genome data for tumor types and
reported at least a speedup of 5 in comparison with a powerful
CPU running 16 threads.

In conclusion, the reported performance gains establish that
GPU implementations of homomorphic encryption prove to be
useful to help privacy-preserving data processing applications
become more practicable.

As a future work, we envision to integrate our GPU ac-
celerator to other HE libraries, and use it to accelerate other
more challenging operations such as bootstrapping and scheme
switching. We can achieve these goals by joining recent open
source efforts in the development of HE software libraries such
as OpenFHE [13].
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