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Abstract
Approximated homomorphic encryption (HE) schemes such as CKKS
are commonly used to perform computations over encrypted real
numbers. It is commonly assumed that these schemes are not “ex-
act” and thus they cannot execute circuits with unbounded depth
over discrete sets, such as binary or integer numbers, without error
overflows. These circuits are usually executed using BGV and B/FV
for integers and TFHE for binary numbers. This artificial separa-
tion can cause users to favor one scheme over another for a given
computation, without even exploring other, perhaps better, options.
We show that by treating step functions as “clean-up” utilities and by
leveraging the SIMD capabilities of CKKS, we can extend the homomor-
phic encryption toolbox with efficient tools. These tools use CKKS to
run unbounded circuits that operate over binary and small-integer el-
ements and even combine these circuits with fixed-point real numbers
circuits. We demonstrate the results using the Turing-complete Conway’s
Game of Life. In our evaluation, for boards of size 128×128, these tools
achieved an order of magnitude faster latency than previous implemen-
tations using other HE schemes. We argue and demonstrate that for
large enough real-world inputs, performing binary circuits over CKKS,
while considering it as an “exact” scheme, results in comparable or even
better performance than using other schemes tailored for similar inputs.

Keywords: fully homomorphic encryption, encrypted binary circuits, CKKS,
mixed integer-floating point operations, game of life
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1 Introduction

1.1 Non-Interactive Homomorphic Encryption
The proliferation of applications that perform computations over encrypted data
is observed, for example, by the large number of proposed privacy-preserving
machine learning (PPML) solutions, e.g., [2, 7, 8, 27, 29, 31, 38, 39, 44–47, 51].
These solutions rely on homomorphic encryption (HE) as well as a combination
of HE with multi-party computations (MPC) protocols, such as garbled circuits
(GCs), oblivious transfers (OTs) or secret sharing (SS).

When a solution involves HE, it can be categorized as a client-aided (e.g.,
GAZELLE [31], nGraph-HE [8]) or a non-client-aided solution (e.g., HeLayers
[2], HEMET [39]), depending on whether or not it asks the client to assist in the
computations. Client-aided solutions allow certain demands from the HE scheme
to be relaxed. Such demands can be the need for costly bootstrapping operations
or other ways to deal with the accumulated error that grows because of the
encrypted computations or the use of non-polynomial functions approximation.
For example, GAZELLE [31] and nGraph-HE [8] perform neural network
inference operation under encryption, but ask the client to perform the non-
polynomial ReLU activation functions. These designs often include MPC to
hide the intermediate results from the client.

Using a client-aided solution removes many restrictions and improves laten-
cies but pays the price in the cost of interactive sessions. This goes against the
original purpose of using FHE, which is to remove all burdens from the users and
use the cloud for the entire computation. Using client-aided solutions can also
involve additional security risks as explained in [3] or as demonstrated by [36]
who showed that it can simplify model-extraction attacks when considering
constructions such as GAZELLE [31].

There are two main challenges with non-interactive applications: latency
and accuracy. The accuracy issue is solved using schemes such as BGV [12],
B/FV [11,22], and TFHE [18]; these use a bootstrapping operation, which is
considered a costly operation. However, in CKKS, the situation is different.
First, the CKKS design [15] operates over floating-point elements and assumes
that the scheme noise can be blended with the noise of the floating-point
plaintext computations; this means just a slight noise overhead of up to 1-bit
per multiplication compared to plaintext floating-point operations. Second,
the bootstrapping operation in CKKS is considered fast because it serves a
different purpose than in BGV and TFHE. Here, the goal of the bootstrapping
is not to reduce noise, which is already mixed with the plaintext value, but to
enable ciphertexts to be used in further computations. In practice, it may even
increase the noise and therefore support circuits with limited depth.

Today, there is an artificial categorization of schemes to potential appli-
cations. If a developer wants to evaluate a binary circuit, they will probably
go with TFHE or BGV. While for neural networks (NNs) that involves non-
accurate floating-point coefficients, an approximate scheme such as CKKS may
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be the default choice (e.g., as in [2, 39]). The depth of the potential computa-
tion also plays a major role in the scheme choice, where CKKS suffers due to
its potential noise growth when considering deep-enough circuits. In that sense,
CKKS cannot always be treated as a “truly” fully homomorphic encryption
(FHE) scheme, because the accumulated noise makes the computation results
unusable. Thus, our goal was to answer the following three research questions:

1. Can we efficiently evaluate unbounded binary circuits using CKKS?
2. Can we efficiently evaluate unbounded circuits that only operate over integer

numbers (hereafter, integer circuits) using CKKS?
3. Can we efficiently evaluate Boolean and integer unbounded circuits combined

with circuits over floating point or complex elements over CKKS?

We answer affirmatively to all of these questions. Specifically, for Question 1,
in Section 4 we demonstrate a binary circuit and inputs for which CKKS is
efficient. In Section 5 we demonstrate an unbounded Boolean-integer circuit
for which CKKS is efficient and in Section 8 we provide several applications
that combine integer and floating point elements over CKKS. We note that the
term efficiency in the above questions is ambiguous. To avoid ambiguity, we
consider a solution efficient if its latency, amortised latency, or throughput are
comparable to or better than an equivalent solution with other FHE schemes
that serve the same target. We briefly review the properties of HE schemes in
Section 3.1.
Sign Functions. The HE Add and Mul operations depend on the underlying
plaintext elements. For some schemes that operate over binary fields, these
operations are equivalent to binary XOR and AND operations. However, in
CKKS they represent computation over complex numbers. Consequently, in
schemes such as TFHE, it is possible to simulate branches (IF statements)
using e.g., MUX gates, which can be constructed from AND and XOR gates,
and thus evaluating any binary circuit. In contrast, simulating branching in
CKKS is hard. This usually involves high-degree polynomials to achieve decent
accuracy.

One solution is to use a step function that returns 0 or 1 depending on
the conditional input. The accuracy of this function depends on two input
parameters, which are defined informally as the available input precision α and
the required output precision β. Figure 1 uses the function h1(x) = −2x3 + 3x2

for x ∈ [−0.2, 1.2] [16] to demonstrate how a step function can be generated. It
presents several curves, each made from a different number of compositions
of h1(x). As the number of compositions increases, the multiplication depth
increases and the accuracy parameters α, β decrease. There are different ways
to generate these step functions and we elaborate more on them in Section 3.

In CKKS, there are different use cases for the step function, e.g., as a
comparison or a sign function, see [16]. We propose a new way to look at
this family of functions. Instead of considering them mathematical operations,
we suggest using them as “clean-up” utilities. For example, assume that a
ciphertext encrypts the plaintext value 1.0003245, which corresponds to the
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binary value 1, the goal of the clean-up utility is to remove the most significant
digits after the decimal point. We use the name “utility” to avoid confusion
with the current bootstrapping operations of CKKS.

When considering binary circuits in CKKS, the inputs are in x ∈ [0 −
ε, 0.5−α]∪ [0.5 +α, 1 + ε], for some small ε. Thus, to clean them, we can use a
step function that maps values that are close to 0, 1 closer to 0, 1, respectively.
This partially answers Question 1: can we evaluate unbounded binary circuits
on CKKS? But, can we do it efficiently?

Figure 1: Different “step” function approximations achieved through using a
different number of compositions of the function h1(x) = −2x3 + 3x2 [16] over
the input range [−0.2, 1.2]. The vertical red line is the middle (0.5) between
the two step values 0 and 1, α is the distance of the input from that line to the
curve for a given output accuracy β.

Parallelization. The answer to the above question depends on two factors: the
choice of step function and the width of the circuit, i.e., its level of parallelization.
The time it takes to clean up a binary bit depends on the performance of the
step function. We argue that we can compensate for that time by using the
single instruction multiple data (SIMD) property of CKKS, which allows us
to perform s = N/2 operations in parallel for the polynomial ring parameter
N . When we have a wide enough circuit that can leverage most of the slots of
the input vector for CKKS, the speedup we achieve is so significant that the
clean-up function performance only slightly affects the overall latency of the
solution.

Interestingly, workloads with wide circuits that operate in parallel over
a huge amount of data are not rare. In fact, they are the main target for
optimization when considering cloud applications. The motivation for using
the cloud lies in its computing power and its ability to process masses of
information on behalf of the client. For these workloads, the latency of using
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CKKS can be more efficient than other solutions that target binary circuits. In
Section 5 we demonstrate our claim by using the recently published benchmark
of the Game of Life that was originally demonstrated over TFHE [42,43]. Our
results show that for boards of 128× 128 on a CPU with 8 cores, our CKKS
solution achieves performance that is an order of magnitude faster than the
original implementation.

We already identified one use case or domain of programs that today can
run better on CKKS, i.e., the case of wide binary circuits. But we did not want
to stop there. We extended our clean-up method to operate over integers by
using a bit-extraction technique. When the input is known to be an integer in
some range e.g., [0, 28− 1], and assuming that the error is still below some limit
α, it is possible to perform bit-extraction over that integer, clean up every bit,
and reconstruct the integer from its cleaned bits. The above clean-up method
allows us to extend our answer to Question 3 to include integer or fixed-point
workloads.
BLEACH. We called our clean-up methodology BLEACH. This methodology
reduces the error accumulated inside ciphertexts of approximated HE schemes,
when the underlying plaintexts are known to come from a discrete set of
elements, e.g., binary or integer numbers. We name it BLEACH as it metaphor-
ically “cleans” errors from data. Figure 2 schematically shows the BLEACH
concept. We start from a standard HE scheme such as CKKS that gets as
inputs Boolean, integer, and floating point elements. If during the computation
we know that some ciphertexts contain elements from some discrete set of ele-
ments e.g., Booleans or integers, we reduce the error of the computation, which
arrived from the scheme or polynomial approximations. Subsequently, we can
use the cleaned ciphertexts in another round of encrypted computations. Before
BLEACH, the error was accumulated in elements of all types and thus limited
the depth of circuits that could possibly be executed. With BLEACH, the error
is accumulated only in floating-point elements similar to mixed integer-floating
point computations on standard CPUs.

Figure 2: A schematic view of homomorphic encryption using the BLEACH
methodology. Boolean and Integer elements are cleaned during the computation
and thus allow deeper circuits or even unbounded circuits when only discrete
set elements are involved. Red color indicates the accumulated error.

Our Contributions. Our contributions can be summarized as follows.
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• We show that it is possible to efficiently perform unbounded binary circuits
over CKKS and identify several cases where doing so is an order of magnitude
faster than when using other schemes to perform the same circuit. This
positions CKKS, and in general approximated FHE schemes, as a viable
alternative for performing binary circuits.

• To showcase the performance advantage of using CKKS over arbitrarily deep
circuits that combine binary circuits and integer operations, we implemented
Conway’s Game of Life. We show that for large boards e.g., 128 × 128 or
larger, our CKKS implementation is more than an order of magnitude faster
than the reference implementation used with TFHE.

• To enable deep integer circuits, we present a new error reduction algorithm
for ciphertext encrypting integer numbers, which relies on decomposing
the integer into its binary representation, reducing the error of its binary
coefficients, and reconstructing it to get a ciphertext that encrypts the original
integer with reduced error. We prove the correctness of our algorithm and
discuss several applications where we can apply it. One example, is modular
arithmetic over CKKS. Another interesting case combines a deep integer
circuit with a floating-point circuit such as analytics-based decision trees or
algorithms that require lookup tables. This combination can be done using
only CKKS without involving other schemes.

Roadmap. The rest of the paper is organized as follows. Section 2 presents
some additional related work. Section 3 lists the notation used in the paper, and
the setup we used for the experiments. It also provides some background about
optimal sign approximations and tile tensor based packing. We demonstrate
the efficiency potential of executing binary circuits over CKKS in Section 4.
Section 5 provides another demonstration for our cleanup paradigm that is
based on the Game of Life. Section 6 presents our decompose method and
some experimental results. Section 7 uses the decomposition method to perform
integer arithmetic over CKKS and Section 8 presents some applications of
this method. Finally, we discuss some interesting takeaways in Section 9 and
conclude the paper in Section 10.

2 Related work
This section surveys several HE concepts related to our research questions,
which we consider orthogonal topics. Specifically, we refer to works that evaluate
the errors of a given circuit, perform bootstrapping operations, and move back
and forth between HE schemes.

2.1 Approximation errors
Kim et.al [32] suggested variants for the original CKKS and RNS-CKKS
schemes that reduce the approximation error. In their work, the amount of noise
reduction depends on the circuit’s operations and they can reduce the noise
of encrypted floating point numbers. In contrast, BLEACH noise reduction is
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independent of the circuit and enables noise to be reduced as low as needed.
However, BLEACH can only reduce noise in ciphertexts that encrypts discrete
numbers e.g., integers or binary numbers.

2.2 Bootstrapping in CKKS
Bootstrapping [25] for TFHE e.g., [17,41], BGV e.g., [14,28], and BF/V performs
decryption of ciphertexts under HE and by that clean the accumulated error of
a ciphertext during the circuit evaluation. In contrast, CKKS also supports
Bootstrapping e.g., [6,9,13,30,35]. But here Bootstrapping does not remove the
accumulated error, which comes from the basic CKKS operations, including the
Bootstrapping itself, and from polynomial approximation errors. This is exactly
what we wanted to remedy. Instead, it serves a different purpose, for efficiency
reasons, the bootstrapping in CKKS only increases the modulus chain, which
allows performing further computations on ciphertexts. However, Combining
BLEACH with an efficient bootstrapping technique allows us to reduce error
during the computation even after the scheme parameters are initialized.

Table 1 summarizes the latest bootstrapping capabilities for CKKS. We
stress that BLEACH methodology is agnostic to the bootstrapping method and
can be executed transparently over each one of the presented bootstrapping
algorithms. Still, we present this table here, because BLEACH assumes a certain
bound to the bootstrap error, and this data can be consumed from the table.

Table 1: CKKS SotA bootstrapping precision. Data is taken from [6].
Algorithm Poly. Number Bit

degree of slots precision
BMT+21 [9] 215 214 15.5

JM22 [30] 216 23 45
217 23 100

LLK+22 [35] 217 23 100.11
217 212 93.03

BCC+22 [6] 215 214 48
216 215 255
217 216 420

2.3 Bit decomposition for bootstrapping
Gentry et al. [26] introduced an improved bootstrapping implementation for
BGV-like schemes by using a homomorphic computation method to extract the
bits or digits of a message. This digit-extraction method was improved in [13]
for BGV and for BF/V. Another bit extraction algorithm was introduced in [4]
to deal with extracting integers from floating point elements in a BF/V like
scheme. However, the methods of [4, 13,26] are attached to BGV- and B/FV-
like constructions that operate over fields or rings; they cannot be applied as-is
to other schemes that operate over a complex plane such as CKKS.
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To the best of our knowledge, our algorithm is the first concrete bit-
extraction algorithm for CKKS. Furthermore, our algorithm serves a different
purpose: we use it to remove the CKKS noise of each bit of an integer in the
message. An advantage of our bit-extraction algorithm is that it relies on the
basic CKKS operations, and does not require any modification for the scheme
internals. Consequently, our bit-extraction algorithm can be used by other
approximated HE schemes as-is.

2.4 Scheme switching
Scheme switching allows us to convert a ciphertext generated on one HE scheme
to a ciphertext compatible with another scheme. For example, Pegasus [40]
and Chimera [10] consider switching functions from CKKS to TFHE and vice
versa. Chimera [10] also considers switching from BFV to TFHE and vice versa.
Switching between BGV/BFV and CKKS is still considered an open question [5].
Scheme switching implementations are supposed to be implemented e.g., in
OpenFHE [5] in the future.

Scheme switching is an interesting direction for performing integer cleanups
in CKKS, as developers can take a “dirty” ciphertext, move it to TFHE, clean it
using TFHE’s bootstrapping, and return it to CKKS for an additional (possibly
unlimited) number of operations. Nevertheless, because TFHE does not support
SIMD operations, it is unclear whether the overall performance of cleaning
a large e.g., 215 number of elements in TFHE is worth the scheme switching
complexity. Similarly, we could have used BGV or BF/V bootstrapping for the
task. However, as mentioned in [5] these scheme switching methods are still
under research.

Interestingly, previous studies showed that libraries or protocols that support
many different schemes and complex state machine tend to cause more bugs or
more vulnerabilities. For example, that is why the designers of TLS 1.3 [49]
decided to narrow down the list of supported cryptographic primitives compared
to TLS 1.2 [50]. It was also the reason that Google forked from OpenSSL and
generated BoringSSL [1].

With the growth of the HE domain, we expect to see libraries of different
types, generic libraries such as OpenFHE [5] that support many different
schemes, and libraries that are dedicated to a specific scheme such as HEaaN [21]
for CKKS and Zama’s Concrete [19] for TFHE. We target the latter type
of libraries that support only one scheme such as CKKS, and explore what
workload characteristics a developer can expect to get from it.

3 Preliminaries and notation
We define Boolean elements with k bits of precision in CKKS as elements in
the set Bk = [0− 2−k, 0 + 2−k]∪ [1− 2−k, 1 + 2−k], i.e., Boolean elements with
precision of k bits after the decimal point. This is the result of the CKKS error or
the floating point approximation errors that are blended into the Boolean values.
Similarly, we define integer numbers as values in Ik =

⋃
n∈N [n− 2−k, n+ 2−k].
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Every integer number n ∈ N, n < 2N+1 has a binary representation b =
(bN , . . . , b0) such that n =

∑N
i=0 2ibi. We define MSB (x) = bN and denote the

i’th bit of x by (x)i = bi. In addition, an encryption of some value x is denoted
with double brackets i.e., JxK.

3.1 Homomorphic Encryption
Modern HE instantiations such as BGV [12], B/FV [11,22], CKKS [15], and
TFHE [18] rely on the hardness of the Ring-LWE problem or similar problems,
and operate over rings of polynomials. They provide at least six methods:
Gen,Enc,Dec,Add,Mul, and Rot. The secret, public, and evaluation keys are
generated using the Gen method. The secret and public keys can be used to
encrypt messages using the function Enc, where a message can be a vector of
elements with s slots or a single element (where s = 1). We say that a scheme
has SIMD capabilities when s > 1. This is the case for example for BGV,
B/FV and CKKS. The secret key is also used to decrypt ciphertexts using the
function Dec. An HE scheme is correct (a.k.a, “exact”) if for every input vector
m̄ and 0 ≤ i < s, m̄[i] = Dec(Enc(m̄))[i], and it is approximately correct (e.g.,
CKKS) if for some small ε > 0 it follows that |m̄[i]−Dec(Enc(m̄))[i]| ≤ ε. The
functions Add and Mul are defined for exact schemes as:

Dec(Add(Enc(m̄),Enc(m̄′)))[i] = m̄[i] + m̄′[i] 0 ≤ i < s (1)
Dec(Mul(Enc(m̄),Enc(m̄′)))[i] = m̄[i] ∗ m̄′[i] 0 ≤ i < s (2)

where when the input is a vector of elements, the function Rot is

Dec(Rot(Enc(m̄), n))[i]) = m̄[(i+ n) (mod s)] 0 ≤ i < s (3)

Approximate schemes use similar definition just with the ε notation.

3.2 Experimental setup
Our paper combines several experiments, discussed throughout the different
sections to empirically demonstrate the theoretical concepts it presents. For
all the experiments, we considered an Intel® Xeon® CPU E5-2699 v4 @
2.20 GHz machine with 44 cores (88 threads) and 750 GB memory, which we
limited to use only 8 cores without hyper-threading (unless otherwise specified).
The reason for the above limit is that in CKKS, we store all elements in one
ciphertext while in TFHE we store each value in a different ciphertext. As
a result, when considering a batch of elements, TFHE’s computation scales
with the number of CPUs, whereas CKKS depends on the scalability of the
underlying bootstrapping implementation. To avoid benchmarking fairness
issues that result from idle CPUs, we decided to limit their number to 8. We
stress that when using circuits that are more complicated than the serial circuits
in some of our experiments, CKKS also scales with the number of CPUs,
i.e., it can utilize all cores. Finally, in our experiments we used the CKKS
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implementation from the HEaaN library [21]. The HEaaN parameters we used
were ciphertexts with 215 coefficients, a multiplication depth of 9, fractional
part precision of 24, and integer part precision of 5. This context allows us to
use up to 6 multiplications before bootstrapping is required.

3.3 Sign functions
Modern approximate HE schemes only support polynomial operations. Thus,
performing branches or comparisons are not trivial and require dedicated
utilities. Specifically, they require polynomials that approximately provide a
branch functionality such as the step function

Stepα(x) =


0 0 ≤ x < 0.5− α

2

1 0.5 + α
2 < x ≤ 1

∞ otherwise

, (4)

defined for x ∈ [0, 1] or the sign function

Signα(x) =


0 −1 ≤ x < −α
1 α < x ≤ 1

∞ otherwise

, (5)

where these functions are equivalent because Signα(x) = 2 Stepα(x+1
2 )− 1 for

x ∈ [−1, 1]. Thus, we use them interchangeably. We denote the polynomial
approximation for these functions by using an additional parameter β. We define
Signα,β and Stepα,β such that |Signα,β(x)− Signα(x)| < β and |Stepα,β(x)−
Stepα(x)| < β/2. Using Step and Sign it is possible to simulate branches and
implement comparison functions as well as other primitives such as max(a, b)
and min(a, b) [16] and the ReLU function as in [34]. We denote by S(α, β)
and D(α, β) the size and depth of the function Signα,β , respectively. Then,
Theorem 1 is an existence theorem that is based on [16][Theorem 1] and states
that an efficient sign function exists for different α, β values.

Theorem 1 (Variation of [16] Theorem 1) There exists an efficient sign function
Signα,β(x) that for α < |x| ≤ 1 returns y s.t. |y − Sign(x)| < β and for which
S(α, β) = D(α, β) = O (log(1/α)) +O(loglog(1/β)).

Optimal sign functions.. Several sign approximations were introduced
in [16, 33, 34]. All rely on Minimax approximations; they measure the accuracy
of the sign function by the maximal error between the target function and its
approximating polynomial over a predetermined domain. The sign functions
in [16] considers a chain of polynomial composition that involves two func-
tions fn, gn i.e., Sign(x) ≡ f

d(n)
n

(
g
d(n)
n (x)

)
, where n is the logarithm of the
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polynomial degree and d (n) is the number of repetitions of the polynomial in
the composition. Lee et al. [33] introduced a dynamic algorithm to determine
an optimal chain of (different) polynomials Sign ≡ pn (pn−1 (· · · (p0(x)))) and
showed optimal values for the circuit multiplication depth. Based on this work,
Lee et.al [34] provide a method for approximating the ReLU and Max function,
and showed that they can be replaced in neural networks for high precision
inference.

Our work is agnostic to the sign function choice as long as it adheres to the
criteria of Theorem 1. It can be as simple as f1(x) = −0.5x3 + 1.5x from [16]
for x ∈ [−1, 1], which is equivalent to the step function h1(x) = −2x3 + 3x2

for x ∈ [0, 1], or more complex as Step1(x) = f33 (g83(x)) also from [16] with
parameters that satisfy the minimal bounds of [16][Corollary 3] and degree 7
polynomials. For readability, we denote the compare function that is based on
Step1 and compares to elements a, b by CheckEqual 1(a, b).

Our work uses the Sign or Step functions to solve a different research
question: how to enable high precision computation of a general circuit when
the inputs arrive from a discrete set. Specifically, we target generic circuits and
not specific function approximation such as ReLU or Max as in [34].

Remark 1 Although BLEACH methodology is agnostic to the choice of sign function,
we tried implementing the Remez algorithm and the algorithms from [33,34] for our
integer cleaning method. The coefficients we got when setting α = 0.1, β = 0.001, and
N = 8 are listed in Appendix A. Although they work fine in plaintext, we could not
achieve the required precision under encryption. Thus, we decided to stay with the sign
functions of [16], since they achieved good performance and are easy to implement.

3.4 Ciphertext packing using tile tensors
Leveraging the SIMD capabilities of HE schemes such as BGV [12], B/FV
[11,22], and CKKS [15] to speed up the execution of HE circuits often requires
the use of complex packing methods. The exact method choice can dramatically
affect the latency (i.e., time taken to perform the computation), throughput
(i.e., number of computations performed within a unit of time), communication
costs i.e., server-client bandwidth requirement), and memory requirement.

The recent HeLayers [2] framework proposes a data structure called tile
tensor that packs tensors (e.g. vectors, matrices) into fixed-size chunks called
tiles. Due to their fixed sizes, tile tensors are a natural fit for HE, because each
tile can be encrypted into a single ciphertext, where each element of the tile is
mapped into a separate slot in the ciphertext.

Tile tensors provide a flexible packing method, where an input tensor can
be packed into tiles of different shapes, but of the same size. For instance, while
a matrix may be naïvely packed into row or column vectors, it can also be
packed into two-dimensional tiles, as long as the tile size matches the number of
slots in the ciphertext. The HeLayers framework [2] includes an optimizer that
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allows us to navigate the different packing choices in an automatic way, and
find the one that best fits the optimization criteria and the user constraints.

An advantage of using a tile tensor is that it supports several types of
manipulations, such as duplicating elements along one or more dimensions; this
is necessary, for instance, when there is a batch dimension to the input and
the data need to be replicated to construct three-dimensional tiles. We further
elaborate on how we can use this feature in Section 5.

4 Unbounded binary circuits
Computing unbounded binary circuits over CKKS can be done by treating sign
functions as cleanup utilities and combining them with standard binary gates.
To this end, we need to a) consider different binary operations; b) transform
or approximate them using CKKS operations; c) compute and bound the
accumulated error of their results; d) use the cleanup utility to remove the
accumulated errors. Following every gate in a binary circuit with an appropriate
cleanup function, allows us to evaluate any binary circuit. In practice, it is
possible to perform a cleanup after several group of operations and thereby save
the number of cleanup invocations. The exact choice depends on the cleanup
utility used.

For example, let x, y ∈ Bk be two binary values and consider the logical-and
operation x∧y, which is implemented in CKKS using one multiplication r = xy.
According to [1], CKKS loses at most 1 bit of precision per multiplication, thus,
r ∈ Bk+1. We can now apply r = Cleanup(2−(k+1),2−k)(r) to return r to Bk.

Table 2: A comparison of running a binary circuit with 215 elements over
CKKS compared to TFHE. See more details in the text.

CKKS TFHE
Binary Approximation Latency Amortized Latency Amortized

operation per iter. latency per per iter. latency per
(sec) iter. (µsec) (sec) iter. (µsec)

x ∧ y x · y 2.26 69 440 13,420
x ∨ y x+ y − x · y 2.3 70 440 13,420
x⊕ y (x− y)2 2.4 73 440 13,420

In what follows, we show that bit operations (in Table 2) followed by
calling h1 can lead to fully-HE, depending on the parameters of the key. We
demonstrate this by proving that throughout the circuit, we can keep an
invariant in which the noise is smaller than some constant. We first prove that
the error does not grow by much after one binary operation. Then we show that
for small errors the h1 decreases the error by a large factor. Then we conclude
by demonstrating that the noise added by CKKS, for appropriate parameters
of the key, is small enough to keep the error small.

We start by bounding the amount of error added by a binary operation.
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Lemma 2 For x, y ∈ B2, i.e., x = bx + ex and y = by + ey, where bx, by ∈ {0, 1}
and |ex|, |ey| < e < 0.25. Then

|(x ∧ y)− (bx ∧ by)| < 5e,

|(x ∨ y)− (bx ∨ by)| < 5e,

|(x⊕ y)− (bx ⊕ by)| < 5e.

Proof

And.

|(x ∧ y)− (bx ∧ by)| < |bx · by + eybx + exby + exey − bx · by| (6)

< |2e+ e2| < 5e.

Or.

|(x ∨ y)− (bx ∨ by)| = |(1− x)(y − 1) + 1− ((1− bx)(by − 1) + 1) | (7)
= | − 1| · |(1− x) ∧ (1− y)− ((1− bx) ∧ (1− by))|

< |2e+ e2| < 5e.

Xor.

|(x⊕ y)− (bx ⊕ by)| = |(x− y)2 − (bx − by)2| (8)
= |(x− bx − (y − by))(x+ bx − y − by)|

< |2e · (2 + 2e)| = 4e+ 4e2 < 5e.

We now observe that for a small enough region around 0 and 1, the h1
function reduces the error significantly.

Observation 2.1 If x = bx + ex, where bx ∈ {0, 1} and |ex| < 0.007, then h1(x) =
bx + e′x, where |e′x| < 0.1|ex|

The proof is algebraic and we leave the details out. The main idea is to use
the mean value theorem, using the fact that the derivatives h′1(1) = h′1(0) = 0.
We now observe that the error added during the CKKS rescale can be made
small by properly setting the parameters of the key.

Observation 2.2 For proper parameters of the encryption key, the error added when
multiplying and rescaling two ciphertexts is smaller than eckks = 0.0007.

Finally, we conclude that if two inputs of a binary operation have a small
error, then applying h1 on the output also yields a small noise and thus
maintains the invariant’s a small noise.
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Lemma 3 Let x = bx + ex and y = by + ey be input to a binary operation, bx, by ∈
{0, 1} and |ex|, |ey| < e ≤ 0.0001, and the error added when multiplying and rescaling
two ciphertexts is eckks such that 2.1eckks < 0.5e. Then z = bz+ez, where bz ∈ {0, 1}
and |ez | < e for:

z = h1(x ∧ y) or
z = h1(x ∨ y) or
z = h1(x⊕ y)

Proof Let z′ = x op y (where op is ∧,∨ or ⊕). Then z′ = bz + ez′ , where |ez′ | < 5e+
eckks. Since 5e+eckks < 6e < 0.007 we have: h1(bz+5e+eckks) < bz+0.1(5e+eckks).
Applying h1 requires two rescale operations and so |ez | < 0.5e+ 2.1eckks < e.

4.1 Binary operations experiments
To show the efficiency of our binary circuits approach, we compare the per-
formance of running the binary AND, OR, and XOR operations over CKKS
with their performance over TFHE. Note that the NOT unary operation trans-
lates in CKKS to NOT(x) = 1− x, which does not add significant noise and
therefore does not require cleaning.

As explained above, the advantage of using CKKS comes from its SIMD
capability. We leveraged this capability by setting the number of parallel gates
equal to the number of slots in the experimented ciphertext. Specifically, we
used ciphertexts that can accommodate s = 215 elements at once. As stated
previously, our goal is not to show that CKKS is always better than other
schemes such as TFHE, rather to show that in some cases it is better to use it
even for binary circuits.

In our experiment, we set the cleanup utility to h1, and set the circuit
depth to d = 100. We repeatedly called the same gate d times and performed a
cleanup operation after every such call. We called a bootstrapping operation
after every two gate+Cleanup executions. To account for the latency of the
bootstrapping operations, we included it when averaging the latency per gate
measures. Table 2 summarizes our experiments. It shows the operations, their
equivalent CKKS approximation functions, the overall latency of running the
same gate d times divided by d, and the amortized latency of the computations
when dividing the latency with the number of slots (parallel elements).

The inputs to the AND and OR operators were a random vector x, which
operated on itself. This keeps the balance between slots with values of 0 and 1
after every iteration. The input to the XOR operation was a vector x with values
chosen uniformly at random and another such vector y that was generated at
every iteration. While the input values do not affect the latency, they allowed
us to verify that the decrypted output and the expected output after d gates is
the same.

To measure the latency and amortized latency of performing the different
Boolean gates in TFHE, we used Concrete version 0.2.0-beta [19] and wrote a
Rust code that follows the above experiment. The code generated two FheBool
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vectors and performed element-wise bit operations to get the final results.
To leverage the multi-core environment we used Rayon’s into_par_iter,
which automatically splits the work among the different running threads. To
avoid race conditions on the ServerKey object we cloned it several times and
locked an instance per thread as demonstrated in [23]. The results matched
the expected results of ∼13 milliseconds per operation and were scaled linearly
when modifying the cores number between 1-8. As can be seen from Table 2,
the amortized latency speedup observed in our experiment is around two order
of magnitudes in favor of the CKKS implementation.

Figure 3: A comparison of TFHE and CKKS latency when performing m
(X-axis) AND gates in parallel using 1/2/4/8 cores. For m > 1,024 data was
extrapolated. The X-axis and Y-axis are in logarithmic scale.

To get a better feeling of our comparison experiment, Figure 3 extrapolates
the data from Table 2 to a different number m of similar gates running in
parallel. In addition, it presents the results when setting the number of cores to
1, 2, 4, and 8. Note that while the graphs look linear the axes are logarithmic, we
see that for small values of m = 64, 128, 256, 512 it is better to run TFHE over
CKKS for 1, 2, 4, 8 cores, respectively. For larger values of m, CKKS is better.

The CKKS ciphertexts involved 215 slots. Therefore, the latency was always
the same for m < 215. Also, the number of cores did not affect the results
because only one ciphertext was involved in the computations. Still, 8 CPU
cores were used due to the parallelization of the bootstrapping operations.
When using more than 8 cores, we observed idle CPU cores for CKKS.
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5 Game of Life
We already saw that it is possible to achieve better performance for certain
binary circuits when using CKKS compared to non-SIMD capable schemes
such as TFHE. In this section, we consider a more complex circuit that involves
binary and integer operations to demonstrate the cleanup technique, namely
Conway’s Game of Life [24]. We chose this demonstration as it simulates a deep
computation that can be executed as deep as required. We also selected it for
the reasons specified in [42, 43], where the Game of Life was implemented and
executed over TFHE. While the outcome of this iterative game is deterministic,
it is hard to predict its results for a given iteration without running all previous
iterations. An interesting property of this game is that it is Turing complete [48],
which means the game can theoretically simulate every sequence of computer
operations.

(a) Stable state 1. (b) Stable state 2. (c) An oscillator state with period 2.

(d) A glider state with period 4.

Figure 4: Several famous examples of Game of Life instances of size 6 × 6.
Black cells are live cells.

Rules. The Game of Life is an iterative process that gets a starting bit-string
in the form of a grid, which “evolves” at every iteration. The game does not
limit the size of the grid up to the available memory. Here, as in [42, 43] we
bounded the grid dimensions and treated it as an n × n matrix that holds
a bit indicator per cell, indicating whether it is “dead” or “alive”. At every
iteration, a cell is either “born”, “survives”, or “dies”, depending on the state of
its 8 neighbors. A dead cell is born when it has exactly 3 live neighbors and
stays dead otherwise. A live cell survives if it has exactly 2 or 3 live neighbors
and it dies otherwise. Figure 4 presents several common examples. Panels (a)
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and (b) are stable states in which all cells remain in the same state at every
iteration. Panel (c) shows an oscillator that only has two states: one for odd
iterations and another for even iterations. Panel (d) demonstrates a period 4
glider, which is a periodic form that appears one row below and one column to
the right after every 4 iterations.

Algorithm 1 describes 1 iteration of the Game of Life. It receives an N ×M
board B as input, performs 1 iteration and outputs the updated board B′. It
contains 2 main operations: a) counting the live neighbours of every cell in B
at Steps 3-6; b) evaluating the cell state (dead or alive) in Step 7. For the latter
operation it uses the CheckEqual(a, b) function, which returns an indicator for
whether a = b.

Algorithm 1 ComputeGoLStep

input: N,M ∈ N and B an M ×N Game of Life board.
output: B′ an updated board.

1: procedure ComputeGoLStep(B)
2: for every cell (i, j) in B do
3: n := 0
4: for every neighbour cell (x, y) of the cell (i, j) do
5: n+ = B[x][y]
6: end for
7: B′[i][j] := CheckEqual(n, 2) ·B[i][j] + CheckEqual(n, 3)
8: end for
9: return B′

10: end procedure

5.1 Implementation
We implemented the Game of Life using CKKS and the interleaved tile tensors
packing method of [2], see Section 3.4. Figure 5 provides an example packing
a 6 × 6 Boolean board into 9 ciphertexts when using tile tensors of shape[
6˜
2 ,

6˜
2

]
. Here, every 9 items (blue dashed line) are spread among the tile-tensor

internal tiles in an interleaved way. The colors of every input item indicate its
destination ciphertext. An alternative packing option was to place every cell of
the game in a different ciphertext. While easy to understand, this solution was
not very efficient compared to the above, which allowed us to drastically reduce
the number of ciphertexts, run-time, and memory consumption. In addition,
the use of HeLayers [2] allowed us to pack the data using a simple one line API.

To perform the neighbor counting method, we used the HeLayers
SumPooling API, which executes a 3×3 convolutional filter with all cells set to
1. Subsequently, we reduced the value of the inspected cell (i, j) from the results.
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Figure 5: An example of interleaved tile tensor packing of the glider from
Figure 4. Packing a 6 × 6 matrix to 9 different ciphertexts. The tile tensor
shape is

[
6˜
2 ,

6˜
2

]
.

Evaluating new board states. Algorithm 1 invokes the comparison function
CheckEqual(c, p) at Line 7 twice with p = 2 and p = 3. It does so to determine
whether a cell should live or die. This function receives a ciphertext c and a
plaintext p, and returns 1 when Dec(c) ≈ p and 0 otherwise. To implement
it, we explored two approaches: i) using CheckEqual 1; ii) using Lagrange
interpolation.

For Game of Life, an implementation of CheckEqual should only consider
p = 0, . . . , 8, which is the number of neighbors computed in Algorithm 1, Lines
3-6. Our Lagrange interpolation implementation of CheckEqual leverages the
above property. It is defined using the following degree 8 polynomials

Fp(x) =
∏

i∈{0,...,8}/{p}

(x− i)
(p− i)

(9)

where the denominator is fixed and can be pre-computed. Also here, because
we deal with binary boards we applied the h1 Cleanup utility on the binary
cells. To get the cleanup function parameters, we used the upper bound of 1 bit
of noise per multiplication and took into consideration the scaling done by the
Lagrange polynomial. This ensured us that applying h1 Cleanup after every
operation will keep the noise level.
Reference implementation. For the reference implementation we used the
code of [52], which uses Concrete [19] and FheBool elements. We follow the
guidelines on [42] to modify the code so it also uses FheUint2 and FheUint3.
Finally, we used the parallelization technique presented in [23]. Specifically, to
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ensure thread-safe code, we needed to clone the server keys and the board state
before calling the update function. The cloning procedure was not included
in our latency measurements.

5.2 Experiments

Performance. We ran our implementation on boards of size 128× 128 and
256× 256. For every board, we played the game for a large number of iterations
(more than 50) and computed the average time per iteration. The average
latency when using the general compare method CheckEqual 1 was 22:12 and
39:40, respectively. The average latency when considering our custom Lagrange
interpolation was 6:08 and 12:00 minutes, respectively, 3.619× and 3.3× faster.
In both cases, we see a linear growth while the board size increased quadratically.

Figure 6 compares our CKKS-based results with the reference TFHE im-
plementation. It can be observed that for boards of size larger than around
80× 80, CKKS performed an order of magnitude faster than the TFHE im-
plementations. Surprisingly, the TFHE implementation that used FheUint2
elements turned out to be the fastest among the TFHE implementations.

Figure 6: A comparison of our CKKS implementation with the reference
TFHE implementations, where lower values are better. The X-axis is the
board dimension n, i.e., the board size is n× n. For TFHE we only measured
boards of n ≤ 20 and extrapolate the results to larger boards using quadratic
extrapolation.

Accuracy. Our naïve CKKS implementation that did not use BLEACH went
out of sync after just a few iterations, as shown in Figure 7 Panel (a). In
contrast, our implementation with the cleanup utility showed the same results
as a plaintext version of the game using the same initial state of cells, as
shown in Figure 7 Panel (b). Here, we observe that the error is maintained at
a constant level after every iteration.
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(a) No cleanup is done. (b) A cleanup after every iteration.

Figure 7: Average (orange line) and maximum (blue line) error (y-axis) ob-
served after the ith iteration (x-axis) on the cells of a 128× 128 board. Panel
(a) shows that without cleanup, the error explodes (crosses the horizontal bar
at y=1) after 4 iterations. In contrast, Panel (b) shows the error before (blue
and orange lines) and after (green and red lines) every iteration. Even after
50 iterations the error is stable. Also note how the error before the cleanup is
higher than the error after the cleanup (both the average and the maximum
error). This proves the "cleaning" property of BLEACH.

6 Bit decomposition
Previous examples considered binary circuits and circuits of binary inputs
using integer operations. Here, we take the cleanup utility one step further, and
present an algorithm that decomposes a number x to its binary representation
under FHE. For simplicity, we assume x ∈ N and x < 2N+1 for some predefined
small N . Fixed precision numbers can be dealt with using scaling. In a nutshell,
our bit-decomposition algorithm works by extracting the most significant bit
(MSB) of x and then setting x′ = x − 2N · (x)N and continuing with a new
upper bound x′ < 2N = 2N

′+1.
The MSB extraction algorithm is described in Algorithm 2. The algorithm

is defined according to the parameters N ∈ N and α, β, eckks ∈ R≥0, where
eckks is an upper bound on the error that may be added during the execution
of the algorithm. This bound depends amongst others on the parameters of
the key, the implementation of the sign function, and the implementation of
bootstrapping (if needed). The algorithm gets an input Jx+ eK such that e ∈ R
is a small number |e| < 0.5− α. It outputs an encrypted bit JbK which is a β
approximation of (x)N , i.e., |b− (x)N | < β.

The following lemma considers the correctness and complexity of Algorithm 2
and is used by Theorem 5.

Lemma 4 Let α, x, e,N be parameters as in Algorithm 2, then

α

2N
<

∣∣∣∣x+ e+ 0.5

2N
− 1

∣∣∣∣ < 1.
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Algorithm 2 ExtractMSBN,α,β,eckks

parameters: N ∈ N, α, β, eckks ∈ R≥0.
input: A ciphertext Jx+ eK, where x ∈ N, x < 2N+1, and |e| < 0.5− α.
output: A ciphertext JbK s.t. |b− (x)N | < β.

1: procedure ExtractMSBN,α,β,eckks(Jx+ eK)
2: Jx′K :=

[
(Jx+ eK + 0.5)/2N

]
− 1

3: α′ := α
2N

. Can be pre-computed
4: β′ := 2(β − eckks) . Can be pre-computed
5: Jb′K := Signα′,β′(x

′)
6: JbK := (Jb′K + 1)/2
7: return JbK
8: end procedure

Proof Denote xfl = x+ e+ 0.5 and x′ = xfl
2N
− 1 as in Algorithm 2 Line 2. From the

parameters of Algorithm 2 we get |e| < 0.5− α so

x− 0.5 + α < x+ e < x+ 0.5− α (10)

and

x < x+ α < xfl < x+ 1− α < x+ 1 (11)

when 0 ≤ x < 2N+1 we distinguish between 2 cases

Case 1 Case 2

0 ≤x < 2N 2N ≤x < 2N+1

0 <xfl < 2N − α 2N + α <xfl < 2N+1

−1 <x′ < − α

2N
α

2N
<x′ < 1

where in both cases α
2N < |x′| < 1 as required.

Theorem 5 Let α, β, x, e,N, eckks be parameters as in Algorithm 2 then

1. Algorithm 2 is correct, i.e., it outputs b, where |b− (x)N | < β
2. Algorithm 2 requires a circuit of size O(S( α

2N
, 2β)) and depth O(D( α

2N
, 2β)).

Proof

1. Let x′ = x+e+0.5
2N

− 1, α′ = α
2N and β′ = 2(β − eckks) as in Algorithm 2,

Lines 2, 3, and 4, respectively. From Lemma 4 we know that α′ < |x′| < 1
so that by Thm. 1 when we apply b′ = Signα′,β′(x

′) on Line 5 we get
that |b′ − (x)N | < β′. Subsequently, because (x)N ∈ {−1, 1} we get b′ =

(2(x)N − 1) + e1, where |e1| < β′ i.e., |e1|2 + eckks < β. It follows that
b = (x)N + e2, where |e2| ≤ | e12 + eckks| ≤ |e1|2 + eckks ≤ β.
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Algorithm 3 DecomposeN,α,β

parameters: N ∈ N, α, β, eckks ∈ R≥0.
input: A ciphertext Jx+ eK, where x ∈ N, x < 2N+1, and |e| < 0.5− α.
output: A vector (JbiK)0≤i<N of the N + 1 bits of x s.t. |bi − (x)i| < βi.

1: procedure DecomposeN,α,βN ,...,β0
(Jx+ eK)

2: JyN K := JxK
3: for i := N, . . . , 0 do
4: αi := α · 2i−N
5: βi := min(β, α · 2i−N )
6: JbiK := ExtractMSBi,αi,β′i,eckks(JyiK)
7: Jyi−1K := JyiK− 2i · JbiK
8: end for
9: return (JbiK)0≤i<N

10: end procedure

2. This follows from Thoerem 1, since Algorithm 2 performs exactly one
call to Sign α

2N
,2β together with a fixed number of plaintext-ciphertext

multiplications.

We now move to describe our bit decomposition algorithm. As before we get
an input x+ e, where x ∈ N and |e| < 0.5− α. Algorithm 3 uses Algorithm 2
iteratively to find the MSB and remove it from the input x. Attention should
be given to the parameters of Algorithm 2. Specifically, α needs to be adjusted
to account for the error coming from subtracting approximated bits in previous
iterations.

Lemma 6 Let N,α, βN , . . . , β0, x, e be parameters as in Algorithm 3 and y0, . . . yN
as defined by Algorithm 3 Lines 2 and 7. Then |yi − (x mod 2i+1)| < 0.5− α2i−N ,
for 0 ≤ i ≤ N .

Proof We prove this by induction. Starting from the first iteration (i = N) and
going to the Nth iteration (i = 0). The case i = N follows immediately from the
assumptions on the input

|yN − x| = |x+ e− x| = |e| < 0.5− α · 2N−N = 0.5− α. (12)

Assume it holds that

|yi − (x mod 2i+1)| < 0.5− α · 2i−N , (13)

then we prove that

|yi−1 − (x mod 2i)| < 0.5− α · 2i−1−N . (14)

Starting from

|yi−1 − (x mod 2i−1)|
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= |yi−1 − yi + yi − (x mod 2i−1) + (x mod 2i)− (x mod 2i)|

≤ |yi−1 − yi + (x mod 2i)− (x mod 2i−1)|+ |yi − (x mod 2i)|

< |yi−1 − yi + (x mod 2i)− (x mod 2i−1)|+ 0.5− α · 2i−N , (15)
where the last inequality follows from the induction assumption on Equation (13). By
construction (Alg. 3 Line 7) we have yi−1 − yi = 2i · bi, where bi is a ciphertext and
multiplying by 2i does not add noise because it can be implemented by i additions of
elements with low error. Since (x mod 2i)− (x mod 2i−1) = 2i · (x)i we get

(15) ≤ |2i · (bi − (x)i)|+ 0.5− α · 2i−N (16)
By construction (Alg. 3 Line 5)

|bi − (x)i| ≤ βi ≤ α2−N−1 (17)
and so

(16) ≤ 2i · α · 2−N−1 + 0.5− α · 2i−N (18)

= 0.5− α(2i−N − 2i−N−1) = 0.5− α2i−N−1. (19)
as required.

Theorem 7 Let N,α, β, e be parameters as in Alg. 3, then

1. Algorithm 3 outputs (JbiK)0≤i<N , s.t. |bi − (x)i| < βi.
2. Algorithm. 3 requires a circuit of size O(

∑
S(α · 2i−N ,min(β, α · 2i−N )))

and depth O(
∑
D(α · 2i−N ,min(β, α · 2i−N ))), where S(α, β) and D(α, β)

are the size and depth of the circuits implementing the sign function with
parameters α and β.

Proof

1. The ith bit bi is computed in Line 6 by calling ExtractMSBi,αi,βi,eckks(yi).
From Lemma 6 we have that |yi − x| < αi and 2i+1 > yi ∈ N as required
from the parameters and input of ExtractMSB.

2. Algorithm 3 involves N calls to ExtractMSB with a total circuit size
of O(

∑
S(α · 2i−N ,min(β, α · 2i−N ))) and circuit depth O(

∑
D(α ·

2i−N ,min(β, α · 2i−N ))), where S(α, β) and D(α, β) are the size and depth
of the circuits implementing the sign function with parameters α and β.

Corollary 7.1 Let N ∈ N, α, β ∈ R≥0 be parameters as in Algorithm 4, then
Algorithm 4 requires a circuit of size O(N · log( 1α ) +N2 +N · log(log( 1β ))) and depth
O(N · log( 1α ) +N2 +N · log(log( 1β ))).

Proof Using [16] Theorem 1, we can achieve sign function of parameters α, β by
circuits of size and depth O(− log(α) + log(− log(β))). Using this, with Theorem 8,
we get the size and depth of the circuit required by Algorithm 4 are

O(
∑
− log(α · 2i−N ) + log(− log(min(β, α · 2i−N ))))
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= O(
∑
− log(α · 2i−N ) + log(− log(β)))

= O(
∑
− log(α · 2i−N ) + log(− log(β)))

= O(
∑

(− log(α)− i+N + log(log(
1

β
))))

= O(N · log( 1
α
) +N2 +N · log(log( 1

β
)))

7 Integer Computation
We describe an algorithm for “cleaning integers” (Algorithm 4 ). The input is a
message min = x+ e, where x ∈ N, x < 2N and |e| < 0.5− α for some N ∈ N
and the output ismout, which is a cleaner version ofmin, |mout−x| < β < α, for
parameters α, β ∈ R≥0. Algorithm 4 calls Alg. 3 to extract the bit decomposition
(JbiK)0≤i<N of x at Line 3 and re-compose the cleaned integer at Line 4.

Theorem 8 Let N,α, β, eckks be parameters as in Algorithm 4 and Jx+ eK be the
input to the protocol, where x ∈ N, x < 2N+1 and |e| < 0.5− α, then

1. Algorithm 4 is correct, i.e., it outputs y, s.t. |y − x| < β.
2. Algorithm 4 requires a circuit of size O(

∑
S(α · 2i−N ,min(β · 2−N−1, α ·

2i−N ))) and depth O(
∑
D(α · 2i−N ,min(β · 2−N−1, α · 2i−N ))).

Proof

1. In Line 3 Algorithm 4 approximately decomposes x + e by calling
DecomposeN,α,β′,eckks(Jx+ eK), with β′ = 2−N−1·β that returns (JbiK)0≤i≤N .
Next, on Line 4, it computes y =

∑
2ibi and we have

|y − x| = |
∑

2ibi − x| = |
∑

2ibi −
∑

2i(x)i| <
∑

2i|bi − (x)i| (20)

From Theorem 7, |bi − (x)i| < β′ so that

(20) <
∑

2iβ′ <
∑

2i2−N−1β < β. (21)

2. The protocol involves N + 1 calls to extractMsb with a total circuit size
of O(

∑
S(α · 2i−N ,min(β · 2−N−1, α · 2i−N ))) and circuit depth O(

∑
D(α ·

2i−N ,min(β ·2−N−1, α ·2i−N ))), where S(α, β) and D(α, β) are the size and
depth of the circuits implementing the sign function with parameters α and
β.

Corollary 8.1 Let N ∈ N, and α, β ∈ R≥0 be parameters as in Algorithm 4, then
Algorithm 4 requires a circuit of size O(N · log( 1α ) +N2 +N · log(N + 1 + log( 1β )))

and depth O(N · log( 1α ) +N2 +N · log(N + 1 + log( 1β ))).
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Algorithm 4 CleanIntegerN,α,β

parameters: N ∈ N, α, β, eckks ∈ R≥0.
input: A ciphertext Jx+ eK, where x ∈ N, x < 2N+1, and |e| < 0.5− α.
output: A ciphertext JyK s.t. |y − x| < β.

1: procedure CleanIntegerN,α,β(Jx+ eK)
2: β′ := 2−N−1 · β
3: (JbiK)0≤i≤N := DecomposeN,α,β′,eckks
4: JyK :=

∑
JbiK · 2i

5: return JyK
6: end procedure

Proof Using [16][Theorem 1], we can achieve a Signα,β function by circuits of size
and depth O(− log(α) + log(− log(β))). Plugging it in Theorem 8 and denoting
γ =

∑
− log(α · 2i−N ) we get that the size and depth of Algorithm 4 circuit are

O(γ) + log(− log(min(β · 2−N−1, α · 2i−N ))))

= O(γ + log(− log(β · 2−N−1)))

= O(
∑

(− log(α)− i+N + log(N + 1 + log(
1

β
))))

= O(N · log( 1
α
) +N2 +N · log(N + 1 + log(

1

β
)))

Corollary 8.2 Let Algorithm 4 for parameters α, β use Signα′,β′ = f3 from [16] and
let the error B generated by Signα′,β′ be less than 0.027855. Then, Algorithm 4 is
correct if

1. α · 2−N < 2.066B
2. min(β · 2−N−1, α · 2−N ) > 9B.

Proof Let α′i, β
′
i be as defined in Algorithm 3 Lines 3 and 4, respectively, during

the ith iteration. Setting n = 3 in [16][Theorem 6] leads to c3 = 35
16 , B < 0.0279

(for appropriate choice of the parameters of the key) and effective bounds on α′i, β
′
i.

We now tie these bounds to α, and β. From [16][Theorem 6] maxi α
′
i = α · 2−N <

( c3
c3−1 )

c3−1B ≈ 2.066B. In addition, maxi β
′
i = − log(min(β · 2−N−1, α · 2i−N )) <

log( 1
B )− log(9) = log(1/9B).

7.1 Experiments
Algorithm 4 describes our integers’ cleanup utility, and Theorem 8 showed its
correctness. It is left to argue that this method is efficient for some values of N
and thus can be manifested in cryptographic libraries that implement CKKS.
To this end, we designed the following experiment.
Experiment design. We sample 10,000 random 16-bit integers, where an
error, sampled uniformly from [−0.1,+0.1] is added to every integer. The noisy
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integers are packed and encrypted as a single CKKS ciphertext that is fed as
an input to the cleanup algorithm with the parameters α = 0.1, β = 10−3,
and N = 16. With these parameters, the algorithm expects a 16-bit integer
that contains a maximum error of |0.1|, and the expected error of the result
should not exceed |10−3|. Next, the resulting ciphertext is decrypted and the
error level is evaluated by subtracting the decrypted result from the originally
sampled integers.
Experiment implementation. We implemented the Algorithm 2 using the
Sign polynomial approximation of [16] with parameters that satisfy the minimal
bounds of [16][Corollary 3] and degree 7 polynomials.
Experiment results. Our experiment results are presented in Figures 8, 9,
and 10. Figure 8 shows a histogram of the measured error after decrypting the
results of Algorithm 4. As expected, all the observed errors are positioned to
the left of the target error β = 10−3. In fact, they are orders of magnitude
smaller than β. This is expected, since we computed the bounds for the worst
case, as can be shown in the proof of theorem 8.

Figure 8: A histogram of the measured error after decrypting the results
of CleanIntegerN=16,α=0.1,β=10−3(·). All the observed errors are order of
magnitude smaller then the requested bound β.

Now that we empirically saw the correctness of our algorithm, we present
its latency per bit and the number of required multiplication per bit in Figure
9. It took around 30 seconds to clean up the first bit and 80 seconds to clean
up the last bit. The number of performed multiplications was proportional to
the latency e.g., 36 and 79 for the first and last bit, respectively. The reason
for the almost 1:1 correlation is that the measured latency also includes the
bootstrapping time.
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Figure 9: Cleanup time and number of non-scalar multiplications per bit when
using CleanIntegerN=16,α=0.1,β=10−3(·).

Figure 10: A correlation graph between the input error (X-axis) and the output
errors after calling CleanIntegerN=16,α=0.1,β=10−3(·) (Y-axis). The 10,000 input
errors were sampled from [−0.1,+0.1].

As expected, there is an increment in the number of executed multiplications
and measured latency for higher bits. The reason is that Algorithm 4 uses
smaller precision parameters α, β for the more significant bits, resulting in
a need for a more costly approximation for the sign function. In addition,
the linear step-wise graph is the result of the sign approximation-polynomial
degrees achieved from the lower bounds of [16][Corollary 3].

Using the data from Figure 9, we can estimate that cleaning 4-bit, 8-bit,
and 16-bit integers will take around 160, 360, and 943 seconds, respectively
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(resp. 2.5, 6, and 10 minutes). However, if we consider the amortized latency of
performing 214 cleanup using one ciphertext, we get 9.76, 21.9, and 57.55 msec,
respectively, which makes our algorithm practical for some applications.

Finally, Figure 10 shows the correlation between the input error and the
output errors in our experiments, where no special correlation was observed.

8 Applications
Obvious applications for BLEACH are Boolean computations and homomorphic
branching using encrypted masks. We give two more applications that are less
obvious: computing modulo and accessing a table.

8.1 Modulo
We show here how to implement the modulo operation on a noisy integer
m = x + e, for x ∈ N, x < 2N+1 and e ∈ R, i.e., compute y = x mod n for
n ∈ N. This leads to computation over Zn natively in CKKS. This can be done
by following these steps (we leave out the exact details):

• Set v = x
n −

n−1
2n ,

• w =
⌊
x
n

⌋
is computed by w := CleanIntegerN, 1

2n ,
1
n

(v),
• Compute the residue: r = x− w · n.

To sketch a proof of the correctness (to simplify, assume e = 0), notice that⌊x
n

⌋
≤ x

n
≤
⌊x
n

⌋
+
n− 1

n
(22)

and so ⌊x
n

⌋
− 1

2
+

1

2n
=
⌊x
n

⌋
− n− 1

2n
≤ x

n
− n− 1

2n
= v (23)

and also

v ≤
⌊x
n

⌋
+
n− 1

n
− n− 1

2n
=
⌊x
n

⌋
+

1

2
− 1

2n
. (24)

8.2 Table access
Table access is useful for example when a lookup table is precomputed to speed
execution. In this case, we have a table of n entries T [1], . . . , T [n] and for an
input index x = 1, . . . , n we want to output T [x]. When x is a ciphertext this
can be done by:

y =
∑

Cmp(x, i) · T [i],

where Cmp(a, b) is a function that returns 1 if a = b and 0 otherwise. The
accuracy of y, i.e. |y − T [x]| depends on the accuracy of the function Cmp
that needs to be more accurate (and therefore more expensive to compute) as



Springer Nature 2021 LATEX template

BLEACH: Cleaning Errors in Discrete Computations over CKKS 29

n grows. In this naive implementation, the size of the circuit that accesses a
table is O(nSCmp), where SCmp is the size of the circuit implementing Cmp.
We propose the following steps to access a table (again, we leave out the exact
details):

• Compute the bit decomposition (bj) of x.
• Set y :=

∑
i CmpBin((bj), i) · T [i], where CmpBin compares (bj) to i in

binary.

For large values of n, the implementation of CmpBin involves a circuit whose
size is smaller than that of Cmp, i.e. SBinCmp < SCmp. The size of the circuit
that accesses a table is then:

O(S(Decompose) + n · SBinCmp)),

where S(Decompose) is the circuit size of Algorithm 3 and SBinCmp = O(log n)
is the size of the circuit that compares two n-bit numbers given in binary.

9 Discussion
In this paper, we chose specific demonstrators to show that an approximate
scheme with SIMD capabilities such as CKKS can outperform exact schemes
without SIMD capabilities such as TFHE. For example, Section 4 shows that
every circuit that uses binary operations such as AND, OR, NOT, and XOR
can be parallelized in a way that it acts similarly over a large enough number
of inputs and that we can achieve an efficient implementation using CKKS.
This left the interesting open question of identifing many such real-life circuits,
and considering circuits that only involve some level of parallelization. In the
latter case, we asked: can we reorganize these circuits by using some automatic
compiler to increase their parallelization level?

One of the benefits of CKKS is that it operates over complex numbers. It
is interesting to identify circuits that combine integer and complex values or
even just integer and floating number operations. For example, XGBoost is a
commonly used machine learning algorithm based on many decision trees with
the same structure that runs in parallel. To train the model and also to infer
data from it, its algorithm requires comparing floating-point values, generating
binary indicator vectors, and summing them homomorphically. The leaves of
the tree are again floating-point elements. The method we described in this
paper should allow performing XGBoost training operation in CKKS, which
was previously considered a hard task unless a client-aided design is used.

In many cases, companies and developers of cryptographic libraries prefer
to maintain and support libraries with a small footprint. This reduces the
number of potential bugs and also the entrance barriers for new developers.
For that reason, we think it is important to allow developers to learn what
they can achieve with an HE library that supports only one scheme, in our
case, CKKS. We leave it as an open question to explore whether combining
two schemes can achieve more efficient solutions. Perhaps this can be done,



Springer Nature 2021 LATEX template

30 BLEACH: Cleaning Errors in Discrete Computations over CKKS

for example, by transferring a CKKS ciphertext to TFHE, performing the
cleanup (bootstrapping) in TFHE and returning the cleaned results to CKKS
for further SIMD operations.
Deferring cleanups. In our experiments we BLEACHed ciphertexts after
every operation. However, in some applications, it may be more efficient to defer
BLEACHing until enough noise accumulates. Recall that the noise that builds
up on an integer comes from two sources: the CKKS scheme noise and the noise
coming from using polynomial approximations of non-polynomial functions.
While the first type of noise is trackable, the latter requires knowledge of the
circuit’s functionality. We expect implementations of non-polynomial functions
(e.g. ReLU, min, etc.) to also provide a guarantee of the accuracy of their
output. This can be based on heuristic simulations or on theoretical analysis
of the error by using e.g., the worst case analysis of [15] or the Central Limit
Theorem (CLT)-based analysis of [20]. BLEACHing provides a systematic
method to improve the accuracy guarantee of such approximations.
An Exact variant of CKKS. To protect against the recent key recovery
attack against CKKS of Li and Micciancio [37], an exact variant of CKKS was
presented in [20]. The [37] attack allows an adversary to use the decryption
error to extract information about the secret key. Informally, the idea of [20]
was to accurately track the error of a circuit, then define a circuit to be correct
if its accumulated error does not interact with the message. For such correctable
circuits, it is possible to apply the Correct method of [20] after the decoding
operation. This operation cuts down the lowest bits of the plaintext before
releasing it to the user. Thus, the adversary can’t see the error and can’t
extract the private key. Our method can be used to generate a larger subset of
correctable circuits for a smaller scale value, which can also result in future
performance improvements.

10 Conclusion
We explored the feasibility of using an approximated HE scheme such as CKKS
to perform deep or even unbounded circuits. We identified several scenarios
such as wide binary circuits and the Game of Life that are easily parallelizable.
For these cases, we showed that our implementations were not only feasible
in terms of accuracy, but also efficient compared to other HE schemes that
developers often automatically prefer for similar circuits.

This work revisits the question: which HE sub-primitive is the most impor-
tant for achieving the efficiency of deep circuits? Is it an efficient bootstrapping
capability? An efficient cleanup utility? Or the SIMD capability of the scheme?
We believe that the process of finding the ultimate HE scheme is only in its
infancy and we expect that the answers to these questions will change many
times in the future. Still, today, our paper shows (maybe again) that for some
use cases, good SIMD capabilities overcome the latency issues of a not-too-fast
cleanup method.
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However, because the results were good on plaintexts, we believe that the issue
was related to the use of polynomials of large degrees, which by themselves
add too much noise in CKKS.

Table A1: Coefficients of the polynomials in the polynomial chain of the 2nd bit
cleanup function, where α = 0.1 and β = 0.01 generated by our implementation
of [33][Alg. 6]. Even coefficients are set to 0.

Polynomial Coefficients

P0

a1 = 6.255103778441478
a3 = −59.396810504678996
a5 = 456.5779496814207
a7 = −2488.7300052851133
a9 = 9821.21093546806
a11 = −28642.96196951083
a13 = 62487.65828476454
a15 = −102341.23929053893
a17 = 125187.33106336177
a19 = −112614.20722791724
a21 = 72278.73892266018
a23 = −31309.460586904195
a25 = 8199.391258797072
a27 = −980.1676282594433

Table A2: Coefficients of the polynomials in the polynomial chain of the 2nd bit
cleanup function, where α = 0.1 and β = 0.01 generated by our implementation
of [33][Alg. 6]. Even coefficients are set to 0.

Polynomial Coefficients

P0

a1 = 4.716693160325245
a3 = −15.67353673707186
a5 = 23.283939321409385
a7 = −11.431278032966942

P1

a1 = 2.94967287170158
a3 = −5.951799004595778
a5 = 8.97420286218678
a7 = −8.560130748648541
a9 = 4.983074017699619
a11 = −1.6216075321501815
a13 = 0.2265875489536541
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Table A3: Coefficients of the polynomials in the polynomial chain of the 3rd bit
cleanup function, where α = 0.1 and β = 0.01 generated by our implementation
of [33][Alg. 6]. Even coefficients are set to 0.

Polynomial Coefficients

P0

a1 = 9.695606891609275
a3 = −144.4078405541289
a5 = 1137.4333784916066
a7 = −4606.759869925055
a9 = 10205.156153439064
a11 = −12504.539801994544
a13 = 7949.963052602231
a15 = −2045.6360598517972

P1

a1 = 3.1572847817236087
a3 = −7.423792920389324
a5 = 13.430572003576687
a7 = −16.027824094070652
a9 = 12.463971519494718
a11 = −6.101774208186316
a13 = 1.7118342803420215
a15 = −0.21027136507338362

Table A4: Coefficients of the polynomials in the polynomial chain of the 4th bit
cleanup function, where α = 0.1 and β = 0.01 generated by our implementation
of [33][Alg. 6]. Even coefficients are set to 0.

Polynomial Coefficients

P0

a1 = 2.633048226501171
a3 = −3.1014360529047176
a5 = 1.778319169827171
a7 = −0.350096986477881

P1

a1 = 2.9365692997589243
a3 = −5.885242645281732
a5 = 8.838577031033392
a7 = −8.420786543062263
a9 = 4.909784424651713
a11 = −1.6047198924868964
a13 = 0.22581832543195998
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Table A5: Coefficients of the polynomials in the polynomial chain of the 5th bit
cleanup function, where α = 0.1 and β = 0.01 generated by our implementation
of [33][Alg. 6]. Even coefficients are set to 0.

Polynomial Coefficients

P0

a1 = 9.83592981440395
a3 = −54.29469345630977
a5 = 98.52897988979394
a7 = −53.794786899779936

P1

a1 = 4.678757059465715
a3 = −18.780014749604693
a5 = 44.15718879154067
a7 = −55.9791650652788
a9 = 39.77887683259873
a11 = −15.855793274099822
a13 = 3.307774099271241
a15 = −0.2808818392031

P2

a1 = 3.144762123857163
a3 = −7.347725986914387
a5 = 13.237738648715732
a7 = −15.76605046418342
a9 = 12.262160795477353
a11 = −6.016680872610989
a13 = 1.695409026444237
a15 = −0.20961327078830438

P3

a1 = 8.404780976170263
a3 = −43.14799325089339
a5 = 76.49852865842198
a7 = −41.290183864127926
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Table A6: Coefficients of the polynomials in the polynomial chain of the 6th bit
cleanup function, where α = 0.1 and β = 0.01 generated by our implementation
of [33][Alg. 6]. Even coefficients are set to 0.

Polynomial Coefficients

P0

a1 = 10.755621479531257
a3 = −61.50855864488836
a5 = 112.8314847245435
a7 = −61.92746762005894

P1

a1 = 6.166324355600753
a3 = −31.554950092911813
a5 = 78.34482892781759
a7 = −96.79366851649982
a9 = 64.41113044381709
a11 = −23.511867646324983
a13 = 4.431021349913756
a15 = −0.3368980534346619

P2

a1 = 3.1918454690036078
a3 = −7.635691449054804
a5 = 13.970257365432655
a7 = −16.76054691100659
a9 = 13.026493977239493
a11 = −6.337070804959791
a13 = 1.7567925053213245
a15 = −0.21208040484242466

P3

a1 = 2.9484438272009497
a3 = −5.945542238467626
a5 = 8.961443110742065
a7 = −8.547029593460577
a9 = 4.976196674232597
a11 = −1.6200272524938202
a13 = 0.22651548351103323

Table A7: Coefficients of the polynomials in the polynomial chain of the 7th bit
cleanup function, where α = 0.1 and β = 0.01 generated by our implementation
of [33][Alg. 6]. Even coefficients are set to 0.

Polynomial Coefficients

P0

a1 = 11.281995716622621
a3 = −65.6498506039935
a5 = 121.05323923447669
a7 = −66.6060806333924

P1

a1 = 4.741946470078303
a3 = −6.860289745581253
a5 = 3.339005511684397
a7 = −0.4916032445491064

P2

a1 = 2.8723824718256283
a3 = −3.569637451924362
a5 = 1.992939277196903
a7 = −0.36845270483573317

P3

a1 = 2.9484438272009497
a3 = −5.945542238467626
a5 = 8.961443110742065
a7 = −8.547029593460577
a9 = 4.976196674232597
a11 = −1.6200272524938202
a13 = 0.22651548351103323
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