
Improving the Efficiency of Report and Trace
Ring Signatures

Xavier Bultel1, Ashley Fraser2?, and Elizabeth A. Quaglia3

1 INSA Centre Val de Loire, LIFO, France
2 Department of Computer Science, University of Surrey, UK

3 Information Security Group, Royal Holloway, University of London, UK

Abstract. Ring signatures allow signers to produce verifiable signatures
and remain anonymous within a set of signers (i.e., the ring) while doing
so. They are well-suited to protocols that target anonymity as a primary
goal, for example, anonymous cryptocurrencies. However, standard ring
signatures do not ensure that signers are held accountable if they act
maliciously. Fraser and Quaglia (CANS’21) introduced a ring signature
variant that they called report and trace ring signatures which balances
the anonymity guarantee of standard ring signatures with the need to
hold signers accountable. In particular, report and trace ring signatures
introduce a reporting system whereby ring members can report malicious
message/signature pairs. A designated tracer can then revoke the signer’s
anonymity if, and only if, a ring member submits a report to the tracer.
Fraser and Quaglia present a generic construction of a report and trace
ring signature scheme and outline an instantiation for which it is claimed
that the complexity of signing is linear in the size of the ring |R|.
In this paper, we introduce a new instantiation of Fraser and Quaglia’s
generic report and trace ring signature construction. Our instantiation
uses a pairing-based variant of ElGamal that we define. We demonstrate
that our instantiation is more efficient. In fact, we highlight that the
efficiency of Fraser and Quaglia’s instantiation omits a scaling factor of λ
where λ is a security parameter. As such, the complexity of signing for
their instantiation grows linearly in λ · |R|. Our instantiation, on the other
hand, achieves signing complexity linear in |R|. We also introduce a new
pairing-free report and trace ring signature construction reaching a similar
signing complexity. Whilst this construction requires some additional
group exponentiations, it can be instantiated over any prime order group
for which the Decisional Diffie-Hellman assumption holds.

1 Introduction

In the context of distributed systems, it is often necessary to balance the com-
peting goals of anonymity and accountability. On the one hand, there is an
expectation of privacy by the system’s users; on the other, the system must be
able to hold misuse accountable. The need to balance these goals is particularly

? This author was funded by EPSRC under the DECaDE project P/T022485/1.

true for cryptocurrencies, which are typically deployed atop a distributed ledger.
Indeed, several cryptocurrencies target user anonymity as a primary security
goal [3, 11, 22, 23, 27], ensuring that users can transact without revealing their
identity. In particular, Monero [23] uses a ring signature [25], a cryptographic
tool that allows users to sign transactions within a group of users known as the
ring, thus ensuring that the signer is anonymous within the ring. However, using
a standard ring signature means that tracing a fraudulent transactor is difficult.
As such, Monero cannot provide a guarantee of accountability.

The notion of a standard ring signature has been extended to incorporate
accountability. Specifically, Xu and Yung introduced accountable ring signa-
tures [31], which introduce a designated tracer that can revoke the anonymity of
signers. More recently, Fraser and Quaglia presented report and trace ring (RTR)
signatures [13]. This new ring signature variant builds upon the functionality
of accountable ring signatures, requiring that the designated tracer can revoke
anonymity only if a ring member first sends a report of malicious behaviour to
the designated tracer4.

Report and Trace Ring Signatures. Similar to standard ring signatures, RTR
signatures allow signers to generate signatures with respect to a group (i.e.,
ring) of users, and the signer is anonymous within the ring. Additionally, RTR
signatures provide a mechanism whereby ring members can produce a report
for a signed message. Upon receiving a report, a designated tracer can trace the
signer’s identity. Fraser and Quaglia defined report and trace ring signatures
in [13], and provided a complete security model for the primitive. Accompanying
this formalisation, the authors present a provably secure generic construction
and concrete instantiation of an RTR signature.

With respect to the instantiation, we note two drawbacks that we aim to
address. Firstly, the instantiation is not as efficient as claimed. In fact, during
signing, the instantiation uses Stadler’s zero-knowledge proof [29] to prove correct
encryption of a reporter token. Stadler’s proof must be repeated λ times to be
secure, where λ is the security parameter. As such, the complexity of the proof
is linear in the security parameter. The efficiency analysis of the instantiation
presented in [13] omits the security parameter. That is, signing is claimed to
be linear in the size of the ring |R| but is, in fact, linear in λ · |R|. Secondly,
the instantiation relies on a number theoretical group. As a consequence, the
instantiation does not reap the efficiency benefits of the most efficient groups
such as those based on elliptical curves.

Our Contributions. This work addresses the limitations of the existing RTR
signature instantiation. Namely, we introduce a new instantiation of the generic
construction in [13] (Section 4) that is more efficient than the instantiation
in [13] with respect to signing. Then, we introduce a new RTR signature scheme

4 For simplicity, we also consider a single designated tracer in this work. We note,
however, that this role can be distributed using standard secret sharing techniques,
making it more suitable for decentralised applications.

2

construction (Section 5) that can be instantiated with any group for which the
Decisional Diffie-Hellman assumption holds. Here, we provide a brief overview of
our results.

In the generic construction of [13], during signing, the signer generates a
reporter token that is encrypted to each ring member. The signer also generates
a proof of correct encryption of the reporter token. In the instantiation of [13],
this functionality is realised with standard ElGamal encryption and Stadler’s
zero-knowledge proof [29]. In this paper, we introduce a new instantiation which
relies on a bespoke pairing-based variant of the ElGamal public-key encryption
scheme. Furthermore, we demonstrate that the zero-knowledge proof of correct
encryption, which requires proof of equality of pairings for our new variant,
can be instantiated using the Fiat-Shamir transformation [12] on the variant
of the Schnorr protocol from [9]. Accordingly, the complexity of signing for
our instantiation grows linearly only in the size of the ring, improving upon
the efficiency of the instantiation from [13]. In Section 3, we introduce our
new pairing-based public-key encryption scheme and demonstrate how to prove
correctness of encryption for our new scheme. We also discuss the security and
efficiency of our instantiation.

We then propose a new RTR signature scheme construction in Section 5. This
new scheme follows the syntax of an RTR signature, as outlined in Section 2,
but differs from existing constructions, namely, the construction of [13]. Our new
construction is pairing-free and can be instantiated with any group in which the
Decisional Diffie Hellman assumption holds. Thus, our new construction allows
for the use of more efficient and standard prime order groups (e.g., elliptic curves)
than our instantiation (Section 4) and Fraser and Quaglia’s instantiation [13].
We demonstrate that our new construction is secure and can be instantiated
using standard cryptographic protocols from the literature. We conclude with a
brief discussion of its efficiency, showing that although it requires more group
exponentiations for signing and produces signatures that contain more group
elements than our instantiation in Section 3, it achieves signing complexity that
is linear in the size of the ring.

Other Related Work. Several ring signatures [25] variants aim to balance
anonymity with accountability. As mentioned in introduction, accountable ring
signatures [31, 4] allow signers to generate ring signatures and remain anonymous
within the ring, unless a designated tracer reveals the signer’s identity. Moreover,
linkable [21] and traceable [14] ring signatures allow tracers to determine whether
two signatures are generated by the same, or different, users. Addressing the bal-
ance of anonymity and accountability has frequently arisen with respect to other
cryptographic protocols. Notably, many group signature [8] variants introduce
measures whereby signer anonymity can be revoked [18, 19, 26]. Additionally,
anonymity and accountability has been discussed in relation to end-to-end en-
cryption [30] and systems that permit the reporting of malicious, and perhaps
criminal, behaviour [1, 17, 20, 24].

3

2 Preliminaries

In this section, we define the notations and the tools that we use in this paper.
More detailed and formal definitions are given in Appendix A.

The Decisional Diffie-Hellman (DDH) assumption. Let G = 〈g〉 be a group of

prime order p. Picking b
$← {0, 1} and (x, y, z1)

$← (Z∗p)3, and setting z0 = a·b and
(X,Y, Z) = (gx, gy, gzb), the DDH assumption in G states that no Probabilistic
Polynomial Time (PPT) algorithm is able to return b on input (X,Y, Z) with
non-negligible advantage.

Non-Interactive Zero-Knowledge Proof of Knowledge (NIZKP). LetR be a binary
relation and let L be a language such that s ∈ L ⇔ (∃w, (s, w) ∈ R). According
to the Camenisch-Stadler notation [5], NIZK{w : (s, w) ∈ R} denotes a NIZKP
of w for the langage L. A NIZKP is said to be extractable when there exists a
PPT knowledge extractor that efficiently extracts a witness w from any PPT
algorithm that forges valid proofs of knowledge for a given statement s such that
(s, w) ∈ R. Moreover, a NIZKP is said to be zero-knowledge when there exists a
PPT simulator that takes a statement s as input and that produces proofs that
are indistinguishable from those outputted by the real NIZKP protocol on s.

Signature of Knowledge (SoK). A SoK [6] on a message m, denoted by SoKm{w :
(s, w) ∈ R}, is similar to a NIZKP except that the message m is embedded in
the proof. w is seen as a secret key and s as the corresponding public key. Since
the knowledge of w is required to generate a valid SoK on a message m, a SoK is
unforgeable, which is the standard security requirement the digital signatures.

We also recall the ElGamal encryption scheme and the IND-CPA security
definition in Appendix A.

3 Syntax and Security Model

We recall the syntax and security model of a report and trace ring (RTR) signature
scheme as presented in [13]. In an RTR signature, users sign messages with respect
to a ring. The signer cannot be identified (i.e., is anonymous within the ring)
unless a ring member generates an anonymous report and transmits the report
to the designated tracer, who can then reveal the signer’s identity. We adopt the
notation conventions of [13], writing T to denote the tracer and U to denote a
user from a set of users U .

Definition 1 (RTR signature). An RTR signature scheme is a tuple of algo-
rithms (Setup, T.KGen, U.KGen, Sign, Verify, Report, Trace, VerTrace) defined as
follows:

Setup(1λ)→ pp: On input security parameter 1λ, outputs public parameters pp.

4

T.KGen(pp)→ (pkT, skT): On input pp, outputs a tracer public key pkT and
secret key skT.

U.KGen(pp)→ (pkU, skU): On input pp, outputs a user public key pkU and secret
key skU.

Sign(pp, skU, pkT,m,R)→ σ: On input pp, skU, pkT, message m and ring R,
outputs a signature σ.

Verify(pp, pkT,m,R, σ)→ {0, 1}: On input pp, pkT, m, R and σ, outputs 1 if σ
is a valid signature on m with respect to R, and 0 otherwise.

Report(pp, pkT, skU,m,R, σ)→ Rep: On input pp, pkT, skU, m, R and σ, outputs
a reporter token Rep.

Trace(pp, skT,m,R, σ, Rep)→ (pkU, Tr, ρt): On input pp, skT, m, R, σ and Rep,
outputs the signer’s identity pkU, auxiliary information Tr consisting of the
reporter token, and a proof of correct trace ρt.

VerTrace(pp, pkT,m,R, σ, pkU, Tr, ρt)→ {0, 1}: On input pp, pkT, m, R, σ, pkU,
Tr and ρt, outputs 1 if the trace is valid, and 0 otherwise.

An RTR signature must satisfy correctness and trace correctness. Informally,
correctness requires that algorithm Verify outputs 1 if the signature is the out-
put of algorithm Sign (and setup/key generation is honestly executed) with
overwhelming probability. Trace correctness necessitates that algorithm VerTrace
outputs the correct signer’s identity for a signature output by algorithm Sign with
overwhelming probability. Correctness and trace correctness for RTR signatures
are introduced and formally defined in [13], and we recall the formal definitions
in Appendix B.

3.1 Security Model

RTR signatures must satisfy anonymity, unforgeability, non-frameability, trace
soundness and reporter anonymity. These properties are defined in [13]. Here, we
provide an overview of these properties, and present the full formal security model
in Appendix B for reference. The security experiments model an attacker that
can register and corrupt/control users (i.e., obtain their honestly-generated secret
keys/generate keys on their behalf), and generate signatures, reports and traces
through access to several oracles. We present these oracles in full in Appendix B
alongside the formal definition of the security model.

Anonymity. Anonymity requires that, on the condition that a signature is not
reported and the signer traced, a signature does not reveal the signer’s identity.
Anonymity for RTR signatures, as defined in [13], adjusts the definition of
anonymity against adversarially generated keys in [2]. In doing so, it is assumed
that the attacker can control users and reporters. However, the tracer is assumed
to be honest. In the anonymity experiment, the adversary outputs a message,
ring and two potential signers (who are assumed to be honest). The adversary
obtains a signature and outputs a bit to indicate which signer produced the
signature. An RTR signature is anonymous if the adversary cannot determine
which of the two potential signers generated the signature.

5

Unforgeability. Unforgeability for RTR signatures is adapted from the standard
definition of unforgeability for ring signatures presented in [2]. It requires that
an attacker cannot produce a valid ring signature on behalf of a member of an
honest ring. An attacker is assumed to control the tracer, and can corrupt and
control users. In the security experiment, the adversary outputs a message, ring
and signature (which is not obtained via a signing oracle). If the signature is
valid, we say that the adversary has produced a valid forgery. An RTR signature
scheme satisfies unforgeability if the adversary cannot construct a valid forgery.

Non-frameability. Intuitively, non-frameability captures the property that a non-
signer cannot be identified as the signer by the designated tracer. The formal
non-frameability experiment models an attacker that can control the tracer, and
can corrupt and control signers. The adversary outputs a message, ring, signature
and trace, where the traced signer is assumed to be honest. An RTR signature
scheme satisfies non-frameability if algorithm VerTrace returns 0.

Trace soundness. In [4], trace soundness was introduced as a new security property
for accountable ring signatures. Trace soundness states that the signer identified
by the tracer must be unique. In other words, two users can be verifiably identified
as signers. In [13], the trace soundness property is adapted to the syntax of an
RTR signature, and, like the original definition in [4], models an attacker that
controls the tracer and can corrupt and control all signers. In the formal security
experiment, the adversary outputs two traces (where each trace identifies a
different ring member as the signer) alongside a message, ring and signature. The
trace soundness property is satisfied if algorithm VerTrace does not output 1 for
both traces.

Reporter Anonymity. Reporter anonymity requires that a report does not reveal
the ring member that produced it, if it is assumed that the reporter is honest.
The attacker can control the tracer and corrupt/control a subset of users. In the
reporter anonymity experiment, the adversary outputs a message, ring, signature
and the two ring members (i.e., two potential reporters). The adversary obtains
a report and outputs a bit to indicate which reporter generated the report. An
RTR signature satisfies reporter anonymity if the adversary cannot determine
which reporter produced the report.

4 An Efficient Instantiation of Fraser and Quaglia’s
Protocol

Fraser and Quaglia present a generic construction for an RTR signature in [13].
We provide a brief intuition into their construction here and refer the reader
to [13] for full details. During key generation, users (i.e., ring members) and the
tracer generate a keypair for a public-key encryption (PKE) scheme. To sign a
message, signers generate a fresh key pair for a PKE scheme. The fresh secret key
is known as the reporter token. The reporter token is encrypted under the public

6

key of each ring member. Then, the signer encrypts their identity under the
public key of the tracer and then again under the fresh public key. The signer also
constructs a zero-knowledge proof (NIZK) that the reporter token is encrypted to
all ring members, and a signature of knowledge (SoK) that the signer’s identity
is encrypted to the tracer. Ring members can report signatures by decrypting
the reporter token using their decryption key for the PKE scheme. A tracer can
decrypt the signer’s identity using their decryption key and the reporter token.

Fraser and Quaglia also present a concrete instantiation of their construction.
A central requirement of their construction is that the signer must prove that a
ciphertext encrypts a secret key (i.e., the reporter token) that corresponds to a
given public key. Fraser and Quaglia propose to instantiate their construction
with the original ElGamal cryptosystem and Stadler’s zero-knowledge proof [29],
which ensures that an ElGamal ciphertext encrypts a discrete logarithm in a
zero-knowledge way. However, this approach has two drawbacks. Firstly, Stadler’s
proof has complexity linear in the security parameter as the proof must be
repeated λ times. Secondly, the proof only works for number-theoretic groups of
prime order, and cannot be extended to groups based on elliptic curves.

In what follows, we propose an instantiation of Fraser and Quaglia’s construc-
tion using a variant of ElGamal based on bilinear maps, overcoming the first
drawback (we address the second drawback in Section 5). Our new instantiation
differs from Fraser and Quaglia’s instantiation in the following respect. We use
our ElGamal variant to generate the reporter token and encrypt the signer’s
identity under the reporter token. Then, we modify the zero-knowledge proof
for our ElGamal variant. In all other respects, our instantiation is identical. In
particular, we use a one-way function to generate the signer’s public identity, the
SoK of [4], and we use standard ElGamal encryption to encrypt the reporter token
to the ring members and the signer’s identity to the tracer. Now, we introduce
our new ElGamal variant, and then discuss the security and efficiency of our new
instantiation.

4.1 A Pairing-Based ElGamal Variant

Let G1, G2 and Gt be groups of prime order p, g1 ∈ G1 and g2 ∈ G2 be generators,
and e : G1 ×G2 → Gt be a type-3 bilinear pairing. We first recall the standard
ElGamal cryptosystem in G1, which is used by each ring member to generate
their key pair and is specified as follows.
– Choose secret key skPKE ∈ Z∗p and let public key pkPKE = gskPKE1 .
– To encrypt a message m with randomness r, run PKE.Enc(pkPKE,m; r), which

retruns (c1, c2) = (gr1, pk
r
PKE ·m).

– To decrypt, run PKE.Dec(skPKE, (c1, c2)), which returns m = c2

c
skPKE
1

.

Our new ElGamal variant, used by the signer during the signature algorithm to
generate a fresh PKE key pair, is defined as follows.
– Generate fresh secret key skSign ∈ G1 and define the fresh public key as

pkSign = e(skSign, g2).
– PKE.Enc(pkSign,m; r) returns (c1, c2) = (gr2, pk

r
Sign ·m).

7

– PKE.Dec(skSign, c) returns m = c2
e(skSign,c1)

.

Note that anyone can transform a ciphertext (c1, c2) = (gr2, pk
r
Sign ·m) of this ElGa-

mal variant into a standard ElGamal ciphertext in Gt by computing (e(g1, c1), c2).
We show the following result.

Theorem 1. The proposed variant of ElGamal satisfies IND-CPA security under
the Decisional Diffie-Hellman (DDH) assumption in G2.

Proof. Assume that there exists a Probabilistic Polynomial Time (PPT) adversary
A that breaks the IND-CPA security of our ElGamal variant with a non-negligible
advantage εA(λ). We show how to build a PPT adversary B that breaks the
DDH assumption in G2 with a non-negligible advantage εB(λ) (where λ is the
security parameter used to generate G2).

B receives the DDH challenge (X,Y, Z) = (gx2 , g
y
2 , g

zb
2) and picks b′

$← {0, 1}.
It sets pkSign ← e(g1, X) and sends it to A, which returns a pair of chosen
plaintexts (m0,m1). B computes c1 ← Y and c2 = e(g1, Z) ·mb′ . It sends (c1, c2)
to A, which returns b′′. If b′ = b′′, then B returns 0, else it returns 1.

We remark that c1 = Y = gy2 , and c2 = e(g1, Z)·mb′ = e(g1, g2)zb ·mb′ . If b = 0,
then c2 = e(g1, g2)x·y ·mb′ = e(g1, g

x
2)y ·mb′ = e(g1, X)y ·mb′ = pkySign ·mb′ . In this

case, the IND-CPA experiment is perfectly simulated for A, so A returns b′′ = b′

with the non-negligible advantage εA(λ). If b = 1, then c2 = e(g1, g2)z1 ·mb′ seems
to be random from the point of view of A. In this case, A has no information
about b′, so it returns b′′ = b′ with probability 1/2 (its advantage is null). Finally,
εB(λ) = εA(λ)/2, so εB(λ) is non-negligible, which concludes the proof. ut

We will now show how to prove that an ElGamal ciphertext in G1 encrypts
a secret key of our ElGamal variant in a zero-knowledge way. We consider the
key pair of our ElGamal variant skSign ∈ G1 and pkSign = e(skSign, g2), and the
ciphertext (c1, c2) = (gr1, pk

r
PKE · skSign) ∈ G2

1 which encrypts skSign with the public
key pkPKE.

We have to prove that pkSign = e (PKE.Dec(ppPKE, skPKE, (c1, c2)), g2). We
have the following equivalences:

pkSign = e (PKE.Dec(ppPKE, skPKE, (c1, c2)), g2)

⇔pkSign = e

(
c2

cskPKE1

, g2

)
=

e (c2, g2)

e
(
cskPKE1 , g2

) =
e (c2, g2)

e
(
gr·skPKE1 , g2

) =
e (c2, g2)

e (pkPKE, g2)
r

⇔e (pkPKE, g2)
r

=

(
e (c2, g2)

pkSign

)
On the other hand, we have e(c1, g2) = e(gr1, g2) = e(g1, g2)r.

Finally, in order to prove that the ElGamal ciphertext in G1 encrypts the
secret key of our ElGamal variant in zero-knowledge, we have to prove the
following relation, knowing r:

NIZK

{
r : e(c1, g2) = e(g1, g2)r ∧ e (pkPKE, g2)

r
=

(
e (c2, g2)

pkSign

)}
(1)

8

This is a proof of discrete logarithm equality in Gt. This zero-knowledge proof
can be instantiated with the Fiat-Shamir transform [12] on the variant of the
Schnorr protocol given in [9].

4.2 Discussion

We propose to use the above encryptions and NIZK proof to build an efficient
RTR signature scheme following the generic construction in [13]. We recall that in
a type 3 pairing, the DDH assumption holds in G1, G2, and Gt, which implies that
any construction based on the discrete logarithm assumption, the computational
Diffie-Hellman assumption, or the decisional Diffie-Hellman assumption remains
secure in each of these groups. The construction of Fraser and Quaglia uses
only discrete logarithm-based building blocks, so it remains secure in our new
pairing setup. Moreover, in order to prove relations among different elements of
the signature, this construction uses Schnorr-based proofs of discrete logarithm
relation and discrete logarithm knowledge, which work in any group of prime
order, even when the relation is proved over different groups of the same order.
Since our new encryption instantiation keep the structure of ElGamal, the other
zero-knowledge proofs can be instantiated as in [13].

The NIZK proof outlined above is more efficient than the NIZK used in the
instantiation in [13]. More specifically, the above NIZK proof requires a constant
number of group exponentiations and pairings5 (2 and 3, respectively) to prove.
Similarly, verification of the NIZK proof requires 4 group exponentiations and
3 pairings. The size of the proof is also constant in size: it consists of 2 group
elements and 1 field element. Comparatively, the size of the NIZK proof used
in Fraser and Quaglia’s instantiation, and the computational costs associated
with proving and verification, are linear in |R| · λ (where λ is the security
parameter). With respect to other costs associated with signing and verification,
the two instantiations are identical, as shown above. As such, with respect to
signature generation and verification, our instantiation has linear space and time
complexity in the size of the ring. Therefore, our approach implies that the
generic construction can be instantiated more efficiently than originally proposed,
i.e., avoiding the linear increase in the security parameter.

To conclude, as a consequence of the security proofs for the generic con-
struction in [13], our pairing instantiation is secure if our new ElGamal variant
satisfies IND-CPA security [15] and our zero-knowledge proof of correct encryption
(Equation 1) satisfies completeness, knowledge soundness and zero-knowledge, as
defined in [16]. As such, our instantiation satisfies the RTR signature security
model.

5 According to [7], type 3 pairings are more efficient than type 1 and 2 pairings, and
the computation time of a type 3 pairing is equivalent to 4 exponentiations for the
best implementation.

9

5 A New RTR Signature Construction

In this section, we present a new RTR signature construction. We describe our
protocol and present an instantiation. We conclude this section with a security
analysis of our protocol and a brief discussion of its efficiency.

5.1 Description of Our Protocol

We outline our protocol following the syntax of an RTR scheme introduced in
Definition 1.

Setup and Key Generation. Our construction uses ElGamal-based keys. Each
ElGamal encryption key ek is provided together with a proof of knowledge π of
the corresponding secret key sk. We will see why these proofs of knowledge are
required later in this section. The public key is the pair pk = (ek, π) and the
secret key is sk. We use the part ek of the user public key as their identity.
Setup(1λ): Generates a prime order group setup pp = (G, p, g) such that the

Decisional Diffie-Hellman assumption holds in G.
T.KGen(pp): Picks skT

$← Z∗p, sets ekT ← gskT , sets πT ← NIZK
{
skT : ekT = gskT

}
and outputs pkT ← (ekT, πT).

U.KGen(pp): Picks skU
$← Z∗p, sets ekU ← gskU , sets πU ← NIZK

{
skU : ekU = gskU

}
and outputs pkU ← (ekU, πU).

Signature Generation and Verification. The idea of the signature is to separate the
public key ek of the signer into two shares S1 and S2 such that S1 · S2 = ek. The
signer picks a coin α at random and uses it to encrypt (using ElGamal) S2 for each
public encryption key eki in the ring, outputting |R| ciphertexts denoted ci. The
signer then encrypts S1 for the tracer encryption key ekT, outputting ciphertext
c. The signer then proves that the ring members’ ciphertexts encrypt the same
message in zero-knowledge. Note that due to the homomorphic properties of
ElGamal, each ci · c encrypts S1 · S2 = ek. Finally, the signer signs the message
using a signature of knowledge that proves in zero-knowledge that it knows the
secret key ski for a secret index i (which is its own secret key ski = skU) that
decrypts ci · c on the message eki = ekU.
Sign(pp, skU, pkT,m,R): Parses pkT as (ekT, πT). Sets n ← |R|, parses R as
{pki}

n
i=1 and each pki as (eki, πi). Verifies each πi (this step preempts a

subtle attack on anonymity that we will detail later). If there are two indices
i and j such that pki 6= pkj and eki = ekj , or if there is no index i such that

pkU = pki, then it aborts and returns the failure symbol ⊥. Picks α
$← Z∗p

and sets h ← gα. Picks S1
$← G and sets S2 ← ekU/S1. Note that S1 and

S2 are two shares of the secret identity ekU = S1 · S2. Sets c← ekαT · S1. For
each i ∈ JnK:
– Sets ci ← ekαi · S2.

– If i > 1, sets π′i ← NIZK
{
α :
(
h = gα ∧

(
ci
ci−1

)
=
(

eki
eki−1

)α)}
, else

π′i ←⊥.

10

The proofs π′i ensure that each ElGamal ciphertext (h, ci) encrypts the same
message. Note that (h, c · ci) is the ElGamal encryption of S1 · S2 = ekU for
the public key (ekT · eki). Sets M ← (pp, pkT,m,R, h, c, (ci, π

′
i)
n
i=1), and sets

σM ← SoKM
{

(α, skU) :
∨n
i=1

(
h = gα ∧

(
c·ci
eki

)
= (ekT · eki)α ∧ eki = gskU

)}
.

The signature of knowledge σM ensures that (h, c · ci) is an ElGamal encryp-
tion of one eki, and that the signer knows the secret key corresponding to
eki, which means that eki is the identity of the signer. Finally, the algorithm
returns σ = (h, c, (ci, π

′
i)
n
i=1, σM).

Verify(pp, pkT,m,R, σ): Verify each πi and σM .

Note that, if the keys are honestly generated, the probability that the signature
aborts because two encryption keys eki and ekj are equal is negligible.

Report and Trace. To report a signature, a user decrypts the ciphertext ci that
corresponds to their public key in order to learn S2, and proves the correctness
of the decryption using a zero-knowledge proof. To trace the signature, the tracer
decrypts c in order to learn S1, proves the correctness of the decryption using a
zero-knowledge proof, and returns the identity that corresponds to the encryption
key ek = S1 · S2.

Report(pp, pkT, skU,m,R, σ): Verifies the signature σ. Sets n ← |R|, parses R
as {pki}

n
i=1 and each pki as (eki, πi). Let j be the index that verifies pkj =

(ekU, πj). Parses σ as (h, c, (ci, π
′
i)
n
i=1, σM). Sets S2 ← cj/h

skU and πRep ←
NIZK

{
skU :

∨n
i=1

((
ci
S2

)
= hskU ∧ eki = gskU

)}
. The proofs πRep ensures that

one (h, ci) encrypts S2. This algorithm returns Rep← (S2, πRep)
Trace(pp, skT,m,R, σ, Rep): Verifies the signature σ. Parses Rep as (S2, πRep) and

σ as (h, c, (ci, π
′
i)
n
i=1, σM). Verifies the proof πRep. Sets S1 ← c/hskT , and

πρt ← NIZK
{
skT :

(
c
S1

)
= hskT ∧ ekT = gskT

}
.

The proof πρt ensures that one (h, c) encrypts S1. This algorithm returns
ρt ← (S1, πρt)

VerTrace(pp, pkT,m,R, σ, pkU, Tr, ρt): Sets n ← |R|, parses R as {pki}
n
i=1 and

each pki as (eki, πi). Verifies πRep and πρt . If one of these proofs is not valid,
then it returns the failure symbol ⊥, else it returns the key pki that verifies
eki = S1 · S2.

5.2 Instantiation

In the following, we propose an instantiation for each of the proofs and signa-
tures of knowledge used in our protocol. The proof NIZK {x : h = gx} used in
πU and πT can be instantiated with the Fiat-Shamir transform on the Schnorr
protocol [28]. The proof NIZK {x : h1 = gx1 ∧ h2 = gx2} used in πρt and each π′i
can be instantiated with the Fiat-Shamir transform on the variant of the Schnorr
protocol given in [9]. The proof NIZK

{
x :
∨n
i=1

(
hi,1 = gxi,1 ∧ hi,2 = gxi,2

)}
used

in πRep can be instantiated with the Cramer-Damg̊ard-Schoenmakers trans-
form [10] (which transforms a zero-knowledge proof of a statement into a

11

zero-knowledge proof of 1-out-of-n statements) and the Fiat-Shamir trans-
form applied on the variant of the Schnorr protocol given in [9]. Finally, the
proof NIZK

{
(x, y) :

∨n
i=1

(
hi,1 = gxi,1 ∧ hi,2 = gxi,2 ∧ hi,3 = gyi,3

)}
used in σM can

be instantiated with the Fiat-Shamir transform and the Cramer-Damg̊ard-
Schoenmakers transform [10] applied on the successive executions of the Schnorr
protocol [28] and the variant of the Schnorr protocol given in [9]. To transform
this proof into a signature of knowledge, it suffices to add the message to the
hashed elements during the creation of the challenge (this method works with
any protocol resulting from the Fiat-Shamir transform [6]).

All these proofs of knowledge use only group operations and do not require
any specific tool to be instantiated. The non-interactive version of the proofs and
the signature of knowledge require a hash function modeled by a random oracle.

5.3 Security Analysis

Our new construction satisfies the security properties for an RTR signature
scheme and, as such, we obtain Theorem 2. The formal proof of this theorem is
given in Appendix C and we informally explain why these properties hold here.

Theorem 2. Our protocol instantiated with extractable and zero-knowledge
proofs and signatures of knowledge is unforgeable, anonymous, non-frameable,
trace sound, and reporter anonymous under the Decisional Diffie-Hellman as-
sumption in the standard model.

Unforgeability: To forge a signature, an adversary must forge a signature of
knowledge σM , which requires the knowledge of one of the secret keys of the
ring, which is the discrete logarithm of one of the public encryption keys. If
an adversary produces such a signature, then the extractor of the signature
of knowledge can be used to break the discrete logarithm assumption (which
is hard under the Decisional Diffie-Hellman assumption).

Anonymity: To deduce the identity of the signer, the share S1 of the signer
identity is required by the adversary. This share is encrypted using the
ElGamal encryption on the honest tracer public key. Thus, breaking the
anonymity is at least as difficult as breaking the IND-CPA security of ElGamal,
which depends on the Decisional Diffie-Hellman assumption.

Trace soundness: The proofs and signatures of knowledge ensure that the
identity of the signer ek is actually S1 · S2 (from σM), each ci encrypts the
same S2 (from π′i), the reporter returns S2 (from πRep), and the tracer returns
S1 (from πρt). If an adversary is able to report the same signature for two
different identities, then it forges a proof on a false statement that cannot be
correctly extracted, which contradicts the extractability.

Non-frameability: As it is shown for the trace soundness, the proofs ensure that
the report and trace mechanism are sound. Thus, to attack non-frameability
the adversary must produce a fresh valid and traceable signature for an
honest user. As for unforgeability, such an adversary can be used to extract
the discrete logarithm of the public encryption key of an honest user, which
is hard under the Decisional Diffie-Hellman assumption.

12

Reporter anonymity: Each reporter returns the same S2 (according to the
proofs of knowledge that we use in the protocol), and a zero-knowledge proof
that gives no information about their identity. Therefore, an adversary cannot
deduce the identity of the reporter.

The role of the zero-knowledge proofs on the public keys. We recall that
each public key is associated with a proof of correctness, and that these proofs are
verified before each signature. In what follows, we will show that this mechanism
avoids a subtle attack on anonymity. Assume that the users do not prove the
knowledge of their secret keys (i.e. pk = ek). In this case, an attacker A can
break the anonymity of our construction using the following attack. A chooses
the public keys (pk0, pk1) of two honest users, picks sk2

$← Z∗p, sets ek2 ← gsk2 ,

and sets pk2 ← ek2. A then picks γ
$← Z∗p, sets ek3 ← ekγT, and sets pk3 ← ek3.

A chooses a message m, sets R ← {pk0, pk1, pk2, pk3} sends (m,R, pk0, pk1, st)
to the challenger, and receives a signature σ = (h, c, (ci, π

′
i)
n
i=1, σM). Since σ

has been generated correctly, we have that c = ekαT · S1 and ∀ i, ci = ekαi · S2

(where α denotes the discrete logarithm of h). A computes S2 ← c2/h
sk2 and

S′1 ← c/
(
c3
S2

) 1
γ . If S′1 · S2 = ek0, then A returns 0, else if S′1 · S2 = ek1, then A

returns 1. We observe that:

S′1 =
c(
c3
S2

) 1
γ

=
ekαT · S1(
ekα3 ·S2

S2

) 1
γ

=
ekαT · S1

(ekα3)
1
γ

=
ekαT · S1

((ekγT)α)
1
γ

=
ekαT · S1

ek
α· γγ
T

=
ekαT · S1

ekαT
= S1.

Thus, S′1 · S2 gives the identity of the signer with probability 1.

Efficiency of our protocol and comparison. Similarly to our instantiation
in Section 4, the protocol presented in Section 5.1, when instantiated as in
Section 5.2, has space and time complexity that is linear in the size of the ring.
More explicitly, a signature can be computed with 11|R|−3 group exponentiations
and verified with 10|R| − 4 group exponentiations. A signature consists of 6|R|
group elements and 4|R|−2 field elements. On the other hand, in our instantiation
in Section 4, a signature can be computed with 5|R|+ 21 group exponentiations
and 4 pairings, and verified with 3|R|+ 23 group exponentiations and 3 pairings.
A signature consists of 2|R|+ 20 group elements and |R|+ 7 field elements. Thus,
our instantiation from Section 4 requires less group exponentiations, moreover,
it generates reporter tokens of constant size, while the size of the tokens grows
linearly with the number of users in the new construction. In return, our new
construction can be instantiated with any prime order group, including pairing-
free groups based on elliptic curves, which are known to optimize the size of the
group elements and the computation cost of the operations for an equivalent
level of security.

6 Concluding Remarks

We introduced a new instantiation of an RTR signature scheme that follows the
generic construction in [13]. Our instantiation has space and time complexity

13

linear in the size of the ring. Consequently, our instantiation significantly increases
the efficiency of the construction in [13], but requires pairings. We also introduce
a new RTR signature construction with similar complexity that does not require
pairings and can be instantiated with any prime order group. In return, our
construction requires more group exponentiations than our instantiation of [13].
An interesting open question is whether it is possible to design an RTR signature
that simultaneously reaps the benefits of our instantiation and new construction.
That is, we ask, is it possible to design an RTR signature that is (at least) as
efficient as our instantiation of the construction from [13] and can be instantiated
with any group?

References

1. Venkat Arun, Aniket Kate, Deepak Garg, Peter Druschel, and Bobby Bhattacharjee.
Finding safety in numbers with secure allegation escrows. In The Network and
Distributed System Security Symposium. Internet Society, 2020.

2. Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger
definitions, and constructions without random oracles. In Theory of Cryptography
Conference, pages 60–79. Springer, 2006.

3. Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A Kroll,
and Edward W Felten. Mixcoin: Anonymity for bitcoin with accountable mixes.
In International Conference on Financial Cryptography and Data Security, pages
486–504. Springer, 2014.

4. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and
Christophe Petit. Short accountable ring signatures based on ddh. In European
Symposium on Research in Computer Security, pages 243–265. Springer, 2015.

5. Jan Camenisch and Markus Stadler. Proof systems for general statements about
discrete logarithms. In Technical Report No. 260. Dept. of Computer Science, ETH
Zurich, 1997.

6. Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia
Dwork, editor, Advances in Cryptology - CRYPTO 2006, pages 78–96, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

7. Sanjit Chatterjee, Alfred Menezes, and Francisco Rodrguez-Henrquez. On instanti-
ating pairing-based protocols with elliptic curves of embedding degree one. IEEE
Transactions on Computers, 66(6):1061–1070, 2017.

8. David Chaum and Eugène van Heyst. Group signatures. In Workshop on the
Theory and Application of of Cryptographic Techniques, pages 257–265. Springer,
1991.

9. David Chaum and Torben P. Pedersen. Wallet databases with observers. In Annual
international cryptology conference, pages 89–105. Springer, 1992.

10. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Advances in Cryptology —
CRYPTO. Springer, 1994.

11. Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. Quisquis:
A new design for anonymous cryptocurrencies. In International conference on
the theory and application of cryptology and information security, pages 649–678.
Springer, 2019.

14

12. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In Advances in Cryptology — CRYPTO. Springer,
1987.

13. Ashley Fraser and Elizabeth A Quaglia. Report and trace ring signatures. In
International Conference on Cryptology and Network Security, pages 179–199.
Springer, 2021.

14. Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In International
Workshop on Public Key Cryptography, pages 181–200. Springer, 2007.

15. Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC. ACM, 1982.

16. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowl-
edge for np. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 339–358. Springer, 2006.

17. Alejandro Hevia and Ilana Mergudich-Thal. Implementing secure reporting of
sexual misconduct-revisiting whotoo. In International Conference on Cryptology
and Information Security in Latin America, pages 341–362. Springer, 2021.

18. Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures. In Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
pages 571–589. Springer, 2004.

19. Markulf Kohlweiss and Ian Miers. Accountable metadata-hiding escrow: A group
signature case study. Proc. Priv. Enhancing Technol., 2015(2):206–221, 2015.

20. Benjamin Kuykendall, Hugo Krawczyk, and Tal Rabin. Cryptography for# metoo.
Proc. Priv. Enhancing Technol., 2019(3):409–429, 2019.

21. Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous anonymous
group signature for ad hoc groups. In Australasian Conference on Information
Security and Privacy, pages 325–335. Springer, 2004.

22. Gregory Maxwell. Coinjoin: Bitcoin privacy for the real world. In Post on Bitcoin
forum, volume 3, page 110, 2013.

23. Shen Noether, Adam Mackenzie, et al. Ring confidential transactions. Ledger,
1:1–18, 2016.

24. Anjana Rajan, Lucy Qin, David W Archer, Dan Boneh, Tancrede Lepoint, and
Mayank Varia. Callisto: A cryptographic approach to detecting serial perpetrators
of sexual misconduct. In Proceedings of the 1st ACM SIGCAS Conference on
Computing and Sustainable Societies, pages 1–4, 2018.

25. Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In
International conference on the theory and application of cryptology and information
security, pages 552–565. Springer, 2001.

26. Yusuke Sakai, Keita Emura, Goichiro Hanaoka, Yutaka Kawai, Takahiro Matsuda,
and Kazumasa Omote. Group signatures with message-dependent opening. In
International Conference on Pairing-Based Cryptography, pages 270–294. Springer,
2012.

27. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE symposium on security and privacy, pages 459–474.
IEEE, 2014.

28. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
cryptology, 1991.

29. Markus Stadler. Publicly verifiable secret sharing. In International Conference on
the Theory and Applications of Cryptographic Techniques, pages 190–199. Springer,
1996.

15

30. Nirvan Tyagi, Ian Miers, and Thomas Ristenpart. Traceback for end-to-end en-
crypted messaging. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 413–430, 2019.

31. Shouhuai Xu and Moti Yung. Accountable ring signatures: A smart card approach.
In Smart Card Research and Advanced Applications VI, pages 271–286. Springer,
2004.

A Building Blocks

We recall the formal definition of the building blocks we need in our construction,
as well as some well-known properties.

Definition 2 (Discrete Logarithm assumption (DL)). Let G be a group
of prime order p and g ∈ G be a generator. The discrete logarithm assumption
states that there is no PPT algorithm that takes a random element X

$← G as
input and that returns x ∈ Z∗p such that gx = X.

Definition 3 (Decisional Diffie-Hellman assumption (DDH)). Let G be
a group of prime order p and g ∈ G be a generator. Let x, y, and z0 be three
random elements picked in the uniform distribution on Z∗p. We set z1 = x · y.
The Decisional Diffie-Hellman assumption states that there is no PPT algorithm
that distinguishes (gx, gy, gz0) from (gx, gy, gz1) with non-negligible advantage
(i.e. with a probability significantly different from 1/2).

Lemma 1. The DL assumption holds under the DDH assumption.

Definition 4 (Non-Interactive Zero-Knoledge Proof (NIZKP)). Let R
be a binary relation and let L be a language such that s ∈ L ⇔ (∃w, (s, w) ∈ R).
A non-interactive ZKP (NIZKP) for the language L is a couple of algorithms
(NIZK,NIZK.Verify) such that:
NIZK{w : (s, w) ∈ R}. This algorithm outputs a proof π.
NIZK.Verify(s, π). This algorithm outputs a bit b.
A NIZKP proof has the following properties:
Corectness. For any s, w, R such that (s, w) ∈ R, and π ← NIZK{w : (s, w) ∈
R, NIZK.Verify(s, π) returns 1.

Soundness. There is no polynomial time adversary A such that A(L) outputs
(s, π) such that NIZK.Verify(s, π) = 1 and s 6∈ L with non-negligible probabil-
ity.

Extractability. There exists a PPT knowledge extractor Ext and a negligible
function εNIZK such that for any algorithm ASim(·)(λ) having access to a
simulator that forges signatures for chosen statement and that outputs a fresh
pair (s, π) with NIZK.Verify(s, π) = 1, the extractor ExtA(λ) outputs w such
that (s, w) ∈ R having access to A(λ) with probability at least 1− εNIZK(λ).

Zero-knowledge. A proof π leaks no information, i.e., there exists a polynomial
time algorithm Sim (called the simulator) such that NIZK{w : (s, w) ∈ R}
and Sim(s) follow the same probability distribution.

16

Signatures of Knowledge (SoK) are defined in a similar way, except that each
proof is associated with a message m:
SoKm{w : (s, w) ∈ R}. This algorithm outputs a proof π.
SoK.Verify(m, s, π). This algorithm outputs a bit b.

Definition 5 (ElGamal Encryption). The ElGamal Encryption on pp =
(G, g, p) where G = 〈g〉 is a group of prime order p is a public key encryption
scheme (Gen,Enc,Dec) defined as follows:

Gen(pp): picks sk
$← Z∗p, sets pk← gsk and returns (pk, sk).

End(pp, pk,m): picks r
$← Z∗p, sets c1 ← gr, c2 ← pkr · m, and returns c ←

(c1, c2).
Dec(pp, sk, c): returns m← c2/c

sk
1 .

Definition 6 (IND-CPA security). An encryption scheme (Gen,Enc,Dec)
on a public parameter pp is said to be IND-CPA when there exists a negligible
function ε(λ) such that for any pair of PPT algorithms A = (A1,A2):∣∣∣∣Pr

[
(pk,sk)←Gen(pp); (m0,m1,st)←A1(pp,pk);

b
$←{0,1}; c←Enc(pp,pk,mb); b

′←A2(pp,pk,st,c);
: b′ = b

]
− 1

2

∣∣∣∣ ≤ ε(λ).

Lemma 2. ElGamal is IND-CPA secure under the DDH assumption.

B Security Model for Report and Trace Ring Signatures

Throughout this section, λ denotes the security parameter.

Definition 7 (Correctness). An RTR signature is correct if, for any n =
poly(λ), j ∈ [n] and message m, there exists a negligible function ε such that,

Pr


pp ← Setup(1λ);
(pkT,skT) ← T.KGen(pp);
for i = 1,...,n : (pkUi ,skUi) ← U.KGen(pp);

R = {pkU1 ,...,pkUn};
σ ← Sign(pp,skUj ,pkT,m,R);

b ← Verify(pp,pkT,m,R,σ)

: b = 1

 ≥ 1− ε(λ).

Definition 8 (Trace correctness). An RTR signature satisfies trace correct-
ness if for any n = poly(λ), j, k ∈ [n] where j 6= k, and message m, there exists
a negligible function ε such that,

Pr


pp ← Setup(1λ);
(pkT,skT) ← T.KGen(pp);
for i = 1,...,n : (pkUi ,skUi) ← U.KGen(pp);

R = {pkU1 ,...,pkUn};
σ ← Sign(pp,skUj ,pkT,m,R);

Rep ← Report(pp,pkT,skUk ,m,R,σ);

(pkU,Tr,ρt) ← Trace(pp,skT,m,R,σ,Rep);
b ← VerTrace(pp,pkT,m,R,σ,pkU,Tr,ρt)

: b = 1

 ≥ 1− ε(λ).

17

Oreg()

(pkU, skU)← U.KGen(pp)

Qreg← Qreg ∪ {pkU}
L← L ∪ {(pkU, skU)}
return pkU

Ocorrupt(pkU)

if (pkU, ·) /∈ L return ⊥
Qcorr← Qcorr ∪ {pkU}
return skU

Osign(pkU, pkT,m,R)

if (pkU, ·) /∈ L return ⊥
σ ← Sign(pp, skU, pkT,m,R ∪ {pkU})
Qsign← Qsign ∪ {(pkT, pkU,m,R, σ)}
return σ

Oreport(pkU,m,R, σ)

if pkU /∈ R ∨ (pkU, ·) /∈ L return ⊥
Rep← Report(pp, pkT, skU,m,R, σ)

Qreport← Qreport ∪ {(pkU,m,R, σ)}
return Rep

Otrace(m,R, σ, Rep)

(pkU, Tr, ρt)← Trace(pp, skT,m,R, σ, Rep)

Qtrace← Qtrace ∪ {(m,R, σ)}
return (pkU, Tr, ρt)

Fig. 1: Oracles for the report and trace ring signature security model from [13].

Definition 9 (Anonymity). An RTR signature is anonymous with respect to
adversarially generated keys if, for any probabilistic, polynomial-time (PPT)
adversary A, there exists a negligible function ε such that,∣∣∣∣∣∣∣∣∣∣∣

Pr


pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport, Qtrace ← ∅;
(pkT,skT) ← T.KGen(pp);
(m,R,pkU0 ,pkU1 ,st)

← AOreg,Ocorrupt,Osign,Oreport,Otrace(pp,pkT);
b ← {0,1};
σ ← Sign(pp,skUb ,pkT,m,R ∪ {pkU0 ,pkU1});
b′ ← AOreg,Ocorrupt,Osign,Oreport,Otrace(σ,st)

:
b′ = b
∧ (m,R,σ) /∈ Qtrace
∧ pkU0 ∈ Qreg\Qcorr
∧ pkU1 ∈ Qreg\Qcorr

− 1
2

∣∣∣∣∣∣∣∣∣∣∣
≤ ε(λ).

Definition 10 (Unforgeability). An RTR signature scheme is unforgeable if,
for any PPT adversary A, there exists a negligible function ε such that,

Pr

[
pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport ← ∅;
(pkT,m,R,σ) ← A

Oreg,Ocorrupt,Osign,Oreport(pp)
:

Verify(pp,pkT,m,R,σ) = 1
∧ R ⊆ Qreg\Qcorr
∧ (pkT,·,m,R,σ) /∈ Qsign

]
≤ ε(λ).

Definition 11 (Non-frameability). An RTR signature is non-frameable if for
any PPT adversary A, there exists a negligible function ε such that,

Pr

pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport ← ∅;
(pkT,m,R,σ,pkU,Tr,ρt)

← AOreg,Ocorrupt,Osign,Oreport(pp);
b ← VerTrace(pp,pkT,m,R,σ,pkU,Tr,ρt)

:
b = 1 ∧ pkU ∈ Qreg\Qcorr
∧ Verify(pp,pkT,m,R,σ) = 1
∧ (pkT,pkU,m,R,σ) /∈ Qsign

 ≤ ε(λ).

Definition 12 (Trace soundness). An RTR signature satisfies trace soundness
if for any PPT adversary A, there exists a negligible function ε such that,

Pr


pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport ← ∅;
(pkT,m,R,σ,pkUi ,Tri,ρti ,pkUj ,Trj ,ρtj)

← AOreg,Ocorrupt,Osign,Oreport(pp)
b1 ← VerTrace(pp,pkT,m,R,σ,pkUi ,Tri,ρti);

b2 ← VerTrace(pp,pkT,m,R,σ,pkUj ,Trj ,ρtj)

:
b1 = 1 ∧ b2 = 1
∧ pkUi 6= pkUj

 ≤ ε(λ).

18

Definition 13 (Reporter anonymity). An RTR signature is reporter anony-
mous if, for any PPT adversary A, there exists a negligible function ε such that,

∣∣∣∣∣∣∣∣∣∣
Pr


pp ← Setup(1λ);
L, Qreg, Qcorr, Qsign, Qreport ← ∅;
(pkT,m,R,σ,pkU0 ,pkU1 ,st)

← AOreg,Ocorrupt,Osign,Oreport(pp);
b ← {0,1};
Rep ← Report(pp,pkT,skUb ,m,R,σ);

b′ ← AOreg,Ocorrupt,Osign,Oreport(σ,st)

:

b′ = b
∧ pkU0 ∈ (R ∩ Qreg)\Qcorr
∧ pkU1 ∈ (R ∩ Qreg)\Qcorr
∧ (m,R,σ,pkU0) /∈ Qreport

∧ (m,R,σ,pkU1) /∈ Qreport

− 1
2

∣∣∣∣∣∣∣∣∣∣
≤ ε(λ).

C Proofs

In what follows, we prove Theorem 2 by proving each of the claimed properties.
Each of the following lemmas corresponds to one of these properties (namely
correctness and trace correctness, unforgeability, anonymity, non-frameability,
trace soundness, and reporter anonymity).

Lemma 3. If the NIZKP and the SoK are correct, then the protocol is correct
and trace correct.

Proof. First, assume that the signature algorithm does not return a failure. In
this case, the correctness follows trivialy from the correctness of the proofs and
signatures of knowledge, and from the correctness of the ElGamal encryption,
and the probability of success is 1.

We deduce that the probability of failure of correctness is the same as the
probability of failure of the signature algorithm (when used honestly with honestly
generated keys). The signature algorithm returns a failure if and only if there
is two encryption keys eki and ekj that are equals (eki = ekj). The encryption
keys come from the uniform distribution on G, thus according to the birthday

paradox, this probability is ε(λ) = 1−
n−1∏
i=0

(
1− i

|G|

)
and is negligible in λ (we

recall that n is polynomial in λ ans |G| is exponential in λ). ut

Lemma 4. If the NIZKP and the SoK are extractable and zero-knowledge, then
the protocol is unforgeable under the discrete logarithm assumption.

Proof. Let A be a PPT adversary that breaks the unforgeability of our scheme
with probability εA(λ). We will show how to use it to break the discrete loga-
rithm assumption. Let εNIZK(λ) be the maximum knowledge error among all the
non-interactive proofs and signatures of knowledge used in the protocol. We use
the following sequence of games:

Game G0: This game is the unforgeability experiment as described in Definition 10
on our protocol. We have:

εA(λ) = Pr[A wins G0]

19

Game G1: This game is similar to G0 except that the challenger sets an empty
dictionary SIG at the beginning of the experiment, and each time that the
challenger generates a signature σ for a tracer key pkT message m and a ring R
with the secret key skU, it stores the element α ∈ Z∗p (according to the notation we
use in the definition of the signature algorithm) and skU at the key (pkT,m,R, σ)
of the dictionary SIG:

SIG[(pkT,m,R, σ)]← (α, skU).

This modification does not alter the advantage of A:

Pr[A wins G0] = Pr[A wins G1]

Game G2: This game is similar to G1 except that each time that the challenger
verifies a valid signature σ on a message m and the ring R forged by A, it uses the
knowledge extractor on each proof of knowledge and each signature of knowledge
in σ (or the challenger retrieves the corresponding witness if it has previously
produced the same proof/signature during the game) in order to recover α and
skU, and stores the witness extracted from the signature of knowledge in the
dictionary at the key (pkT,m,R, σ):

SIG[(pkT,m,R, σ)]← (α, skU).

If one extraction returns a false witness, the challenger aborts the game and
returns 0. Let n be the number of registered users, and qr be the number of calls
to the oracle Oreport. Each signature contains n proofs/signatures of knowledge.
The challenger verifies (qr + 1) signatures (one for each call to the oracle Oreport
and one during the experiment), so the probability that the challenger aborts
the game is the probability that the extractor fails on a valid proof, which is at
most (qr + 1) · εNIZK(λ). We deduce that:

|Pr[A wins G1]− Pr[A wins G2]| ≤ (qr + 1) · n · εNIZK(λ).

Game G3: Let (pkT,m,R, σ) be the values returned by the adversary. At this
step, if the challenger does not abort the game, then it knows the key skU and α
(from the extraction of the signature of knowledge in σ) such that, parsing σ as
(h, c, (ci, π

′
i)
n
i=1, σM), R as {pki}

n
i=1, and each pki as (eki, πi):

∃j, h = gα and

(
c · ci
ekj

)
= (ekT · ekj)α and ekj = gskU

Moreover, R ⊆ Qreg\Qcorr, so pkj ∈ Qreg\Qcorr.
Let n be the number of registered users (i.e., the number of queries to the

oracle Oreg), and let pk′i = (ek′i, π
′
i) be the public key generated at the ith query.

At the beginning of the experiment the challenger picks θ
$← JnK. If ek′θ 6= ekj ,

then the challenger aborts the game and returns 0. We have that:

1

n
· Pr[A wins G2] = Pr[A wins G3] .

20

Game G4: In this game, the challenger simulates each proof and signature of
knowledge using the corresponding simulators. Since the proofs and signatures of
knowledge are perfectly zero-knowledge, we have:

Pr[A wins G3] = Pr[A wins G4] .

At this step, the challenger does not need to know the secret key corresponding
to pk′θ for simulating the signature oracle Osign.

Game G5: This game is the same as G4 except that each time the adversary
sends a query (pkU, pkT,m,R, σ) to the oracle Oreport such that σ is valid, the
challenger retrieves (α, skU) ← SIG[(pkT,m,R, σ)] and computes S2 as follows,
using the same notation as in the description of the protocol:

S2 ←
cj
pkαU

.

Since:
cj
pkαU

=
cj

gα·skU
=

cj
hskU

,

we deduce that:

Pr[A wins G4] = Pr[A wins G5] .

At this step, the challenger does not need to know the secret key corresponding
to pk′θ (which is its discrete logarithm) for simulating the signature oracle Osign
and the report oracle Oreport, so it never uses this secret key in the game G5.

Let εdl(λ) be the probability of the best algorithm that solves the discrete
logarithm problem. We claim that:

Pr[A wins G5] ≤ εdl(λ).

We prove this claim by reduction. Assume that A has a non-negligible probability
of winning the game G5. We will show how to build a PPT algorithm B that
breaks the discrete logarithm assumption with a similar probability. B receives
the group element X. It simulates perfectly the game G5 to A except that it
replaces ek′θ by X and sk′θ by ⊥.

Let (pkT,m,R, σ) be the values returned by the adversary. At the end of the

game, B sets N ← |R|, parses R as {pki}
N
i=1, pki as (eki, πi) for all indexes i, and

σ as (h, c, (ci, π
′
i)
N
i=1, σM). According to the unforgeability experiment, for all

pk we have (pkT, pk,m,R, σ) /∈ Qsign, so the challenger has never produced the
signature of knowledge σM on the message M = (pp, pkT,m,R, h, c, (ci, π

′
i)
n
i=1)

during the experiment, which implies that if the game has not been aborted
by B, then there exists a key sk that has been extracted from σM during the
experiment such that there exists j such that gsk = ekj = ek′θ = X. Finally, If B
does not abort the game, then it returns sk, which is the discrete logarithm of X.
This concludes the proof of the claim.

21

Conclusion: Finally, we have:

εA(λ) ≤ n · εdl(λ) + (qr + 1) · n · εNIZK(λ).

We deduce that εA(λ) is negligible, which concludes the proof. ut

Lemma 5. If the NIZKP and the SoK are extractable and zero-knowledge, then
the protocol is anonymous under the IND-CPA security of ElGamal in a prime
order group.

Proof. Let A be a PPT adversary that breaks the anonymity of our scheme with
advantage εA(λ). We will show how to use it to break the IND-CPA security of
the ElGamal encryption. Let εNIZK(λ) be the maximum knowledge error among
all the non-interactive proofs and signatures of knowledge used in the protocol.
We use the following sequence of games:

Game G0: This game is the anonymity experiment as described in Definition 9
on our protocol. We have:

εA(λ) = |Pr[A wins G0]− 1/2|

Game G1: This game is similar to G0 except that the challenger sets an empty
dictionary SIG at the beginning of the experiment, and each time that the
challenger generates a signature σ for a tracer key pkT, a message m and a
ring R with the secret key skU, it stores the element α ∈ Z∗p (according to the
notation we use in the definition of the signature algorithm) and skU at the key
(pkT,m,R, σ) of the dictionary SIG:

SIG[(pkT,m,R, σ)]← (α, skU).

This modification does not alter the advantage of A:

Pr[A wins G0] = Pr[A wins G1]

Game G2: This game is similar to G1 except that each time that the challenger
verifies a valid signature σ on a message m and the ring R forged by A, it uses the
knowledge extractor on each proof of knowledge and each signature of knowledge
in σ in order to recover α and skU, and stores the witness extracted from the
signature of knowledge in the dictionary at the key (pkT,m,R, σ):

SIG[(pkT,m,R, σ)]← (α, skU).

If one extraction returns a false witness, the challenger aborts the game and
returns 0 with probability 1/2. Let n be the number of users, qr be the number
of call to the oracle Oreport, and qt be the number of call to the oracle Otrace.
Each signature contains n proofs/signatures of knowledge. The challenger verifies
(qr + qt) signatures, so the probability that the challenger aborts the game

22

is the probability that the extractor fails on a valid proof, which is at most
(qr + qt) · n · εNIZK(λ). We deduce that:

|Pr[A wins G1]− Pr[A wins G2]| ≤ (qr + qt) · n · εNIZK(λ).

Game G3: In this game, the challenger simulates each proof and signature of
knowledge using the corresponding simulators. Since the proofs and signatures of
knowledge are perfectly zero-knowledge, we have:

Pr[A wins G2] = Pr[A wins G3] .

Game G4: This game is the same as G3 except that each time the adversary
sends a query (pkU, pkT,m,R, σ) to the oracle Otrace such that σ is valid, the
challenger retrieves (α, skU) ← SIG[(pkT,m,R, σ)] and computes S1 as follows,
using the same notation as in the description of the protocol:

S1 ←
c

pkαTrace
.

Since:
c

pkαTrace
=

c

gα·skTrace
=

c

hskTrace
,

we deduce that:
Pr[A wins G4] = Pr[A wins G5] .

At this step, the challenger does not need to know the secret key corresponding
to pkTrace for simulating the trace oracle Otrace.
Game G5: This game is the same as G4 except that each time the challenger
build a signature on a ring :
– for each public key pki = (eki, πi) in R = {pki}

n
i=1, if pki 6∈ Qreg, then it uses

the knowledge extractor on πi in order to retrieve ski such that pki = gski .
If the extraction fails, the challenger aborts the game and returns 0 with
probability 1/2.

– The challenger computes ci ← hski ·S2 instead of ci ← eki
α ·S2 (using the same

notation as in the description of the protocol). Note that hski = gα·ski = eki
α,

so this does not impact the simulation of the game.
Besides that, the challenger simulates the signatures as in the previous game.

Let n be the number of users, and qs be the number of call to the oracle Osign.
The challenger builds (qs + 1) signatures (one for each call to the oracle Osign
and one during the experiment). The probability that the challenger aborts the
game is the probability that the extractor fails on a valid proof, which is at most
(qs + 1) · n · εNIZK(λ). We deduce that:

|Pr[A wins G4]− Pr[A wins G5]| ≤ (qs + 1) · n · εNIZK(λ).

At this step, the challenger no longer needs to know the discrete logarithm of h
to build a valid signature except for computing c.

23

Let εEG(λ) be the advantage of the best algorithm that breaks the IND-CPA
security of the ElGamal encryption EG = (Gen,Enc,Dec). We claim that:

|Pr[A wins G5]− 1/2| ≤ εEG(λ).

We prove this claim by reduction. Assume that A has a non-negligible advantage
on the game G5. We will show how to build a PPT algorithm B that breaks the
IND-CPA security of ElGamal with a similar advantage. B receives the public key
pk. It simulates perfectly the game G5 to A except that it replaces ekT by pk and
skT by ⊥, and builds the signature σ ← Sign(pp, skUb , pkT,m,R ∪ {pkU0

, pkU1
})

as follows:
– B picks S2

$← G, sets S1,0 ← pk0
S2

and S1,1 ← pk1
S2

.
– B sends (S1,0, S1,1) to its challenger and receives the ciphertext e = (e1, e2),

which is the ElGamal encryption of S1,b for a random bit b.
– B sets h← e1 and c← e2.
– It sets SIG[(pkT,m,R, σ)]← ⊥

Besides that, the challenger simulates the signatures as in the previous game. We
observe that:

c = hskT · S1,b.

We also recall that the challenger aborts the game on the signature (m,R, σ), so
B will never use SIG[(pkT,m,R, σ)]. Finally, B perfectly simulates the game G5

and wins its IND-CPA attack with the same probability that A wins the game
G5, which concludes the proof of the claim.

Conclusion: Finally, we have:

εA(λ) ≤ (qr + qt + qs + 1) · n · εNIZK(λ) + εEG(λ).

We deduce that εA(λ) is negligible, which concludes the proof. ut

Lemma 6. If the NIZKP and the SoK are extractable and zero-knowledge, then
the protocol is non-frameable under the discrete logarithm assumption.

Proof. Let A be a PPT adversary that breaks the non-frameability of our scheme
with probability εA(λ). We will show how to use it to break the discrete loga-
rithm assumption. Let εNIZK(λ) be the maximum knowledge error among all the
non-interactive proofs and signatures of knowledge used in the protocol. We use
the following sequence of games:

Game G0: This game is the non-frameability experiment as described in Defini-
tion 11 on our protocol. We have:

εA(λ) = Pr[A wins G0]

Game G1: This game is similar to G0 except that the challenger sets an empty
dictionary SIG at the beginning of the experiment, and each time that the
challenger generates a signature σ for a tracer key pkT, a message m and a

24

ring R with the secret key skU, it stores the element α ∈ Z∗p (according to the
notation we use in the definition of the signature algorithm) and skU at the key
(pkT,m,R, σ) of the dictionary SIG:

SIG[(pkT,m,R, σ)]← (α, skU).

This modification does not alter the advantage of A:

Pr[A wins G0] = Pr[A wins G1]

Game G2: This game is similar to G1 except that each time that the challenger
verifies a valid signature σ on a message m and the ring R forged by A, it uses the
knowledge extractor on each proof of knowledge and each signature of knowledge
in σ (or the challenger retrieves the corresponding witness if it has previously
produced the same proof/signature during the game) in order to recover α and
skU, and stores the witness extracted from the signature of knowledge in the
dictionary at the key (pkT,m,R, σ):

SIG[(pkT,m,R, σ)]← (α, skU).

If one extraction returns a false witness, the challenger aborts the game and
returns 0 with probability 1/2. Let n be the number of users, and qr be the
number of call to the oracle Oreport. Each signature contains n proofs/signatures
of knowledge. The challenger verifies (qr + 1) signatures (one for each call to
the oracle Oreport and one during the experiment), so the probability that the
challenger aborts the game is the probability that the extractor fails on a valid
proof, which is at most (qr + 1) · n · εNIZK(λ). We deduce that:

|Pr[A wins G1]− Pr[A wins G2]| ≤ (qr + 1) · n · εNIZK(λ).

Game G3: Let (pkT,m,R, σ, pkU, Tr, ρt) be the values returned by the adversary.
Let n be the number of registered users (i.e., the number of queries to the oracle
Oreg), and let pki = (eki, πi) be the public key generated at the ith query. At

the beginning of the experiment the challenger picks θ
$← JnK. If pkθ 6= pkU, then

the challenger aborts the game and returns 0. We have that:

1

n
· Pr[A wins G2] = Pr[A wins G3] .

Game G4: Let (pkT,m,R, σ, pkU, Tr, ρt) be the values returned by the adversary.
This game is the same as G3 except that if ∃pk such that (pkT, pk,m,R, σ) ∈
Qsign, then the challenger aborts the game and returns 0.

We recall that if the challenger does not abort the game, then all the relations
proved by the zero-knowledge proofs and the signatures of knowledge are valid.

We set N ← |R|, and we parse R as
{
pk′i
}N
i=1

, pk′i as (ek′i, π
′
i) for all indexes i, Tr

as (S2, πRep), ρt as (S1, πρt), and σ as (h, c, (ci, π
′′
i)Ni=1, σM). Let i be the index of

the key ek′i such that ek′i = ekθ (we recall that pkθ = (ekθ, πθ) = (ekU, πU) = pkU,
otherwise the game would have been aborted). The proofs of knowledge πρt , πRep,
and {π′′i }Ni=1 ensure that there exists α such that h = gα and:

25

– ci = ek′αi · S2, so ci
ek′αi

= S2.

– c = ekαT · S1.

– For all j ∈ J2, NK, cj
cj−1

=
(

ek′j
ek′j−1

)α
.

We deduce that for all j ∈ J2, NK, cj
ek′αj

=
cj−1

ek′αj−1
, so for all j and j′ in J1, NK,

cj
ek′αj

=
cj′

ek′α
j′

. Since ci
ek′αi

= S2, we deduce that for all j ∈ J1, NK, we have
cj
ek′αj

= S2,

so cj = ek′αj · S2. The signature of knowledge σM ensures that there exists sk
such that:

∃j,

(
c · cj
ek′j

)
=
(
ekT · ek′j

)α
and ek′j = gsk

We observe that:(
c · cj
ek′j

)
=
(
ekT · ek′j

)α ⇔ (
ekαT · S1 · ek′αj · S2

ek′j

)
= ekαT · ek

′α
j ⇔ S1 · S2 = ek′j .

Since VerTrace(pp, pkT,m,R, σ, pkU, Tr, ρt) = 1, we deduce that S1 · S2 = ekU =
ekθ. Since S1 · S2 = ek′j , we deduce that ek′j = ekU. According to the correctness
of our protocol, since the challenger correctly simulates the oracle Osign, if ∃pk
such that (pkT, pk,m,R, σ) ∈ Qsign, then pk = pkU. In this case the challenger
aborts the game according to the non-frameability experiment. We deduce that:

Pr[A wins G3] = Pr[A wins G4] .

Game G5: In this game, the challenger simulates each proof and signature of
knowledge using the corresponding simulators. Since the proofs and signatures of
knowledge are perfectly zero-knowledge, we have:

Pr[A wins G4] = Pr[A wins G5] .

At this step, the challenger does not need to know the secret key corresponding
to pkθ for simulating the signature oracle Osign.

Game G6: This game is the same as G5 except that each time the adversary
sends a query (pkU, pkT,m,R, σ) to the oracle Oreport such that σ is valid and
pkθ = pkU, the challenger retrieves (α, skU)← SIG[(pkT,m,R, σ)] and computes
S2 as follows, using the same notation as in the description of the protocol:

S2 ←
cj
pkαU

.

Since:
cj
pkαU

=
cj

gα·skU
=

cj
hskU

,

we deduce that:

Pr[A wins G5] = Pr[A wins G6] .

26

At this step, the challenger does not need to know the secret key corresponding
to pkθ (which is its discrete logarithm) for simulating the signature oracle Osign
and the report oracle Oreport, so it never uses this secret key in the game G6.

Let εdl(λ) be the probability of the best algorithm that solves the discrete
logarithm problem. We claim that:

Pr[A wins G6] ≤ εdl(λ).

We prove this claim by reduction. Assume that A has a non-negligible probability
of winning the game G6. We will show how to build a PPT algorithm B that
breaks the discrete logarithm assumption with a similar probability. B receives
the group element X. It simulates perfectly the game G6 to A except that it
replaces ekθ by X and skθ by ⊥.

We recall that if the challenger does not abort the game, then all the relations
proved by the zero-knowledge proofs and the signatures of knowledge are valid.
Let (pkT,m,R, σ, pkU, Tr, ρt) be the values returned by the adversary. At the end

of the game, B sets N ← |R|, parses R as
{
pk′i
}N
i=1

, pk′i as (ek′i, π
′
i) for all indexes

i, Tr as (S2, πRep), ρt as (S1, πρt), and σ as (h, c, (ci, π
′′
i)Ni=1, σM). Let i be the

index of the key ek′i such that ek′i = ekθ (we recall that ekθ = ekU, otherwise the
game would have been aborted). The proofs/signatures of knowledge πρt , πRep,
{π′′i }Ni=1, and σM ensure that there exists α and sk such that h = gα and:
– ci = ek′αi · S2.
– c = ekαT · S1.

– For all j ∈ J2, NK, cj
cj−1

=
(

ek′j
ek′j−1

)α
.

– ∃j,
(
c·cj
ek′j

)
=
(
ekT · ek′j

)α
and ek′j = gsk.

As it is shown on the game G4, since VerTrace(pp, pkT,m,R, σ, pkU, Tr, ρt) = 1,
we can deduce that S1 · S2 = ekU = ekθ = X. Since S1 · S2 = ek′j and ek′j = gsk,

we deduce that X = gsk, so sk is the discrete logarithm of X.
B retrieves (α, sk)← SIG[(pkT,m,R, σ)]. If sk =⊥, then σ has been produced

by the oracle Osign on input (pkU, pkT,m,R), so (pkT, pkU,m,R, σ) ∈ Qsign, and
B aborts as in the real game G5. Else, according to game G4, for all pk we have
(pkT, pk,m,R, σ) /∈ Qsign, so the challenger has never produced the signature of
knowledge σM on the message M = (pp, pkT,m,R, h, c, (ci, π

′′
i)ni=1) during the

experiment, which implies that sk has been extracted from σM .
Finally, B returns sk. It perfectly simulates the game G6 to A, and if A

wins the simulated game G6, then B returns the discrete logarithm of X, which
concludes the proof of the claim.

Conclusion: Finally, we have:

εA(λ) ≤ n · εdl(λ) + (qr + 1) · n · εNIZK(λ).

We deduce that εA(λ) is negligible, which concludes the proof. ut

Lemma 7. If the NIZKP and the SoK are extractable, then the protocol is sound.

27

Proof. We claim that if the adversary returns two (pkT,m,R, σ, pkUi , Tri, ρti ,
pkUj , Trj , ρtj) such that VerTrace(pp, pkT,m,R, σ, pkUi , Tri, ρti) = VerTrace(pp,
pkT,m,R, σ, pkUj , Trj , ρtj) = 1 and pkUi 6= pkUj , then it produces a valid
proof/signature of knowledge on a false statement (which appends with negligible
probability since the proofs/signatures are extractable). To prove this claim, we
prove its contraposition: if all the valid proofs/signatures of knowledge are on
true statements and VerTrace(pp, pkT,m,R, σ, pkUi , Tri, ρti) = VerTrace(pp, pkT,
m,R, σ, pkUj , Trj , ρtj) = 1, then pkUi = pkUj .

We set N ← |R|, and we parse R as {pkl}
N
l=1, pki as (ekl, πl) for all indexes

l, Tri as (S2,i, πRep,i), ρti as (S1,i, πρti), Trj as (S2,j , πRep,j), ρtj as (S1,j , πρtj),

and σ as (h, c, (cl, π
′
l)
N
l=1, σM). Since VerTrace(pp, pkT,m,R, σ, pkUi , Tri, ρti) =

VerTrace(pp, pkT,m,R, σ, pkUj , Trj , ρtj) = 1, the proofs/signatures of knowledge

(π′l)
N
l=1, σM , πRep,i, πRep,j , πρti , and πρtj ensure that:

– There exists α such that h = gα and for all l ∈ J2, NK:

cl
cl−1

=

(
ekl

ekl−1

)α
,

and there exists pkd = (ekd, πd) such that:

c · cd
ekd

= (ekT · ekd)α .

– There exists i′ such that pki′ = pkUi ,
ci′
S2,i

= hski′ and c
S1,i

= hskT .

– There exists j′ such that pkj′ = pkUj ,
cj′

S2,j
= hskj′ and c

S1,j
= hskT .

Assume, without loss of generality, that i′ < j′. We deduce:
– c

S1,i
= hskT and c

S1,j
= hskT ⇒ S1,i = S1,j .

– ci′
S2,i

= hski′ and
cj′

S2,j
= hskj′ ⇒ S2,i = ci′

hsk
i′

and S2,j =
cj′

h
sk
j′

, so:

S2,i =
ci′

hski′
=

ci′

gα·ski′
=

ci′

ekαi′
,

S2,j =
cj′

hskj′
=

cj′

gα·skj′
=

cj′

ekαj′
.

– For all l ∈ J2, NK:

cl
cl−1

=
(

ekl
ekl−1

)α
⇒
∏j′

l=i′
cl
cl−1

=
∏j′

l=i′

(
ekl

ekl−1

)α
⇒ cj′

ci′
=
(

ekj′

eki′

)α
⇒ S2,i = S2,j

Finally, ekUi = S1,i · S2,i = S1,j · S2,j = ekUj , so pkUi = pkUj , which concludes
the proof of the claim.

Conclusion: Let A be a PPT adversary against the reporter anonymity of our
scheme with advantage εA(λ). Let εNIZK(λ) be the maximum knowledge error
among all the non-interactive proofs and signatures of knowledge used in the
protocol. We have:

εA(λ) ≤ εNIZK(λ).

We deduce that εA(λ) is negligible, which concludes the proof. ut

28

Lemma 8. If the NIZKP and the SoK are extractable and zero-knowledge, then
the protocol is reporter anonymous.

Proof. Let A be a PPT adversary against the reporter anonymity of our scheme
with advantage εA(λ). Let εNIZK(λ) be the maximum knowledge error among all
the non-interactive proofs and signatures of knowledge used in the protocol. We
use the following sequence of games:

Game G0: This game is the reporter anonymity experiment as described in
Definition 13 on our protocol. We have:

εA(λ) = |Pr[A wins G0]− 1/2|

Game G1: This game is similar to G0 except that the challenger sets an empty
dictionary SIG at the beginning of the experiment, and each time that the
challenger generates a signature σ for a tracer key pkT, a message m and a
ring R with the secret key skU, it stores the element α ∈ Z∗p (according to the
notation we use in the definition of the signature algorithm) and skU at the key
(pkT,m,R, σ) of the dictionary SIG:

SIG[(pkT,m,R, σ)]← (α, skU).

This modification does not alter the advantage of A:

Pr[A wins G0] = Pr[A wins G1]

Game G2: This game is similar to G1 except that each time that the challenger
verifies a valid signature σ on a message m and the ring R forged by A, it uses the
knowledge extractor on each proof of knowledge and each signature of knowledge
in σ in order to recover α and skU, and stores the witness extracted from the
signature of knowledge in the dictionary at the key (pkT,m,R, σ):

SIG[(pkT,m,R, σ)]← (α, skU).

If one extraction returns a false witness, the challenger aborts the game and
returns 0 with probability 1/2. Let n be the number of users, and qr be the
number of call to the oracle Oreport. Each signature contains n proofs/signatures
of knowledge. The challenger verifies qr signatures, so the probability that the
challenger aborts the game is the probability that the extractor fails on a valid
proof, which is at most qr · n · εNIZK(λ). We deduce that:

|Pr[A wins G1]− Pr[A wins G2]| ≤ qr · n · εNIZK(λ).

At this step, if the challenger does not abort the game, then all the proofs
and signatures prove valid statements. Let σ = (h, c, (ci, π

′
i)
N
i=1, σM) be a valid

signature on a message m and the ring R = {pki}
N
i=1, where pki = (eki, πi) for

all indexes i. The proofs of knowledge {π′i}Ni=1 ensure that there exists α such
that h = gα and for all There exists α such that h = gα and for all i ∈ J2, NK:

ci
ci−1

=

(
eki

eki−1

)α
.

29

We deduce that for all i ∈ J2, NK:

i∏
j=2

cj
cj−1

=

i∏
j=2

(
ekj

ekj−1

)α
⇒ ci

c1
=

(
ekj
ek1

)α
⇒ ci

ekαi
=

c1
ekα1

Since for all i ∈ JNK, ekαi = gski·α = hski , we deduce that:

ci
hski

=
c1
hsk1

.

Game G3: In this game, the challenger simulates each proof and signature of
knowledge using the corresponding simulators. Since the proofs and signatures of
knowledge are perfectly zero-knowledge, we have:

Pr[A wins G2] = Pr[A wins G3] .

Game G4: This game is the same as G3 except that instead of computing Rep←
Report(pp, pkT, skUb ,m,R, σ), the challenger retrieves (α, skU) ← SIG[(pkT,m,
R, σ)], parses R as {pki}

n
i=1 and each pki as (eki, πi), finds the index j such

that pkj = pkUb and computes S2 as follows, using the same notation as in the
description of the protocol:

S2 ←
c1
ekα1

.

Since:
cj
hskj

=
c1
hsk1

=
c1

gα·sk1
=

c1
ekα1

,

we deduce that:
Pr[A wins G3] = Pr[A wins G4] .

In G4, the bit b is ever used by the challenger, which implies that:

Pr[A wins G4] = 1/2.

Conclusion: Finally, we have:

εA(λ) ≤ qr · n · εNIZK(λ).

We deduce that εA(λ) is negligible, which concludes the proof. ut

30

