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Abstract. We give a construction of an efficient one-out-of-many proof system, in which a prover
shows that he knows the pre-image for one element in a set, based on the hardness of lattice problems.
The construction employs the recent zero-knowledge framework of Lyubashevsky et al. (Crypto 2022)
together with an improved, over prior lattice-based one-out-of-many proofs, recursive procedure, and
a novel rejection sampling proof that allows to use the efficient bimodal rejection sampling throughout
the protocol.
Using these new primitives and techniques, we give instantiations of the most compact lattice-based
ring and group signatures schemes. The improvement in signature sizes over prior works ranges between
25% and 2X. Perhaps of even more significance, the size of the user public keys, which need to be stored
somewhere publicly accessible in order for ring signatures to be meaningful, is reduced by factors ranging
from 7X to 15X. In what could be of independent interest, we also provide noticeably improved proofs
for integer relations which, together with one-out-of-many proofs are key components of confidential
payment systems.
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1 Introduction

Zero-knowledge proofs are the cornerstone of privacy-enabling cryptography and the ones based on lattice
assumptions appear to currently be the most practical potentially quantum-resistant variants. The funda-
mental hard problem upon which lattice cryptography is based on is finding a vector s⃗ with a small norm
satisfying As⃗ “ t⃗ mod p. Rapid recent progress in the area resulted in the proof size for proving pre-image
knowledge in this basic equation to be reduced from being on the order of megabytes [LNSW13] to as short
as a dozen kilobytes [YAZ`19, ESLL19, BLS19, ALS20, ENS20, LNS21a, LNP22].

A very useful extension of proving knowledge of a pre-image is proving knowledge of a pre-image for
one element in a set. That is, given a set tt⃗1, . . . , t⃗mu, one would like to prove knowledge of a short vector
s⃗ such that As⃗ “ ti mod p without leaking any information about the s⃗ or the i. This type of a proof
is related to concepts such as set membership proofs and one-out-of-many proofs [GK15].3 These proofs
have applications to ring signatures, group signatures, confidential transactions, anonymous credentials, and
various other privacy-enhancing cryptographic primitives.

In this work, we improve upon existing lattice-based one-out-of-many proofs and, based on this new
building block, construct the most efficient quantum-safe ring and group signatures. Our improvement uses
the high-level idea from the recursive algorithm of [LNS21b], but using a different and simpler recursive step
which is made possible in part by being able to prove the base case using the recent framework for zero-
knowledge proofs [LNP22]. We also give a general improvement to the rejection sampling step present in most
lattice-based zero-knowledge proofs. Specifically, we show that when using the zero-knowledge framework
from [LNP22], which gives the most efficient linear-size proofs for quadratic relations, one can use the
more efficient bimodal rejection sampling procedure [DDLL13] everywhere. In some cases, this requires an

3 The original formal definition of a one-out-of-many proof from [GK15] is more restricted in that As⃗ is a commitment
to 0 rather than just an evaluation of a one-way function on s⃗. But we do not need to restrict to this definition in
this work.



extra short commitment, but in the case of the one-out-of-many proof given in the current work, using the
more efficient rejection sampling step comes completely for free and noticeably reduces the proof size. We
additionally show how to apply this bimodal rejection technique, together with the framework from [LNP22],
to create more efficient proofs for integer relations such as addition and multiplication. Like one-out-of-many
proofs, proving integer relations is a component of confidential transaction systems, and we believe that our
improved tools can be used to make such systems (e.g. [LNS21b, ESZ21]) more efficient.

1.1 Results and Techniques

One-out-of-many proofs. The general equation for a lattice-based one-out-of-m proof can be written as

T v⃗ “ As⃗ mod p (1)

where v⃗ is an m-dimensional unit vector (i.e. a vector consisting of one 1 and the rest zeroes) and s⃗ is a
pre-image to the column in T chosen by the unit vector. For our end application, we would like to prove that
s⃗ has a small norm, but we will give a proof system for slightly more general statements, as the generality is
useful in the recursive nature of the protocol. Given a commitment to a vector v⃗ and s⃗, we would like to be
able to prove that v⃗ and s⃗ satisfy (1), v⃗ is a unit vector, and s⃗ additionally satisfies some arbitrary quadratic
relations fips⃗q “ 0.4 In applications to group and ring signatures, the dimension of s⃗ is quite small, and so
it is enough to only strive for proofs that are linear in the input size. Note that to keep the size of the proof
linear, we still need it to be logarithmic in m since a unit vector of dimension m only has entropy logm.

The proof of knowledge of (1) follows the commit-and-prove paradigm. That is, we commit to the secrets
v⃗ and s⃗ and then prove that the committed messages satisfy the requisite relations. Keeping the proof linear
in logm is the main technical challenge in building a one-out-of-many proof since one can’t simply commit
and open the naive m-dimensional representation of v⃗. Instead, one can write the unit vector v⃗ as a tensor
product of a logarithmic number of smaller dimensional unit vectors, commit to these unit vectors, and then
proceed to recursively prove the relation.

We begin with the base case – proving the knowledge of a unit vector v⃗ P t0, 1ud (we can think of d being
a constant with respect to m) and a vector s⃗ satisfying T v⃗ “ As⃗ where fips⃗q “ 0 for arbitrary quadratic
functions fi. The most efficient known proof for this statement directly follows from the recent framework
of [LNP22] where one commits to the vector v⃗ and s⃗ using the “ABDLOP” commitment scheme defined
in that work (it is a combination of the Ajtai [Ajt96] and BDLOP [BDL`18] commitments – see (11) and
Section 2.6) and then proves that the committed values satisfy

T v⃗ “ As⃗ mod p, (2)

and fips⃗q “ 0, and }v⃗} “ 1.5

Now suppose, by the inductive hypothesis, that having a commitment to s⃗1 and (some representation of)
v⃗1 P t0, 1um, we are able to prove that they satisfy the linear relation

T 1v⃗1 “ A1s⃗1 mod p (3)

as well as the quadratic relations fips⃗
1q “ 0 and that v⃗1 is a unit vector. We will now show how to prove the

relation in (3) for an arbitrary unit vector in t0, 1ud¨m. First, observe that any unit vector in t0, 1ud¨m can be
written as v⃗b v⃗1 P t0, 1ud¨m, where v⃗ and v⃗1 are unit vectors in t0, 1ud and t0, 1um, respectively. So by writing
an arbitrary d ¨m-dimensional unit vector as v⃗ b v⃗1, we would like to prove (when having a commitment to
v⃗, v⃗1, s⃗) that

T pv⃗ b v⃗1q “ As⃗ mod p, (4)

4 Being able to prove quadratic relations, of course also allows one to prove that the ℓ2-norm of s⃗ is smaller than
some bound.

5 This only proves that v⃗ is either a unit vector or a negative unit vector. But this is fine because proving knowledge
of v⃗, s⃗ satisfying ˘T v⃗ “ As⃗ is equivalent to (1).
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that fips⃗q “ 0, and that v⃗, v⃗1 are unit vectors. To prove (4), we will prove that

xφ⃗i, T pv⃗ b v⃗1q ´As⃗y “ 0⃗ mod p (5)

where φ⃗i for i “ 1, . . . , l are randomly-chosen challenge vectors in Zn
p . Proving one such equation for a

randomly-chosen φ⃗i would result in the proof having soundness error p´1, and so we would like to prove l
such equations in order to achieve the desired soundness error of p´l.

To prove (5) for one of l different φ⃗i, we decompose the matrix T as T “ rT1 . . . Tds where Ti P Znˆm
p ,

and observe that by algebraic manipulation, we can rewrite

xφ⃗i, T pv⃗ b v⃗1q ´As⃗y “ xv⃗, w⃗iy ´ φ⃗T
i As⃗ mod p, (6)

where

w⃗i “

»

–

φ⃗T
i T1
¨ ¨ ¨

φ⃗T
i Td

fi

fl ¨ v⃗1 P Zd
p. (7)

Each of the l different φ⃗i leads to an equation of the above form and the prover thus commits to w⃗1, . . . , w⃗l

and then using the inductive hypothesis from (3), he can show that

»

–

w⃗1

¨ ¨ ¨

w⃗l

fi

fl “ T 1 ¨ v⃗1 mod p (8)

where the matrix T 1 is defined as

T 1 “

»

—

—

—

—

—

—

—

—

–

φ⃗T
1 T1
¨ ¨ ¨

φ⃗T
1 Td
¨ ¨ ¨

φ⃗T
l T1
¨ ¨ ¨

φ⃗T
l Td

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Zl¨dˆm
p . (9)

The inductive hypothesis also allows him to prove that fips⃗q “ 0 and additionally that (the quadratic
functions) xv⃗, w⃗iy´φ⃗T

i As⃗ “ 0. To see that the inductive hypothesis is applicable to proving these statements,
we define the vector s⃗1 in (3) as

s⃗1 “

»

–

w⃗
s⃗
v⃗

fi

fl , where w⃗ “

»

–

w⃗1

¨ ¨ ¨

w⃗l

fi

fl (10)

and the matrix A1 as r I | 0 | 0 s, and thus T 1v⃗1 “ A1s⃗1 “ w⃗. Since we assumed to have commitments to v⃗1

and we created commitments to all parts of s⃗1, we can prove (8) and the aforementioned quadratic relations
involving s⃗, w⃗, and v⃗. The main point is that by additionally committing to w⃗ and v⃗, we are able to use the
inductive hypothesis to prove relations where the unit vector is d times longer.

The commitment scheme used in [LNP22] allows to naturally commit to polynomials in the ring Rp “

ZprXs{pXd ` 1q where, for optimal efficiency, d “ 64 or 128. For efficiency of the protocol, we would then
like to pack the l commitments to w⃗i P Zd

p into just one vector Zd
p, which can then be represented by one

polynomial in Rp. We can do this in the trivial way as long as d ¨ l ď d. Then to compute inner products
xv⃗, w⃗iy, we simply put the vector v⃗ P t0, 1ud into a vector Zd

p that contains v⃗ at the top and has the rest of
its coefficients set to 0. Then xv⃗, w⃗iy is the inner product of an appropriate shift of the vector containing the
v⃗ and the vector containing the w⃗i. A downward shift of a committed vector in Zd

p whose bottom coefficients
are all 0 is simply a multiplication of the commitment by the polynomial X in Rp, which can be performed
by the verifier.

Thus proving T ¨ pv⃗b v⃗1q “ As⃗, where v⃗b v⃗1 is a d ¨m dimensional unit vector, requires the commitments
needed for proving (3), an additional commitment to v⃗, and one more commitment to the w⃗i. Since the base
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case requires one commitment to v⃗ (and a commitment to s⃗), the total number of commitments to elements
in Rp for proving (1) when v⃗ is an m “ dk ¨ d-dimensional unit vector is 2k ` 1 (and a commitments to
s⃗), which is logarithmic in m and linear in the dimension of s⃗. In particular, we write the unit vector v⃗ in
(1) as v⃗1 b . . . b v⃗k b v⃗k`1 where v⃗1, . . . , v⃗k P t0, 1ud and v⃗k`1 P t0, 1ud. Then proving (1), that v⃗i are unit
vectors, and fips⃗q “ 0 requires creating an ABDLOP commitment to the vectors v⃗i, s⃗, and then also creating
a commitment to the above-described vector w⃗i at each step of the proof.

Bimodal Gaussian Rejection Sampling Everywhere. The framework of [LNP22] uses the newly-
defined ABDLOP commitment scheme to commit to a low-norm polynomial vector s1 and an arbitrary-norm
polynomial vector m. To do this, one generates a low-norm randomness s2 and outputs the commitment

„

tA
tB

ȷ

:“

„

A1

0

ȷ

s1 `

„

A2

B

ȷ

s2 `

„

0
m

ȷ

mod q.6 (11)

Proving knowledge of s1 and m is done using the “Fiat-Shamir with Aborts” technique [Lyu09, Lyu12]
where, upon generating low-norm masking vectors y1 and y2, computing w “ A1y1 ` A2y2, and receiving
a challenge polynomial c, the prover creates the responses z1 “ y1 ` cs1 and z2 “ y2 ` cs2 which satisfy

A1z1 ` A2z2 “ ctA ` w mod q. (12)

He now needs to perform rejection sampling on the zi in order to not leak information about the si. The
generic setup from [Lyu12] that results in the smallest-norm zi being sent involves yi being sampled from
a discrete Gaussian distribution while standard deviation is approximately a factor of 12 larger than }csi}.
With the appropriate rejection sampling step, this results in the polynomial vectors zi also being distributed
as discrete Gaussians with standard deviation 12 ¨ }csi}.

It was shown in [DDLL13] that if one first chooses a secret bit b P t´1, 1u and creates zi “ yi ` bcsi
(which is a bimodal distribution with two peaks at ˘csi), then one can choose the yi from a discrete Gaussian
distribution with standard deviation }csi}{

?
2 and via appropriate rejection sampling, the standard deviation

of zi ends up being }csi}{
?
2 as well, which is around 17X smaller than that in the previous paragraph.

The outputs zi having a smaller standard deviation means that the proof size will be noticeably smaller,
the modulus q can be set smaller as well, which in turn results in a smaller commitment size. The main
technical difficulty with using the bimodal distribution is that the bit b needs to remain secret and the
zi need to satisfy the verification equation (12) irrespective of the b, which implies that we need to have
A1bs1 `A2bs2 “ ctA mod q. This set-up exists in the special case of the BLISS signature scheme [DDLL13]
where the modulus is set to be even, and one can also force it by modifying the equation being proved as
in [TWZ20], but these techniques would extol a high extra cost on the output size of the zero-knowledge
proofs.

In our work, we show how one can use the bimodal rejection sampling technique for masking the secret
vectors s1 and s2 in (11) either completely for free, or at a small increase in the commitment size. We note
that using a rejection sampling procedure that had similar properties as bimodal rejection sampling was
already employed in [LNS21a] on the randomness vector s2. The rejection step there allowed for a smaller
standard deviation at the cost of leaking one bit of s2. This leakage is not a problem because the commitment
scheme from (11) (and the related commitment in [LNS21a]) is used inside a commit-and-prove approach to
constructing zero-knowledge proofs. In particular, when trying to prove some relation (e.g. (1)), the prover
commits to the secret values (s⃗ and v⃗ in the case of (1)) using the commitment in (11) and proves relations
about s1 and m, which in turn implies the initial relation he set out to prove. The important part is that
the commitment scheme is only used once – if the prover is to perform another proof, he will create another
commitment with different randomness s2. Thus leaking a small part of the randomness s2 is not a problem

6 We use modulus q here instead of p in the previous section to signify that the commitment scheme modulus need
not be (and is usually not, though they could be related) the same as the modulus that one wants to prove relations
over.
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as long as the Module-LWE problem upon which the hiding of the commitment scheme is based on remains
hard.

Our work improves on [LNS21a] in two ways. First, we show that directly using the bimodal rejection
sampling on z2 (despite z2 not being distributed according to a bimodal distribution) only leaks a few more
(i.e. log q) bits of s2 but ends up saving a factor of 2 in the rejection sampling probability. Leaking log q bits
still keeps the entropy of s2 very high. This problem has been investigated both theoretically and in practice
[AP12, ASA16, DDGR20, BJRW21], and it does not seem that the LWE problem is weakened if a few bits
of the randomness are leaked. The more interesting improvement is in also being able to use the bimodal
rejection sampling on z1. Here one cannot leak anything because s1 is where the actual secret message is
stored.7 The new idea is to create a commitment to bs1, for a random b P t´1, 1u instead of to s1. We
can show that creating such a commitment and then outputting z1 “ y1 ` cbs1 after applying the bimodal
rejection sampling does not leak anything about s1 or b as long as the commitment is only used once.

There is, however, an obvious problem with committing to bs1 – the relation that one may want to prove
about the message committed to in s1 may not hold true when the messages are negated. There are two
cases here – the simple case is that what we would like to prove still holds true for the negated messages.
In our one-out-of-many proof, we commit to unit vectors v⃗1, . . . , v⃗k`1 and a low-norm vector s⃗ such that
v⃗1 b . . . b v⃗k`1 “ v⃗ such that (1) is satisfied. Note that if we’re tensoring an even number of v⃗i, then
Â

i

v⃗i “
Â

i

´v⃗i, and also }v⃗i} “ 1 “ } ´ v⃗i} and }s⃗} “ β “ } ´ s⃗}.8 Therefore proving (1) as well as }v⃗i} “ 1

and }s⃗} “ β can be done regardless of whether we committed to the positive or negative of these values.
In the case that we would like to prove some relations on some secret vector s⃗ which are not sign-

independent, we commit to a bit b P t´1, 1u in the m part of the ABDLOP commitment and to s⃗1 “ bs⃗,
and then prove knowledge of a vector s⃗1 and a bit b P t´1, 1u satisfying fipbs⃗

1q “ 0. Very importantly,
note that fipbs⃗

1q is still a quadratic equation because all the quadratic terms in fi remain the same (since
multiplication by b P t´1, 1u does not change them), and it is only the linear terms that get multiplied by
b, thus becoming quadratic. We then prove that if the bit b is chosen randomly in t´1, 1u, then one can use
the bimodal rejection sampling on z1 “ y1 ` cbs1 without leaking anything about the secret s1.

Applications to Ring and Group Signatures. Being able to prove (1) immediately gives us a construc-
tion of a ring signature scheme. In particular, every user has a secret/public key pair s⃗i, t⃗i, where }s⃗i} is small
and As⃗i “ t⃗i mod p. Given a matrix T whose columns are the public keys of a group of users, the signature
of user i of a message µ is a zero-knowledge proof of knowledge (with µ being used as an input into the
random oracle of the Fiat-Shamir transform) of a unit vector v⃗ and a short vector s⃗ satisfying (1). The full
details are given in Appendix C. In Figure 1, we compare an instantiation of our ring signature with other
known potentially quantum-safe ones. Once the group size within which one wishes to hide is larger than a
few hundred members, the size of our signature is the smallest, even including the isogeny-based construction
of [BKP20]. Additionally, the size of the public key of our ring signatures can be as small as 128 bytes per
user, which is a significant reduction over all prior lattice-based ring signatures.9 Having small public keys
is important because the public keys of all users need to be stored somewhere accessible by everyone who
wishes to use the ring signature.

The reason for the significant reduction in the public key size over the previous lattice schemes is that
we were able to adapt the new framework from [LNP22] as the base case of our recursive one-out-of-many

7 One might be tempted to put the secret message into the m part of the commitment, which does not leak even if
there is leakage in s2, but this results in a much less efficient commitment scheme because the dimension of the
commitment grows linearly with the dimension of m, whereas s1 has no effect on the size of the commitment. See
Section 2.6.

8 If we want to prove that }s⃗} ď β, then we could create another commitment to a vector s⃗1
P Rq such that

}s⃗}
2

` }s⃗1
}
2

“ β2 – the existence of such an s⃗1 is guaranteed by the four squares theorem.
9 It is of course possible to reduce the public key size of any scheme by hashing it as pk1

“ Hppkq for some
cryptographic hash function H with the resulting pk1 being as small as 32 bytes. This technique is fine for regular
signatures, where one can reveal pk as part of the signature; but ring signatures will require a zero-knowledge proof
that pk1

“ Hppkq, which will make the signatures orders of magnitude larger and slower.
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sig. sizes asymptotic hardness (user) public
for N : sig. size assumption key size

26 212 221

Raptor [LAZ19] 81 5161 – OpNq NTRU 0.9
DualRing-LB [YEL`21] 6 106 – OpNq MSIS, MLWE r2.8, 3.4s

Falafl [BKP20] 32 35 39 OplogNq MSIS, MLWE 1.9
MatRiCT [EZS`19] 31 59 148 Oplog1.7 Nq MSIS, MLWE r3.4, 22.7s

MatRiCT+ [ESZ21] 11 18 40p?q Oplog1.7 Nq MSIS, MLWE 3
SMILE [LNS21b] 18 19 22 OplogNq MSIS, E-MLWE 2
Calamari [BKP20] 8 14 23 OplogNq CSIDH-512 0.06

This Work 13 14 16 OplogNq MSIS, E-MLWE 0.13

Fig. 1: Comparison of the different post-quantum ring signature schemes with approximately 128 bits of security.
Sizes from previous constructions are either taken from the corresponding prior work or from the recent survey by
Buser et al. [BDE`22]. All the values are given in KB. Here, N is the size of the ring. The signatures sizes for
[ESZ21, LNS21b] only approximately correspond to the ring sizes (e.g. 18KB signature size is for the ring of 210 users
and not 212). For DualRing-LB and MatRiCT (and MatRiCT+) the public key size grows in the number of users.
For MatRiCT+, the public key size for the ring of size 1024 is provided. Further, we extrapolate the signature size
for MatRiCT+ with 221 users from the smaller examples and from MatRiCT. In our construction, we rely on the
Extended-MLWE problem introduced in Definition 3.2. Note that this is a different version of the E-MLWE problem
compared to the one in [LNS21a] which is used in SMILE [LNS21b] (see Section 3.1 for more details).

proof. In prior ring signatures (e.g. [EZS`19, ESZ21, LNS21b]) the signer had knowledge of v⃗ and s⃗ satisfying
(1), but for efficiency would only prove knowledge of an s⃗1 and an additional low-norm polynomial c with
}s⃗1} " }s⃗} satisfying T v⃗ “ cAs⃗1 mod p (where the right-hand side operations are over a polynomial ring
Rp.) Being able to prove knowledge of a vector that has the exact norm of s⃗ and not have an additional
multiplication by c allows us to use a much smaller modulus p, which in turn also allows to reduce the
number of rows in A. The public key size can, in fact, be essentially as small as the outputs in the hash
function SWIFFT [LMPR08].10

One can construct group signatures in a somewhat similar manner as ring signatures. A technique em-
ployed in [EZS`19, ESZ21] has the public key of each member stored in the matrix T , as in the ring signature,
and the secret key of user i are the v⃗ and s⃗ from (1). The keys are generated by choosing a small-norm ran-
dom s⃗i and then putting As⃗i “ t⃗i into the public matrix T . To sign, the group member does the same
thing as in the ring signature (with an additional encryption and proof required by the group signature).
Our group signature works in the same fashion except that the secret key / public key pairs are generated
by first generating t⃗i “ Hpiq, for some cryptographic hash function H, and then using a trapdoor for the
matrix A to generate a short s⃗i such that As⃗i “ t⃗i. The main advantage of generating the keys in this
manner is that the public key size no longer needs to be linear in the number of group members, and can just
consist of the matrix A (since everyone can now generate T themselves). The disadvantage is that using a
trap-door sampler to generate s⃗i results in }s⃗i} being larger. But because our one-out-of many proof system
can prove exact norms, the proof size does not increase by too much. Using GPV-type trapdoor sampling
[GPV08, DP16] along with an optimized NTRU trapdoor [HHGP`03, DLP14] and the parameters used in
the Falcon signature scheme [FHK`20], we give an instantiation (in Appendix E) of a lattice-based group
signature scheme with the smallest public key and signature sizes (see Figure 2). The only exception when
one would want to use a different scheme is in the case that the group sizes are very large – in that case
[LNPS21, LNP22] has an advantage over all others in the table due to the fact that the running time for
signature generation and verification are independent of the group size, rather than linear.

10 If we make p too small, then the signature size will increase because a smaller p requires more “garbage terms”
in the zero-knowledge proof to increase soundness. In our parameter settings, we chose a particular compromise
between the public key size and signature size, but one could make the public key size even smaller at the expense
of a few extra kilobytes in the signature size.
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signature sizes asymptotic anonymity master public
for N : sig. size key size

26 210 221

[LNPS21, LNP22] 90 90 90 Op1q CPA 48
[BDK`21][Lattice] 89 91 96 OplogNq CCA 2.9 ¨ pN ` 1q

MatRiCT [EZS`19] 34 60 148 Oplog1.7 Nq CPA r3.8, 24s ¨ N
MatRiCT+ [ESZ21] 12 19 45p?q Oplog1.7 Nq CPA 3 ¨ N
[BDK`21][Isogeny] 6.6 9.0 15.5 OplogNq CCA 0.06 ¨ pN ` 1q

This Work 17 18 20 OplogNq CPA 3.2

Fig. 2: Comparison of different post-quantum group signature with approximately 128 bits of security. All the values
are given in KB. Here, N denotes the size of the group. We note that the schemes from [LNPS21, LNP22] not only do
offer constant size signatures but also enjoy signing and verification complexity independent of the group size N which
is not the case for all the other works (including ours). Further, the constructions in [BDK`21, EZS`19, ESZ21] are
dynamic which results in the linear public key size in the number of users N . For MatRiCT+, the public key size for
the group of size 1024 is provided. Since the signature size for MatRiCT+ was not explicitly provided for group size
221, we set the value to be three times smaller than for MatRiCT which seems to be the case for smaller examples.
Finally, we remark that our scheme can achieve CCA anonymity by following the Naor-Yung paradigm [NY90], i.e.
encrypting the same message under two different public keys and adding a NIZK proof that both ciphertext encrypt
the same message. We estimate that with this modification our group signature sizes will be around 30KB.

Other Applications. In addition to ring and group signatures, lattice-based one-out-of-many proofs have
recently found applications in the constructions of confidential transaction protocols [EZS`19, LNS21b,
ESZ21]. These constructions also used other primitives, notably proofs of addition that were used to make
sure that the amounts in the transactions match up. As a side contribution, in Appendix D, we also show
how to use the new framework of [LNP22] in conjunction with the bimodal rejection sampling technique to
construct more efficient proofs of integer addition and multiplication, which improve upon the constructions
from [LNS20, ESZ21] that are used in the aforementioned instantiations. We believe that the improved
one-out-of-many proof and proof of addition from this paper should noticeably shorten the confidential
transaction proof sizes. We leave the integration of these tools as well as the full implementation of the
confidential transaction system to future work.

Acknowledgements. We would like to thank the anonymous reviewers for useful feedback. This work is
supported by the EU H2020 ERC Project 101002845 PLAZA.

2 Preliminaries

2.1 Notation

Denote Zp to be the ring of integers modulo p. Let q “ q1 ¨ . . . ¨ qn be a product of n odd primes where
q1 ă q2 ă . . . ă qn. Usually, we pick n “ 1 or n “ 2. We write v⃗ P Zm

q to denote vectors over a ring Zq.
Matrices over Zq will be written as regular capital letters. By default, all vectors are column vectors. We
write v⃗||w⃗ for a usual concatenation of v⃗ and w⃗ (which is still a column vector). For v⃗, w⃗ P Zk

q , v⃗ ˝ w⃗ is the
usual component-wise multiplication. For simplicity, we denote u⃗2 “ u⃗ ˝ u⃗. We write x Ð S when x P S is
sampled uniformly at random from the finite set S and similarly x Ð D when x is sampled according to the
distribution D. Further, denote rns :“ t1, . . . , nu.

2.2 Cyclotomic Rings

For a power of two d and a positive integer p, denote R and Rp respectively to be the rings ZrXs{pXd ` 1q

and ZprXs{pXd ` 1q. Lower-case letters denote elements in R or Rp and bold lower-case (resp. upper-case)
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letters represent column vectors (resp. matrices) with coefficients in R or Rp. For a polynomial f P Rp,

denote f⃗ P Zd
q to be the coefficient vector of f . By default, we write its i-th coefficient as its corresponding

regular font letter subscript i, e.g. fd{2 P Zp is the coefficient corresponding to Xd{2 of f P Rp. For the

constant coefficient, however, we will denote f̃ :“ f0 P Zp.
The ring R has a group of automorphisms AutpRq that is isomorphic to Zˆ

2d. Let σi P AutpRqq be defined
by σipXq “ Xi. For readability, we denote for an arbitrary vector m P Rk:

σipmq :“ pσipm1q, . . . , σipmkqq

and similarly σipRq for any matrix R. When we write xu,vy P Z for u,v P Rk, we mean the inner product
of their corresponding coefficient vectors.

Suppose each pqiq splits into 2 prime ideals of degree d{2 in R. This means Xd ` 1 ” φ0φ1 pmod qiq
with irreducible polynomials φj of degree d{2 modulo qi. We assume that Zq contains a primitive 4-th root
of unity ζi P Zq but no elements whose order is a higher power of two, i.e. qi ´ 1 ” 4 pmod 8q. Therefore, we
have

Xd ` 1 ”

´

X
d
2 ´ ζi

¯ ´

X
d
2 ´ ζ3i

¯

pmod qiq. (13)

In this paper we will be working with polynomials in Rp which are stable under the σ´1 automorphism. We
recall the result by Lyubashevsky et al. [LNP22] which says that for specific primes p, if c P Rp satisfies
σ´1pcq “ c and c is non-zero then c is invertible over Rp.

Lemma 2.1 ([LNP22]). Let p ” 5 pmod 8q be a prime. Then all non-zero c P Rp satisfying σ´1pcq “ c
are invertible.

In this paper, we will only be interested in the σ :“ σ´1 automorphism. The main reason is the following
observation.

Lemma 2.2 ([LNP22]). Let u,v P Rk
q . Then, the constant coefficient of σpuqTv is equal to xu,vy.

Thus, one reduces inner product arguments xu,vy “ a to proving that σpuqTv ´ a P Rq has a vanishing
constant coefficient.

We introduce the following notation:

xxyσ :“ px, σpxqq P R2
q for x P Rq.

Similarly, for a vector x “ px1, . . . , xnq, define xxyσ “ pxx1yσ, . . . , xxnyσq P R2n
q . We will use the following

simple properties.

Lemma 2.3. For any x,y P Rn
q and any c P Rq such that σpcq “ c:

xx ∥ yyσ “ xxyσ ∥ xyyσ and xx ` cyyσ “ xxyσ ` cxyyσ.

Next, we recall the definition of the discrete Gaussian distribution over R.

Definition 2.4. The discrete Gaussian distribution on Rℓ centered around v P Rℓ with standard deviation
s ą 0 is given by

Dℓ
v,spzq “

e´}z´v}
2

{2s2

ř

z1PRℓ e´}z1}2{2s2
.

When it is centered around 0 P Rℓ we write Dℓ
s “ Dℓ

0,s.

We will use the standard tail bound result from [Ban93, Lemma 1.5(i)].

Lemma 2.5. Let z Ð Dm
s . Then Pr

”

}z} ą t ¨ s
?
md

ı

ă

´

te
1´t2

2

¯md

.
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2.3 Module-SIS and Module-LWE Problems

Security of the [BDL`18] commitment scheme used in our protocols relies on the well-known computational
lattice problems, namely Module-LWE (MLWE) and Module-SIS (MSIS) [LS15]. Both problems are defined
over Rq.

Definition 2.6 (MSISκ,m,B). Given A Ð Rκˆm
q , the Module-SIS problem with parameters κ,m ą 0 and

0 ă B ă q asks to find z P Rm
q such that Az “ 0 over Rq and 0 ă }z} ď B. An algorithm A is said to have

advantage ϵ in solving MSISκ,m,B if

Pr
“

0 ă }z}8 ď B ^ Az “ 0
ˇ

ˇA Ð Rκˆm
q ; z Ð ApAq

‰

ě ϵ.

Definition 2.7 (MLWEm,λ,χ). The Module-LWE problem with parameters m,λ ą 0 and an error distri-
bution χ over R asks the adversary A to distinguish between the following two cases: 1) pA,As ` eq for
A Ð Rmˆλ

q , a secret vector s Ð χλ and error vector e Ð χm, and 2) pA, bq Ð Rmˆλ
q ˆ Rm

q . Then, A is
said to have advantage ϵ in solving MLWEm,λ,χ if

ˇ

ˇPr
“

b “ 1
ˇ

ˇA Ð Rmˆλ
q ; s Ð χλ; e Ð χm; b Ð ApA,As ` eq

‰

(14)

´ Pr
“

b “ 1
ˇ

ˇA Ð Rmˆλ
q ; b Ð Rm

q ; b Ð ApA, bq
‰
ˇ

ˇ ě ϵ.

2.4 Rejection Sampling

In lattice-based zero-knowledge proofs, the prover will want to output a vector z whose distribution should
be independent of a secret message/randomness vector r, so that z cannot be used to gain any information
on the prover’s secret. During the protocol, the prover computes z “ y ` cr where r is either a secret vector
or randomness used to commit to the prover’s secret, c Ð C is a challenge polynomial, and y is a “masking”
vector. In order to remove the dependency of z on r, one applies rejection sampling. We summarise the two
most common techniques for rejection sampling described in [Lyu12, DDLL13].

Lemma 2.8 (Rejection Sampling [Lyu12, DDLL13]). Let V Ď Rℓ be a set of polynomials with norm
at most T and ρ : V Ñ r0, 1s be a probability distribution. Fix the standard deviation s “ γT . Then, the
following statements hold.

1. Let M “ expp14{γ`1{p2γ2qq. Now, sample v Ð ρ and y Ð Dℓ
s, set z “ y`v, and run b Ð Rej1pz,v, sq

as defined in Fig. 3. Then, the probability that b “ 0 is at least p1 ´ 2´128q{M and the distribution of
pv, zq, conditioned on b “ 0, is within statistical distance of 2´128 of the product distribution ρˆDℓ

s.
2. Let M “ expp1{p2γ2qq. Now, sample v Ð ρ, β Ð t0, 1u and y Ð Dℓ

s, set z “ y ` p´1qβv, and run
b Ð Rej2pz,v, sq as defined in Fig. 3. Then, the probability that b “ 0 is equal to 1{M and the distribution
of pv, zq, conditioned on b “ 0, is identical to the product distribution ρˆDℓ

s.

Rej1pz⃗, v⃗, sq

01 u Ð r0, 1q

02 If u ą 1
M

¨ exp
´

´2xz⃗,v⃗y`}v⃗}2

2s2

¯

03 return 1 (i.e. reject)
04 Else
05 return 0 (i.e. accept)

Rej2pz⃗, v⃗, sq

01 u Ð r0, 1q

02 If u ą 1

M exp

ˆ

´
}v⃗}2

2s2

˙

cosh
´

xz⃗,v⃗y

σ2

¯

03 return 1 (i.e. reject)
04 Else
05 return 0 (i.e. accept)

Fig. 3: Two rejection sampling algorithms: the one used generally in previous works [Lyu12] (left) and the bimodal
Gaussian one [DDLL13] (right).
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2.5 Challenge Space

We recall the specific challenge space used in [LNP22]. Namely, we fix η ą 0 and a power-of-two k and set
the challenge space C as:

C :“

"

c P Sκ : σ´1pcq “ c^
2k

b

}c2k}1 ď η

*

. (15)

Roughly speaking, the first condition, i.e. σ´1pcq “ c, is needed to prove quadratic equations in the committed
messages which might additionally involve automorphisms, e.g. m1m2 “ σ´1pm3q where m1,m2,m3 are the
secret messages. On the other hand, the second condition allows us to use [LNP22, Lemma 2.15] and deduce
that if }r} ď α and c P C then }cr} ď ηα.

Further, we denote C̄ :“ tc´ c1 : c, c1 P C and c ‰ c1u to be the set of differences of any two distinct
elements in C. We will choose the constant η such that (experimentally) the probability for c Ð Sκ to satisfy
2k
a

}c2k}1 ď η is at least 99%.
For security of our protocols, we need the invertibility property of the challenge space C, i.e. the difference

of any two distinct elements of C is invertible overRq. To this end, we apply Lemma 2.1 and thus we only need
the condition κ ă q1{2. Secondly, to achieve negligible soundness error, we will need |C| to be exponentially
large. In Table 4 we propose example parameters to instantiate the challenge space C.

d κ η |C|

64 8 140 2129

128 2 59 2147

Fig. 4: Example parameters to instantiate the challenge space C :“ tc P Sκ : σ´1pcq “ c ^ 2k
a

}c2k}1 ď ηu for a
modulus q such that its smallest prime divisor q1 is greater than 16. In our examples we picked k “ 32.

2.6 ABDLOP Commitment

We recall the ABDLOP commitment scheme defined in [LNP22], which is a generalisation of the Ajtai
[Ajt96] and BDLOP [BDL`18] constructions. Concretely, to commit to a message vector s1 P Rm1

q with

small coefficients as well as a “full-fledged” polynomial vector m P Rℓ
q, we sample a randomness vector

s2 Ð χm2 , where χ is a probability distribution over Rq, and compute:
„

tA
tB

ȷ

:“

„

A1

0

ȷ

s1 `

„

A2

B

ȷ

s2 `

„

0
m

ȷ

where A1 Ð Rnˆm1
q ,A2 Ð Rnˆm2

q ,B Ð Rℓˆm2
q . We observe that when ℓ “ 0 (resp. m1 “ 0) then this

construction ends up being the Ajtai (resp. BDLOP) commitment scheme. In particular, the commitment
size does not depend on the length m1 of s1 (but it does on ℓ). Hence, our strategy is to commit to long
vectors with small coefficients in the “Ajtai” part s1 and commit to a few garbage polynomials used for the
proofs in the “BDLOP” part m.

An opening of the commitment is a triple ps1,m, s2q11. As usual in lattice-based cryptography, we also
consider relaxed openings of a commitment which are defined as follows.

Definition 2.9. A relaxed opening of the ABDLOP commitment ptA, tBq is a tuple ps1,m, s2, cq which sat-
isfies:

A1s1 ` A2s2 “ tA

A2s2 ` m “ tB

c P C̄ as defined in Section 2.5

}cs1} ď B1 and }cs2} ď B2.
11 Message m does not need to be included in the opening since it can be deterministically computed from tB and

s2.
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As shown in [LNP22, Lemma 3.1], the ABDLOP commitment is binding with respect to relaxed openings
under the Module-SIS assumption.

Lemma 2.10 ([LNP22]). The ABDLOP commitment is computationally binding with respect to relaxed
openings under the MSISn,m1`m2,B assumption where B :“ 4η

a

B2
1 `B2

2 .

The hiding property of the ABDLOP commitment scheme follows from the fact that under the Module-LWE

assumption

„

A2

B

ȷ

s2 looks pseudorandom.

Lemma 2.11. The ABDLOP commitment is computationally hiding under the MLWEn`ℓ,m2´n´ℓ,χ assump-
tion.

2.7 Framework for Proving Lattice Statements

The recently proposed framework by Lyubashevsky et al. [LNP22] can be used to prove various relations in
the committed messages. Concretely, one can prove knowledge of the secret messages ps1,mq P Rm1`ℓ

q which
satisfy all the following conditions:

1. Quadratic relations over Rq with automorphisms. For i P rN s and public triples pRi,2, ri,1, ri,0q P

R2pm1`ℓqˆ2pm1`ℓq
q ˆ R2pm1`ℓq

q ˆ Rq, we have:

xs1 ∥ myTσRi,2xs1 ∥ myσ ` rTi,1xs1 ∥ myσ ` ri,0 “ 0. (16)

2. Quadratic relations over Zq with automorphisms. For i P rM s and public triples pR1
i,2, r

1
i,1, r

1
i,0q P

R2pm1`ℓqˆ2pm1`ℓq
q ˆ R2pm1`ℓq

q ˆ Rq:

const. coeff. of xs1 ∥ myTσR
1
i,2xs1 ∥ myσ ` r1T

i,1xs1 ∥ myσ ` r1
i,0 equals 0. (17)

3. Shortness in the infinity norm. For public Ps P Rnbinˆm1
q ,Pm P Rnbinˆℓ

q and f P Rnbin
q , the following

polynomial vector has binary coefficients

Pss1 ` Pmm ` f P t0, 1unbin¨d. (18)

4. Shortness in the Euclidean norm. For i P rZs, public bound Bi ă
?
q and E

piq
s P Rniˆm1

q ,E
piq
m P Rniˆℓ

q

and vpiq P Rni
q , we have:

}Epiq
s s1 ` Epiq

m m ` vpiq} ď Bi.

This is equivalent to additionally proving knowledge of the binary polynomial ϑi P R such that

xpowpB2
i q, ϑiy “ B2

i ´

›

›

›
Epiq

s s1 ` Epiq
m m ` vpiq

›

›

›

2

over Z (19)

where powpnq :“
řtlognu

i“0 p2Xqi P R for n ď 2d´1.

5. Approximate Shortness. For a public bound B1 and Ds P Rn1
ˆm1

q ,Dm P Rn1
ˆℓ

q and u P Rn1

q , we have:

}Dss1 ` Dmm ` u} ď B1. (20)

However, we are fine with convincing the verifier that

}Dss1 ` Dmm ` u}8 ď ψ ¨ B1 (21)

where ψ ą 1 is a public approximation factor.

The main strength of the aforementioned framework is that, unlike the prior works [ALS20, ENS20, LNS21b],
it does not rely on the NTT-packing technique. This comes with two immediate benefits: (i) one can apply
a compressing commitment scheme ABDLOP to commit to long messages of small norm (i.e. s1), and (ii)
the protocol is one-shot and thus no expensive part of the protocol needs to be repeated for soundness
amplification. In practice, [LNP22] achieves more than a factor of two improvement in proof size compared
to the NTT-packing protocols for basic statements. We refer to [LNP22] for more details on the protocol.

In this paper, we will use the methodology from [LNP22, Section 6.1] to calculate the exact proof sizes.
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Apv⃗q

01 y⃗ Ð Dm
s

02 z⃗ :“ y⃗ ` v⃗

03 output pz⃗, v⃗q with prob.
exp

ˆ

}v⃗}2

2s2

˙

M coshpxz⃗,v⃗y{s2q

Fpv⃗q

01 y⃗ Ð Dm
s

02 pz⃗`, z⃗´q :“ psignpxy⃗, v⃗yq ¨ y⃗,´signpxy⃗, v⃗yq ¨ y⃗q

03 p :“
exp

´

2|xy⃗,v⃗y|

s2

¯

exp
´

2|xy⃗,v⃗y|

s2

¯

`1

04 z⃗ :“

#

z⃗` with prob. p

z⃗´ with prob. 1 ´ p

05 output pz⃗, v⃗q with prob. 1
M

Fig. 5: Algorithms A and F for Lemma 3.1. We define signpxq “ 1 if x ě 0 and ´1 otherwise.

3 Shorter Proofs via Bimodal Gaussians

In order to provide zero-knowledge (or more precisely, simulatability) for proving relations in the ABDLOP
committed messages ps1,mq under the randomness s2, one applies the rejection sampling technique. In the
original protocols presented in [LNP22], the standard rejection sampling [Lyu12] is used for s1 and the more
recent one [LNS21a] for s2. In this section we describe how one can apply bimodal Gaussian rejection sampling
[DDLL13] on both the message and randomness which significantly reduces the standard deviations, and
consequently the proof size, compared to [LNP22].

3.1 Bimodal Gaussian Rejection Sampling on the Randomness

In our constructions, we apply a rejection sampling procedure to mask a secret vector v⃗ by first sampling
y⃗ from a discrete Gaussian with standard deviation s, and then computing z⃗ :“ v⃗ ` y⃗. By Lemma 2.8, if
we additionally run Rej1pz⃗, v⃗, sq, then the distribution of z⃗ is indistinguishable to the one where we simply
sample z⃗ from a discrete Gaussian and output z⃗ with certain (known) probability. Here, it is important that
one could generate z⃗ without having any information on v⃗.

Now, suppose that instead of Rej1, we run Rej2 which is used for bimodal Gaussian rejection sampling
[DDLL13]. It is now a natural question to ask whether there is a way to simulate the z⃗ by having as little
information on v⃗ as possible. We answer this question positively and show that this distribution is simulatable
given only the inner product xz⃗, v⃗y of z⃗ and v⃗. We summarise our observation with the following lemma.

Lemma 3.1. Let v⃗ P Zm be a vector of norm T . Fix s ě γT and M “ exp
´

1
2γ2

¯

. Then the distributions

of the outputs of Apv⃗q and Fpv⃗q defined in Figure 5 are identical. Moreover, the probability that A outputs
something is exactly 1{M .

Proof. Fix v⃗ P V and z⃗ P Zm and let

p :“
exp

´

2xz⃗,v⃗y

s2

¯

exp
´

2xz⃗,v⃗y

s2

¯

` 1
.

By definition of A, Apv⃗, z⃗q is equal to

Dm
s pz⃗ ´ v⃗q ¨

exp
´

}v⃗}
2

2s2

¯

M cosh
´

xz⃗,v⃗y

s2

¯ “ Dm
s pz⃗q ¨

2 exp
´

2xz⃗,v⃗y

s2

¯

M
´

exp
´

2xz⃗,v⃗y

s2

¯

` 1
¯ “ Dm

s pz⃗q ¨
2p

M

Now, we focus on Fpv⃗q. We see that by construction, xz⃗`, v⃗y ě 0 and xz⃗´, v⃗y ď 0. Let us consider three
separate cases. First, suppose z⃗ satisfies xz⃗, v⃗y ą 0. Informally, we want to compute the probability that
y⃗ “ ˘z⃗ and F picks z⃗`. Then,

Fpv⃗, z⃗q “ 2Dm
s pz⃗q ¨

exp
´

2xz⃗,v⃗y

s2

¯

exp
´

2xz⃗,v⃗y

s2

¯

` 1
¨
1

M
“ Dm

s pz⃗q ¨
2p

M
.
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Further, suppose xz⃗, v⃗y ă 0. Informally, we compute the probability that y⃗ “ ˘z⃗ and F picks z⃗´. Then,

Fpv⃗, z⃗q “ 2Dm
s pz⃗q ¨

1

exp
´

´2xz⃗,v⃗y

s2

¯

` 1
¨
1

M
“ Dm

s pz⃗q ¨
2p

M
.

Finally, assume xz⃗, v⃗y “ 0 and thus p “ 1{2. Then, Fpv⃗, z⃗q is simply the probability that py⃗ “ z⃗ ^

F outputs z⃗`q or py⃗ “ ´z⃗ ^ F outputs z⃗´q. Hence,

Fpv⃗, z⃗q “ Dm
s pz⃗q ¨

1

2M
`Dm

s p´z⃗q ¨
1

2M
“ Dm

s pz⃗q ¨
1

M
“ Dm

s pz⃗q ¨
2p

M
.

Therefore, we proved that for every z⃗, Apv⃗, z⃗q “ Fpv⃗, z⃗q.

Finally, the second part of the statement follows from a simple observation that F outputs something
with probability exactly 1{M . [\

Extended-MLWE Revisited. We observe that the only information about v⃗ needed in order to run the
simulator F in the security proof is the value of xy⃗, v⃗y. Hence, we reduce the simulatability property of our
protocols to the hardness of the so-called Extended-MLWE. Here, as usual, an adversary needs to distinguish
between the tuples pB,Bsq and pB,uq, where u is a uniformly random vector but this time it is also given a
“hint” of the form pc,y, xcs,yyq where c and y are sampled from some known distributions. For simplicity,
we will describe the problem in a “knapsack” form.

Definition 3.2 (Extended-MLWE). The Extended-MLWE problem with parameters n,m and distribution
χ, ξc, ξy over R asks the adversary A to distinguish between the two cases: 1) pB,Bs, c,y, xcs,yyq and 2)

pB,u, c,y, xcs,yyq for B Ð Rmˆpn`mq
q , a secret vector s Ð χn`m, uniformly random vector u P Rm

q and
pc,yq Ð ξc ˆ ξn`m

y . Then, A is said to have advantage ϵ in solving Extended-MLWEn,m,χ,ξc,ξy if

ˇ

ˇ

ˇ
Pr

”

b “ 1
ˇ

ˇ

ˇ
B Ð Rmˆpn`mq

q ; s Ð χn`m; pc,yq Ð ξc ˆ ξn`m
y ; b Ð ApB,Bs, c,y, xcs,yyq

ı

´ Pr

„

b “ 1

ˇ

ˇ

ˇ

ˇ

B Ð Rmˆpn`mq
q ; s Ð χn`m; pc,yq Ð ξc ˆ ξn`m

y ;u Ð Rm
q ;

b Ð ApB,u, c,y, xcs,yyq

ȷ
ˇ

ˇ

ˇ

ˇ

ě ϵ.

We say that Extended-MLWEn,m,χ,ξc,ξy is hard if for all PPT adversaries A, the advantage in solving
Extended-MLWEn,m,χ,ξc,ξy is negligible.

We note that the (Module-)LWE problem with various side information has already been discussed in prior
work e.g. [DGK`10, AP12, DDGR20]. As far as we are aware, this new variant of MLWE is the closest to
the Extended Module-LWE problems defined by Lyubashevsky et al. [LNS21a], Alperin-Sheriff and Apon
[ASA16], Alperin-Sheriff and Peikert [AP12] and Boudgoust et al. [BJRW21].

We observe that [ASA16] describes a similar problem with the two differences: (i) there is no c involved
(assume that c “ 1) and (ii) the hint is an arbitrary Q-linear function on the “error” part e of the secret s (in
particular it could be xe,yy P Z where y Ð ξmy ). Alperin-Sheriff and Apon show that their Extended-MLWE
problem can be reduced to plain MLWE if the errors come from a discrete Gaussian with a large enough
standard deviation. The proof strategy was later extended by Boudgoust et al. [BJRW21] who define another
Extended-MLWE problem. This time, however, the hint becomes a whole polynomial xe,yy P R. Finally, the
only difference between our problem and the one in [LNS21a] is that the adversary is given the whole inner
product xcs,yy instead of its sign.

If we consider our Extended-MLWE without any polynomial ring structure, then the problem becomes
almost identical to the one introduced by Alperin-Sheriff and Peikert [AP12] (if we again assume c “ 1).
The authors additionally show that it is possible to reduce such a problem to plain LWE with the reduction
loss Op|xs⃗, y⃗y|q.
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Applications. As an example, we show how to use the new rejection sampling strategy in the protocol for
proving linear equations in the committed messages [LNP22][Section 3], however this approach can also be
applied in all the protocols from [LNP22]. Let ptA, tBq be the ABDLOP commitment to the message pair
ps1,mq P Rm1

q ˆ Rℓ
q under randomness s2, i.e.

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

. (22)

Suppose the prover wants to prove knowledge of the message ps1,mq such that

R1s1 ` Rmm “ u

where R1 P RNˆm1
q ,Rm P RNˆℓ

q and u P RN
q .

We present the commit-and-prove protocol in Figure 6 for proving linear relations. The only difference
between this protocol and [LNP22, Fig. 4] is that for z2 we apply the new rejection sampling algorithm
described above.

Private information: ps1,m, s2q P Rm1`m2`ℓ
q so that }s1} ď α and }s2}8 ď ν

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q , R1 P RNˆm1

q , Rm P RNˆℓ
q ,

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ s1 `

„

A2

B

ȷ

¨ s2 `

„

0
m

ȷ

,u “ R1s1 ` Rmm

Prover Verifier

y1 Ð Dm1
s1 ,y2 Ð Dm2

s2

w :“ A1y1 ` A2y2

v :“ R1y1 ´ RmBy2
w,v -

c Ð C
c�

for i “ 1, 2 :
zi :“ csi ` yi

if Rejipzi, csi, siq “ 1
then z1, z2 :“ K

z1, z2 -
Accept iff:

1. }z1} ď s1
?
2m1, }z2} ď s2

?
2m2

2. A1z1 ` A2z2 ´ ctA “ w
3. R1z1 ` RmpctB ´ Bz2q ´ cu “ v

Fig. 6: Proof of knowledgeΠp1q
pps2, s1,mq, pf1, f2, . . . , fN qq of ps1, s2, c̄q P Rm1

q ˆRm2
q ˆC̄ satisfying (i)A1s1`A2s2 “

tA, Bs2 `m “ tB (ii) }sic̄} ď 2si
?
2mid for i “ 1, 2 and (iii) R1s1 `Rmm “ u. Functions Reji are defined in Fig. 3.

3.2 Bimodal Gaussian Rejection Sampling on the Message

This subsection focuses on applying bimodal Gaussian rejection sampling on the message vector s1. First of
all, we cannot apply Lemma 3.1 since it would potentially leak certain information about the message s1
which, unlike s2, is not freshly sampled every time a new proof is generated. Instead, we follow the original
methodology from [DDLL13].

Concretely, let us focus on the protocol in Fig. 6. If one were to naively apply bimodal rejection sampling
on cs1 then the masked opening of cs1 would become:

z1 :“ y1 ` bcs1 where b Ð t´1, 1u.
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As before, we set z2 :“ y2 ` cs2. Hence, if we keep w :“ A1y1 ` A2y2 then by construction:

A1z1 ` A2z2 “ w ` c pA1bs1 ` A2s2q .

Note that A1bs1 ` A2s2 is a top part of the ABDLOP commitment to pbs1,mq under randomness s2. Thus,
it is a natural approach to simply commit to pbs1,mq and prove the quadratic equation. However, this comes
with a big obstacle, i.e. we still need to prove the underlying relation in s1,m even though we committed to
bs1 and m. It might cause a problem even in the simple case of linear relations. Indeed, initially we want to
prove that R1s1 ` Rmm “ u. Since we committed to bs1 and not s1, it makes sense to try and prove the
equivalent statement:

R1pbs1q ` Rmpbmq “ bu. (23)

This suggests that we should also commit to bm and not m. However, it does not solve the issue completely
since vector u is still multiplied by a (secret) sign b. Hence, the intuitive solution would be to also commit
to b in the ABDLOP commitment, prove b P t´1, 1u and the linear relation (23) in bs1, bm and b. Therefore,
the cost of such an approach is at least committing to an extra polynomial.

We show that for certain types of statements we can circumvent committing to b and still apply bimodal
Gaussian rejection sampling. Namely, we focus on sign-invariant relations.

Definition 3.3. Let R Ď t0, 1u˚ ˆ Rm1`ℓ be a binary relation. We say that R is sign-invariant if for every
pair pu,wq we have: Rpu,wq “ 1 ðñ Rpu,´wq “ 1.

Suppose we want to prove knowledge of ps1,mq P Rm1`ℓ
q such that pu, ps1,mqq P R where R is a sign-

invariant relation. Then, we can sample a fresh sign b Ð t´1, 1u and commit to pbs1, bmq using the ABDLOP
commitment. Further, we simply prove that Rpu, pbs1, bmqq “ 1 which implies that Rpu, ps1,mqq “ 1.

Concrete instantiation. We demonstrate our intuition with the following example. Namely, we want to
prove knowledge of ps1,mq which satisfies:

σps1qT s1 ` σpmqTm “ 0.

Clearly, pbs1, bmq satisfies the relation above for b P t´1, 1u. As described before, we first sample a sign
b Ð t´1, 1u, randomness vector s2 Ð χ and compute

„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ bs1 `

„

A2

B

ȷ

¨ s2 `

„

0
bm

ȷ

. (24)

Then, we simply follow the multiplicative proof from [LNP22, Section 4] to prove that

σpbs1qT pbs1q ` σpbmqT pbmq “ 0.

Concretly, consider the masked opening z1 :“ y1 ` bcs1 of s1. Note that

σpz1qT z1 “ c2σpbs1qT pbs1q ` c
`

σpy1qT pbsq ` yT
1 σpbsq

˘

` σpy1qTy1

and hence the coefficient corresponding to the quadratic term c2 is what we are interested in. Here, we
used the property of the challenge space C that c “ σpcq for c P C. We cannot do the same argument
with bm since no masked opening of bm was sent. However, we observe that the verifier can compute
tB ´ Bz2 “ ´By2 ` cpbmq which is of the similar form as the masked opening of bs1. Then

σptB´Bz2qT ptB ´ Bz2q

“ c2pbmqT pbmq ´ c
`

σpBy2qT pbmq ` pBy2qTσpbmq
˘

` σpBy2qTBy2.

Therefore, we want to prove that the term in front of c2 in the following expression disappears, i.e

σpz1qT z1 ` σptB ´ Bz2qT ptB ´ Bz2q “ cg1 ` g0

15



Private information: ps1,mq P Rm1`ℓ
q so that }s1} ď α, s2 Ð χm2 , b Ð t´1, 1u

Public information: A1 P Rnˆm1
q ,A2 P Rnˆm2

q ,B P Rℓˆm2
q ,b P Rm2

q
„

tA
tB

ȷ

“

„

A1

0

ȷ

¨ bs1 `

„

A2

B

ȷ

¨ s2 `

„

0
bm

ȷ

,

Prover Verifier

y1 Ð Dm1
s1 ,y2 Ð Dm2

s2

w :“ A1y1 ` A2y2

g1, v as in (25),(26)
t :“ bT s2 ` g1

w, t, v -
c Ð C

c�
z1 :“ bcs1 ` y1

z2 :“ cs2 ` y2

for i “ 1, 2 :
if Rej2pzi, csi, siq “ 1
then z1, z2 :“ K

z1, z2 -
Accept iff

}z1} ď s1
?
2m1d and

}z2} ď s2
?
2m2d and

A1z1 ` A2z2 “ w ` ctA and (27)

Fig. 7: Commit-and-prove protocol Πquad ps2, s1,mq for messages ps1,mq P Rm1`ℓ
q , randomness s2 P Rm2

q and c̄ P C̄
which satisfy: A1s1 `A2s2 “ tA, Bs2 `m “ tB (ii) }sic̄} ď 2si

?
2mid for i “ 1, 2 and (iii) σps1q

T s1 `σpmq
Tm “ 0.

where
g1 :“ σpy1qT pbsq ` yT

1 σpbsq ´ σpBy2qT pbmq ´ pBy2qTσpbmq

g0 :“ σpy1qTy1 ` σpBy2qTBy2.
(25)

The idea is then to additionally send a commitment t “ bT s2 ` g1 to g1 and send

v :“ g0 ` bTy2 “ σpy1qTy1 ` σpBy2qTBy2 ` bTy2 (26)

in the clear. Then, the verifier can check that:

v
?
“ σpz1qT z1 ` σptB ´ Bz2qT ptB ´ Bz2q ` pbT z2 ´ ctq. (27)

We present the protocol for proving this relation in Fig. 7 and summarise its security properties in Appendix
A.

Dealing with relations which are not sign-invariant. Typically, relations do not have the property
that they are sign-invariant. In this case, to apply bimodal Gaussian rejection sampling on the message s1
one needs to be more careful. As hinted in the discussion above, one solution would be to commit to the sign
b (in the BDLOP part of the ABDLOP commitment) and prove that b P t´1, 1u12. Then, for example, to
prove an arbitrary quadratic equation with automorphisms (16), we commit to pbs1, bm ∥ bq and equivalently
prove:

xbs1 ∥ bmyTσRi,2xbs1 ∥ bmyσ ` brTi,1xbs1 ∥ bmyσ ` ri,0 “ 0

12 Proving that b is a sign has already been covered in [LNP22, Section 5.1].
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which is a quadratic equation in bs1, bm and b. Then, in the soundness argument of [LNP22] we would
extract s̄1, m̄ and b̄ P t´1, 1u which satisfy

xs̄1 ∥ m̄yTσRi,2xs̄1 ∥ m̄yσ ` b̄rTi,1xs̄1 ∥ m̄yσ ` ri,0 “ 0.

Finally, since we proved that b̄ is a sign, we define ps˚
1 ,m

˚q :“ pb̄s̄1, b̄m̄q and deduce that

xs˚
1 ∥ m˚yTσRi,2xs˚

1 ∥ m˚yσ ` rTi,1xs˚
1 ∥ m˚yσ ` ri,0 “ 0

which is what we wanted to extract at the very beginning.
Similarly, to prove (18), we want to prove instead

Pspbs1q ` Pmpbmq ` bf P t0, bunbind.

We observe that x P t0, bu “ t b´1
2 , b`1

2 u if and only if x ´ b´1
2 P t0, 1u. Hence, the statement above is

equivalent to:

Pspbs1q ` Pmpbmq ` bpf ´ 2´1 ¨ 1q ` 2´1 ¨ 1 P t0, 1unbind

where 1 P Rnbin
q is the polynomial vector with the coefficient vector 1⃗. Hence, we reduced our problem to

proving that a linear combination of bs1, bm and b has binary coefficients. We conclude that using similar
techniques, one can transform all the relations in s1,m described in Section 2.7 to equivalent ones in bs1, bm
and b P t´1, 1u.

4 Efficient One-out-of-Many Proofs

In this section we construct an efficient logarithmic-size one-out-of-many proof [GK15] with applications to
lattice-based ring and group signatures using techniques from [LNP22] as the building block. In Appendix
C we show how to further reduce the proof size using the techniques developed in Section 3, and eventually
describe our ring signature construction.

The one-out-of-many proof considers the following problem. Informally, we want to prove knowledge of
an opening to some commitment contained in a public set S without revealing any information about the
commitment itself. In the lattice setting, we we would like to prove knowledge of a short vector such that
As P S, where S is a public set S “ tt1, . . . , tNu Ď Rn

q of size N “ d ¨ dk. In this section we assume that

s P t0, 1umd has binary coefficients and d “ l ¨ d for l P N. For simplicity, we can already instantiate some of
these parameters as pd, d, lq “ p64, 8, 16q.

We now use the observation from [ESS`19, GK15, BCC`15] that As P S if and only if there exists a
binary vector v⃗ P t0, 1uN with exactly one 1, i.e. a unit vector, such that

“

t⃗1 t⃗2 ¨ ¨ ¨ t⃗N
‰

v⃗ “ As⃗ (28)

where A “ rotpAq P Zndˆmd
q is the the rotation matrix of A. One could then directly prove knowledge of

s⃗ and v⃗ which satisfy conditions above using the protocol from Section 2.7. However, the proof size grows
linearly in N since we would commit to the whole vector v⃗.

In order to circumvent this limitation, [GK15, BCC`15] observe that vector v⃗ can be uniquely decomposed
into unit vectors v⃗1, . . . , v⃗k P t0, 1ud and v⃗k`1 P t0, 1ud such that

v⃗ “ v⃗1 b v⃗2 b ¨ ¨ ¨ b v⃗k`1 :“ v⃗1 b pv⃗2 b p¨ ¨ ¨ b pv⃗k b v⃗k`1qqq . (29)

For notational convenience, let us define the set of polynomials X in Rq with their coefficient vectors being
a unit vector. Concretely, X is defined as follows:

X :“ t1, X,X2, . . . , Xd´1u.
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In the end, we want to commit to s and polynomials u1, . . . , uk, vk`1 P X such that u⃗i “ v⃗i ∥ 0d´d P Zd
q
13

for i P rks and prove
T pv⃗1 b ¨ ¨ ¨ b v⃗k`1q “ As⃗ (30)

where T P ZndˆN
q is the matrix on the left-hand side of (28). We formally define the corresponding relation:

Room :“

"

ppT,Aq, ps, u1, . . . , uk, vk`1qq : s P t0, 1umd ^ T pv⃗1 b ¨ ¨ ¨ b v⃗k`1q “ As⃗
^u1, . . . , uk, vk`1 P X where u⃗i :“ v⃗i ∥ 0d´d

*

.

We now describe a commit-and-prove system for relation Room using the ABDLOP commitment. Suppose
that k ě 1, otherwise one can prove this relation directly using the framework from [LNP22].

First, note that proving u1, . . . , uk, vk`1 P X and s P t0, 1umd can be done directly using the techniques
from Section 2.7 hence we focus first on (30). Our strategy to prove this equation with k´ 1 tensor products
would be somehow to reduce it to proving an equation of the same form with only k ´ 2 tensor products.
Then, by recursion, we will end up with a system of linear equations with no tensor products involved and
thus we can apply the methods presented in Section 2.7.

The key idea to reduce the number of tensor products is to ask the verifier for l challenges φ⃗1, . . . , φ⃗l P Znd
q

and then prove that:
xT pv⃗1 b ¨ ¨ ¨ b v⃗k`1q ´As⃗, φ⃗iy “ 0 for i “ 1, 2, . . . , l.

Note that if (30) was not true, then these l equations above would hold with probability at most q´l
1 . Now,

if we write
T :“

“

T0,1 T0,2 ¨ ¨ ¨ T0,d
‰

where each T0,i P Zndˆddk´1

q

then by simple algebraic manipulation we obtain

xT pv⃗1 b ¨ ¨ ¨ b v⃗k`1q ´As⃗, φ⃗iy “ xv⃗1 b ¨ ¨ ¨ b v⃗k`1, φ⃗
T
i T y ´ xs⃗, AT φ⃗iy

“ xv⃗1, T1,ipv⃗2 b ¨ ¨ ¨ b v⃗k`1qy ´ xs⃗, AT φ⃗iy

where

T1,i :“

»

—

–

φ⃗T
i T0,1
...

φ⃗T
i T0,d

fi

ffi

fl

P Zdˆddk´1

q .

Now, let us define w⃗i :“ T1,ipv⃗2 b ¨ ¨ ¨ b v⃗k`1q and w P Rq such that

w⃗ “ w⃗1 ∥ ¨ ¨ ¨ ∥ w⃗l P Zd
q .

Next, we commit to w and show that for all i,

xv⃗1, w⃗iy ´ xs⃗, AT φ⃗iy “ 0 and w⃗i :“ T1,ipv⃗2 b ¨ ¨ ¨ b v⃗k`1q.

We observe that the first statement is equivalent to proving that the constant coefficient of

Xpi´1qdu1σpwq ´ σpaiq
T s

is equal to zero where the coefficient vector of ai P Rm
q is exactly a⃗i :“ AT φ⃗i.

Lemma 4.1. Let i P rls. Then, the constant coefficient of Xpi´1qdu1σpwq P Rq is equal to xv⃗1, w⃗iy.

Proof. First, we note that xv⃗1, w⃗iy “ xXpi´1qdu1, wy. Here, we used the fact that the coefficient vector of u1
is of the form v⃗1 ∥ 0d´d. Then, by Lemma 2.2, xXpi´1qdu1, wy is the constant coefficient of Xpi´1qdu1σpwq.

13 Alternatively, ui P t1, X,X2, . . . , Xd´1
u.
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On the other hand, the second statement can be combined for all i and written as:

w⃗ “

»

—

–

T1,1
...
T1,l

fi

ffi

fl

pv⃗2 b ¨ ¨ ¨ b v⃗k`1q. (31)

Thus, we reduce the one-out-of-many problem to proving knowledge of a tuple ps, u1, . . . , uk, vk`1, wq which
satisfies the following conditions: (i) s P t0, 1umd, (ii) T1pv⃗2 b ¨ ¨ ¨ b v⃗k`1q “ w⃗, (iii) for all i P rls, the constant
coefficient of Xpi´1qdu1σpwq ´ σpaiq

T s is zero, and (iv) u1, . . . , uk, vk`1 P X where

u⃗i :“ v⃗i ∥ 0d´d for i P rks and T1 :“

»

—

–

T1,1
...
T1,l

fi

ffi

fl

P Zdˆddk´1

q .

Note that the second statement only involves k ´ 2 tensor products.
We can define the correspond relation as:

R :“

$

&

%

`

pT1, paiqiPrlsq, ps, u1, . . . , uk, vk`1, wq
˘

: s P t0, 1umd ^ T1pv⃗2 b ¨ ¨ ¨ b v⃗k`1q “ w⃗

^@i P rls, const coeff. of Xpi´1qdu1σpwq ´ σpaiq
T s is zero

^u1, . . . , uk, vk`1 P X where u⃗i :“ v⃗i ∥ 0d´d

,

.

-

.

Intermediate relations. We construct a commit-and-prove system for relation R using recursion. Namely,
take 1 ď j ď k and consider the following generalised relation

Rj :“

$

’

’

’

’

’

&

’

’

’

’

’

%

´

pTj P Zdˆddk´j

q , paiqiPrls, pφι,iqιPrj´1s,iPrlsq, ps, u1, . . . , uk, vk`1, w1, . . . , wjq

¯

:

s P t0, 1umd ^ Tjpv⃗j`1 b ¨ ¨ ¨ b v⃗k`1q “ w⃗j

^@i P rls, const coeff. of Xpi´1qdu1σpw1q ´ σpaiq
T s is zero

^@ι P rj ´ 1s, i P rls, const coeff. of Xpi´1qduι`1σpwι`1q ´ σpφι,iqwι is zero
^u1, . . . , uk, vk`1 P X where u⃗i :“ v⃗i ∥ 0d´d

,

/

/

/

/

/

.

/

/

/

/

/

-

. (32)

We highlight that in Rj elements φι,i are polynomials in Rq. Also, it is easy to see that R1 “ R.

Base case. We first show how to prove Rk only using the methods described in Section 2.7. In the following,
we say that a statement is of Type-n if it corresponds to the Statement n in Section 2.7.

To begin with, using the ABDLOP commitment we commit to

s1 :“ s ∥ u1 ∥ ¨ ¨ ¨ ∥ uk ∥ vk`1 P Rm`k`1
q , m :“ pw1, . . . , wkq P Rk

q .

Then, proving s P t0, 1umd and u1, . . . , uk, vk`1 P t0, 1ud is of Type-3. Next, by Lemma 2.2, proving Tkv⃗k`1 “

w⃗k and x⃗1, v⃗iy “ 1 for i P rk` 1s is of Type-2. Further, it is easy to see that proving the constant coefficients
of Xpi´1qdu1σpw1q ´ σpaiq

T s and Xpi´1qduι`1σpwι`1q ´ σpφι,iqwι vanish is of Type-2. Finally, proving that
u⃗i “ v⃗i ∥ 0d´d for i P rks is equivalent to proving that the constant coefficient of X´jui is zero for d ď j ď d,
which is of Type-2.

From now on, we will call the commit-and-prove protocol for relation Rk described above as Πk.

Recursive step. Let us assume we have a commit-and-prove system Πj`1 for relation Rj`1 where 2 ď

j` 1 ď k. Now we want to use it to prove relation Rj . We observe that the only statement which is included
in Rj but not in Rj`1 is

Tjpv⃗j`1 b ¨ ¨ ¨ b v⃗k`1q “ w⃗j . (33)

We prove this equation as before. Namely, we ask the verifier for l challenges φ⃗j,1, . . . , φ⃗l P Zd
q and then prove

that:
xTjpv⃗j`1 b ¨ ¨ ¨ b v⃗k`1q ´ w⃗j , φ⃗j,iy “ 0 for i “ 1, 2, . . . , l.
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Note that if (30) was not true, then these l equations above would hold with probability at most q´l
1 . Now,

if we write
Tj :“

“

Tj,1 Tj,2 ¨ ¨ ¨ Tj,d
‰

where each Tj,i P Zdˆddk´j´1

q

then we have

xTjpv⃗j`1 b ¨ ¨ ¨ b v⃗k`1q ´ w⃗j , φ⃗j,iy “ xv⃗j`1 b ¨ ¨ ¨ b v⃗k`1, φ⃗
T
j,iTjy ´ xw⃗j , φ⃗j,iy

“ xv⃗j`1 b ¨ ¨ ¨ b v⃗k`1, φ⃗
T
j,iTjy ´ xw⃗j , φ⃗j,iy

“ xv⃗j`1, Tj`1,ipv⃗j`2 b ¨ ¨ ¨ b v⃗k`1qy ´ xw⃗j , φ⃗j,iy

where

Tj`1,i :“

»

—

–

φ⃗T
j,iTj,1
...

φ⃗T
j,iTj,d

fi

ffi

fl

P Zdˆdk´j´1

q .

Now, let us define w⃗j`1,i :“ Tj`1,ipv⃗j`2 b ¨ ¨ ¨ b v⃗k`1q and wj`1 P Rq so that

w⃗j`1 “ w⃗j`1,1 ∥ ¨ ¨ ¨ ∥ w⃗j`1,l P Zd
q .

Then, we need to show that for all i,

xv⃗j`1, w⃗j`1,iy ´ xw⃗j , φ⃗j,iy “ 0 and w⃗j`1,i “ Tj`1,ipv⃗j`2 b ¨ ¨ ¨ b v⃗k`1q.

The first statement is equivalent to proving that the constant coefficient of

Xpi´1qduj`1σpwj`1q ´ σpφj,iqwj

is equal to zero. The second statement, however, can be combined for all i and written as:

w⃗j`1 “ Tj`1pv⃗j`2 b ¨ ¨ ¨ b v⃗k`1q where Tj`1 :“

»

—

–

Tj`1,1

...
Tj`1,l

fi

ffi

fl

P Zdˆdk´j´1

q . (34)

Therefore, we reduced proving (33) to proving that

– Xpi´1qduj`1σpwj`1q ´ σpφj,iqwj is equal to zero
– w⃗j`1 “ Tj`1pv⃗j`2 b ¨ ¨ ¨ b v⃗k`1q

which in combination with other relations in Rj , it directly reduces to proving relations in Rj`1.
In Fig. 8 we give a commit-and-prove protocol for relation Rj which uses Πj as a black-box. One observes

by discussion above that the correctness error for Πj is the same as for Πk (which can be calculated directly
from [LNP22]). Simulatability follows from the fact that running Πj , and thus Πj`1 up to Πk as subroutines,
involves only sending intermediate commitments ti to wi which can be simulated by the Extended-MLWE
assumption. Finally, one can prove by induction that the knowledge soundness error for the protocol Πj is
pk ´ jq ¨ q´l

1 ` εk where εk is the knowledge soundness error for Πk and is computed as in [LNP22]. The
expected runtime of the extractor, that has black-box access to a (potentially malicious) prover which runs
in time T , is 2k´j ¨polypT q. Consequently, we can only consider values k which are logarithmic in the security
parameter. Due to space constraints, we refer to Appendix B for more details.

Back to Room. At the very beginning of this section we showed how to reduce proving relation Room

to proving R1. Later on, we described a commit-and-prove protocol for R1. Hence, we combine these two
results to obtain a commit-and-prove protocol Πoom in Fig. 9 for the one-out-of-many relation Room. Arguing
similarly as above, the correctness error for Πoom is the same as for Πk and the soundness error is at most
kq´l

1 ` εk.
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Private information: s1 :“ ps, u1, . . . , uk, vk`1q,m :“ pw1, . . . , wjq, s2 P Rm2
q

Public information: A1 P Rnˆpm`k`1q
q ,A2 P Rnˆm2

q ,b1, . . . ,bj P Rm2
q ,

Tj P Zdˆddk´j

q , paiqiPrls, pφι,iqιPrj´1s,iPrls
»

—

—

—

–

tA
t1
...
tj

fi

ffi

ffi

ffi

fl

“

„

A1

0

ȷ

¨ s1 `

»

—

—

—

–

A2

bT
1

...
bT
j

fi

ffi

ffi

ffi

fl

¨ s2 `

»

—

—

—

–

0
w1

...
wj

fi

ffi

ffi

ffi

fl

Prover Verifier

φ⃗j,i� φ⃗j,1, . . . , φ⃗j,l Ð Zd
q

Tj :“
“

Tj,1 Tj,2 ¨ ¨ ¨ Tj,d

‰

Tj`1,i :“

»

—

–

φ⃗T
j,iTj,1

...
φ⃗T

j,iTj,d

fi

ffi

fl

for i P rls

Tj`1 :“

»

—

–

Tj`1,1

...
Tj`1,l

fi

ffi

fl

P Zdˆddk´j´1

q

w⃗j`1 :“ Tj`1pv⃗j`2 b ¨ ¨ ¨ b v⃗k`1q

tj`1 :“ bT
j`1s2 ` wj`1

tj`1 -
Run Πj`1 Accept iff

Πj`1 accepts

Fig. 8: Commit-and-prove protocol Πj for the relation Rj where j ă k.
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A Security Analysis of the Protocol in Fig. 7

Lemma A.1. Consider the protocol in Fig. 7 and let χ be the uniform distribution over Sν for ν P N.
Suppose s1 “ γ1αη and s2 “ γ2νη

?
m2d for some γ1, γ2 ą 0 where η is chosen as in Section 2.5.

For completeness, if m1,m2 ě 640{d then the honest prover P convinces the honest verifier V with
probability

«
1

exp
´

1
2γ2

1
` 1

2γ2
2

¯ .
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For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of a commitment ptA, tBq along with a non-aborting transcript of the protocol
between prover P and verifier V such that for every algorithm A that has advantage ε in distinguishing the
simulated commitment and transcript from the real commitment and transcript, whenever the prover does
not abort, there is an algorithm A1 with the same running time that has advantage ε in distinguishing the
Extended-MLWEn`ℓ`1,m2´n´ℓ´1,χ,C,Ds2

.

For soundness, let Bi :“ 2si
?
2mid for i “ 1, 2. Then, there is an extractor E with the following properties.

When given rewindable black-box access to a probabilistic prover P˚, which convinces V with probability
ε ě 2{|C|, extractor E with probability at least ε´ 2{|C| either outputs ps̄1, m̄, s̄2q P Rm1`m2`ℓ

q and c̄ P C̄ such

that ps̄1, m̄, s̄2, c̄q is a relaxed opening of ptA, tBq and σps̄1qT s̄1 `σpm̄qT m̄ “ 0, or a MSIS
n,m1`m2,4η

?
B2

1`B2
2

solution for
“

A1 A2

‰

in expected time at most 3T where running P˚ once is assumed to take at most T time.

Proof. The knowledge soundness follows identically as in [LNP22, Theorem 4.2] thus we only focus on
completeness and simulatability.

Completeness. The correctness error comes directly from Lemmas 2.8 and 3.1. Here, we use the fact that
the commitment is generated by the prover and thus the sign b is freshly sampled and not given. Next,
}zi} ď s

?
2mid with an overwhelming probability by Lemma 2.5. Finally, the other verification equations

follow from the discussion above.

Simulatability. We prove the statement using a hybrid argument as before. First, we describe an efficient
simulator S1 which still knows s1,m and simulates both the commitment and the transcript in the following
way. It executes the prover’s algorithm but instead of constructing z2 honestly as in the protocol, S2 samples
y2 Ð Dm2d

s2 and defines z` :“ signpxcs2,y2yq ¨ y2 and z´ :“ ´z`. Then, it sets z2 :“ z` with probability p
and z2 :“ z´ with probability 1 ´ p where p is defined as

p :“
exp

´

|xcs2,y2y|

M

¯

exp
´

|xcs2,y2y|

M

¯

` 1
. (35)

It then continues with probability 1{M2 where Mi :“ expp1{p2γ2i qq for i “ 1, 2. By Lemma 3.1, the non-
aborted simulated commitment and transcript by S1 and S2 are identical.

Further, we define an efficient simulator S2, which still knows s1,m and simulates both the commitment
and the transcript as follows. Namely, it executes the S2 algorithm but instead of generating ptA, tB , tsign, tg, tq
honestly, it samples u Ð Rn`ℓ`1

q and computes:

»

–

tA
tB
t

fi

fl :“ u `

»

–

A1bs1
bm
g1

fi

fl .

Now, under the Extended-MLWEn`ℓ`1,m2´n´ℓ´1,χ,C,Ds2
assumption, the non-aborted output distribution of

S1 is computationally indistinguishable from the non-aborted output distribution of S2.

Moreover, we describe S3, which follows the algorithm for S3 but it directly samples ptA, tB , tq Ð Rn`ℓ`1
q .

Clearly, the outputs of S2 and S3 are identical. Recall that S3 still computes z1 :“ y1 ` bcs1 for b Ð t´1, 1u

and y1 Ð Dm1
s1 identically as the honest prover P.

Finally, we define our simulator S, which has no access to private information anymore, as follows.
Concretely, it executes the S3 algorithm but instead of generating z1 honestly, it simply samples z1 Ð Dm1

s1 .
Now, since b Ð t´1, 1u, the output distribution of S is identical to the non-aborted output of S3 by Lemma
2.8. Hence, the statement holds by the hybrid argument. [\
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B Security of the One-out-of-Many Proof

We start by analysing the commit-and-prove protocol Πk defined in Section 4. It is a simple application of
the general framework from [LNP22] and thus we can apply the security analysis from [LNP22, Theorem
5.3].

Lemma B.1. Let γ1, γ2, γ3 ą 0 and λ, ν P N14. Define χ to be the uniformly distribution on Sν . Fix

s1 “ γ1η
?
md` k ` 1, s2 “ γ2νη

a

m2d, s3 “
a

337pmd` k ` 1q

where η is defined in Section 2.5. Then, there is a 7-round commit-and-prove protocol Πk for relation Rk

with the following properties.

For completeness, if m1,m2 ě 640{d then the honest prover P convinces the honest verifier V with
probability

«
1

exp
´

14
γ1

` 1
2γ2

1
` 1

2γ2
2

` 1
2γ2

3

¯ .

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of the commitment

»

—

—

—

–

tA
t1
...
tk

fi

ffi

ffi

ffi

fl

“

„

A1

0

ȷ

¨

»

—

—

—

—

—

–

s
u1
...
uk
vk`1

fi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

–

A2

bT
1
...
bT
k

fi

ffi

ffi

ffi

fl

¨ s2 `

»

—

—

—

–

0
w1

...
wk

fi

ffi

ffi

ffi

fl

along with a non-aborting transcript of the protocol between prover P and verifier V such that for every algo-
rithm A that has advantage ε in distinguishing the simulated commitment and transcript from the real com-
mitment and transcript, whenever the prover does not abort, there is an algorithm A1 with the same running
time that has advantage ε in distinguishing the Extended-MLWEn`k`λ`256{d`2,m2´n´k´λ´256{d´2,χ,C,Ds2

.

For soundness, let Bi :“ 2si
?
2mid for i “ 1, 2 where m1 :“ m ` k ` 1 and B :“ 2

b

256
26 ϱs3. If

q ě 41 ¨ pm ` k ` 1q d ¨ B, to use [LNP22, Lemma 2.9]

q ą B2
arp ` B

a

pm ` k ` 1qd, to prove s, u1, . . . , uk, vk`1 have binary coeff.

then there is an extractor E with the following properties. When given rewindable black-box access to a

probabilistic prover P˚, which convinces V with probability ε ě 2{|C| ` q
´d{2
1 ` q´λ

1 ` 2´128, extractor E with

probability at least ε´2{|C|´q
´d{2
1 ´q´λ

1 ´2´128 either outputs x :“ pps̄, ū1, . . . , ūk, v̄k`1q, pw̄1, . . . , w̄kq, s̄2q P

Rm1`m2`k
q and c̄ P C̄ such that px, c̄q is a relaxed opening of ptA, pt1, . . . , tkqq and

`

Tk P Zdˆd
q , paiqiPrls, pφι,iqιPrk´1s,iPrlsq, ps̄, ū1, . . . , ūk, v̄k`1, w̄1, . . . , w̄kq

˘

P Rk

or a MSIS
n,m1`m2,4η

?
B2

1`B2
2
solution for

“

A1 A2

‰

in expected time at most 24T where running P˚ once is

assumed to take at most T time.

Now, we can prove by induction the following security properties of the protocol Πj for relation Rj defined
in Fig. 8.

14 Informally, parameters γ1, γ2, γ3 are related to rejection sampling whereas λ is a parameter used for soundness
amplification. Finally, the ABDLOP randomness vector s2 will have coefficients between ´ν and ν.
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Lemma B.2. Let j P rks and consider the commit-and-prove protocol in Fig. 8. Let γ1, γ2, γ3 ą 0 and
λ, ν P N. Define χ to be the uniformly distribution on Sν . Fix

s1 “ γ1η
?
md` k ` 1, s2 “ γ2νη

a

m2d, s3 “
a

337pmd` k ` 1q

where η is defined in Section 2.5.
For completeness, if m1,m2 ě 640{d then the honest prover P convinces the honest verifier V with

probability

«
1

exp
´

14
γ1

` 1
2γ2

1
` 1

2γ2
2

` 1
2γ2

3

¯ .

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of the commitment

»

—

—

—

–

tA
t1
...
tj

fi

ffi

ffi

ffi

fl

“

„

A1

0

ȷ

¨

»

—

—

—

—

—

–

s
u1
...
uk
vk`1

fi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

–

A2

bT
1
...
bT
j

fi

ffi

ffi

ffi

fl

¨ s2 `

»

—

—

—

–

0
w1

...
wj

fi

ffi

ffi

ffi

fl

along with a non-aborting transcript of the protocol between prover P and verifier V such that for every algo-
rithm A that has advantage ε in distinguishing the simulated commitment and transcript from the real com-
mitment and transcript, whenever the prover does not abort, there is an algorithm A1 with the same running
time that has advantage ε in distinguishing the Extended-MLWEn`k`λ`256{d`2,m2´n´k´λ´256{d´2,χ,C,Ds2

.

For soundness, let Bi :“ 2si
?
2mid for i “ 1, 2 where m1 :“ m ` k ` 1 and B :“ 2

b

256
26 ϱs3. If

q ě 41 ¨ pm ` k ` 1q d ¨ B, to use [LNP22, Lemma 2.9]

q ą B2
arp ` B

a

pm ` k ` 1qd, to prove s, u1, . . . , uk, vk`1 have binary coeff.

then there is an extractor E with the following properties. When given rewindable black-box access to a

probabilistic prover P˚, which convinces V with probability ε ě 2{|C| ` pk ´ jqq´l
1 ` q

´d{2
1 ` q´λ

1 ` 2´128,

extractor E with probability at least ε ´ 2{|C| ´ pk ´ jqq´l
1 ´ q

´d{2
1 ´ q´λ

1 ´ 2´128 either outputs x :“
pps̄, ū1, . . . , ūk, v̄k`1q, pw̄1, . . . , w̄jq, s̄2q P Rm1`m2`j

q and c̄ P C̄ such that px, c̄q is a relaxed opening of ptA, pt1, . . . , tkqq

and
´

Tj P Zdˆddk´j

q , paiqiPrls, pφι,iqιPrj´1s,iPrlsq, ps̄, ū1, . . . , ūk, v̄k`1, w̄1, . . . , w̄jq

¯

P Rj

or a MSIS
n,m1`m2,4η

?
B2

1`B2
2
solution for

“

A1 A2

‰

in expected time at most 2k´j ¨ 24T where running P˚

once is assumed to take at most T time.

Proof. First, correctness follows directly from Lemma B.1 and the argument presented in Section 4. Then,
for simulatability, we observe that before running Πk, the prover only sends the “bottom part” commitments
to wi and these (as a part of the whole ABDLOP commitment to pps, u1, . . . , uk, vk`1q, pw1, . . . , wkqq) can be
simulated as in the proof of Lemma A.1.

From now on, we only focus on the knowledge soundness property. We prove the statement by induction.
First, consider j “ k. Then, the statement follows directly from Lemma B.1 and the corresponding extractor
runs in expected 24T time.

Now, assume Πj`1 is knowledge sound with knowledge error pk´j´1qq´l
1 `2|C|´1`q

´d{2
1 `q´λ

1 `2´128 for
some j`1 ď k. Let P˚ be a probabilistic prover which runs in time at most T and convinces the verifier with

probability ϵ ą pk´ jqq´l
1 ` 2|C|´1 ` q

´d{2
1 ` q´λ

1 ` 2´128. Define a deterministic algorithm ApρP , ρE , pφ⃗j,iqq

which given randomness ρ “ pρP , ρEq P RP ˆ RE and challenge φ⃗j,1, . . . , φ⃗j,l P Zd
q does the following. It

first runs P˚pρP q on randomness ρP with challenges pφ⃗j,iq and stops after P˚ sends tj`1. Then, it runs the
extractor E˚pρEq for Πj`1 with randomness ρE (which runs P˚pρP , pφ⃗j,iqq in a black-box way).
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We say that A succeeds if A outputs ppφj,iq, tj`1, s̄1, m̄ ∥ w̄j`1, s̄2, c̄q such that ps̄1, m̄ ∥ w̄j`1, s̄2, c̄qq is a
relaxed opening of ptA, pt1, . . . , tjqq and

´

pTj`1 P Zdˆdk´j´1

q , paiqiPrls, pφι,iqιPrjs,iPrlsq, ps̄, ū1, . . . , ūk, w̄1, . . . , w̄j`1q

¯

P Rj`1

where s̄1 “ s̄ ∥ ū1 ∥ ¨ ¨ ¨ ∥ ūk ∥ v̄k`1 and m̄ :“ pw̄1, . . . , w̄jq. We assume that E˚ does not solve the MSIS
problem since if it did, then so does A (and later on E). Clearly, by induction hypothesis, the probability
that A succeeds for random ρ and pφ⃗j,iq is at least

ϵ´ pk ´ j ´ 1qq´l
1 ´ 2|C|´1 ´ q

´d{2
1 ´ q´λ

1 ´ 2´128.

Moreover, the expected runtime ApρP , ρE , pφ⃗j,iqq for any fixed ρP , pφ⃗j,iq and ρE Ð RE is 2k´j´1 ¨ 24T .
Now, we define our extractor E .

1. Sample ρ “ pρP , ρEq Ð RP ˆRE and pφ⃗j,iq P Zdˆl
q and run Apρ, pφ⃗j,iqq. If Apρ, pφ⃗j,iqq does not succeed,

abort.
2. If Apρ, pφ⃗j,iqq succeeds, run ApρP , ρ

1
E , pφ⃗

1
j,iqq for the same prover randomness ρP but fresh ρ1

E Ð RE

and pφ⃗1
j,iq Ð Zdˆl

q until A succeeds.

We say that E succeeds if it extracts two tuples x “ ps̄1, m̄, s̄2, c̄q and x1 “ ps̄1
1, m̄

1, s̄1
2, c̄

1q such that one of
the conditions below holds:

– ps̄1, s̄2q ‰ ps̄1
1, s̄

1
2q and both x, x1 are relaxed openings of ptA, pt1, . . . , tjqq

– x is relaxed opening of ptA, pt1, . . . , tjqq and

´

pTj P Zdˆdk´j

q , paiqiPrls, pφι,iqιPrj´1s,iPrlsq, ps̄, ū1, . . . , ūk, w̄1, . . . , w̄jq

¯

P Rj .

In the first case we break the binding property of the commitment scheme and obtain a MSIS solution by
Lemma 2.10. On the other hand, we extract the witness in the second case. Then, we have the following
claims about E .

Claim. The expected number of calls to A is at most 2.

Proof. Let X be the expected number of calling A and let ε be the probability that Apρ, pφ⃗j,iqq succeeds for
random ρ and pφ⃗j,iq. Define E to be the event that A succeeds in the first step. Then,

ErXs “ ErX|Es ¨ ε` ErX|Es ¨ p1 ´ εq “

ˆ

1 `
1

ε

˙

¨ ε` 1 ¨ p1 ´ εq “ 2.

[\

This claim implies that the expected runtime of E is at most 2k´j ¨ 24T .

Claim. Probability that E succeeds is at least ϵ´ pk ´ jqq´l
1 ´ 2|C|´1 ´ q

´d{2
1 ´ q´λ

1 ´ 2´128.

One proves the statement similarly as e.g. [LNP22, Theorem 4.5]. The key idea here is that if

Tjpv⃗j`1 b ¨ ¨ ¨ b v⃗k`1q ‰ w⃗j

then only with probability at most q´l
1 we have

xTjpv⃗j`1 b ¨ ¨ ¨ b v⃗kq ´ w⃗j , φ⃗
1
j,iy “ 0 for i “ 1, 2, . . . , l

for random challenges φ⃗1
j,i Ð Zd

q . Further, we know these l equations hold by construction of the matrix
Tj`1 and the definition of the relation Rj`1. Hence, E succeeds with probability at most the difference of A
succeeding and q´l

1 which is exactly the term in the claim.
Finally, the statement follows by combining the two claims about the extractor E . [\
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By applying the same approach to the protocol Πoom we obtain the following result.

Theorem B.3. Consider the commit-and-prove protocol in Fig. 9. Let γ1, γ2, γ3 ą 0 and λ, ν P N. Define χ
to be the uniformly distribution on Sν . Fix

s1 “ γ1η
?
md` k ` 1, s2 “ γ2νη

a

m2d, s3 “
a

337pmd` k ` 1q

where η is defined in Section 2.5.

For completeness, if m1,m2 ě 640{d then the honest prover P convinces the honest verifier V with
probability

«
1

exp
´

14
γ1

` 1
2γ2

1
` 1

2γ2
2

` 1
2γ2

3

¯ .

For commit-and-prove simulatability, there exists a simulator S that, without access to private information
s1,m, outputs a simulation of the commitment

tA “ A1

»

—

—

—

—

—

–

s
u1
...
uk
vk`1

fi

ffi

ffi

ffi

ffi

ffi

fl

` A2s2

along with a non-aborting transcript of the protocol between prover P and verifier V such that for every algo-
rithm A that has advantage ε in distinguishing the simulated commitment and transcript from the real com-
mitment and transcript, whenever the prover does not abort, there is an algorithm A1 with the same running
time that has advantage ε in distinguishing the Extended-MLWEn`k`λ`256{d`2,m2´n´k´λ´256{d´2,χ,C,Ds2

.

For soundness, let Bi :“ 2si
?
2mid for i “ 1, 2 where m1 :“ m ` k ` 1 and B :“ 2

b

256
26 ϱs3. If

q ě 41 ¨ pm ` k ` 1q d ¨ B, to use [LNP22, Lemma 2.9]

q ą B2
arp ` B

a

pm ` k ` 1qd, to prove s, u1, . . . , uk, vk`1 have binary coeff.

then there is an extractor E with the following properties. When given rewindable black-box access to a

probabilistic prover P˚, which convinces V with probability ε ě 2{|C|`kq´l
1 `q

´d{2
1 `q´λ

1 `2´128, extractor E
with probability at least ε´ 2{|C| ´ kq´l

1 ´ q
´d{2
1 ´ q´λ

1 ´ 2´128 either outputs x :“ pps̄, ū1, . . . , ūk, v̄k`1q, s̄2q P

Rm1`m2`j
q and c̄ P C̄ such that px, c̄q is a relaxed opening of tA and

ppT,Aq, ps̄, ū1, . . . , ūk, v̄k`1qq P Room

or a MSIS
n,m1`m2,4η

?
B2

1`B2
2
solution for

“

A1 A2

‰

in expected time at most 2k ¨ 24T where running P˚ once

is assumed to take at most T time.

Security in the Random Oracle Model. As in prior works, we make the protocol non-interactive
using the well-known Fiat-Shamir transformation [FS86]. However, as noted by e.g. Attema et al. [AFK21],
applying a naive analysis in our case might incur a security loss in the order of Qk where Q is the number of
random oracle queries made by an adversary. Recently, Lyubashevsky et al. [LNP22] showed that the LNP
framework admits a security loss of at most Q` 1 in the random oracle model. We note that the techniques
from [LNP22, Appendix B] (especially the probabilistic argument which was implicitly used in the proof of
Lemma B.2) can be directly adapted to our setting and thus our protocol also enjoys the linear security loss
in the number of random oracle queries Q.
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Proof size. Using the analysis from [LNP22, Section 6.1], the commitment and proof size of Πoom (without
doing any Dilithium compression) is around

pn` k ` λ` 256{d` 2q drlog qs ` pm ` k ` 1qd ¨ p2.57 ` rlog s1sq

`m2d ¨ p2.57 ` rlog s2sq ` 256 ¨ p2.57 ` rlog s3sq ` rlogp2κ` 1qs ¨ d bits.

In our ring signature size calculation, however, we also apply the commitment compression technique as
described in [LNP22, Appendix A].

C Ring Signatures from One-Out-of-Many Proofs

C.1 Sign-invariant Relations and Bimodal Gaussians

In order to reduce the proof size of the one-out-of-many proof presented in Section 4, we make use of the
techniques developed in Section 3. To this end, we need to modify the relation Room to be sign-invariant. In
the current form, it is not sign-invariant since e.g. s P t0, 1umd does not imply that ´s P t0, 1umd. We make
the following changes to Room. First, define a set of signed monomials:

B :“ tXi : i P r2dsu.

Then, we can define the modified relation R1
oom as follows:

R1
oom :“

"

ppT,Aqps, u1, . . . , uk, vk`1qq : s P t´1, 1umd ^ T pv⃗1 b ¨ ¨ ¨ b v⃗k`1q “ As⃗
^u1, . . . , uk, vk`1 P B where u⃗i :“ v⃗i ∥ 0d´d

*

.

We claim that for certain values of k, R1
oom is sign-invariant.

Lemma C.1. Let k ě 0 be an even number. Then, relation R1
oom defined above is sign-invariant.

Proof. Suppose ppT,Aq, ps, u1, . . . , uk, vk`1qq P R1
oom. First, we observe ´s P t´1, 1umd and ´u1, . . . ,´uk,´vk`1 P

B. Also, ´u⃗i “ ´v⃗i ∥ 0d´d for i P rks. Finally, since k is even, we have

Ap´s⃗q “ ´T pv⃗1 b ¨ ¨ ¨ b v⃗k`1q “ T pp´v⃗1q b ¨ ¨ ¨ b p´v⃗k`1qq .

Hence, ppT,Aqp´s,´u1, . . . ,´uk,´vk`1qq P R1
oom. [\

Constructing a commit-and-prove protocol Π 1
oom for R1

oom can be done similarly as in the case for Room with
two small changes. First, we prove that s P t´1, 1umd which is equivalent to proving that vector 2´1ps ` 1q

has binary coefficients. Secondly, to prove that u1, . . . , uk, vk`1 P B we use the observation that a P B if and
only if }a} “ 1 and this statement can be proven as in [LNP22].

Finally, we note that finding s1 :“ ps, u1, . . . , uk, vk`1q so that ppT,Aq, s1q P R1
oom implies knowing an

index i P rN s of a column of T and a short vector s⃗ such that As⃗ P t´t⃗i, t⃗iu and thus a pre-image of t⃗i under
A.

C.2 Ring Signature Construction

We sketch out the folklore approach to transform an one-out-of-many proof into a ring signature [ESS`19,
GK15, BCC`15, LNS21b]. Suppose we have a ring of N users. Each user i P rN s has their associated private-
public key pski, pkiq such that ski :“ spiq Ð t´1, 1umd and pki :“ Aspiq mod p where A Ð Rnˆm

p and p is a
modulus for the ring signature.

Now, user i signs a message by producing a non-interactive one-out-of-many proof, i.e. proof of knowledge
of a vector spiq such that spiq P t´1, 1umd and

Aspiq P tpk1, . . . , pkNu.
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N k proof size

26 0 13.1 KB

212 2 14.1 KB

218 4 15.1 KB

224 6 16.2 KB

Fig. 10: Ring signature sizes for N “ d ¨dk users. For all parameter sets, we choose pp, n,m, d, dq “ p65437, 1, 12, 64, 8q

and q “ 65437 ¨ 65629 « 232.

We observe that if p divides q then this problem can be solved using the (non-interactive) commit-and-prove
system Π 1

oom for relation R1
oom.

Anonymity property of the ring signature follows directly from simulatability of Π 1
oom. In order to argue

unforgeability with respect to insider collusion, we proceed as in [ESS`19, Theorem 3]. Namely, the reduction
picks a uniformly random user j and sets a uniformly random public key pkj Ð Rn

p (under the MLWEn,m´n,D

assumption where D is the distribution over Rp so that each coefficient is sampled uniformly at random
from t´1, 1u). If there is any signing query to j, then the reduction simulates the one-out-of-many proof.
Finally, the reduction will hope that: (i) the adversary does not make a corruption query to j and (ii) it
forges a signature exactly for the public key pkj . In this case, one can extract a secret key s˚ P t´1, 1umd

such that As˚ “ pkj . Thus, ps˚, 1q is a non-zero vector of norm
?
md` 1 which is a Module-SIS solution for

the matrix rA | pkjs P Rnˆpm`1q
p and thus the reduction solves MSISn,m`1,

?
md`1.

In Figure 10, we present ring signature sizes for various rings of size between 26 and 224. We set pp, n,mq “

p65437, 1, 12q so that both theMLWEn,m´n,D and theMSISn,m`1,
?
md`1 problems are hard. Namely, since there

is a reduction loss of 1{N , we pick the root Hermite factor δ « 1.0039 for MSISn,m`1,
?
md`1 which should be

enough for rings of size at most 224. In regard to MLWEn,m´n,D, we aim for the root Hermite factor δ « 1.0044
as in prior works. For such parameters, the user public key (resp. secret key) has size 128B (resp. 96B) which
is more than one order of magnitude smaller than the public key in [LNS21b]. As described earlier, we
pick pd, d, lq “ p64, 8, 16q. Since we only consider even values for k in order to use bimodal Gaussians, our
ring signature supports rings of size 64k{2`1 “ 23k`6. In all instantiations we picked q1 :“ p “ 65437 and
q2 :“ 65629 such that the proof system modulus q “ q1q2 « 232 and the repetition rate is « 3 as in [LNS21b].

D Proving Integer Relations

This section focuses on proving integer relations using the framework described in Section 2.7. We start by
proving integer addition in Section D.1 and then move to proving multiplication in Section D.2. We highlight
that the relations we are interested in hold over integers, i.e. no wrap-around modulo q occurs. We will use
the standard bit decomposition representation. Namely, an integer w P r0, 2n ´ 1s is represented as a vector
of n bits pw0, . . . , wn´1q P t0, 1un such that

w “

n´1
ÿ

i“0

wi2
i.

Our techniques can be easily adapted for the two’s complement representation which includes negative
integers.

In this section we will reduce the problem of proving n-bit15 integer relations to proving various equations
over a polynomial ring R1 :“ ZrXs{pXn ` 1q (or ZrXs{pX2n ` 1q in the case of multiplication). Since Section
2.7 only considers relations over the ring R which might be potentially smaller than R1 if d ă n, it is not
immediately clear if the framework from [LNP22] supports proving relations over a larger ring R1. However,

15 Suppose that n is a power-of-two.
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it was shown by Lyubashevsky et al. [LNPS21] that one can write an equation over R1 equivalently as a
system of equations over R.

Let n “ kd for k ě 1. First, we observe that R is isomorphic to the subring S :“ ZrXks{pXkd ` 1q of R1.
Let us define the commutative ring Sk “ pSk,`, ‹q where ` is a component-wise addition and ‹ is defined
as:

pa0, . . . , ak´1q ‹ pb0, . . . , bk´1q “ pc0, . . . , ck´1q

where for all 0 ď ℓ ă k
cℓ :“

ÿ

0ďi,jăk
i`j”ℓ mod k

aibjX
t
i`j
k uk P S.

Thus, p0, . . . , 0q and p1, 0, . . . , 0q are the additive and multiplicative identities respectively. Then, [LNPS21]
prove the following lemma.

Lemma D.1. Let k ě 1 be a power-of-two. Then, R1 :“ ZrXs{pXkd ` 1q – Sk.

We explicitly write the ring isomorphism ϕ. First of all, we can write any polynomial a P R1 uniquely as
a “

řk´1
i“0 aiX

i where each ai P S. We define the map ϕ : R1 Ñ Sk as

ϕpaq :“ pa0, . . . , ak´1q P Sk.

We refer to [LNPS21, Section 2.8] for more details.

D.1 Integer Addition

In this subsection we provide an efficient commit-and-prove system for addition on the committed integers.
Specifically, given commitments to integers a, b, c (depending on the application, some of these values can
be given out in the clear), we want to prove that a ` b “ c. In order to consider both positive and negative
values, we use the two’s complement representation. Namely, let n be a power of two and suppose n “ kd
for k ě 1. Suppose a, b, c P r0, 2n ´ 1s and we want to prove a ` b “ c. Then, a, b, c can be represented as

vectors a⃗, b⃗, c⃗ P t0, 1un which satisfy

a “

n´1
ÿ

i“0

ai2
i, b “

n´1
ÿ

i“0

bi2
i, c “

n´1
ÿ

i“0

ci2
i.

Let us define polynomials â, b̂, ĉ P ZrXs as follows:

â “

n´1
ÿ

i“0

aiX
i, b̂ “

n´1
ÿ

i“0

biX
i, ĉ “

n´1
ÿ

i“0

ciX
i.

Then, clearly we have a` b “ c if and only if âp2q ` b̂p2q “ ĉp2q. The latter can be written equivalently as

âpXq ` b̂pXq “ ĉpXq ` p2 ´Xqf̂pXq (36)

for some f̂ P ZrXs of degree at most n ´ 2. We will call f̂ the carry polynomial. We now show that f̂ has
binary coefficients.

Lemma D.2. The polynomial f̂ P ZrXs defined above has coefficients in t0, 1u.

Proof. We prove the statement by induction and start with the constant coefficient f0. Note that

2f0 “ a0 ` b0 ´ c0

and thus

´
1

2
ď f0 “

a0 ` b0 ´ c0
2

ď 1.
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Hence, f0 P t0, 1u. Next, consider 0 ă i ď n ´ 2 and suppose fi´1 P t0, 1u. Then

2fi ´ fi´1 “ ai ` bi ´ ci

and therefore

´
1

2
ď fi “

ai ` bi ´ ci ` fi´1

2
ď

3

2
.

We conclude that fi P t0, 1u. [\

Our strategy will be to prove (36). We do it by first proving the equation over R1
q :“ ZqrXs{pXn ` 1q “

ZqrXs{pXkd ` 1q and then showing that no modulo q and Xn ` 1 wrap-around occurs. Let x̂ P R1
q be an

inverse of 2´X. Such inverse exists if 2kd `1 is not divisible by q which will be the case in our instantiations.
Consider the ϕ : R1

q Ñ Rk
q map described above, i.e.

ϕpuq “ pu0, . . . , uk´1q where u “

k´1
ÿ

i“0

uipX
kqXi P R1

q.

Using Lemma D.1, (36) is equivalent to

ϕpx̂q ‹ pϕpâq ` ϕpb̂q ´ ϕpĉqq “ ϕpf̂q.

For simplicity denote
ϕpâq :“ pâ0, . . . , âk´1q

and similarly for b̂, ĉ, x̂, f̂ . Then this equation is equivalent to

@ι P Zk,
ÿ

0ďi,jăk
i`j”ι mod k

x̂i

´

âj ` b̂j ´ ĉj

¯

Xt i`j
k u “ f̂ι

over Rq. Hence, we will commit to ϕpâq, ϕpb̂q, ϕpĉq P Rk
q and prove the following statements:

Polynomials â, b̂ and ĉ are well-formed. We need to show that all the coefficients of â, b̂, ĉ are binary.
Note that this is equivalent to proving that â0, . . . , âk´1 P Rq all have binary coefficients and similarly for

b̂, ĉ. This is thus a statement of Type-3 in Section 2.7.

Polynomial f̂ is well-formed. We prove that f̂ has binary coefficients. This is done by proving that for
all ι P Zk,

ÿ

0ďi,jăk
i`j”ι mod k

x̂i

´

âj ` b̂j ´ ĉj

¯

Xt i`j
k u P Rq

has binary coefficients. Note that the expression is a linear combination in the committed messages and thus
this is a statement of Type-3 in Section 2.7.

No overflow modulo q and Xn ` 1. Recall that we prove Equation 36 over R1
q. In order to conclude

that the equation holds over integers, we prove that there is no overflow modulo q and Xn ` 1. The first
statements above make sure no wrap-around modulo q occurs when q ě 7. For the latter issue, note that it
is enough to prove that the highest degree coefficient of f̂ is equal to zero. This is done by proving that the
constant coefficient of

X´d`1 ¨ f̂k´1 “ X´d`1 ¨
ÿ

0ďi,jăk
i`j”k´1 mod k

x̂i

´

âj ` b̂j ´ ĉj

¯

Xt i`j
k u
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is equal to zero. Clearly, this is a statement of Type-2 in Section 2.7.
We present the proof sizes for proving integer addition in Figure 11. For computing the sizes we already

apply the bimodal Gaussian optimisation described in Section 3. In particular, we additionally commit to the
sign b P t´1, 1u in order to perform bimodal Gaussian rejection sampling on the message. For each instance,
we choose pq, dq “ p« 232, 64q and set the standard deviations so that the overall repetition rate is at most
3.

n k proof size

64 1 11.0KB

128 2 11.4KB

512 8 13.6KB

Fig. 11: Proof size comparison for proving integer addition a ` b “ c for a, b, c P r0, 2n ´ 1s.

D.2 Integer Multiplication

We show how to prove knowledge of integers a, b, c such that ab “ c. We first present a non-optimal solution
which can be done by directly applying the framework in Section 2.7. Then, we describe a way to reduce the
proof size at the cost of slightly extending the framework from [LNP22].

Concretely, let us write a, b P r0, 2n ´ 1s and c P r0, 22n ´ 1s in binary representation, i.e.

a “

n´1
ÿ

i“0

ai2
i, b “

n´1
ÿ

i“0

bi2
i, c “

2n´1
ÿ

i“0

ci2
i.

We assume that n is a power of two and 2n “ kd for k ě 2. Now, define

âpXq “ a0 ` a1X ` ¨ ¨ ¨ ` an´1X
n´1 P ZrXs

and similarly for b̂, ĉ P ZrXs. Now, observe that âp2qb̂p2q´ ĉp2q “ 0. Hence, there exists a “carry” polynomial

f̂ of degree at most 2pn ´ 1q which satisfies:

âpXqb̂pXq ´ ĉpXq “ p2 ´Xqf̂pXq. (37)

The next lemma states that coefficients of f are between ´pn ` 1q and n ` 1.

Lemma D.3. Let f̂ be the polynomial of degree at most 2n ´ 2 defined above. Then, for each coefficient fk
of f̂ corresponding to Xk, 0 ď fk ď n.

Proof. We first show f0 “ 0. Consider Equation 37 for X “ 0. Then, we have a0b0 ´ c0 “ 2f0. Since
´1 ď a0b0 ´ c0 ď 1, we get f0 “ 0.

Now suppose by induction that 0 ď fk´1 ď n for k ą 0. In general, by considering the k-th coefficient of
âb̂´ ĉ and p2 ´Xqf̂ , we have the following equality:

2fk ´ fk´1 “
ÿ

0ďi,jăn s.t. i`j“k

aibj ´ ck ď n.

and similarly ´1 ď 2fk ´ fk´1. Hence, we obtain

´
1

2
ď
fk´1 ´ 1

2
ď fk ď

n ` fk´1

2
ď n.

Thus, the statement holds.
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Unlike in Lemma D.2, the coefficients of f̂ are much bigger than t0, 1u but still small compared to q (if q is
much larger than n` 1 which will be the case). However, in order to show that no modulo q overflow occurs,

we just need to prove shortness of f̂ approximately.
Similarly as in the integer addition proof, we want to prove Equation 37 over ZrXs. In order to do so, we

consider this equation over R1
q :“ ZqrXs{pX2n ` 1q “ ZqrXs{pXkd ` 1q. Namely, consider the ϕ : R1

q Ñ Rk
q

map described earlier, i.e.

ϕpuq “ pu0, . . . , uk´1q where u “

k´1
ÿ

i“0

uipX
kqXi.

As shown in Lemma D.1, (37) over R1
q is equivalent to

ϕpâq ‹ ϕpb̂q ´ ϕpĉq “ ϕp2 ´Xq ‹ ϕpf̂q.

For simplicity denote
ϕpâq :“ pâ0, . . . , âk´1q P Rk

q

and similarly for b̂, ĉ, f̂ . Also denote ϕp2 ´Xq :“ px̂0, . . . , x̂k´1q. Then this equation is equivalent to

@ι P Zk,
ÿ

0ďi,jăk
i`j”ι mod k

âib̂jX
t i`j

k u ´ ĉι “
ÿ

0ďi,jăk
i`j”ι mod k

x̂if̂jX
t i`j

k u. (38)

Now, in order to conclude that (37) holds over ZrXs, we need to show that no wrap-around modulo q and

X2n ` 1 occurs. For the first issue, we show that coefficients of â, b̂ and ĉ are binary (by definition of the

binary decomposition). As for f̂ , we conduct an approximate shortness proof to show that f̂ has sufficiently
small coefficients so that no modulo q overflow happens. Next, in order to make sure there is no wrap-around
modulo X2n ` 1, we prove that the degree of â and b̂ are at most n´ 1 and the degree of f̂ is at most 2n´ 2.

Hence, we will commit to ϕpâq, ϕpb̂q, ϕpĉq, ϕpf̂q P Rk
q and prove the following statements:

Polynomials â, b̂ are well-formed. We need to show that all the coefficients of â, b̂ are binary and that the
n-th,. . . , p2n´ 1q-th coefficients of â, b̂ are equal to zero. These statements are to make sure no wrap-around
modulo q and X2n ` 1 occur respectively. Note that the first one is equivalent to proving that â0, . . . , âk´1

all have binary coefficients and similarly for b̂ (Statement of Type-3). The latter one, on the other hand, is

equivalent to proving that the d{2-th,. . . , pd´1q-th coefficients of â0, . . . , âk´1, b̂0, . . . , b̂k´1 are all zeroes, i.e.
the constant coefficients of

X´i´d{2 ¨ âj and X´i´d{2 ¨ b̂j

are zeroes for i P Zd{2 and j P Zk (Statement of Type-2).

Polynomial ĉ is well-formed. In case of ĉ, we need to prove that ĉ has binary coefficients. This boils
down to proving that ĉ0, . . . , ĉk´2, ĉk´1 `Xd´1 all have binary coefficients (Statement of Type-3).

Equation 37 holds over R1
q . We simply prove k quadratic equations (38) (Statement of Type-1).

No overflow modulo q. We prove approximately that f̂ has small coefficients. By Lemma D.3, }ϕpf̂q} ď

B1 :“ n
?
2n “ kd

?
kd{2 (Statement of Type-5). We can convince the verifier that }f̂}8 “ }ϕpf̂q}8 ď ψ ¨ B1

for some approximation factor. If
q ą n ` 3ψ ¨ B1 (39)

and we proved that that â, b̂, ĉ all have binary coefficients and the degree of â, b̂ are at most n´ 1 , then (37)
holds over Z and no wrap-around modulo q occurs.
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No overflow modulo X2n ` 1. Recall that the first statement above makes sure no wrap-around modulo
X2n`1 occurs when multiplying âb̂. Now, to prove no such wrap-around happens when multiplying p2´Xqf̂ ,

it is enough to prove that the highest degree coefficient of f̂ is equal to zero. This is done by proving that
the constant coefficient of X´d`1 ¨ f̂k´1 is equal to zero (Statement of Type-3).

It is now clear that all the statements can be directly proven using the framework in Section 2.7. Namely,
we define s1 :“ ϕpâq ∥ ϕpb̂q ∥ ϕpĉq and m “ ϕpf̂q and apply the general protocol from [LNP22]. The reason

to set m this way is because the coefficients of f̂ are much larger than the coefficients of â, b̂, ĉ.

Is Committing to the Carry Polynomials Necessary? A natural question one might ask is why we
have to commit to the “carry polynomials” ϕpf̂q in the integer multiplication case but not when doing integer

addition as in the previous subsection. What is similar in both cases is that if we write s1 :“ ϕpâq ∥ ϕpb̂q ∥
ϕpĉq,m :“ H then there are known polynomial functions F1, . . . , Fk : R3k

q Ñ Rq such that:

ϕpf̂q “

»

—

–

F1ps1,mq

...
Fkps1,mq

fi

ffi

fl

.

Now, note that the framework from [LNP22] natively only supports proving shortness in the L8{L2 norm
of linear functions in s1,m (see Statements of Type-4 and Type-5 in Section 2.7). The reason is that when
applying approximate range proofs, they additionally commit to signs bpdq, bpeq in order to use bimodal
Gaussian rejection sampling. Having these additional secret polynomials, e.g. bpdq, turns a linear equation
into a quadratic one. Observe that for integer addition F1, . . . , Fk were indeed linear. However, for integer
multiplication F1, . . . , Fk become quadratic and thus the framework from [LNP22] cannot be used directly
since the equation becomes cubic.

We circumvent this problem and still not commit to ϕpf̂q by simply removing the bimodal Gaussian

rejection sampling when proving approximate shortness of ϕpf̂q. Concretely, we do not commit to bpdq from
[LNP22, Fig. 10] and thus we can prove shortness of a quadratic expression in s1,m. The drawback is a
potentially larger standard deviation spdq used for the Statement of Type-5 due to the standard rejection
sampling, i.e. Lemma 2.8, and consequently larger approximation factor ψ. However, this is fine in our setting
as long as (39) still holds.

We include the optimised proof sizes in Figure 12. As in the case for integer addition, we apply the
bimodal rejection sampling optimisation from Section 3, including committing to the additional sign b. For
each instantiation, we set pq, dq “ p« 232, 64q and the parameters for rejection sampling are chosen so that
the repetition rate is less than 5 (the increase comes from the fact that we perform one standard rejection
sampling as described above).

n k proof size

64 2 13.6KB

128 4 14.4KB

512 16 19.2KB

Fig. 12: Proof size comparison for proving integer multiplication ab “ c for a, b P r0, 2n ´ 1s and c P r0, 22n ´ 1s.

To conclude this section, we present a comparison of our proof sizes with [LNS20] for integer addition
and multiplication in Fig. 13.
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N 128 512

[LNS20] 25KB 45KB

This Work 12KB 14KB

N 128 512

[LNS20] 40KB 100KB

This Work 15KB 19KB

Fig. 13: Proof size comparison for proving integer addition (on the left) and multiplication (on the right). Here, N is
the bit-length of the integers. It is worth mentioning that [EZS`19, ESZ21] also construct efficient proofs of integer
addition, alternatively called balance proofs, which use similar CRT-packing techniques as [LNS20].

E Group Signatures Based on Falcon

Another application of one-out-of-many proofs are group signatures. Indeed, they can be (naively) con-
structed by simply making the group public key to be the concatenation of all the user public keys, e.g.
as in [EZS`19, ESZ21]. Consequently, the group public key becomes linear in the number of users. As an
example, by taking the parameters from C.2, the group public key for 220 users would become 128MB which
is infeasible in practice.

In this section we construct a Falcon-based [FHK`20] group signature which offers significantly smaller
group public key and still makes use of the nice properties of our one-out-of-many proof. We highlight that
the signature generation and verification is still linear in the number of users which might become a serious
limitation for large groups.

The high-level idea is as follows. Let us define N “ d ¨ dk ă 2d to be size of the group and R1
p :“

ZprXs{pXd1

` 1q to be the underlying ring. The group public key is a polynomial h P R1
p and the master

secret key is a quadruple of short polynomials pg, f,G, F q P R14
p such that: (i) h “ g ¨ f´1 mod pp,Xd1

` 1q

and (ii) fG´ gF “ p mod pXd1

` 1q. Then, the secret key of the user i P rN s is the Falcon signature of the

message i, i.e. a pair of short polynomials ski :“
´

s
piq
1 , s

piq
2

¯

P R12
p which satisfies

s
piq
1 ` hs

piq
2 “ Hpiq and

›

›

›

´

s
piq
1 , s

piq
2

¯
›

›

›
ď β

where H : t0, 1u˚ Ñ R1
p is a hash function and β is a suitably chosen bound on the secret key. Further, user

i P rN s signs a message m by giving a proof of knowledge of a pair ps1, s2q P R1
p such that }ps1, s2q} ď β and

s1 ` hs2 P tHpjq : j P rN su .

This is where we apply the one-out-of-many proof developed in Section 4. Concretely, denote s⃗ :“ s⃗1 ∥ s⃗2 P

Z2n
p and A :“ rIn rotphqs where rotphq P Znˆn

p is the rotational matrix of h. Then, we can write the equation
above equivalently as:

As⃗ “ T pv⃗1 b ¨ ¨ ¨ b v⃗k b v⃗k`1q pmod pq (40)

where T is the matrix with columns being the coefficients of Hp1q, . . . ,HpNq, and v⃗1, . . . , v⃗k P t0, 1ud and
v⃗k P t0, 1ud are the unit vectors.

We have the following two remarks. First, if we pick a proof system modulus q to be divisible by the
prime p then (40) can be written equivalently as an equation over Zq by simply multiplying A and T by q{p.
However, to fully apply the framework from [LNP22] we need all prime divisors of q to be congruent to 5
modulo 8 and thus we cannot use the original prime p “ 12289 from Falcon. Hence, we set p “ 12301 which
is a prime congruent to 5 modulo 8 and is sufficiently close to the original prime so that other parameters
from Falcon do not change 16. Secondly, recall that in Section 4 base d is defined to be a divisor of d. Then,
q´l
1 becomes one of the knowledge error terms where q1 is the smallest prime divisor of q and l “ d{d. When

16 It is worth pointing out that having a different prime might not allow for fast Fourier sampling used in Falcon.
If one is interested in sticking with the original Falcon prime then one could solve this issue using the modulo
switching technique as in [LNP22, Section 6.3]. This approach becomes more expensive since one would need much
larger proof system modulus q to make sure no wrap-around occurs.
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q1 “ p « 213 and d “ 64 as before, then picking d “ 8 does not provide sufficient soundness, while with d “ 4
one would need to commit to more polynomials ui and wi from Section 4 which increases the proof size. We
point out that by simple bookkeeping, one can follow (almost) the same argument from Section 4 while not
having d divide d as long as d ¨ l ď d. In our example, we will pick d “ 7 and l “ 9 so that q´l

1 “ p´l « 2´122.
In order to be able to open the group signature, we will add a verifiable encryption to the signature

exactly as in [LNP22, Section 6.3]. Namely, we want the signer to encrypt an identity of the user i P rN s,
using a public key associated to a decryption key that the group manager possesses, and prove that this
encryption is indeed of their identity. A naive solution would be to encrypt all vectors v⃗1, . . . , v⃗k`1 (or more
concretely, polynomials u1, . . . , uk, vk`1) which is rather costly. What we do instead is encrypting a single
polynomial mpiq P R for which its coefficient vector is a binary decomposition of the following number:

0 ď

k´1
ÿ

j“0

dj ¨ d⃗T u⃗j`1 ` dk ¨ d⃗T v⃗k`1 ď dkd´ 1

where u⃗j “ v⃗j ∥ 0d´d for j P rks and d⃗ “ p0, 1, 2, . . . , d´ 2, d´ 1q P Zd. It is easy to see that for two different
users i ‰ j we have mpiq ‰ mpjq. Now, to encrypt m :“ mpiq we sample a randomness vector r Ð ξK , where
ξ is a distribution over R, and compute

„

t0
t1

ȷ

:“

„

A
bT

ȷ

r `

„

0
t
p
2 sm

ȷ

(41)

over Rp where pA,bq P RMˆK
p ˆ RM

p is the public key. Let B be an upper-bound on r such that the

probability that }r} ą B for r Ð ξK is negligible. Then, in the verifiable encryption scenario, we want to
prove knowledge of r P RK

p and m P Rp such that (i) Equation 41 is satisfied over Rp, (ii) }r} ď B and (iii)

m P t0, 1ud. Finally, to show the relationship between m and polynomials u1, . . . , uk, vk`1, we simply prove
the linear equation over Zp:

k´1
ÿ

j“0

dj ¨ d⃗T u⃗j`1 ` dk ¨ d⃗T v⃗k`1 “
“

1 2 ¨ ¨ ¨ 2tlogMu
‰

m⃗.

Since we assumed p is divisible by q, all these relations can be easily proven using the framework described
in Section 2.717.

In terms of security analysis, anonymity follows directly from the simulatability of Πoom and the frame-
work from [LNP22]. Further, one can reduce the traceability property directly to the unforgeability of the
Falcon signature scheme. Concretely, an adversary A against the traceability game first asks two types of
queries: (i) the signature queries and (ii) the corruption queries where the user secret keys are revealed. For
(i) the reduction will simply simulate the proofs. Then, for (ii), if A wants to obtain a secret key correspond-
ing to the user i, the reduction makes a query to the Falcon signing oracle on message i and passes the valid
secret key ski. As a standard complexity leveraging argument, suppose that at the beginning the challenger
picks a uniformly random index i˚ for which it aborts when A makes a corruption query on i˚. Finally, if A
can forge a valid group signature on an uncorrupted user j and j “ i˚, then the reduction can extract short
s̄1, s̄2 such that s̄1 ` hs̄2 “ Hpjq “ Hpi˚q which is a valid Falcon signature forgery on the message i˚ that
was not queried to the Falcon signing oracle.

Concrete instantiation. We present the group signature sizes in Fig. 14. As described above, we pick the
prime modulus p :“ 12301 so that we can apply the framework from [LNP22]. We select other parameters
exactly as in Falcon [FHK`20], namely d1 “ 512 and β “

?
34034726. For verifiable encryption we set

M “ 10 and K “ 21 and ξ samples each coefficient according to the binomial distribution B with standard
deviation 1: Bp´2q “ ξp2q “ 1{16,Bp´1q “ Bp1q “ 1{4 and Bp0q “ 3{8.

17 In particular, we do not have to commit to the whole vector r “ pr1, r2q P RK´M
p ˆRM

p but only to the r1 P RK´M
p

part as described in [LNP22, Fig.14].
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N k proof size

26 0 16.4 KB

« 211 2 17.4 KB

« 222 6 19.4 KB

Fig. 14: Group signature sizes for N “ d ¨ dk users. For all parameter sets, we choose pp, d, d, lq “ p12301, 64, 7, 9q and
q “ 12301 ¨ 349133 « 232.

In all instantiations we picked q1 :“ p “ 12301 and q2 :“ 349133 such that the proof system modulus
q “ q1q2 « 232 and the repetition rate is « 3. Using the computation from Falcon, the public key (resp.
secret key) size is p897 `Kdrlogp12301qsq{210 « 3.2KB (resp. p666 ` 3Mdq{210 « 2.5KB).
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