Private Certifier Intersection

Bishakh Chandra Ghosh!, Sikhar Patranabis?, Dhinakaran
Vinayagamurthy?, Venkatraman Ramakrishna?, Krishnasuri Narayanam?,
and Sandip Chakraborty!

Indian Institute of Technology Kharagpur
2IBM Research, India

ghoshbishakh@gmail.com, sikhar.patranabis@ibm.com, dvinayal@in.ibm.com,
vramakr2@in.ibm.com, knaraya3@in.ibm.com, sandipc@cse.iitkgp.ac.in

September 30, 2022

Abstract

We initiate the study of Private Certifier Intersection (PCl), which allows mu-
tually distrusting parties to establish a trust basis for cross-validation of claims if
they have one or more trust authorities (certifiers) in common. This is one of the
essential requirements for verifiable presentations in Web 3.0, since it provides ad-
ditional privacy without compromising on decentralization. A PCl protocol allows
two or more parties holding certificates to identify a common set of certifiers while
additionally validating the certificates issued by such certifiers, without leaking
any information about the certifiers not in the output intersection. In this paper,
we formally define the notion of multi-party PCl in the Simplified-UC framework
for two different settings depending on whether certificates are required for any
of the claims (called PCI-Any) or all of the claims (called PCI-All). We then de-
sign and implement two provably secure and practically efficient PCl protocols
supporting validation of digital signature-based certificates: a PCI-Any protocol
for ECDSA-based certificates and a PCI-All protocol for BLS-based certificates.
The technical centerpiece of our proposals is the first secret-sharing-based MPC
framework supporting efficient computation of elliptic curve-based arithmetic op-
erations, including elliptic curve pairings, in a black-box way. We implement this
framework by building on top of the well-known MP-SPDZ library using OpenSSL
and RELIC for elliptic curve operations, and use this implementation to benchmark
our proposed PCI protocols in the LAN and WAN settings. In an intercontinental
WAN setup with parties located in different continents, our protocols execute in
less than a minute on input sets of size 40, which demonstrates the practicality of
our proposed solutions.

1 Introduction

In the traditional web (Web 2.0), users are dependent on a limited set of identity and
service providers and public Certificate Authorities (CAs) [fir] to initiate trusted in-
teractions. Recent trends in decentralization towards Web 3.0 aim to remove such de-
pendencies on centralized service providers. A prominent problem in the decentralized

web revolves around identity and trust. Decentralized identifiers (DIDs) [RSL*20] and
Verifiable Credentials (VCs) [SLC21] enable parties to own and control their identities.
This implies a self-sovereign ability to create, update, and selectively share identity
records. Importantly, one can prove properties (or claims) about themselves with-
out relying on centralized/federated identity providers or a canonical trusted set of
CAs [RSL120,did20,TR16], as long as the VC issuer (also called a trust anchor [ind]) is
trusted by both the prover and the verifier of a claim. In a nutshell, existing DID and
VC recommendations give users the ability to control their privacy while engaging in a
trusted decentralized interaction. But, there are scenarios where these recommendations
cannot adequately safeguard user privacy unless we introduce new privacy-preserving
mechanisms. In its most general form, the scenario we are concerned about involves
two parties wishing to establish a trust basis for future interactions. Service providers
in the Semantic Web have encountered such situations, and mechanisms for trust ne-
gotiation [WYST02] were proposed to minimize privacy compromise without sacrificing
decentralization, albeit for a specific model of service provider-consumer interaction.
In grid computing, service-level agreements (SLAs) [CFK102] followed a similar tem-
plate. This challenge has returned to salience in today’s Web3 world, where private and
independent blockchain systems have business imperatives to interoperate [ABGT19].
The interaction model common to these scenarios involves no a priori trust between
the interacting parties, though they may, unbeknownst to each other, possess VCs (or
more generally certificates) from common trust anchors (or more generally certifiers)
attesting to different claims.

A trust basis for interoperation can be established between two parties if they can deter-
mine that they both possess valid certificates attesting to certain claims, and that these
certificates are issued by one or more certifiers that they both trust. But this is hard
to do in the absence of a priori trust or knowledge of the counterparty’s intentions, or
without compromising one’s privacy. We can see why this is so by applying the standard
VC recommendation, whereby one party makes a Verifiable Presentation (VP) [SLC21]
to another, to our scenario. In a typical VC use case, the relationship between credential
presenter and verifier is asymmetric, as the verifier is typically a well-known entity from
whom the presenter seeks service or approval. The presenter knows at least one certifier
that is trusted by it and the verifier. Typically, this requires the verifier to publish its
complete list of certifiers so the presenter can determine ones that are commonly trusted
by both parties [BFGP22]. But in our interaction model, the relationship between par-
ties is symmetrical, as they are both trying to simultaneously prove something to the
other. In a standard VP, the presenter is willing to share credentials (albeit selectively)
with the verifier. But, if we use this asymmetric VP-based solution in our scenario where
neither party knows anything about the other a priori, the revelation of credentials by
the party that presents first will automatically give more leverage to the counterparty
(verifier), which learns more about the presenter than it reveals.

A naive adaptation of an asymmetric solution (such as [BFGP22]) to our symmetric
setting would require both parties to reveal to each other the list of certifiers from which
they have valid certificates, and then identify if there is a mutually trusted certifier. This
entails complete loss of privacy for both parties, but especially for an honest party if the
other behaves maliciously. There are strong reasons why revealing one’s complete list of
certifiers might not be in one’s interest. A business-oriented certifier, for instance, might
not like its clientele to be visible to its market competitors. Consider a blockchain in-
teroperability scenario, where shipment carriers on different trade networks certify their
respective networks’ participants, e.g., Maersk Shipping Company (on the TradeLens
network [tra]) and the American Bureau of Shipping (ABS). But as Maersk and ABS are

market competitors, they may not necessarily want their clients (the certificate holders)
to reveal their respective associations [GVR'22]. Knowing the clientele of Maersk may
benefit ABS, and vice versa; hence there is a privacy cost to revealing certifier lists in a
symmetrical interaction unless those certifier lists are identical.

The other privacy violation aspect is from the perspective of the certificate holder. Every
certificate possessed indicates an affiliation with some real world entity, often a well-
known one; this could include government agencies, political organizations, NGOs, etc.,
and such affiliations might be sensitive information that could potentially be misused.
And here lies the biggest hazard in the naive trust basis establishment solution: one
of the two interacting parties could be malicious and is trying to fish for information
about its counterparty’s affiliations. A simple attack would be for the malicious party
to offer a long list of certifiers, regardless of whether it possesses valid certificates from
them, and have the honest counterparty reveal its true certifier list. Now the malicious
party knows, and can misuse, the honest party’s affiliations, without revealing its own
true affiliations. In the context of trust anchors (TAs) in the DID & VC world, where
any entity can issue a VC and there does not exist a canonical list or registry of global
TAs, it would not be a hard task for a malicious counterparty to list as many of them as
possible to mount the attack we just described. Therefore, we can identify a compelling
need to maintain certifier privacy and authenticity, which are not addressed by the
naive solution for determining common certifiers. This motivates us to ask the following
question:

Can parties owning certificates efficiently identify a common
set of certifiers without leaking anything else?

In particular, the parties should not learn any information about certifiers that may be
in the lists of other parties but are not in the intersection.

1.1 Owur Contributions

Private Certifier Intersection (PCI). In this paper, we initiate the study of Private
Certifier Intersection (PCl) — a cryptographic primitive that aims to answer the above
question in the affirmative. Informally speaking, a PCl protocol allows a set of mutually
distrusting certificate-holding parties to achieve a privacy-preserving trust negotiation
with the following objectives: (i) find an intersection among the set of certifiers across
the parties, (ii) ensure that the certificates issued by these certifiers are valid, and (iii)
reveal no information about the certifiers that may be in the lists of individual parties
but are not in the intersection.

Comparison with Private Set Intersection. At a first glance, the classic Private
Set Intersection (PSI) problem [PSZ14,CLR17], where the intersection of two private sets
must be determined without a trusted mediator, bears a strong resemblance to PCI (also
see Figure 1). In both PCl and PSI, a set of mutually distrusting parties holding private
sets of entities aim to compute the intersection between their sets without revealing
any additional information about the elements in their individual sets that are not in
the intersection. However, the non-triviality of PCl arises from the need to additionally
validate the certificates issued by the certifiers in the intersection. In this sense, one can
think of PCl as a form of “predicated” PSI, where the inclusion of a common certifier in

— N e — ~
Cert 1 Cert 5 Cort 7 Cert 11
! ! ! =5 \ Cert10
X certz | certa Vilv cets 1 X
~ e = = e =
: ; Cert 6! 7Cer:8 3 i
P Cert2 | S P4 Cert12) Cert 13
Py : B Y A W (e : L L
SR AR O o VS S B £)
Certifier: a T ‘ M P Ce;rtifier: h%ﬁ
' | Certifier: b ifior ' N
; i : f < ie}t:f:er ‘:f . Certifier:'g
x ECertifier:d\CertlTier:f}y% 7mé’/(.'erl‘ifier:e/3 x 1
%ﬁ \\\Certifier: e Certifier: b %ﬁ %ﬁ)
_ Certifier: c e B WOy Certifier:i Certifier: 1)

Figure 2: Private Certifier Intersection (PCI): Match Certificates with Common Issuers

the final output set is predicated on the certificates issued by this certifier to each of the
parties being valid (see Figure 2 for an illustration). We argue in this paper that realizing
an efficient PCl protocol with ideal security guarantees requires novel techniques beyond
simply using PSI as a building block. Consider the hazard we encountered earlier in
the naive solution to establish a trust basis. Using standard PSI, a malicious party
could simply supply a long (or universal) list of certifiers as input and determine the
list of certifiers of the other (honest) party. To avoid this hazard, we need to enforce
the ability of participants to prove that they possess genuine certificates issued by thir
claimed certifiers. There is no obvious way to do this using standard PSI, and therefore
PCI requires novel mechanisms that are not congruent to PSI’s mechanisms. We refer
the reader to Section 1.3 for additional related work.

Achieving Semi-Honest PCI. It turns out that in the setting of semi-honest corrup-
tions (i.e., when the participating parties behave honestly as prescribed in the protocol),
one can easily achieve a secure PCI protocol by using any secure PSI protocol in a black-
box way. Consider the following simple construction: each party first locally “filters” its
private list of certifiers based on the validity of the certificates issued by such certifiers,
and then uses this filtered list of certifiers as its input to an execution of a PSI protocol
to securely identify their intersection. Correctness is immediate, since, assuming honest
behavior, the filtered list for each party only contains certifiers issuing valid certificates.
Security follows from the security of the underlying PSI protocol.

Upgrading to Malicious Security. Unfortunately, in the setting of malicious cor-
ruptions (i.e., when the participating parties can deviate arbitrarily from the protocol),
it is seemingly hard to achieve a secure PCI protocol by simply using certification val-
idation and a (maliciously secure) PSI as individual black-boxes. To begin with, we
cannot rely on the parties to filter the local sets of certifiers correctly; in fact, the par-
ties can prepare arbitrary sets of certifiers, including those for which it does not have
valid certificates.

For example, in the setting of two-party PCl, if one party (say Alice) provides a “universal
set” of certifiers as input to a PSI protocol, it can learn the complete set of certifiers
of the other party (say Bob). This attack may not be feasible in a general PSI setting
where listing the entire range of values in an input set may be infeasible or prohibitively
expensive, but is quite feasible in a PCl setting where the range of certifiers (trusted
authorities) is limited. Therefore, it is crucial for both Alice and Bob to verify that the
other is not faking its input set, and so the validity of certificates and the signatures
within must be proven by both parties during the protocol. This is challenging because
neither Alice nor Bob knows a priori which set of certifiers it needs to supply proof for
(indeed, this is the objective of PCl), and providing more proof than strictly required
(i.e., revealing certifiers outside the intersection) would violate privacy goals. Therefore,
we must somehow intertwine certificate validation with a PSl-like protocol to achieve PCI.
In other words, a maliciously secure PCl protocol cannot be achieved securely without
a mechanism that somehow intertwines certificate validation with the subsequent PSI
protocol.

Theoretically, a maliciously secure PCI protocol can be achieved as follows: run a ma-
liciously secure multi-party computation (MPC) protocol for the functionality that: (i)
filters the certifier list for each party to identify the certifiers issuing valid certificates
attesting to the relevant claims, and (ii) computes the intersection between these filtered
sets. This solution is highly inefficient in practice for essentially all widely used cryp-
tographically secure certification mechanisms. For example, the most common method
of generating certificates is to sign the claim using a digital signature algorithm. In
this case, claim validation would require us to perform signature verifications inside the
MPC protocol, which is prohibitively expensive for popular digital signature schemes
such as ECDSA [ANS99, JMV01] and BLS [BLS01, BDN18, BGLS03], that rely on el-
liptic curve-based finite-field arithmetic operations. Implementing such a verification
algorithm inside a maliciously secure MPC protocol would involve non-black-box usage
of the various elliptic-curve (EC) operations, i.e., we would have to express these oper-
ations as (potentially complicated) binary/arithmetic circuits with gate operations over
{0,1} or over some finite field F},. Such a maliciously secure MPC protocol is likely to
incur huge computational and communication overheads in practice.

Need for Efficient Protocols. The above discussion motivates specialized PCl proto-
cols that efficiently enable computing the intersection of certifier-sets while: (i) achieving
the desired security guarantees in the setting where a majority of the parties could be
maliciously corrupt, and (ii) minimizing non-black-box usage of the operations in the
certificate validation algorithm. In this paper, we design and implement two concrete
PCl protocols — based on the ECDSA signature scheme and the BLS signature scheme —
that achieve the above goal while supporting different variations of claim validation (we
expand on this later). While our protocols broadly follow the generic approach outlined
above, the main novelty lies in how we validate signatures while using the underlying el-
liptic curve-based operations in a black-box manner. For an (informal) comparison, the

generic MPC-based solution is expected to incur O(zd) computation/communication
cost, where z is the corresponding cost of our protocols, and d is the average depth
of the arithmetic circuits representing EC operations (e.g., d = 256 for constant-time
scalar multiplication over curve-ED25519 and curve-BLS12-381).

1.2 Overview of Contributions

In this section, we provide an informal overview of our key technical contributions.

Defining PCI. We formalize the security guarantees expected of a (multi-party) PCI
protocol using the simplified universal composability (SUC) framework due to Canetti,
Cohen, and Lindell [CCL15] in the real/ideal world paradigm. We consider two varia-
tions of PCl protocols in this paper:

e Validate-Any PCl: A PCI-Any protocol outputs the set of common certifiers for
which each party has at least one valid certificate attesting to any one of its (pub-
licly known) claims.

e Validate-All PCl: A PCI-All protocol outputs the set of common certifiers for which
each party has valid certificates attesting to all of its (publicly known) claims.

We also consider a variant of validate-any PCl which we call validate-any PCl with
disclosed claims (abbreviated as PCI-Any-DC) where, for each common certifier in the
output set, the parties additionally learn the set of claims attested by the certifier. We
refer to Section 2 for a formal description.

MPC for Elliptic Curve Pairings. As a fundamental building block of our pro-
posed PCl protocols, we introduce a new secret-sharing based MPC framework that
is tuned for elliptic curve pairings. Our overall approach is to design a secret-sharing
based MPC protocol that efficiently supports basic elliptic curve operations (i.e., point
addition and scalar multiplication) and elliptic curve bilinear pairing operations as fun-
damental building blocks. We build upon the SPDZ secret-sharing based MPC proto-
col [DPSZ12,DKL*13] to achieve the first secret-sharing based MPC framework that
seamlessly supports elliptic curve pairing operations as fundamental gate-level building-
blocks with malicious security against a dishonest majority of adversarial parties. A tech-
nical cornerstone of our framework is the round-preserving upgradation of SPDZ from
basic field operations to the significantly more complicated elliptic curve operations, in-
cluding pairings. Our framework allows us to directly use standardized and open-source
implementations of elliptic curve libraries [ope, Lyn, AGM™], thereby leveraging both
the performance improvements/optimizations as well as the protections against evolv-
ing implementation-level attacks that such libraries usually offer. We believe that this
is a contribution of independent interest.

Efficient Two-Party PCI. We use our proposed MPC framework to design the
following provably secure yet practically efficient two-party PCl protocols:

e A two-party PCI-Any-DC protocol using the ECDSA signature scheme [ANS99] —
an elliptic-curve-based digital signature scheme which is standardized and widely

adopted in multiple real-world applications including X.509 public key infrastruc-
ture in the Internet, TLS [MBG'06], DNSSEC [HW12], etc. Moreover, ECDSA is
a candidate signature scheme in verifiable credentials [SLC21] which is one of the
target applications of PCl. Choosing ECDSA also allows us to use its standard
implementation in the OpenSSL [ope] library for EC group operations. This nat-
urally motivates designing a PCI protocol supporting ECDSA-based certification
of claims.

e A two-party PCI-All protocol using the BLS signature scheme [BLS01, BDN18,
BGLS03]- an elliptic-curve pairing-based digital signature that is popularly used in
blockchain applications and is in the process of being standardized [BGWT20]. We
design a PCI-All protocol supporting BLS-based certification of claims that exploits
the signature-aggregation capabilities of BLS to perform efficient validation of
certificates over all of the public claims of each party.

The starting point of our protocols is the generic maliciously secure PCl protocol out-
lined earlier, with several optimizations to obviate or minimize expensive elliptic curve
operations inside the MPC protocol. In our ECDSA-based PCI-Any-DC protocol, we
develop techniques that enable securely yet efficiently performing the expensive alge-
braic operations (such as field inversion) and non-algebraic operations (such finding the
z-coordinate of an elliptic curve point) required by the ECDSA verification algorithm
outside the MPC protocol. The protocol is then implemented using our proposed MPC
framework, which allows performing ECDSA signature validations while using all elliptic
curve operations in a black-box manner. We also discuss how to upgrade this protocol
to full-fledged PCI-Any where the claims are no longer disclosed publicly (see Section 4
for details).

Trivially extending the approach used in our ECDSA-based PCI-Any-DC protocol to
design a PCI-All protocol would require iterating through all of the public claims, and
validating the signatures on these claims by a specific certifier. This results in a claim
validation complexity that grows with the number of claims. We overcome this challenge
by designing a PCI-All protocol using BLS-based signature-aggregation that only requires
a single (aggregate-)signature verification per certifier inside the MPC protocol. We
introduce additional optimizations that exploit the deterministic nature of the BLS
signature to further reduce the number of elliptic curve pairing operations inside MPC
to just one per certifier, which is then implemented in a black-box manner using our
proposed MPC framework over pairings.

Implementation and Evaluation. We extend MP-SPDZ [Kel20] to implement our
proposed secret-sharing framework supporting elliptic curve operations including bilin-
ear pairings. For the black-box operations on elliptic curves we use OpenSSL [ope] and
RELIC [AGM™] libraries. We then implement ECDSA-based PCI-Any-DC and BLS-
based PCI-All protocols. We make the source code of our implementation available at
https://github.com/ghoshbishakh/pci for independent benchmarking. We provide
a detailed analysis of the performance of the individual components of our MPC frame-
work, followed by the end-to-end performance evaluation of the protocols in realistic
setups by placing parties in three geographic regions across two continents. In an in-
tercontinental WAN setup with parties located in different continents, our PCI-Any-DC
and PCI-All protocols execute in less than a minute on input sets of size 40. This demon-
strates the practicality of our proposed solutions. We refer to Section 6 for details.

https://github.com/ghoshbishakh/pci

1.3 Related Work

Private Set Intersection (PSI). Private set intersection (PSI) [PSZ14] has been ex-
tensively studied, with a wide range of solutions based on garbled circuits [HEK12],
homomorphic encryption [CLR17], oblivious transfer [PSZ14], and other techniques
[PSSZ15,RR17, KS05, FNP04, DSMRY09, CT10, CM20]. However, as outlined earlier,
there is no straightforward way of using PSI as a black-box to achieve PCI, particularly
in the face of malicious adversarial corruptions, due to the additional requirement of
certificate validation.

PSI over Certified Sets. Private intersection of “certified sets”, introduced in [CZ09],
is an augmentation of PSI with the additional requirement that the input claim-sets are
certified by some certification authority (CA). However, this primitive has fundamen-
tally different privacy goals as compared to PCl; it assumes that the information of the
CAs is public and that the two parties agree apriori on which CAs they mutually trust.
Conversely, in the case of PCl, the CAs (certifiers) are, in fact, the input to the proto-
col (and thus cannot be made public apriori) while the claims are public. We could also
have a variant of PCl where the claims are additionally private; we leave it as an open
question to investigate this variant further.

HIAC. Hidden-issuer anonymous credentials (HIAC), introduced in [BFGP22], is an
elegant cryptographic primitive that allows a credential holder to prove its claim(s)
to a verifier without disclosing the identity of the credential issuer (i.e., the certifier).
However, HIAC inherently requires the set of certifiers trusted by the verifier to be
published as an “aggregator”, thereby revealing the identity of each such certifier. Hence,
while one could use HTAC to solve the same problem at PCl, such an adaptation would
only achieve one-sided privacy since of the parties would have to make its list of certifiers
publicly available. On the other hand, PCl aims to enable two-sided privacy by allowing
the two parties to negotiate their common certifiers while preserving the privacy of both
individual lists, and while simultaneously validating the certificates issued to both the
parties.

IHABC. Issuer-Hidden Attribute-Based Credential [BEK'21] is another related sys-
tem in which a user can prove a credential issued to it without revealing which issuer
among a set of issuers acceptable to the verifier issued that credential. Similar to HIAC,
this system also provides one-sided privacy while revealing the certifier set of the ver-
ifier (PCl, on the other hand, ensures privacy of both the parties’ list of certifiers).
Moreover, the concrete solution presented in [BEKT21] uses a trusted setup, which is
costly in practice and is not a requirement for any of our PCl solutions.

Secret Handshake. The “secret handshake” family of protocols [BDS103, AKBOT]
enable (role-based) authenticated key exchange between parties without revealing any
information beyond the common group memberships shared by the parties. These pro-
tocols, however, differ fundamentally from PCl in the sense that: (a) they do not capture
the notion of validating certificates and claims (which is one of the core requirements
addressed by PCI), and (b) the process of issuing membership credentials is part of the
protocol itself (in PCl, the process of issuing credentials/certificates is not considered
part of the primitive).

2 Private Certifier Intersection (PCI)

In this section, we formally define Private Certifier Intersection (PCl). We begin by
introducing some notations and background material. We subsequently formalize the
functionality and security guarantees that a PCl protocol should satisfy.

General Notations. We write x < x to represent that an element x is sampled uni-
formly at random from a set/distribution X'. The output x of a deterministic algorithm
A is denoted by x = A and the output =’ of a randomized algorithm A’ is denoted
by @' + A’. For a,b € N such that a,b > 1, we denote by [a,b] the set of integers
lying between a and b (both inclusive). We refer to A € N as the security parameter,
and denote by poly(A) and negl()\) any generic (unspecified) polynomial function and
negligible function in), respectively.®

PCI Notations. Let ZD be a set of identities corresponding to the certifiers. Given
a claim m € M by a party P, a certifier with identity id can issue a certificate o € C,
such that there exists a relation R that satisfies the following:

R(id,0,m) = 1 iff o is a valid certificate by id on m

A natural instantiation of the certification process outlined above is a digital signature,
where the certificate issuance corresponds to the signing algorithm and the relation
R corresponds to the verification algorithm, with ¢ being the signature on a claim m
under the signing key corresponding to id. Looking ahead, our proposed realizations
of PCl protocols in this paper will use this digital signature-based instantiation of the
certification process.

We now introduce some additional notations for ease of exposition, these notations will
be useful in understanding our definitions for PCIl. Let S be a set of (identity, certificate,
claim) tuples of the form

S = {(idj,aj,mj) €ID x C x M}

J€[1,n]

where N is the number of tuples in the set S. We define the following projection
functions on the set S:

id(S) :={id : 3o, m s.t. (id,o,m) € S}
m(S) :={m: Jid,o s.t. (id,o,m) € S}

m(S) := (mj)(idj,aj,mj)es

Here, m(S) is a list/multiset of the claims corresponding to each tuple in the set S.

2.1 Defining a Two-Party PCl Protocol

We now formally define a PCI protocol in the two-party setting, which is the focus of this
paper. Our definitions naturally extend to multiple parties, as discussed subsequently.

INote that a function f : N — N is said to be negligible in A if for every positive polynomial p,
f(A) < 1/p(M\) when X is sufficiently large.

Two-Party PCI. A two-party PCl protocol IT involves parties P; and P,, where each
party P; for ¢ € {1,2} inputs a tuple of the form inp, = (inpm, inpi72), where:

e The private input inp; ; is a set of (identity, certificate, claim) tuples of the form

inp; ; = {(idi,j, 04,5, m; ;) €ID X C X M}, n

where N; is the number of tuples in inp; ; from party P;.

e The public input inp; , is a set of claims of the form {m; ; € M};c1 Ny, Where N/
is the number of tuples in inp, 5 from party P;.

Note that a party P; can produce multiple certificates from the same certifier on same
or different claims. Additionally, a party P; can also request certifications on the same
claim from multiple certifiers. Hence, in the most general setting, a party’s input could
have multiple tuples with the common id or a common m. Also note that the public
input for P; is known to P, at the start of the protocol and vice versa.?

Remark. A couple of remarks on the definition follow:

1. One could have a variant of PCl with the claims being private. This work considers
the above defined variant with the claims being public. We leave it to future work
for instantiating PCl with private claims.

2. Our definition lets a (corrupt) party provide claims in the public input that are
different from those in the tuple in the private input. One could also restrict the
public input inp; 5 to be m(inp, ;), which is the expected behaviour of the honest
parties.

At the end of the protocol II, each party P; receives as output a set of certifiers. In
this paper, we consider different variations of (two-party) PCl protocols that produce
different kinds of output sets, that we outline below:

e Validate-Any: In this flavor of PCl protocol, denoted by PCI-Any, both parties
P, and P, receive as output the set of certifiers outpcjany, such that an identity
id € out if and only if both P, and P, have valid certificates on some m; € inpi72
and my € inp, 5, respectively, such that both the certificates are issued by id. More
formally, for each i € {1,2}, we define the following Boolean predicate:

RPCI—Any,inpi(id) =1 if and only if 9m € inpi72 :
3(id,m, o) € inp; ; s.t. R(id,m,0) =1
Then we have
outpci-any (inpy, inpy) = {id € id(inp; ;) Nid(inpg 1)
RPCI—Any,inpl ('d) = RPCI—Any,inpz(id) = 1}

2We assume that these sets are shared between P; and P, via some apriori mechanism that is not
within the purview of the PCl protocol itself.

10

e Validate-Any with Disclosed Claims: We also consider a weaker variant of
the aforementioned validate-any PCl protocol (denoted by PCI-Any-DC), where the
parties additionally learn the following: (i) the claim m; ; corresponding to each
tuple (id; j, 0, m; ;) € inp, ; for each party P, (ii) for each id in the output set of
certifiers outpci.any, each party learns the set of (public) claims on which the other
party has a valid certificate issued by id. Note that no information is revealed
about any (valid/invalid) certificates that the parties might have that are issued
by some id’ ¢ outpci-any. Formally, for each ¢ € {1,2}, we define the function

Minp, (id) = {m : 3(id, m, o) € inp, ; s.t. R(id,m,0) =1}

Then the output set outpci-any-pc is described formally as follows
OUtPCI—Any—DC(inpla inp2) = ({m(inpi,l)}ie[l,g])

{(id, {m;npi(id)}ie{l,g}) :id € outpci-any (inpy, ian)})

PCI-Any-DC is relevant in most real-world scenarios since the parties would know
the claims of the counterparty that they want to validate, and vice versa. More-
over, traditional VC interactions also work on disclosed claims (see Section 1).

e Validate-All: In this flavor of PCI protocol, denoted by PCI-All, both parties
P, and P, receive as output the set of certifiers outpciay, such that for each id €
outpcran, P1 and P have valid certificates issued by id on all of the (public) claims
in their input sets inp; 5 and inp, 5, respectively. More formally, for each i € {1, 2},
we define the following Boolean predicate:

RPCl—All,inpi(id) =1 if and only if Vm € inpi)z :
3(id,m, o) € inp; ; s.t. R(id,m,0) =1
Then we have

outpcan(inpy,inpy) = {id S id(inpljl) N id(inp271) :
Reci-alinp, (id) = Rpciaiinp, (id) = 1}

2.2 Security of Two-Party PCI

We now define the security guarantees expected of a PCl protocol in the two-party
setting. Informally, we require that in any PCl protocol II, party P; (resp. party P»)
learns nothing about the inputs of party P (resp. party P;) except what is revealed by
the output out of the protocol II, and the sizes N1 and N5 of the input sets of P; and
P5. In the rest of this section, we formalize this security guarantee using the simplified
universal composability (SUC) framework due to Canetti, Cohen, and Lindell [CCL15]
in the real/ideal world paradigm. We consider a dishonest majority in our definitions,
wherein the adversary can corrupt one of the two participating parties. For ease of
exposition, we assume without loss of generality that P, and P, are the corrupt party
and the honest party, respectively.

Ideal Functionality for Two-Party PCI. We begin by formally defining the first
component of our simulation-based security definition, namely the ideal functionality
Fpal, as described in Figure 3. This functionality Fpc formally defines what each party
is meant to learn at the completion of the protocol.

11

Feci(mode € {Any, Any-DC, All})

e For i € {1,2}, let the input of party P; be inp; = (inp; 1,inp, »), where
il’]pi71 = {(idi,jvai,j7 mi,j) €ID x C x M}jE[l,Ni]
inp; o = {Mi; € M}jcn]

The honest party P, provides its input directly to Fpcj, while the input of the
corrupt party P is provided to Fpc) by the simulator S.

e Fpc) computes outpcimode, Where for mode € {Any, Any-DC, All}, we have
outpcrany (inpy, inpy) = {id € id(inp; ;) Nid(inpy ;) :
RPCl-Any,inpl ('d) = RPCI-Any,inpz(id) = 1}
outpci-any-pc(inpy, inpy) = ({m(inpi,l)}ie[m] ;
{ (id, {minp, (id) }icq1,2}) : id € outpcrany (inp;, inP2)})
outpcran(inpy, inpy) = {id € id(inp; ;) Nid(inpy ;) :
Reci-alinp, (id) = Rpciaiinp, (id) = 1}
e Fpc) sends (outpq_mode,l\h7 inp172) to the simulator S.
e If S responds with an abort, Fpc) aborts.

e Otherwise, Fpc) sends to P; and P, the tuple

(outpci-mode, N1, N2, inp; o, inpy o)

Figure 3: Ideal functionality Fpc) in the two-party setting

The Real/Ideal World Paradigm. The real and ideal worlds are as follows.

e In the real world, the honest parties follow the specified protocol II and interact
with the maliciously corrupt parties who are controlled by an adversary A.

e In the ideal world, the honest parties and an adversary called the simulator (de-
noted by &) interact with the ideal functionality Fpc; (described in Figure 3),
where S controls the same set of maliciously corrupt parties as in the real world.

Informally speaking, in the ideal world, S learns nothing beyond what Fpc| reveals to
the corrupt parties. As is the norm in the SUC model, we also introduce an addi-
tional adversary called the environment Z that interacts with adversary A in the real
world, and with the simulator S in the ideal world. Its goal is to distinguish these two
interactions. If Z cannot distinguish between the real and ideal worlds, we say that
the real-world PCI protocol II securely emulates the ideal functionality Fpc;. We now
formalize this paradigm below.

Real World. In the real world, the following participants engage in the protocol II:

12

e The honest party P, that receives its input from the environment Z and honestly
follows the protocol II.

e A real-world adversary A that controls the corrupt party P;, and interacts with
P, and the environment Z.

e The environment Z that provides P, with its input, and interacts with the real-
world adversary A. The environment Z also receives the output of Ps, and even-
tually outputs a bit b € {0,1}.

Ideal World. In the ideal world, the following participants interact with the ideal
functionality Fpc| described in Figure 3.

e The honest party P, that receives its input from the environment Z and directly
forwards this input to Fpc.

e An ideal-world simulator S that sends inputs to Fpc; on behalf of the corrupt
party P; and receives back the corresponding output from Fpcj. S also interacts
with the environment Z, with the aim of making this interaction indistinguishable
from the interaction between the real world A and the environment Z.

e The environment Z that provides P, with its input, and interacts with the sim-
ulator S. As in the real world, Z also receives the output of P;, and eventually
outputs a bit b € {0, 1}.

For any two-party PCI protocol II, any adversary .4, any simulator S, and any environ-
ment Z, define the following random variables:

e realr, 4,z: denotes the output of the environment Z after interacting with the
adversary A during an execution of the real-world protocol II.

e ideal s, s,z: denotes the output of the environment Z after interacting with the
simulator S in the ideal world.

Definition 1 (Secure Two-Party PCl). A PCl protocol II securely emulates the ideal
functionality Fpcy described in Figure 3 if for any security parameter A € N and any
probabilistic polynomial time (PPT) adversary A, there exists a PPT simulator S such
that, for any PPT environment Z,

|Pr[realir, 4,z = 1] — Prlideal .., s,z = 1]| < negl(\)

2.3 Multi-Party PCI

In this section, we extend the definition of two-party PCl in Section 2 to the more general
setting of multi-party PCI involving n parties Py, ..., P,. Similar to a two-party PCl
protocol, in a multi-party PCl protocol, each party P; for i € [1,n] inputs a tuple of the
form inp; = (inpijl, inpm). We consider the following analogous variations of multi-party
PCI protocols:

13

e Validate-Any: Each party P; for i € [1,n] receives as output the set

outpci-any (inpy, - .-, inp,,) = {id € ﬂ id(inp; 1) :
1€[1,n]

Vi € [1,’/7,] RPCl—Any,inpi(id) = 1}
where Rpci-any,inp, (+) for each i € [1,7n] is as defined in the two-party case.

e Leaky Validate-Any: Each party P; for i € [1,n] receives as output the set

outpcr-any-nc(inpy, - - ., inp,,) = { (id, {minp, (id) }ic1,n) :
id € outpci-any (inpy, - - -, inpn)}
where min, (+) for each i € [1,n] is again as defined in the two-party case.

e Validate-All: Each party P; for i € [1,n] receives as output the set

outpcan(inpy, ..., inp,,) = {id € m id(inp; 1)
1€[1,n]

Vi € [1,n] Rpc|_A||,inpi(id) = 1}

where Rpci-alLinp, () for each i € [1,n] is again as defined in the two-party case.

Security of Multi-Party PCI. We now define the security guarantees expected of
a multi-party PCI protocol. Similar to the two-party setting, informally, we require
that in any multi-party PCl protocol II, each party P; learns nothing about the inputs
of the other parties P; for j # i except what is revealed by the output out of the
protocol II, and the size N; of the input set of party P;. We again formalize this
security guarantee using the simplified universal composability (SUC) framework due to
Canetti, Cohen, and Lindell [CCL15] in the real/ideal world paradigm. Our definition
is a natural generalization of the security definition of two-party PCl in Section 2 to the
multi-party setting. We again consider a dishonest majority in our definitions, wherein
the adversary can corrupt upto (n — 1) parties in an n-party PCl protocol.

Ideal Functionality for Multi-Party PCI. We begin by formally defining the ideal
functionality féﬁ? for n-party PCI, as described in Figure 4. This ideal functionality
is basically a generalization of the ideal functionality Fpc for two-party PCl (defined
earlier in Figure 3) to the n-party setting.

The real and ideal worlds are defined analogously to the two-party setting. Now, for any
multi-party PCl protocol 11, any adversary A, any simulator S, and any environment Z,
define the following random variables:

e realr, 4,z: denotes the output of the environment Z after interacting with the
adversary A during an execution of the real-world protocol II.

o ideal denotes the output of the environment Z after interacting with the

sz
simulator § in the ideal world.

14

F5 (mode € {Any, Any-DC, All})

e Let H C [1,n] be the set of honest parties, and let C' C [1, n] be the set of corrupt
parties.

e For each i € [1,n], let the input of party P; be inp, = (inp; 1,inp;), where
ianl = {(i(llivj,ffiyj7 mi_,j) €ID xC x M}je[l,]\h‘]
inp; 5 = {M;; € M}jcp Ny
For each i € H, the input of an honest party P; is provided directly to }'F(,Té? by

P;, while for each ¢ € C, the input of a corrupt party P; is provided to }'F(,Té? by
the simulator S.

o }'F(,g computes outpci.mode, Where for mode € {Any, Any-DC, All}, we have

outpciany (iNpy, ..., inp,,) = {id € m id(inp; 1) :
i€[1,n]

Vi € [1,71] RPCl—Any,inpi(id) = 1}
outpc|_Any_Dc(inp1, e inpn) = { (Id7 {minpi(id)}ie[l,n]) :
id € outpcr-any(inpy, ..., inpn)}

outpcran(inpy, ..., inp,) = {id € ﬂ id(inp; 1) :
i€[1,n]

Vi € [1,n] Rpcialinp, (id) = 1}

°]—'F(,Té? sends (outpg_mode7 {N;, inpiﬁz}iGH) to the simulator S.
e If S responds with an abort, fég aborts.

e Otherwise, féfg sends (outpq_mode7 {N;, inpi,g}ie[lyn]) to all the parties.

Figure 4: Ideal functionality]—'gg for multi-party PCI

Definition 2 (Secure Multi-Party PCl). A multi-party PCl protocol IT securely emulates
the ideal functionality]-",gg described in Figure 4 if for any security parameter A € N
and any probabilistic polynomial time (PPT) adversary A, there exists a PPT simulator
S such that, for any PPT environment Z, we have

Prrealy 4,z =1] — Pr [ideal 1] ’ < negl(\)

(n) =
Fodi S, 2

15

2.4 Generic Construction of Multi-Party PCI

In this section, we describe a generic approach to achieving a semi-honest secure (multi-
party) PCl-mode protocol for mode € {Any, Any-DC, All} given any semi-honest secure
private set intersection (PSI) protocol. We then discuss some challenges that we face
when attempting to upgrade this generic construction to provide malicious security.

Semi-Honest Secure PCI. We show how to construct a semi-honest secure multi-
party PCI-Any protocol 7pci-any,Generic given a semi-honest secure multi-party PSI pro-
tocol mpgy. The constructions of PCI-Any-DC and PCI-All follow analogously.

Suppose that each party P; for ¢ € [1,n] inputs a tuple of the form inp, = (inpiyl, inpi’z),
where inp; ; = {(id;j, 03,5, Mi;j)} ey, and inp; o = {M;; € M}jE[I,N{]' The parties
proceed as described in Algorithm 1. At a high level, the protocol proceeds in two
phases:

e Phase-1: Filtering. In this phase, each party filters its input set of (identity,
certificate, claim) tuples to identify the subset of identities under which it has a
valid certificate on at least one public claim.

e Phase-2: PSI. The parties then run the secure PSI protocol with these filtered
subset of identities as inputs and output the resulting set as the output of the
PCI-Any protocol.

Correctness is immediate. Since semi-honest corruption precludes the possibility of
malicious behavior, semi-honest security of the overall protocol follows immediately from
the semi-honest security of the underlying PSI protocol. Finally, it is straightforward
to appropriately modify this protocol for: (i) PCI-Any-DC by additionally including in
the filtered subset of identities the set of public claims for which each party has valid
certificates under each identity, and (ii) PCI-All by changing Phase-1 to identify the
subset of identities under which a party has a valid certificates on all of its public
claims.

Algorithm 1: Tpci-Any,Generic from 7pg)

1 for 7:=1...ndo

Each party P; locally computes a filtered set of identities as:
inp; = {id S id(inplﬁl) : Rpc|_Any’inp1(id) = 1}

The parties Py,..., P, then run the PSI protocol mps; on the filtered input sets
(inpY,...,inp),) to compute an output set

outpg) = ﬂ inp;.
i€[1,n]

The parties output outpci-any := outps| as the output of the PCI-Any protocol.

Challenges for Malicious Security. The key non-triviality of achieving a secure
PCl protocol arises in the setting of malicious corruption, where the generic solution

16

fails (even assuming a maliciously secure PSI protocol) since we can no longer enforce
that parties execute Phase-1 honestly. We illustrate this in the simple setting of 2-party
PCI. Suppose that in Phase-1 of the generic solution, a malicious P; chooses to include
in its filtered subset an identity id under which: (i) P; does not have a single valid
certificate, but (ii) P, has one or more valid certificates. Then, the output of Phase-2
allows P; to learn more information about the input set of P, than is allowed by the
ideal functionality Fpcj. Clearly, this is true even if the underlying PSI protocol were
maliciously secure.

“Tying” Validation to PSI. In order to enforce malicious security, we need to ensure
that for each id in the final result set, each party P; proves to all of the other parties
that its input set contains a valid signature under id on some/all of its public claims.
This is seemingly hard to achieve efficiently while using certificate validation and the
PSI protocol as individual black-boxes since, prior to executing the PSI protocol, the
parties do not know the set of identities for which such a proof is required. The parties
could choose to provide proofs for all of their inputs, but this leaks more information
about their input sets than allowed by Fpcj. To solve this issue, we require a mechanism
that somehow “ties” certificate validation to the subsequent PSI protocol, rather than
treating these as individual phases.

Maliciously Secure PCI. To upgrade our generic solution for the semi-honest set-
ting outlined in Algorithm 1 to a malicious security setting, we use the following natural
approach - run both phases of Algorithm 1 inside a maliciously secure MPC proto-
col [Yao82, DPSZ12]. In particular, Phase-1, which involves validation of claims and
creation of filtered identity sets for each party, now happens inside the MPC proto-
col, and is tied to Phase-2 where the intersection of the identities from the parties is
computed?.

Non-Black-Box Claim Validation. Our generic maliciously-secure MPC protocol
is theoretically feasible, but is highly inefficient in practice for almost all widely used
cryptographically secure certification mechanisms. For example, the verification al-
gorithms for popular digital signature schemes such as ECDSA [ANS99, JMVO01] and
BLS [BLS01,BDN18,BGLS03] rely on elliptic curve-based finite-field arithmetic opera-
tions. Implementing such a verification algorithm inside a maliciously secure MPC pro-
tocol would involve non-black-box usage of the various elliptic-curve operations, which is
likely to incur huge computational and communication overheads in practice. The above
discussion motivates specialized PCl protocols that efficiently yet securely realize Fpc
against malicious corruptions while minimizing non-black-box usage of the underlying
certificate validation algorithm. In this paper, we design and implement two concrete
PCl protocols - a PCI-Any-DC protocol based on the ECDSA signature scheme and a
PCI-All protocol based on the BLS signature scheme - that achieve the above goal.

3Note that Phase-2 can be implemented a simple intersection functionality without the use of a
private version in PSI since it’s already run inside an MPC.

17

3 MPC for Elliptic Curve Pairings

As a fundamental building block of our proposed PCI protocols, we introduce a new
secret-sharing based MPC framework that is tuned for elliptic curve pairings. In this
section, we describe this framework.

On Using Secret-Sharing based MPC. We begin by observing that both the
ECDSA and BLS signature schemes fundamentally rely on elliptic curve (EC)-based
finite-field arithmetic operations over F},. Informally speaking, both standard EC op-
erations (i.e., point addition and scalar multiplication over the EC group) and pairing
based operations (i.e., algebraic operations over the output group of an EC pairing)
share a common algebraic structure with the underlying field F,, (up to group homo-
morphisms). It turns out that secret-sharing based MPC protocols offer us precisely
the desired amount of flexibility to manoeuvre over the algebraic structure of these
groups without having to use the group representation/operations in a non-black-box
manner. In particular, our overall approach (at a high level) is to design a secret-sharing
based MPC protocol that supports EC operations and pairing operations as fundamental
building blocks (similar in flavor to addition/multiplication “gates” in standard secret-
sharing based MPC over F},). This enables us to directly use black-box implementations
of such operations without having to express them explicitly in terms of the underlying
F, operations.

On Choosing SPDZ. As a concrete instance of secret-sharing based MPC, we use
the SPDZ secret sharing based protocol [DPSZ12] with malicious security against a
dishonest majority of adversarial parties. The SPDZ protocol has been widely studied
with several extensions [DPSZ12, DKL*13,CDE™18, DOK™20], optimizations [KOS16,
KPR18], and robust open-source implementations available [ACC™,Kel20]. In addition,
SPDZ naturally supports finite-field arithmetic operations over F},, which also suits our
requirements and overall approach, as outlined above.

Black-Box Usage of Standard Elliptic Curve Libraries. One of our main con-
tributions is augmenting the SPDZ framework as well as the SPDZ open-source imple-
mentation to seamlessly support basic elliptic curve operations as well as elliptic curve
pairing operations as fundamental gate-level building-blocks. This allows us to directly
use standardized and open-source implementations of elliptic curve libraries [ope, Lyn,
AGMT]. This is crucial from the point of view of both practical performance and
real-world security, since we can immediately leverage both the performance improve-
ments/optimizations as well as the protections against evolving implementation-level
attacks that such libraries usually offer. To the best of our knowledge, such a frame-
work was not available before, and this is an independent contribution since it enables
an easy implementation of EC pairing-based MPC protocols.

We detail our proposed extension to SPDZ to support both basic EC and EC pairing
operations in this section. We then describe our corresponding implementation and
integration with the existing SPDZ open-source implementation in Section 6.

Our Framework for MPC over EC Pairings. We now detail our framework for
designing secret-sharing based MPC protocols over EC pairings.Our framework can be

18

broadly divided into three-tiers, where each tier builds upon the preceding one.

e Tier-1: This tier of our framework supports the basic operations over Fj, for some
prime p.

e Tier-2: This tier of our framework supports group operations over any generic
group G with order p. We use this tier to implement basic EC operations over
the source groups of an EC pairing (i.e., point addition and scalar multiplication),
as well as the group operations over the output group of the EC pairing (i.e.,
multiplication and exponentiation).

e Tier-3: This tier of our framework supports EC pairing operations, subject to
the restriction that the pairing map e takes its inputs from two source groups G;
and Gs, both of which have order p, and produces an output in a target group Gr,
also of order p.

While each tier supports a different set of operations, we exploit the fact that each
tier shares a common algebraic structure (up to group homomorphisms), and we can
manoeuvre over this structure to progressively support more complicated operations.
We now describe each of these tiers in greater details below.

3.1 Tier-1: MPC for Basic F, Operations

Our starting point is a secret-sharing based MPC engine for operating over secret-shared
inputs in some field F, that implements the ideal functionality F[Fp] as described in
Figure 5. This engine can be realized directly using SPDZ (the SPDZ-based realization
ensures security against both semi-honest and malicious corruption of parties by using
an additional authentication mechanism to enforce honesty of operations over secret-
shared values). We use the representation [z] for any « € F}, to denote that the value
x is secret-shared, i.e., no individual party has access to x, but each party has access
to some share of z (for simplicity, we will assume that this notation incorporates the
additional authentication components required to ensure malicious security).

Linearity-Preservation. Fundamentally, we require that the secret-shared representa-
tion [z] is “linearity-preserving”, i.e., for any z,y, z, @, 8 € F), such that v = a-z+5-y+=,
given the secret shares [z] and [y] and the public values z, a, 8, the parties can compute
a secret-sharing of u “for free” as

[u] = o [a] + B - [y + =

Note that, in the case of malicious security, we also need this property to be preserved
for the authentication components.

Additional Functionalities. We additionally require two deterministic functionalities to
be supported by the MPC engine:

1. A functionality that “opens” a secret shared value [z], i.e., reconstructs and dis-
tributes the value x to all or a subset of the parties.

19

F|[Fp]

Init-F: On input (init, F,,) from all parties, the functionality stores (domain, F},). A
list of identifiers is established for F},, if not already done before.

Input-F: On input (inpF, P;,varid, z) with 2 € F, from P; and (inpF, P;,varid, ¢r,)
from all other parties, with varid a fresh identifier, the functionality stores (varid, x) in
the list of field identifiers.

Rand-F: On input (rand, varid) from all parties (if varid is not stored in memory), the
functionality generates a uniformly random a € F), and stores (varid,a) in the list of
field identifiers.

Triple-F: On input (triple, varidy, varide, varids) from all parties (if none of the varid;
are stored in memory), the functionality generates a uniformly random a,b € F), and
computes ¢ = a - b and then stores (varidy,a), (varids,b) and (varids, ¢) in the list of
field identifiers.

Add-F: On command (addF, varidy, varids, varids) from all parties where varid1, varids
are in the list of field identifiers and varids is not, the functionality retrieves (varidy,),
(varida, y) from the list of field identifiers and stores (varids,z + y) in the list of field
identifiers.

Mult-F: On command (multF,varidy,varids, varids) from all parties where varidy,
varids are in the list of field identifiers and varids is not, the functionality retrieves
(varidy, x), (varida,y) from the list of field identifiers and stores (varids, z - y) in the list
of field identifiers.

Output-F: On input (outF, varid, i) from all honest parties (if varid is present in the list
of field identifiers), the functionality retrieves (varid,y) from the set of field identifiers
and outputs it to the environment. The functionality waits for an input from the
environment. If this input is Deliver then y is output to all parties if ¢ = 0, or y is
output to party P; if i # 0. If the adversarial input is not equal to Deliver then ¢ is
output to all parties.

Figure 5: Ideal functionality for MPC over field operations in F},

2. A functionality that “multiplies” secret shared inputs, i.e., given two secret-shared
inputs [z] and [y], produces a secret-shared output [z] such that z = = - y.

Finally, we require two randomized functionalities to be supported by the MPC engine:

1. A functionality that generates a secret-shared representation [a] for a randomly
sampled value a < F},.

2. A functionality that generates secret-shared representations of uniformly random
multiplicative “triples”, i.e., it generates [a], [b] and [c] for a,b <+ F, and c=a-b.

We refer to F[Fp| described in Figure 5 for a formal description of these functionalities.
Note that, for malicious security, we would need each of the above functionalities to
also preserve (or, in the case of opening, validate) the authentication components of the
output appropriately.

SPDZ-based Realization. While we can use any secret-sharing-based MPC engine
that securely realizes F[F'p|, we choose to use SPDZ as a concrete realization, with secu-

20

rity against a malicious corruption of the majority of the parties. We briefly recall here
that, in addition to securely implementing F[Fp], SPDZ also implements a MAC-check
based authentication mechanism for secret-shared values [z] to achieve active security
against malicious corruption of parties. We recall the details of this mechanism at a
very high level; the low-level details are not important for understanding our proposed
framework. Informally, in SPDZ, each party P; for i € [1,n] holds a sharing of a global
MAC-key « € F,, (this sharing follows a slightly different mechanism; we omit the details
as our framework is oblivious to the same). Any value x € F), is shared as

[2] = (6 (21, 2n) s (n1(2), - ()
where for each i € [n], party P; holds the tuple (z;,7;(z),d) and where the following

invariant holds:
x = in, a-(x+9) = Z vi(x).
i€[n]

1€[n]

The SPDZ Opening Protocol. we briefly recall how the “opening” protocol in SPDZ
allows the parties to authenticate, via a MAC-check mechanism, that a secret-shared
value has been opened correctly. The opening protocol for a secret-shared value [z]
involves the following steps:

e Each party P;, upon receiving a reconstructed value z’, uses its share «; of the
global MAC-key «, as well as v;(z) and §, to compute o; = v;(x) — a; - (2’ 4 9).

e Each party P; then broadcasts a commitment Com(o;) to all the other parties.

e Finally, each party P; opens the commitments {Com(c;)} received from {P;},,,
computes chk = Zje[n] oj, and aborts if chk # 0.

We use the term partial opening to refer the procedure that just publicly reconstructs
the value x without going through the subsequent MAC-check procedure.

Suppose that a malicious adversary A manages to add an error € during the reconstruc-
tion phase, i.e., we have ©’ = x + €. Suppose also that the adversary A commits to a
subset of false {0 }jcc values corresponding to the subset C C [n] of parties it corrupts.
In order to bypass the MAC-check, the adversary A must ensure that

Z(O’;— —0;) = ae.

jec
However, this happens with probability no greater than 1/p, since the global MAC value

« is uniformly random in F}, and (information-theoretically) unknown to A, and hence,
A cannot bypass the MAC-check protocol except with negligible probability.

Additional Functionalities in SPDZ. We note that the randomized functionalities for
generating secret-shared representations of singleton values or multiplicative triples are
implemented by the offline phase of SPDZ [KOS16]. We omit the low-level details
of these functionalities because they are not necessary to understand our framework
and proposed protocols; it suffices to state that our framework uses the native imple-
mentations of these functionalities directly from SPDZ. We also directly use SPDZ’s
implementation of the functionality for multiplying secret-shared values, which is based
on generating a random multiplicative triple and then using Beaver’s re-randomization
technique. We refer to [DPSZ12, DKL"13] for the details.

21

F19]

Init-G: On input (init, G) from all parties, the functionality stores (domain,G). A list
of identifiers is established for G, if not already done before.

Input-G: On input (inpG, P;, varid, g) with g € G from P; and (inpG, P;, varid, ¢¢g) from
all other parties, with varid a fresh identifier, the functionality stores (varid, g) in the
list of field identifiers.

Op-G: On command (op@, varidy, varids, varidz) from all parties where varidl, varids
are in the list of group identifiers and varids is not, the functionality retrieves (varidy, g),
(varida, h) from the list of group identifiers and stores (varids, g - k) in the list of group
identifiers, where - is the group operation.

Exp-G-P: On command (exp GP,varidy, g, varidy) from all parties where varid; is in
the list of field identifiers, g € G, and varids is a fresh identifier in the list of group
identifiers, the functionality retrieves (varidy,z) from the list of field identifiers and
stores (varida, g%).

Exp-G-S: On command (exp GS, varidy, varidy, varids) from all parties where varid; is
in the list of field identifiers, varids is in the list of group identifiers, and varids is a
fresh identifier in the list of group identifiers, the functionality retrieves (varidy, z) from
the list of field identifiers and (varidg, k) from the list of group identifiers and stores
(varidg, h®).

Output-G: On input (outG,varid, i) from all honest parties (if varid is present in the
list of group identifiers), the functionality retrieves (varid,g) from the set of group
identifiers and outputs it to the environment. The functionality waits for an input
from the environment. If this input is Deliver then g is output to all parties if ¢ = 0,
or g is output to party P; if i # 0. If the adversarial input is not equal to Deliver then
¢ is output to all parties.

Figure 6: Ideal functionality for MPC over the group operations in G, which includes
basic EC operations and the operations over the output group of a pairing. We assume
that F[G] also includes all Tier-1 sub-functionalities in F[F}], but we avoid re-writing
them for modularity.

3.2 Tier-2: MPC over any Generic Group

In Tier-2, we aim to realize an MPC protocol over any generic group G with prime order
p. More concretely, we require the MPC protocol to implement the ideal functionality
F[G] as described in Figure 6. Such a protocol would allow us to support basic EC
operations (i.e., point addition and scalar multiplication) over the source groups of an
EC pairing, as well as the operations over the target group of the EC pairing (i.e., group
multiplication and exponentiation). Similar to Tier-1, we use a linearity-preserving
representation [-]; for elements in G such that for any g1, 92,93 € G and any o, 8 € Z,
such that h = g§* - gg - g3, given the secret shares [g1]5 and [ga]; and the public values
g3, , 3, the parties can locally compute

Mg = lg1lg" - 925" - 9

Once again, in the case of malicious security, we need this property to be preserved for
the authentication components.

22

Homomorphic Relation with Tier-1. We note that the aforementioned linearity-preservation
property in G shares a similar algebraic structure with the tier-1 linearity-preservation
property in Fj, described earlier. Let F,, = Z,, and let

T Yy z

a=g g2=gY, g3=9g°, h=g"

Then observe that the linearity-preservation property in Z, with u

Additional Functionalities. We additionally require three deterministic functionalities
to be supported by the MPC engine:

1. A functionality that “opens” a secret shared value [g]g, i.e., reconstructs and
distributes the group element g to all or a subset of the parties.

2. A functionality that “exponentiates” a publicly available group element in G using
a secret-shared value in Z,, i.e., given a public g € G and a secret-shared value [x]
for x € Z,, produces a secret-shared output [h]g such that h = ¢*.

3. A functionality that “exponentiates” a secret-shared group element in G using a
secret-shared value in Z,, i.e., given a secret-shared element [g]; for g € G and a
secret-shared value [z] for z € Z,,, produces a secret-shared output [h]; such that
h = g".

We refer to F[G] described in Figure 6 for a formal description of these functionalities.
Once again, for malicious security, we would need each of the above functionalities to
preserve (or, in the case of opening, validate) the authentication components of the
output appropriately.

Tier-2 Extension of SPDZ. As a concrete instantiation of F[G], we generalize the ex-
tensions to SPDZ for basic EC operations proposed in [STA19, DOK*20] to any generic
group of order p. We briefly recall the details of the approach, albeit in its generalized
form. At a high level, we exploit the homomorphic relationship between the addi-
tive group over Z, and the group G, which yields a natural way to map the linearity-
preserving property of SPDZ over Z, to its extension over . Informally speaking, for
h = g* for some publicly available generator g of G, let [h]; := gi*]. Then, observe that
the linearity-preservation property in G follows from the linearity-preservation property
in Z,, albeit implicitly in the exponent of the public group element g.

Concretely, any group element g € G is shared as

[g]g = (697 (glv cee 7gn)) (A/l(g)v s a’yn(g))))

where for each i € [n], party P; holds the tuple (g;,7:(x),dg) € G x G x G, and where
the following invariant holds:

g=119 (9:30)" =] %9,
i€[n]

1€[n]

where « is the same global MAC-key as used in Tier-1.

23

Opening and MAC-Check in G. The opening protocol for a secret-shared group element
[q] ¢ 1s also analogous to the corresponding protocol for F), where each party P; does
the following: (a) upon receiving a reconstructed value z/, computes o; = v;(g) /(g -
dg)%, (b) broadcasts a commitment Com(o;) to all the other parties, and (c) opens the
commitments {Com(c;)} received from {P;};;, computes chk = [];c(, 0;, and aborts
if chk # idg, where idg is the additive identity for the group G. We can use a very
similar argument as that in Tier-1 to prove that an adversary A cannot bypass this

extended MAC-check protocol over G, except with negligible probability.

Ezponentiating a Public Element in G. As mentioned in prior works [STA19], expo-
nentiating a publicly available group element in G using a secret-shared value in Z,, is
immediate; given a public group element g and a secret-sharing of x of the form

[{E] = (5a (xla s axn)) (’Yl(x)’ e 77n(x)))a

one can easily compute a secret-sharing of h = g* as

Blg = g7 = (9%, (g™ o 97), (7@, g7 @)

Ezxponentiating a Secret-Shared Element in G. In order to exponentiate a secret-shared
group element [g]; using a secret-shared value [z], the parties use a protocol that natu-
rally extends SPDZ’s implementation of the functionality for multiplying secret-shared
values (based on generating a random multiplicative triple and then using Beaver’s re-
randomization technique). Concretely, the parties follows the following steps:

e Generate [a], [b] and [c] for a,b + Z, and ¢ = a - b using the triple-generation
functionality in Tier-1

e Locally compute [h1]; = g’ and [ho] G = ¢! using the exponentiation algorithm
outlined above.

e Partially open the values e = (z — a) and hs = g/h;.

e Locally compute [hy]g; = h[ga] (using the exponentiation algorithm outlined above)
and hs = h§.

e Locally compute [h]; = [ho]g - ([hl]g)e “[ha]g - hs.

Note that the final local computation is allowed by the linearity-preserving property of
the secret-sharing over G; we omit the explicit details for simplicity.

Remark. We note here that while the aforementioned extension of SPDZ was proposed
theoretically in prior works [STA19,DOK™20], it was done specifically for EC groups (in
particular, [STA19] is the only prior work to propose protocols for scalar-multiplying
public/secret-shared EC points with secret-shared scalars, and their treatment is entirely
specific to plain EC groups). As already mentioned, our generalized approach allows us
to make this engine usable for pairing-friendly EC curves, since we can instantiate this
engine not only for the source groups of an EC pairing (which are both elliptic curve
groups), but also for the target group of the EC pairing, which is not an EC group
but a multiplicative group over some extension field of Fj,. As it turns out, this is an
important building block that eventually allows us to support EC pairing operations in
Tier-3 of our framework.

24

F[Pair]

Pair-G1-P: On command (pairGP, g1, varidy, varidy) from all parties where g; € Gy,
varid; is in the list of group G, identifiers, and varids is a fresh identifier in the list of
group Gr identifiers, the functionality retrieves (varidy, go) from the list of G, identifiers
and stores (varida, e(g1, g2)), where e is the pairing function.

Pair-G2-P: On command (pairG P, varidy, g2, varids) from all parties where varid is
in the list of group G; identifiers, go € G5, and varids is a fresh identifier in the list of
group Gr identifiers, the functionality retrieves (varidy, g1) from the list of G; identifiers
and stores (varids, e(g1, g2)), where e is the pairing function.

Pair-S: On command (pairS, varidy, varids, varids) from all parties where varid; is in
the list of group G; identifiers, varids is in the list of group Gs identifiers, and varids is a
fresh identifier in the list of group Gr identifiers, the functionality retrieves (varidy, g1)
from the list of G; identifiers, (varids,ge) from the list of G identifiers and stores

(varids, e(g1, 92))-

Figure 7: Ideal functionality for MPC over the EC pairing operation with G; and G, as
the input groups and Gr as the target group. We assume that F[Pair| also includes all
Tier-1 and Tier-2 sub-functionalities in F[F,] and F[G], but we avoid re-writing them
for modularity.

3.3 Tier-3: MPC over EC Pairings

We now build upon the infrastructure set up in Tier-1 and Tier-2 and design the MPC
engine to support EC pairing operations. In particular, for a bilinear pairing e : Gy X
Go — Gr, we start with Tier-2 instances for each of the groups G, Go and Gr (all
of which satisfy linearity-preserving and support the operations outlined earlier), and
realize the following three deterministic functionalities for EC pairings:

1. An EC pairing functionality that pairs a publicly available group element in G;
with a secret-shared group element in Gs, i.e., given a public g; € G; and a secret-
shared group element [g2]g, for ga € Ga, outputs a secret-shared output [gr]g,
such that gr = e(g1, g2).

2. An EC pairing functionality that pairs a secret-shared group element in G; with
a publicly available group element in Gs, i.e., given a secret-shared group element
[91]g, for g1 € G1 and a public g2 € Ga, produces a secret-shared output [gr]g,
such that gr = e(g1, g2)-

3. An EC pairing functionality that pairs a secret-shared group element in G; with
a secret-shared group element in G, i.e., given a secret-shared element [gq]g, for
g1 € Gy and a secret-shared group element [gs]g, for go € Ga, outputs a secret-
shared output [gr]g, such that gr = e(g1, g2).

We refer to F[Pair] described in Figure 7 for a formal description of these functionalities.
Once again, for malicious security, we would need each of the above functionalities to
preserve the authentication components of the output appropriately. We note here that
this functionality supports both symmetric and asymmetric pairings (in the symmetric
case, we simply instantiate the framework with G; = G = G).

25

Tier-3 Extension of SPDZ. One of our technical contributions is an extension of the
SPDZ framework to support MPC protocols realizing F[Pair], which we describe here.

Pairing with One Secret-Shared Input. We begin by describing how to compute an EC
pairing when one of the input group elements is secret-shared and the other input group
element is public. We realize this by exploiting the bilinear property of the EC pairing.
Recall that if e : G; X Go — G is a bilinear pairing, then for any g1, h; € G; and any
g2, ha € Gy, we have

e(gl : hvaZ) - 6(91392) : e(hlaQQ)a

e(g1,92 - he) = e(g1, 92) - e(g1, ha).

Now, observe that to pair a publicly available group element in G; with a secret-shared
group element in G5, each party can just locally compute

[hT]gT =e (hl’ [h’Q]gz) ’

and this yields a valid secret-sharing of pairing output hr because of: (a) the bilinearity
property of e as described above, and (b) the linearity-preservation property of the
secret-sharing mechanism over Gs. Pairing a publicly available group element in Go with
a secret-shared group element in G; is analogously straightforward, wherein each party
locally computes

[hrlg, = e ([lg, h2) -

Pairing with Two Secret-Shared Inputs. We now propose a protocol that allows the
parties to pair a secret-shared group element [hl]g1 with a secret-shared group element
[ha] g,» the parties follows the following steps. The protocol is inspired by SPDZ’s imple-
mentation of the functionality for multiplying secret-shared values (based on generating
a random multiplicative triple and then using Beaver’s re-randomization technique), but
needs to be carefully adapted to the setting of EC pairings. Concretely, in our proposed
protocol, the parties proceed as follows:

e Generate [a], [b] and [¢] for a,b - Z, and ¢ = a - b using the triple-generation
functionality in Tier-1.

e Locally compute

a b c
uilg, = 9\ [uslg, = 68, [uslg, = 91,

using the exponentiation algorithm for public group elements in the Tier-2 MPC
engine for G; and Gs.

e Partially open the values hs = hy/u; € G1 and hy = ha/us € Go.

e Locally compute

[Ul]gT =e ([u3]91’92)’ [02}gT =e (h37 [Uﬂgz)
[Us]gT =e ([ul]g17h4)7 vy = e(hs, hy).

e Locally compute [hT]QT = [vl]gT . [’UQ]QT . [’Ug]gT vy

26

Note that the final local computation is allowed by the linearity-preserving property
of the secret-sharing over Gr; we omit the explicit details for simplicity. To prove
correctness, it suffices to prove that hpy = vy - vg - v3 - v4; correctness of the sharing
again follows immediately from: (a) the bilinearity property of e described above, and
(b) the linearity-preservation property of the secret-sharing mechanism over G; and Gs.
Observe that

U1+ V2 - V3 * Vg
= e (u3, g2) - e (hz,u2) - e (u1, ha) - e(h3, ha)
=e(gf,92) e (h1-g7% g5) e (gt ha-93°) e (h1- g7 ha-95")
=e(g1,92) e (h1,92)" e (91.92) " e (g1,02) """ - e (g1, h2)" - € (1, ha)

ce(h1,92) " e (g1 ha) ™" - e(g1,92)™
= e(hl,hg) = hT

We highlight here that our solution uses the group operations and the pairing operations
of the pairing-friendly EC group as a black-box. This enables us to use the state-of-
the-art libraries such as RELIC [AGMT] for implementing the pairing operations on top
of the MP-SPDZ framework. To the best of our knowledge, this is first proposal and
implementation of an MPC protocol that efficiently supports EC pairings, and is likely
to have applications beyond PCI.

4 PCl-Any-DC using ECDSA signature scheme

In this section, we describe a concrete instantiation of two-party PCI-Any-DC using
the ECDSA signature scheme. We subsequently discuss how to extend this scheme to
support PCl-Any and PCI-All.

Notations. Let the elliptic curve group G of prime order p be defined over a field
F, as a set of points (z,y) € F, x F,. Though the EC group G is an additive group
of points over the elliptic curve, we will continue to use the multiplicative notation to
ensure uniformity throughout the paper. Hence, we will denote point addition between
two points @1 and Q2 as @1 - @2, and the scalar multiplication between a point) and
x € Z, as Q. Let Q € G be the generator of the group G (base point in standard EC
parlance), and therefore we have QP = O, where O is the point at infinity (the identity
element). For any Q' € G, we use [Q']; to denote the linearity preserving secret-sharing

of Q'.

The ECDSA Signature Scheme. We briefly recall the key generation, signing, and
verification equations for ECDSA.

KeyGen(\): On input a security parameter A, the key generation algorithm samples a
private signing key x < [1,p — 1], and computes the public verification key ¥ := Q*.
The algorithm outputs the pair (z,Y).

27

Algorithm 2: PCI-Any-DC using ECDSA

Private inputs from Pi: inp; ; = (Y10, s;%, ml,é)]ee[l,Nl]

Each Y; ¢ is shared as [Yl’dgz using Input-G, and each sf} is shared as [s;ﬂ using
Input-F.

2 Public inputs from Pp: inp; 5 = [(r1,e, R1e, mlﬁz)]ge[LNl]

© 0 N O o s

10

11

12
13

14

15

16

17
18
19
20
21

22

23

24

25

26

Private inputs from P: inpy; = [(Ya,0, 32_7}, m27g)]¢e[1’N2]

Each Y5 ¢ is shared as [YM]QQ using Input-G, and each 52_} is shared as {sgﬂ using
Input-F.

Public inputs from Py: inpy o = [(r2,¢, R2,0, M2,¢)]¢e[1,N2]

Py validates each Ry, # O and has-x coordinate 75 4.

P, validates each Ry ¢ # O and has x-coordinate rq ¢.

> Validate P,’s input signatures
for /:=1...N; do

[u1,e] := H (m1,) - {sfﬂ

[V1e] :==T1,0- [sfﬂ
| [Cl]g = Exp-G-P([u,4], Q) - Exp-G-S([v1.e], [Y1,elg,) / Rue
Validate P,’s input signatures
for ¢/:=1...Nydo

w0 1= H (maer) - [s75]
[’Ulg/] =Tor [827}/}
| [C2]g = Exp-G-P([uz,¢'], Q) - Exp-G-S([v2,e'], [Yo,r]g,) / Rovr
> Match certifier
The parties agree on public random values rndy, rndy < Z,.
for {:=1...N; do

for ¢/ :=1...N, do
Generate secret-shared randomness [rndg,] < Rand-F.

[Clg = Wielg/[V2,e]g
[ng = [Czl}g ’ [Cg'}gmdl ’ [O]dez
ci] , = Exp-G-S([md 0. [C)

v

Output-G([CZW} g)
If €}, == O, then Output-G([Y1,¢)5)

Sign(xz,m): On input a signing key x and a message m € {0, 1}*, the signing algorithm
does the following: (i) samples a random k < [1,p — 1], (ii) computes R = (z,y) := Q¥
(a random point on the curve), (iii) computes 7 = z mod p and s = k~1(H (m) +7r-z)
mod p, where H : {0,1}* — [0,p — 1] denotes a hash function, (iv) repeats (i)-(iii) until
r # 0 and s # 0. The algorithm finally outputs the signature o = (r, s).

Verify(Y,o,m): On input a verification key Y, a signature o and a message m, the
verification algorithm computes u; = H (m)-s~! mod p, ug = r-s~* mod p and
computes R := (z/,y') = Q" - Y“2. The algorithm outputs 1 if (2',y") # O and 2’ = r,
and outputs 0 otherwise.

28

Protocol Overview. The starting point of our protocol is the generic maliciously
secure protocol outlined in the introduction where we have the certificate validation
and creation of the filtered sets of identities followed by the intersection of the sets
from the two parties. We note here that we could have a single certifier issue multiple
certificates on multiple different claims, or multiple certificates some of the same claims.
However, we prescribe the parties to select only one certificate from a single certifier on
one claim, i.e., there is a single (certificate, claim) pair for each certifier input to the
protocol. We also expect an honest party to only input valid certificates on its set of
public claims (although this is not a strict requirement for our protocol).

Optimizing Verify: Our main effort here is to reduce or obviate the non-algebraic op-
erations in the Verify algorithm. In addition to the additions and multiplications, Verify
requires an inverse operation in F, and the extraction of the z-coordinate of an EC
point from the point description (which is a trivial task to do in the plaintext world but
not so inside an MPC). To do this, we make two observations. First, we note that the
unforgeability of the signature scheme is retained if s~! is input instead of s; given a
signature (r, s), it is trivial to compute (r, s~!) and hence the unforgeability guarantees
are equivalent for (r,s) and (r,s~!). This way the inverse can be done outside the MPC
and the parties can provide the corresponding s~—! as their secret inputs.

Second, in addition to r, we input the point R = (r,y) by calculating the y-coordinate,
and check that the signature verification procedure actually yields the point R (recall
that the original ECDSA signature verification algorithm first reconstructs the point R
and then extracts its z-coordinate r). If r and R were to be private inputs, the MPC
algorithm would have to check that the r is the valid z-coordinate of R to prevent
maliciously constructed inputs. We obviate this by making » and R public. Observe
that, in the ECDSA signing algorithm, the point R is a uniformly random point in the
group G, thus R and its z-coordinate r are statistically independent of the corresponding
public key. In other words, the public key is not revealed when r and R are provided,
even if the universal set of public keys is available to the adversary. We also note that
a malicious adversary cannot forge signatures by inputting an invalid point R’ since,
given the x-coordinate r and the public description of the elliptic curve group G, one
can efficiently compute the two possible EC points the form (r,y) in the group G, and
either of these would match the point R reconstructed by the verification algorithm
if and only if the original signature (r,s) was valid. At this point, we can perform
certificate verification inside MPC using the operations in Tier-2 of our proposed MPC
engine.

Computing the Intersection: We now perform the intersection of the sets of public keys
by subtracting the corresponding elliptic curve points (dividing in the multiplicative no-
tation) and checking if it opens to the identity element (point at infinity). It is important
to hide the difference value if it is not the identity; otherwise we leak information about
the public keys which are not part of the output set, which is not an allowed leakage ac-
cording to our definition. So, we randomize the difference before opening while retaining
the identity value. Another optimization in our protocol is that we store the information
on the validity of the certificates in [Cﬂ oS and [Cﬁ] ¢S and open them along with the
variable [C]; storing the equality of public keys, as a random linear combination of three
variables corresponding to the validity of P;’s certificate, validity of Py’s certificate and
the equality of the public keys of the certifiers. This opens to the identity element if
and only if all of the three requirements are satisfied.

29

The detailed description of our PCI-Any-DC protocol for ECDSA is provided in Algo-
rithm 2. Here, each party inputs tuples of (identifier, certificate, claim) with the above
discussed modifications as its private input, and the corresponding claim and (r, R) for
each tuple as its public input. Note that the validation of P;’s certificates and Ps’s cer-
tificates will be executed in parallel by the MPC algorithm. We describe the protocol in
the F[G]-hybrid model, i.e., we assume that each sub-functionality in F[G] has a secure
instantiation. This allows us to define and prove the protocols in a modular way. A
concrete instance of the protocol would use the SPDZ-based instantiation described in
Section 3 to perform ECDSA signature validations while using all operations over the
EC group G in a black-box way.

4.1 Correctness and Security

Correctness of the protocol follows immediately. We state the following theorem for the
security of the protocol:

Theorem 1. Our proposed PCI-Any-DC protocol for ECDSA signatures as described in
Algorithm 2 securely emulates Fpc)(PCl-Any-DC) (for the two-party setting).

Proof. We prove Theorem 1 by constructing a PPT simulator S such that no PPT
environment Z, who corrupts one of the parties (say P; without loss of generality) and
chooses the input for P;, can distinguish with significant probability, a view obtained
by running our proposed PCI-Any-DC protocol for ECDSA signatures in Algorithm 2
between a PPT adversary A and honest party (say P, without loss of generality), and
a simulated execution of the protocol between S and Fpc(PCl-Any-DC) (for the two-
party setting). The environment Z’s view consists of the intermediate messages sent
and received by the adversary A, the input he chose for the honest party P», along with
output of Ps.

We now describe the construction of the simulator S, which proceeds as follows:

Input Phase: The simulator internally runs the real-world adversary A to obtain the
private and public inputs for the corrupt party P;. Let the inputs be as follows.

Private inputs for Py : inpy; = [(Yu,sf}, m1,¢)]eeq,n,], Where each Yj ;o is shared as

[Yu]g2 using Input-G, and each 51_’} is shared as [sfﬂ using Input-F.

Public inputs for Py : inpy o = [(r1,e, R1,e,m10)]eeqn, vy -

Invoking Fpci(PCl-Any-DC): The simulator & now invokes the ideal functionality
Fpci(PCl-Any-DC) using the inputs of the corrupt party P; (the input of the honest
party P» is directly provided to Fpc(PCl-Any-DC) by the environment Z) to receive
(outpcr-any-Dc(inpy, inpy), N2), where Ny is the number of inputs for the honest party Ps,

30

and
outpciany-pc(inpy, inp,) = ({m(inpi,l)}ie[w] :
{(V Aming, (V) }icqr,2}) Y € outperany (inps inp2)})

where

outpcr-any (inpy, inpy) = {Y € id(inpy 1) Nid(inpy ;) :
Repci-any,inp, (Y) = Rpci-Any,inp, (V) =1}

Simulating Honest Party’s Inputs: The simulator S now simulates a dummy pri-
vate and public input on behalf of the honest party P, for the rest of the protocol as
follows:

Simulated private inputs for Py: inpyy = [(Y2,6,55 . M2,¢)]ee(1,n,], Where:

e Each Y5 is sampled uniformly at random from G and input to the Input-G sub-
functionality in F[G].

e Each S, } is sampled uniformly at random from Z, and input to the Input-F sub-
functionality in F[F),].

e Each mgy is provided to S by Fpci(PCl-Any-DC).

Stmulated public inputs for Py: RQ’Q = [(Fa,0, Ra,s, M2.¢)]ee[1,n,], Where:

e Fach Eg,g is sampled uniformly at random from G.
e Each 75 is set to be the x-coordinate of EM.

e Each my is provided to S by Fpci(PCl-Any-DC).

Proceeding with the Protocol: The simulator now proceeds exactly as in the real
protocol described in Algorithm 2. We note here that for each (¢,¢") € [Ny, Ny|, prior
to the output stage in Line 25 of Algorithm 2, the entire computation of the protocol
is local. Thus, the environment’s view, up to this point, will not leak whether inputs
used by honest players’ are dummy inputs or the ones the environment provided. Note
that in the meantime, the simulator S can query the respective sub-functionalities from
F[G] (which includes the sub-functionalities from F[F},)).

Handling Openings of C},: We note that for each (¢,{') € [Ny, Na], Line 25 of
Algorithm 2 involves openings that reveal C’é’ o, values that are either Og (the point of
infinity, which is the additive identity of the group of EC points G) or a uniformly random
element in the group of EC points G. We note that S knows precisely which (¢, ¢') tuples
result in the opening of a C}/,, value that is equal to Og: this corresponds to an intersect-
ing public key ¥ which S can figure out deterministically given outpci-any-pc(inpy, inps).
S now proceeds as follows:

31

o If (¢,¢) tuples result in the opening of a Cy/,, value that is equal to Og: Suppose
the current execution using the dummy inputs for the honest party P, leads to a
value CY,, = @' for some EC point @’ € G. S modifies the simulated share of C},
correspohding to the honest party P, by dividing (i.e., subtracting the EC poiﬂt)
Q' from it locally, and modifies the MAC value by dividing (i.e. subtracting the
EC point) Q" from the original MAC value. This is possible since & knows the
MAC key .

e If (¢,¢") tuples result in the opening of a CZ » value that is a uniformly random
element in the group of EC points G: in this case, S samples r < Z,,, randomizes
the simulated share of 7/, corresponding to the honest party P, by multiply-
ing (i.e. adding the EC point) Q" to it locally, and modifies the MAC value by
multiplying (i.e., adding the EC point) @™ to the original MAC value.

Both of the above steps are possible since S knows the MAC key «.

Handling Openings of Y; ; values: Finally, Line 26 of Algorithm 2 involves openings
that reveal public keys Y7 . Note that here, it suffices for the simulator S to proceed
exactly as in the real protocol, since the public keys in the input of the corrupted party
P; are available to the simulator S in the clear, and were shared by S exactly as in the
real protocol.

It is easy to see that the view of Z is identical to that in the F[G]-hybrid model.
Hence, assuming a secure SPDZ-based instantiation of the F[G]-hybrid model using our
proposed MPC framework for generic group operations, our ECDSA-based PCI-Any-DC
protocol securely emulates Fpci(PCl-Any-DC). This concludes the proof of Theorem 1.

4.2 Extensions of ECDSA-based PCl-Any-DC

In this section, we discuss various possible extensions of our ECDSA-based two-party
PCI-Any-DC protocol, including extensions to PCl-Any and PCI-All, as well as extensions
to the multi-party setting.

Extension to PCI-Any. One can naturally upgrade the above PCl-Any-DC protocol
to a PCI-Any protocol that additionally guarantees privacy of the input claims for each
party by treating the claims as part of the private input. More concretely, the claims
would be secret-shared across the participating parties instead of being publicly avail-
able, and all operations on the input claims would have to be performed inside the
MPC protocol. While the extension is conceptually simple, it incurs some additional
costs. For instance, we can no longer directly use our proposed optimizations to reduce
or obviate the non-algebraic operations in the Verify algorithm, and we would incur
the additional cost of performing these operations inside the underlying MPC protocol.
We would also incur the additional cost of hashing the claims inside the MPC proto-
col (since the claims would now be secret-shared as opposed to being publicly available).
One could use an MPC-friendly family of hash functions [GRR™16], but this would be
non-compliant with standardized implementations of ECDSA that typically do not use
such hash function families. We leave it as an interesting future direction to investigate
optimization strategies that would allow performing the above operations efficiently (i.e.,

32

outside the MPC protocol) while ensuring privacy of the input claims and maintaining
compliance with standardized ECDSA implementations.

Extension to PCI-All. The above PCI-Any-DC protocol can also be extended naturally
to PCI-All by iterating through all the claims to validate the certificates on these claims
by a specific certifier. To enable this, the private inputs will be ordered in a 2-D grid,
where each row corresponds to the certificates by a certifier on all the claims in inp; ;, and
the protocol needs to validate |inp; ;| certificates per certifier inside the MPC protocol.
The complexity grows with the number of claims which seems unavoidable since the
ECDSA signatures cannot be aggregated across different claims. Therefore in the next
section, we introduce an optimized PCI-All protocol using the BLS signature scheme
[BLSO01] that only requires a single signature verification per certifier inside the MPC
protocol.

Extension to Multi-Party PCI-Any-DC. Finally, we present a discussion on how
to extend the above PCI-Any-DC protocol (and its upgradation to PCl-Any) from the
two-party to the multi-party setting. We divide the discussion into three phases - the
input phase, the certificate validation phase, and the certifier matching phase.

Input Phase. To begin with, we can directly replicate the input phase of our two-party
PCI-Any-DC protocol in the n-party setting. Concretely, as in the original two-party
protocol (Lines 1-6 of Algorithm 2), each of the n participating parties inputs tuples of
(identifier, certificate, claim) (with the same modifications/optimizations as described
in Section 4) as its private input, and the corresponding claim and (r, R) for each tuple
as its public input.

Certificate Validation Phase. We again directly replicate the certificate validation phase
of our two-party PCl-Any-DC protocol in the n-party setting. Concretely, as in the origi-
nal two-party protocol (Lines 7-11 and 12-16 of Algorithm 2), the protocol validates the
signatures for each of the n participating parties. The validation proceeds in parallel for
each of the parties.

Certifier Matching Phase. This is where the n-party version of our protocol involves
a non-trivial extension of the original two-party protocol (Lines 19-26 of Algorithm 2).
Note that a trivial extension of the protocol would involve n-nested loops (one for
each participating party), thereby yielding a protocol with computational and com-

munication complexity O (Hie[l] |inpi|), which is clearly undesirable (this is, in fact,

approximately O(c") times more expensive that the two-party protocol, assuming a
minimum input size of O(c) per party, i.e., the overheads grow exponentially in the
number of parties). It turns out, however, that this trivial extension essentially matches
the certifier public keys across “all” parties in a pair-wise fashion, which is clearly un-
necessary. In fact, without loss of generality, it suffices to simply match each certifier
public key input by party P; with the corresponding certifier public keys across par-

ties Py, ..., P,. This reduces the required number of checks from O (Hie[l,n] |inpi\> to

0 <|inp1| Dic2n] \inpi\), which is significantly more efficient (in fact, we now incur ap-

proximately O(n) times more checks that the two-party protocol). In fact, by choosing

33

P; to be the party with the smallest input size, we can optimize the overheads even
further.

Concretely, in the certifier matching phase of the n-party version of our PCI-Any-DC
protocol, we run a two-nested set of loops — an outer loop for party P; and (n— 1) inner
loops for parties P, through P,. Each inner loop performs essentially the same compu-
tation as in Lines 22-23 of Algorithm 2, except that we now accumulate the outcomes of
each of these intra-loop computations into a global check variable C' maintained across
all of these inner loops. This two-layered accumulation step (requiring an intra-loop
accumulation followed by an inter-loop accumulation), however, reduces to computing
a Boolean formula in the conjunctive normal form (CNF). This is because we require
a multiplication operation for the intra-loop accumulation (in order to check whether
there is at least one matching certifier identity between P; and P;) and an addition
operation across the loops to compute the final intersection. Computing such a CNF
formula necessitates using field elements for accumulation, which is not immediate from
Algorithm 2, where the variable C},, is actually a group element and is amenable to
field operations. Hence, we need to hash CZ » into a corresponding field element c; ¢,

which incurs the additional cost of computing O (\inpl\ “Yiczn] | mp1|) instances of a

collision-resistant hash function inside the MPC protocol®. Along the way, we also incur
some other additional costs, such as sampling additional randomnesses for each inner
loop and an n-party opening protocol for the final accumulation variable.

Assuming O(n) overheads for each such operation, the overall computational and com-
munication complexities scales as O (n “linpy| - X icong |inpi|>7 which is approximately

O(n?) times more expensive than the two-party protocol for realistic input sizes. In
particular, we expect that for large values of n (i.e. for multi-party PCl involving a large
number of parties), our proposed solution will be significantly more efficient that the
naive extension of the two-party solution outlined above (even taking into the hidden
constants due to the additional overheads incurred by our proposed solution). We leave
it an as open question to investigate additional optimizations (or alternative solutions)
that could allow reducing the overheads even further.

Extension to Multi-Party PCI-Any. Finally, analogous to the two-party setting, one
can naturally upgrade the above n-party PCI-Any-DC protocol to an n-party PCI-Any
protocol that additionally guarantees privacy of the input claims for each party by
treating the claims as part of the private input. More concretely, the claims would be
secret-shared across all of the n participating parties instead of being publicly available,
and all operations on the input claims would have to be performed inside the MPC
protocol. As discussed in Section 4, this would incur additional costs of performing
certain operations (such as field inversions, extraction of point coordinates, and hashing
of claims) inside the MPC protocol. We again leave it as an interesting future direction
to investigate optimization strategies that would allow performing the above operations
efficiently (i.e., outside the MPC protocol) in the n-party setting.

4We can use an MPC-friendly hash here [GRR116] to optimize the associated overheads

34

5 PCI-All using BLS signature

This section provides a concrete instantiation of the PCI-All protocol using the BLS
signature scheme [BLS01, BDN18 BGLS03]. At a high level, we use the aggregatable
feature of BLS signatures over different claims to minimize the number of signature
verifications inside the PCI-All protocol. Note however that BLS signature verification
involves EC pairings, which we handle in a black-box way using Tier-3 (Section 3) of
our proposed MPC engine.

Notations. Let e: Gy X Go — Gr be a non-degenerate, efficiently computable bilinear
pairing, where Gy, Go are elliptic curve groups and Gr is a multiplicative group, all of
prime order p. Let ;1 and @2 be generators of G; and Go respectively, and hence
gr = e(Q1,Q2) is a generator of Gr.

The BLS Signature Scheme. We briefly describe the key generation, signing and
verification algorithms of the BLS signature scheme, followed by the algorithms for
signature aggregation (over multiple messages signed under the same verification key)
and the verification of aggregate signatures.

KeyGen(\): On input a security parameter A, the key generation algorithm samples a
private signing key = < [1,p — 1] and computes the public verification key as Y = Q3 €
Gs. The algorithms outputs the key pair (z,Y).

Sign(x,m): On input a signing key x and message m, the signing algorithm first com-
putes M = H(m) € G; where H : {0,1}* — G;. The algorithm then computes and
outputs the signature o = M* € G;.

Verify(Y,o,m): On input a verification key Y, a signature ¢ and a message m, the
verification algorithm outputs 1 if e(o, Q2) = ¢(M,Y), and 0 otherwise.

Signature aggregation: On input signature-message pairs {o;, mi}z‘e[l, N1, the signature
aggregation algorithm produces an aggregated signature o, ... my) = Hie[LN] o;.

Aggregated signature verification: On input a verification key Y, an aggregated sig-
nature O(m,,,....my) and a list/multiset of messages (mq,...,my), the aggregated sig-
nature verification algorithm outputs 1 if e(o(n,, .. .my), @2) =[] [1.3] e(M;,Y) where
M; = H(m;). The algorithm outputs 0 otherwise.

i€

Remark. We note here that BLS signature aggregation is susceptible to a rogue public
key attack when aggregating signatures on the same message under different verification
keys. However, the attack is not applicable when aggregating signatures over multiple
messages signed under the same public verification key, and hence does not impact the
security of our proposed protocol.

35

Algorithm 3: PCI-All using BLS

Py has inp; ; = KYLZUULZMZWm17Z2)]Zle[l,Nl,l],de[l,Nl,z] and
inpy o = {mM1e, besei, vy o]

P, has inpy 1 = [(Ya,0,, 02,0, 05, m2742)]el6[11N2111722€[1’N2)2] and
inp2,2 = {mQ,fz }526[1,1\’2,2]

Private inputs from P;: the aggregated tuples and the set of preempted pairings

(i) inp; ; = [(YM,51,@,M1)]56[1’N171]

(i) {z1,e = e(M2,Y1,0)}oep vy o]

where @0 = [],ep.n,) Tie.eo and M, = [Teeq,n, o) H (mig). Note that each Yy is
secret-shared as [Y1¢]g, , each 71 ¢ is secret-shared as [071 (]
secret-shared as [21,¢]g

G and each z; ¢ is

Public inputs from P;: iTanQ.

Private inputs from Ps: the aggregated tuples and the set of preempted pairings
(i) inpy ; = [(YZ,LEZ,LM2)]EE[17N2)1]

(i) {22, = e(M1,Y2,0) }oe1,Na 1)

Note that each Y3, is secret-shared as [Y3 ¢] G each 7y ¢ is secret-shared as [z /]

g1’
and each zp ¢ is secret-shared as [z2 /] g

e

6 Public inputs from P»: inpy 5.
7 for {:=1...N;; do

10

11
12
13
14
15

16

17

18

19

20

[Z/u} o Pair-G2-P([71,]g, , Q2)
for ¢/:=1...Ny; do
[zlz,w} o Pair-G2-P([o2,¢]g,, Q2)

The parties agree on public random 7 < Z,,.

for £:=1...N;; do

for ¢/:=1...Ny; do

Generate secret-shared randomness [ry ¢/] < Rand-F.
Each party locally computes:

ereloy = (ndge/ [te],) (el /2],)
[02,5/} o := Exp-G-S ([ruf], [c“/]gT)

Output-G| | ¢},

utpu ([CN LT)
if ¢, == 17 then

L Output—G([YLdgz)

Protocol Overview. We follow the same generic approach as in our ECDSA-based
protocol, with some optimizations to reduce BLS signature verifications inside the MPC
protocol. We note here that we could have a single certifier issue multiple certificates
on the same claim for some of the claims. However, we prescribe the parties to select
only one certificate from a single certifier on each claim, i.e., there is a single (certificate,
claim) pair for each certifier per claim input to the protocol. We also expect an honest

party to only input valid certificates on its set of public claims.

36

Reducing Claim Validation: As mentioned earlier, trivially extending the approach
used in our ECDSA-based PCI-Any-DC protocol to design a PCI-All protocol would
require iterating through all of the public claims, and validate the certificates on these
claims by a specific certifier. This results in a claim validation complexity that grows
with the number of claims, which is undesirable because the straightforward way of claim
validation using BLS signatures would require computing two bilinear pairings inside
the MPC protocol per validation, which is prohibitively expensive. Our main effort here
is to reduce the number of pairing operations inside the MPC protocol as far as possible.
To do this, we first use BLS signature aggregation over multiple claims signed under the
same public verification key. Concretely, suppose that the private input inp; ; for each
(honest) party P; is ordered in a 2-D grid of tuples of the form

np; 1 = (Yier, 0ien 02 mi’b)]21e[l,Ni,l],Zze[l,Nm]

with N; i certifiers and V; o claims to be validated, where row-¢; contains certificates of
the form o; ¢, ¢, on the claim m; ¢,, signed by the certifier associated with the verification
key Y; e, . The party P; performs some pre-processing to aggregate the certificates in
each row using the BLS signature aggregation algorithm as:

Ty = H i,y 025 M; = H H(mi,fz)

£2€[1,N; 1] L2€[1,N; 1]

and uses an aggregated private input of the form
mi,l = [(}/i,[] ’ Ei,el 7Mi):|€1€[1’Ni,1]

for the MPC protocol. This now reduces the number of pairing computations inside
the MPC protocol to two per certifier (required to verify each aggregated certificate);
in particular, the complexity no longer grows with the number of public claims to be
validated.

The next optimization involves further reducing the number of pairing computations
inside the MPC to one per certifier. Note that we could avoid the pairing computation
that requires pairing the public key with the aggregated claim-hash by having each
party pre-compute this and directly input it to the MPC protocol. Note, however, that
doing this naively would break the “unforgeability” guarantee of our protocol because a
malicious party could simply input the pairing of a (potentially) invalid signature with
the group generator (); to trivially satisfy the verification check. To counter this, we
exploit the uniqueness of BLS signatures for a given (key, claim) pair as follows: each
party preempts the output of pairing its own verification keys with the aggregated claim-
hashes of the other party (this is possible since the claims are public), which in the case
of an intersecting certifier (i.e. when the verification keys are the same), is identical to
the pairing of the aggregated public claim-hashes with the other party’s verification key.
This enables performing certificate verification for one party by using the preempted
pairing values computed by the other party. This obviates the need for computing one
of the pairings inside the MPC protocol (since the preempted pairing computation is
done outside the MPC), while also preserving security of the end-to-end protocol.

Computing the Intersection: In addition to certificate verification, the above step also
enables computing the intersection of the identity sets between the two parties. In
particular, we perform an equality check in Gy by simply dividing the corresponding
group elements, and checking that the result opens to the identity element in Gy. As in
our ECDSA-based protocol, it is important to hide the output of this computation if it

37

is not the identity; otherwise we leak information about the public keys which are not
part of the output set, which is not an allowed leakage according to our definition. So,
we randomize the difference before opening while retaining the identity value.

The detailed description of our PCI-All protocol for BLS signatures is provided in Algo-
rithm 3. Here, each party P; inputs tuples of (identifier, aggregated certificate, aggre-
gated claim-hash) as its private input inp; ;, and the corresponding claims for each tuple
as part of its public input inp; , (for the honest parties, inp;, 5 is expected to be simply
the set of public claims as in the definition of PCI-All in Section 2). Each party also
inputs the preempted pairing outputs as described earlier. We describe the protocol in
the (F[Pair])-hybrid model, i.e., we assume that each sub-functionality in F[Pair] has
a secure instantiation. A concrete instance of the protocol would use the SPDZ-based
instantiation described in Section 3 to perform BLS signature validations while using all
operations over the EC groups G1,Go and the target group Gr and the bilinear pairing
e in a black-box way.

5.1 Correctness and Security

Correctness of the protocol follows immediately. We state the following theorem for the
security of the protocol:

Theorem 2. Our proposed PCI-All protocol for BLS signatures as described in Algo-
rithm 3 securely emulates Fpc)(PCI-All) (for the two-party setting).

Proof. We prove Theorem 2 by constructing a PPT simulator S such that no PPT
environment Z, who corrupts one of the parties (say P; without loss of generality) and
chooses the input for P;, can distinguish with significant probability, a view obtained
by running our proposed PCI-Any-DC protocol for ECDSA signatures in Algorithm 3
between a PPT adversary A and honest party (say P, without loss of generality), and
a simulated execution of the protocol between S and Fpc(PCI-All) (for the two-party
setting). The environment Z’s view consists of the intermediate messages sent and
received by the adversary A, the input he chose for the honest party P, along with
output of Ps.

We now describe the construction of the simulator S, which proceeds as follows:

Input Phase: The simulator internally runs the real-world adversary A to obtain the
private and public inputs for the corrupt party P;. Let the inputs be as follows.

Private inputs for P : aggregated tuples Rl,l = [(YM,EM,Ml)]EG[l Nial and the

set of preempted pairings {z1, = e(MQ,YLg)}gE[LNLm where 7; ¢ = lee[l,Nm] 0000
and M, = Hle[l,Ni)] H (m;). Each Y7 4 is secret-shared as [Yu]gz, each 7 ¢ is secret-

shared as [071,¢]g , and each z1 ¢ is secret-shared as [21,¢]g, .

Public inputs for Py : inpy o = {ml,ez}zge[l,N1,2]-

38

Invoking Fpc(PCI-All): The simulator S now invokes the ideal functionality Fpc)(PCI-All)
using the inputs of the corrupt party P; (the input of the honest party P, is directly
provided to Fpci(PCI-All) by the environment Z) to receive (outpcian(inpy,inpy), Na),
where N is the number of inputs for the honest party P, and

OUtPC|‘A|l(inp15 inp2) = {Y S id(inpl,l) N id(inp271) :
Reciating, (Y) = Reciaing, (Y) = 1}

Simulating Honest Party’s Inputs: The simulator S now simulates a dummy pri-
vate and public input on behalf of the honest party P» for the rest of the protocol as
follows:

Simulated private inputs for Py: ﬁz,l = [(Ya,, §2>47M2)]z€[1.N2 1 and the set of pre-

empted pairings {Z2 ¢ = e(M;, Y2.0)}ee1,N,.,)> Where:

e Each Y5, is sampled uniformly at random from G and input to the Input-G
sub-functionality in F[G] instantiated for Gs.

e Each 75/ is sampled uniformly at random from G; and input to the Input-G
sub-functionality in F[G] instantiated for G;.

e Each preempted pairing Zz ¢ is computed as e(M1, Y2 ¢), where M; = Hee[l Nao H (may)
is the aggregated hashed-claim corresponding to the corrupt party P;. '

e Each my in the simulated public inputs for P is provided to S by Fpci(PCl-Any-DC),
from which the simulator S computes M = [[,c(, ,) H (M2,0).

Simulated public inputs for Py inpyo = {mMa¢)}eeq1, N, o], Where:

e Each mgy ¢ is provided to S by Fpci(PCI-All).

Proceeding with the Protocol: The simulator now proceeds exactly as in the real
protocol described in Algorithm 3. We note here that for each (¢,¢) € [Ny, Na1l,
prior to the output stage in Line 18 of Algorithm 3, the entire computation of the
protocol is local. Thus, the environment’s view, up to this point, will not leak whether
inputs used by honest players’ are dummy inputs or the ones the environment provided.
Note that in the meantime, the simulator S can query the respective sub-functionalities
from F[Pair] (which includes the sub-functionalities from F[F},] and F[G], initialized
appropriately for Gi, Go and Gr).

Handling Openings of ¢, ,: We note that for each (£,¢') € [Ni, N2], Line 18 of
Algorithm 3 involves openings that reveal 027 » values that are either 1¢ (identity element
of the group Gr) or a uniformly random element in Gr. We note that S knows precisely
which (/,£) tuples result in the opening of a ¢, value that is equal to 1g,: this
corresponds to an intersecting public key Y which & can figure out deterministically
given outpcyai(inpy, inpy). S now proceeds as follows:

39

o If (¢,¢') tuples result in the opening of a ¢; ,, value that is equal to 1g,: Suppose
the current execution using the dummy inputs for the honest party P, leads to a
value ¢ , = hp for some element hy € Gp. S modifies the simulated share of ¢ ,,
correspénding to the honest party P, by dividing hp from it locally, and modifies
the MAC value by dividing h$ from the original MAC value. This is possible since
S knows the MAC key a.

e If (£,¢") tuples result in the opening of a cg,l, value that is a uniformly random
element in the group Gr: S samples r < Z,, randomizes the simulated share of
C’M, corresponding to the honest party P, by multiplying g7 to it locally, and
modifies the MAC value by multiplying (i.e., adding the EC point) ¢g7* to the
original MAC value.

Both of the above steps are possible since S knows the MAC key «.

Handling Openings of Y; ; values: Finally, Line 20 of Algorithm 3 involves openings
that reveal public keys Y7 . Note that here, it suffices for the simulator S to proceed
exactly as in the real protocol, since the public keys in the input of the corrupted party
P; are available to the simulator S in the clear, and were shared by S exactly as in the
real protocol.

It is easy to see that the view of Z is identical to that in the F[G]-hybrid model.
hence, assuming a secure SPDZ-based instantiation of the F[G]-hybrid model using
our proposed MPC framework for generic group operations, our ECDSA-based PCI-All
protocol securely emulates Fpc(PCI-All). This concludes the proof of Theorem 2.

5.2 Extension to the Multi-Party Setting

We can similarly extend our BLS-based PCI-All protocol to the n-party setting. The
extension again follows the same strategy as outlined for the multi-party extension our
ECDSA-based PCI-Any-DC scheme. In particular, as in the case of our PCl-Any-DC
protocol, we directly replicate the input phase (and its associated pre-processing: Lines
1-6 of Algorithm 3) as well as the certificate validation phase (Lines 7-10 of Algorithm 3)
of our two-party PCI-Any-DC protocol in the n-party setting, with these phases executed
in parallel for each of the n participating parties.

Finally, we again exploit the fact it suffices to simply match each certifier public key
input by party P; with the corresponding certifier public keys across parties Ps, ..., P, to
design an n-party certifier matching phase with O (\inpl\ . ZiE[Q,n] linp, |) computational
and communication overhead. Concretely, in the certifier matching phase of the n-party
version of our PCI-All protocol, we run a two-nested set of loops — an outer loop for
party P, and (n — 1) inner loops for parties P, through P,. Each inner loop performs
essentially the same computation as in Lines 14-16 of Algorithm 2, except that we again
accumulate all of these computations into a global variable C' maintained across all of
these inner loops. Along the way, we similarly incur additional costs (such as hashing the
accumulation variables into field elements, sampling additional randomnesses for each
inner loop and running an n-party opening protocol for the final global variable), but
once again, assuming O(n) overheads for each such operation, the overall computational

and communication complexities scale as O (n linpy]+ D i) |inpi|). This is again

40

approximately O(n?) times more expensive than the two-party protocol for realistic
input sizes, and is expected to be significantly more efficient that a naive extension of
the two-party solution. We again leave it an as open question to investigate additional
optimizations (or alternative solutions) that could allow reducing the overheads even
further.

6 Evaluation

This section details our implementation of the EC building blocks, the ECDSA-based
PCI-Any-DC protocol, and the BLS-based PCI-All protocol. We independently bench-
mark the individual components of our protocols (including the protocols for EC opera-
tions) in a local server. We then evaluate the end-to-end performance of our PCI-Any-DC
and PCI-All protocols in a LAN, an intra-continental WAN and an inter-continental WAN
by spawning parties over three geographic regions across two continents.

6.1 Implementation Details

Our implementation builds on the MP-SPDZ [Kel20] framework to support the EC op-
erations, including pairing described in Section 3. To the best of our knowledge, this is
the first implementation of an MPC protocol that supports all the EC group operations
as basic gates. In particular, we implement all the functionalities described in F[Fp],
F[G], and F[Pair]. The closest prior work [DOK™'20] had implemented only two selected
operations — Qutput-G and Exp-G-P. Our implementation of ECDSA PCl-Any-DC vari-
ant uses the standard OpenSSL (3.0) [ope] library for EC operations. For the BLS
PCI-All variant, we use the RELIC toolkit [AGM™] to compute pairings and the EC
operations on the corresponding groups. Both variants protect against malicious ad-
versaries. As described earlier, our implementation builds on the SPDZ protocol with
MASCOT [KOS16] pre-processing. Analyzing the single-threaded CPU bottlenecks of
the protocols, we have incorporated multi-threading to parallelize parts that individual
parties locally execute without involving any communication (such as steps 9, 10, 14,
15, 22, & 23 in Algorithm 2, and 8, 10, & 16 in Algorithm 3). The source code of the
implementation is made available here — https://github.com/ghoshbishakh/pci.

6.2 Component-wise Performance Analysis

In this section we benchmark the individual operations of our proposed MPC framework
for elliptic curve pairings. The different types of operations involved in the protocols
can be categorized into (i) offline pre-processing, (ii) input sharing, (iii) local opera-
tions — performed by a party without any communication involved, e.g., Exp-G-P, (iv)
communication dependent operations — which require inter-party communication, e.g.,
Exp-G-S, (v) output — which includes MAC-check. We perform experiments to analyze
the performance of these different operations in terms of throughput (operations per
second) and the impact of network latency on them. We separately compare the perfor-
mance of local operations, followed by communication dependent operations including
pre-processing, input sharing and output.

41

https://github.com/ghoshbishakh/pci

Table 1: Throughput (operations per second) for Local EC Operations using RELIC
and OpenSSL

RELIC - Ed25519 OpenSSL - Secp256k1

Op-G
Exp-G-P

2,254,758
7,281

459,801
2,175

Table 2: Throughput (operations per second) for Local EC Operations on Pairing-

friendly Curves using RELIC

BLS12-381 BLS12-446 BN-254 BLS12-638
Op-G : Gy 1,079,688 834,877 687,906 435,223
Exp-G-P : G 523,529 404,051 296,905 217,412
Op-G : Gs 6,453 4,535 4,228 1,782
Exp-G-P : G, 3,684 2,683 1,990 1,019
Pair-G-P : G1, G» 960 689 508 307

Table 3: Throughput (operations per second) for Operations Requiring Communication

\ RTT 1ms \ RTT 100ms

Pre-processing 967 267
Input 261 245
Output 457 363

Single Multi Single Multi

Threaded Threaded | Threaded Threaded

Exp-G-S : Gi 547 1,280 473 1,121
Exp-G-S : G2 277 554 257 554
Exp-G-S : Gr 166 322 164 314
Pair-S: G1, G2 80 417 78 409

Platform Used. We used a workstation with dual Intel Xeon Gold 5118 2.30GHz
CPUs, with 24 cores, and having 128 GB RAM. The system runs Ubuntu 18.04 operating
system with Linux kernel version 4.15.

Local Operations. We start by benchmarking the local EC operations namely Op-
G (point addition) and Exp-G-P (scalar multiplication with a point) separately for
OpenSSL and RELIC. The throughput values (using a single thread) depicted in Ta-
ble 1 make it evident that the performance of RELIC with Ed25519 [BDL*12] curve
is significantly better than that of OpenSSL with Secp256kl [sec] curve. Neverthe-
less, we use OpenSSL for our ECDSA-based implementation of PCI-Any-DC since it
one of the most widely-used libraries implementing the ECDSA algorithm [DLK™ 14,
NKS*17]. Following this, we evaluate the performance of EC operations on pairing-
friendly curves with RELIC and carry out the experiments on four different curves,
namely BLS12-381 [BLS02, WB19, YKS19], BN-254 [BN05], BLS12-446 [dIPVA22], and
BLS12-638 [YKS19]. Table 2 summarizes the throughput for Op-G, Exp-G-P, and Pair-
G-P for the above four curves. We observe that Op-G and Exp-G-P operations on Go
are much slower compared to that on Gy, with Pair-G-P being the slowest operation by
far. Among the curves benchmarked, BLS12-381 performs the best, and therefore we
select this for the end-to-end experiments in Section 6.3.

42

1000 | ™ BLS-PCI-ANY-DC 4000 S BLS-PCI-ANY-DC

100 2z
BRRR °
10 =
J m

1 1
10 20 50 100 200 500 1000 10 20 50 100 200 500 1000 10 20 50 100 200 5001000
Size of each input set Size of each input set Size of each input set

5000 mwm ECDSA-PCI-ANY-DC 8000 pwm ECDSA-PCI-ANY-DC B 16000 | mwm ECDSA-PCI-ANY-DC —I

1000

time (s)
time (s)
time (s)

(a) (b) (c)

Figure 8: (a), (b) and (c) depict latency (in logarithmic scale) of ECDSA PCl-Any-DC
vs BLS PCI-Any-DC in LAN, WAN and ICWAN setups respectively with commodity
hardware.

Operations Requiring Communication. Moving to the more interesting bench-
marks of the operations involving inter-party communication, namely Pre-processing,
Input, Output, and EC operations Exp-G-S and Pair-S, we use two different setups —
(a) a LAN setup with RTT between two parties being about 1ms, and (b) an emulated
WAN setup with RTT of 100ms. In order to vary the link latency, we use the tc tool [tc]
to manipulate the loopback interface. Table 3 shows the throughput observed in the
single threaded and multi-threaded implementation for Exp-G-S and Pair-S. We observe
that Pre-processing slows down significantly with increasing latency, so is Output but
to a lesser extent. The throughput values of Exp-G-S and Pair-S operations slightly
drop with increasing latency but, even with a high RTT of 100ms, multithreading sig-
nificantly increases the throughput, indicating that CPU is a major bottleneck for these
operations. This validates the expectation since Exp-G-S and Pair-S are performed in
batches and involve only one round of communication in which a batch of tuples are par-
tially opened (see Sections 3.2 and 3.3), thereby limiting the impact of network latency.
However, if the batches are split (when a single batch becomes too large to handle),
the impact of the communication latency will increase. Note that we perform this in a
setup where bandwidth is sufficient enough to not be a bottleneck, and therefore, does
not impact the benchmarks.

6.3 End-to-End Performance Analysis

In order to get real world performance metrics, we evaluate our implementations by
placing the parties in the (a) same region — LAN, (b) different regions in the same
continent — Continental WAN (WAN), and (c) different continents — Inter-continental
WAN (ICWAN).

Platform Used. To gauge the practical performance of PCl on consumer hardware,
we carried out the experiments on AWS EC2 c61.xlarge virtual machine instances with
only 4 vCPUs and 8 GB RAM. The instances were running the Ubuntu 22.04 operating
system and were connected with a network having up to 12.5 Gbps bandwidth [aws].
For the ICWAN setup, we use instances located in Asia (ap-south-1) and North America
(us-east-1), with an RTT latency of about 186ms. For WAN, we use two instances in
the USA, one in east coast (us-east-1), and another in the west coast (us-west-1) with
an RTT latency of about 62ms. For the LAN setup, we spawned the two parties in two

43

7000
100.0; mmm ECDSA-PCI-ANY-DC i EmE ECDSA-PCI-ANY-DC

@ BLS-PCI-ANY-DC - Nu BLS-PCI-ANY-DC

1000
10.0

Iy
o

=
o

Communication (GB)
e
"

Max Memory (MB)
"
1
o

1
10 20 50 100 200 5001000 10 20 50 100 200 500 1000
Size of each input set Size of each input set
(a) (b) (c)

Figure 9: (a) and (b) represent total communication and maximum memory used respec-
tively (in logarithmic scale). (c) presents the latency with different output intersection
sizes.

separate VMs in the same data center (ap-south-1). We also performed experiments on
more powerful hardware (48 vCPUs, 96 GB RAM), the results of which are reported in
Section 6.4.

Overall Latency of PCI-Any-DC. We evaluate the end-to-end ECDSA and BLS-
based PCI-Any-DC protocols, with each party’s input set sizes varying from 10 to 1000.
Here, the BLS PCI-Any-DC refers to the BLS PCI-All (Algorithm 3) with the parties
using a single claim and its corresponding signature instead of the aggregated claim
and signature. Figures Figure8a, Figure8b, and FigureS8c show the mean and standard
deviations of the latency in LAN, WAN, and ICWAN setups, respectively, taken over
multiple runs. The y-axis shows the time taken in seconds in a logarithmic scale. For
the input sets of size 10 from each party, the mean time taken is about 0.69 seconds,
8.8 seconds, and 26.4 seconds for the ECDSA PCI-Any-DC protocol in LAN, WAN,
and ICWAN, respectively. In such a setting, the BLS PCI-Any-DC protocol takes 0.62
seconds, 5.9 seconds, and 16.6 seconds respectively. This is better than the ECDSA
variant, albeit by a small margin because the ECDSA protocol requires additional Exp-
G-S operations in the signature validation steps (lines 11 and 16 of Algorithm 2), which
is not required in the BLS variant. Exp-G-S operation requires communication and
hence is significantly expensive as analyzed in detail in Section 6.2. For 1000 inputs,
both ECDSA and BLS PCI-Any-DC takes less than 84 minutes, 149 minutes, and 316
minutes in LAN, WAN, and ICWAN, respectively. Notably, in practice, the size of the
centralized trusted set of all CAs on the web is around 200 [fir]; therefore, we expect the
plausible set of certifiers for a party to be less than 200. Here the number of certifiers do
not imply the global set of all possible certifiers, instead it is the number of certifiers that
have issued certificates for a given claim to a user. For 200 inputs, both ECDSA and
BLS PCI-Any-DC takes less than 3.5 minutes, 7 minutes, and 15 minutes in LAN, WAN]
and ICWAN, respectively. This is improved further by using more powerful hardware,
which we report in Section 6.4.

Communication and Memory Overhead of PCIl-Any-DC. We observe that the
volume of data communication across parties is deterministic and is defined by the size
of their input sets as expected. Hence, there are no variations across the different runs
and across LAN, WAN, and ICWAN. We report the communication bandwidth required
for different input sizes in Figure9a. With input size of 10 from each party, the total
volume of data communicated is 22 MB for ECDSA and 25 MB with BLS PCI-Any-DC.

44

e ECDSA-PCI-ALL 400{ @8 ECDSA-PCI-ALL 8001 pg ECDSA-PCI-ALL
150, ™™ BLS-PCI-ALL Ao BLS-PCI-ALL »® BLS-PCI-ALL

E I : 300 E 600 -
o 100 B 2 200
£ 7 7 £
o
1 10 20 50 100 1 10 20 50 100 1 10 20 50 100
Number of claims Number of claims Number of claims
(a) (b) (c)
o ~500
£ 3000/ ™™ ECDSA-PCI-ALL j) @8 ECDSA-PCI-ALL
p N BLS-PCI-ALL I £ 4001 e BLS-PCI-ALL
2 B 2 BE BE B B E
E 2000 g 300 I I I -
S i B8 i
1000 .
E % 100
S o Z 9
1 10 20 50 100 1 10 20 50 100
Number of claims Number of claims

(d) (e)

Figure 10: (a), (b) and (c) depict latency of ECDSA PCI-All vs BLS PCI-All with 100
certifiers and 1 to 100 claims as input from each party in (a) LAN (b) Continental
WAN (c) Inter-continental WAN setups respectively. (d) and (e) presents the total data
communicated and maximum memory consumption of PCI-All respectively.

With input sizes of 1000, the total communication goes up to 152.8 GB and 153.4 GB for
ECDSA and BLS PCI-Any-DC, respectively. Unlike data communication overhead where
ECDSA and BLS variants are close, the memory consumption of BLS is consistently
higher as depicted in Figure9b. For 1000 inputs, ECDSA PCI-Any-DC requires around
3.4 GB memory (maximum usage during the runtime), whereas the BLS variant uses
around 6.8 GB.

Latency of PCIl-Any-DC with Varying Output Size. We evaluate the impact of
varying overlap in the input certifier sets of the parties implying varying size of output
intersection set. Figure9c represents the end-to-end latency of both ECDSA and BLS
PCI-Any-DC while keeping the number of input from each party constant at 100, and
varying the output size from 1 to 100. We observe that compared to the output size 1,
the end-to-end latency for 100 outputs is higher by a very small margin on an average
in all the settings, namely, LAN, WAN, and ICWAN. This is because of the differences
in the number of outputs from the protocol that has to be opened (line 26 of Algorithm.
2, and line 20 of Algorithm. 3). We note, however, that no additional information is
leaked outside what is permitted by the definition of PCI-Any-DC (Section 2) from the
difference in the latency, since the intersection set is already known to the parties one
step prior to this opening phase (line 25 of Algorithm. 2, and line 18 of Algorithm. 3).

Comparing Latency of BLS PCI-All and ECDSA PCI-All. In order to evaluate
the gains of using BLS signature aggregation for PCI-All over the ECDSA implementa-
tion, we use a (somewhat artificial) construction of ECDSA-based PCI-All which iterates
through all the claims to validate the certificates on them (see Section 4). We evaluate

45

6000

12550
W ECDSA-PCI-ANY-DC Y
= BLS-PC-ANY-DC [N .

4000

1000 1000

100 100

time (s)
time (s)
time (s)

10 10

1 1
10 20 50 100 200 500 1000 10 20 50 100 200 500 1000 10 20 50 100 200 5001000
Size of each input set Size of each input set Size of each input set
(a) (b) (c)

Figure 11: (a), (b) and (c) depict latency in logarithmic scale of ECDSA PCI-Any-DC vs
BLS PCl-Any-DC in (a) LAN, (b) WAN and (c) Inter-continental WAN setups respec-
tively using powerful hardware.

BN Preprocessing HE Local Ops. I Preprocessing HE Local Ops.
 Input Open and m Input Open and

mmm Comm. ops. MAC check B Comm. ops. MAC check

LAN - — | LAN - — |

C WAN e C WAN e

IC WAN 11 IC WAN e o e e

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Share of time Share of time

(a) (b)

Figure 12: (a) and (b) Represents latency of different phases of the ECDSA PCI-Any-DC
and BLS PCI-Any-DC respectively with 100 inputs from each party.

the end-to-end latency by keeping the input set size of each party constant at 100, and
increasing the number of claims from 1 to 100. The results in FigurelOa, FigurelOb,
and FigurelOc depict the mean and the standard deviation of the overall latency in
LAN, WAN and ICWAN setups, respectively, taken over multiple runs. While the BLS
PCI-All consistently takes about 50 seconds, 115 seconds and 250 seconds for any num-
ber of claims (from 1 to 100) in LAN, WAN, and ICWAN setups, respectively, the time
taken by ECDSA PCI-All gradually increases with the increase in the number of claims.
ECDSA PCI-All takes on an average 188 seconds, 380 seconds, and 748 seconds for 100
claims in LAN, WAN and ICWAN, respectively. This clearly highlights the gains of
using BLS construction of PCI-All.

Communication and Memory Overhead of PCI-All. The volume of data commu-
nicated between the two parties for the above scenario is depicted in Figurel0d. With
increasing number of claims, the communication overhead increases for ECDSA PCI-All,
whereas it stays constant for BLS PCI-All which is the expected outcome. For 100
claims, the volume of data communicated by ECDSA PCI-All is 3333 MB, and by BLS
PCI-All it is 1658 MB. Memory consumption of ECDSA PCI-All also increases with the
increasing number of claims as represented by FigurelOe. For 100 certifiers, with 100
claims for each party, the memory usage by ECDSA PCI-All is about 268 MB, and the
same by the BLS variant is 345 MB. Overall, the memory consumption overhead of the
BLS implementation is more than the ECDSA implementation for up to a reasonable
number of claims such as 100.

46

6.4 End-to-End Performance Analysis on Powerful Hardware

In this section we present the end-to-end performance of PCI-Any-DC on devices with
high compute and memory resources in LAN, WAN and ICWAN settings. The results of
the same experiments but using less powerful devices that are representative of consumer
hardware are presented in Section 6.3.

Platform Used. The experiments are carried out on AWS EC2 c6i.12xlarge virtual
machine (VM) instances with 48 vCPUs and 96 GB RAM, running an Ubuntu 22.04
operating system. The instances are connected with a network having up to 18.75 Gbps
bandwidth [aws]. For the ICWAN setup, we use instances located in Asia (ap-south-1)
and North America (us-east-1), with an RTT latency of about 184ms. For WAN, we use
two instances in the USA, one in east coast (us-east-1), and another in the west coast
(us-west-1) with an RTT latency of about 68ms. For the LAN setup, we spawned the
two parties in two separate VMs in the same data center (ap-south-1).

Overall Latency of PCl-Any-DC. We evaluate the end-to-end latency of ECDSA
PCI-Any-DC and BLS PCI-Any-DC protocols, with each party’s input set sizes varying
from 10 to 1000. Here BLS PCI-Any-DC refers to the BLS PCI-All protocol (Algorithm
3), but with the parties giving a single claim and certificate as input instead of the
aggregated claims and certificates. The mean (and standard deviation) of the latency
in LAN, WAN, ICWAN setups are presented in Figurella, Figurellb, and Figurellc
respectively. The y-axis shows the time taken in seconds in logarithmic scale. In the
LAN setting with 1000 inputs from each party, both ECDSA and BLS PCI-Any-DC take
about 24 minutes, which is ~ 71% less than when using less powerful hardware having 4
vCPUs and 8GB memory (see Section 6.3). However, when the network latency increases
in the ICWAN setting, the advantage of more CPU and memory resources reduces. For
1000 inputs from each party, ECDSA PCI-Any-DC takes around 211 minutes and BLS
PCI-Any-DC takes 209 minutes. This is ~ 33% less than when using less powerful
hardware where both ECDSA and BLS variant take less than 316 minutes. While
the better hardware configuration improves the overall latency of both ECDSA and
BLS based PCI-Any-DC, the volume of data communicated between the parties and the
memory consumption stays unchanged from what we observed for less power hardware
in Figure9a and Figure9b of Section 6.3.

Phase-wise Latency Analysis. Next we analyze the latency of different phases of
the protocols. Figurel2a and 12b represent the shares of time taken by different phases,
namely pre-processing, input sharing, communication dependent operations, local op-
erations and output (with MAC check) for PCI-Any-DC and PCI-All respectively, with
100 inputs from each party. We observe that pre-processing, output and input shar-
ing phases have the greatest impact with increases in latency from LAN to ICWAN.
The Exp-G-S, and Pair-S operations (denoted as Comm. ops. in the figure) on the
other hand are relatively stable with varying latency, but still take the largest share of
the entire runtime for our input sizes. Local operations are the cheapest as expected,
and their impact on the end-to-end latency drops to insignificant percentage shares as
latency increases.

47

7 Conclusion and Future Directions

Enabling parties to establish trust by inferring their common certification authorities
without revealing their other respective certifiers will emerge as a key privacy goal in any
architecture built on decentralized identities and verifiable claims, including Web 3.0. In
this paper, we introduced Private Certifier Intersection (PCl) — a cryptographic primitive
that allows mutually distrusting parties to establish a trust basis for cross-validation of
claims if they have one or more trust authorities (certifiers) in common. We formalized
the security guarantees of PCl and proposed two provably secure and practically efficient
PCI protocols supporting validation of digital signature-based certificates: a PCl-Any-DC
protocol for ECDSA-based certificates and a PCI-All protocol for BLS-based certificates.
Along the way we have introduced a novel framework for efficient secret-sharing-based
MPC over elliptic curve pairings. We have implemented and benchmarked our PCI
solutions to showcase their practical efficiency.

Our work gives rise to many interesting open questions. We leave it open to study
PCl in the setting where claims are private, as well as to define and realize variants of
PCl that outputs a priority list of certifiers. Designing PCl protocols supporting other
signature schemes, including quantum-safe schemes, is another challenging direction of
research.Our MPC framework over EC pairings can plausibly be leveraged for building
MPC-based PCI supporting other EC-based signature schemes. While our PCl con-
structions based on ECDSA and BLS cannot be be immediately/trivially extended to
other signature schemes, we expect that carefully designed and specifically optimized PCI
constructions supporting other EC-based signature schemes can plausibly be realized by
using our proposed MPC framework over EC pairings as a building block.

Acknowledgements

We thank the anonymous reviewers of NDSS 2023 for their helpful comments and sug-
gestions.

References

[ABGT19] Ermyas Abebe, Dushyant Behl, Chander Govindarajan, Yining Hu, Dile-
ban Karunamoorthy, Petr Novotny, Vinayaka Pandit, Venkatraman Ra-
makrishna, and Christian Vecchiola. Enabling enterprise blockchain in-
teroperability with trusted data transfer (industry track). In Proceedings
of the 20th International Middleware Conference Industrial Track, pages
29-35, 2019.

[ACCT] Abdelrahaman Aly, K Cong, D Cozzo, M Keller, E Orsini, D Rotaru,
O Scherer, P Scholl, N Smart, T Tanguy, et al. Scale-mamba. https:
//github.com/KULeuven-COSIC/SCALE-MAMBA. (Last accessed: May 13,
2022).

[AGMT] D. F. Aranha, C. P. L. Gouvéa, T. Markmann, R. S. Wahby, and K. Liao.
RELIC is an Efficient LIbrary for Cryptography. https://github.com/
relic-toolkit/relic.

48

https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic

[AKBO7]

[ANS99]

[aws]

[BDL*12]

[BDN18]

[BDS*03]

[BEK*21]

[BFGP22]

[BGLS03]

[BGW+20]

[BLSO1]

[BLS02]

[BNOS]

[CCL15]

Giuseppe Ateniese, Jonathan Kirsch, and Marina Blanton. Secret hand-
shakes with dynamic and fuzzy matching. In NDSS, volume 7, pages 43-54,
2007.

X9 ANSI. 62: public key cryptography for the financial services industry:
the elliptic curve digital signature algorithm (ecdsa). Am. Nat’l Standards
Inst, 1999.

Amazon ec2 c¢6i instances. (Last accessed: August 23, 2022).

Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Journal of cryptographic engi-
neering, 2(2):77-89, 2012.

Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures
for smaller blockchains. In International Conference on the Theory and Ap-
plication of Cryptology and Information Security, pages 435-464. Springer,
2018.

Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana Smetters, Jessica
Staddon, and Hao-Chi Wong. Secret handshakes from pairing-based key
agreements. In 2003 Symposium on Security and Privacy, 2003., pages
180-196. IEEE, 2003.

Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai
Samelin. Issuer-hiding attribute-based credentials. In International Con-
ference on Cryptology and Network Security, pages 158-178. Springer, 2021.

Daniel Bosk, Davide Frey, Mathieu Gestin, and Guillaume Piolle. Hidden
issuer anonymous credential. Proceedings on Privacy Enhancing Technolo-
gies, 4:571-607, 2022.

Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In International
conference on the theory and applications of cryptographic techniques, pages
416-432. Springer, 2003.

Dan Boneh, Sergey Gorbunov, Riad S. Wahby, Hoeteck Wee, and Zhen-
fei Zhang. BLS Signatures. Internet-Draft draft-irtf-cfrg-bls-signature-04,
Internet Engineering Task Force, September 2020. Work in Progress.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. In International conference on the theory and application of
cryptology and information security, pages 514-532. Springer, 2001.

Paulo SLM Barreto, Ben Lynn, and Michael Scott. Constructing elliptic
curves with prescribed embedding degrees. In International conference on
security in communication networks, pages 257-267. Springer, 2002.

Paulo SLM Barreto and Michael Naehrig. Pairing-friendly elliptic curves of
prime order. In International workshop on selected areas in cryptography,
pages 319-331. Springer, 2005.

Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of univer-
sally composable security for standard multiparty computation. In Annual
Cryptology Conference, pages 3—22. Springer, 2015.

49

[CDE*18]

[CFK*02]

[CLR17]

[CM20]

[CT10]

[CZ09]

[did20]
[DKL*+13]

[DLK*14]

[dIPVA22]

[DOK+20]

[DPSZ12]

[DSMRY09)]

fir]

Ronald Cramer, Ivan Damgard, Daniel Escudero, Peter Scholl, and Chaop-
ing Xing. Spd Zgyx: efficient mpc mod 2 for dishonest majority. In Annual
International Cryptology Conference, pages 769-798. Springer, 2018.

Karl Czajkowski, Ian Foster, Carl Kesselman, Volker Sander, and Steven
Tuecke. Snap: A protocol for negotiating service level agreements and
coordinating resource management in distributed systems. In Workshop on
Job Scheduling Strategies for Parallel Processing, pages 153—183. Springer,
2002.

Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from
homomorphic encryption. In ACM CCS, pages 1243-1255, 2017.

Melissa Chase and Peihan Miao. Private set intersection in the internet set-
ting from lightweight oblivious PRF. In Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO 2020.
Springer, 2020.

Emiliano De Cristofaro and Gene Tsudik. Practical private set intersec-
tion protocols with linear complexity. In Financial Cryptography and Data
Security, 14th International Conference, FC 2010. Springer, 2010.

Jan Camenisch and Gregory M Zaverucha. Private intersection of certified
sets. In International Conference on Financial Cryptography and Data
Security, pages 108-127. Springer, 2009.

Did specification registries, 2020. (Last accessed: May 13, 2022).

Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P Smart. Practical covertly secure mpc for dishonest
majority—or: breaking the spdz limits. In Furopean Symposium on Re-
search in Computer Security, pages 1-18. Springer, 2013.

Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beek-
man, Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael
Bailey, et al. The matter of heartbleed. In Proceedings of the 2014 confer-
ence on internet measurement conference, pages 475-488, 2014.

Antonio de la Piedra, Marloes Venema, and Greg Alpar. ABE Squared:
Accurately benchmarking efficiency of attribute-based encryption. Cryp-
tology ePrint Archive, 2022.

Anders Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and Haya
Shulman. Securing dnssec keys via threshold ecdsa from generic mpc. In
European Symposium on Research in Computer Security, pages 654-673.
Springer, 2020.

Ivan Damgard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Annual
Cryptology Conference, pages 643—662. Springer, 2012.

Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Effi-
cient robust private set intersection. In International Conference on Applied
Cryptography and Network Security, pages 125-142. Springer, 2009.

Ca certificates in firefox. (Last accessed: August 23, 2022).

50

[FNPO4]

[GRR*16]

[GVR122]

[HEK12]

[HW12]

[ind]

[IMVO01]

[Kel20]

[KOS16]

[KPR18]

[KS05]

[Lyn]

[MBG*06]

[NKS+17]

[ope]
[PSSZ15]

Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In International conference on the theory
and applications of cryptographic techniques, pages 1-19. Springer, 2004.

Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and
Nigel P. Smart. Mpc-friendly symmetric key primitives. In ACM CCS
2016, pages 430-443. ACM, 2016.

Bishakh Chandra Ghosh, Dhinakaran Vinayagamurthy, Venkatraman Ra-
makrishna, Krishnasuri Narayanam, and Sandip Chakraborty. Privacy-
preserving negotiation of common trust anchors across blockchain networks
(short paper). In 2022 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), 2022.

Yan Huang, David Evans, and Jonathan Katz. Private set intersection:
Are garbled circuits better than custom protocols? In NDSS, 2012.

Paul E. Hoffman and Wouter Wijngaards. Elliptic Curve Digital Signature
Algorithm (DSA) for DNSSEC. RFC 6605, April 2012.

Hyperledger indy. (Last accessed: May 13, 2022).

Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve
digital signature algorithm (ecdsa). International journal of information
security, 1(1):36-63, 2001.

Marcel Keller. MP-SPDZ: A versatile framework for multi-party computa-
tion. In ACM CCS, 2020.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: faster mali-
cious arithmetic secure computation with oblivious transfer. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 830-842, 2016.

Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: making
spdz great again. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 158-189. Springer, 2018.

Lea Kissner and Dawn Song. Privacy-preserving set operations. In Annual
International Cryptology Conference, pages 241-257. Springer, 2005.

Ben Lynn. Pbc library-pairing-based cryptography. hittp://crypto. stanford.
edu/pbc/.

Bodo Moeller, Nelson Bolyard, Vipul Gupta, Simon Blake-Wilson, and
Chris Hawk. Elliptic Curve Cryptography (ECC) Cipher Suites for Trans-
port Layer Security (TLS). RFC 4492, May 2006.

Matus Nemec, Dusan Klinec, Petr Svenda, Peter Sekan, and Vashek
Matyas. Measuring popularity of cryptographic libraries in internet-wide
scans. In Proceedings of the 33rd Annual Computer Security Applications
Conference, pages 162-175, 2017.

Openssl. (Last accessed: May 13, 2022).

Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing:
Private set intersection using permutation-based hashing. In { USENIX}
Security, pages 515-530, 2015.

51

[PSZ14]

[RR17]

[RSL*20]

[sec]

[SLC21]

[STA19)]

[TR16]

[tra]

[WB19]

[WYS*02]

[Ya082]

[YKS19]

Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private
set intersection based on {OT} extension. In 23rd {USENIX} Security
Symposium ({USENIX} Security 14), pages 797-812, 2014.

Peter Rindal and Mike Rosulek. Malicious-secure private set intersection
via dual execution. In ACM CCS, pages 1229-1242, 2017.

Drummond Reed, Manu Sporny, Dave Longley, Christopher Allen, Ryan
Grant, Markus Sabadello, and Jonathan Holt. Decentralized identifiers
(dids) v1.0, 2020. (Last accessed: May 13, 2022).

Sec 2: Recommended elliptic curve domain parameters. (Last accessed:
May 13, 2022).

Manu Sporny, Dave Longley, and David Chadwick. Verifiable credentials
data model v1.1, 2021. (Last accessed: May 13, 2022).

Nigel P Smart and Younes Talibi Alaoui. Distributing any elliptic curve
based protocol. In IMA International Conference on Cryptography and
Coding, pages 342-366. Springer, 2019.

tc - show / manipulate traffic control settings. (Last accessed: May 13,
2022).

Andrew Tobin and Drummond Reed. The inevitable rise of self-sovereign
identity. The Sovrin Foundation, 29(2016), 2016.

Tradelens. (Last accessed: August 29, 2022).

Riad S Wahby and Dan Boneh. Fast and simple constant-time hashing to
the BLS12-381 elliptic curve. Cryptology ePrint Archive, 2019.

Marianne Winslett, Ting Yu, Kent E Seamons, Adam Hess, Jared Jacob-
son, Ryan Jarvis, Bryan Smith, and Lina Yu. Negotiating trust in the web.
IEEF Internet Computing, 6(6):30-37, 2002.

Andrew C Yao. Protocols for secure computations. In 23rd annual sympo-
sium on foundations of computer science (sfcs 1982), pages 160-164. IEEE,
1982.

Shoko Yonezawa, Tetsutaro Kobayashi, and Tsunekazu Saito. Pairing-
friendly curves. Network Working Group. Internet-Draft. January, 2019.

52

	Introduction
	Our Contributions
	Overview of Contributions
	Related Work

	Private Certifier Intersection (PCI)
	Defining a Two-Party PCI Protocol
	Security of Two-Party PCI
	Multi-Party PCI
	Generic Construction of Multi-Party PCI

	MPC for Elliptic Curve Pairings
	Tier-1: MPC for Basic Fp Operations
	Tier-2: MPC over any Generic Group
	Tier-3: MPC over EC Pairings

	PCI-Any-DC using ECDSA signature scheme
	Correctness and Security
	Extensions of ECDSA-based PCI-Any-DC

	PCI-All using BLS signature
	Correctness and Security
	Extension to the Multi-Party Setting

	Evaluation
	Implementation Details
	Component-wise Performance Analysis
	End-to-End Performance Analysis
	End-to-End Performance Analysis on Powerful Hardware

	Conclusion and Future Directions

