
cuZK: Accelerating Zero-Knowledge Proof with
A Faster Parallel Multi-Scalar Multiplication

Algorithm on GPUs
Tao Lu1, Chengkun Wei1, Ruijing Yu1, Chaochao Chen1, Wenjing Fang2,

Lei Wang2, Zeke Wang1 and Wenzhi Chen1

1 Zhejiang University, Hangzhou, China,
{lutao2020,weichengkun,rjyu,zjuccc,wangzeke,chenwz}@zju.edu.cn

2 Ant Group, Hangzhou, China, {bean.fwj,shensi.wl}@antgroup.com

Abstract. Zero-knowledge proof is a critical cryptographic primitive. Its most practi-
cal type, called zero-knowledge Succinct Non-interactive ARgument of Knowledge
(zkSNARK), has been deployed in various privacy-preserving applications such as
cryptocurrencies and verifiable machine learning. Unfortunately, zkSNARK like
Groth16 has a high overhead on its proof generation step, which consists of sev-
eral time-consuming operations, including large-scale matrix-vector multiplication
(MUL), number-theoretic transform (NTT), and multi-scalar multiplication (MSM).
Therefore, this paper presents cuZK, an efficient GPU implementation of zkSNARK
with the following three techniques to achieve high performance. First, we propose
a new parallel MSM algorithm. This MSM algorithm achieves nearly perfect linear
speedup over the Pippenger algorithm, a well-known serial MSM algorithm. Second,
we parallelize the MUL operation. Along with our self-designed MSM scheme and
well-studied NTT scheme, cuZK achieves the parallelization of all operations in the
proof generation step. Third, cuZK reduces the latency overhead caused by CPU-GPU
data transfer by 1) reducing redundant data transfer and 2) overlapping data transfer
and device computation. The evaluation results show that our MSM module provides
over 2.08× (up to 2.94×) speedup versus the state-of-the-art GPU implementation.
cuZK achieves over 2.65× (up to 4.86×) speedup on standard benchmarks and 2.18×
speedup on a GPU-accelerated cryptocurrency application, Filecoin.
Keywords: Zero-knowledge Proof · Multi-scalar Multiplication · Parallel Algorithm
· Graphics Processing Unit

1 Introduction
Zero-knowledge proof (ZKP) [GMR89] is a cryptographic primitive that allows a prover
to generate a proof π to convince verifiers that a computation y = f(x, w) is correctly
calculated with a public input x and a prover’s secret input w. Additionally, the proof
π leaks no information about the secret input w. In recent years, ZKP has drawn much
attention from academia and industry due to the advent of an advanced ZKP type
called zkSNARK, which stands for zero-knowledge Succinct Non-interactive ARgument
of Knowledge. Compared with other traditional ZKPs [Kil92, Mic00, Gro10], zkSNARK
has much more succinct proof π. For example, the proof generated in the zkSNARK
protocol proposed by Groth [Gro16] has only hundreds of bytes and is very fast to be
verified within several milliseconds. Therefore, zkSNARK is widely considered to be the
most practical ZKP, and it has been applied to many private-preserving applications such

mailto:{lutao2020, weichengkun, rjyu, zjuccc, wangzeke, chenwz}@zju.edu.cn
mailto:{bean.fwj, shensi.wl}@antgroup.com

2 cuZK

as electronic voting [ZC15], verifiable database outsourcing [ZGK+17], cryptocurrencies
[SCG+14, BG17, BMRS20], and verifiable machine learning [ZFZS20].

However, there is still a bottleneck that limits further deployments of zkSNARK.
Currently, state-of-the-art zkSNARKs have a high overhead on their proof generation step.
The prover in [Gro16] needs to perform various time-consuming operations to generate a
proof π. These time-consuming operations include large-scaled matrix-vector multiplication
(MUL), number-theoretic transform (NTT), and multi-scalar multiplication (MSM) on
elliptic curves, leading to the overall proof generation time for a function f being much
longer than the time to evaluate this function, sometimes up to thousands of times longer.

One of solutions to reduce the proof generation time is to parallelize this task on
certain hardware. GPUs are many-core computing platforms that support the concurrent
execution of thousands of threads. They have been used to accelerate a wide variety
of computational modules in many fields, such as deep learning [LZW21], cryptography
[GXW21, ABVL+20], and graphics [WQS+20]. There are also several existing GPU designs
of zkSNARK. For example, Mina announced a challenge for speeding up [Gro16] using
GPUs with a high reward ($ 100k). The final acceleration result of this challenge has been
open-sourced in [Min19]. Another GPU implementation Bellperson [Bel19] is improved
from a CPU-based version Bellman [Bel15]. Bellperson has been deployed in a well-known
decentralized cryptocurrency network Filecoin [BG17]. Figure 1 shows their execution time
breakdown on zkSNARK operations, including MUL, NTT, MSM, and the GPU-CPU
data transfer. Obviously, the overall performance of these GPU implementations largely
depends on the efficiency of the above four operations. Especially, MSM is the most
time-consuming operation, taking more than 70 percent of the total runtime.

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Mina

Bellperson

MSM
NTT

MSM/NTT
MUL

Data Transfer
Other

Figure 1: The execution time breakdown of the existing GPU implementations on zkSNARK
operations, including MUL, NTT, MSM, and the GPU-CPU data transfer. The label
MSM/NTT means that MSM and NTT are executed simultaneously.

Nevertheless, these operations performed in existing GPU implementations have the fol-
lowing weaknesses. 1) MSM: The parallel algorithms used in these GPU implementations
for the MSM computation are simply modified from the ones used in the low-parallelism
setting. However, these parallel algorithms are hardly suitable for the case when there are
thousands of threads running simultaneously, which manifests an unsatisfiable increase
in speedup with the increasing parallelism; 2) MUL: We notice existing GPU designs
underestimate computational costs of the MUL operation. They choose to perform the
MUL operation serially on a CPU rather than parallelly on GPUs. Actually, the slow way
of running MUL serially can significantly hinder the overall performance; 3) Data Trans-
fer: These GPU implementations also waste too much time on CPU-GPU data transfer,
which can actually be mitigated by reducing redundant data transfer and overlapping
data transfer with device computation. Note that Mina [Min19] consumes much time in
performing NTT serially, but there is no need to consider NTT to be a weakness. Many
efficient parallel NTT schemes already have been well-studied [GJCC20, KJPA20, GXW21].
Therefore, we can easily replace the serial NTT scheme used in [Min19] with a parallel
one. For example, the parallel NTT scheme used in [Bel19] is from [Bai10].

T. Lu et al. 3

1.1 Our Contributions
In this paper, we provide an efficient GPU implementation of zkSNARK by addressing the
above weaknesses of other state-of-the-art works. Proposed techniques can achieve high
performance on modern GPU architectures. Contributions of this paper are summarized
below:

• We propose a new parallel MSM algorithm. This MSM algorithm is unlike other
ordinary parallel methods that simply decompose the large MSM computation into
multiple smaller ones. We treat all computational units of MSM as a whole and
store all elements of MSM in a sparse matrix. This enables us to convert the
major operations used in the Pippenger algorithm [Pip76], a well-known serial MSM
algorithm, to a series of basic sparse matrix operations, including sparse matrix
transpose and sparse matrix-vector multiplication. Next, we utilize the technologies
used in well-studied parallel sparse matrix algorithms [BG09, GD14, TDM+14] to
accelerate the MSM computation. As a result, our parallel MSM algorithm is not
only well adapted to the high parallelism provided by GPUs, but also achieves nearly
perfect linear speedup over the Pippenger algorithm, where perfect linear speedup
means the parallel speedup ratio is equal to the number of execution threads. We
are the first to show that the MSM computation can be parallelized with the help of
sparse matrix operations, and we believe that this idea of using sparse matrices will
motivate many other parallelization methods due to its excellent performance.

• We present cuZK, an efficient GPU implementation of zkSNARK. We make three
optimizations to help cuZK achieve high performance. First, we implement our new
parallel MSM algorithm and deploy it in cuZK’s MSM module. This part dominates
the total costs of zkSNARK and thus dramatically impacts the overall performance
improvement. Second, we notice the matrix that MUL operates on is very large
but sparse. Therefore, we represent it in the sparse matrix format, which allows us
to store the whole matrix on GPUs and perform MUL computation with parallel
schemes on sparse matrices. Furthermore, along with our self-designed MSM parallel
scheme and well-studied NTT parallel scheme [GJCC20, KJPA20, GXW21], cuZK
indeed achieves the parallelization of all time-consuming operations in zkSNARK.
Third, cuZK reduces the latency overhead caused by CPU-GPU data transfer by
overlapping data transfer and device computation using the multi-streaming technique.
In addition, there is no need for redundant data transfer as it is automatically
eliminated when we perform all zkSNARK operations on GPUs.

• We design a series of evaluation schemes for cuZK. The evaluation results show
that our MSM module provides over 2.08× (up to 2.94×) speedup versus the state-
of-the-art GPU implementation. The overall performance of cuZK achieves over
2.65× (up to 4.86×) speedup on standard benchmarks and 2.18× speedup on a
GPU-accelerated cryptocurrency application, Filecoin.

Implementation codes discussed in this paper are available in https://github.com/
speakspeak/cuZK.

1.2 Related Work
Recently, a great number of prior works have implemented high-performance zkSNARK
on certain hardware, including GPUs, ASICs, and CPU clusters. PipeZK [ZWZ+21]
is a work that provides pipelined ASIC design for zkSNARK. Although this work has
excellent efficiency on zkSNARK for small-scale applications like anonymous payment,
its performance decreases significantly for large-scale applications due to the on-chip

https://github.com/speakspeak/cuZK
https://github.com/speakspeak/cuZK

4 cuZK

r1cs

Generate Key

number

Compile

ProveVerify

Accept / Reject

r1cs

Preprocess

+

10
0
0
1
0
0

10
0
3
0
2
0

11
0
0
0
0
0

=

INTT

INTT

INTT

NTT

NTT

NTT

INTT

MSM
···

···， ，

Proof
MUL

010000

100000
100000

MSMMUL

MUL MSM
···

=

r1cs

constraints = 3the number of

secret random

Proof

010000

500100
003020

001000

000001
000100

Figure 2: The workflow of Groth’s protocol, where INTT is the inverse transformation of
NTT. Its operation is similar to NTT.

storage limitation of ASIC. DIZK [WZC+18] leverages Apache Spark to distribute the
proof generation step to CPU clusters. Nevertheless, the costs of deploying CPU clusters
are much higher than using GPU cards and ASIC chips, which hinders DIZK from being
widely deployed. Bellperson [Bel19] and Mina [Min19] are efficient GPU implementations
of zkSNARK. However, as mentioned before, their MSM and MUL modules do not fully
unleash the potential of GPUs and they also waste too much time on CPU-GPU data
transfer.

MSM is the most time-consuming operation used in zkSNARK. Thus, there have been
notable works focusing on improving the efficiency of MSM on GPUs [Spp22, Yrr22, Mat22],
FPGAs [Xav22, ABC+22, Har22], and ARM CPUs [HB22]. Especially the winning works
[Yrr22, Mat22] of the ZPrize competition [Zpr22] are the concurrent works with this paper.
They achieve excellent performance on the MSM computations with randomly sampled
scalars. Their excellent performance benefits from the core technique, i.e. utilizing radix
sort to process the scalars used in MSM, which can actually be viewed as a concrete scheme
of the sparse matrix transpose used in our MSM algorithm, as shown in Section 4.1. But
even then, both schemes cannot be directly deployed on zkSNARK, where the scalars used
in MSM depend on the proving function f and are not simply randomly distributed.

2 Preliminaries

2.1 The zkSNARK Protocol of Groth
Our work provides a GPU implementation of a zkSNARK protocol due to Groth [Gro16].
We choose Groth’s protocol because it is one of the most efficient and practical zkSNARK
protocols, and it has been adopted by various private-preserving applications, includ-
ing cryptocurrencies [BG17], smart contracts [Pol22], and verifiable machine learning
[ZWW+21]. Here, we also need to mention that our techniques can be used for similar
zkSNARK protocols, especially for the protocols [GGPR13, GM17, GWC19, CHM+20]
that require performing the multi-scalar multiplication operation. Below, we describe the
details of Groth’s protocol.

Groth’s protocol works like all zkSNARKs. It allows a prover to generate a proof π to
convince verifiers a computation y = f(x, w) is correctly calculated with a public input x
and a prover’s secret input w. In addition, its proof π has only hundreds of bytes and is

T. Lu et al. 5

P
PDBL

1 0 0 1 1

2P4P8P16P

P3P19P

PADDPADDPADD

PDBLPDBLPDBL

19() 2 =

Figure 3: An example of PMUT computation. O is the point at infinity on elliptic curve.

very fast to be verified within several milliseconds. The workflow of Groth’s protocol is
shown in Figure 2. It consists of three procedures: Preprocess, Prove, and Verify.

The Preprocess procedure is performed by a third trusted party. It first compiles a
function f to an instance of Rank-1 Constraint System (R1CS). A simple example of the
compilation process is shown on the upper right side of Figure 2.

In short, the function f is decomposed into multiple constraints, each of which can
be represented by three vectors. These constraint vectors ultimately form three matrices,
which are called the R1CS instance. The number of constraints is commonly considered as
the scale of the R1CS instance. Next, the third trusted party uses this R1CS instance and
its secret random number to generate a prover key pk and a verifier key vk. These two
keys are both public. That is to say, anyone can perform the Prove procedure to generate
a proof π with the prover key pk, and anyone can perform the Verify procedure with the
proof π and the verifier key vk. The restriction is that only the proof π generated by the
prover who owns the secret input w that satisfies y = f(x, w) can make verifiers accept.
In addition, the proof π leaks no information about the secret input w, and no one except
the owner can get the value of the secret input w.

The Preprocess procedure and the Verify procedure have amortized lightweight
computational costs. For the Preprocess procedure, the two keys pk and vk are infinitely
reusable for the function f so that its computational costs can be amortized over each
use of two keys. For the Verify procedure, it only requires verifiers to perform three
bilinear pairing operations like Weil pairing and Tate pairing. These pairing operations are
functions that map two mathematical spaces to a third space, and they can be computed
using Miller’s algorithm [Mil04] within just several milliseconds. The Prove procedure is
the only high-expense procedure. As shown at the lower right side of Figure 2, it requires
the prover to perform various time-consuming operations, including MUL, NTT, and MSM.
This leads to the Prove procedure being the bottleneck that limits zkSNAKR further
deployments. Our work focuses on accelerating this procedure with GPUs.

2.2 Multi-scalar Multiplication
Multi-scalar multiplication (MSM) is the most time-consuming operation in zkSNARK,
taking more than 70 percent of the total runtime, as shown in Figure 1. Its definition is
given by the formula Q =

∑n
i=1 kiPi, where n is the scale of MSM, ki is a λ-bits scalar,

Pi is an elliptic curve (EC) point, and the pair kiPi represents point scalar multiplication
(PMULT) of ki and Pi. Formally, an elliptic curve is a smooth, projective, algebraic curve
consisting of EC points. These points include the set that satisfies a specific mathematical
equation, such as y2 = x3 + ax + b, and the point at infinity, denoted as O. The point
at infinity serves as the identity element in the abelian group formed by all EC points,
along with their fundamental operation known as point addition (PADD). Point doubling
(PDBL) is a special case of PADD, the result of which is equal to performing a PADD
operation on two identical points. PMULT of a scalar k and an EC point P is another
commonly used operation in elliptic curve arithmetic. It is defined as k times self-PADD of
P, denoted by kP = P + P + ... + P. We can use the double-and-add method to compute

6 cuZK

Algorithm 1 The Pippenger Algorithm [Pip76]

Require: A scalar vector −→k n = [k1, k2, ..., kn], whose elements are λ-bit scalars. A point
vector −→Pn = [P1, P2, ..., Pn]. A chosen window size s.

Ensure: Q =
∑n

i=1 kiPi

1: T⌈ λ
s ⌉+1 ← O // O is the point at infinity on the elliptic curve.

2: for j ← (⌈λ
s ⌉) to 1 do // Convert the original task into ⌈λ

s ⌉ subtasks.
3: // Initialize 2s − 1 buckets with points at infinity O.
4:

−→B2s−1 ← [O,O, ...,O]2s−1
5: // Put Pi into the corresponding bucket and add up all points in the same bucket.
6: for i← 1 to n do
7: // mij is a part of ki used in this subtask.
8: mij ← (ki ≫ ((j − 1) ∗ s)) & ((1≪ s)− 1)
9: if mij ̸= 0 then

10: Bmij
← Bmij

+ Pi

11: end if
12: end for
13: // Get the result of this subtask, Gj =

∑2s−1
l=1 lBl, as shown in Algorithm 2

14: Gj ← BucketPointsReduction(−→B2s−1)
15: Tj ← 2sTj+1 + Gj // Add Gj to the final result based on Formula (3).
16: end for
17: Q = T1
18: return Q

the pair kP by performing a series of PDBLs and PADDs. Figure 3 shows an example
of computing 19P. It starts with representing the scalar 19 in the binary form (10011)2.
Then, we initialize the result to be the point at infinity O. Next, at each bit position, It
doubles and adds the point P to the result when the bit is 1. The EC point on the last bit
is the result of PMULT. Finally, the MSM result Q is calculated by adding all pairs kiPi,
where i ∈ [1, n].

Obviously, if we employ the double-and-add method to compute MSM, we need to
perform at most nλ + n− 1 PADDs and nλ− n PDBLs. In real-world applications, the
security parameter λ commonly ranges from 254 to 768 and the scale of MSM n could
be extremely large. For instance, Filecoin [BG17] has n larger than a million. To make
matters worse, the costs of EC point operations like PADD and PDBL are much more
expensive than the regular scalar operations. Therefore, the computational costs of using
the double-and-add method for MSM computation are intolerable. There are several
more efficient MSM algorithms, such as the Pippenger algorithm [Pip76], the Chang-Lou
algorithm [CL03], and the Bos-Coster algorithm reported in [Roo94]. Especially, the
Pippenger algorithm performs best when the scale of MSM is very large, as shown in
[BDLO12].

2.3 The Pippenger Algorithm
The Pippenger algorithm [Pip76] is a popular serial algorithm for MSM computation.
It performs best in the zkSNARK setting compared to other MSM algorithms. Our
proposed parallel MSM algorithm is inspired by it. Thus, in this section, we first review
the Pippenger algorithm and then analyze its computational costs.

Overview. Given λ-bits scalars k1, ..., kn and base points P1, ..., Pn, the Pippenger
algorithm chooses a window size s and converts the original MSM task to ⌈λ

s ⌉ subtasks by
dividing these λ-bits scalars into s-bits scalars. Each subtask is to compute

∑n
i=1 miPi,

T. Lu et al. 7

Algorithm 2 BucketPointsReduction [BDLO12]

Require: A point vector −→B2s−1 = [B1, B2, ..., B2s−1]
Ensure: G =

∑2s−1
l=1 lBl

1: G0 ← O; M0 ← O // O is the point at infinity on the elliptic curve.
2: for l← 1 to 2s − 1 do // Add lBl based on Formula (2).
3: Ml ←Ml−1 + B2s−l // Ml = B2s−1 + B2s−2 + ... + B2s−l

4: Gl ← Gl−1 + Ml // Gl = M1 + M2 + ... + Ml

5: end for
6: G← G2s−1 // G2s−1 = B1 + 2B2 + ... + (2s − 1)B2s−1
7: return G

0100

0000

1011

1011

0000

1011

0100

1111 15

11

4

1 =

=

=

=

+

+ +

···

···

···

Figure 4: An example of putting EC points into buckets.

where mi is the s-bits part of ki used in this subtask. The above step can be performed by
sorting base points into 2s − 1 buckets according to the value of mi (discarding one bucket
because scalars equal to zero have no effect on the final result). Then, the algorithm sums
the base elements in the buckets to obtain points B1, ..., B2s−1 and computes

∑2s−1
l=1 lBl,

which is equal to the result of the subtask
∑n

i=1 miPi.
Details. The details are shown in Algorithm 1, which mainly consists of three steps:
1) Convert the original task Q =

∑n
i=1 kiPi to multiple smaller subtasks. It start by

choosing a window size s and divides each λ-bits scalar ki into ⌈λ
s ⌉ parts. Each part is a

s-bits scalar mij , satisfying ki =
∑⌈ λ

s ⌉
j=1 (2(j−1)smij). The smaller subtasks are defined as

the computation Gj =
∑n

i=1 mijPi, where j ∈ [1, ⌈λ
s ⌉]. The relation between the original

task and these subtasks can be expressed by Formula (1).

Q =
n∑

i=1
kiPi =

n∑
i=1

⌈ λ
s ⌉∑

j=1
(2(j−1)smij)Pi

=
⌈ λ

s ⌉∑
j=1

2(j−1)s

(
n∑

i=1
mijPi

)

=
⌈ λ

s ⌉∑
j=1

2(j−1)sGj

(1)

2) Compute subtask results Gj , where j ∈ [1, ⌈λ
s ⌉]. For each subtask, as shown in

Figure 4, it puts EC points Pi with the same scalar value mij into a bucket whose index
is equal to mij . Note that only 2s − 1 buckets need to be prepared because the points
corresponding to zero scalars have no effect on the final result and are skipped directly.
Then, it adds up (PADD) all points in the same buckets. The sum point of each bucket
is called the bucket point, denoted as Bl, where l is the bucket index and l ∈ [1, 2s − 1].

8 cuZK

The subtask result is exactly equal to the sum of all bucket points weighted by their
bucket indexes, namely Gj =

∑2s−1
l=1 lBl. Next, it uses an efficient approach proposed

in [BDLO12] to compute
∑2s−1

l=1 lBl, as shown in Algorithm 2. In short, it starts by
calculating a serial of new points Ml =

∑2s−1
u=2s−l Bu with a recursive method given by the

Formula Ml = Ml−1 + B2s−l, where l ∈ [1, 2s − 1] and the start point M1 = B2s−1. The
subtask result Gj can be obtained by adding up all new points Ml via Formula (2).

2s−1∑
l=1

Ml =
2s−1∑
l=1

2s−1∑
u=2s−l

Bu =
2s−1∑
l=1

lBl = Gj (2)

3) Compute the MSM result with the subtask results, namely Q =
∑⌈ λ

s ⌉
j=1 2(j−1)sGj .

Specifically, it calculates a serial of new points Tu =
∑⌈ λ

s ⌉−u+1
j=1 2(j−1)sGj+u−1 with

an inverse recursive method via Formula (3), where u ∈ [1, ⌈λ
s ⌉] and the end point

T⌈ λ
s ⌉ = G⌈ λ

s ⌉. Finally, the MSM result Q is exactly equal to T1. The computational costs
of this recursive method are lower than that of using Formula (1) directly.

Tu = 2sTu+1 + Gu (3)

Complexity. For each subtask, it requires at most n PADDs to put all points into
the buckets and (2s+1 − 2) PADDs to get the subtask result using Algorithm 2. In order
to add the subtask results to the final result, a recursive method based on Formula (3) is
used, which requires around s PDBLs and 1 PADD per subtask on average. Since there
are ⌈λ

s ⌉ subtasks, the total computational costs of the Pippenger algorithm are around
⌈λ

s ⌉(n + 2s+1) PADDs plus λ PDBLs. Note that we skip the costs of scalar operations
here because they are negligible compared to the costs of EC point operations.

2.4 Sparse Matrix
Sparse matrices have a significant impact on our work in improving the efficiency of
zkSNARK. Here, we present their storage formats and the basic operations they support.

CSR format and ELL format are two of the most popular sparse matrix storage formats.
Examples of these two formats are shown in Figure 5. The ELL format consists of three
structures, Data, ColIndex, and RowLength. Specifically, the nonzero elements in the same
row of the sparse matrix are stored in the same row of the Data. The ColIndex stores the
column indices of these nonzero elements. All rows of the Data and ColIndex structures
are padded to length RowSpace to meet the alignment requirement. The RowLength stores
the number of the nonzero elements in each row of the sparse matrix. The CSR format also
consists of three structures, Data, ColIndex, and RowPtr. The first two structures are the
same as the two in the ELL format, except that they do not need to meet the alignment
requirements. The RowPtr is an array of length RowNum + 1. Its i-th element encodes the
cumulative number of nonzero elements up to the i-th row, where i ∈ [0, RowNum].

The basic operations supported by sparse matrices include sparse matrix transposition,
sparse matrix-vector multiplication, and so on. Many well-studied GPU implementations
[BG09, GD14, TDM+14] are available for speeding up sparse matrix basic operations, where
they achieve high performance based on classical GPU optimization methods, including
loop unrolling, load balancing, and coalescing memory accesses. Moreover, these GPU
implementations have been deployed in many industrial libraries [NCVK10, DBOG14].
Therefore, converting other complex operations to basic sparse matrix operations is
commonly a suitable and convenient choice to improve the efficiency of the computation.

T. Lu et al. 9

ELL format CSR format

0 8 2 0 0

5

ColIndex

ColNum = 5

RowNum = 5

RowSpace = 3

Dense Matrix

RowLength

Data

ColIndex

RowPtr

4
7 2 1
3

8 2

1 3
0 1 4
2

1 2

2
3
1
0
2

5 4 7 2 1 3 8 2

1 3 0 1 4 2 1 2

0 2 5 6 6 8
Data

0 0 0 0 0
0 0 3 0 0
7 2 0 0 1
0 5 0 4 0

Figure 5: Sparse matrix representations for a simple example matrix a5×5.

2.5 Graphics Processing Units
Graphics Processing Units (GPUs) are many-core computing platforms that support

the concurrent execution of multiple threads. A typical GPU consists of multiple Streaming
Multiprocessors (SMs) and a global memory. Each SM includes multiple Scalar Processors
(SPs), a shared memory, and several on-chip registers. These registers and various kinds
of memory constitute the multiple memory hierarchy architecture of GPUs. The on-chip
registers are the fastest memory component but have minimal storage capacity, while the
global memory provides the largest storage capacity but is the slowest. The performance
of the shared memory is between the on-chip registers and the global memory.

Another special thing about GPUs is their execution fashion. Warps instead of threads
are the basic execution units on GPUs. Each warp consists of 32 threads and is scheduled
by warp schedulers residing in SMs. Specifically, each warp scheduler maintains a list of
active warps and picks a warp from the list on each cycle to execute an instruction. Threads
in a warp can carry their own private data but have to execute the same instructions. This
execution fashion is known as the Single Instruction Multiple Thread (SIMT).

3 A Faster Parallel MSM Algorithm
Multi-scalar multiplication (MSM) is defined as Q =

∑n
i=1 kiPi, where ki is a λ-bits scalar,

Pi is an EC point, and the pair kiPi represents point scalar multiplication of ki and Pi.
Due to MSM being the most time-consuming operation in zkSNARK, an efficient parallel
MSM algorithm can greatly improve its efficiency. In this section, we introduce some naive
parallel MSM approaches and present our proposed parallel MSM algorithm.

3.1 Some Naive Approaches
Thanks to the outstanding performance of the Pippenger algorithm, parallel MSM methods
based on it have been experimentally shown to perform better than other MSM algorithms.
Therefore, efficient industrial implementations [Lib14, Gna20, WZC+18, Bel15, Bel19] of
MSM are now choosing to be based on this algorithm. Here, we briefly introduce three
naive parallel Pippenger-based approaches and then give their computational costs.

Recall that in the Pippenger algorithm, it divides the original MSM task into ⌈λ
s ⌉

subtasks. The first naive approach leverages this feature. It parallelizes the MSM
computation by the observation that all subtasks in the serial Pippenger algorithm can be
performed simultaneously. Therefore, it arranges ⌈λ

s ⌉ threads to perform these subtasks
simultaneously. After all threads obtain the subtask results, one of the threads adds these
results to the final result based on Formula (3). However, this parallel algorithm at most

10 cuZK

provides a speedup of ⌈λ
s ⌉, which is much less than the number of cores GPU provides.

Therefore, it is not suitable for the GPU implementation of MSM. Note that λ typically
ranges from 254 to 768, and s can be chosen at will.

The second naive approach is a more general parallel method. It decomposes the
original MSM computation into t parts, where t is the total number of threads. Each part
is a small-scale MSM computation, namely Qj =

∑n̂
i=1 kjn̂+iPjn̂+i, where j ∈ [0, t−1] and

n̂ = n
t . Next, all threads perform the serial Pippenger algorithm for their corresponding

small-scale MSM computation. The final result Q =
∑t

j=1 Qj can be obtained with
the parallel sum algorithm. Recall that the advantage of the Pippenger algorithm is to
compute large-scale MSMs. However, here it decomposes the large-scale MSM into multiple
small-scale MSMs, which obviously weakens the advantage of the Pippenger algorithm.

The third naive approach combines the above two parallel algorithms. First, this
algorithm decomposes the original MSM computation into t/⌈λ

s ⌉ small-scale MSM compu-
tations similar to the second parallel algorithm. Next, for each small-scale computation,
it schedules ⌈λ

s ⌉ threads to perform the first parallel algorithm. The final result can be
obtained by adding up all results of the t/⌈λ

s ⌉ small-scale computations. The performance
of this algorithm is better than the above two algorithms in the case of high parallelism,
but it still cannot achieve perfect linear speedup over the serial Pippenger algorithm, where
perfect linear speedup means the parallel speedup ratio is equal to the number of execution
threads.

Complexity. The computational costs of the first algorithm are around n+2s+1 + ⌈λ
s ⌉

PADDs plus λ PDBLs for each thread when the number of threads t is larger than ⌈λ
s ⌉;

the computational costs of the second algorithm are around ⌈λ
s ⌉(

n
t + 2s+1) + log t PADDs

plus λ PDBLs for each thread; the computational costs of the third algorithm are around
⌈λ

s ⌉(
n
t) + 2s+1 + ⌈λ

s ⌉+ log(t/⌈λ
s ⌉) PADDs plus λ PDBLs for each thread. Note that we

also skip the costs of scalar operations here because they are negligible compared to the
costs of EC point operations.

3.2 Our Parallel MSM Algorithm
Our proposed parallel MSM algorithm is also inspired by the Pippenger algorithm. However,
we do not use the parallel methods that decompose the large MSM computation into
multiple smaller ones like the second and the third naive approaches, because decomposing
the large MSM computation can weaken the advantage of the Pippenger algorithm. More
specifically, we notice the advantage of the Pippenger algorithm only comes when there are
a great amount of EC points placed into the same buckets and processed as a whole. The
larger the scale of MSMs is, the more benefits this advantage brings. Thus, decomposing the
large MSM computation is obviously unsuitable for the Pippenger-based MSM algorithm,
which manifests an unsatisfiable increase in speedup with the increasing parallelism; see
the comparison between the computational costs given in Section 2.3 and Section 3.1. So
we need to find a parallel algorithm that processes the MSM computation from a global
perspective.

Sparse matrices are excellent tools for integrating fragmented elements into a whole
without consuming too much storage space. Hence, we propose a new parallel MSM
algorithm with the help of sparse matrices to strengthen the advantage of the Pippenger
algorithm. Our algorithm is well-suitable for execution in GPUs and has nearly perfect
linear speedup over the Pippenger algorithm. Below we give an overview of our algorithm
and then present its details.

Overview. Given λ-bits scalars k1, ..., kn and base points P1, ..., Pn, we choose a
window size s and convert the original MSM task to ⌈λ

s ⌉ subtasks like the Pippenger
algorithm. Then, we compute each subtask

∑n
i=1 miPi. Specifically, as shown in Figure 6,

we first divide EC points into t parts. For each part, we add and store the points with the

T. Lu et al. 11

100

000

111

011

000

011

100

011

Thread 1 4

3

7 4

3

1

1

2

1

ELL Format

Data ColIndx RowLength

Thread 2

Thread 3

Thread 4

CSR Format

4 3 7 4 3

0 1

Data

ColIndx

2 4
RowPtr

5

CSR Format

1 3 0 2 2

0

Data

ColIndx

RowPtr

Transpose

0 0 2 4 4 4 5

1 2 3

4 5 6

ELL-CSR

SPMV

... ...

+ + Reduce

Figure 6: An simple example of our parallel MSM algorithm.

same scalar value into the same entry of a sparse matrix. This matrix is in ELL format
with t rows and 2s − 1 columns, where t is the total number of threads. After the above
step is completed, we convert this sparse matrix from ELL format to CSR format and
then transpose it. Next, we perform the sparse matrix-vector multiplication (SPMV) on
the transposed matrix with a scalar vector whose elements are all equal to 1. The result is
the EC point vector consisting of points B1, ..., B2s−1. Finally, we compute

∑2s−1
l=1 lBl,

which is equal to the result of the subtask
∑n

i=1 miPi. Note that all the above steps can
be parallelized with limited load imbalance. Details are described below and shown in
Algorithm 3.

Details. Based on the Pippenger algorithm, we start by converting the original
task Q =

∑n
i=1 kiPi into ⌈λ

s ⌉ subtasks Gj , where s is the chosen window size as in the
Pippenger algorithm and j ∈ [1, ⌈λ

s ⌉]. The relation between the original task and subtasks
can be expressed by Formula (1). Next, we execute these subtasks serially. For each
subtask, we do the following two steps:

1) Store all EC points Pi into a sparse matrix. We begin with generating an empty
sparse matrix with t rows and 2s − 1 columns, where t is the total number of threads.
This sparse matrix is in ELL storage format and its RowSpace is n

t . Here, we use the ELL
storage format because it is efficient to store EC points in this format matrix parallelly.
Specifically, as shown in the first step of Figure 6, we divide EC points into t parts. For
each part, EC points with the same scalar value are added and stored in the same entry of
a row by a thread. The column index of this entry is set to the scalar value. Note that the
points corresponding to zero scalars have no effect on the final result and can be skipped.

2) Get an EC point vector, whose elements play a similar role as bucket points in the
Pippenger algorithm. This EC point vector is donated as −→B⟨j⟩

2s−1, where j is the sequence
number of the subtask. Firstly, we convert the sparse matrix from ELL format to CSR
format and transpose it in parallel. The reason that we employ CSR format is to save space
costs, since the alignment requirement of ELL format leads to additional space overhead
for storing the matrix. Next, we add up all EC points that are in the same row of the
transposed matrix. This operation is equivalent to performing the sparse matrix-vector
multiplication on the matrix with a scalar vector whose elements are all equal to 1. The

12 cuZK

Algorithm 3 Our Parallel MSM Algorithm

Require: A scalar vector −→k n = [k1, k2, ..., kn], whose elements are λ-bit scalars. A point
vector −→Pn = [P1, P2, ..., Pn]. A chosen window size s. The number of threads t.
⌈λ

s ⌉ GPU streams [stream1, stream2, ..., stream⌈ λ
s ⌉].

Ensure: Q =
∑n

i=1 kiPi

1: for j ← 1 to ⌈λ
s ⌉ do // Convert the original task into ⌈λ

s ⌉ subtasks.
2: row_num← t; col_num← 2s − 1; row_space← n

t
3: ell← GenELLMtx(row_num, col_num, row_space)
4: // mi is a part of ki used in this subtask
5: for i← 1 to n do in parallel with t threads in stream1
6: mi ← (ki ≫ ((j − 1) ∗ s)) & ((1≪ s)− 1)
7: end for
8: SynchronizeThreadsInStream(stream1) // use the cudaStreamSynchronize function.
9: −→mn ← [m1, m2, ..., mn]

10: // Store EC points into the sparse matrix, as shown in the first step of Figure 6.
11: ell← pStoreECPoints(ell,−→mn,

−→Pn, t, stream1)
12: csr ← pELL2CSR(ell, t, stream1)
13: csr ← pTranspose(csr, t, stream1)
14: −→v t ← [1, 1, ..., 1]t // A scalar vector whose elements are all equal to 1.
15:

−→B⟨j⟩
2s−1 ← pSparseMatrixVectorMUL(csr,−→v t, t, stream1)

16: end for
17: for j ← 1 to ⌈λ

s ⌉ do in parallel
18: Gj ← pBucketPointsReduction(−→B⟨j⟩

2s−1, t/⌈λ
s ⌉, streamj) // See Algorithm 4.

19: end for
20: // The following loop is to synchronize all t threads launched in the above loop.
21: for j ← 1 to ⌈λ

s ⌉ do
22: SynchronizeThreadsInStream(streamj) // use the cudaStreamSynchronize function.
23: end for
24: T⌈ λ

s ⌉ ← G⌈ λ
s ⌉

25: for j ← (⌈λ
s ⌉ − 1) to 1 do

26: Tj ← 2sTj+1 + Gj // Add Gj to the final result with Formula (3).
27: end for
28: Q← T1
29: return Q

result is the EC point vector that we need. Note that the above parallel sparse matrix
operations are well-studied [BG09, GD14, TDM+14].

After obtaining the EC point vectors of all subtasks, we schedule t/⌈λ
s ⌉ threads for each

subtask to compute the sum of all points B⟨j⟩
l weighted by their indexes l with Algorithm 4,

whose results are exactly equal to the subtask results, namely Gj =
∑2s−1

l=1 lB⟨j⟩
l . Finally,

we can get the final result Q by adding all subtask results based on Formula (3).
To guarantee correct calculations in Algorithm 3 and Algorithm 4, we use stream bar-

riers, implemented by the cudaStreamSynchronize function, to synchronize all launched
threads. These barriers in our algorithm provide the same functionality as global barriers
while maintaining compatibility with the multi-stream technology used in Section 4.4.
Although these barriers force the program to wait until all threads finish their tasks, the
overhead is limited due to the nearly even distribution of workload across threads. In
addition, n and ⌈λ

s ⌉ are not required to be multiples of the warp size, thanks to these
stream barriers.

T. Lu et al. 13

Algorithm 4 pBucketPointsReduction

Require: EC point vectors −→B2s−1 = [B1, B2, ..., B2s−1]. The number of threads t.
A GPU stream stream.

Ensure: An EC point G =
∑2s−1

l=1 lBl.
1: ξ ← GetThreadID() // Thread ID, ξ ∈ [1, t].
2: // Divide 2s − 1 vector elements into t parts. Each part has r EC points.
3: r ← (2s − 1)/t
4: for l← 1 to r do
5: if l ̸= 1 then
6: M(ξ−1)r+l ←M(ξ−1)r+l−1 + Bξr+1−l

7: Sξ ← Sξ + M(ξ−1)r+l

8: else
9: M(ξ−1)r+l ← Bξr

10: Sξ ←M(ξ−1)r+l

11: end if
12: end for
13: // After completing the above loop,
14: // Sξ = B(ξ−1)r+1 + 2B(ξ−1)r+2 + ... + rB(ξ−1)r+r

15: // Mξr = B(ξ−1)r+1 + B(ξ−1)r+2 + ... + B(ξ−1)r+r

16: Sξ ← Sξ + ((ξ − 1)r)Mξr

17: SynchronizeThreadsInStream(stream) // use the cudaStreamSynchronize function.
18:
−→S t ← [S1, S2, ..., St]

19: G← pSum(−→S t, t, stream) // G = S1 + S2 + ... + St

20: return G

Complexity. The computational costs of storing EC points into the sparse matrix and
the computational costs of the sparse matrix-vector multiplication vary with the scalar
vector −→k n. However, the total computational costs of these two parts are fixed. They are
at most ⌈λ

s ⌉ n PADDs in total, and thus each thread needs to perform ⌈λ
s ⌉(

n
t) PADDs on

average. PMULT is not needed because all elements of the vector used in the matrix-vector
multiplication are equal to 1. Note that the computational load on each thread may be
imbalanced here, because a naive sparse matrix-vector multiplication (SPMV) method
cannot guarantee the workload of each thread is the same. Fortunately, this problem can
be mitigated with our proposed SPMV approach, as shown in Section 4.1. After obtaining
the EC point vectors of all subtasks, it requires at most ⌈λ

s ⌉(
2s+1

t −1)+s+log t PADDs and
s PDBLs for each thread to get subtask results with Algorithm 4. Finally, in order to add
subtask results to the final result, a recursive method implied by Formula (3) is used, which
takes less than ⌈λ

s ⌉ PADDs and λ PDBLs. Therefore, the total computational costs for each
thread are around ⌈λ

s ⌉(
n
t + 2s+1

t) + s + log t PADDs plus λ + s PDBLs. The values of s and
log t are both small. Therefore, our MSM algorithm has nearly perfect linear speedup over
the Pippenger algorithm, whose computational costs are around ⌈λ

s ⌉(n+2s+1) PADDs plus
λ PDBLs. Here we skip the computational costs of ELL-CSR format conversion and sparse
matrix transpose because they only require some scalar operations and data movement
operations, whose costs are negligible compared to the costs of EC point operations.

4 An Efficient GPU Implementation of zkSNARK
This section presents cuZK, an efficient GPU implementation of zkSNARK targeting the
selected Groth’s protocol. Here, we also need to mention that our techniques are adapted
to similar zkSNARK protocols, especially for the protocols [GGPR13, GM17, GWC19,

14 cuZK

CHM+20] that require the multi-scalar multiplication operation. Below, we present the
GPU implementations of three time-consuming operations in Groth’s protocol, namely
multi-scalar multiplication in Section 4.1, matrix-vector multiplication in Section 4.2, and
number-theoretic transform in Section 4.3. Then, the overall dataflow of cuZK is given in
Section 4.4.

4.1 Multi-scalar Multiplication on GPUs
Here, we implement the parallel MSM algorithm proposed in Section 3.2 and provide
further optimizations to make it suitable for running on GPUs. Below, we present crucial
parts of our GPU implementation.

Choose an optimal window size: Recall that our parallel MSM algorithm requires
choosing a window size s. The relationship between the computational costs of our MSM
algorithm and the window size s is given in the complexity part of Section 3.2 by the
formula ⌈λ

s ⌉(
n
t + 2s+1

t) + s + log t PADDs plus λ + s PDBLs, where n is the scale of MSM,
λ is the number of scalar bits, t is the number of parallel threads, and s is the window size.
To simplify the analysis, we assume that the computational costs of PADD and PDBL are
equivalent. By making this assumption, we can treat the above formula as a mathematical
function, where the window size s serves as the independent variable. Therefore, after
fixing the MSM parameters and the number of parallel threads (equal to the GPU core
count), we determine the optimal window size s by traversing all feasible window sizes
and finding the one for which our MSM algorithm has the minimum computational costs.
For example, when computing MSM with the number of scalar bits λ = 255 and the scale
n = 220 in a V100 card with 5, 120 GPU cores, we can explore window sizes from 1 to
255 and find the value s = 16 that makes the above function of the computational costs
having the minimum value. Note that this step of finding the optimal window size can be
performed offline without affecting the performance of the MSM computation.

Put EC points into a sparse matrix: First, we allocate space for a sparse matrix
of ELL format on the global memory so that every thread can access this matrix. Then,
each thread should have stored EC points into the sparse matrix as in Figure 6. However,
in practice, what each thread store in the sparse matrix is not the EC points themselves
but their indexes in the EC point vector. Roughly, each EC point typically has hundreds
of bits, while the index size is the logarithm of the vector scale, only tens of bits. Thus,
this step significantly saves the device storage costs.

Format conversion and transposition for the sparse matrix: As mentioned in
Algorithm 3, the next step we need to perform is converting the sparse matrix to the CSR
format and then transposing it in parallel. Format conversion is straightforward. We only
need to remove the empty positions of Data and ColIndex for row alignment. RowPtr in
the CSR format is actually the prefix sum of RowLengh in the ELL format.

Next, for the sparse matrix transposition, there are various existing efficient GPU
implementations. For example, a scheme based on radix sort performs well. For convenience,
we refer to this scheme as the sort-based scheme. Actually, this sort-based scheme also
appears in two MSM implementations [Yrr22, Mat22], which are both concurrent works
with this paper. The main difference is that they do not abstract the sort-based scheme
into a sparse matrix transpose or decouple it from the MSM algorithm, while our work
views this sort-based scheme as a concrete scheme for the sparse matrix transpose, that is,
we can easily replace it with a faster sparse matrix transpose scheme in the future.

As we currently implement this sorting-based scheme as well, we give its details below.
First, we get row positions of elements in the sparse matrix using RowPtr and store
those positions in a new structure RowIndex. Then we sort the triplet <ColIndex, Data,
RowIndex> with ColIndex as the sorting key. The sorted Data is the Data of the transpose
matrix and the sorted RowIndex is the ColIndex of the transpose matrix. The RowPtr of

T. Lu et al. 15

the transpose matrix can be obtained by performing run-length encoding and prefix sum
operation to the sorted ColIndex.

Fetch EC points from host memory: Afterward, we fetch the corresponding EC
points from host memory to device memory according to the indices stored in the matrix.
A naive method of moving EC points from host memory to device memory takes much
time on data transfer. Fortunately, its latency overhead can be almost eliminated by
overlapping CPU-GPU data transfer and device computing based on the multi-streaming
technique. The details of the overlap are described in Section 4.4.

Perform sparse matrix-vector multiplication: We sum up the EC points that
are in the same row of the transposed matrix. The summation step is actually equivalent
to performing parallel sparse matrix-vector multiplication (SPMV) on the matrix with a
scalar vector whose elements are all equal to 1. This step may introduce severe thread load
imbalance due to the different lengths of the matrix rows. To overcome load imbalance,
we propose a GPU-based SPMV implementation called CSR-Balanced.

Specifically, CSR-Balanced overcomes load imbalance by dynamically scheduling differ-
ent numbers of threads to work on different matrix rows. It first sorts the matrix rows and
divides them into different groups based on the row lengths. Then, it only allows GPU
warps instead of individual threads to work across these groups, and thus all threads in a
GPU wrap have to work in the same group. This step guarantees that the workload of all
threads in a warp is almost balanced because rows in the same group have similar lengths.
Next, in order to balance the workload of each warp, CSR-Balanced schedules different
numbers of wraps for groups according to the proportion of non-zero matrix entries in
each group so that the number of non-zero entries that each warp works on is similar. The
additional overhead of this method is the sorting costs, which are negligible compared to
the costs of EC point operations. Note that CSR-Balanced cannot be used in SPMV for
regular scalar operations because the sorting costs are relatively high compared to the
costs of regular scalar operations.

Bucket point reduction: In this part, we follow the description in Algorithm 4. The
only crucial part we need to be mentioned is the parallel sum operation. It is a basic
reduction operation commonly used in parallel programming to add up all vector elements
and is deployed in various GPU libraries. Speficically, the parallel summation operation
adopts the tree reduction method. First, t/2 threads are required to add (PADD) t EC
points (two elements per thread) and then recursively halve the number of threads to add
the previous step’s results until a single aggregate is obtained. This single aggregate is the
sum of t EC points.

Multi-GPU implementation: The efficiency of MSM can be further accelerated with
multiple GPUs. We give the multi-GPU implementation of our MSM algorithm. Recall
that our parallel MSM algorithm decomposes the original MSM task into multiple subtasks.
Therefore, for multi-GPU implementation, we assign these subtasks to GPUs evenly. GPUs
use the same implementation following the operations described above to calculate the
subtask results. Once these subtask results are obtained, all GPUs transfer them to a single
GPU. Communication between GPUs can be performed either by using the CPU memory
as an intermediate transfer station or through Nvidia NVLink for direct GPU-GPU transfer.
Nvidia NVLink is a wire-based interconnect technology, and it enables direct GPU-GPU
data transfer by employing the unified memory or using memory management functions
such as cudaMemcpyPeer and cudaMemcpy with the cudaMemcpyDeviceToDevice flag. All
these methods only work after the cudaDeviceEnablePeerAccess function is performed.
Finally, the GPU that receives all subtask results adds them up to get the final result
using Formula (3). Alternatively, since the last step involving Formula (3) is executed
serially, we can also opt to transfer all subtask results obtained on GPUs to the CPU
memory through functions like cudaMemcpy with cudaMemcpyDeviceToHost flag. Then,
the CPU adds these results to get the final result. Note that each subtask result is an

16 cuZK

B

B

B

B

B

B

Stage 1 Stage 2 Stage 3

B

B

B

B

B

B

Figure 7: The butterfly diagram for an 8-point NTT. B represents the butterfly operation.

EC point, which only has hundreds of bits. Therefore, our multi-GPU implementation
does not introduce substantial additional transfer overhead compared to our single-GPU
implementation.

4.2 Matrix-vector Multiplication on GPUs
In Groth’s protocol, matrix-vector multiplication (MUL) operates on the R1CS matrix that
is compiled from the function to be proved, as shown in Section 2.1. The computational
costs of MUL mainly depend on the scale of the matrix it operates on. In real-world
applications, the R1CS matrix is commonly very large but sparse. For example, in Filecoin
[BG17], only less than 0.1% the matrix entries are non-zero. Therefore, we choose the
CSR storage format to store the R1CS matrix. This step helps to reduce the storage costs
and move the whole R1CS matrix to the GPU memory.

After the R1CS matrix is moved into the GPU memory, we perform the MUL compu-
tation with the parallel schemes for the sparse matrix. There are many parallel sparse
matrix-vector multiplication (SPMV) schemes, including CSR-Scalar [Gar08], CSR-Vector
[BG09], and CSR-Balanced proposed in Section 4.1. However, none of these schemes can
be suitable for sparse matrices with different characteristics. For example, CSR-Scalar
arranges each thread to work on each row of the sparse matrix. This scheme may cause
severe load imbalance when the variance of matrix row lengths is very large. Therefore,
we cannot choose only one static parallel scheme for the MUL computation.

In our MUL implementation, we employ different SPMV schemes for different R1CS
matrices. For a specific R1CS matrix, we first count out characteristics of the R1CS
matrix, such as the variance and mean of its row lengths. Then, we choose CSR-Scalar for
the R1CS matrix with small variance and small mean, CSR-Vector for the R1CS matrix
with small variance and large mean, and CSR-Balanced for the R1CS matrix with large
variance. The above method can avoid the drawbacks of these parallel SPMV schemes. In
addition, the operation for the sort operation existing in CSR-Balanced and the matrix
characteristics calculation can actually be performed offline because the R1CS matrix
that MUL operates on is infinitely reusable for the function to be proved. Therefore, this
method does not introduce additional overhead for the MUL computation online.

4.3 Number-theoretic Transform on GPUs
The number-theoretic transform (NTT) is essentially discrete fourier transform (DFT) over
finite fields. It is defined as the transform between two N -sized vectors −→a ′

N
def= NTT(−→a N)

with their elements a′
i =

∑N−1
j=0 ajωij

N , where a′
i and aj are λ-bits scalars in a finite field

and ωN is the Nth root of unity in the same field. The exponents of ωN are called twiddle
factors. The inverse number-theoretic transform (INTT) is the inverse transformation of

T. Lu et al. 17

Stream 2Stream 1

 R1CS Instance
 Function Inputs

MULs
NTTs
MSM

EC Point Vector

MSM

MSM

MSM

MSM

Time EC Point Vector

EC Point Vector

EC Point Vector

EC Point Vector

CPU-GPU Data Transfer

GPU Computation

Idle

Figure 8: Timeline for the execution of cuZK.

NTT. It can be easily completed by NTT with different twiddle factors. Actually, NTT
is a critical module commonly used in cryptography. Therefore, there are many efficient
GPU implementations [KJPA20, GXW21] that have been developed for its computation.
For instance, a state-of-the-art implementation can be found in [GJCC20], which was
originally used in post-quantum encryption algorithms. Actually, we can easily retrofit
this NTT implementation so that it is adapted to the setting of zkSNARK.

For more details, similar to the standard DFT algorithms [CT65], we decompose the
overall computation of NTT into log N stages, where each stage requires N/2 butterfly
operations [Opp99]. A single butterfly operation performs reading two input values,
processing input values, and storing results. Figure 7 shows an example of the butterfly
diagram for an 8-point NTT. We can see that the butterfly operations at each stage are
independent. Therefore, we can parallelize NTT by launching N/2 threads to perform
these butterfly operations concurrently. Note that we hold the results at the intermediate
stages in the global memory of GPUs because faster registers and shared memory are not
large enough to accommodate these intermediate results in zkSNAKR. The final results of
NTT are exactly the results at the last stage.

4.4 Overall Dataflow of cuZK
With our self-designed MSM and MUL parallel schemes and the well-studied NTT parallel
scheme, we have achieved the parallelization of all zkSNARK operations. Moreover, these
parallel schemes are well-suitable for execution on GPUs. Therefore, to make the best
use of these parallel schemes, we perform all operations of zkSNARK on GPUs, which
additionally eliminates redundant CPU-GPU data transfer. Note that these operations
also include the operations with small computational costs, like variable initialization. We
can perform them with small kernels that only launch one thread. These small kernels have
very little impact on the overall performance due to their small computational costs. As a
result, only three storage modules need to be sent to GPUs, namely the R1CS instance,
the function inputs, and the prover key. We overlap data transfer and device computation
using the multi-streaming technique to further reduce the latency overhead caused by
CPU-GPU data transfer. Dataflow is shown below.

We first transmit the R1CS instance and the function inputs from CPU to GPU. As
stated in Section 2.1, the R1CS instance consists of three matrices in CSR format, and
the function inputs make up a vector whose elements include all intermediate results of
the compiled function. Due to the above two storage modules being required by the MUL
operation, the first operation performed in the proof generation step, we have to finish
this transfer before the device computation begins. Another essential storage module,
the prover key, consists of multiple large-scale EC point vectors and thus is very large

18 cuZK

Table 1: Hardware Configuration of Testbeds.
Testbeds V100 G3060 VU9P
Device Tesla V100 GTX 3060 UltraScale+ VU9P
Platform GPU GPU FPGA
Core Count 8 × 5120 3584 /
Clock 1.24 GHz 1.32 GHz 0.28 GHz
Host (CPU) Xeon(R) Platinum 8260 Ryzen 3700X Xeon(R) E5-2686
CPU Cores 2 × 24 8 8 (vCPU)
CPU Freq. 2.40 GHz 3.60 GHz 2.30 GHz
OS CentOS 7.8 Ubuntu 20.04 Amazon Linux 2

Table 2: Some Baseline Implementations.

Implementations Platform Multi-PUs (1) Supported
Operations

(2) Optional
Elliptic Curves

cuZK (ours) GPU ✓ Groth BLS12-381, MNT4753,
BLS12-377

Bellperson [Bel19] GPU ✓ Groth BLS12-381
Mina [Min19] GPU × Groth MNT4753
Yrrid [Yrr22] GPU × MSM BLS12-377
MatterLab [Mat22] GPU × MSM BLS12-377
Bellman [Bel15] CPU × Groth BLS12-381
Hardcaml [Har22] FPGA × MSM, NTT BLS12-377
(1) This label represents whether these implementations support multi-

CPU/GPU execution or not.
(2) This label represents the operations supported by these implementations,

where Groth represents all operations in Groth’s protocol.

in size. Moving the prover key to GPUs takes a lot of time and also occupies a large
amount of GPU memory resources. Therefore, we choose to overlap its transfer and device
computation with the multi-streaming technique. As shown in Figure 8, we overlap the
MULs and NTTs computation with the first MSM-required EC points transfer, the first
MSM computation with the second MSM-required EC points transfer, the second MSM
computation with the third MSM-required EC points transfer, up to the second-to-last
MSM computation with the last MSM-required EC points transfer. Moreover, in order to
save storage costs and adapt to large-scale MSM, cuZK frees the corresponding memory
when the whole EC point vector or its some elements is no longer used. This overlapping
approach eliminates almost all latency overhead caused by the data transfer of the prover
key. Finally, the proof can be obtained by simply processing the results of MSM.

5 Evaluation
In this section, we first give our experimental setting in Section 5.1. Then, the evaluation
results are presented. Specifically, we give the benchmark results for our MSM implementa-
tion in Section 5.2. This aims to show the improvement that our parallel MSM algorithm
provides exclusively. Next, the overall performance of cuZK is shown in Section 5.3.

5.1 Experimental Setup
We perform the experiments on three testbeds: 1) V100, 2) G3060, and 3) VU9P, whose
hardware configurations are shown in Table 1. The testbed V100 is equipped with an

T. Lu et al. 19

Intel(R) Xeon(R) Platinum 8260 CPU chip and eight Nvidia Tesla V100 GPU cards. All
GPU cards are connected with Nvidia NVLink, which is a near-range efficient intercon-
nect supported by physical wires. After the cudaDeviceEnablePeerAccess function is
performed, NVLink facilitates direct GPU-GPU data transfer by employing the unified
memory or using memory management functions such as cudaMemcpyPeer and cudaMemcpy
with the cudaMemcpyDeviceToDevice flag. This feature can be used for the method that
directly transfers the subtask results from multiple GPUs to a single GPU in our multi-GPU
implementation part of Section 4.1. Our experiments on multi-GPU systems are executed
on the testbed V100. The testbed G3060 is only equipped with an AMD Ryzen 3700X
CPU chip and an Nvidia GeForce GTX 3060 GPU card. Its CPU-GPU data transfer is
completed through PCI-E. The testbed VU9P is for testing the state-of-the-art FPGA
implementation. It is on Amazon EC2 using the f1.2xlarge instance, which is equipped
with a Xilinx UltraScale+ VU9P FPGA card.

Table 2 gives baseline implementations that we compare in this paper. They are
all state-of-the-art works achieving high efficiency on certain hardware, including GPU
[Bel19, Min19, Yrr22, Mat22], CPU [Bel15], and FPGA [Har22]. PipeZK [ZWZ+21] is
another recent work that provides an ASIC acceleration solution for Groth’s protocol.
However, its original measurements are via simulation of ASIC without a physical chip.
In addition, the primary advantage of PipeZK is accelerating small-scale zkSNARK
applications, while our scheme is for relatively large-scale ones. Therefore, for these
different experimental setups, we do not use PipeZK as our comparator.

Note that the difference in hardware resources can significantly affect comparison
results. Therefore, in order to make comparisons in a relatively fair manner, we ensure that
comparisons of GPU implementations are performed in the same testbed. For comparisons
between GPU and CPU implementations, we choose to perform them in the testbed G3060,
where GPU/CPU chips are at a similar price. We choose to perform [Har22] on Amazon
EC2 because its source code is deeply bound to this platform.

5.2 Evaluating the MSM implementation
In this section, we present the performance results of our MSM implementation. This
aims to show the improvement that our parallel MSM algorithm provides exclusively.
We evaluate the baseline implementations and our MSM implementation with various
hardware devices. For the evaluations with our multi-GPU implementation, there are
two methods for getting the final result from the subtask results. We employ the second
method that transfers the subtask results from GPUs to the CPU memory. This method
slightly outperforms the first method that transfers the subtask results from GPUs to a
single GPU with NVLink, because the single-core performance of CPU is stronger than
that of GPU with Formula (3) being executed serially. For the window size s used in our
experiments, we determine it with an offline method that outputs the optimal window size
s, minimizing the computational costs of our MSM algorithm. Section 4.1 provides details
on this offline method and the above two methods for our multi-GPU implementation.
Below we give the evaluation results.

Table 3 provides the evaluation results on systems with a single CPU/GPU/FPGA
card, where the execution time is given straightforwardly and the speedup over other
MSM implementations is appended below the execution time. Here, we perform these
implementations with different elliptic curves due to the limitation of their optional elliptic
curves. We choose the curve MNT4753 for Mina, BLS12-381 for Bellperson and Bellman,
and BLS12-377 for Hardcaml. To conclude, we achieve a speedup of up to 11.44× over the
CPU implementation addressed in Bellman and a speedup of up to 18.48× over the FPGA
implementation addressed in Hardcaml. For the GPU implementations, our scheme has a
speedup of up to 18.75× and 2.29× over Mina and Bellperson, respectively. Note that the
performance of the MSM implementation addressed in Mina is relatively terrible because

20 cuZK

Table 3: Execution time (millisecond) and speedup for MSM implementations with different
MSM scales on systems with a single CPU/GPU/FPGA card.

Size
MNT4753 BLS12-381 BLS12-377

Mina cuZK Bellperson cuZK Bellman cuZK Hardcaml cuZK
(V100) (V100) (V100) (V100) (3700X) (G3060) (VU9P) (V100)

219 8701 732 241 116 1235 133 499 27
(11.89×) (2.08×) (9.29×) (18.48×)

220 16071 1163 409 188 2391 236 540 47
(13.82×) (2.18×) (10.13×) (11.49×)

221 31789 1960 727 331 4795 419 620 90
(16.22×) (2.20×) (11.44×) (6.89×)

222 62344 3608 1301 578 6375 759 780 171
(17.28×) (2.25×) (8.40×) (4.56×)

223 124429 6635 2637 1154 12559 1462 1094 312
(18.75×) (2.29×) (8.59×) (3.51×)

Table 4: Execution time (millisecond) and speedup for MSM implementations with different
MSM scales on systems with multiple GPUs.

Size 1 × V100 2 × V100 4 × V100 8 × V100
Bellper. cuZK Bellper. cuZK Bellper. cuZK Bellper. cuZK

220 409 188 243 101 117 52 62 29
(2.18×) (2.41×) (2.25×) (2.14×)

222 1301 578 730 311 415 160 241 82
(2.25×) (2.35×) (2.59×) (2.94×)

224 5609 2059 2683 1103 1308 573 785 297
(2.72×) (2.43×) (2.28×) (2.64×)

226 21772 7602 11337 3977 5774 2367 3324 1193
(2.86×) (2.85×) (2.44×) (2.79×)

it employs a Straus-based parallel MSM algorithm [Str64], which cannot perform as well
as Pippenger-based algorithms when the scale of MSM is large.

We also evaluate our MSM with the different number of threads to demonstrate that our
MSM algorithm is adapted to the high parallelism provided by GPUs. As shown in Figure
9, the throughput of our MSM grows almost linearly with the number of threads until the
thread number exceeds the GPU core number. Note that we perform the experiment in
the testbed V100, where each GPU card has 5,120 cores.

Table 4 gives their execution times on systems with multiple GPUs. Here we only
compare with Bellperson because it is the only baseline implementation that supports multi-
GPU execution. Our MSM yields up to 2.86× (1GPUs), 2.85× (2GPUs), 2.59× (4GPUs),
2.94× (8GPUs) speedup over that in Bellperson. Here, our multi-GPU implementation
shows a little non-linear acceleration with the number of GPUs. This is caused by the
number of subtasks ⌈λ

s ⌉ (e.g., ⌈255/20⌉ = 13) being non-divisible by the number of GPUs.
For example, two GPUs are assigned to 6 and 7 subtasks respectively, while four GPUs
are assigned to 3, 3, 3, and 4 subtasks respectively. Therefore, it requires 7 blocks of time
for 2 GPUs and 4 blocks of time for 4 GPUs (non-linear).

Next, we present the comparison results between our scheme and the two most recent
GPU implementations, namely [Yrr22] and [Mat22]. These two implementations use a
similar approach and both are concurrent works with our scheme. In Table 5, we show
the difference and our advantages over them. First, these two implementations require a
pre-computation step, while our scheme does not. The pre-computation method is used to
reduce the running time by precomputing a series of EC points and treating them as other
base points in MSM, as shown in [LFG23]. Note that the number of precomputed points
is multiple times greater than the original base points. Therefore, storing these points in

T. Lu et al. 21

Number of Cores in a V100 card

Figure 9: Throughput for our MSM scheme with the different number of execution threads.

Table 5: Execution time (millisecond) and storage cost for our MSM implementation and
two concurrent works with 224 MSM scale in Nvidia GeForce RTX 3090 Ti.

Imple. Precompute time Storage MSM time MSM time (1)

(random scalars) (clustered scalars)
Yrrid 3117 6 × 224 EC points 180 7623
MatterLab 3857 4 × 224 EC points 205 4640
cuZK / 1 × 224 EC points 226 246

(1) Here, the MSM computation with clustered scalars represents the scalars used in
MSM only have 32 different values, which are not randomly distributed.

GPU memory and utilizing them at runtime can lead to a huge storage overhead, which is
an obstacle for large-scale MSM computation. Second, these two implementations focus
on accelerating MSM with random scalars, rather than MSM for zkSNARK like [Gro16],
where the scalars are related to the proving function inputs and are normally non-random.
Their execution time for MSM with non-random scalars is much longer than ours.

5.3 Evaluating the Overall Performance of cuZK
In this section, we give the overall performance of cuZK. Here, we evaluate the baseline
implementation [Bel19] and cuZK with the BLS12-381 curve and perform all experiments
on the testbed V100 using single or multiple GPU cards. We omit the corresponding results
of another GPU implementation Mina [Min19] for simplicity because its performance is
much worse than [Bel19].

Table 6 gives the execution times of the baseline implementation and cuZK on several
GPUs across various constraint scales (S). The experimental results show that cuZK has
advantages in both individual operations and overall performance. It provides speedups of
up to 203.59×, 2.55×, 16.06× for MUL, MSM and GPU-CPU data transfer operations,
respectively. The overall performance of cuZK achieves over 2.65× (1GPU), 3.02× (2GPU),
3.53× (4GPU) speedup. Below we give a deeper insight into our experimental results.

First, we notice other GPU implementations like [Bel19] and [Min19] underestimate
computational costs of the MUL operation. They choose to perform the MUL operation on
CPU, which can significantly hinder the overall performance. Our approach of offloading
the MUL module into GPUs greatly improves its performance. Second, the speedup of
our MSM module over [Bel19] is consistent with the results described in Section 5.2. This
illustrates that our MSM is well compatible with Groth’s protocol. Note that there are
multiple MSM operations in Groth’s protocol, and their corresponding scalars are not
uniformly distributed. Third, our data transfer time drops by an order of magnitude. This

22 cuZK

Table 6: Execution time (millisecond) for Bellperson and cuZK on several GPUs across
various constraint scales (S).

1 × V100

S Bellperson [Bel19] cuZK (ours) Speedup(4)
MUL(1) MSM DT(2) Proof(3) MUL(1) MSM DT(2) Proof(3)

219 207 1903 202 2623 2.62 904 17 983 2.67
220 427 3230 417 4448 4.07 1559 29 1679 2.65
221 947 5709 881 7956 5.66 2551 56 2758 2.88
222 1846 10044 1577 14196 10.05 4687 109 5075 2.80
223 3737 20559 3358 29126 19.02 9157 209 9909 2.94

2 × V100
219 208 1005 145 1685 2.24 478 15 555 3.03
220 422 1980 252 3086 3.94 786 24 902 3.42
221 923 3193 554 5146 5.49 1285 45 1479 3.50
222 1836 5952 1028 9499 9.97 2515 82 2875 3.30
223 3860 10357 2010 17170 18.96 4984 156 5683 3.02

4 × V100
219 206 556 116 1896 2.89 297 24 390 4.86
220 420 877 378 2345 4.11 431 45 577 4.06
221 920 1779 667 4062 6.02 698 89 945 4.30
222 1785 3081 1129 6899 10.30 1329 153 1763 3.91
223 3831 5686 1659 12119 19.50 2579 306 3431 3.53

(1) MUL in Bellperson is executed in CPU, while that in cuZK is executed in GPU.
(2) DT represents the execution time for CPU-GPU data transfer.
(3) Proof represents the execution time for the proof generation, which consists of operations

including MUL, NTT, MSM, CPU-GPU data transfer, and other less critical operations.
(4) The speedup refers to the proof generation time in Bellperson divided by the proof

generation time in cuZK.

is because we overlap all MSM-required EC points transfer with the device computation, as
shown in Figure 8 and Section 4.4. Fourth, our superiority over the baseline implementation
becomes more apparent as the number of GPU cards increases. This benefits from that
our multi-GPU implementation does not have much overhead compared to our single-GPU
implementation.

Finally, we evaluate cuZK in real-world applications to demonstrate its practicality.
We choose to employ cuZK in a well-known GPU-accelerated cryptocurrency application,
namely Filecoin [BG17]. We modify FileCoin by extracting the constraints (represented by
R1CS) used for proving correct storage in Filecoin and then using cuZK as the backend to
generate the proof. We measure and compare this proof generation time using Bellperson
as the default backend and using cuZK as the new backend. As a result, cuZK provides a
speedup of 2.18× over the original GPU implementation of Filecoin.

6 Conclusion
Summary. In this work, we present cuZK, an efficient GPU implementation of zkSNARK.
It achieves high performance with the following approaches. First, cuZK adopts a new
parallel MSM algorithm. This algorithm converts the major operations used in the
Pippenger algorithm to a series of basic sparse matrix operations, which leads to it
adapting to the high parallelism provided by GPUs and having nearly perfect linear
speedup over the Pippenger algorithm. Second, we parallelize and perform the MUL
operation of zkSNARK in GPUs. Along with our self-designed MSM parallel scheme and
well-studied NTT parallel scheme, cuZK achieves the parallelization of all computational

T. Lu et al. 23

zkSNARK operations. Third, we reduce the latency overhead caused by CPU-GPU data
transfer by overlapping data transfer and device computation. In addition, redundant
data transfer is not needed as it is automatically eliminated in cuZK when we perform all
zkSNARK operations on GPUs. As a result, our evaluation shows cuZK has a considerable
speedup over other state-of-the-art GPU implementations of zkSNARK.

Further work. Our work can be extended to other ZKP protocols that require MSM,
MUL, and NTT. However, it is impossible to extend our techniques to all ZKP protocols.
In the future, we plan to explore more GPU-accelerated methods for a wider range of
ZKP protocols. In addition, to the best of our knowledge, none of the existing CPU/GPU
implementations of zkSNARK (including ours) are designed to prevent various side-channel
attacks. These attacks on zkSNARK could cause information leakage. Therefore, we
believe it will be a further research direction that deserves a stand-alone study.

References
[ABC+22] Kaveh Aasaraai, Don Beaver, Emanuele Cesena, Rahul Maganti, Nicolas

Stalder, and Javier Varela. Fpga acceleration of multi-scalar multiplication:
Cyclonemsm. Cryptology ePrint Archive, 2022.

[ABVL+20] Ahmad Al Badawi, Bharadwaj Veeravalli, Jie Lin, Nan Xiao, Matsumura
Kazuaki, and Aung Khin Mi Mi. Multi-gpu design and performance evaluation
of homomorphic encryption on gpu clusters. IEEE Transactions on Parallel
and Distributed Systems, 32(2):379–391, 2020.

[Bai10] Eric Bainville. Opencl fast fourier transform, 2010. http://www.bealto.
com/gpu-fft_group-1.html, Accessed: 2022-11-22.

[BDLO12] Daniel J Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk.
Faster batch forgery identification. In International Conference on Cryptology
in India, pages 454–473. Springer, 2012.

[Bel15] Bellman: a crate for building zksnark circuits, 2015. https://github.com/
zkcrypto/bellman, Accessed: 2022-11-22.

[Bel19] Bellperson: Gpu parallel acceleration for zksnark, 2019. https://github.
com/filecoin-project/bellperson, Accessed: 2022-11-22.

[BG09] Nathan Bell and Michael Garland. Implementing sparse matrix-vector multi-
plication on throughput-oriented processors. In Proceedings of the conference
on high performance computing networking, storage and analysis, pages 1–11,
2009.

[BG17] Juan Benet and Nicola Greco. Filecoin: A decentralized storage network.
Protocol Labs, pages 1–36, 2017.

[BMRS20] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda:
Decentralized cryptocurrency at scale. Cryptology ePrint Archive, 2020.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,
and Nicholas Ward. Marlin: preprocessing zksnarks with universal and updat-
able srs. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 738–768. Springer, 2020.

http://www.bealto.com/gpu-fft_group-1.html
http://www.bealto.com/gpu-fft_group-1.html
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman
https://github.com/filecoin-project/bellperson
https://github.com/filecoin-project/bellperson

24 cuZK

[CL03] Chin-Chen Chang and Der-Chyuan Lou. Fast parallel computation of multi-
exponentiation for public key cryptosystems. In Proceedings of the Fourth
International Conference on Parallel and Distributed Computing, Applications
and Technologies, pages 955–958. IEEE, 2003.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

[DBOG14] S Dalton, N Bell, L Olson, and M Garland. Cusp: A c++ templated sparse
matrix library., 2014. https://cusplibrary.github.io, Accessed: 2022-11-
22.

[Gar08] Michael Garland. Sparse matrix computations on manycore gpu’s. In Pro-
ceedings of the 45th annual design automation conference, pages 2–6, 2008.

[GD14] Joseph L Greathouse and Mayank Daga. Efficient sparse matrix-vector
multiplication on gpus using the csr storage format. In SC’14: Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 769–780. IEEE, 2014.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
pages 626–645. Springer, 2013.

[GJCC20] Naina Gupta, Arpan Jati, Amit Kumar Chauhan, and Anupam Chattopad-
hyay. Pqc acceleration using gpus: Frodokem, newhope, and kyber. IEEE
Transactions on Parallel and Distributed Systems, 32(3):575–586, 2020.

[GM17] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowl-
edge from simulation-extractable snarks. In Annual International Cryptology
Conference, pages 581–612. Springer, 2017.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complex-
ity of interactive proof systems. SIAM Journal on computing, 18(1):186–208,
1989.

[Gna20] gnark-crypto: gnark-crypto provides efficient cryptographic primitives in
go., 2020. https://github.com/ConsenSys/gnark-crypto.git, Accessed:
2022-11-22.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In International Conference on the Theory and Application of Cryptology and
Information Security, pages 321–340. Springer, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In
Annual international conference on the theory and applications of cryptographic
techniques, pages 305–326. Springer, 2016.

[GWC19] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, 2019.

[GXW21] Yiwen Gao, Jia Xu, and Hongbing Wang. Cunh: Efficient gpu implementations
of post-quantum kem newhope. IEEE Transactions on Parallel and Distributed
Systems, 33(3):551–568, 2021.

https://cusplibrary.github.io
https://github.com/ConsenSys/gnark-crypto.git

T. Lu et al. 25

[Har22] Hardcaml zprize, 2022. https://zprize.hardcaml.com/, Accessed: 2022-
12-09.

[HB22] Youssef EL Housni and Gautam Botrel. Edmsm: Multi-scalar-multiplication
for recursive snarks and more. Cryptology ePrint Archive, 2022.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Pro-
ceedings of the twenty-fourth annual ACM symposium on Theory of computing,
pages 723–732, 1992.

[KJPA20] Sangpyo Kim, Wonkyung Jung, Jaiyoung Park, and Jung Ho Ahn. Accel-
erating number theoretic transformations for bootstrappable homomorphic
encryption on gpus. In 2020 IEEE International Symposium on Workload
Characterization (IISWC), pages 264–275. IEEE, 2020.

[LFG23] Guiwen Luo, Shihui Fu, and Guang Gong. Speeding up multi-scalar multi-
plication over fixed points towards efficient zksnarks. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 358–380, 2023.

[Lib14] libsnark: a c++ library for zksnark proofs, 2014. https://github.com/
scipr-lab/libsnark, Accessed: 2022-11-22.

[LZW21] Gangzhao Lu, Weizhe Zhang, and Zheng Wang. Optimizing depthwise sep-
arable convolution operations on gpus. IEEE Transactions on Parallel and
Distributed Systems, 33(1):70–87, 2021.

[Mat22] Accelerating msm operations on gpu/fpga, 2022. https://github.com/
matter-labs/z-prize-msm-gpu, Accessed: 2022-12-09.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000.

[Mil04] Victor S Miller. The weil pairing, and its efficient calculation. Journal of
cryptology, 17(4):235–261, 2004.

[Min19] Mina: gpu groth16 prover, 2019. https://github.com/MinaProtocol/
gpu-groth16-prover-3x, Accessed: 2022-11-22.

[NCVK10] Maxim Naumov, L Chien, Philippe Vandermersch, and Ujval Kapasi. Cusparse
library. In GPU Technology Conference, 2010.

[Opp99] Alan V Oppenheim. Discrete-time signal processing. Pearson Education India,
1999.

[Pip76] Nicholas Pippenger. On the evaluation of powers and related problems. In
17th Annual Symposium on Foundations of Computer Science (sfcs 1976),
pages 258–263. IEEE Computer Society, 1976.

[Pol22] Polygon: Ethereum transparent scalability with l2 zk-rollup., 2022. https:
//polygon.technology/solutions/polygon-zkevm, Accessed: 2022-11-22.

[Roo94] Peter de Rooij. Efficient exponentiation using precomputation and vector ad-
dition chains. In Workshop on the Theory and Application of of Cryptographic
Techniques, pages 389–399. Springer, 1994.

[SCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE symposium on security and privacy,
pages 459–474. IEEE, 2014.

https://zprize.hardcaml.com/
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://github.com/matter-labs/z-prize-msm-gpu
https://github.com/matter-labs/z-prize-msm-gpu
https://github.com/MinaProtocol/gpu-groth16-prover-3x
https://github.com/MinaProtocol/gpu-groth16-prover-3x
https://polygon.technology/solutions/polygon-zkevm
https://polygon.technology/solutions/polygon-zkevm

26 cuZK

[Spp22] Zero-knowledge template library., 2022. https://github.com/
supranational/sppark, Accessed: 2022-12-09.

[Str64] Ernst G Straus. Addition chains of vectors (problem 5125). American
Mathematical Monthly, 70(806-808):16, 1964.

[TDM+14] Yuan Tao, Yangdong Deng, Shuai Mu, Mingfa Zhu, Limin Xiao, Li Ruan,
and Zhibin Huang. Atomic reduction based sparse matrix-transpose vector
multiplication on gpus. In 2014 20th IEEE International Conference on
Parallel and Distributed Systems (ICPADS), pages 987–992. IEEE, 2014.

[WQS+20] Xinlei Wang, Yuxing Qiu, Stuart R Slattery, Yu Fang, Minchen Li, Song-
Chun Zhu, Yixin Zhu, Min Tang, Dinesh Manocha, and Chenfanfu Jiang.
A massively parallel and scalable multi-gpu material point method. ACM
Transactions on Graphics (TOG), 39(4):30–1, 2020.

[WZC+18] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion
Stoica. Dizk: A distributed zero knowledge proof system. In 27th USENIX
Security Symposium (USENIX Security 18), pages 675–692, 2018.

[Xav22] Charles F Xavier. Pipemsm: Hardware acceleration for multi-scalar multipli-
cation. Cryptology ePrint Archive, 2022.

[Yrr22] Z-prize msm on the gpu submission., 2022. https://github.com/yrrid/
submission-msm-gpu, Accessed: 2022-12-09.

[ZC15] Zhichao Zhao and T-H Hubert Chan. How to vote privately using bitcoin.
In International Conference on Information and Communications Security,
pages 82–96. Springer, 2015.

[ZFZS20] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. Zero knowledge
proofs for decision tree predictions and accuracy. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pages
2039–2053, 2020.

[ZGK+17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. vsql: Verifying arbitrary sql queries over dynamic
outsourced databases. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 863–880. IEEE, 2017.

[Zpr22] Accelerating msm operations on gpu., 2022. https://www.zprize.io/
prizes/accelerating-msm-operations-on-gpu-fpga, Accessed: 2022-12-
09.

[ZWW+21] Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, and Bo Feng.
Veriml: Enabling integrity assurances and fair payments for machine learn-
ing as a service. IEEE Transactions on Parallel and Distributed Systems,
32(10):2524–2540, 2021.

[ZWZ+21] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan
Long, Cong Wang, Dong Zhou, Mingyu Gao, and Guangyu Sun. Pipezk:
Accelerating zero-knowledge proof with a pipelined architecture. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 416–428. IEEE, 2021.

https://github.com/supranational/sppark
https://github.com/supranational/sppark
https://github.com/yrrid/submission-msm-gpu
https://github.com/yrrid/submission-msm-gpu
https://www.zprize.io/prizes/accelerating-msm-operations-on-gpu-fpga
https://www.zprize.io/prizes/accelerating-msm-operations-on-gpu-fpga

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	The zkSNARK Protocol of Groth
	Multi-scalar Multiplication
	The Pippenger Algorithm
	Sparse Matrix
	Graphics Processing Units

	A Faster Parallel MSM Algorithm
	Some Naive Approaches
	Our Parallel MSM Algorithm

	An Efficient GPU Implementation of zkSNARK
	Multi-scalar Multiplication on GPUs
	Matrix-vector Multiplication on GPUs
	Number-theoretic Transform on GPUs
	Overall Dataflow of cuZK

	Evaluation
	Experimental Setup
	Evaluating the MSM implementation
	Evaluating the Overall Performance of cuZK

	Conclusion

