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Abstract. At SAC 2011, Bertoni et al. introduced the keyed duplex construction as a
tool to build permutation based authenticated encryption schemes. The construction
was generalized to full-state absorption by Mennink et al. (ASIACRYPT 2015).
Daemen et al. (ASIACRYPT 2017) generalized it further to cover much more use
cases, and proved security of this general construction, and Dobraunig and Mennink
(ASIACRYPT 2019) derived a leakage resilience security bound for this construction.
Due to its generality, the full-state keyed duplex construction that we know today has
plethora applications, but the flip side of the coin is that the general construction is
hard to grasp and the corresponding security bounds are very complex. Consequently,
the state-of-the-art results on the full-state keyed duplex construction are not used
to the fullest. In this work, we revisit the history of the duplex construction, give a
comprehensive discussion of its possibilities and limitations, and demonstrate how
the two security bounds (of Daemen et al. and Dobraunig and Mennink) can be
interpreted in particular applications of the duplex.
Keywords: sponge · duplex · permutation · applications · MAC · authenticated
encryption

1 Introduction
Since the introduction of the sponge hash construction by Bertoni et al. [BDPV07] in
2007, permutation based cryptography immensely gained in popularity. The sponge hash
function construction operates on a b-bit state, split into two parts: the inner part of size c
bits, called the “capacity”, and the outer part of size r bits, called the “rate”. To hash some
data P , the data is first injectively padded into r-bit blocks, which are then absorbed to the
outer part block by block, interleaved by a b-bit cryptographic permutation p. After the
last block, a squeezing phase starts, where the outer part of the state is output iteratively,
until a sufficient amount of digest bits are squeezed. As such, the sponge construction is
not just a hash function, but rather a hash function with variable output lengths (later
called an extendable output function, or XOF).

As a plain hash function construction, the sponge immediately faced rapid adoption
around the NIST SHA-3 competition [NIS07]: multiple candidates were inspired by the
sponge methodology, and the eventual winner Keccak that is now standardized as SHA-
3 [Nat15] internally uses the actual sponge construction. In part due to its minimalist
and simple design, the sponge construction is also a popular approach for lightweight
hashing [AHMN10,GPP11,BKL+11]. In the NIST Lightweight Cryptography competi-
tion [NIS19], 5 out of the 10 finalists [DEMS19,BCD+19,DEM+19,BBC+19,DHP+19],
including the winning scheme Ascon, support hashing using the sponge or a sponge-like
construction.

Bertoni et al. [BDPV08] proved in 2008 that the sponge construction is hard to differen-
tiate from a random oracle, in the indifferentiability framework of Maurer et al. [MRH04]
and Coron et al. [CDMP05], provided that the permutation is assumed to be perfectly
random and the adversary cannot make more than around 2c/2 permutation evaluations.
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This is a powerful result: it implies that the sponge construction behaves like a random
oracle and can replace it as such in many applications, provided at most 2c/2 permutation
evaluations are made. It also implies that the “conventional” hash function attacks like find-
ing collisions, preimages, and second preimages for the sponge construction are not easier
than for the random oracle, up to 2c/2 evaluations [AMP10, Appendix A]. (However, refer
to Lefevre and Mennink [LM22] for an improved security bound on the preimage resistance
of the sponge construction.) Another implication of the sponge function indifferentiability
result is that the construction can be easily used for keyed applications, such as keystream
generation and MAC computation [BDPV11b], reseedable pseudorandom sequence genera-
tion [BDPV10,GT16], and authenticated encryption [BDPV11a,BDPV12]. For example,
one can easily build a MAC construction out of the sponge by simply concatenating key
K and plaintext P , as in K∥P , and feeding it to the hash construction [BDPV11c]. (This
construction later became known as the “outer-keyed sponge construction.”) Security
of this and other constructions follows from the hash function indifferentiability result,
provided the number of permutation evaluations does not exceed 2c/2.

However, despite its power, it was quickly acknowledged that the indifferentiability
bound also has its limitation: the 2c/2 bound is tight for unkeyed use cases, i.e., for plain
cryptographic hashing, but for keyed use cases a higher level of security could be achieved.
This is because in keyed applications, one must make a distinction between permutation
evaluations known to the adversary and permutation evaluations unknown to the adversary.
This fact has led to an impressive amount of research on the generic security of keyed
versions of the sponge constructions, all for slightly differing constructions and with slightly
differing bounds. Chang et al. [CDH+12] suggested an alternative to simply hashing
K∥P , namely one where the initial state of the sponge contains the key in its inner part.
Andreeva et al. [ADMV15] generalized and improved the analyses of both constructions,
since then called the outer-keyed and inner-keyed sponge, and also analyzed security in
the multi-user setting. Naito and Yasuda [NY16] developed an improved security analysis
of these constructions. Finally, whereas these two constructions stayed reasonably close to
the original sponge hash function design, it was quickly acknowledged that, due to the
secrecy of the sponge state after key injection, one can absorb data over the entire b-bit
state, and therewith maximize the absorption rate. The idea of full-state absorption was
first suggested in the donkeySponge MAC construction [BDPV12]. Security analyses for
fixed output length were given by Gaži et al. [GPT15], and for variable output length and
a general description of the full-state keyed sponge by Mennink et al. [MRV15a].

These constructions, the outer-keyed, inner-keyed, and full-state keyed sponge, are
mostly relevant for message authentication and stream encryption. Authenticated encryp-
tion, on the other hand, is typically done via the keyed duplex construction. The keyed
duplex dates back to a work of Bertoni et al. [BDPV11a] from 2011, and is a stateful
sponge-inspired construction that consists of an initialization interface and a duplexing
interface. The initialization interface resets the state, and the duplexing interface can
be seen as a 1-round sponge on the current state: it absorbs data, permutes the state,
and squeezes data. By subsequent application of the duplexing interface for different
types of inputs and outputs, one can build an authenticated encryption scheme, like the
SpongeWrap construction of Bertoni et al. [BDPV11a]. Also this duplex construction
has undergone various improvements. Mennink et al. [MRV15a] introduced the full-state
keyed duplex, where data is absorbed over the entire state (but squeezing only happens
from the outer part). Daemen et al. [DMV17] generalized the construction even further,
allowing arbitrary length keys, covering multi-user security by design, and most impor-
tantly, allowing the user to not only absorb data but also overwrite the outer part of
the state with data. This additional feature made the scheme more complex, but was
needed to make the general full-state duplex construction more broadly applicable (e.g.,
to bound the security in the case of release of unverified plaintext [ABL+14], see also
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Remark 5). Finally, Dobraunig and Mennink [DM19a] considered a slight generalization of
aforementioned full-state duplex, and analyzed security of the construction in the leakage
resilience setting. Dobraunig and Mennink applied their result to the encryption ideas
of Taha and Schaumont [TS14] and ISAP v2 [DEM+17,DEM+19]. This result was later
combined with the leakage resilience of the suffix keyed sponge construction [DM19b] to
obtain a security proof of the entire ISAP v2 construction under leakage [DEM+20].

Although the gradual generalization of the full-state duplex construction has its ad-
vantages, namely that it has the potential to apply to many applications, it also had a
disadvantageous side-effect: the security bounds became harder to grasp and it is not
immediately clear how to interpret the security results. To wit, the security bound of
Daemen et al. [DMV17] was defined in terms of 6 adversarial complexity parameters, and
the one of Dobraunig and Mennink [DM19a] even in 7 parameters, some of which were
rather obscure and required deep understanding of the construction to judge whether
they were relevant or not in a specific use case. This issue has sometimes led to incor-
rect security claims [DHP+20,DHP+19] and given rise to generic attacks [GBKR23] (see
also Section 9.3). More generally, this has led to the fact that we have not seen many
applications of the security bounds of Daemen et al. [DMV17] and of Dobraunig and
Mennink [DM19a], despite that the full-state keyed duplex has been present, in disguise,
in many applications over the years.

In a nutshell, we can conclude that the two general full-state duplex results of Daemen
et al. [DMV17] and of Dobraunig and Mennink [DM19a], although they are very powerful,
found very minimal applications. This seems to have two main reasons: (i) the general
full-state duplex is too general and it is not immediately clear how it can be used in
practical applications, and (ii) the security bounds are extremely complex and it is not
clear when — and if so, how — the security bounds simplify for specific applications.
In this work, we aim to give a comprehensive idea of the power of the versatile duplex
construction and of the two bounds of Daemen et al. and Dobraunig and Mennink.

1.1 Understanding the Duplex Construction
As first part of the work, we have a fresh look at the duplex construction as we know it
today, in particular the two very comparable constructions of Daemen et al. [DMV17]
and of Dobraunig and Mennink [DM19a]. The constructions are, in fact, almost identical,
barring two differences: (i) the construction of Dobraunig and Mennink allowed for use
cases that rotated the initialized state by a certain amount of bits, and (ii) the two schemes
adopted a different type of “phasing”, referring to what operations constitute a single
duplex round.

The first difference makes the construction of Dobraunig and Mennink slightly more
general, and we therefore adopt their scheme over that of Daemen et al., noting that the
security result of Daemen et al. can be easily generalized to rotated initialized states.

The second difference between the constructions of Daemen et al. and Dobraunig and
Mennink, regarding the phasing, sounds rather innocent. For example, Daemen et al.
considered a single duplexing call to consist of a sequential operation of permute-squeeze-
absorb, whereas Dobraunig and Mennink considered a single duplexing call to consist
of a sequential operation of squeeze-absorb-permute. While the choice of phasing does
not really change the security of the scheme, it is just about how to interpret the duplex,
different interpretations might be useful for different applications of the duplex. In our
attempt to fully understand the phasing of the duplex, and which choice of phasing might
be best suited for most applications, we took a fresh look at how the duplex has actually
grown from its original introduction in 2011 [BDPV11a] to the currently known full-fledged
construction, and observe that all results so far [BDPV11a,MRV15a,DMV17,DM19a] used
different phasing. Even more surprising, by looking ahead at applications of the duplex that
we consider in this work, we conclude that the most suitable phasing is yet another one: in
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this work, a duplexing call consists of a sequential application of permute-squeeze-absorb,
and the initialization simply initializes the state (with no permutation call, unlike in the
phasing of Daemen et al.).

In conclusion, the eventual construction that we adopt is the one of Dobraunig and
Mennink, i.e., with rotatable initial state, but with our new rephasing. The construction
is given in detail in Section 3.1. We also describe the ideal duplex in Section 3.2 and the
duplex security model in Section 3.3, mostly following Dobraunig and Mennink [DM19a]
mutatis mutandis. An in-depth discussion on the phasing of the duplex, including a
table summarizing all earlier and current phasing, is given in Section 3.4. In Section 4,
we summarize, in full generality, the security results of Daemen et al. [DMV17] and of
Dobraunig and Mennink [DM19a] in terms of our generalized construction of Section 3.1.

1.2 Understanding the Duplex Bound
The next step is to understand how the duplex can be used in applications. We demonstrate
its actual power along the discussion of multiple different constructions, all of them either
existing ones, direct derivatives of existing ones, or rather natural constructions in the first
place. The constructions are described in detail, and for each of these constructions, we
demonstrate the power of the duplex bounds of Daemen et al. [DMV17] and of Dobraunig
and Mennink [DM19a] by mapping these bounds to simplified and tangible security bounds
and implications.

In detail, in this work we look at the following constructions in detail:

• Truncated permutation in Section 5;

• Parallel keystream generation in Section 6;

• Sequential keystream generation in Section 7;

• Message authentication, and more specifically the full-state keyed sponge construction
and an application to the Ascon-PRF [DEMS21a] construction, in Section 8;

• Authenticated encryption, and more specifically a modernization of the
SpongeWrap [BDPV11a] construction, called MonkeySpongeWrap, in Section 9.

For some of these constructions, such as the keystream generation constructions, the
security bounds are not very surprising but nevertheless never written out in detail. For
others, including Ascon-PRF [DEMS21a] and the authenticated encryption construction
of Section 9, our new findings have immediate applications. Of particular interest is the
modernization of SpongeWrap, noting that the original SpongeWrap construction as intro-
duced and proven secure by Bertoni et al. [BDPV11a] was too restrictive. Instead, many
designers rather resorted to using the SpongeWrap construction inside the MonkeyDuplex
of Bertoni et al. [BDPV12], often with some adjustments. This construction, however,
was never formally analyzed and the original SpongeWrap proof did not carry over. The
MonkeySpongeWrap construction that we describe and analyze in Section 9 more closely
captures the applications, and has some other simplifications compared to the original
SpongeWrap construction as well.

1.3 Outline
The remainder of the work starts with preliminaries, mostly discussing conventional PRF
and AE security models, in Section 2. The duplex construction, including a discussion of
its rationale, its ideal counterpart, and the duplex security model, in Section 3. The known
security bounds of Daemen et al. [DMV17] and of Dobraunig and Mennink [DM19a] are
discussed in full generality in Section 4. The various use cases of the duplex construction
are given in Sections 5-9. The work is concluded in Section 10.
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2 Preliminaries
Throughout, N includes 0. Let n ∈ N and m ∈ N∪{∗}, meaning that m may take a natural
number or the dedicated symbol ∗. The set of n-bit strings is denoted {0, 1}n. The set of
arbitrarily length strings is denoted {0, 1}∗, and the set of right-side infinitely long strings
is denoted {0, 1}∞. We define by func(m, n) the set of all functions f : {0, 1}m → {0, 1}n,
by func(n) the set of all functions f : {0, 1}n → {0, 1}n, and by perm(n) the set of all
permutations p : {0, 1}n → {0, 1}n. By X ← Y we denote the assignment of the value Y
to X. For X ∈ {0, 1}n and Y ∈ {0, 1}m, we denote by X ⊕ Y the bitwise exclusive OR of
the first min{m, n} bits of X and Y .

For a finite set X , we denote by X
$←− X the uniformly random drawing of an element

X from a finite set X . We will slightly abuse this notation for sets with infinite inputs, and
by f $←− func(∗, n) we denote a function f that for each new input generates a uniformly
random string of length n bits.

For P ∈ {0, 1}∗\{∅}, we denote by padn(P ) the function that transforms P into blocks
P1, . . . , Pℓ, where |P1|, . . . , |Pℓ−1| = n and 0 < |Pℓ| ≤ n. For P ∈ {0, 1}∗, we denote
by pad10∗

n (P ) = padn(P10−|P |−1 mod n), i.e., the function that first appends a 1 and a
sufficient number of 0s to P , so that the last block will be of length n bits. For X ∈ {0, 1}n

and for m ≤ n, we denote by leftm(X) the m leftmost bits of X and by rightm(X) the m
rightmost bits of X. For Y ∈ {0, . . . , 2n − 1}, we denote by ⟨Y ⟩n the encoding of Y as an
n-bit string. We denote by rotm(X) the right-rotation of X by m bits.

2.1 Distinguisher
A distinguisher D is an algorithm that is given access to one or more oracles O, denoted
DO, and that outputs a bit b ∈ {0, 1} after interaction with O. If O and P are oracles, we
denote by

∆D (O ; P) =
∣∣Pr

(
DO → 1

)
−Pr

(
DP → 1

)∣∣
the advantage of a distinguisher D in distinguishing O from P. In our work, we will only be
concerned with information-theoretic distinguishers: these have unbounded computational
power, and their success probabilities are solely measured by the number of queries made
to the oracles.

2.2 PRF Security
Let b, k, t ∈ N and m ∈ N∪{∗}. Consider a function F that gets as input a key K ∈ {0, 1}k

and a plaintext P ∈ {0, 1}m, outputs a value T ∈ {0, 1}t, and that is instantiated using
a b-bit permutation p ∈ perm(b). We will consider multi-user security of F, where a
distinguisher can query up to µ ≥ 1 instantiations of the scheme, all of which are based
on the same permutation p. The multi-user pseudorandom function (PRF) security of F
against a distinguisher D is defined as

Advµ-prf
F (D) = ∆D

((
F[p]K[j]

)µ

j=1, p± ;
(
Rprf

j

)µ

j=1, p±
)

, (1)

where K = (K[1], . . . , K[µ]) $←− ({0, 1}k)µ, p $←− perm(b), ± indicates that the distinguisher
can make forward and inverse queries, and Rprf

1 , . . . , Rprf
µ

$←− func(m, t).
For PRF security, the distinguisher is usually bounded by the number of queries q

it makes to the µ constructions (F[p]K[j] or Rprf
j for j = 1, . . . , µ), the total construction

query length in blocks σ, and the number of queries N to the primitive.
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2.3 AE Security
Let b, k, n, t ∈ N. An authenticated encryption scheme AE consists of an encryption
function ENC and a decryption function DEC. The encryption function ENC gets as input
a key K ∈ {0, 1}k, a nonce U ∈ {0, 1}n (typically, one uses N , but that parameter will be
used to bound the adversarial resources, hence we select U for “unique”), associated data
A ∈ {0, 1}∗, and a plaintext P ∈ {0, 1}∗, and it outputs a ciphertext C ∈ {0, 1}|P | and a
tag T ∈ {0, 1}t. The decryption function DEC gets as input a key K ∈ {0, 1}k, a nonce
U ∈ {0, 1}n, associated data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}t,
and it outputs either a plaintext P ∈ {0, 1}|C| if the tag is correct, or a dedicated ⊥-symbol
if the tag is incorrect. The two functions should satisfy

DEC(K, U, A, ENC(K, U, A, P )) = P .

We will restrict our focus to authenticated encryption instantiated using a b-bit per-
mutation p ∈ perm(b). As before, we will consider multi-user security of AE, where a
distinguisher can query up to µ ≥ 1 instantiations of the scheme, all of which are based on
the same permutation p. The multi-user authenticated encryption (AE) security of AE
against a distinguisher D is defined as

Advµ-ae
AE (D) = ∆D

((
ENC[p]K[j], DEC[p]K[j]

)µ

j=1, p± ;
(
Rae

j ,⊥
)µ

j=1, p±
)

, (2)

where K = (K[1], . . . , K[µ]) $←− ({0, 1}k)µ, p $←− perm(b), and the functions Rae
1 , . . . , Rae

µ

that for each new input (U, A, P ) return a random string of size |P |+ t bits. The function
⊥ returns the ⊥-symbol for each query.

For AE security, we will only consider nonce-respecting distinguishers. These distin-
guishers never make, for any j ∈ {1, . . . , µ}, two encryption queries to ENCK[j] for the
same nonce U . These distinguishers are also not allowed to query, for any j ∈ {1, . . . , µ},
their decryption oracle (DECK[j] in the real world and ⊥ in the ideal world) on input of
the output of an earlier encryption query (ENCK[j] in the real world and Rae

j in the ideal
world). The distinguisher is usually bounded by the number of queries q it makes to the µ
constructions ((ENC[p]K[j], DEC[p]K[j]) or (Rae

j ,⊥) for j = 1, . . . , µ), the total construction
query length in blocks σ, and the number of queries N to the primitive.

3 Duplex Construction and Security Model
We describe the general duplex construction of Daemen et al. [DMV17], but we do so in
the notation of Dobraunig and Mennink [DM19a]. This notation allows us to easier discuss
the multiple use cases in Sections 5-9 in a consistent and clean way without conflicting
notation. We remark that the main change in notation between the original work of
Daemen et al. and the newer work of Dobraunig and Mennink is in the parametrization of
the bit strings that are processed in/by the duplex construction; the security parameters
and state sizes are identical in the works of Daemen et al., Dobraunig and Mennink, and
this work. As a rule of thumb, calligraphic letters denote sets, sans serif letters denote
functions, capital letters denote state values, and small letters denote state sizes. A few
exceptions apply when the complexity of the distinguisher is defined in Section 3.3.

The general keyed duplex construction that we consider will be the one of Dobraunig
and Mennink [DM19a] but with (yet another) rephasing. It is given in Section 3.1. We
describe the ideal equivalent of it in Section 3.2, and define the duplex security model in
Section 3.3. In Section 3.4 we discuss the history of duplex phasing and put the phasing
of our description of Section 3.1 into context. Sections 3.1-3.3 are largely copied from
Dobraunig and Mennink [DM19a], but differ in the rephasing and are amended with clearly
indicated remarks important for further understanding of this work.
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Figure 1: The duplexing interface of KD.

3.1 Duplex Construction
Let b, c, r, k, µ, α ∈ N, with c + r = b, k ≤ b, and α ≤ b− k. We describe the keyed duplex
construction KD in Algorithm 1. The keyed duplex construction gets as input a key array
K = (K[1], . . . , K[µ]) ∈ ({0, 1}k)µ consisting of µ keys, and it is instantiated using a b-bit
permutation p ∈ perm(b). The construction internally maintains a b-bit state S besides
the key material, and has two interfaces: KD.init and KD.duplex.

Algorithm 1 Keyed duplex construction KD[p]K
Interface: KD.init
Input: (δ, IV ) ∈ {1, . . . , µ} × IV
Output: ∅

S ← rotα(K[δ] ∥ IV )
return ∅

Interface: KD.duplex
Input: (flag, P ) ∈ {true, false} × {0, 1}b

Output: Z ∈ {0, 1}r

S ← p(S)
Z ← leftr(S)
S ← S ⊕ [flag] · (Z∥0b−r)⊕ P ▷ if flag, overwrite outer part
return Z

The initialization interface gets as input a key index δ ∈ {1, . . . , µ} and an initialization
vector IV ∈ IV ⊆ {0, 1}b−k, and initializes the state with the δ-th key and the initialization
vector IV as S ← rotα(K[δ] ∥ IV ). It outputs nothing.

The duplexing interface gets as input a flag flag ∈ {true, false} and a new data block
P ∈ {0, 1}b. The interface first applies an evaluation of the underlying permutation p
on the state S. Then, it outputs an r-bit block Z ∈ {0, 1}r off the internal state S, and
transforms the state using the new data block P . The flag flag describes how absorption
is done on the r leftmost bits of the state that are squeezed: those r bits are either
overwritten (if flag = true) or XORed with r bits of the input block P (if flag = false).
See also Figure 1, where the duplex is depicted for key offset α = 0.
Remark 1. The sole difference between our construction and that of Dobraunig and
Mennink [DM19a] is in the rephasing of the duplex interface. In a nutshell, in our
description one duplexing call consists of a primitive evaluation, a squeeze, and an absorb
(in this order), whereas in Dobraunig and Mennink one duplexing call consisted of a squeeze,
and absorb, and a permutation evaluation. As a matter of fact, the phasing in Algorithm 1
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Figure 2: A duplexing call with flag = false (a) and with flag = true (b).

is the same as the phasing of Daemen et al. [DMV17], with the difference that Daemen et
al. basically “integrated” one duplexing call in the initialization call. We separated those.
We will discuss the history duplex phasing in more detail in Section 3.4. As we will explain
in Section 4.3, the rephasing performed in our description does not change the security
results of Daemen et al. [DMV17] and Dobraunig and Mennink [DM19a].

Besides the phasing, our description of the duplex technically differs from that of
Daemen et al. in the fact that the original duplex construction of Daemen et al. did not
rotate the input, i.e., it matches Algorithm 1 for α = 0. Our construction is thus a strict
generalization, but it is easy to incorporate this change in the security analysis, and once
we describe the main security bound in Section 4.3, it will be described in generality for
any α. The use of rotating the initial state may be unclear at first sight, but a typical
example is given in [DM19a, Figure 4, Section 7.1]. This example consists of two duplex
constructions evaluated one after the other, where the first one puts the key at the top but
the second one uses the output of the first one as inner part and de facto puts the key at
the bottom (in this specific case, α = 1). In general, including rotation in the description
simply allows the duplex to be applicable to designs that put the key in the inner part
instead of the outer part.

Remark 2. The usage of the flag input flag is new since Daemen et al. [DMV17] and also
included in the work of Dobraunig and Mennink [DM19a]. It is confusing at first sight,
but does nothing else than distinguishing between a case where the outer part of the input
block is added to the state and where it replaces the state. In Figure 2, we give a simplified
depiction of a duplexing call for flag = false or flag = true.

Although a duplexing call gets as input a flag flag ∈ {true, false} and a new data block
P ∈ {0, 1}b, there is a difference between the two in that a user (typically) has more
freedom in choosing the latter. Indeed, the data block may for example consist of plaintext
bits, whereas the flag is determined by how the duplexing call occurs in the cryptographic
scheme. To be more precise, there exist cryptographic schemes built on top of the duplex
construction that sometimes allow the attacker to overwrite the outer part of the state; a
typical example for this is SpongeWrap (see Section 9).
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On the other hand, intuition suggests that one should try to limit the amount of
duplexing calls for flag = true, the reason being that in these duplexing calls an attacker
has much more freedom in choosing the value that is entered into the next permutation call.
Not coincidentally, the existing security bounds of the duplex construction in Section 4
rely on a parameter that keeps track of the amount of duplexing calls made for flag = true.

3.2 Ideal Duplex
Daemen et al. [DMV17] described the ideal extendable input function (IXIF) as ideal
equivalent for the keyed duplex. We will also consider this function, modulo syntactical
changes based on the changes we made on the keyed duplex in Section 3.1. The function
is described in Algorithm 2.

The IXIF has the same interface as the keyed duplex, but instead of being based on a
key array K ∈ ({0, 1}k)µ and being built on primitive p ∈ perm(b), it is built on a random
oracle ro : {0, 1}∗ × N→ {0, 1}∞, that is defined as follows. Let ro∞ : {0, 1}∗ → {0, 1}∞

be a random oracle in the sense of Bellare and Rogaway [BR93]. For P ∈ {0, 1}∗,
ro(P, r) outputs the first r bits of ro∞(P ). The IXIF maintains a path path, in which it
unambiguously stores all data input by the user. It is initialized by encode[δ] ∥ IV for
some suitable injective encoding function encode : {1, . . . , µ} → {0, 1}k, and upon each
duplexing call, the new plaintext block is appended to the path. Duplexing output is
generated by evaluating the random oracle on path.

Algorithm 2 Ideal extendable input function IXIF[ro]
Interface: IXIF.init
Input: (δ, IV ) ∈ {1, . . . , µ} × IV
Output: ∅

path ← encode[δ] ∥ IV
return ∅

Interface: IXIF.duplex
Input: (flag, P ) ∈ {true, false} × {0, 1}b

Output: Z ∈ {0, 1}r

Z ← ro(path, r)
path ← path ∥ ([flag] · (Z∥0b−r)⊕ P ) ▷ if flag, overwrite outer part
return Z

3.3 Security Model
Let b, c, r, k, µ, α ∈ N, with c + r = b, k ≤ b, and α ≤ b − k. Let p $←− perm(b) be a
random permutation, ro be a random oracle, and K

$←− ({0, 1}k)µ a random array of keys.
In the black-box security model, one considers a distinguisher that has access to either
(KD[p]K , p±) in the real world or (IXIF[ro], p±) in the ideal world, where “±” stands for
the fact that the distinguisher has bi-directional query access:

AdvKD(D) = ∆D
(
KD[p]K , p± ; IXIF[ro], p±)

. (3)

In our analyses, the distinguisher is obliged to always make at least one duplexing
call after an initialization call (this condition is required to make sure that the results
of [DMV17,DM19a] still hold after our duplex rephasing).
Remark 3. The analysis of Daemen et al. [DMV17] considered a slight relaxation of above
model, namely where the keys are not uniformly randomly generated, but rather randomly
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according to some distribution D. As this slight generalization hinders a conceptually
simple discussion of the applications, we have dropped this generalization and restrict our
focus to uniformly randomly generated keys.

The analysis of Dobraunig and Mennink [DM19a] significantly differs from above model
in that leakage is taken into account. In detail, in their model, each evaluation of p
within KD[p] might leak λ bits of information about its in- and/or output. Dobraunig and
Mennink also show how a specific use of the keyed duplex construction, namely one along
the same lines as a proposal of Taha and Schaumont [TS14] and as ISAP v2 [DEM+17,
DEM+20,DEM+19], results in leakage resilient encryption. General constructions, e.g.,
the ones we discuss in Sections 5-9, do not necessarily yield security in the leaky setting.

3.4 Understanding Duplex Phasing
One typical evaluation of a (long) duplex-based construction consists of (i) an absorp-
tion of the key and initialization vector, followed by an arbitrarily long loop of (ii) a
primitive evaluation, (iii) a squeeze, and (iv) an absorption of the data. In our de-
scription of Algorithm 1, step (i) is covered by an initialization call whereas (ii-iv) are
covered by a duplexing call. This seems to be the most logical choice, but it is not
that trivial. As a matter of fact, this choice of phasing differs from all earlier duplex
security results [BDPV11a,MRV15a,DMV17,DM19a]. In this section, we put our choice
in perspective. A visualization of the phasing approaches over time is given in Table 1.

The earliest introduction of the duplex, by Bertoni et al. in 2011 [BDPV11a], considered
one duplex round to consist of an absorption, a primitive evaluation, and a squeeze (in this
order). Mennink et al. in 2015 [MRV15a], who introduced the full-state duplex, followed
the same approach. Here, strictly seen in initialization the absorption was separated into
key absorption (inner part) and data absorption (outer part); these two parts of absorption
are merged in this discussion and in Table 1 we consider the first duplexing call to be an
initialization call as this interpretation makes most sense. The absorb-permute-squeeze
approach of Bertoni et al. and Mennink et al. makes sense historically, noting that one
duplex round can be seen as a “mini-sponge” and, indeed, Bertoni et al. argued security of
the duplex based on the indifferentiability of the sponge construction [BDPV08].

In 2017, Daemen et al. [DMV17] noticed, however, that this approach was too restrictive
in getting a good security bound. Indeed, the absorb-permute-squeeze approach technically
allows the attacker to always overwrite the outer part of the state to a certain value.
This is because the duplex security proof, by default, considers blockwise attackers: the
attacker can make a duplex evaluation and use the resulting squeeze to construct the data
block of the next duplexing call. In practical applications, it is sometimes possible for an
attacker to overwrite the outer part of the state, and it really depends on the use case.
For example, if a duplex construction is used for authenticated encryption, the attacker
has the possibility to overwrite the outer part of the state in decryption (however, see also
Remark 5 in Section 9).

Daemen et al. resolved the issue by rephasing the duplex to permute-squeeze-absorb,
with the subtle difference that absorption not only takes a data block but also flag flag
that indicates whether the outer part is overwritten or not. They, in addition, integrated
one integral duplexing call in the initialization, making the initialization consist of absorb-
permute-squeeze-absorb, where the first absorption consisted of key and initialization
vector. The phasing of Daemen et al. is also the phasing that we used in our description in
Algorithm 1, with the difference that we removed the duplexing call from the initialization
call. See also Table 1. This change has as main advantage that the primitive evaluations
only occur in duplexing calls and not in initialization calls, making the analysis and results
conceptually cleaner.

Dobraunig and Mennink [DM19a], took a different avenue. In their phasing, one
duplexing call consisted of squeeze-absorb-permute (with the initialization consisting of
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Table 1: Depiction of earlier and current phasing choice of the duplex construction. Here,
A stands for absorb, P for permutation evaluation, and S for squeeze. The first absorb
includes the key. We remark that there are differences how the absorption is implemented
in the five variants.

A P S A P S A P S A · · ·
BDPV11 [BDPV11a] init duplex duplex · · ·
MRV15 [MRV15a] init duplex duplex · · ·
DMV17 [DMV17] init duplex duplex · · ·
DM19 [DM19a] init duplex duplex · · ·
now (Alg. 1) init duplex duplex duplex · · ·

absorb-permute). Their approach was taken because they analyzed the duplex construction
under leakage and it made most sense to include the “next” permutation evaluation in
the duplexing call. In practical instantiations, however, one would not make the “last”
permutation call of a (long) duplex-based construction, and adopting their approach in
our work would lead to complications in the discussion of the use cases in Sections 5-9.

4 Security of Duplex Construction
In Section 4.1 we summarize the notation used to describe the adversarial resources. This
section is again largely copied from Dobraunig and Mennink [DM19a], but updated to
the current setting. Then, in Section 4.2, we will discuss a mathematical function used in
the duplex security bounds, namely the multicollision limit function. Finally, the known
(black-box) security bounds on the keyed duplex, derived from Daemen et al. [DMV17]
and Dobraunig and Mennink [DM19a], are given in Section 4.3.

4.1 Distinguisher’s Resources
We consider an information-theoretic distinguisher D that has access to either the real
world (KD[p]K , p±) or the ideal world (IXIF[ro], p±), where p is some permutation. Two
basic measures to quantify the distinguisher’s resources are its online complexity M and
offline complexity N :

• M : the number of distinct construction (duplexing) calls;

• N : the number of distinct primitive queries.

For each construction call, we define a path path that “registers” the data that got
absorbed in the duplex up to the point that the cryptographic primitive (p in the real world
and ro in the ideal world) is evaluated. For an initialization call (δ, IV ) 7→ ∅, the associated
path is defined as path = encode[δ] ∥ IV . For each duplexing call (flag, P ) 7→ Z, the value
[flag] · (Z∥0b−r) ⊕ P is appended to the path of the previous construction query. Not
surprisingly, the definition matches the actual definition of path in the IXIF[ro] construction
of Algorithm 2, but defining the same thing for the real world will allow us to better reason
about the security of the keyed duplex. Note that the value path contains no information
that is secret to the distinguisher. In order to reason about duplexing calls, we will also
define a subpath of a path, which is the path leading to the particular duplexing call. In
other words, for a path path, its subpath is simply path with the last b bits removed.

In order to derive a detailed and versatile security bound, that in particular well-
specifies how leakage influences the bound, we further parameterize the distinguisher as
follows. For initialization calls:

• Q: the number of initialization calls;

• QIV : the maximum number of initialization calls for a single IV .
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For duplexing calls:

• L: the number of duplexing calls with repeated subpath, i.e., M minus the number
of distinct subpaths;

• Ω: the number of duplexing queries with flag = true.

Note that these parameters can all be described as a function of the initialization calls,
duplexing calls, and the related path, and the distinguisher can compute these values
based on the queries it made so far. The path’s contain no secret information to the
distinguisher. Note that repetitions of an IV for the same user imply a repeated subpath.
The parametrization of the distinguisher is as that of Daemen et al. [DMV17]. The
parameters L and Ω are, as in [DMV17], used to upper bound the number of duplexing
calls for which the distinguisher may have set the r leftmost bits of the input to the
permutation in the duplexing call to a certain value of its choice. This brings us to the
last parameter:

• νfix: the maximum number of duplexing calls for which the adversary has set the
outer part to a single value leftr(T ).

Note that νfix ≤ L + Ω, but it may be much smaller in specific use cases of the duplex, for
example, if overwrites only happen for unique values. It also plays a role in the application
on Ascon-PRF in Section 8.3.

4.2 Multicollision Limit Function
We will use the notion of multicollision limit functions from Daemen et al. [DMV17], which
considers a balls-into-bins experiment tailored to sponge constructions.

Definition 1 (multicollision limit function). Let M, b, c, r ∈ N with c + r = b. Consider
the experiment of throwing M balls uniformly at random in 2r bins, and let ν be the
maximum number of balls in a single bin. We define the multicollision limit function νM

r,c

as the smallest natural number x that satisfies

Pr (ν > x) ≤ x

2c
.

The definition of multicollision limit functions looks a bit artificial, but is inspired by
the applications where it is used. In sponge or duplex proofs, we often need an upper
bound on the maximum multicollision in the outer part. Call this maximum ν. This value
ν then appears in the final security bound in a term of the form ν·N

2c . However, we can be
unlucky: there may be a multicollision of size larger than ν. Yet, if we then choose ν to be
equal to νM

r,c, by Definition 1 this happens with probability at most ν
2c . This fraction is

negligible compared to ν·N
2c .

There have been various approaches in bounding multicollisions in sponge-like authen-
ticated encryption schemes. For example, Jovanovic et al. [JLM14] used a straightforward
bounding that always incurs a factor r. The same approach is used by Chakraborty et
al. [CJN20]. In a follow-up work, Jovanovic et al. [JLM+19] improved the multicollision
bounding by performing a case distinction depending on the values (r, c). Daemen et
al. [DMV17] introduced the multicollision limit function as a definition specifically tailored
towards the sponge/duplex, as explained in previous paragraph. Later, Choi et al. [CLL19]
presented an alternative approach, which operates based on the expected size of the
maximal multicollision. This approach also incurs a logarithmic term, but may still be
preferable over the multicollision limit function in certain cases, as explained in Remark 4.

The multicollision limit function can be clearly estimated. In particular, using ele-
mentary probability theory and the fact that a binomial distribution can be bounded
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2r−200 2r−180 2r−160 2r−140 2r−120 2r−100 2r−80 2r−60 2r−40 2r−20 2r 2r+20
1

4

16

64

256

1024

4096

M

νMr,c

M/2r νM
r,256−r νM

r,400−r νM
r,800−r

2−256 — 2 4
2−128 2 4 7
2−64 4 7 12
2−32 8 12 23
2−16 14 21 40
2−8 23 34 64

20 57 80 139
28 601 707 944

216 70205 71484 74119
219 537313 540887 548194

Figure 3: Plot of the multicollision limit function for b = 256 (red, lowest), b = 400 (green,
middle), and b = 800 (blue, highest), based on (4), where νM

r,c is computed as function of
M/2r. Example values are given in the table.

by a Poisson distribution for certain parameters, Daemen et al. [DMV17, Section 6.5]
demonstrated that the targeted value x of Definition 1 satisfies

2be−M/2r (M/2r)x

(x−M/2r)x! ≤ 1 . (4)

It turns out that this bound behaves differently depending on the value M/2r, and Daemen
et al. also gave a technical interpretation of the upper bounds suggested for νM

r,c for specific
values of M/2r. We will describe these in more accessible terminology below, and also
exemplify those for a running example of (b, c, r) = (400, 272, 128).

• If M/2r < 1, an appropriate choice for νM
r,c is the smallest integer x such that

M/2r ≤ 2−b/x, i.e., x =
⌈

b
r−log2(M)

⌉
. For our running example, if M = 264, one

would get ν264

128,272 ≤ 7, and if M = 288, one would get ν288

128,272 ≤ 10;

• If M/2r = 1, an appropriate choice for νM
r,c is the smallest integer x such that

x ≥ ln(2)b
ln(x)−1 . For our running example, if M = 2128, one would get ν2128

128,272 ≤ 82;

• If M/2r > 1, the bound (4) becomes less controllable. However, if M is a multiple
of 2r, νM

r,c could be upper bounded by M
2r + ν2r

r,c ·
⌈

M
2r

⌉
. For our running example, if

M = 2132, one would get ν2132

128,272 ≤ 16 + 82 · 16 = 1328.

We remark that above example values on νM
128,272 are based on the simplified bounds; (4)

would give a tighter value. A depiction of (4) for b = 256, for our running example of
b = 400, and for b = 800, but with a more general choice of (c, r), is given in Figure 3.
A naive (non-optimized) Python script for computing the value x such that (4) holds, is
given in Appendix A.

4.3 Main Result
We can now state the existing security results on the keyed duplex construction in the
model of (3). In fact, we have two bounds that are derived using two different proof
techniques. The first bound, Theorem 1 is the original result of Daemen et al. [DMV17],
extended to cover arbitrary initial state rotation α. The security bound still holds under
the rephasing (cf., Remark 1), due to our requirement that the distinguisher always makes
at least one duplexing call after each initialization call.
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Theorem 1 (security of duplex construction [DMV17]). Let b, c, r, k, µ, α ∈ N, with
c + r = b, k ≤ b, and α ≤ b − k. Let p $←− perm(b) be a random permutation, and
K

$←− ({0, 1}k)µ a random array of keys. For any distinguisher D quantified as in Section 4.1
and with M + N ≤ 0.1 · 2c (cf., Remark 4),

AdvKD(D) ≤ (L + Ω)N
2c

+ 2ν
2(M−L)
r,c (N + 1)

2c
+

(
L+Ω+1

2
)

2c
(5a)

+ (M − L−Q)Q
2b −Q

+ M(M − L− 1)
2b

(5b)

+ Q(M − L−Q)
2min{c+k,max{b−α,c}} + QIV N

2k
+

(
µ
2
)

2k
. (5c)

The second bound, Theorem 2, is the leakage resilience result of Dobraunig and
Mennink [DM19a], restricted to the setting of zero leakage (λ = 0). Also for this result,
the rephasing (cf., Remark 1) does not change the bound, noting that the security analysis
of [DM19b] relies on a proper categorization of the construction evaluations into their
type (init, full, or fix , to be precise) and that the number of evaluations per type does not
change after rephasing. Also here, we rely on the condition that the distinguisher always
makes at least one duplexing call after each initialization call.

Theorem 2 (security of duplex construction [DM19a]). Let b, c, r, k, µ, α ∈ N, with c+r = b,
k ≤ b, and α ≤ b− k. Let p $←− perm(b) be a random permutation, and K

$←− ({0, 1}k)µ a
random array of keys. For any distinguisher D quantified as in Section 4.1,1

AdvKD(D) ≤ νfixN

2c
+

2νM
r,c(N + 1)

2c
+

νM
r,c(L + Ω) + max{νfix−1,0}

2 (L + Ω)
2c

(6a)

+
(

M−L−Q
2

)
+ (M − L−Q)(L + Ω)

2b
+

(
M+N

2
)

+
(

N
2
)

2b
(6b)

+ Q(M −Q)
2min{c+k,max{b−α,c}} + QIV N

2k
+

(
µ
2
)

2k
. (6c)

The bounds of Theorems 1 and 2 share many similarities, but also expose subtle
differences. These differences come from the different proof techniques. For example:

• Dobraunig and Mennink started their proof with a RP-to-RF-switch. This switch
contributed to the second fraction of (6b). The advantage of this switch is that it
significantly simplified further analysis of the scheme (and also led to easier-to-parse
terms), but on the downside, this fraction adds a term of the order O(N2/2b) to the
bound. In comparison, Daemen et al. also have a birthday bound term in 2b, namely
the second fraction of (5b), but this one is of the order O(M2/2b), where typically
M is much smaller than N ;

• Dobraunig and Mennink introduced a term νfix to resolve a minor lossiness in
the bound, noting that although there are typically L + Ω evaluations where the
distinguisher may have set the r leftmost bits to a value of its choice, the actual
number is in practice often smaller than L + Ω, namely νfix. The usage of νfix will
become apparent in the application to Ascon-PRF in Section 8.3.

1The max in the third fraction of (6a) was missing in the original bound, but should obviously be
included.
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In upcoming Sections 5-9, we will discuss various applications of the duplex construction
and of Theorems 1 and 2. In the security analyses of these applications, we will also
consider distinguishers that are bound with certain resources. One of them is the number
of distinct primitive queries, which always happens to be the same as the number of
distinct primitive queries in the duplex security proofs. We will henceforth stick to the
parameter N , just like in Section 4.1. For the online complexity of the distinguisher in
below applications, we will explicitly use different parameters than in Section 4.1, namely
q and σ, to make sure the transition of the bounds of Theorems 1 and 2 to the security of
the applications is clear and transparent. See also the models in Section 2.

Remark 4. The multicollision limit function of Definition 1 is for uniform throws with
replacement whereas Daemen et al. actually apply it to uniform throws without replacement.
For the setting considered in this work (their actual result is slightly more general), they
proved that the multicollision limit function for the case of M ′ ≤ M throws without
replacement is at most that of 2M ′ throws with replacement, provided M + N ≤ 0.1 · 2c

holds. It may be possible to avoid this side condition by deriving a direct multicollision
bound in case of drawing without replacement, or by resorting to the multicollision approach
of Choi et al. [CLL19]. However, both approaches will make the overall security bound
harder to interpret and the 0.1 · 2c limit is irrelevant in most cases anyway.

5 Use Case 1: Truncated Permutation
According to the well-known PRP-PRF switch [IR88,BKR94,HWKS98,BR06,CN08], an
n-bit PRP behaves like a PRF up to approximately 2n/2 evaluations. As this bound could
be problematic for small values of n, there has been performed a significant amount of
research to designing a PRF from a PRP with beyond-birthday bound security. These
studies have given rise to various schemes, like the sum of (secret) permutations [BKR98,
BI99, Luc00, Pat08, Pat10, Pat13, CLP14, MP15, DHT17], EDM [CS16, DHT17, MN17],
EDMD [MN17], truncation [Sta78,HWKS98,BI99,GG15,GG16,BN18,GGM18,Men19],
and the summation-truncation hybrid [GM20].

In recent years, advances have been made in understanding how to turn a public random
permutation into a PRF, constructions of which were often inspired by the above. For
example, Chen et al. [CLM19] considered a sum of externally keyed public permutations,
and Dutta et al. [DNT21] a permutation-based variant of EDM. In this section, we will
highlight the public permutation based variant of truncation. The construction is described
in Section 5.1 and its security is analyzed in Section 5.2.

5.1 Construction

Let b, c, r, k ∈ N, with c + r = b and k ≤ b. The truncated permutation construction
TP : {0, 1}k × {0, 1}b−k → {0, 1}r is defined as

TP[p](K, X) = leftr(p(K∥X)) . (7)

It can be described in terms of a duplex construction as in Algorithm 3, and as depicted in
Figure 4. In case we consider multiple instances of the scheme, the key input in Algorithm 3
will be replaced by a key array K = (K[1], . . . , K[µ]) ∈ ({0, 1}k)µ, and the first input to
KD.init will be the index of the instance that is evaluated. We admit that this description
is slightly odd, where first r bits of the permutation output are squeezed and then the
entire state is truncated, but this is simply done to make the similarity with the duplex
construction clear.
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Algorithm 3 Truncated permutation TP[p]
Input: (K, X) ∈ {0, 1}k × {0, 1}b−k

Output: Y ∈ {0, 1}r

Underlying keyed duplex: KD[p](K)
KD.init(1, X)
Y ← KD.duplex(false, 0b)
return Y

p
K

X

Y

discard

discard

\

k

\

b− k

\

r

\

c

init duplex

Figure 4: Truncated permutation TP. The function gets as input a key K and an input
value X. It outputs Y .

5.2 Security
As the truncated permutation construction TP of (7) can be described in terms of a duplex,
we can reduce the PRF security of TP to the security of the duplex construction, and
rely on the results of Section 4.3. Note that we obtain two different results, one based on
Theorem 1 and one based on Theorem 2. It depends on the actual values of b, c, r, k which
of the two bounds is better. In general, the former bound (based on Theorem 1) is better,
except if the bound is still ≪ 1 for q + N exceeding 0.1 · 2c, because in that case, this
bound is inapplicable (see Remark 4).

Theorem 3 (PRF security of truncated permutation). Let b, c, r, k, µ ∈ N, with c + r = b

and k ≤ b. Let p $←− perm(b) be a random permutation, and K
$←− ({0, 1}k)µ a random

array of keys. For any distinguisher D making at most q construction queries and N
primitive queries, we have the following results:

(i) Provided q + N ≤ 0.1 · 2c,

Advµ-prf
TP (D) ≤

2ν2q
r,c(N + 1)

2c
+

2
(

q
2
)

2b
+ µN

2k
+

(
µ
2
)

2k
; (8)

(ii) In general,

Advµ-prf
TP (D) ≤

2νq
r,c(N + 1)

2c
+

(
q+N

2
)

+
(

N
2
)

2b
+ µN

2k
+

(
µ
2
)

2k
. (9)

Intuitively, provided that ν2q
r,c is small enough, the result implies security as long as

N ≪ min{2c, 2k/µ} and q ≪ 2b/2.

Proof (Proof of Theorem 3). We will first discuss how TP fits in the description of the
duplex construction of Section 3.1, then we discuss what this means for the actual power
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of the distinguisher, i.e., the distinguisher’s resources of Section 4.1, and finally we derive
our bound.

Starting with mapping TP to the description of the duplex construction, note that we
also here consider multi-user security. In other words, we consider security of TP under
µ keys K[1], . . . , K[µ] ∈ {0, 1}k, which we store in key array K = (K[1], . . . , K[µ]) ∈
({0, 1}k)µ fed to the duplex construction. In addition, IV = {0, 1}b−k, i.e., IV simply
determines the domain of the truncated permutation construction. Now, an evaluation of
TP for key K[δ] ∈ {0, 1}k and input X ∈ {0, 1}b−k corresponds to calling the initialization
interface KD.init on input (δ, X) ∈ {1, . . . , µ}×IV , where the state is initialized as K[δ]∥X
(hence α = 0), subsequently calling the duplexing interface KD.duplex on no input and
outputting the leftmost r bits. See also Algorithm 3.

The TP distinguisher D can make q construction queries and N primitive queries. Each
construction query is made for different (δ, X) and corresponds to exactly one initialization
and one duplexing call. This particularly means that the parameters M and Q of the
distinguisher’s resources equal q. Another parameter of the distinguisher’s resources to
consider is QIV , the maximum number of initialization calls for a single IV , i.e., for
different X. Note that all distinguisher’s construction queries must be for different input
(δ, X). This means that QIV is at most µ, as each value X can be queried alongside at
most µ different keys. Finally, as each construction query de facto starts with a different
(δ, X) each path is distinct, and also no duplexing calls are made for flag = true (looking
at the construction, the flag simply does not matter). We conclude that L = Ω = 0 and
thus νfix = 0.

To summarize, the distinguisher’s resources of Section 4.1 satisfy:

parameter in parameter in
Section 4.1 current proof
M q
N N
Q q
QIV ≤ µ
L 0
Ω 0
νfix 0

If we plug these values into the bound (5) of Theorem 1, we obtain the following result,
provided q + N ≤ 0.1 · 2c:

AdvKD(D) ≤
2ν2q

r,c(N + 1)
2c

+
2
(

q
2
)

2b
+ µN

2k
+

(
µ
2
)

2k
. (10)

If we plug these values into the bound (6) of Theorem 2, we obtain the following result:

AdvKD(D) ≤
2νq

r,c(N + 1)
2c

+
(

q+N
2

)
+

(
N
2
)

2b
+ µN

2k
+

(
µ
2
)

2k
. (11)

The bound (10) is in general better. The subtle differences between the two bounds
arise from the fact that Dobraunig and Mennink started their proof with a RP-to-RF-
switch. This added the second term in (11) but lead to a simpler first term. See also the
remark regarding this RP-to-RF-switch at the end of Section 4.3. However, (10) only holds
provided q + N ≤ 0.1 · 2c. This means that (11) is still meaningful as it may stay well
below 1 once q + N goes beyond this bound. We will thus continue with both bounds.

What remains is to translate these bounds into the multi-user PRF security of TP.
This can be done by a simply triangle inequality, noting that the formal description TP[p]
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of Algorithm 3 is in fact a description TP[KD[p]], where the key array K input to TP is
directly fed into KD. Thus, denoting Rprf = (Rprf

1 , . . . , Rprf
µ ) $←− func(b− k, r)µ,

Advµ-prf
TP (D) = ∆D

(
TP[KD[p]]K , p± ; Rprf , p±

)
= ∆D

(
TP[KD[p]K ], p± ; Rprf , p±

)
≤ ∆D

(
TP[KD[p]K ], p± ; TP[IXIF[ro]], p±)

(12)

+ ∆D

(
TP[IXIF[ro]], p± ; Rprf , p±

)
. (13)

The distance of (12) is the security of KD as bounded in (10) or (11), and the distance
of (13) equals 0 as both oracles output uniform random and independent strings for each
input.

6 Use Case 2: Parallel Keystream Generation
The truncated permutation construction TP of Section 5 behaves like a PRF but only
outputs r bits. However, in practice, b is much larger than k and the input value X can be
quite large. It is thus possible to include a counter in X, and basically use TP in counter
mode, yielding a parallel keystream generation construction. The construction is described
in Section 6.1 and its security is analyzed in Section 6.2.

6.1 Construction
Let b, c, r, k, a ∈ N, with c + r = b and k + a < b. We consider the following duplex-based
parallel keystream generation construction:

P-SC : {0, 1}k × {0, 1}b−k−a × {0, . . . , r2a} → {0, 1}∗

(K, U, ℓ) 7→ S .
(14)

The construction gets as input a key K, a nonce U , and a requested keystream length
ℓ, and outputs a keystream S of length ℓ bits. It simply evaluates TP of (7) in counter
mode, on input of (K, U∥⟨i− 1⟩a) for i = 1, . . . , ⌈ℓ/r⌉. The construction is described in
Algorithm 4, and for one counter value i it is depicted in Figure 5. In case we consider
multiple instances of the scheme, the key input in Algorithm 4 will be replaced by a
key array K = (K[1], . . . , K[µ]) ∈ ({0, 1}k)µ, and the first input to KD.init will be the
index of the instance that is evaluated. We admit that the description in Figure 5 of the
construction is a bit odd, in the sense that K gets an own arrow while U and ⟨i⟩a have to
share an arrow. The reason for this depiction is to show the similarity with TP of Section 5.

Algorithm 4 Duplex-based parallel keystream generation P-SC[p]
Input: (K, U, ℓ) ∈ {0, 1}k × {0, 1}b−k−a × {0, . . . , r2a}
Output: S ∈ {0, 1}ℓ

Underlying keyed duplex: KD[p](K)
S ← ∅
for i = 1, . . . , ⌈ℓ/r⌉ do

KD.init(1, U∥⟨i− 1⟩a))
S ← S ∥ KD.duplex(false, 0b)

return leftℓ(S)
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Figure 5: One evaluation of duplex-based parallel keystream generation P-SC. The
function gets as input a key K, a nonce U , and a counter value i ∈ {1, . . . , 2a}. It outputs
a keystream block Si.

6.2 Security
PRF security of P-SC immediately follows from the fact that counter mode based on
a fixed-output-length random function is perfectly secure (as long as the input to the
underlying random function is never repeated), and from the fact that TP behaves like a
fixed-output-length random function, as proven in Theorem 3. As before, we obtain two
different results.
Theorem 4 (PRF security of duplex-based parallel keystream generation). Let b, c, r, k, a, µ ∈
N, with c + r = b and k + a < b. Let p $←− perm(b) be a random permutation, and
K

$←− ({0, 1}k)µ a random array of keys. For any nonce-respecting distinguisher D making
at most q construction queries, of total length at most σ permutation calls, and N primitive
queries, we have the following results:

(i) Provided σ + N ≤ 0.1 · 2c,

Advµ-prf
P-SC (D) ≤

2ν2σ
r,c(N + 1)

2c
+

2
(

σ
2
)

2b
+ µN

2k
+

(
µ
2
)

2k
; (15)

(ii) In general,

Advµ-prf
P-SC (D) ≤

2νσ
r,c(N + 1)

2c
+

(
σ+N

2
)

+
(

N
2
)

2b
+ µN

2k
+

(
µ
2
)

2k
. (16)

Just like the case of Theorem 3, provided that µ and ν2σ
r,c are small enough, the result

implies security as long as N ≪ min{2c, 2k} and σ ≪ 2b/2.

Proof (Proof of Theorem 4). The function P-SC can we written in terms of TP of (5) as

P-SC(K, U, ℓ) =
TP(K, U∥⟨0⟩a) ∥ TP(K, U∥⟨1⟩a) ∥ · · · ∥ TP(K, U∥⟨⌈ℓ/r⌉ − 1⟩a) ,

truncated to ℓ bits.
As such, security of P-SC against a distinguisher D making at most q construction

queries, of total length at most σ permutation calls, follows immediately from the security
of TP against a distinguisher D′ making at most σ construction queries (both D and D′

have primitive complexity N):

Advµ-prf
P-SC (D) ≤ Advµ-prf

TP (D′) .

The result now immediately follows from Theorem 3, with q replaced by σ.
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Figure 6: Duplex-based sequential keystream generation S-SC. The function gets as input
a key K and a nonce U . It outputs keystream blocks (S1, S2, . . .). The actual number of
output blocks is determined by an additional input parameter ℓ.

7 Use Case 3: Sequential Keystream Generation
The parallel keystream generation of Section 6 is clean and simple, but it also has a
disadvantage that the key is evaluated multiple times. This could be a problem if the
scheme is evaluated in a leaky environment. In addition, the sponge and duplex are mostly
designed to be evaluated in a sequential direction. We will now consider what the duplex
results of Section 4.3 could imply for the naive and most logical way of building stream
encryption from the duplex construction. The construction is described in Section 7.1 and
its security is analyzed in Section 7.2.

7.1 Construction
Let b, c, r, k ∈ N, with c + r = b and k ≤ b. We consider the following duplex-based
sequential keystream generation construction:

S-SC : {0, 1}k × {0, 1}b−k × N→ {0, 1}∗

(K, U, ℓ) 7→ S .
(17)

The construction gets as input a key K, a nonce U , and a requested keystream length ℓ,
and outputs a keystream S of length ℓ bits. It simply initializes a duplex with state K∥U ,
and then it makes duplexing calls that do not absorb any data but simply squeeze r bits
at a time. The construction is described in Algorithm 5, and is depicted in Figure 6. In
case we consider multiple instances of the scheme, the key input in Algorithm 5 will be
replaced by a key array K = (K[1], . . . , K[µ]) ∈ ({0, 1}k)µ, and the first input to KD.init
will be the index of the instance that is evaluated.

Algorithm 5 Duplex-based sequential keystream generation S-SC[p]
Input: (K, U, ℓ) ∈ {0, 1}k × {0, 1}b−k × N
Output: S ∈ {0, 1}ℓ

Underlying keyed duplex: KD[p](K)
S ← ∅
KD.init(1, U)
for i = 1, . . . , ⌈ℓ/r⌉ do

S ← S ∥ KD.duplex(false, 0b)
return leftℓ(S)
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7.2 Security
The S-SC construction described above is, in fact, the most logical way of keystream genera-
tion in the sponge. It can for example be recognized in the encryption of ISAP v2 [DEM+17,
DEM+20,DEM+19] and in Asakey [DMP22], though with a different initialization of the
state (rather than simply K∥U) in order to guarantee improved strength against side-
channel attacks.

The S-SC is, in fact, not just a duplex based construction, it is a specific case of the
full-state keyed sponge, and hence one can rely on the result of Mennink et al. [MRV15a].
However, below, we derive a more accurate bound using the results of Section 4.3. As
before, we obtain two different results.

Theorem 5 (PRF security of duplex-based sequential keystream generation). Let b, c, r, k, µ ∈
N, with c + r = b and k ≤ b. Let p $←− perm(b) be a random permutation, and
K

$←− ({0, 1}k)µ a random array of keys. For any nonce-respecting distinguisher D
making at most q construction queries, of total length at most σ permutation calls, and N
primitive queries, we have the following results:

(i) Provided σ + N ≤ 0.1 · 2c,

Advµ-prf
S-SC (D) ≤

2ν2σ
r,c(N + 1)

2c
+ (σ − q)q

2b − q
+

2
(

σ
2
)

2b

+ q(σ − q)
2min{c+k,b} + µN

2k
+

(
µ
2
)

2k
;

(18)

(ii) In general,

Advµ-prf
S-SC (D) ≤

2νσ
r,c(N + 1)

2c
+

(
σ−q

2
)

2b
+

(
σ+N

2
)

+
(

N
2
)

2b

+ q(σ − q)
2min{c+k,b} + µN

2k
+

(
µ
2
)

2k
.

(19)

Just like the case of Theorem 4, provided that µ and ν2σ
r,c are small enough, the result

implies security as long as N ≪ min{2c, 2k} and σ ≪ min{2(c+k)/2, 2b/2}.

Proof (Proof of Theorem 5). As in Theorem 3, we will first discuss how S-SC fits in the
description of the duplex construction of Section 3.1, then we discuss what this means for
the actual power of the distinguisher, i.e., the distinguisher’s resources of Section 4.1, and
finally we derive our bound.

The S-SC construction in fact looks very much like TP. Each initialization is made for a
different state: K[δ]∥U in S-SC and K[δ]∥X in TP. The main difference is that TP makes 1
duplexing call KD.duplex(false, 0b) per initialization call, whereas S-SC makes ⌈ℓ/r⌉ of them.
Concretely, this means that we again have a key array K = (K[1], . . . , K[µ]) ∈ ({0, 1}k)µ

fed to the duplex construction. In addition, IV = {0, 1}b−k, i.e., IV simply determines
the set of nonces of S-SC. As before, the state is initialized as K[δ]∥U (hence α = 0).

The S-SC distinguisher D can make q construction queries, of total length at most σ
duplexing calls, and N primitive queries. Each construction query is made for different
(δ, U) and corresponds to exactly one initialization and ⌈ℓ/r⌉ duplexing calls (where ℓ is
the input parameter to S-SC). The total amount of duplexing calls is at most σ. This
particularly means that the parameters M and Q of the distinguisher’s resources equal
σ and q, respectively. Another parameter of the distinguisher’s resources to consider is
QIV , the maximum number of initialization calls for a single IV , i.e., in current case, for
different U . As in the proof of Theorem 3, this value is bounded by µ, as each value U can
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be queried alongside at most µ different keys. (Note that one can imagine applications
with user-dependent U , in which case QIV = 1.) Finally, as each construction query de
facto starts with a different (δ, U) each path is distinct, and also no duplexing calls are
made for flag = true. We conclude that L = Ω = 0 and thus νfix = 0.

To summarize, the distinguisher’s resources of Section 4.1 satisfy:

parameter in parameter in
Section 4.1 current proof
M σ
N N
Q q
QIV ≤ µ
L 0
Ω 0
νfix 0

If we plug these values into the bound (5) of Theorem 1, we obtain the following result,
provided σ + N ≤ 0.1 · 2c:

AdvKD(D) ≤
2ν2σ

r,c(N + 1)
2c

+ (σ − q)q
2b − q

+
2
(

σ
2
)

2b

+ q(σ − q)
2min{c+k,b} + µN

2k
+

(
µ
2
)

2k
.

(20)

If we plug these values into the bound (6) of Theorem 2, we obtain the following result:

AdvKD(D) ≤
2νσ

r,c(N + 1)
2c

+
(

σ−q
2

)
2b

+
(

σ+N
2

)
+

(
N
2
)

2b

+ q(σ − q)
2min{c+k,b} + µN

2k
+

(
µ
2
)

2k
.

(21)

As in the proof of Theorem 3, the bound (20) is better in general, but (21) is better for
certain parameter settings. However, it is obvious that in this case, the differences are a bit
subtler than in the proof of Theorem 3 (though still minor). The final step of translating
these bounds into the multi-user PRF security of S-SC is identical to the reasoning in the
proof of Theorem 3, and henceforth omitted.

8 Use Case 4: Message Authentication
As mentioned in Section 7.2, the S-SC construction is not just a duplex based construction,
but rather a specific case of the full-state keyed sponge. In this section, we dive in more
detail into the full-state keyed sponge construction, and consider what the results of
Section 4.3 imply for this construction. The construction is described in Section 8.1 and
its security is analyzed in Section 8.2.

Note that the full-state keyed sponge construction can be found in many applications.
For example, the DonkeySponge of Bertoni et al. [BDPV12] is de facto a full-state keyed
sponge, be it with round-reduced permutations for which it is unreasonable to assume
perfect randomness. Chaskey [MMH+14] is also a variant of the full-state keyed sponge
construction. Ascon-PRF [DEMS21a] is a special case where the state is also initialized
with the key, but then one only does outer-part absorption. However, something special
holds for the Ascon-PRF construction, as we will discuss in Section 8.3.
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Figure 7: Full-state keyed sponge FSKS. The function gets as input a key K and a plaintext
P . The plaintext gets padded into w blocks as (P1, P2, . . . , Pw) ← padb(P ). It outputs
tag blocks (T1, T2, . . .) truncated to t bits.

8.1 Construction

Let b, c, r, k, t ∈ N, with c + r = b and k ≤ b. Let IV ⊆ {0, 1}b−k be a set of initialization
vectors. The full-state keyed sponge construction is defined as follows:

FSKS : {0, 1}k × IV × {0, 1}∗ → {0, 1}t

(K, IV , P ) 7→ T .
(22)

The construction gets as input a key K, an initialization vector IV (which may be repeated),
and a plaintext P , and outputs a tag T of length t bits. It simply initializes a duplex with
state K∥IV , then it absorbs plaintext blocks b bits at a time, and finally it squeezes tag
blocks r bits at a time. The construction is described in Algorithm 6 and is depicted in
Figure 7. In case we consider multiple instances of the scheme, the key input in Algorithm 6
will be replaced by a key array K = (K[1], . . . , K[µ]) ∈ ({0, 1}k)µ, and the first input to
KD.init will be the index of the instance that is evaluated.

Algorithm 6 Full-state keyed sponge FSKS[p]
Input: (K, IV , P ) ∈ {0, 1}k × IV × {0, 1}∗

Output: T ∈ {0, 1}t

Underlying keyed duplex: KD[p](K)

(P1, P2, . . . , Pw)← pad10∗

b (P )
T ← ∅
KD.init(1, IV )
for i = 1, . . . , w do

KD.duplex(false, Pi) ▷ discard output
for i = 1, . . . , ⌈t/r⌉ do

T ← T ∥ KD.duplex(false, 0b)
return leftt(T )

8.2 Security

Security of a variant of FSKS, where a full b-bit plaintext block was already absorbed at
initialization, already follows from the result of Mennink et al. [MRV15a], who derived the
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following bound:

Advµ-prf
FSKS(D) ≤ 2(qℓ)2

2b
+ 2q2ℓ

2c
+ ρN

2k
,

where the distinguisher can make q construction queries, each of maximum length ℓ,
and N primitive queries, and where ρ is the “multiplicity” (named µ in [MRV15a], but
renamed to avoid parameter collision), which roughly upper bounds the maximum amount
of construction query blocks for a certain fixed outer part. A comparable bound based on
the total online complexity σ was derived in their full version [MRV15b]:

Advµ-prf
FSKS(D) ≤ 2σ2

2b
+ 2qσ

2c
+ ρN

2k
.

However, as mentioned in [DMV17], this multiplicity term ρ should have been left implicit
in the proof. Below, we derive a new, more advanced, security bound based on the results
of Section 4.3. As before, we obtain two different results.

Theorem 6 (PRF security of full-state keyed sponge). Let b, c, r, k, t, µ ∈ N, with c+r = b

and k ≤ b. Let p $←− perm(b) be a random permutation, and K
$←− ({0, 1}k)µ a random

array of keys. For any distinguisher D making at most q construction queries, of total
length at most σ permutation calls, and N primitive queries, we have the following results:

(i) Provided σ + N ≤ 0.1 · 2c,

Advµ-prf
FSKS (D) ≤

2ν2σ
r,c(N + 1)

2c
+

(q − 1)N +
(

q
2
)

2c
+ (σ − q)q

2b − q
+

2
(

σ
2
)

2b

+ q(σ − q)
2min{c+k,b} + µN

2k
+

(
µ
2
)

2k
;

(23)

(ii) In general,

Advµ-prf
FSKS (D) ≤

2νσ
r,c(N + q)

2c
+

(q − 1)N +
(

q−1
2

)
2c

+
(

σ−q
2

)
+ (σ − q)q
2b

+
(

σ+N
2

)
+

(
N
2
)

2b

+ q(σ − q)
2min{c+k,b} + µN

2k
+

(
µ
2
)

2k
.

(24)

The significant difference between this result and that of Theorem 5 is the term
(q−1)N+(q

2)
2c . This term gives an additional constraint compared to those of Theorem 4.

Intuitively, provided that ν2σ
r,c is small enough, the result implies security as long as

N ≪ min{2c, 2k/µ}, σ ≪ min{2(c+k)/2, 2b/2}, and q ·N ≪ 2c.

Proof (Proof of Theorem 6). As in Theorem 3, we will first discuss how FSKS fits in the
description of the duplex construction of Section 3.1, then we discuss what this means for
the actual power of the distinguisher, i.e., the distinguisher’s resources of Section 4.1, and
finally we derive our bound.

The FSKS construction is, from a security perspective, quite different from the con-
structions of previous sections (TP, P-SC, and S-SC). The reason is (i) that there is no
unique nonce/input that makes sure the state is always initialized to a different value, and
(ii) that the distinguisher can freely choose the plaintexts input to the absorption part.
In detail, each initialization simply sets the state to K[δ]∥IV , where δ is the key index
and IV an initial value that can be reused. In other words, we again have a key array
K = (K[1], . . . , K[µ]) ∈ ({0, 1}k)µ fed to the duplex construction, and we have α = 0 and
IV as defined.
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The FSKS distinguisher D can make q construction queries, of total length at most σ
duplexing calls (counting both the absorption and the squeezing phase), and N primitive
queries. This particularly means that the parameters M and Q of the distinguisher’s
resources equal σ and q, respectively. Another parameter of the distinguisher’s resources
to consider is QIV , the maximum number of initialization calls for a single IV ∈ IV. As
in the proof of Theorem 3, this value is bounded by µ, as any IV can be queried alongside
at most µ different keys.

So far, the quantification of the distinguisher’s resources in the duplex setting is
similar to that of Theorem 3 and Theorem 5. However, for the more advanced adversarial
parameters, the quantification is more involved. The easiest one, Ω, which counts the
number of duplexing calls for flag = true, satisfies Ω = 0 as before (see Algorithm 6). The
value L, which counts the number of duplexing calls with repeated subpath, could be quite
large. Indeed, suppose the distinguisher makes a query P1∥P2∥P310∗ (padding included)
and a query P1∥P2∥P ′

310∗ where P3 ̸= P ′
3, then the absorption of these two plaintexts

consists of 4 distinct duplexing calls (noting that P1 and P2 are identical in both queries,
but P3 ̸= P ′

3), but the duplexing calls for P3 and P ′
3 have the same subpath.2 However, it is

important to observe that two duplexing calls can have the same subpath only if they are
at the same distance to their corresponding initialization calls, as the length of a subpath
is initialized at an initialization call and increases per duplexing call. In addition, once
two subpaths are different, any extension of these subpaths will never be the same. This
means that, per initialization call, the distinguisher can end up with a repeated subpath
for a duplexing call at most once. Concretely, we obtain that L ≤ q− 1. Finally, regarding
νfix, in the current example the distinguisher actually can set all L outer parts to a single
value, and hence νfix = L ≤ q − 1.

To summarize, the distinguisher’s resources of Section 4.1 satisfy:

parameter in parameter in
Section 4.1 current proof
M σ
N N
Q q
QIV ≤ µ
L ≤ q − 1
Ω 0
νfix ≤ q − 1

If we plug these values into the bound (5) of Theorem 1, and simplify the bound at
some points for readability, we obtain the following result, provided σ + N ≤ 0.1 · 2c:

AdvKD(D) ≤
2ν2σ

r,c(N + 1)
2c

+
(q − 1)N +

(
q
2
)

2c
+ (σ − q)q

2b − q
+

2
(

σ
2
)

2b

+ q(σ − q)
2min{c+k,b} + µN

2k
+

(
µ
2
)

2k
.

(25)

If we plug these values into the bound (6) of Theorem 2, and again simplify the bound at

2In practice, the distinguisher can actually use this to set the outer part of an absorption call to a
value of its choice. To see this, ignore the IV and ignore padding for a moment, and assume that the
distinguisher makes an evaluation of FSKS on input of a b-bit plaintext P to obtain an r-bit tag T . Then,
it makes an evaluation of FSKS on input of P ∥T ∥0c. The state of this duplex evaluation after the second
duplexing call equals 0r on its leftmost bits. This shows why the parameter L (and a similar issue occurs
for the parameter Ω) is relevant for the security of the construction.
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some points for readability, we obtain the following result:

AdvKD(D) ≤
2νσ

r,c(N + q)
2c

+
(q − 1)N +

(
q−1

2
)

2c
+

(
σ−q

2
)

+ (σ − q)q
2b

+
(

σ+N
2

)
+

(
N
2
)

2b

+ q(σ − q)
2min{c+k,b} + µN

2k
+

(
µ
2
)

2k
.

(26)

Due to the presence of a fraction of order O((qN + q2)/2c), one never exceeds the
condition σ + N ≤ 0.1 · 2c, and the bound (25) is better. However, in Section 8.3 we will
discuss an extension of current result where this fraction happens to drop, in both (25)
and (26). Therefore, we will continue with both bounds. The final step of translating
these bounds into the multi-user PRF security of FSKS is identical to the reasoning in the
proof of Theorem 3, and henceforth omitted.

8.3 Application to Ascon-PRF
As mentioned in footnote 2 in the proof of Theorem 6, the distinguisher can actually use
reappearing paths to actually set the outer r bits of a certain state to a certain value. The
value L + Ω counts the number of cases this occurs. However, looking more closely at the
example in this footnote, here the distinguisher exploits a subpath from which two distinct
duplexing calls are made: one squeezing call and one absorbing call. It turns out that if
reappearing paths only happen among absorbing calls, the situation is less worrisome. A
good example of this is the Ascon-PRF construction [DEMS21a]. Even though Ascon-PRF
is an actual PRF function instantiated with the actual Ascon permutation [DEMS21b],
we will restrict our focus to the mode only (i.e., for arbitrary parameters and in the ideal
permutation model). We nevertheless apply the findings to the parameters of the actual
PRF function at the end of this section.

Let b, c, r, k, t ∈ N, with c+r = b and k ≤ b. Let IV ⊆ {0, 1}b−k be a set of initialization
vectors. The Ascon-PRF construction is defined as follows:

Ascon-PRF : {0, 1}k × IV × {0, 1}∗ → {0, 1}t

(K, IV , P ) 7→ T .
(27)

Just like FSKS, the construction gets as input a key K, an initialization vector IV (which
may be repeated), and a plaintext P , and outputs a tag T of length t bits. The main
difference is that it has a special domain separator bit before squeezing. The construction
is described in Algorithm 7 and is depicted in Figure 8. In case we consider multiple
instances of the scheme, the key input in Algorithm 7 will be replaced by a key array
K = (K[1], . . . , K[µ]) ∈ ({0, 1}k)µ, and the first input to KD.init will be the index of the
instance that is evaluated.

One could see the Ascon-PRF construction as a special case of FSKS, where the r-bit
blocks P1, P2, . . . , Pw−1 can be appended with 0c. However, the domain separation at the
last plaintext block plays a prominent role: it makes sure that there will never be two
different evaluations of Ascon-PRF with reappearing subpaths, ending up in the squeezing
phase at one evaluation and in the absorption phase at the other evaluation. In other
words, the trick of footnote 2 does not work.

Nevertheless, the analysis of Daemen et al. [DMV17] does not seem to accommodate
this. This is caused by the fact that in the proof of Daemen et al., there is a certain
lossy bounding. In detail, in the proof of Daemen et al., the following is stated: “Denote
by S the size of the subset of [the] occasions for which the adversary can (in the worst
case) force the outer part of [a state] to be a value of its choice. Note that S ≤

(
L+Ω+1

2
)
.”

However, as the distinguisher can only force the outer part of a state to a value of its
choice if it first learns it (through a squeezing call), and this never happens in Ascon-PRF,
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Algorithm 7 Ascon-PRF[p]
Input: (K, IV , P ) ∈ {0, 1}k × IV × {0, 1}∗

Output: T ∈ {0, 1}t

Underlying keyed duplex: KD[p](K)

(P1, P2, . . . , Pw)← pad10∗

r (P )
T ← ∅
KD.init(1, IV )
for i = 1, . . . , w − 1 do

KD.duplex(false, Pi) ▷ discard output
KD.duplex(false, Pw∥0c−11)
for i = 1, . . . , ⌈t/r⌉ do

T ← T ∥ KD.duplex(false, 0b)
return leftt(T )
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Figure 8: The construction underlying Ascon-PRF. The function gets as input a key
K, initial value IV , and a plaintext P . The plaintext gets padded into w blocks as
(P1, P2, . . . , Pw)← padr(P ). It outputs tag blocks (T1, T2, . . .) truncated to t bits.

one can use a tighter bound of S = 0 here. Concretely, this means that of the bound (23)
of Theorem 6, the term (

L+Ω+1
2

)
2c

=
(

q
2
)

2c

vanishes.
The bounding appears in disguise later on in the proof as well: “Therefore, if [we] take

Tfw = L + Ω + ν
2(M−L)
r,c . . . ” If we drop the L + Ω here (for the same reason), it happens

to be the case that
(L + Ω)N

2c
= (q − 1)N

2c

vanishes from (23) as well.
The same improvement can be observed for (24) of Theorem 6, be it for different

reasons. In the current case, we have νfix = 0, as the maximum number of duplexing calls
for which the adversary can set the outer part to a single value leftr(T ) is 0. This means
that in (24) the fraction

(q − 1)N +
(

q−1
2

)
2c

never appears in the first place.
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In summary, one obtains the following improved bounds for the Ascon-PRF mode,
compared to (23) and (24) of Theorem 6.

Corollary 1 (PRF security of Ascon-PRF). Let b, c, r, k, t, µ ∈ N, with c + r = b and k ≤ b.
Let p $←− perm(b) be a random permutation, and K

$←− ({0, 1}k)µ a random array of keys.
For any distinguisher D making at most q construction queries, of total length at most σ
permutation calls, and N primitive queries, we have the following results:

(i) Provided σ + N ≤ 0.1 · 2c,

Advµ-prf
Ascon-PRF(D) ≤

2ν2σ
r,c(N + 1)

2c
+ (σ − q)q

2b − q
+

2
(

σ
2
)

2b

+ q(σ − q)
2min{c+k,b} + µN

2k
+

(
µ
2
)

2k
;

(28)

(ii) In general,

Advµ-prf
Ascon-PRF(D) ≤

2νσ
r,c(N + q)

2c
+

(
σ−q

2
)

+ (σ − q)q
2b

+
(

σ+N
2

)
+

(
N
2
)

2b

+ q(σ − q)
2min{c+k,b} + µN

2k
+

(
µ
2
)

2k
.

(29)

The term (q−1)N+(q
2)

2c that appeared in Theorem 6 has disappeared again. We thus
end up with the conditions as originally stated for Theorem 5: provided that µ and
ν2σ

r,c are small enough, the result implies security as long as N ≪ min{2c, 2k} and σ ≪
min{2(c+k)/2, 2b/2}.

Instantiation. The actual Ascon-PRF PRF function [DEMS21a] is instantiated with the
320-bit Ascon permutation [DEMS21b]. Their construction adopts a different rate for
absorbing and squeezing (256 and 128, respectively), but this does not limit the applicability
of our results as generically we allow for full-state absorption. We can thus apply our
results for parameter set (k, b, c, r) = (128, 320, 192, 128). The authors claim a security
strength up to σ ≪ 264. In this case, the multicollision term ν265

128,192 is at most 5 (using
the script of Appendix A). If we plug these terms into either of the bounds of Corollary 1,
and simplify negligible terms, we obtain security as long as N ≪ 2128/µ. We stress that
this observation only applies in the generic case when the underlying primitive is assumed
to have no weakness.

9 Use Case 5: Authenticated Encryption
The main advantage of the duplex over the ordinary keyed sponge is that the duplex,
unlike the keyed sponge, is very well-suited to design an authenticated encryption scheme.
Already in the original introduction of the duplex construction, the designers proposed a
mode for authenticated encryption called SpongeWrap [BDPV11a].

At a very high level, the encryption of SpongeWrap took as input a key K, associated
data A, and plaintext P , all of which were padded into (r− 2)-bit blocks. To each block, a
0/1-bit was appended to assure domain separation. Then, each block was appended with
a 1 (we will get back to this later). Subsequently, each of the key, associated data, and
plaintext blocks were processed one-by-one, where for the plaintext blocks, corresponding
ciphertext blocks were derived from the state. Finally, a tag of required length was
generated. This original SpongeWrap construction is depicted in Figure 9.
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Figure 9: Encryption of SpongeWrap. The function gets as input a key K, associated data
A, and a plaintext P . The key gets padded into µ blocks as (K1, K2, . . . , Ku)← padr−2(K),
the associated data into v blocks as (A1, A2, . . . , Av)← padr−2(A), and the plaintext into
w blocks as (P1, P2, . . . , Pw)← padr−2(P ). It outputs a ciphertext C = C1∥C2∥ · · · ∥Cw

of size |P | and tag blocks (T1, T2, . . .) truncated to t bits.

The construction has formed an inspiration of many SpongeWrap based authenticated
encryption schemes. However, none of them took the literal SpongeWrap construction as
described in [BDPV11a], but made adaptations to improve the efficiency or simplicity of
the construction.

As a matter of fact, looking back at this original SpongeWrap construction from 2011,
there are a few quite notable properties. These properties may look odd at first sight, but
are, in retrospect (in particular in light of Section 3.4), perfectly understandable:

(1) As mentioned above, each key, associated data, and plaintext block is padded with a 1.
The reason for this is that the original security proof of the duplex was reduced to the
indifferentiability of the sponge hash function [BDPV08]. Stated differently, looking at
Figure 9, the absorption of K1∥1∥1 and the subsequent permutation call can be seen
as a plain sponge hash function evaluation on input of K1∥1, noting that the sponge
does a 10∗-padding. Next, the evaluation in Figure 9 up to the permutation after the
absorption of K2∥1∥1 can be seen as a plain sponge hash function evaluation on input
of K1∥1∥1∥K2∥1, again noting that the sponge does a 10∗-padding. The exact same
reasoning continues until the last absorbed block. Concretely, one can conclude that
this consistent 1-padding to each block was an artifact of the proof technique adopted
in [BDPV11a], and this proof technique has become deprecated in light of follow-up
work [MRV15a,DMV17,DM19a];

(2) The domain separator bits seem slightly off. In detail, domain separator bit 1 is
used for all key blocks except for the last one, domain separator bit 0 is used for
all associated data blocks except for the last one, and domain separator bit 1 is
used for all plaintext blocks except for the last one. This seems odd, but seems to
be a mere consequence of the phasing adopted in the original proof of Bertoni et
al. [BDPV11a]. In detail, Bertoni et al. followed the absorb-permute-squeeze approach
(see Section 3.4), and the domain separator bit then corresponds to the “role” of the
upcoming permutation call rather than the “type” of absorbed plaintext block. In
light of the current permute-squeeze-absorb approach, a slight readjustment of the
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domain separator bits makes sense;

(3) Strictly seen, as the currently known duplex construction allows to absorb over the
entire state (only squeezing happens with the outer r bits) the domain separation bits
can spill over into the capacity. We note that it is also possible to absorb associated
data in parallel to the message encryption, as in the construction of Sasaki and
Yasuda [SY15] or in the full-state SpongeWrap [MRV15a], but it results in a more
complicated description of the construction;

(4) The original SpongeWrap does not explicitly include a nonce, but rather expects the
associated data to be different each time. We can make the nonce input explicit;

(5) The key is not used to initialize the state, but is (like associated data and plaintext)
absorbed r − 2 bits at a time. As pointed out in point (1) above, this design deci-
sion seems to be inspired from the reduction to the security of SpongeWrap to the
indifferentiability of the sponge hash function. More generally, we have seen this in
the outer-keyed sponge [ADMV15] as well. Although Mennink [Men18] demonstrated
that this does not significantly degrade security, simply initializing the state with
the key, and optionally also the nonce of point (4), conceptually simplifies the design.
This idea is not new. As a matter of fact, in [BDPV12], Bertoni et al. described
the MonkeyDuplex construction, which basically consists of the original duplex con-
struction, but with the state initialized as K∥U (exactly as in S-SC of Section 7).
The duplexing part in this construction could, for example, be the associated data,
plaintext/ciphertext, and tag portion of SpongeWrap, as suggested by the authors.

In this section, we will consider a generalization of the SpongeWrap construction that is
based on the original SpongeWrap (Figure 9) but with the changes proposed in above five
points taken into account. (Admittedly, the change of step (5) also makes it easier to apply
our results of Section 4.3, as they do not natively support multi-round key absorption.)
Given that our generalization is basically the MonkeyDuplex construction [BDPV12] with
the duplexing part replaced by the associated data, plaintext/ciphertext, and tag portion
of SpongeWrap, we will refer to the scheme as MonkeySpongeWrap.3 The construction is
described in Section 9.1 and its security is analyzed in Section 9.2. We consider applications
in Section 9.3.

9.1 Construction
Let b, c, r, k, t ∈ N, with c + r = b and k ≤ b. The generalized SpongeWrap authenticated
encryption mode MonkeySpongeWrap consists of an encryption and a decryption algorithm:

ENC : {0, 1}k × {0, 1}b−k × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t

(K, U, A, P ) 7→ (C, T ) ,
(30)

DEC : {0, 1}k × {0, 1}b−k × {0, 1}∗ × {0, 1}∗ × {0, 1}t → {0, 1}∗ ∪ {⊥}
(K, U, A, C, T ) 7→ P or ⊥ .

(31)

The encryption construction gets as input a key K, a nonce U , associated data A, and a
plaintext P , and outputs a ciphertext C of length |P | bits and a tag T of length t bits.
It initializes a duplex with state K∥U , then it absorbs associated data blocks r bits at a
time, then it does duplexing calls that both squeeze r bits (keystream to be added to the
corresponding r-bit plaintext block) and absorb r bits (the actual plaintext block), and
finally it squeezes tag blocks r bits at a time. The decryption construction gets as input a
key K, a nonce U , associated data A, a ciphertext C, and a tag T , and outputs a plaintext

3Credits of this name go to Richie Frame who coined this terminology before, at StackExchange in
2015, https://crypto.stackexchange.com/questions/31051/norx-duplex-padding.

https://crypto.stackexchange.com/questions/31051/norx-duplex-padding
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P of length |C| bits or ⊥ if authentication failed. It differs from the encryption construction
in two ways. The first difference is that the decryption of ciphertext blocks into plaintext
blocks is done using duplexing calls that overwrite the outer r bits of the state. The second
difference is that decryption does not output a tag, but instead it computes a new tag T ⋆,
which it subsequently compares with input T , and if the values match, the plaintext P is
output. The encryption and decryption constructions are described in Algorithm 8 and
are depicted in Figure 10 (encryption) and Figure 11 (decryption). In case we consider
multiple instances of the scheme, the key input in Algorithm 8 will be replaced by a key
array K = (K[1], . . . , K[µ]) ∈ ({0, 1}k)µ, and the first input to KD.init will be the index
of the instance that is evaluated.

Algorithm 8 MonkeySpongeWrap[p]
Interface: ENC
Input: (K, U, A, P ) ∈ {0, 1}k × {0, 1}b−k × {0, 1}∗ × {0, 1}∗

Output: (C, T ) ∈ {0, 1}|P | × {0, 1}t

Underlying keyed duplex: KD[p](K)

(A1, A2, . . . , Av)← pad10∗

r (A)
(P1, P2, . . . , Pw)← pad10∗

r (P )
C ← ∅
T ← ∅
KD.init(1, U)
for i = 1, . . . , v do

KD.duplex(false, Ai∥0∥0c−1) ▷ discard output
for i = 1, . . . , w do

C ← C ∥ KD.duplex(false, Pi∥1∥0c−1)⊕ Pi

for i = 1, . . . , ⌈t/r⌉ do
T ← T ∥ KD.duplex(false, 0b)

return (left|P |(C), leftt(T ))

Interface: DEC
Input: (K, U, A, C, T ) ∈ {0, 1}k × {0, 1}b−k × {0, 1}∗ × {0, 1}∗ × {0, 1}t

Output: P ∈ {0, 1}|C| or ⊥
Underlying keyed duplex: KD[p](K)

(A1, A2, . . . , Av)← pad10∗

r (A)
(C1, C2, . . . , Cw)← pad10∗

r (C)
P ← ∅
T ⋆ ← ∅
KD.init(1, U)
for i = 1, . . . , v do

KD.duplex(false, Ai∥0∥0c−1) ▷ discard output
for i = 1, . . . , w do

P ← P ∥ KD.duplex(true, Ci∥1∥0c−1)⊕ Ci

for i = 1, . . . , ⌈t/r⌉ do
T ⋆ ← T ⋆ ∥ KD.duplex(false, 0b)

return leftt(T ) = leftt(T ⋆) ? left|C|(P ) : ⊥
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Figure 10: Encryption of MonkeySpongeWrap. The function gets as input a key K, a nonce
U , associated data A, and a plaintext P . The associated data gets padded into v blocks as
(A1, A2, . . . , Av)← padr(A) and the plaintext into w blocks as (P1, P2, . . . , Pw)← padr(P ).
It outputs a ciphertext C = C1∥C2∥ · · · ∥Cw of size |P | and tag blocks (T1, T2, . . .) truncated
to t bits.
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Figure 11: Decryption of MonkeySpongeWrap. The function gets as input a key K, a
nonce U , associated data A, a ciphertext C, and a tag T . The associated data gets
padded into v blocks as (A1, A2, . . . , Av)← padr(A) and the ciphertext into w blocks as
(C1, C2, . . . , Cw)← padr(C). It subsequently computes tag blocks (T ⋆

1 , T ⋆
2 , . . .) truncated

to t bits. If T ⋆
i = Ti for all i = 1, 2, . . ., it outputs a plaintext P = P1∥P2∥ · · · ∥Pw of size

|C|, otherwise it outputs ⊥.
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9.2 Security
The original SpongeWrap (Figure 9) was analyzed by Bertoni et al. [BDPV11a] in its
original introduction. However, the construction was subsequently rarely used as such,
but people rather resorted to “SpongeWrap-like” (or rather “MonkeySpongeWrap-like”)
constructions. These all differed subtly, resulting in various different proofs.

For example, security proofs for dedicated SpongeWrap-like constructions have been
given by Andreeva et al. [ABB+14b] (for APE), Jovanovic et al. [JLM14] (for NORX),
Sasaki and Yasuda [SY15] (for a variant with more efficient associated data absorption),
Chakraborti et al. [CDNY18] (for Beetle), Dobraunig et al. [DEM+20] (for ISAP v2),
and Chakraborty et al. [CJN20] (for a generalized Beetle construction). Mennink et
al. [MRV15a] introduced the full-state SpongeWrap, where the associated data is absorbed
along with the message encryption, noting that the duplex allows for full-state absorption
but only r-bit squeezing.

Beyond these results, various SpongeWrap-like constructions have been introduced
whose security was claimed to follow from the original SpongeWrap result of Bertoni et
al. [BDPV11a]. These schemes, however, often had subtle differences compared to the
original SpongeWrap, most importantly in the initialization with the key and nonce. Our
generalized construction MonkeySpongeWrap, as such, is more broadly applicable. Below,
we derive a security bound for the more general MonkeySpongeWrap, based on the results
of Section 4.3. Afterwards, in Remark 5, we elaborate on the issues that come with release
of unverified plaintext in MonkeySpongeWrap. As before, we obtain two different results.

Theorem 7 (AE security of MonkeySpongeWrap). Let b, c, r, k, t, µ ∈ N, with c+r = b and
k ≤ b. Let p $←− perm(b) be a random permutation, and K

$←− ({0, 1}k)µ a random array of
keys. For any nonce-respecting distinguisher D making at most qe encryption construction
queries, of total length at most σe permutation calls, qd decryption construction queries, of
total length at most σd permutation calls, writing σ = σe + σd and q = qe + qd for brevity,
and N primitive queries, we have the following results:

(i) Provided σe + σd + N ≤ 0.1 · 2c,

Advµ-ae
MonkeySpongeWrap(D) ≤

2ν2σ
r,c(N + 1)

2c
+

σdN +
(

σd

2
)

2c

+ (σ − q)q
2b − q

+
2
(

σ
2
)

2b

+ q(σ − q)
2min{c+k,b} + µN

2k
+

(
µ
2
)

2k
+ qd

2t
;

(32)

(ii) In general,

Advµ-ae
MonkeySpongeWrap(D) ≤

2νσ
r,c(N + σd + qe)

2c
+

σdN +
(

σd

2
)

2c
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)
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+ q(σ − q)
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+
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2
)

2k
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2t
.

(33)

With respect to implications, the bound is comparable to that of Theorem 6: the
difference is that in the significant term, q is replaced by σd + qe. Intuitively, provided
that ν2σ

r,c is small enough and t large enough, the result implies security as long as
N ≪ min{2c, 2k/µ}, σ ≪ min{2(c+k)/2, 2b/2}, and (σd + qe) · N ≪ 2c. It is important
to note that this last, most significant, restriction is on the number of qe encryption
initialization calls and σd decryption duplexing calls.
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Proof (Proof of Theorem 7). As in Theorem 3, we will first discuss how MonkeySpongeWrap
fits in the description of the duplex construction of Section 3.1, then we discuss what
this means for the actual power of the distinguisher, i.e., the distinguisher’s resources of
Section 4.1, and finally we derive our bound.

The MonkeySpongeWrap construction is structurally different from the constructions
of previous sections (TP, P-SC, S-SC, and FSKS), most importantly as the distinguisher
has access to an encryption and a decryption interface. For encryption queries, we require
nonce uniqueness which means that the state is always initialized to a different values.
For decryption queries, however, the distinguisher may repeat nonces. Nevertheless, in
either way, we have a key array K = (K[1], . . . , K[µ]) ∈ ({0, 1}k)µ fed to the duplex
construction. In addition, IV = {0, 1}b−k, i.e., IV simply determines the set of nonces of
MonkeySpongeWrap. As before, the state is initialized as K[δ]∥U (hence α = 0).

The MonkeySpongeWrap distinguisher D can make qe encryption queries, of total length
at most σe duplexing calls (counting both the absorption and the squeezing phase),
qd decryption construction queries, of total length at most σd permutation calls, and
N primitive queries. This particularly means that the parameters M and Q of the
distinguisher’s resources equal σe + σd and qe + qd, respectively. Another parameter of the
distinguisher’s resources to consider is QIV , the maximum number of initialization calls
for a single IV ∈ IV. As in the proof of Theorem 3, this value is bounded by µ, as any
IV can be queried alongside at most µ different keys.

So far, the quantification of the distinguisher’s resources in the duplex setting is
similar to that of Theorem 3 and Theorem 5. However, for the more advanced adversarial
parameters, the quantification is more involved. It makes sense to distinguish between
encryption queries and decryption queries. Each encryption query is made for a different
nonce and thus starts with a (δ, U) different from all earlier encryption queries. However,
the nonce could have appeared in an earlier decryption query, and hence it could be that a
subpath is repeated. This means that the encryption queries contribute at most qd to L.
As in encryption queries, no duplexing calls are made for flag = true, we conclude that
they contribute 0 to Ω. Now, for decryption queries, the distinguisher can repeat nonces.
As before, this means that decryption queries contribute at most qd to L. In decryption
queries, the duplexing calls corresponding to the deciphering of the ciphertext are made for
flag = true, and there can be at most σd−2qd such calls, where the subtraction of 2qd comes
from the fact that each decryption call contains at least two duplexing calls for flag = false.
(Refer to Remark 5 below for some clarifications regarding these bounds.) To determine
a tight bound on L, note that any decryption query either repeats an earlier encrypted
nonce, or is followed by an encryption query with repeating nonce, or neither of them. We
conclude that L ≤ qd, Ω ≤ σd−2qd, and thus νfix ≤ σd−2qd +qe +qd−1 = σd−qd +qe−1.

To summarize, the distinguisher’s resources of Section 4.1 satisfy:

parameter in parameter in
Section 4.1 current proof
M σe + σd

N N
Q qe + qd

QIV ≤ µ
L ≤ qd

Ω ≤ σd − 2qd

νfix ≤ σd − qd + qe − 1

Write σ = σe + σd and q = qe + qd for brevity. If we plug these values into the bound
(5) of Theorem 1, and simplify the bound at some points for readability, we obtain the
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following result, provided σ + N ≤ 0.1 · 2c:

AdvKD(D) ≤
2ν2σ

r,c(N + 1)
2c

+
σdN +

(
σd

2
)

2c

+ (σ − q)q
2b − q

+
2
(

σ
2
)

2b

+ q(σ − q)
2min{c+k,b} + µN

2k
+

(
µ
2
)

2k
.

(34)

If we plug these values into the bound (6) of Theorem 2, and again simplify the bound at
some points for readability, we obtain the following result:

AdvKD(D) ≤
2νσ

r,c(N + σd + qe)
2c

+
σdN +

(
σd

2
)

2c

+
(

σ−q
2

)
+ (σ − q)(σd + qe − 1)

2b
+

(
σ+N

2
)

+
(

N
2
)

2b

+ q(σ − q)
2min{c+k,b} + µN

2k
+

(
µ
2
)

2k
.

(35)

Note that, typically, σd ≪ σe. This means that, as before, the bound (34) is in general
better, but only holds provided q + N ≤ 0.1 · 2c. This means that (35) is still meaningful
as it may stay well below 1 once q + N goes beyond this bound. We will thus continue
with both bounds.

What remains is to translate these bounds into the multi-user AE security of
MonkeySpongeWrap. The reasoning is similar as in the proof of Theorem 3, but dif-
fers slightly in the decryption functionality of MonkeySpongeWrap. We can note that
the formal description MonkeySpongeWrap[p] of Algorithm 8 is in fact a description
MonkeySpongeWrap[KD[p]], where the key array K input to TP is directly fed into KD.
Thus, denoting Rae = (Rae

1 , . . . , Rae
µ ) as a list of µ random functions as defined in Section 2.3,

and ⊥ as a list of µ ⊥-symbols,

Advµ-ae
AE (D) = ∆D

(
ENC[KD[p]]K , DEC[KD[p]]K , p± ; Rae, ⊥, p±)

= ∆D
(
ENC[KD[p]K ], DEC[KD[p]K ], p± ; Rae, ⊥, p±)

≤ ∆D
(
ENC[KD[p]K ], DEC[KD[p]K ], p± ; ENC[IXIF[ro]], DEC[IXIF[ro]], p±)

(36)
+ ∆D

(
ENC[IXIF[ro]], DEC[IXIF[ro]], p± ; ENC[IXIF[ro]], ⊥, p±)

(37)
+ ∆D

(
ENC[IXIF[ro]], ⊥, p± ; Rae, ⊥, p±)

. (38)

The distance of (36) is the security of KD as bounded in (34) or (35), the distance of (37)
is at most qd/2t as distinguishing both world can only be done by a random tag guess
(using the fact that due to the domain separator bits the paths will be different), and the
distance of (38) equals 0 as both oracles output uniform random and independent strings
for each input.

Remark 5. In the proof of Theorem 7, it is mentioned that any encryption query may have
a colliding subpath with an earlier decryption query, and hence that qe decryption queries
contribute at most qe to L. Typically, however, these queries with colliding subpaths
are not expected to help the distinguisher as it likely has not seen the output of the
corresponding decryption query. Likewise for decryption queries, the distinguisher can
enforce a repeated subpath (contributing at most qd to L), and the distinguisher can even
set up to σd − 2qd outer values of its choice. Again, here we are overly generous to the
distinguisher in that it never sees the output of the decryption, unless with negligible
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probability, and it is unlikely the distinguisher can deduce any information from those
queries. In a strict sense, the counting performed here is comparable to what would be
done in a setting where unverified plaintexts are released [ABL+14]. Concretely, if the
distinguisher makes a decryption query, the permutation calls are defined internally and
collisions may occur, and this is the reason the bounds on L and Ω are defined as such. (We
do not claim that any security of MonkeySpongeWrap under release of unverified plaintext
can be concluded from Theorem 7.)

9.3 Application
Although MonkeySpongeWrap is much closer to what designers do in practice, modes still
slightly differ. For example, the mode of Ascon [DEMS21b,DEMS19] uses stronger keyed
initialization and finalization. The same holds for GIBBON/HANUMAN, members of the
PRIMATEs family [ABB+14a], Sparkle [BBdS+20,BBC+19], and many more. Another rele-
vant mode is ISAP v2 [DEM+17,DEM+20,DEM+19], and Dobraunig and Mennink [DM19a]
demonstrated how security of the encryption part of ISAP v2 follows from the duplex, but
again, this mode is different from MonkeySpongeWrap.

Example modes that do follow the MonkeySpongeWrap construction quite closely
are that of Xoodyak [DHP+20, DHP+19] and Gimli [BKL+19] in the NIST Lightweight
Cryptography competition [NIS19] and that of BLNK [Saa14] and ICEPOLE [MGH+14] in
the CAESAR competition [CAE14]. If we take the mode of Xoodyak as running example,
it is instantiated with the 384-bit Xoodoo permutation. It squeezes digests at a rate of
192 bits, and allows for a key of size at most 256 bits. We thus consider parameter set
(b, c, r) = (384, 192, 192) (we will keep k variable). The authors claim a security strength
up to σe, σd ≪ 264. In this case, the multicollision term ν266

192,192 is at most 3 (using the
script of Appendix A). If we plug these terms into either of the bounds of Theorem 7,
and simplify negligible terms, we obtain security as long as N ≪ min{2192/σd, 2k/µ} and
qd ≤ 2t. Again, these observations only hold in the generic case where the underlying
permutation is assumed to be random.

Recently, Gilbert et al. [GBKR23] mounted an attack against duplex-based authenti-
cated encryption schemes, and particularly broke the claim of the designers of Xoodyak
[DHP+20, DHP+19]. Their attack concretely relates to Theorem 7, first line, second
fraction of (32)/(33). It consists of making many decryption queries (or in the terminology
of our Theorem 7, with σd large). Their attack operates in a total time complexity of
23c/4, with a precomputation time N ≈ 23c/4 and online time σd ≈ 23c/4. Plugging these
terms into the bound of Theorem 7, it is easy to see that the attack strictly seen does not
invalidate the security of the duplex or MonkeySpongeWrap. The attack does break the the
security claim of Xoodyak, but this is simply due to the fact that the designers of Xoodyak
misinterpreted the security bound of [DMV17]: in [DHP+20, right above Corollary 2] it is
stated that “then we have L = Ω = 0”, which is incorrect (see the table in the proof of
Theorem 7).

10 Conclusion
The potential of the general full-state keyed duplex is huge, as it can be (and actually, is)
used to describe a wide range of permutation based symmetric cryptographic schemes.
However, the explicit use of the security bounds of the keyed duplex has been left behind,
in part due to the generality of the construction as well as the generality of the security
analysis. In this paper, we aimed to give a comprehensive overview of (i) how the duplex is
defined in general, (ii) why it is defined as such, (iii) how the general security bounds look
like, (iv) why they look like this, and finally, (v) how we can actually use these bounds by
ways of simple yet practical applications.



Bart Mennink 37

The applications presented in Sections 5-9 are only the tip of the iceberg. Other
potential applications not covered in these sections include reseedable pseudorandom
sequence generation [BDPV10,GT16], password-based key derivation [Nat10], and more.
However, the same mechanics as in Sections 5-9 can be used to apply the bounds of
Section 4 to these types of construction.

The approach also has its limitations. For example, it is not able to capture Beetle-style
authenticated encryption [CDNY18] as it absorbs or squeezes using a specific transformation.
A generalization of this construction was made through the transform-then-permute
framework of Chakraborty et al. [CJN20]. This framework is more general than the
plain duplex as it covers arbitrary feedback functions for absorption, but on the downside
it is more restrictive as it only focuses on authenticated encryption, and the security
parameters are also tailored to this setting. Our treatment of the duplex construction
covers different use cases, but this requires among others a more fine-grained treatment of
the distinguisher’s resources in Section 4.1, sometimes leading to slightly lossier bounds.
Further differences between the two works are that Chakraborty et al. [CJN20] use a more
straightforward multicollision bounding approach (see Section 4.2) and that it is in the
single-user setting. We remark that it is possible to extend the general duplex results
of Daemen et al. [DMV17] and Dobraunig and Mennink [DM19b] to cover Beetle-style
duplexing, but this would require a major revision of those proofs. Improvements would
occur in the influence of the parameters L and Ω on their bounds, as these two parameters
bound the power the adversary has in choosing the outer part of the state in the duplex
construction.

Having said that, the results in this work also deserve a word of caution, namely
that all results in this work only hold in the ideal permutation model. This means that
the underlying permutation is assumed to be perfectly random. If instantiated with an
actual permutation like the permutation of Keccak [Nat15], of Ascon [DEMS21b], or of
PHOTON [GPP11], the security may be lower. At the very least, our bounds guarantee
security under the assumption that the adversary does not take any internal primitives of
the permutation into account; breaking the scheme faster than the proven bounds requires
the adversary to dive into the permutation and exploit certain properties there.
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A Python Script for Solving (4)
import sys
import math

def FindMinX(b,L):
# Stores the minimum
MinX = sys.maxsize;

# Finds the minimum
x = 0;
while MinX == sys.maxsize:

x = x+1;
if x > 2**L:

if ( b*math.log(2)-2**(L) + x*math.log(2**(L))
<= math.log(x-2**(L))
+ math.log(math.factorial(x)) ):

MinX = x;

# Returns the minimum
return MinX;

if __name__ == "__main__":
b = 400;
for L in range(-b,22):

print("M/2^r = 2^",L,", minimal x = ",FindMinX(b,L));
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