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Abstract. Currently there exist many blockchains with weak trust guar-
antees, limiting applications and participation. Existing solutions to boost
the trust using a stronger blockchain, e.g., via checkpointing, requires
the weaker blockchain to give up sovereignty. In this paper we propose
a family of protocols in which multiple blockchains interact to create a
combined ledger with boosted trust. We show that even if several of the in-
teracting blockchains cease to provide security guarantees, the combined
ledger continues to be secure – our TrustBoost protocols achieve the op-
timal threshold of tolerating the insecure blockchains. Furthermore, the
protocol simply operates via smart contracts and require no change to the
underlying consensus protocols of the participating blockchains, a form
of “consensus on top of consensus”. The protocols are lightweight and
can be used on specific (e.g., high value) transactions; we demonstrate
the practicality by implementing and deploying TrustBoost as cross-chain
smart contracts in the Cosmos ecosystem using approximately 3,000 lines
of Rust code, made available as open source [31]. Our evaluation shows
that using 10 Cosmos chains in a local testnet, TrustBoost has a gas cost
of roughly $2 with a latency of 2 minutes per request, which is in line
with the cost on a high security chain such as Bitcoin or Ethereum.

1 Introduction

Motivation. Currently there exist more than a thousand (layer 1) blockchains,
each with its own trust/security level. Blockchains with weak trust guaran-
tees tend to support limited applications. A common solution for new/weak
blockchains is to “borrow” trust from a secure chain. A standard way of lending
such trust is via checkpointing [19,26,27,30] – here checkpoints attest to the hash
of well-embedded blocks every so often and newly mined blocks follow the check-
points. For instance, Bitcoin itself was secured by checkpointing by Nakamoto
themselves until as late as 2014. A critical point to note is that this form of trust



lending involves the very consensus layer of the weak blockchain – the fork choice
rule of the weak chains needs to obey the checkpoints. In practice, in the Cosmos
ecosystem newer and application-specific chains (called “Cosmos Zones”) can use
the same validator set as the original Cosmos chain (called “Cosmos Hub”) via
a governance proposal [29] – in return for the trust of the Hub, the Zones give
up their individual sovereignty.

Our goal. This state of affairs begets the following question: how should mul-
tiple blockchains interact to create a combined ledger whose trust is “boosted”?
Ideally, the “trust boost” operations (i.e., deciding which specific transactions
or applications need to be in the combined ledger and thus enjoy boosted trust-
levels) should be simply offered via smart contract operations (i.e., constituent
blockchains do not give up their individual sovereignty and there is no change to
the consensus layer). Technically speaking, this means answering the following
open question: given m multiple blockchain ledgers, f of which are faulty, i.e.,
without security guarantees, can we combine them in such a way that there is
consensus on the combined ledger? Note that the adversary can collude across
the f faulty blockchains. Answering this question comprehensively, from im-
possibility results on trust boosting to a concrete protocol with optimal trust
boosting properties to a full-stack implementation in the Cosmos ecosystem are
the goals of this paper.

Blockchain bridges. There are two different approaches to boosting trust de-
pending on whether the interaction between the blockchain ledgers is passive or
active. In the passive mode, there is no communication between the ledgers and
a single combiner has read-access to the ledgers and works to form a combined
ledger. In the active mode, cross-chain communication (CCC) is allowed across
the ledgers via bridges. This approach has only been made possible recently as
blockchains have become more interoperable – recent CCC projects include IBC
by Cosmos [9], XCM by Polkadot [25], and CCIP by Chainlink [5]. These bridges
allow information to be imported across smart contracts residing on the different
programmable blockchains – the trust combiner we are envisioning is a smart
contract too, residing on each of the blockchains.

Main contributions. In the passive mode, we show that consensus on combined
ledgers, for any possible combination, is impossible if f > 0. Indeed, one of the
earlier efforts in the literature [14], tried to create a combined ledger passively
without success. Focusing on a weaker form of consensus that gives up the total
ordering property (but can still implement the functionality of a cryptocurrency),
known as ABC consensus [28], we show the following in the passive mode. First,
even ABC consensus is impossible, if m ≤ 3f . Second, we propose a protocol
called TrustBoost-Lite that combines different ledgers to achieve ABC consensus
whenever m > 3f . In the active mode, we show that consensus is impossible in
a partial synchronous network if m ≤ 3f . When m > 3f , we propose a protocol
called TrustBoost that securely combines the m ledgers together.

Both TrustBoost and TrustBoost-Lite protocols can be viewed as BFT consen-
sus protocols: consensus is now amongst the programmable blockchains (whose
actions are executed by smart contracts) communicating over pairwise authen-
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ticated channels provided via the CCC infrastructure – a form of “consensus on
top of consensus”, a first in the literature, to the best of our knowledge. Finally,
we observe that our study of blockchain interactions has a side effect of bringing
to sharp focus the nuanced definitions of traditional and the weakened ABC
consensus in terms of the interactions needed to achieve combined trust.

TrustBoost is a lightweight consensus protocol, executable entirely as a smart
contract on each of the blockchains. Further, any specific transactions of any ap-
plication contract can be upgraded using TrustBoost to avoid single-chain secu-
rity attacks (an example is depicted in Fig. 1). We demonstrate the practicality
by implementing and deploying TrustBoost as cross-chain smart contracts in Cos-
mos ecosystem using approximately 3,000 lines of Rust code, made available as
open source [31].

...

OsmoAtom

TrustBoost
contract

...

TrustBoost
contract

TrustBoost
contract

AtomX OsmoX

(a) 

(b) 

Fig. 1: (a) Token exchange across chains are vulnerable to single-chain attacks.
Suppose attackers lock 100 Osmos on the Osmosis chain in exchange for 10
Atoms on the Cosmos chain. Once Atoms are received, a double-spend attack on
the transaction which locks 100 Osmos on the Osmosis chain leads to 10 “free”
Atoms, creating a security attack on the Cosmos chain. (b) TrustBoost secures
contract states. Any application contract (e.g., Atom token contract) can be
upgraded to a TrustBoost cross-chain contract (e.g., AtomX) by creating secure
global states. The exchange of TrustBoost cross-chain tokens are now secured by
the interacting blockchains.

Several limitations of smart contract programming impose challenges to im-
plementing BFT consensus protocols using them: (a) contracts only behave pas-
sively and we need to ensure that every operation in TrustBoost is properly
triggered by some IBC message; (b) contracts work only with single-threading,
preventing parallelism in operations; (c) Cosmos-SDK allows a smart contract
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to send IBC messages only when a function returns – a major implementation
hurdle, which we deal with by queuing all the IBC messages for each function
that need to be sent and send them all when the function returns; (d) finally,
special attention should be paid to self-delivered messages. The design principles
of our successful implementation of BFT consensus protocols via smart contracts
might be of independent and broader interest.

The performance of TrustBoost, particularly latency and gas usage, depends
on both the implemented BFT consensus protocols and IBC efficiency. We im-
plement Information Theoretic HotStuff [1] to avoid expensive operations on
signature verification, which however leads to an O(m2) boost in gas usage and
a linear increase in latency. Meanwhile, in Cosmos a single IBC message (e.g., for
cross chain token transfer) would take 2 seconds and cost 350K gas. Concretely,
with 10 Cosmos chains in a local testnet, the total gas cost is roughly $2 with a
latency of 2 minutes when using TrustBoost to boost the security of a standard
contract NameService[21] – here gas fees in fiat are extracted from the exchange
rate and the gas price of Osmosis, a popular Cosmos Zone at the time of writing
(October 2022) and are in line with the gas fees of a high security chain such as
Bitcoin or Ethereum. Improving the efficiency of the implemented BFT protocols
and IBC would make TrustBoost more performant.
Related works. An early work on robust ledger combining is [14]; parallel
ledgers process a common set of transactions independently, and confirmation in
the combined ledger is done by observers who can read from all ledgers. However,
the combined ledger fails to guarantee agreement (termed absolute persistence
in [14]), so its practical use is limited. A very recent work [33] proposes a cross-
chain state machine replication protocol in the passive mode, which maintains
a consistent state across multiple chains; indeed the security guarantees in [33]
hold only when each of the involved blockchains is secure (as expected by one of
our theoretical results (cf. Theorem 1)). As mentioned earlier, checkpointing is a
natural way to transfer the trust of one (very secure) blockchain to weaker/newer
blockchains [27,19,26]. A concrete and practical instantiation of this idea in the
context of bringing Bitcoin trust to Cosmos Zones is [30].

2 Preliminaries

Since our goal is to achieve consensus on top of consensus (blockchains), it is
natural to model blockchains as validators in the “meta” consensus protocol,
and blockchain users as clients that can query states of blockchains via RPCs.
Hence, we have the following participation and network model.

2.1 Model

Participants. In this paper, the distributed protocols involve two types of par-
ticipants: (i) validators, and (ii) clients. We assume Byzantine faults that can
behave arbitrarily. Let m be the number of validators and f be the number of
Byzantine validators. We assume no trust from the clients, i.e., we allow any
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number of Byzantine clients, but only honest clients enjoy the guarantees of the
protocol. We suppose one of the following two prerequisites is met: (1) all par-
ticipants are connected via authenticated channels (see [23]); (2) there exists a
public-key infrastructure (PKI) for the set of validators, i.e., the public keys of
all validators are known to all validators and clients.
Network model. Validators are in a fully connected network among themselves.
We say the validators are in a passive mode if they do not communicate with
each other; otherwise they are in an active mode. Each client is also connected
to all the validators – clients only receive messages from the validators, but
do not transmit any messages to the validators. Note that allowing bidirectional
communications between validators and clients would turn the passive mode into
the active mode as clients can help forward messages. We assume the network is
partially synchronous, i.e., there is a global stabilization time (GST ) chosen by
the adversary, unknown to the honest parties and also to the protocol designer,
such that after GST , all messages sent between honest parties are delivered
within ∆ time. Before GST , the adversary can delay messages arbitrarily. When
GST = 0, the network becomes synchronous.

2.2 Distributed protocols

To study the security guarantee of the “meta” consensus protocol, we define the
following client consensus problems.
Client consensus. We start with the problem of (binary) client consensus
where each validator starts with some initial value (0 or 1) and all (honest)
clients try to commit the same value by the end of the protocol.

Definition 1 (Client Consensus).

– Agreement: No conflicting values are committed by honest clients.
– Validity: If every honest validator starts with the same value, this value will

be committed by honest clients.
– Termination: Every honest client commits one of the values. If messages

are delivered quickly, the consensus protocol terminates quickly.

We are also interested in a relaxed notion of client consensus, called ABC
client consensus, derived from [28]. The key insight leading to this relaxation is
that Byzantine parties do not need to enjoy any guarantees.

Definition 2 (ABC Client Consensus).

– Agreement: Same as in Definition 1.
– Validity: Same as in Definition 1.
– Honest termination: If every honest validator starts with the same value,

this value will be committed by honest clients. If messages are delivered
quickly, the ABC consensus protocol terminates quickly.

Contrast with traditional consensus protocols. In the traditional (ABC)
consensus problem [11,28], there is no client and the guarantees are enjoyed by
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the validators. It is not hard to see that any traditional (ABC) consensus pro-
tocol can be used to solve (ABC) client consensus in our setting: Let 3f + 1
validators run the traditional (ABC) consensus consensus protocol and send the
committed value to all clients; each client commits the majority value received
from those 3f+1 validators (note that solving both consensus and ABC consen-
sus would need m > 3f in partial synchrony). Therefore, any impossibility result
(necessary condition) for the problem of (ABC) client consensus consensus in our
model also applies to traditional (ABC) consensus. On the other hand, solving
the problem of client (ABC) consensus in our model does not necessarily solve
traditional (ABC) consensus. Indeed, in the above example, the other m−3f−1
validators do not even participate in the protocol so that they cannot commit
any value. In §3, we will also see that ABC consensus can be solved in our model
without any communication among validators. However, this is not possible in
the traditional model because, without communication, basically nothing can be
done in a distributed system.
Ledger consensus. It is known that consensus protocols can be used to solve
the problem of ledger consensus, i.e., state machine replication (SMR) [24]. In
our model, we also slightly modify the definition of ledger consensus such that
it now requires all clients maintain a list of transactions that grows in length,
called a public ledger (cf. Definition 3), with the help of the validators. Validators
participate in the protocol to decide a total ordering of all transactions. Each
client initially starts with the same state and updates the state by executing all
transactions in its ledger. The definition of ledger consensus in our model and a
comparison with the traditional definition can be found in Appendix A.

3 Necessary and Sufficient Conditions

In this section, we show that in the passive mode (i.e., without communica-
tion among validators), client consensus (cf. Definition 1) is impossible, while
ABC client consensus (cf. Definition 2) can be still achieved. Meanwhile, in
the active mode, both problems can be solved as long as m > 3f . We adapt
proof techniques from classic distributed system problems [12,13] to our nuanced
model/definitions and show the following tight results and sharp distinction be-
tween consensus and ABC consensus. The full proof of Theorem 1 can be found
in Appendix B. We provide a proof sketch below.

Theorem 1. In passive mode, we have

1. Client consensus can be achieved if and only if f = 0.
2. ABC client consensus can be achieved if and only if m > 3f .

Proof sketch. (1) Client consensus: We apply the proof idea from [13] to find two
adjacent initial configurations such that: they differ only in the initial value xp

of a single validator p, but reach different decision values. Then if p equivocates,
the agreement property will be violated.
(2) ABC client consensus: The proof is similar as for client consensus. The only
difference is that now the ABC client consensus protocol will terminate only if
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all m − f honest validators start with the same value. When f ≥ m/3, we can
divide the m validators into three sets, each with at most f validators, and the
rest of the proof remains the same.

Remark. Note that in the proof of only if parts in Theorem 1, the messages
are never delayed by the adversary. Therefore, the same proofs apply to a syn-
chronous network (i.e., GST = 0). The robust ledger combiner in [14] is proposed
precisely in this model; thus we can conclude that the robust ledger combiner
(with m = 2f+1) cannot solve ABC client consensus, let alone client consensus.
Active mode. For the completeness of our results, we prove the following the-
orem in the active mode, which is similar to the well-known impossibility result
in the partially synchronous network model [12]. The proof of Theorem 2 can be
found in Appendix C.

Theorem 2. In the active mode, we have:

1. Client consensus can be achieved if and only if m > 3f .
2. ABC client consensus can be achieved if and only if m > 3f .

4 The TrustBoost Protocol

send
deliver

subm
it

checkClient

subm
it

check

Client
...

Fig. 2: Clients see the same interface of submitting a transaction to TrustBoost
as submitting a transaction to a single blockchain.

4.1 TrustBoost: Blockchains as Validators

TrustBoost is run by m blockchains, simulating a group of validators interacting
with each other to maintain global states. The i-th blockchain (1 ≤ i ≤ m) is run
by a permissioned committee Ci with |Ci| = ni of which at most fi nodes are
Byzantine. Communications between blockchains are made possible by cross-
chain communication (CCC), which is a protocol that manages bidirectional
ledger-to-ledger links. There are two primitives used by the TrustBoost protocol.
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– Local consensus protocol. Πk is a public verifiable ledger consensus pro-
tocol (cf. Definition 4) run by nodes in the committee Ck, it provides an
interface Πk.submit(tx) for any client to submit and commit transactions on
the blockchain. And clients can check whether a transaction tx is commit-
ted on the ledger through Πk.check(tx). Optionally, Πk.check(tx) will return
a commitment certificate generated by the protocol as a proof of commit-
ment, e.g., the quorum certificate in many BFT-SMR protocols. Πk can be
instantiated by a black-box partial synchronous consensus protocol.

– Cross-chain communication (CCC). CCC is a routing protocol that al-
lows independent blockchains to communicate with each other, it has two
primitives, CCC.send(src, dst, tx) and CCC.deliver(src, dst, tx) to transmit
transaction tx, where src and dst are identifiers of the source and desti-
nation blockchains. CCC guarantees reliability and authenticity. Reliability
implies that any transaction sent by the source chain will get delivered in the
destination chain. Authenticity means that any validator on the destination
chain can verify the transactions delivered by the protocol represent some
states committed on the source chain.

TrustBoost protocol. With the above primitives, the TrustBoost protocol can be
built up by running a public verifiable ledger consensus protocol to issue global
states on m local blockchains. It also provides an interface TrustBoost.submit(tx)
to accept requests from clients and an interface TrustBoost.check(tx) for clients to
check the commitment of transactions (see Fig. 2). By using CCC as transmission
channels, and invoking Πk(1 ≤ k ≤ m) to commit transactions, any partial
synchronous protocol consensus can be used to instantiate TrustBoost.

For simplicity, we show how to instantiate TrustBoost with a majority voting
protocol in Algorithm 1, which is not a complete consensus protocol but contains
basic building blocks (propose, vote and commit phases) of most consensus pro-
tocols and the usage of all primitives. In the beginning, the protocol initializes
some data structures to store votes for transactions. Whenever a client wants
to post a transaction tx on TrustBoost blockchains, it calls TrustBoost.submit
function (line 4), which triggers CCC to broadcast a proposal to all blockchains.
Lines 7-14 describe how to handle cross-chain transactions such as Propose and
Vote. Once the commitment condition is met, e.g., in this example, a super ma-
jority of votes are collected, the TrustBoost protocol commits the transaction by
asking the local blockchain to commit the transaction (line 14). The protocol
also provides a check function (line 15) to extract the global states of a transac-
tion from local states. In this example, the transaction is considered committed
by TrustBoost once it is committed by more than 1/3 of the local blockchains.
More complicated rules can be designed in accordance to the specifications of
various consensus protocols. For instance, when instantiating TrustBoost with
BFT protocols that use signatures, we need πk that can provide commitment
certificates to allow message authentication after being forwarded to some third
chain.
Security guarantee. We see that each blockchain in TrustBoost behaves the
same as a single validator: transactions are authenticated by local commitment; a
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blockchain with honest super-majority (ni > 3fi) will behave in the same way as
an honest validator (e.g., no equivocation), otherwise it may behave arbitrarily
(like a Byzantine validator). Thus, let f = |{i : ni ≤ 3fi, 1 ≤ i ≤ m}| be the
number of faulty blockchains. If m > 3f , TrustBoost solves the problem of client
ledger consensus as defined in Definition 4 (see Appendix A). In other words,
TrustBoost securely constructs a combined ledger with total ordering as long as
2/3 of blockchains are secure.

Algorithm 1 Protocol TrustBoost (CCC, k,Πk)

1: Init:
2: txV otes← an empty map
3: m← number of participating chains

4: function submit(tx)
5: for dst = 1, · · · ,m do
6: invoke CCC.send(k, dst, ⟨Propose, tx⟩)
7: upon event CCC.deliver(src, dst, ⟨Propose, tx⟩) do
8: txV otes[tx] = ∅
9: for dst = 1, · · · ,m do
10: invoke CCC.send(k, dst, ⟨Vote, tx⟩)
11: upon event CCC.deliver(src, k, ⟨Vote, tx⟩) do
12: txV otes[tx] = txV otes[tx] ∪ {src}
13: if |txV otes[tx]| = ⌊2m/3⌋+ 1 then
14: invoke Πk.submit(tx)

15: function check(tx)
16: cnt← 0
17: for k = 1, · · · ,m do ▷ These m queries are executed concurrently
18: if Πk.check(tx) returns true then
19: cnt← cnt+ 1

20: if cnt ≥ ⌊m/3⌋+ 1 then
21: return true
22: return false

4.2 TrustBoost-Lite

Here we propose a lightweight protocol called TrustBoost-Lite that solves the
problem of ABC ledger consensus as defined in Definition 5. In TrustBoost-Lite,
m blockchains are independently run by each committee Ci using local consensus
protocols Πi (1 ≤ i ≤ m). The transactions in TrustBoost-Lite use the unspent
transaction output (UTXO) model, where a transaction consists of a set of inputs
and outputs and can be denoted as tx = (in, out). The inputs are pointers
to some outputs in previously committed transactions, we use input.from to
represent the transaction that contains the output which the input points to.
TrustBoost-Lite provides the same interfaces (submit and check) as TrustBoost,
which are defined in Algorithm 2.
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TrustBoost-Lite protocol. Different from TrustBoost, no cross-chain communi-
cation is needed in TrustBoost-Lite. Thus, the requests from clients will trigger
the submit of each local blockchain directly (line 5). And to check whether a
transaction is committed by TrustBoost-Lite, the client will observe the states
of m individual blockchains and make sure (1) the transaction is committed on
at least 2/3 of local blockchains and (2) all its inputs are outputs from globally
committed transactions (line 11).

Algorithm 2 Protocol TrustBoost-Lite (Πk)

1: Init:
2: m← number of participating chains

3: function submit(tx)
4: for dst = 1, · · · ,m do
5: invoke Πk.submit(tx)

6: function check(tx)
7: cnt← 0
8: for k = 1, · · · ,m do ▷ These m queries are executed concurrently
9: if Πk.check(tx) returns true then
10: cnt← cnt+ 1

11: if cnt ≥ ⌊2m/3⌋+ 1 and valid(tx) then
12: return true
13: return false
14: function valid(tx)
15: (in, out)← tx
16: valid← true
17: for input ∈ in do
18: if check(input.from) returns false then
19: valid← false
20: return valid

Security guarantee. The behaviors of blockchains that run TrustBoost-Lite
are also determined by local consensus protocols. Similarly, let f = |{i : ni ≤
3fi, 1 ≤ i ≤ m}| be the number of faulty blockchains. If m > 3f , TrustBoost-Lite
solves the problem of ABC client ledger consensus as defined in Definition 5 (see
Appendix A), which means honest clients still see the same set of transactions
and their transactions will be committed by TrustBoost-Lite even if 1/3 of local
blockchains are insecure.

5 Implementation

We implement TrustBoost in the Cosmos ecosystem [20], which is a decentral-
ized network of parallel and interoperable blockchains, each powered by BFT
consensus protocols like Tendermint [3], where the CCC is enabled by an inter-
blockchain communication (IBC) protocol [16]. In this section, we first give a
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brief overview of the Cosmos ecosystem and then highlight the key challenges to
implement TrustBoost.

5.1 Cosmos overview

Cosmos SDK. Cosmos-SDK [7] provides tools for building permissioned/proof-
of-stake (PoS) blockchains. Cosmos-SDK allows developers to easily create cus-
tom programmable and interoperable blockchain applications within the Cosmos
network without having to recreate common blockchain functionality. Cosmos-
SDK has several pre-built modules to serve different functionalities such as defin-
ing transactions, handling application state and the state transition logic, etc.
The most important modules related to TrustBoost are the CosmWasm mod-
ule [8] and the IBC module [9] (see below).
CosmWasm. CosmWasm adds smart contract support to the Cosmos chains,
where Rust is currently the most used programming language for contracts.
The basic function calls of a CosmWasm contract are executed through an entry
point (or a handler) shown in Fig. 3 (Left), by processing two given parameters5.
The info contains contract information about function executions such as the
address of the transaction sender, while the executeMsg encapsulates the name
and parameters of the target function, which will be processed by the handler
using a pattern-matching statement.

1 fn execute(info, executeMsg) {
2 let funcName = executeMsg.funcName;
3 let param = executeMsg.param;
4

5

6

7

8

9 match executeMsg {
10 funcA -> funcA(info, param),
11 funcB -> funcB(info, param),
12 ...
13 }
14 }
15 // definition of funcA, funcB...

fn execute(info, executeMsg ) {

let funcName = executeMsg.funcName;
let param = executeMsg.param;

assert_eq!(info.sender, addressOfTB);
let TBInfo = executeMsg.TBInfo;

match executeMsg {

funcA -> funcA( TBInfo , param),

funcB -> funcB( TBInfo , param),

...
}

}
// definition of funcA, funcB...

Fig. 3: Left: Handler of CosmWasm contract. Right: Handler of AppX contract
with TrustBoost proxy.

layer, which defines exactly how these data packets should be packaged and in-
terpreted by the sending and receiving chains. In the transport layer, blockchains
are not directly sending messages to each other over networking infrastructure,
but rather are creating messages to be sent which are then physically relayed
from one blockchain to another by monitoring “relayer processes”. These relay-
ers [10] continuously scan the state of chains that implement the IBC proto-
col and relay packets when these packets are present. This enables transaction
execution on connected chains when outgoing packets relayed over have been
committed. Relayers cannot modify IBC packets, as each IBC packet is verified
using light-clients by the receiving chain before being committed.
Cosmos ecosystem. Currently, over 20 CosmWasm-enabled blockchains are con-
nected in the Cosmos ecosystem by the IBC protocol. Therefore, Cosmos provides
the ideal environment for us to build and deploy TrustBoost.

5.2 TrustBoost implementation.

We implement and deploy TrustBoost as cross-chain smart contracts on 3f + 1
Cosmos chains. It consists of two major parts, the TrustBoost contract and cross-
chain application contracts (denoted as AppX). A complete flow chart is shown
in Fig. 4. To use application with TrustBoost, a client first calls the TrustBoost
contract to initiate a request to a specific application ( 1 ), which is logged on the
local blockchain ( 2 ) and trigger a consensus protocol among all the blockchains
( 3 ). Once the request is committed by TrustBoost, it calls the corresponding
application contract to execute the request ( 4 ). Clients can extract global states
from each local contract ( 5 ). In our implementation, the example application is
the NameService contract, where users can buy and transfer domain names. We
also observe that the changes to turn a single-chain application contract into a
cross-chain one are minor6.

Next, we discuss key challenges of implementing TrustBoost.

6 See changes to upgrade a contract to have TrustBoost support in github link.
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Fig. 3: Left: Handler of CosmWasm contract. Right: Handler of AppX contract
with TrustBoost proxy.

IBC protocol. IBC is an interoperability protocol for communicating arbi-
trary data between blockchains. The protocol consists of two distinct layers: the
transport layer which provides the necessary infrastructure to establish secure
connections and authenticate data packets between chains, and the application
layer, which defines exactly how these data packets should be packaged and in-
terpreted by the sending and receiving chains. In the transport layer, blockchains

5 We omit some semantic details for simplicity, check full descriptions in [8].
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are not directly sending messages to each other over networking infrastructure,
but rather are creating messages to be sent which are then physically relayed
from one blockchain to another by monitoring “relayer processes”. These relay-
ers [10] continuously scan the state of chains that implement the IBC proto-
col and relay packets when these packets are present. This enables transaction
execution on connected chains when outgoing packets relayed over have been
committed. Relayers cannot modify IBC packets, as each IBC packet is verified
using light-clients by the receiving chain before being committed.
Cosmos ecosystem. Currently, over 20 CosmWasm-enabled blockchains are con-
nected in the Cosmos ecosystem by the IBC protocol. Therefore, Cosmos provides
the ideal environment for us to build and deploy TrustBoost.

5.2 TrustBoost implementation.

We implement and deploy TrustBoost as cross-chain smart contracts on 3f + 1
Cosmos chains. It consists of two major parts, the TrustBoost contract and cross-
chain application contracts (denoted as AppX). A complete flow chart is shown
in Fig. 4. To use application with TrustBoost, a client first calls the TrustBoost
contract to initiate a request to a specific application ( 1 ), which is logged on the
local blockchain ( 2 ) and trigger a consensus protocol among all the blockchains
( 3 ). Once the request is committed by TrustBoost, it calls the corresponding
application contract to execute the request ( 4 ). Clients can extract global states
from each local contract ( 5 ). In our implementation, the example application is
the NameService contract, where users can buy and transfer domain names. We
also observe that the changes to turn a single-chain application contract into a
cross-chain one are minor6.

Next, we discuss key challenges of implementing TrustBoost.
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Fig. 4: The flow chart of executing a TrustBoost transaction.

Use PKI or not? In the relatively recent blockchain era, partially synchronous
BFT protocols have received renewed attention; performant and efficient BFT

6 See changes to upgrade a contract to have TrustBoost support in github link.
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protocols have been constructed (e.g., SBFT [18], Tendermint [3] and Hot-
Stuff [34]). However, all these protocols require a public key infrastructure (PKI)
or even a threshold signature scheme. Unfortunately, we found that in Cosmos-
SDK, once an IBC packet is verified using light-clients by the receiving chain,
the signatures (i.e., the quorum certificate from the sending chain) are then re-
moved and only the plaintext of the IBC message is passed to the receiving
chain. Therefore, the IBC message verification in Cosmos current lacks of trans-
ferability, that is a third chain won’t be able to verify that an IBC message is
indeed sent from its sending chain.

Due to this limitation, we have to implement BFT protocols without using
PKI and the state-of-the-art one is Information Theoretic HotStuff (IT-HS) [1].
IT-HS has a quadratic message complexity in each view; and it is optimisti-
cally responsive: with a honest leader, parties decide as quickly as the network
allows them to do so, without regard for the known upper bound on network
delay. Although IT-HS has slightly higher round and message complexity than
Tendermint/HotStuff, it avoids many expensive operations, such as signature
verification and aggregation. In addition, IT-HS only requires constant persis-
tent storage. Therefore, we believe IT-HS is a good candidate to be implemented
as the consensus protocol for our TrustBoost smart contract.

We also note that if we make a few minor changes to the Cosmos-SDK (i.e.,
passing the signatures to the smart contract layer), then TrustBoost can im-
plement any BFT protocol. However, to make sure that TrustBoost is directly
deployable in the real world, we keep the Cosmos-SDK untouched and stick to
IT-Hotstuff in this paper.

Consensus as smart contracts. To the best of our knowledge, this is the
first work to build consensus protocols using smart contracts. The inherent lim-
itations to smart contract programming (e.g., single-threading) pose challenges
to consensus protocol implementation. A prominent challenge is to ensure that
every operation in the BFT protocol is properly triggered by some IBC message.
Fortunately, this is the case in IT-HS (as it is optimistically responsive). The
only exception is the timeout for the view change, which occurs when the leader
is malicious or the network is poor, thus this is not in the optimistic path. Partic-
ularly, in IT-HS, a party will enter the view change phase if the leader of current
view does not make any progress for a certain period of time (a pre-defined time-
out value). However, this is not triggered by any IBC message. To address this
issue, we set external bots/scripts to regularly ping the blockchains to trigger the
timeout in time. Note that we make no trust assumptions on these bots (they
can also be replaced by “keepers”, a recent proposal from Chainlink [6]).

Another limitation of the IBC protocol is that a blockchain can not send IBC
messages to itself. However, in many BFT protocols including IT-HS, there are
operations triggered by self-delivered messages. Therefore, we have to pay special
attention to the self-delivered messages when implementing IT-HS in TrustBoost.
In addition, Cosmos-SDK allows the smart contract to send IBC messages only
when a function returns; once that is complete, the function call is over and no
more operations can be conducted. To deal with these constraints in Cosmos, we
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use a message queue in each function, queue all the IBC messages that need to be
sent, and send them all when the function returns. For example, in IT-HS, when
a node receives a propose message from the current leader, it will send a echo
message to all the other nodes; and when a node receives 2f+1 echo messages, it
will send a key1 message to all the other nodes. Extra caution is warranted when
writing the send proposal function in TrustBoost: in the send proposal function,
the current leader blockchain would like to broadcast the propose message, but
can only do this when the function returns. So, we need to first put the propose
message into the message queue. Considering that the leader blockchain should
send an echo message when the propose message is self-delivered, we also put the
echo message into the message queue. And because the echo message will also
be self-delivered, we increase the counter for echo messages by one. Since there
are not enough echo messages yet, the next step (sending the key1 message) will
not be triggered, the send proposal function can finally return and the leader
blockchain can send the IBC messages in the message queue (propose and echo).
Several such subtle aspects abound in the TrustBoost implementation, making
the design and implementation a challenging and rewarding endeavor; as such, we
believe how to implement complex communication/distributed protocols using
smart contracts is of independent interest.
TrustBoost as a proxy for application contracts. In order to boost the
security promises, any single-chain application contract App can be equipped
with a TrustBoost proxy to become a cross-chain application contract AppX
without touching functional codes. Specifically, a TrustBoost proxy will issue a
function call to AppX contract after committing a client’s request. To support
this, AppX contract only modifies a few lines (highlighted in Fig. 3 (Right)) in
the handler function of App contract to (1) check the function call is initiated
by a certified TrustBoost contract; and (2) add contract information info of App
contract as an extra parameter of AppX contract (stored in executeMsg.TBInfo)
to reproduce single-chain executions.
Contract state. Though an application contract App and its cross-chain vari-
ant AppX provide the same functionality, they have to maintain isolated states.
Regardless of the states owned by an App contract already existing on any single
blockchain, the deployment of a new AppX contract initializes all related states
independently from scratch, which are secured by more stringent security rules.

6 Evaluation

Our experimental evaluation answers the following questions:

– What is overhead of TrustBoost in terms of gas usage and confirmation la-
tency? This is the price paid for security.

– How well does TrustBoost scale when the number of chains increases?
– How does TrustBoost perform under Byzantine attacks?

Testbed setup. We deploy TrustBoost on an AWS m5.4xlarge instance with 16
vCPU and 64 GB memory. There are three steps in the setup phase: 1) start
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m = 3f+1 Cosmos chain instances in our local testnet; 2) deploy TrustBoost and
NameService contracts on each of the m chains; 3) connect each pair of the m
chains with an IBC channel. In our experiments, the block rate of each Cosmos
chain is set to be about one block per second.
Performance. In this experiment, we evaluate the performance of TrustBoost
with m = 4, 7, 10. We measure the number of IBC messages, the total gas usage
and the confirmation latency per request. For the confirmation latency, we record
the duration between the submission and the execution of the request. We also
do the same experiment on the single-chain NameService itself without using
TrustBoost (i.e., m = 1) for comparison. The results are shown in Table 1 (Left).

m 1 4 7 10

# IBC 0 102 348 738
Gas usage 202K 74M 261M 586M
Latency 2.5s 67.2s 105.0s 138.2s

Attacks I II III IV

Latency 137.2s 138.6s 66.8s 66.0s

Table 1: Left: Performance of TrustBoost with different number of chains. Right:
Performance of TrustBoost under different attacks.

From Table 1 (Left), we see that the number of IBC messages and the gas
usage scale quadratically. The overhead in gas comes from two parts: 1) the
communications and computations in the TrustBoost contract cost gas; 2) the
NameService contract needs to be executed on all m chains. Note that for fixed
m, the former gas usage is a constant, independent of the application contracts.
And in our experiments, the NameService contract uses very little gas, so the
overhead caused by TrustBoost is dominating. Further, by batching the requests,
this overhead can be amortized. Also Note that the performance of TrustBoost
is also limited by IBC efficiency: sending one single IBC message to transfer to-
kens cross chains would need 2s and 350K gas. Hence, making the transmission
and execution of IBC messages more efficient could greatly improve the perfor-
mance of TrustBoost. Moreover, 600M gas only costs $2-$10, for example based
on the gas price and the exchange rate on the Osmosis chain, at the time of
writing (October 2022). The latency is independent of the application contract.
However, we can see that it scales almost linearly when m increases, and it is
pretty acceptable compared with other high security chains, such as Bitcoin and
Ethereum.
Security. In this experiment, we evaluate how TrustBoost performs under active
attacks. We do the experiments in the four-chain cases where one blockchain is
hacked by the attacker and may behave arbitrarily. The malicious behaviors of
the hacked blockchain are triggered by external calls. Just like many other BFT
protocols, IT-HS also has a view-change sub-protocol to ensure liveness: when
no progress is made in one view, all nodes will enter the next view; each view is
assigned with a predefined primary node. We test the following attacks.

– Attack I. The primary blockchain of the first view crashes.
– Attack II. The primary blockchain of the first view sends different proposals.
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– Attack III. A non-primary blockchain sends different votes.
– Attack IV. A non-primary blockchain keeps sending abort messages to enter

the view change phase.

We measure the confirmation latency under these attacks. The results are shown
in Table 1 (Right). We can see that TrustBoost still works under these attacks:
the confirmation latency doubles under the first two attacks as it takes two views
to terminate; and attacks III and IV hardly have any impact on the latency.

7 Discussion

Unequal weights. Just like many BFT-style PoS protocols [15], blockchains in
TrustBoost can also have different weights, i.e., the voting powers in the BFT
protocol. For example, if all constituent chains are PoS chains, we can set the
weight of a chain to be proportional to the total market cap of its native token.
In this way, we can maximize the cost to attack the TrustBoost ledger. Another
example is that we can set the weight of all chains except one strong chain to be
zero so that TrustBoost can directly borrow trust from the strong chain. How to
dynamically adjust the weights is also an interesting question. Moreover, today
many blockchains are heavily intertwined economically (e.g., Osmosis and Axelar
Network in Cosmos), so the idea of asymmetric trust [4] can also be brought to
TrustBoost. We defer these topics to the future work.
Consensus with less communication and connectivity. In §3, we have seen
that ABC client consensus (cf. Definition 2) can be solved without any communi-
cation among the validators. One natural question would be: Can we design new
client consensus protocols to make TrustBoost more efficient, in terms of number
of IBC connections and messages? Theoretically, it would also be interesting to
study the lower bounds on number of messages and network connectivity for
client consensus. For example, it is easy to see that for client consensus when
m > 3f + 1, the extra m− 3f − 1 validators do not even to connect with other
validators, while all honest validators must form a connected component in order
to solve the traditional consensus problem. However, identifying the minimum
requirement on network connectivity for client consensus remains an interesting
and challenging problem.
Share security via checkpointing. An important application of TrustBoost is
that we can use it to checkpoint the m constituent chains or other weak chains.
The validators of each chain just need to regularly submit block hashes and
signatures as checkpoints to the TrustBoost ledger, and the finality rule of each
chain will be altered to respect the checkpoints. In this way, each chain will
also have a slightly slower finality rule - confirming the chain up to the latest
checkpoint, which has the same latency and security level as TrustBoost. For high
value transactions on a constituent chain, the users can apply the slow finality
rule to enjoy stronger security guarantees. In the context of Cosmos, with this
approach each constituent Cosmos chain in TrustBoost will have slashable safety
and much shorter withdrawal delays as long as at most 1/3 of the chains are
faulty, following the results shown in [30].
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Cross chain applications. We note that an important application of cross
chain bridges today is cross chain token transfer. However, it has a fundamental
security limit, where the attacker transfers some tokens on chain 1 to chain 2
and then reverts the state on chain 1 (e.g., by doing 51% attack) to get his
tokens back. We point out that this issue can be alleviated by TrustBoost using
the checkpointing idea discussed above. Particularly, when a user wants to move
100 token ABC from chain 1 to get 100 token XYZ on chain 2, first the 100
token ABC will be locked on chain 1 and then token XYZ will be sent to the
user only when the lock transaction on chain 1 is confirmed by the slow finality
rule (i.e., in the checkpointed chain). In this way, the state of the token ABC
contract on chain 1 is implicitly upgraded into the global state of the TrustBoost
ledger, which has stronger security guarantees.
Heterogeneous chains. Although our TrustBoost implementation is in the Cos-
mos ecosystem, the idea can be extended to a heterogeneous blockchain network.
We just need all the heterogeneous chains to be programmable and interoperable.
Different blockchains may have different virtual machines, therefore the Trust-
Boost smart contract will need to be written in multiple programming languages.
On the other hand, there are quite a few ongoing projects using zkSNARKs to
build trustless and efficient cross chain bridges [22,32]. We believe TrustBoost will
have broader applications in the near future when the heterogeneous blockchain
network becomes mature.

8 Acknowledgements

We thank Dion Hiananto and Luhao Wang for their help with the implemen-
tation and experiments. We thank Jack Zampolin and a few other Cosmos core
developers for valuable suggestions on this project. This research is supported
in part by the US National Science Foundation under grants CCF-1705007 and
CNS-1718270 and the US Army Research Office under grant W911NF1810332.

References

1. Ittai Abraham and Gilad Stern. Information theoretic hotstuff. arXiv preprint
arXiv:2009.12828, 2020.

2. Mathieu Baudet, George Danezis, and Alberto Sonnino. Fastpay: High-
performance byzantine fault tolerant settlement. In Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, pages 163–177, 2020.

3. Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains.
PhD thesis, University of Guelph, 2016.

4. Christian Cachin. Asymmetric distributed trust. In International Conference on
Distributed Computing and Networking 2021, pages 3–3, 2021.

5. Chainlink. Ccip. https://chain.link/cross-chain/.
6. Chainlink. Chainlink keepers. https://docs.chain.link/docs/chainlink-

keepers/introduction.
7. Cosmos. Cosmos-sdk. https://github.com/cosmos/cosmos-sdk.
8. Cosmos. Cosmwasm. https://github.com/CosmWasm/cosmwasm.

17



9. Cosmos. Ibc. https://github.com/cosmos/ibc.
10. Cosmos. Relayer. https://github.com/cosmos/relayer.
11. Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine

agreement. SIAM Journal on Computing, 12(4):656–666, 1983.
12. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence

of partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.
13. Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of

distributed consensus with one faulty process. Journal of the ACM (JACM),
32(2):374–382, 1985.
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Appendix

A Definitions of Ledger Consensus

It is known that consensus protocols can be used to solve the problem of ledger
consensus, i.e., state machine replication (SMR) [24]. In our model, we also
slightly modify the definition of ledger consensus such that it now requires all
clients to maintain a list of transactions that grows in length, called a public
ledger (cf. Definition 3), with the help of the validators. Validators participate
in the protocol to decide a total ordering of all transactions. Each client initially
starts with the same state and updates the state by executing all transactions
in its ledger. We first define the notion of a public ledger.

Definition 3 (Public ledger). A ledger L is a growing list of transactions that
provides the following two client interfaces:

– Submit: a client can submit a transaction tx to L by calling submit(tx).
– Check: a client can check whether tx ∈ L by calling check(tx). If check(tx)

returns true, the client will commit tx.

In the problem of client ledger consensus, we allow the following synchronous
out-of-band communications among clients: 1) clients can send transactions to
validators, but still clients send no other message to validators; 2) clients can
communicate with each other only to prove the confirmation of certain transac-
tions (i.e., allowed to sync up state with each other or bootstrap new clients).
The guarantees of client ledger consensus are defined as follows.

Definition 4 (Client ledger consensus).

– Agreement: If some honest client commits tx, every honest client will also
commit tx; moreover, tx appears at the same place in the ledgers of all hon-
est clients. Equivalently, if [tx0, tx1, · · · , txi] and [tx′

0, tx
′
1, · · · , tx′

i′ ] are two
ledgers output by two honest clients, then txj = tx′

j for all j ≤ min(i, i′).
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– Termination: If a client submits tx to all honest validators, tx will be
committed by all honest clients. If messages are delivered quickly, tx will be
committed quickly.

Similarly, ABC consensus can also be used to build a public ledger, although
without total ordering of the transactions. However, this suffices to implement
the functionality of a cryptocurrency like Bitcoin as shown in [28,2,17]. Suppose
the transaction space is now equipped with a conflict relation (e.g. double spend
transactions in Bitcoin), then the problem of ABC client ledger consensus is
defined as follows.

Definition 5 (ABC client ledger consensus).

– Weak agreement: If some honest client commits tx, every honest client
will also commit tx.

– Honest termination: If a client submits tx to all honest validators and
there are no conflicting transactions, tx will be committed by all honest
clients. If messages are delivered quickly, tx will be committed quickly.

It is not hard to see that any traditional (ABC) ledger consensus protocol can be
used to solve (ABC) client ledger consensus in our model: the validators just run
a traditional (ABC) ledger consensus protocol and send the committed ledgers to
the clients. This allows us to construct TrustBoost in a black-box manner. On the
other hand, similar to ABC client consensus, ABC client ledger consensus can
be solved without any communication among the validators. This observation
leads to the protocol TrustBoost-Lite in §4.2, where no CCC is needed.

B Proof of Theorem 1

Proof. Since in our model, the distributed protocols may or may not use PKI,
we prove the strongest results: for the negative results (i.e., “only if” parts), we
assume PKI is used; and for the positive results (i.e., “if” parts), we avoid using
PKI.

(1) Client consensus:
Only if : Seeking a contradiction, let us assume there is a protocol that solves
client consensus in passive mode. Divide all the clients into two sets: X and
Y each with at least one honest client. We first construct the following m + 1
worlds. See Fig. 5.
World 1.i (0 ≤ i ≤ m): In world 1.i, the first i validators start with value 0
and the rest m − i validators start with value 1. By termination, in all m + 1
worlds, clients in X and Y must eventually commit some value. By validity, the
committed value must be 1 in world 1.0 and 0 in world 1.m.Then there must
exist some integer 0 ≤ j ≤ m − 1 such that the committed value is 1 in world
1.j and 0 in world 1.(j + 1). Now consider the following world:
World 2: World 2 will be a hybrid world where the view of clients in X in this
world will be indistinguishable to their views in world 1.(j + 1) and the view of
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Fig. 5: Different worlds in the proof of Theorem 1.

clients in Y in this world will be indistinguishable to their view in world 1.j. In
world 2, the first j validators start with value 0 and the last m− j−1 validators
start with value 1. The adversary will use its Byzantine power to corrupt the
(j + 1)-th validator to perform a split-brain attack and make X and Y each
believe that they are in their respective worlds. The (j + 1)-th validator will
equivocate and act as if its starting value is 0 when communicating with X and
as if its 1 when communicating with Y . And since there is no communication
among the validators, their views will be indistinguishable to the views in worlds
1.j and 1.(j+1). Moreover, the view of X in this world will be indistinguishable
to the view of X in world 1.(j + 1) and the view of Y in this world will be
indistinguishable to the view of Y to world 1.j. Therefore, X will commit 0 and
Y will commit 1. This violates the agreement property.

If : With f = 0, we solve the problem of client consensus in the passive mode.
The protocol is simple: the validators just send their values to all clients; and
the client commits a value if it receives the same value from all m validators;
otherwise if the client receives both 0 and 1, it commits 0 by default. It is easy to
check that this protocol satisfies agreement, validity and termination; Moreover,
there is no communication among the validators.

(2) ABC client consensus:
Only if : Seeking a contradiction, let us assume there is a protocol that claims
to solve ABC client consensus with f ≥ m/3 Byzantine validators. Divide the
m validators into three sets: A, B, and C each with at least one validator and
at most f validators. Divide all the clients into two sets: X and Y each with at
least one client. We consider the following three worlds and explain the worlds
from the view of A, B, C, X and Y .
World 1: In World 1 validators in A and B start with the value 1. Validators
in C are Byzantine but pretend to be honest with initial value 0. Since C has at
most f participants, the clients in X must eventually commit a value by honest
termination. For validity to hold, all the clients in X will output 1.
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World 2: In World 2 validators in B and C start with the value 0. Validators
in A are Byzantine but pretend to be honest with initial value 1. Since A has at
most f participants, the clients in Y must eventually commit a value by honest
termination. For validity to hold, all the clients in Y will output 1.
World 3: World 3 will be a hybrid world where the view of X in this world will
be indistinguishable to the view of X in world 1 and the view of Y in this world
will be indistinguishable to the view of Y in world 2. A will start with value 1 and
C will start with value 0. The adversary will use its Byzantine power to corrupt
B to perform a split-brain attack and make X and Y each believe that they are
in their respective worlds. B will equivocate but act honestly as if its starting
value is 1 when communicating with X and as if its 0 when communicating
with Y . Then by an indistinguishability argument, X will commit 1 and Y will
commit 0. This violates the agreement property.

If : Assume m > 3f , now we solve the problem of ABC client consensus in
passive mode. The protocol is simple: the validators just send their values to
all clients; and the client commits a value if it receives the same value from at
least 2f +1 validators. It is easy to check that this protocol satisfies agreement,
validity and honest termination; Moreover, there is no communication among
the validators.

C Proof of Theorem 2

Proof. Since in our model, the distributed protocols may or may not use PKI,
we prove the strongest results: for the negative results (i.e., “only if” parts), we
assume PKI is used; and for the positive results (i.e., “if” parts), we avoid using
PKI.
(1) Client consensus:
Only if : Seeking a contradiction, let us assume there is a protocol that claims
to solve client consensus with f ≥ m/3 Byzantine validators. Divide the m
validators into three sets: A, B, and C each with at least one validator and at
most f validators. Divide all the clients into two sets: X and Y each with at
least one client. We consider the following three worlds and explain the worlds
from the view of A, B, C, X and Y . In all three worlds, we will assume that all
messages between A←→ B and B ←→ C arrive immediately. See Fig. 6.
World 1: In World 1 validators in A and B start with the value 1. Validators in
C and clients in Y have crashed. Since C has at most f participants, the clients
in X must eventually commit a value by termination. For validity to hold, all
the clients in X will output 1. From the perspective of A, B and X, they cannot
distinguish between a crashed (or Byzantine) C vs. an honest C whose messages
are delayed.
World 2: World 2 will be a world similar to world 1 where the roles of A and C
and the roles of X and Y are interchanged. The validators in B and C start with
the value 0. Validators in A and clients in X have crashed. So all the clients in
Y will output 0 by termination and validity. Again, from the perspective of B,
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Fig. 6: Different worlds in the proof of Theorem 2.

C and Y , they cannot distinguish between a crashed A vs. an honest A whose
messages are delayed.
World 3: World 3 will be a hybrid world where the view of A and X in this
world will be indistinguishable to the view of A and X in world 1 and the view of
C and Y in this world will be indistinguishable to the view of C and Y in world
2. A will start with value 1 and C will start with value 0. The adversary will
use its Byzantine power to corrupt B to perform a split-brain attack and make
A (or X) and C (or Y ) each believe that they are in their respective worlds. B
will equivocate and act as if its starting value is 1 when communicating with
A and X and as if its 0 when communicating with C and Y . If the adversary
delays messages between A ←→ C, A −→ Y and C −→ X for longer than
the time it takes for X and Y to decide in their respective worlds, then by an
indistinguishability argument, X will commit to 1 and Y will commit to 0. This
violates the agreement property.

If : Assume m > 3f , now we solve the problem of client consensus in active
mode. The validators run any partial synchronous consensus protocol and send
the committed value to the clients. The client commits a value if it receives the
same value from at least 2f + 1 validators. It is easy to check that this protocol
satisfies agreement, validity and termination.

(2) ABC client consensus:
Only if : Same as the proof for client consensus as above. Note that in world 1&2
honest validators start with the same value, hence honest termination suffices
for the proof.

If : Same as the algorithm that solves ABC client consensus in passive mode (in
the proof of Theorem 1).

23


	TrustBoost: Boosting Trust among Interoperable Blockchains

