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Abstract. Threshold ring signatures are digital signatures that allow t
parties to sign a message while hiding their identity in a larger set of n
users called “ring”. Recently, Aranha et al. [PKC 2022] introduced the
notion of extendable threshold ring signatures (ETRS). ETRS allow one
to update, in a non-interactive manner, a threshold ring signature on
a certain message so that the updated signature has a greater thresh-
old, and/or an augmented set of potential signers. An application of this
primitive is anonymous count me in. A first signer creates a ring signa-
ture with a sufficiently large ring announcing a proposition in the signed
message. After such cause becomes public, other parties can anonymously
decide to support that proposal by producing an updated signature.
Crucially, such applications rely on partial signatures being posted on
a publicly accessible bulletin board since users may not know/trust each
other.

In this paper, we first point out that even if anonymous count me in was
suggested as an application of ETRS, the anonymity notion proposed in
the previous work is insufficient in many application scenarios. Indeed,
the existing notion guarantees anonymity only against adversaries who
just see the last signature, and are not allowed to access the “full evolu-
tion” of an ETRS. This is in stark contrast with applications where partial
signatures are posted in a public bulletin board. We therefore propose
stronger anonymity definitions and construct a new ETRS that satis-
fies such definitions. Interestingly, while satisfying stronger anonymity
properties, our ETRS asymptotically improves on the two ETRS pre-
sented in prior work [PKC 2022] in terms of both time complexity and
signature size. Our ETRS relies on extendable non-interactive witness-
indistinguishable proof of knowledge (ENIWI PoK), a novel technical tool
that we formalize and construct, and that may be of independent inter-
est. We build our constructions from pairing groups under the SXDH
assumption.

Keywords: Threshold Ring Signatures · Anonymity · Malleable Proof
Systems.
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1 Introduction

Anonymity is a central requirement in several privacy-preserving technologies.
Notable examples are e-voting protocols [33], anonymous authentication [29],
and privacy-protecting cryptocurrencies [34]. A central cryptographic primitive
that can be used to provide anonymity in applications is ring signatures [32].
Ring signatures [32] are digital signatures which allow one user to sign a message
while hiding her identity in a larger group called ring R. In practice, the signing
algorithm, aside the message, takes as input a set of public keys (i.e., the ring)
and one of the corresponding secret keys. The produced signature guarantees
that one of the public keys in the ring signed the message, while hiding which
one of the secret keys was used to create the signature. Clearly, the larger is
R the greater is the anonymity provided to the signer. Constructions for ring
signatures are known from a variety of cryptographic tools such as RSA [16],
pairing groups [9,15,36], non-interactive zero-knowledge proofs [10,3,21], and lat-
tices [26,27,18,8]. A practical application of ring signature is whistleblowing. By
signing a message, a member of a company can report a wrong practice of the
company itself while hiding his identity among all the other employees.

Threshold ring signatures [11] enrich ring signatures by allowing t signers to
hide their identity within the ring. The signature guarantees that t members
of R signed the message without revealing which ones. Ring signatures can be
seen as threshold ring signatures with t = 1. Some threshold ring signatures also
enjoy a property called flexibility [30,28]. They allow new signers to join already
produced signatures: a signature on a message m that was already created with
threshold t for a ring R can be transformed into a new signature on message m
with threshold t + 1 w.r.t. the same ring R. The interesting aspect of flexible
threshold ring signatures is that the update does not require the participation
of any previous signer. Nevertheless, until recently, all known threshold ring
signatures did not offer an analogous property that would allow extending the
ring. In other words, all previous constructions required to fix the ring from the
beginning and did not allow to modify it further.

This problem has been addressed for the first time in the recent work of
Aranha et al. [2] which has put forth the notion of extendable threshold ring
signatures (ETRS). ETRS, aside the join operation, also provide an extend oper-
ation: any signature with ring R can be transformed by anybody into a signature
with ring R′ s.t. R ⊂ R′. After the extend operation, all signers in R′ can join
the signature.

On count-me-in applications. Aranha et al. [2] observe how the richer flexibil-
ity of ETRS can enable more advanced forms of whistleblowing or anonymous
petitions. The first signer could create a ring signature with a sufficiently large
ring announcing a proposition in the signed message. After such cause becomes
public, other parties could support the cause via extend and/or join operations.
As also reported in [2], an observer who has seen signatures on an old ring R
and on a new ring R′ can always compute R′ \ R, and this can help narrowing
down the identity of the signers. This problem is inherent in the functionality
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provided by ETRS, and it worsens as t approaches the size of the ring. A clear
example is the one of a signature w.r.t. ring R with threshold t = n− 1, where
n = |R|, which is transformed into a signature with threshold t = n′ − 1 w.r.t.
R′, |R′| = n′ = n + 1 (i.e., the threshold is increased by one and the final ring
contains an additional public key of a user A). By looking at the two signatures,
one can infer that one signer of the last signature either comes from |R| or it is
A with probability 1

2 .

In [2], the authors address this issue by proposing an anonymity definition
in which the adversary is restricted to see only the signature obtained eventu-
ally, after all the extend and join operations have been applied. However, this
restriction hinders the use of ETRS in real-world count-me-in applications since
it bears an implicit requirement: the signers should privately interact to incre-
mentally produce the ETRS and then only the final signature can be made public
to the outside world. This means that all the possible advocates of a proposal
should be given access to a private bulletin board where partial signatures are
posted. Additionally, the abstract of [2] informally mentions the importance of
fellow signer anonymity (FSA), a property stating that “it is often crucial for
signers to remain anonymous even from their fellow signers”. Such requirement
was previously formally modeled in [28], but it is not captured by the anonymity
definitions of [2]. Indeed, it is unclear how such property could be guaranteed
when anonymity is only formulated w.r.t. an adversary who cannot see interme-
diate signatures (as real signers would) and does not have the secret key of any
of the signers (as in the definition of [2]).

1.1 Our Contributions

In this work, we address the aforementioned shortcomings of ETRS. First, we
propose a stronger security definition that guarantees anonymity even against
adversaries that see the full “evolution” of a signature. Second, we propose a
new ETRS construction that achieves our strong anonymity definition, and also
improves in efficiency over previous work (cfr., Table 1). Our construction re-
lies on extendable non-interactive witness indistinguishable proof of knowledge
(ENIWI PoK), a novel technical tool that we formalize and construct, and that
may be of independent interest. In what follows, we present our contributions in
more detail.

Stronger anonymity for ETRS. Even though certain leaks are inherent when the
adversary gets to see several ETRS, one should aim at building a scheme which
leaks nothing more than that. To this regard, we start from the anonymity
definition proposed in [2] and we make it stronger as follows. We allow the
adversary A to see all the ETRS that led to the final signature. In a nutshell, A
outputs two sequences of operations which at every step lead to an ETRS on the
same message, with the same ring, and the same threshold in both sequences.
The challenger C picks one of such sequences at random, executes it, and gives
to A the corresponding outputs of each step. We then require that A only has a
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negligible advantage in guessing which sequence was applied. We also propose a
security game that models fellow signer anonymity for ETRS.

Constructing ETRS. In [2], two constructions of ETRS are proposed: the first one
is obtained from extendable same-message linkable ring signatures (SMLERS)3,
while the second one is constructed from signatures of knowledge (SoK) for
the discrete log relation, public key encryption (PKE), and the discrete log
assumption. The first scheme achieves our stronger anonymity notion but suffers
quite high complexity; for instance, the signature size is O(tn). The second
scheme in [2] is more compact but does not fulfill our stronger anonymity notion.
Indeed, anyone who sees an ETRS before and after a join operation can easily
pinpoint the exact signer who joined the signature (see Suppl. A.1 for more
details). It follows that such scheme is also not fellow-signer anonymous, since
no secret key is required to carry out the above attack.

We construct an ETRS which fulfills our stronger anonymity definition and
is also fellow-signer anonymous. As shown in Tab. 1, our ETRS also generally
improves the constructions given in [2] in terms of both time complexity and sig-
nature size. In Suppl. A.1, we give a high-level overview of both ETRS presented
in [2]. To build our ETRS, we introduce the notion of ENIWI PoK, which may
be of independent interest. We then show how to build an ETRS from an ENIWI
PoK for a hard relation, and an IND-CPA homomorphic public key encryption
scheme.

Scheme Size Sign Join Extend Verify Anonymity FSA

SMLERS [2] O(tn) O(tn) O(n) O(tn) O(tn) Strong Yes
DL + SoK + PKE [2] O(N) O

(
N2

)
O
(
N2

)
O
(
N2

)
O
(
N2

)
Weak No

Ours O(n) O(n) O(n) O(n) O(n) Strong Yes
Table 1. Comparison of signature size, time complexities, and anonymity guarantees
of our ETRS and the ones presented in [2]. We use n to indicate the size of the ring
and t to indicate the threshold. In the DL + SoK + PKE construction of [2] signature
size and time complexities both depend on a fixed upper bound on the ring size N .
We say that a scheme achieves weak anonymity if it achieves the anonymity property
of [2], while we say that a scheme achieves strong anonymity if our stronger anonymity
definition is satisfied. FSA stands for fellow-signer anonymity.

ENIWI PoKs. In [13], Chase et al. examined notions of malleability for non-
interactive proof systems. They defined the notion of allowable transformation

3 SMLERS were introduced in [2] as well. A SMLERS is a ring signature which is
also extendable. In addition, it allows to link two signatures produced by the same
signer on the same message, even on different rings. The SMLERS of [2] is obtained
from signatures of knowledge for the discrete log relation, collision-resistant hash
functions, and the discrete log assumption.
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T = (Tx, Tw) w.r.t. a relationRL. A transformation is allowable w.r.t.RL if on in-
put (x,w) ∈ RL it gives as output (Tx(x) = x′, Tw(w) = w′) ∈ RL. Then, a proof
system is said to be malleable w.r.t. an allowable transformation T = (Tx, Tw),
if there exists a poly-time algorithm that on input the initial statement x, the
transformation T , and an accepting proof Π, gives an accepting proof Π ′ for
the transformed statement x′. They also considered more complex transforma-
tions including n statements and proofs. They showed that Groth-Sahai (GS)
proofs [23] are malleable w.r.t. the language of sets of pairing product equations
and they define a set of elementary allowable transformations which can be used
to build more complex ones, including conjunctions and disjunctions. They also
observed that since GS is re-randomizable, a transformation of a proof followed
by its re-randomization is indistinguishable from a proof computed from scratch
for statement x′ using witness w′. They called this property derivation privacy.

In this paper, we further explore the notion of malleability for non-interactive
witness indistinguishable (NIWI) proofs of knowledge (PoKs) in the context of
threshold relations. A threshold relation RLtr is defined w.r.t. a relation RL as
RLtr = {(x = (k, x1, . . . , xn), w = ((w1, α1), . . . , (wk, αk)))|1 ≤ α1 < . . . < αk ≤
n ∧ ∀ j ∈ [k] : (xαj

, wj) ∈ RL}. Let Ltr be the corresponding NP language. In
words, the prover wants to prove it has k witnesses for k different statements out
of n statements. The transformations we explore are extend and add operations:

– Extend: transform a proof for (k, x1, . . . , xn) ∈ Ltr into a proof for (k, x1, . . . ,
xn, xn+1) ∈ Ltr.

– Add: transform a proof for (k, x1, . . . , xn) ∈ Ltr into a proof for (k +
1, x1, . . . , xn) ∈ Ltr.

While the extend operation can be realized without using any private input
of the “previous” prover, as modelled in [13], the same does not hold for the
add operation. Indeed, thanks to extractability, an accepting proof for (k +
1, x1, . . . , xn) ∈ Ltr can only be generated by the prover, except with negligible
probability, using k + 1 witnesses for k + 1 different statements out of all the
n statements. It follows that the add transformation must require a witness for
statement xi, with index i ∈ [n] that was not previously used, and it cannot
produce an accepting proof for the updated statement on input a witness for a
previously used index. It is straightforward to notice that this fact could be used
to check whether or not a given witness was used in the proof, thus violating
witness indistinguishability.

Therefore, we put forth the new notion of ENIWI PoK. In an ENIWI PoK,
when the prover computes a proof Π for a statement x = (k, x1, . . . , xn), it also
outputs a list of auxiliary values AUX = (aux1, . . . , auxn). The auxiliary value
auxi will be later used to perform the add operation via an additional algorithm
called PrAdd. PrAdd, on input an accepting proof Π for (k, x1, . . . , xn) ∈ Ltr, a
witness wi for a not previously used index i s.t. (xi, wi) ∈ RL, and the corre-
sponding auxiliary value auxi, outputs a proof Π ′ for (k + 1, x1, . . . , xn) ∈ Ltr.
Analogously, there is an additional algorithm PrExtend that is used to perform
the extend operation. PrExtend does not require any auxiliary value. PrExtend,
on input an accepting proof for (k, x1, . . . , xn) ∈ Ltr, and a statement xn+1,
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outputs a proof Π ′ for (k, x1, . . . , xn+1) ∈ Ltr and the auxiliary value auxn+1 re-
lated to statement xn+1. The auxiliary value auxn+1 can later be used to perform
an add operation using witness wn+1 s.t. (xn+1, wn+1) ∈ RL. The verification
algorithm is left unaltered and does not take any auxiliary value in input.

Similarly to derivation privacy, we require that the outputs of both the ex-
tend and add operations followed by a re-randomization are indistinguishable
from proofs created using the regular prover algorithm. Regarding witness indis-
tinguishability, we have to treat the auxiliary values in a special manner. Indeed,
giving out all the auxiliary values would at least reveal the indices of the used
witnesses. Therefore, we propose a new notion called extended witness indis-
tinguishability. In this notion, the adversary A samples a x = (k, x1, . . . , xn)
and two witnesses wi as ((wi

1, α
i
1) . . . , (w

i
k, α

i
k)), s.t. (x,wi) ∈ RLtr for i ∈

{0, 1}. Recall that αj ∈ [n], with j ∈ [k], indicates that wj is a witness s.t.
(xαj , wj) ∈ RL. Then, the challenger C outputs a proof computed using one of
the two witnesses, but it only gives to A a subset of all the auxiliary values.
Such subset includes the auxiliary values only related to certain indices, namely
({1, . . . , n} \ ({α0

1, . . . , α
0
n} ∪ {α1

1, . . . , α
1
n})) ∪ ({α0

1, . . . , α
0
n} ∩ {α1

1, . . . , α
1
n}). In

words, those are the auxiliary values related to the indices for which one of the
following conditions holds: (i) the index was not used in either w0 or w1; (ii) the
index was used in both w0 and w1. We require that A has negligible advantage
in guessing whether w0 or w1 was used to create the proof. The idea is that if
we build upon a NIWI and if the auxiliary values are only tied to the indices
of the used witness and not to their concrete values, then giving the auxiliary
values for the “irrelevant” positions to A does not give A any advantage. Al-
though it could seem a cumbersome notion, ENIWI is enough to obtain strongly
anonymous ETRS, and could possibly have other applications.

High-level overview of our ENIWI. We propose an ENIWI for the base relation
RL of pairing product equations (PPEs) in which all the variables are elements
of group two, public constants are either paired with secret values or with the
public generator, and the target element is the neutral element.

We build our ENIWI from GS proofs. GS is a commit-and-prove system where
secret variables are first committed and the prover algorithm takes as input the
committed values as well as the commitments randomnesses to create some proof
elements. The proof can be verified on input the statement, the commitments,
and proof elements. We first modify known techniques to get disjunctions of
PPEs [22,12] into a technique to get proofs of partial satisfiability of k out of
n PPEs. Such transformation modifies the starting PPEs via some additional
variables M̂i with i ∈ [n] s.t. k of the PPEs are left unaltered while n − k of
them now admit the trivial solution, thus allowing for simulation. The value
of M̂i is constrained to two values, depending on whether or not the proof for
the i-th equation should be simulated. We then observe that such proofs can
be turned into an ENIWI provided with the extend and the add operations.
The auxiliary values can be seen as the commitment openings related to such
variables which enable to replace an M̂i allowing for simulation (i.e., an M̂i

that makes the corresponding PPE admit the trivial solution) with a new one
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preventing simulation (i.e., an M̂i that leaves the corresponding PPE unaltered).
The idea is that to perform the add operation, the old commitment to a variable
M̂i would be replaced with a fresh one. Then, auxi would allow to erase from
the proof element the contribution related to the old committed variable and
to subsequently put in the contribution of the freshly committed variable. The
extend operation is more straightforward since it does not need to erase any
contribution, but only to add the contribution of a new variable. At a high level,
extended witness indistinguishability is achieved since the M̂i variables are only
tied to the particular equation being simulated or not, but not to the actual
value of any of the variables. Proofs can also be re-randomized leveraging the re-
randomizability of GS and by appropriately updating the auxiliary values after
the re-randomization.

High-level overview of our ETRS. To get an ETRS, we just need a way to turn an
ENIWI in a signature scheme preserving its extendability properties. In [19], it
is shown how to create a signature of knowledge (SoK) from a NIWI PoK in the
random oracle model (ROM). In a nutshell, the message is hashed to produce
the CRS which is then used to prove the statement of the SoK. The resulting
proof constitutes the signature. We leverage their technique to create an ETRS
starting from an ENIWI PoK. The idea is that since the transformation given
in [19] just modifies how the CRS is generated, we are able to replace the NIWI
PoK with an ENIWI PoK to get an ETRS instead of a regular signature. In our
ETRS, the i-th signer has as public key a statement xi for a hard relation RL for
which it exists an ENIWI, along with the public key pkie of an IND-CPA public
key encryption scheme (PKE) which is homomorphic w.r.t. the update operation
of the auxiliary values. The corresponding secret key is wi s.t. (xi, wi) ∈ RL,
along with the secret key of the encryption scheme skie. The first signer S hashes
the message m to get the CRS, then S uses her own witness to create a proof for
(1, x1, . . . , xn) ∈ RLtr . By creating such proof, the signer will also get auxiliary
values (aux1, . . . , auxn). Since publishing the auxiliary values in the clear would
reveal the identity of the signer, each individual auxi is encrypted using the
public key of the i-th signer4. A new signer willing to join will decrypt auxi and
run PrAdd to update the proof. To extend the ring, it suffices to run PrExtend to
update the proof. Finally, to ensure anonymity we exploit the fact that ENIWI
PoKs are re-randomizable. We re-randomize all the proofs after running either
PrAdd or PrExtend. We additionally exploit the homomorphic property of the
encryption scheme to update the auxiliary values after each re-randomization.
We prove the security of our ETRS in the ROM.

Both the constructions presented in [2] use SoKs for the discrete log relation
as a building block without specifying a concrete instantiation. Whether they re-

4 Notice that for anonymity to hold, it is crucial that the witness indistinguishability
property holds even if the auxiliary values related to unused positions are leaked to
the adversary. Indeed, in our anonymity notion the adversary is allowed to corrupt
all non-signers, thus getting their decryption keys and the related auxiliary values.
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quire the ROM or not depends on whether there exists a practical5 SoK without
random oracles for that relation. The authors also provide an implementation
in which they use the Schnorr identification scheme with the Fiat-Shamir trans-
form as a SoK. Such SoK requires the ROM. In our ETRS, all operations require
linear time in n as the number of equations to be proved linearly depends on n.
Additionally, GS proofs have constant size for each type of equation, therefore
the size of the ETRS is O(n). Note that both time complexity and signature size
do not depend on t.

2 Related Work

Threshold ring signatures were introduced by Bresson et al. [11]. They provided
a construction based on RSA. The size of the signature is O(n log n), where n is
the size of the ring. Subsequent works proposed new constructions from a variety
of assumptions focused on either relaxing the setup assumptions, reducing the
signature size, or getting rid of the ROM.

Several works have signatures of size linear in n [1,31,25], while some others
proposed constructions with signature size that can be sub-linear in n [35,4,5]6,
or even O(t) [28,24]. Some works have also focused on providing post-quantum
security [1,7,25].

In [30], the concept of flexibility was introduced. A flexible threshold ring
signature scheme allows one to modify an already created signature on a message
m with threshold t and ring R into a new signature on message m with threshold
t+ 1 w.r.t. R, without the intervention of the previous signers.

Usually, threshold ring signatures are formulated as an interactive protocol
run among the signers. Some schemes have a weaker requirement [4,5], where
the signers just have to interact with one party called the aggregator. After
having interacted with all the signers, the aggregator just compiles all the re-
ceived contributions into one threshold ring signatures which can then be pub-
licly posted. Munch-Hansen et al. [28] presented a threshold ring signature based
on RSA accumulators with sizeO(t). Their scheme also achieves flexibility. More-
over, they introduce a stronger anonymity property that demands that a signer
cannot be deanonymized even by their fellow signers. In this scenario, having
non-interactive signing is crucial since the deanonymization could be done by
exploiting communication meta-data such as the IP address. The same applies
to signatures using an aggregator, unless the aggregator is trusted. Recently,
Aranha et al. [2] have further enhanced the functionality of threshold ring signa-
ture by proposing extendable threshold ring signatures ETRS. ETRS are flexible
and they also allow to extend the ring of a given signature without the need of
any secret.

5 Chase and Lysyanskaya [14] proposed a generic construction under standard com-
plexity assumptions in the common random string model, but it is not practical
since it uses general non-interactive zero-knowledge (NIZK) proofs.

6 In particular, [35] has size O(t
√
n), [5] is O(t logn), and [4] is O(logn).
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3 Preliminaries

In this section, we introduce the assumptions and the cryptographic tools our
constructions rely on. We defer to Suppl. A.2 for more widely known definitions
and assumptions. When referring to an NP language L we call RL the corre-
sponding NP relation. We work over bilinear groups gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ) ←
G(1λ). G(1λ) is a generator algorithm that on input the security parameter, out-
puts the description of a bilinear group. We call such description group key gk.
Ĝ, Ȟ,T are prime p order groups, ĝ, ȟ are generators of Ĝ, Ȟ respectively, and
e : Ĝ × Ȟ → T is a non-degenerate bilinear map. In this paper, we will use
additive notation for the group operations and multiplicative notation for the
bilinear map e.

Assumption 1 (Double Pairing Fixed Term Assumption) We say the dou-

ble pairing fixed term assumption holds relative to Ĝ if for gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)←
G(1λ), and for all PPT adversaries A we have

Pr
[
â, b̂←$ Ĝ \ (0̂, 0̂); b̌′ ← A(gk, â, b̂) : b̌′ ∈ Ȟ, â · ȟ+ b̂ · b̌′ = 0T

]
≤ negl(λ).

Lemma 1. If the double pairing fixed term assumption holds for gk, then the
Decisional Diffie-Hellman assumption holds for Ĝ.

See Suppl. A.3 for the proof.

3.1 Groth-Sahai Proofs

The Groth-Sahai proof system [23] is a proof system for the language of satisfi-

able equations (of types listed below) over a bilinear group gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)
← G(1λ). The prover wants to show that there is an assignment of all the vari-
ables that satisfies the equation. Such equations can be of four types:

Pairing-product equations (PPE): For public constants âj ∈ Ĝ, b̌i ∈ Ȟ,
γij ∈ Zp, tT ∈ T:

∑
i x̂i · b̌i +

∑
j âj · y̌j +

∑
i

∑
j γij x̂i · y̌j = tT.

Multi-scalar multiplication equation in Ĝ (MEĜ): For public constants âj ∈
Ĝ, bi ∈ Zp, γij ∈ Zp, t̂ ∈ Ĝ:

∑
i x̂ibi +

∑
j âjyj +

∑
i

∑
j γij x̂iyj = t̂.

Multi-scalar multiplication equation in Ȟ (MEȞ): For public constants aj ∈
Zp, b̌i ∈ Ȟ, γij ∈ Zp, ť ∈ Ȟ:

∑
i xib̌i +

∑
j aj y̌j +

∑
i

∑
j γijxiy̌j = ť.

Quadratic equation in Zp (QE): For public constants aj ∈ Zp, bi ∈ Zp,
γij ∈ Zp, t ∈ Zp:

∑
i xibi +

∑
j ajyj +

∑
i

∑
j γijxiyj = t.

Here, we formalize the GS proof system as in [17]. The GS proof system
is a commit-and-prove system. Each committed variable is also provided with
a public label that specifies the type of input (i.e., scalar or group element).
Accordingly, the prover algorithm takes as input a label L which indicates the
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type of equation to be proved (i.e., L ∈ {PPE,MEĜ,MEȞ,QE}). GS features
the following PPT algorithms, the common reference string crs and the group
key gk are considered as implicit input of all the algorithms.

– crs←$CRSSetup(gk): on input the group key, output the common reference
string.

– (l, c) ← Com(l, w; r): return a commitment (l, c) to message w according to
the label l and randomness r.

– π ← Prove(L, x, (l1, w1, r1), . . . , (ln, wn, rn)): consider statement x as an
equation of type specified by L, and on input a list of commitment openings
produce a proof π.

– 0/1 ← PrVerify(x, (l1, c1), . . . , (ln, cn), π): given committed variables, state-
ment x, and proof π, output 1 to accept and 0 to reject.

– ((l1, c
′
1), . . . , (ln, c

′
n), π

′)← RandPr(L, (l1, c1), . . . , (ln, cn), π; r): on input equa-
tion type specified by L, a list of commitments, a proof π, and a randomness
r, output a re-randomized proof along with the corresponding list of re-
randomized commitments.

GS can be also used to prove that a set of equations S, with possibly shared
variables across the equations, has a satisfying assignment. To do so, the prover
has to reuse the same commitments for the shared variables while executing the
Prove algorithm for each individual equation. The above description can also
fit the interface of NIWI PoK (Suppl. A.2). Indeed, the Prove algorithm can
just launch the Com and the Prove algorithm above with the appropriate labels,
and return as a proof both the commitments and the proof elements. Similarly,
the PrVerify and RandPr algorithms of the NIWI PoK interface have just to
appropriately parse their inputs and call the PrVerify and RandPr algorithms
described above.

The GS proof system is proved to be a NIWI for all types of the above equa-
tions under the SXDH assumption. In addition, it is a NIWI PoK for all equations
involving solely group elements. To be more specific, Escala and Groth formu-
lated the notion of F -knowledge[17] (i.e., a variation of adaptive extractable
soundness, see Def. 14 in Suppl. A.2) for a commit-and-prove system. In a nut-
shell, it requires the existence of an Ext2 algorithm that, on input a valid com-
mitment and the extraction key produced by Ext1, outputs a function F of the
committed value. They prove that GS enjoys F -knowledge. For commitments to
group elements, F is identity function. Regarding commitments to scalars, F is
a one-way function that uniquely determines the committed value.

Internals of GS proofs. In [17], the authors provide a very fine-grained de-
scription of GS proofs. In this description, we report only the aspects that are
relevant to our constructions. It is possible to write the equations of Sec. 3.1 in
a more compact way. Consider x̂ = (x̂1, . . . , x̂m) and y̌ = (y̌1, . . . , y̌n), which
may be both public constants (i.e., written before as âj , b̌i) or secret values. Let
Γ = {γij}m,n

i=1,j=1 ∈ Zm×n
p . We can now write a PPE as x̂Γ y̌ = tT. Similarly, a

MEĜ, a MEȞ, and a QE can be written as x̂Γy = t̂, xΓ y̌ = ť, and xΓy = t. This
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holds for x̂ ∈ Ĝ1×m, y̌ ∈ Ȟn×1,x ∈ Z1×m
p ,y ∈ Zn×1

p . Additionally, for equations
of type MEĜ, MEȞ, and QE, we can, without loss of generality, assume the tar-
get element to be the neutral element. For PPE we will restrict ourselves to the
case in which tT = 0T, and no public constants are paired with each other, unless
one of the two is a generator specified in the public parameters. The structure
of the crs is clear from Fig. 1, where the Ext1 algorithm is shown.

(crs, xk)← Ext1(gk)

Parse gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)
ρ←$Zp, ξ←$Z∗

p and σ←$Zp, ψ←$Z∗
p

v̂ = (ξĝ, ĝ)⊤ and v̌ = (ψȟ, ȟ)

ŵ = ρv̂ and w̌ = σv̌

û = ŵ + (0̂, ĝ)⊤ and ǔ = w̌ + (0̌, ĝ)

ξ = (−ξ−1 mod p, 1) and

ψ = (−ψ−1 mod p, 1)⊤

crs = (û, v̂, ŵ, ǔ, v̌, w̌)

xk = (ξ,ψ)

return (crs, xk)

Fig. 1. Generation of the CRS along with the extraction key in the GS proof system.

In Fig. 2, we report the commitment labels and corresponding commit algo-
rithm that are of interest for this work.

Input Randomness Output

pubĜ, x̂ r = 0, s = 0 ĉ = e⊤x̂

comĜ, x̂ r, s←$Zp ĉ = e⊤x̂+ v̂r + ŵs

baseĜ, ĝ r = 0, s = 0 ĉ = e⊤ĝ

scaĜ, x r←$Zp, s = 0 ĉ = ûx+ v̂r

Input Randomness Output

pubȞ.y̌ r = 0, s = 0 ď = y̌e

comȞ, x̌ r, s←$Zp ď = y̌e+ rv̌ + sw̌

baseȞ, ȟ r = 0, s = 0 ď = ȟe

scaȞ, y r←$Zp, s = 0 ď = yǔ+ rv̌

Fig. 2. GS commit labels and corresponding commit algorithm, e = (0, 1).

In Fig. 3 and in Fig. 4, we report the prover and verifier algorithm respec-
tively. Finally, for space reasons, we defer to Suppl. A.4 for a list of the possible
commitment labels for each equation type, as well as for a description of the
proof re-randomization algorithm.

4 Extendable Threshold Ring Signature

A non-interactive extendable threshold ring signature scheme ETRS is defined as
a tuple of six PPT algorithms ETRS = (Setup,KeyGen,Sign,Verify, Join,Extend),

11



Prove(L, Γ, {(lxi , xi, (rxi , sxi))}mi=1, {(lyj , yj , (ryj , syj ))}nj=1)

if x ∈ Ĝm define Ĉ = e⊤x+ v̂rx + ŵsx else if x ∈ Zm
p define Ĉ = ûx+ v̂rx

if y ∈ Ȟn define Ď = e⊤y + ryv̌ + syw̌ else if y ∈ Zn
p define Ď = ǔy + ryv̌

Set α = β = γ = δ = 0

if L = PPE α, β, γ, δ←$Zp

if L = MEĜ α, β←$Zp

if L = MEȞ α, γ ←$Zp

if L = QE α←$Zp

π̌v̂ = rxΓĎ + αv̌ + βw̌ π̂v̌ = (Ĉ − v̂rx − ŵsx)Γry − v̂α− ŵγ

π̌ŵ = sxΓĎ + γv̌ + δw̌ π̂w̌ = (Ĉ − v̂rx − ŵsx)Γsy − v̂β − ŵδ
return π = (π̌v̂, π̂v̌, π̌ŵ, π̂w̌)

Fig. 3. Prover algorithm of the GS proof system.

PrVerify(L, Γ, {(lxi , ĉi)}mi=1, {(lyj , ďj)}nj=1),π)

Check that the equation has a valid format.

Check Ĉ = (ĉ1 . . . ĉm) ∈ Ĝ2×m and Ď = (ď1 . . . ďn)
⊤ ∈ Ȟn×2

Check π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌) ∈ Ȟ2×1 × Ȟ2×1 × Ĝ1×2 × Ĝ1×2

Check ĈΓ Ď = v̂π̌v̂ + ŵπ̌ŵ + π̂v̌v̌ + π̂w̌w̌

return 1 if and only if all checks pass and 0 otherwise.

Fig. 4. Verifier algorithm of the GS proof system.

where the public parameters pp produced by Setup are implicitly available to all
the other algorithms:

– pp← Setup(1λ): on input the security parameter, outputs public parameters
pp.

– (pk, sk)← KeyGen(): generates a new public and secret key pair.

– σ ← Sign(m, {pki}i∈R , sk): returns a signature with threshold t = 1 using
the secret key sk corresponding to a public key pki with i ∈ R.

– 0/1 ← Verify(t,m, {pki}i∈R , σ): verifies a signature σ for the message m
against the public keys {pki}i∈R with threshold t. Outputs 1 to accept, and
0 to reject.

– σ′ ← Join(m, {pki}i∈R , sk, σ): it takes as input a signature σ for message m
produced w.r.t. ring R with threshold t, and the new signer secret key sk
(whose corresponding pk is included in R). It outputs a new signature σ′

with threshold t+ 1.

– σ′ ← Extend(m,σ, {pki}i∈R , {pki}i∈R′): extends the signature σ with thresh-
old t for the ring R into a new signature σ′ with threshold t for the larger
ring R∪R′.
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To formalize the properties of ETRS, we use the notion of ladder as in [2].
A ladder lad is a sequence of tuples (action, input), where action takes a value in
the set {Sign, Join,Extend} and the value of input depends on the value of action.
If action = Sign, then input is a pair (R, i), where R is the ring for the signature
and i is the signer’s identity. If action = Join, then input is an identifier i that
identifies the signer that joins the signature. If action = Extend, then input is a
ring R that is the ring to use to extend the previous ring. We notice that a ladder
unequivocally determines a sequence of ETRS, each one with a specific ring and
threshold value. In Fig. 7, the algorithm Proc is described. Proc takes as input
a message, a ladder, and a corresponding list of keys, and outputs the sequence
of all the signatures that correspond to each step of the ladder. It outputs ⊥
whenever the ladder is inconsistent with the list of keys provided in the input.

Definition 1 (Correctness for ETRS). For all λ ∈ N, for any message m ∈
{0, 1}∗, for any ladder lad of polynomial size identifying a ring R, it holds that:

Pr


(

ℓ∧
j=1

Verify(t,m, {pki}i∈R , σj) = 1

)
∨(Σ, t,R) = ⊥

∣∣∣∣∣∣∣∣
pp← Setup(1λ);

Lkeys ← {KeyGen()}i∈R;
(Σ, t,R)← Proc(m, Lkeys, lad);

{σ1, . . . , σℓ} = Σ

 = 1.

Definition 2 (Unforgeability for ETRS). An extendable threshold ring sig-
nature scheme ETRS is said to be unforgeable if for all PPT adversaries A, the
success probability in the experiment of Fig. 5 is

Pr
[
ExpcmEUF

A,ETRS(λ) = win
]
≤ negl(λ).

Definition 3 (Anonymity for ETRS). An extendable threshold ring signa-
ture scheme ETRS is said to provide anonymity if for all PPT adversaries A,
the success probability in the anonymous extendability experiment of Fig. 6 is

Pr
[
ExpANEXT

A,ETRS (λ) = win
]
≤ 1

2 + negl(λ). In this experiment, the ladders submit-

ted by A are said to be well-formed if all the actions in the ladders are pairwise
of the same type, and they have the same ring as input.

Remarks on anonymity and unforgeability for ETRS. We modify the definition
of anonymity for ETRS of [2] by making it stronger. The difference is that the
adversary now gets to see all the intermediate ETRS instead of just the final
one (see lines 11 and 12 of Chal in Fig. 6). This modification enables count-
me-in applications where partial signatures get publicly posted. In addition,
in the experiment, we add the checks of lines 15 and 17 to rule out a trivial
attack inherent to any ETRS. Indeed, since the Join operation cannot increase
the threshold of an ETRS when using a secret key that was already used before,
A could use this fact to distinguish between the ladders.

The Combine algorithm is introduced in [2] as a procedure to combine to-
gether two signatures on the same message with two different (not necessarily
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ExpcmEUF
A,ETRS(λ)

1 : Lkeys, Lcorr, Lsign, Ljoin ← ∅

2 : pp← ETRS.Setup(1λ)

3 : O← {OSign,OKey,OCorr,OJoin}

4 : (t∗,m∗,R∗, σ∗)← AO(pp)

5 : q1 ← |{(m∗,R, ·) ∈ Lsign : R ⊆ R∗}|
6 : q2 ← |{(m∗, i, ·) ∈ Ljoin : i ∈ R∗}|
7 : q ← q1 + q2

8 : if |R∗ ∩ Lcorr|+ q ≥ t∗

9 : return lose

10 : if Verify(t∗,m∗, {pkj}j∈R∗ , σ∗) = 0

11 : return lose

12 : return win

OSign(m,R, i)

1 : if (i ∈ Lcorr ∨ i /∈ R) return ⊥
2 : for j ∈ R
3 : if (j, pkj , ·) /∈ Lkeys

4 : return ⊥
5 : σ ← ETRS.Sign(m, {pkj}j∈R , ski)

6 : Lsign ← Lsign ∪ {(m,R, i)}
7 : return σ

OKey(i, pk)

1 : if pk = ⊥
2 : (pki, ski)← ETRS.KeyGen()

3 : Lkeys ← Lkeys ∪ {(i, pki, ski)}
4 : else

5 : Lcorr ← Lcorr ∪ {i}
6 : pki ← pk

7 : Lkeys ← Lkeys ∪ {(i, pki,⊥)}
8 : return pki

OCorr(i)

1 : if (i, pki, ski) ∈ Lkeys ∧ ski ̸= ⊥
2 : Lcorr ∪ {i}
3 : return (pki, ski)

4 : return ⊥

OJoin(m,R, i, σ)

1 : if i ∈ Lcorr return ⊥
2 : for j ∈ R
3 : if ((j, pkj , ·) /∈ Lkeys)

4 : return ⊥
5 : σ′ ← Join(m, {pkj}j∈R , ski, σ)

6 : Ljoin ← Ljoin ∪ {(m, i, σ)}
7 : return σ′

Fig. 5. Unforgeability game for ETRS (security experiment and oracles). This notion
is reported from [2].

disjoint) rings. The output is a signature having as ring the union of the two
rings and as threshold the cardinality of the union of the signers sets of the
starting signatures. The Combine algorithm can be run without knowing any
secret key. In [2], the authors showed that the Join operation can be obtained
as the concatenation of the Sign operation and the Combine operation. In or-
der to avoid the same attack described before, the checks in lines 11 and 13 of
the experiment of Fig. 6 are needed. We notice that our ETRS only provides a
weaker form of Combine in which the starting rings are disjoint (cfr., Sec. 6). A
similar discussion holds for lines 5−8 of the unforgeability experiment in Fig. 5.
In particular, they rule out trivial attacks due to A asking too many sign, join,
or corruption queries.
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Fellow-signer anonymity. We also define a stronger version of anonymity called
fellow-signer anonymity. This game models the requirement that even a signer
cannot determine any of the other signers by just looking at all the signatures
that were produced. It is straightforward to notice that fellow-signer anonymity
implies anonymity for ETRS.

Definition 4 (Fellow Signer Anonymity for ETRS). An extendable thresh-
old ring signature scheme ETRS is said to provide fellow signer anonymity if
for all PPT adversaries A, the success probability in the experiment of Fig. 8 is

Pr
[
ExpANFS

A,ETRS(λ) = win
]
≤ 1

2 + negl(λ).

ExpANEXT
A,ETRS (λ)

1 : b←$ {0, 1}, Lkeys, Lcorr, Lsign, Ljoin ← ∅
2 : pp← ETRS.Setup(1λ)

3 : O← {OSign,OKey,OCorr,OJoin}
4 : (m∗, lad∗0, lad

∗
1)← AO(pp)

5 : Σ ← Chalb(m
∗, lad∗0, lad

∗
1)

6 : b∗ ← AO(Σ)

7 : if ∃ i ∈ lad∗0.S s.t. i ∈ Lcorr

8 : return lose

9 : if ∃ i ∈ lad∗1.S s.t. i ∈ Lcorr

10 : return lose

11 : if ∃ (m∗, ·, i) ∈ Lsign for i ∈ lad∗0.S
12 : return lose

13 : if ∃ (m∗, ·, i) ∈ Lsign for i ∈ lad∗1.S
14 : return lose

15 : if ∃ (m∗, i, ·) ∈ Ljoin for i ∈ lad∗0.S
16 : return lose

17 : if ∃ (m∗, i, ·) ∈ Ljoin for i ∈ lad∗1.S
18 : return lose

19 : if b∗ ̸= b return lose

20 : return win

Chalb(m
∗, lad∗0, lad

∗
1)

1 : if (lad∗0, lad
∗
1) is not well-formed

2 : return ⊥
3 : if ∃ i ∈ lad∗0.S s.t. i ∈ Lcorr

4 : return ⊥
5 : if ∃ i ∈ lad∗1.S s.t. i ∈ Lcorr

6 : return ⊥
7 : val0 ← Proc(m∗, Lkeys, lad

∗
0)

8 : val1 ← Proc(m∗, Lkeys, lad
∗
1)

9 : if val0 = ⊥ ∨ val1 = ⊥
10 : return ⊥
11 : Parse val0 as (Σ0, t0,R0)

12 : Parse val1 as (Σ1, t1,R1)

13 : Σ ← Σb

14 : return Σ

Fig. 6. Anonymous extendability game. We use lad.S to indicate the set of signers of a
ladder lad. We propose a stronger notion compared to [2]. Indeed, in our definition, the
adversary gets to see all the intermediate signatures instead of only the final ETRS.
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Proc(m, Lkeys, lad)

1 : Σ ← ∅, t = 0

2 : Parse lad as ((action1, input1), . . . , (actionl, inputl))

3 : if action1 ̸= Sign return ⊥
4 : else

5 : Parse input1as (R1, i1)

6 : for j ∈ R1 if (j, pkj , ·) /∈ Lkeys return ⊥

7 : if ski1 = ⊥ ∨ i1 /∈ R1 return ⊥

8 : R← R1,S ← {i1}
9 : σ ← Sign(m, {pkj}j∈R , ski1), Σ ← Σ ∪ {σ}

10 : for l′ ∈ [2, . . . , l]

11 : if actionl
′
= Sign return ⊥

12 : else

13 : if actionl
′
= Join parse inputl

′
as (il

′
)

14 : if il
′
/∈ R ∨ il

′
∈ S return ⊥

15 : σ ← Join(m, {pkj}j∈R , sk
l′

i , σ)

16 : Σ ← Σ ∪ {σ},S ← S ∪ {il
′
}, t = t+ 1

17 : if actionl
′
= Extend parse inputl

′
as (Rl′)

18 : for j ∈ Rl′ if (j, pkj , ·) /∈ Lkeys return ⊥
19 : σ ← Extend(m,σ, {pkj}j∈R , {pkj}j∈Rl′ )

20 : R ← R∪Rl′ , Σ ← Σ ∪ {σ}
21 : else return ⊥
22 : return (Σ, t,R)

Fig. 7. Process algorithm for ETRS.

5 Extendable Non-interactive Witness Indistinguishable
Proof of Knowledge

Given an NP language L with associated poly-time relation RL, we define the
related threshold relation RLtr as follows. We name the corresponding language
Ltr.

RLtr ={(x = (k, x1, . . . , xn), w = ((w1, α1), . . . , (wk, αk)))|
1 ≤ α1 < . . . < αk ≤ n ∧ ∀ j ∈ [k] : (xαj

, wj) ∈ RL}.
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ExpANFS
A,ETRS(λ)

1 : b←$ {0, 1}
2 : Lkeys, Lcorr, Lsign, Ljoin ← ∅
3 : pp← ETRS.Setup(1λ)

4 : O← {OSign,OKey,OCorr,OJoin}
5 : (m∗, lad∗, i∗, j∗)← AO(pp)

6 : Σ ← Chalb(m
∗, lad∗, i∗, j∗)

7 : b∗ ← AO(Σ)

8 : if i∗ ∈ Lcorr ∨ j∗ ∈ Lcorr

9 : return lose

10 : if ∃ (m∗, ·, i∗) ∈ Lsign ∨ (m∗, ·, j∗) ∈ Lsign

11 : return lose

12 : if ∃ (m∗, i∗, ·) ∈ Ljoin ∨ (m∗, j∗, ·) ∈ Ljoin

13 : return lose

14 : if b∗ ̸= b

15 : return lose

16 : return win

Chalb(m
∗, lad∗, i∗, j∗)

1 : if i∗ ∈ Lcorr ∨ j∗ ∈ Lcorr

2 : return ⊥
3 : lad∗.add((Extend, {i∗}))
4 : lad∗.add((Extend, {j∗}))
5 : if b = 0

6 : lad∗.add((Join, i∗))

7 : if b = 1

8 : lad∗.add((Join, j∗))

9 : val← Proc(m∗, Lkeys, lad
∗)

10 : if val = ⊥
11 : return ⊥
12 : else

13 : Parse val as (Σ, t,R)
14 : return Σ

Fig. 8. Fellow signer anonymity game. We use lad.S to indicate the set of signers of a
ladder lad and lad.add to indicate that we are adding the pair (action, input) as the last
element of the ladder.

An extendable non-interactive proof system for a threshold relation RLtr con-
sists of the following PPT algorithms. The group key gk ← G(1λ) is considered
as an implicit input to all algorithms:

– crs←$CRSSetup(gk): on input the group key gk, output a uniformly random7

common reference string crs ∈ {0, 1}λ.
– (Π, (aux1, . . . , auxn))← Prove(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))): on

input ((k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))) ∈ RLtr , output a proof Π and
auxiliary values (aux1, . . . , auxn). The auxiliary value auxi is used later on to
perform an add operation using a witness for a not previously used statement
xi.

– 0/1 ← PrVerify(crs, (k, x1, . . . , xn), Π): on input statement (k, x1, . . . , xn),
and a proof Π, output 1 to accept and 0 to reject.

– (Π ′, auxn+1) ← PrExtend(crs, (k, x1, . . . , xn), xn+1, Π): on input statements
(k, x1, . . . , xn), xn+1, and a proof Π for (k, x1, . . . , xn) ∈ Ltr, output an
updated proof Π ′ for (k, x1, . . . , xn, xn+1) ∈ Ltr, and additional auxiliary
value auxn+1. The auxiliary value auxn+1 is used later on to perform an add
operation using a witness for xn+1.

7 Here we are also assuming that the crs is uniformly random since it is needed by our
ETRS construction.
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– (Π ′, aux′α) ← PrAdd(crs, (k, x1, . . . , xn), (w,α), aux, Π): on input statement
(k, x1, . . . , xn), witness (w,α), auxiliary value aux, and proofΠ for (k, x1, . . . ,
xn) ∈ Ltr, output an updated proof Π ′ for (k + 1, x1, . . . , xn) ∈ Ltr, and
updated auxiliary value aux′α.

– (Π ′, r = (r1, . . . , rn)) ← RandPr(crs, (k, x1, . . . , xn), Π): on input statement
x and proof Π for x ∈ Ltr, output a re-randomized proof Π ′ and update
randomness ri (related to auxiliary value auxi) with i ∈ [n].

– aux′i ← AuxUpdate(crs, auxi, ri): on input auxiliary value auxi, and update
randomness ri, output updated auxiliary value aux′i. AuxUpdate is used to
update the auxiliary values after a proof has been re-randomized. The used
input randomness is the one given in output by RandPr. To simplify the
notation, we write AUX′ ← AuxUpdate(crs,AUX, r) to indicate that a list of
auxiliary values is updated by appropriately parsing AUX and r and running
the update operation on each element of the list.

– 0/1← AuxVerify(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk)), (aux1, . . . , auxn),
Π): on input statement (k, x1, . . . , xn), witness ((w1, α1) . . . , (wk, αk)), aux-
iliary values (aux1, . . . , auxn), and proof Π, output 1 if the auxiliary values
are consistent with the statement, the proof, and the witness. Return 0
otherwise. If AuxUpdate returns 1, we are guaranteed that the subsequent
extend/add operations can be correctly executed8.

An extendable non-interactive proof system is said to be an extendable non-
interactive witness indistinguishable (ENIWI) proof of knowledge if it satisfies
adaptive extractable soundness (Def. 14) and the following properties.

Definition 5 (Completeness). An extendable non-interactive proof system for
RLtr is complete if ∀λ ∈ N, gk ← G(1λ), crs←$CRSSetup(gk), (x,w) ∈ RLtr ,
and (Π,AUX)← Prove(crs, x, w) it holds that

Pr[PrVerify(crs, x,Π) = 1 ∧ AuxVerify(crs, x, w,AUX, Π) = 1] = 1

Definition 6 (Transformation Completeness). An extendable non-interactive
proof system for RLtr is transformation complete if ∀λ ∈ N, gk ← G(1λ),
crs←$CRSSetup(gk), (x,w) ∈ RLtr , and (Π,AUX) such that PrVerify(crs, x,Π) =
1 and AuxVerify(crs, x, w,AUX, Π) = 1 the following holds with probability 1:

– AuxVerify(crs, x, w,AUX′, Π ′) = 1, where (Π ′, r) ← RandPr(crs, x,Π) and
AUX′ ← AuxUpdate(crs,AUX, r).

– Parse x as (k, x1, . . . , xn) and w as ((w1, α1) . . . , (wk, αk)). (Π ′, aux′) ←
PrAdd(crs, x, (w′, α′), aux, Π), modify AUX replacing auxα′ with aux′.
If α′ ̸∈ {α1, . . . αk} and (xα′ , w′) ∈ RL, then PrVerify(crs, (k+1, x1, . . . , xn), Π

′) =
1, and AuxVerify(crs, (k+1, x1, . . . , xn), ((w1, α1) . . . , (wk, αk), (w

′, α′)),AUX, Π ′) =
1.

– (Π ′, auxn+1)← PrExtend(crs, x, xn+1, Π), modify AUX adding auxiliary value
auxn+1. Then, PrVerify(crs, (k, x1, . . . , xn+1), Π

′) = 1, and AuxVerify(crs, (k, x1,
. . . , xn+1), w,AUX, Π

′) = 1.
8 We introduce AuxVerify merely as an internal utility to simplify the description of
our definitions.
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Definition 7 (Re-Randomizable Addition). Consider the following experi-
ment:

– gk← G(1λ)
– crs←$CRSSetup(gk)
– (x,w,Π∗,AUX∗)← A(crs)
– Parse x as (k, x1, . . . , xn) and w as ((w1, α1) . . . , (wk, αk))
– If (x,w) /∈ RLtr or PrVerify(crs, (k−1, x1, . . . , xn), Π

∗) = 0 or AuxVerify(crs, (k−
1, x1, . . . , xn), ((w1, α1) . . . , (wk−1, αk−1)),AUX

∗, Π∗) = 0 output ⊥ and abort.
Otherwise, sample b←$ {0, 1} and do the following:
• If b = 0, (Π0,AUX0)← Prove(crs, x, w); (Π, r)← RandPr(crs, x,Π0),AUX←
AuxUpdate(crs,AUX0, r)

• If b = 1, (Π1, aux
∗) ← PrAdd(crs, x, (wk, αk),AUX

∗, Π∗). Replace in
AUX∗ the value auxαk

with aux∗. (Π, r) ← RandPr(crs, x,Π1),AUX ←
AuxUpdate(crs,AUX∗, r)

– b′ ← A(Π,AUX)

We say that the proof system has re-randomizable addition if for every PPT A,
there exists a negligible function ν(·), such that Pr[b = b′] ≤ 1/2 + ν(λ).

Definition 8 (Re-Randomizable Extension). Consider the following exper-
iment:

– gk← G(1λ)
– crs←$CRSSetup(gk)
– (x,w, xn, Π

∗,AUX∗)← A(crs)
– Parse x as (k, x1, . . . , xn−1)
– If (x,w) /∈ RLtr or PrVerify(crs, x,Π∗) = 0 or AuxVerify(crs, x, w,AUX∗, Π∗) =

0 output ⊥ and abort. Otherwise, sample b←$ {0, 1} and do the following:
• If b = 0 (Π0,AUX0) ← Prove(crs, (k, x1, . . . , xn), w); (Π, r) ← RandPr(

crs, (k, x1, . . . , xn), Π0),AUX← AuxUpdate(crs,AUX0, r)
• If b = 1 (Π1, aux

∗)← PrExtend(crs, x, xn, Π
∗). Append the value aux∗ to

AUX∗. (Π, r) ← RandPr(crs, (k, x1, . . . , xn), Π1),AUX ← AuxUpdate(crs,
AUX∗, r)

– b′ ← A(Π,AUX)

We say that the proof system has re-randomizable extension if for every PPT A,
there exists a negligible function ν(·), such that Pr[b = b′] ≤ 1/2 + ν(λ).

Definition 9 (Extended Witness Indistinguishability). Consider the fol-
lowing experiment.

– gk← G(1λ)
– crs←$CRSSetup(gk)
– (x,w0, w1)← A(crs)
– Parse x as (k, x1, . . . , xn), w

i as ((wi
1, α

i
1) . . . , (w

i
k, α

i
k)), for i ∈ {0, 1}

– If (x,w0) /∈ RLtr or (x,w1) /∈ RLtr output ⊥ and abort. Otherwise, sample
b←$ {0, 1} and do the following:
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• (Π, (aux1, . . . , auxn))← Prove(crs, x, wb).

• Set I0 = {α0
1, . . . , α

0
k}, I1 = {α1

1, . . . , α
1
k}, I = I0 ∩ I1, S = ([n] \ (I0 ∪

I1)) ∪ I, and AUX = {auxi}i∈S.

– b′ ← A(Π,AUX)

We say that the proof system has extended witness indistinguishability (EWI) if
for every PPT A, there exists a negligible function ν(·), such that Pr[b = b′] ≤
1/2 + ν(λ).

6 Our Extendable Threshold Ring Signature

In Fig. 9, we show our ETRS from an ENIWI PoK ENIWI for a hard relation
RL, and an IND-CPA public key encryption scheme PKE which is homomorphic
w.r.t. ENIWI.AuxUpdate. By hard relation we mean that a PPT A who is given
x ∈ L, has negligible probability of providing a witness w such (x,w) ∈ RL.
We also require that RL is public coin samplable, meaning that it is possible
to efficiently sample random x ∈ L. We omit the Setup algorithm from the
description since it simply runs the setup algorithm of PKE and samples a hash
function mapping arbitrary strings into elements in the correct space9.

Instantiating our ETRS. We work over a bilinear group gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)
for which the SXDH assumption is believed to hold. In Sec. 7.3, we show an
ENIWI PoK having as base relation pairing product equations in which all the
variables are elements of Ȟ, public constants are either paired with secret values
or with ȟ, and the target element is 0T. In particular, we can use as base relation
the following: RL = {(x = (â, b̂, ȟ), w = b̌′|â · ȟ + b̂ · b̌′ = 0T}. In Lem. 1, we

prove that this is a hard relation under the DDH assumption in Ĝ. Additionally,
since in our ENIWI AuxUpdate simply consists of applying the group operation
between two elements of Ȟ, we can use ElGamal instantiated in Ȟ as public key
encryption scheme.

Remark on malicious extenders. As in [2], we do not consider security definitions
accounting for malicious signers that try to prevent future signers from joining
the signature. For example, in our construction a malicious extender could just
encrypt a wrong auxiliary value. An approach that could be investigated to
tackle this issue is adding a NIZK proving that the content of the encrypted
auxiliary values is s.t. AuxVerify = 1. Such NIZK would need to be malleable so
that it could be updated after every re-randomization step, as well as whenever
the signature is extended.

9 Our ENIWI PoK is based on GS, so we need a cryptographic hash function that
allows to hash directly to both the source groups of the pairing group. See [20] for
more details.
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On combining signatures. One might wonder if concrete instantiations of our
ETRS could also support the Combine operation as described in [2]. Whenever
there is a shared public key (i.e., statement) in two ETRS, such signatures cannot
be combined. Indeed, consider the case of two proofs over the same ring where
there is a common base statement for which a corresponding witness was used
in both proofs. Then, the combined proof should not have a resulting threshold
that counts it twice. This means that the output of Combine would be different
depending on whether two NIWI proofs on the same statement used the same
witness or not. This is in clear contradiction with the witness indistinguisha-
bility property. On the other hand, the above observation does not exclude the
possibility of having a weaker form of Combine where the starting signatures are
constrained to have disjoint rings. Indeed, our instantiation of Sec. 7.3 could be
easily modified to support the corresponding Combine operation. Such operation
exploits basically the same technique of the extend operation, and thus we omit
its description.

6.1 Security of Our Extendable Threshold Ring Signature

Theorem 1. Let ENIWI be an extendable non-interactive witness indistinguish-
able proof of knowledge for an hard relation RL, and PKE be an IND-CPA public
key encryption scheme which is homomorphic w.r.t. ENIWI.AuxUpdate, then the
scheme of Fig. 9 is an extendable threshold ring signature scheme.

We will prove Thm. 1 using Lem. 2 to prove that the signature scheme
described in Fig. 9 is unforgeable and Lem. 3 to prove that the signature scheme
described in Fig. 9 is anonymous.

Lemma 2. The signature scheme described in Fig. 9 is unforgeable according
to Def. 2.

Proof sketch. The basic idea of the proof is to turn an adversary A breaking
the unforgeability with non-negligible probability into another adversary B that
extracts a witness for an instance x ∈ L of the hard relation, which is sampled by
a challenger C. In order to build this reduction, we need to show how to simulate
all the oracle queries of A during the game. We do this by showing a series of
hybrid games, starting from the game described in Fig. 5.

The first change consists into replying to Join queries by computing every
time a new proof from scratch using ENIWI.Prove, instead of updating the cur-
rent proof using PrAdd. This change is not detected by A thanks to the re-
randomizable addition of the ENIWI.

The second change is that B can guess j∗, that is the index of the random
oracle query in which A will query the message used in the forgery, and i∗, that is
the index of a “new” signer used to create the forgery for mj∗ . We notice that, by
the rules of the unforgeability game (see checks of lines 5−8 of the unforgeability
experiment in Fig. 5), this index i∗ must exist, A never makes a corruption query
for i∗, and it does not ask for any Sign/Join query involving i∗ on message mj∗ .
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Sign(m, {pki}i∈R , sk)

1 : A← ∅

2 : (crs, pkO = (x1, pk
1
e ))← H(m)

3 : Parse {pki}i∈R = (pk2, . . . , pkn+1)

4 : Parse pki = (xi, pk
i
e) for i ∈ [n+ 1]

5 : Parse sk = (w, ske)

6 : if ̸ ∃xj , j ∈ [n+ 1] s.t. (xj , w) ∈ RL

7 : return ⊥
8 : Let x = (1, x1, . . . , xn, xn+1)

9 : (Π,AUX)← ENIWI.Prove(x, (w, j))

10 : for i ∈ [n+ 1]

11 : if i = j ∨ i = 1

12 : a← PKE.Enc(⊥, pkje )
13 : else

14 : a← PKE.Enc(AUX[i], pkie)

15 : A← A ∪ a

16 : return σ = (1, Π,A)

Extend(m,σ, {pki}i∈R , pk
∗)

1 : if pk∗ ∈ {pki}i∈R return ⊥

2 : (pkO = (x1, pk
1
e ))← H(m)

3 : Parse {pki}i∈R = (pk2, . . . , pkn+1)

4 : Parse pki = (xi, pk
i
e) for i ∈ [n+ 1]

5 : Parse pk∗ = (xn+2, pk
n+2
e )

6 : Parse σ = (k,Π,A)

7 : Let x = (k, x1, . . . , xn+1)

8 : (Π, aux)← ENIWI.PrExtend(x, xn+2, Π)

9 : a← PKE.Enc(aux, pkn+2
e )

10 : A← A ∪ a

11 : Let x̄ = (k, x1, . . . , xn+2)

12 : (Π, r1, . . . , rn+2)← ENIWI.RandPr(x̄, Π)

13 : for ai ∈ A

14 : ai ← PKE.Eval(ai, ri, pk
i
e)

15 : return σ = (k,Π,A)

KeyGen()

1 : (pke, ske)← PKE.KeyGen()

2 : Sample (x,w) ∈ RL

3 : (pk = (x, pke), sk = (w, ske))

4 : return (pk, sk)

Join(m, {pki}i∈R , sk, σ)

1 : (pkO = (x1, pk
1
e ))← H(m)

2 : Parse {pki}i∈R = (pk2, . . . , pkn+1)

3 : Parse pki = (xi, pk
i
e) for i ∈ [n+ 1]

4 : Parse sk = (w, ske)

5 : if ̸ ∃xj , j ∈ [n+ 1] s.t (xj , w) ∈ RL

6 : return ⊥
7 : Parse σ = (k,Π,A),A = (a1, . . . , an+1)

8 : Parse sk = (w, ske)

9 : aux← PKE.Dec(aj , ske)

10 : Let x = (k, x1, . . . , xn+1)

11 : (Π, aux′j)← ENIWI.PrAdd(x, (w, j), aux, Π)

12 : Set aj ∈ A as aj ← PKE.Enc(⊥, pkje )
13 : k ← k + 1

14 : (Π, r1, . . . , rn+1)← ENIWI.RandPr(x,Π)

15 : for ai ∈ A

16 : ai ← PKE.Eval(ai, ri, pk
i
e)

17 : return σ = (k,Π,A)

Verify(t,m, {pki}i∈R , σ)

1 : (crs, pkO = (x1, pk
1
e ))← H(m)

2 : Parse {pki}i∈R = (pk2, . . . , pkn+1)

3 : Parse pki = (xi, pk
i
e) for i ∈ [n+ 1]

4 : Parse σ = (k,Π,A)

5 : Let x = (k, x1, . . . , xn+1)

6 : if k < t

7 : return 0

8 : else

9 : return ENIWI.PrVerify(x,Π)

Fig. 9. ETRS from ENIWI PoK and IND-CPA homomorphic PKE. For space reasons,
we omit crs from the input of the ENIWI algorithms and consider it as an implicit
input. We use AUX[i] to indicate the i-th element of list AUX.
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Whenever B discovers that it did not guess such indices correctly, B aborts.
Nevertheless, since these indices can be kept perfectly hidden in A’s view, B
guesses these two indices with noticeable probability.

The next change consists into programming the random oracle to switch to
an extraction-mode crs for the query on message mj∗ . Additionally, for each
j ̸= j∗, we can program the random oracle to output a pkOj

for which B knows
the witness w1j s.t. (x1j , w1j ) ∈ RL. Every Join/Sign query involving the signer
i∗ and a message mj , with j ̸= j∗, is answered using w1j instead of wi∗ . This
change is not detectable by A thanks to the extended WI and the adaptive
extractable soundness of ENIWI. Indeed, extended WI guarantees that A cannot
notice the change of the used witness, and the adaptive extractable soundness
guarantees that the probability of extracting a witness for statement xi∗ from
the forgery does not change, except up to a negligible factor. Importantly, in
order to reduce the indistinguishability of these changes to these two properties
of the ENIWI we take advantage of the fact that we have a different CRS for
every message. Finally, after applying all these changes, B can set xi∗ as the x
received from C. Given the forgery generated by A, B can extract a witness for
statement x, breaking the hardness of RL.

Let Pr
[
ExpcmEUF

A,ETRS(λ) = win
]
be the probability that the adversary wins the

unforgeability game, we have that: Pr
[
ExpcmEUF

A,ETRS(λ) = win
]
≤ ϵrr + qm(ϵcrs +

(qKG + 1)(ϵHR + ϵEWI)), where qKG and qm are polynomial bounds on the
number of key generation queries and random oracle queries that A can do, ϵrr
is the advantage in re-randomizable addition game of ENIWI (cfr., Def. 7), ϵcrs
is the advantage in distinguishing a regular CRS from an extraction-mode CRS
(cfr., Def. 14), ϵHR is the advantage in the hard relation game (cfr., Sec. 6), and
ϵEWI is the advantage in the extended witness indistinguishability game (cfr.,
Def. 9). For the complete proof we defer to Suppl. A.5.

Lemma 3. The signature scheme described in Fig. 9 satisfies the anonymity
property of Def. 3.

Proof sketch. Through a sequence of indistinguishable hybrids, we switch from
a challenger B using lad0 to a B using lad1. We show that at every hybrid, B
can exploit A distinguishing between the two hybrids to break some properties
of the underlying primitives. First, B changes the way it processes the ladders
and replies to Join queries. In particular, B computes every time a new proof
from scratch using ENIWI.Prove, instead of running the Join/Extend algorithms,
analogously to the proof of unforgeability. After that, when processing the lad-
ders, B will encrypt ⊥ in all signers’ ciphertexts. This change is not detected
by A thanks to the IND-CPA property of the encryption scheme. At the end,
B fixes the ladder used in the anonymity game to be lad1. This change is unno-
ticeable thanks to the extended WI of ENIWI. For the complete proof we defer
to Suppl. A.6.

Lemma 4. The signature scheme described in Fig. 9 enjoys fellow-signer anonymity
(cfr., Def. 4).
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The proof follows essentially the same path of the one of Lem. 3.

7 Our Extendable Non-Interactive Witness
Indistinguishable Proof of Knowledge

In this section, we first show how to extend the GS proof system to define a
proof system for a threshold relation. After that, we show how to further modify
such scheme to get our ENIWI PoK.

7.1 GS Proofs of Partial Satisfiability

In [22,12], it is shown how to transform n sets of certain types of equations
S1, . . . , Sn to a set of equations S′ s.t. S′ is satisfied whenever one of S1, . . . , Sn

is satisfied. A witness for Si, with i ∈ [n], is easily mapped to a witness for S′. In-
deed, this transformation realizes a disjunction. The transformation works by as-
suming that S1, . . . , Sn have independent variables, adding variables b1, . . . bn−1 ∈
{0, 1}, and defining bn = 1−b1− . . .−bn−1. Then, for i ∈ [n], bi is used to modify
all the equations in Si so that they remain the same if bi = 1, but they admit
the trivial solution for bi = 0. Slightly increasing the overhead of these compil-
ers, it is also possible to implement partial satisfiability proofs for an arbitrary
threshold k, meaning that S′ is satisfied iff k of S1, . . . , Sn are satisfied. To do
so, the main idea is to define bn ∈ {0, 1}, and to prove that b1 + . . .+ bn = k.

A case which is relevant to this paper is when S1, . . . , Sn contain only PPEs
with tT = 0T, all the variables of the PPEs are elements of Ȟ, and public con-
stants are either paired with secret values or with ȟ. In this case, the prover
would:

1. Add variables b1, . . . , bn and prove that bi ∈ {0, 1} ∀i ∈ [n]. This can be
done with quadratic equations, by adding the equations bi(1 − bi) = 0. Let
us define such equations to be of type B, we will refer to a specific equation
using Bi.

2. Add variables M̂1, . . . , M̂n and prove biĝ − M̂i = 0, with i ∈ [n]. This can

be done via multi-scalar multiplication equations in Ĝ. Since bi ∈ {0, 1}, it
follows that M̂i ∈ {0̂, ĝ}. Let us define such equations to be of typeM.

3. Add equation
∑n

i=1 M̂i · ȟ − kĝ · ȟ = 0T. Since M̂i ∈ {0̂, ĝ}, this equation

implies that exactly k of the M̂i, with i ∈ [n], are equal to ĝ. Let us call such
equation as K.

4. For each Si, with i ∈ [n], let Qi be the number of equations in Si, let
Ji,q be the number of variables in the equation q ∈ [Qi] of Si. For each
variable y̌i,q,j with q ∈ [Qi], j ∈ [Ji,q], define variable x̌i,q,j and add equation

M̂i · y̌i,q,j − M̂i · x̌i,q,j = 0T. Since k of the M̂i are equal to ĝ, this implies
that for k equations sets it must hold that all y̌i,q,j = x̌i,q,j . Let us define
such equations to be of type Y.

5. For each equation in each Si, replace all the original y̌i,q,j with the cor-
responding x̌i,q,j . This allows to set all x̌i,q,j = y̌i,q,j = 0̌ for each set
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Si for which the prover does not have a satisfying assignment. For the k
sets for which the prover does have a satisfying assignment, the prover sets
y̌i,q,j = x̌i,q,j . Let us define such equations to be of type X .

7.2 High-level Overview of our ENIWI.

We construct our ENIWI by observing that GS proofs of partial satisfiability can
be updated in two ways:

– Extend: consider a proof Π for a set of equations S which is satisfied if k
out of n of the original equations sets S1, . . . , Sn are satisfied. On input a
new equations set Sn+1 and the proof Π, compute a new equations set S′

which is satisfied if k out of the n + 1 equations sets S1, . . . , Sn, Sn+1 are
satisfied. Output S′ and the corresponding updated proof Π ′.

– Add: consider a proof Π for a set of equations S which is satisfied if k
out n of the original equations sets S1, . . . , Sn are satisfied. On input the
proof Π for S, a witness for an equations set Si with i ∈ [n] which was not
previously used to create Π, and some corresponding auxiliary information
auxi, compute a new equations set S′ which is satisfied if k + 1 out of the
n equations sets S1, . . . , Sn are satisfied. Output S′ and the corresponding
updated proof Π ′.

In particular, one can notice that each step of the partial satisfiability proof
described in Sec. 7.1 only adds equations featuring independent variables, except
for step 3. In step 3, one equation is added combining all variables M̂i with i ∈ [n].
The equation is

∑n
i=1 M̂i · ȟ− kĝ · ȟ = 0T. Let us compute the GS proof for such

equation. Let crs be (û, v̂, ŵ, ǔ, v̌, w̌).

– Variables M̂i are committed as group elements (i.e., with label comĜ), thus

ĉM̂i
= e⊤M̂i + v̂ri + ŵsi, with ri, si←$Zp.

– ĝ is the base element of Ĝ, thus it is publicly committed with label baseĜ as
ĉĝ = (0, ĝ)⊤.

– ȟ is the base element of Ȟ, and thus it is publicly committed with label baseȞ
as (0, ȟ).

This results in Ĉ = (ĉM̂1
, . . . , ĉM̂n

, ĉĝ), Ď = (0, ȟ), rx = (r1, . . . , rn, 0)
⊤, sx =

(s1, . . . , sn, 0)
⊤, ry = 0, sy = 0.

This means that π̂v̌ = −v̂α− ŵγ and π̂w̌ = −v̂β− ŵδ, with α, γ, β, δ being
random elements in Zp.

Let us compute rxΓĎ = (r1, . . . , rn, 0)
⊤(1, . . . , 1,−k)(0, ȟ) = (0,

∑n
i=1 riȟ).

Similarly, we have that sxΓĎ = (0,
∑n

i=1 siȟ). Let us define auxi = (aux1i , aux
2
i ) =

(riȟ, siȟ). This means that π̌v̂ = rxΓĎ+αv̌+ βw̌ = (0,
∑n

i=1 aux
1
i ) +αv̌+ βw̌

and π̌ŵ = sxΓĎ + δv̌ + γw̌ = (0,
∑n

i=1 aux
2
i ) + δv̌ + γw̌.

We notice that the proof elements for equation K are essentially a sum of
n independent contributions (i.e., the auxi values) for each of the involved n
variables (i.e., M̂i with i ∈ [n]). We can exploit this fact to perform the extend
and add operations in the following way. Let us consider the steps of Sec. 7.1.
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– Extend: Add new equations of types B,M,Y,X by defining the correspond-
ing new independent variables, and compute the related GS proofs. Modify
equation K to be

∑n+1
i=1 M̂i · ȟ − kĝ · ȟ = 0T and update π̌v̂ and π̌ŵ as

π̌v̂ = π̌v̂ + (0, rn+1ȟ), π̌ŵ = π̌ŵ + (0, sn+1ȟ), where rn+1 and sn+1 are the
randomnesses used to commit to the new variable M̂n+1 = 0̂.

– Add: Replace the committed variables for the equations Bi,Mi,Yi,Xi with
new committed variables bi = 1, M̂i = ĝ, and y̌i,q,j = x̌i,q,j . Replace the
old corresponding GS proofs with freshly computed ones. Modify equation
K to be

∑n
i=1 M̂i · ȟ − (k + 1)ĝ · ȟ = 0T, and update π̌v̂ and π̌ŵ as π̌v̂ =

π̌v̂ − (0, aux1i ) + (0, r′iȟ), π̌ŵ = π̌ŵ − (0, aux2i ) + (0, s′iȟ), where r′i and s′i are

the randomnesses used for the fresh commitment to M̂i = ĝ.

It is pretty straightforward to notice that, after any of the two above mod-
ifications, the resulting proof is an accepting proof for the updated threshold
relation. Indeed, both the extend and add operation symbolically compute the
proofs in the same way a prover for the updated threshold relation would do
from scratch.

7.3 Our ENIWI

We now describe our ENIWI in detail. In particular, it is an ENIWI PoK over the
language of sets of pairing product equations where all the variables are elements
of Ȟ, public constants are either paired with secret values or with ȟ, and the
target element is 0T. For simplicity, we consider each statement xi as containing
only one equation.

– crs← CRSSetup(gk): run GS.Setup(gk). This results in crs = (û, v̂, ŵ, ǔ, v̌, w̌).

– (Π, (aux1, . . . , auxn))← Prove(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))): on
input ((k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk))) ∈ rl, defineA = {α1, . . . , αk}10
and do the following.

1. For each equation xi, i ∈ [n], define new variables and equations:

• Define variable bi = 1 if i ∈ A, and bi = 0 otherwise.
• Define quadratic equation Bi as bi(1− bi) = 0.
• Define variables M̂i = ĝ if i ∈ A, and M̂i = 0̂ otherwise.
• Define multi-scalar multiplication equationMi as biĝ − M̂i = 0.
• Let Ji be the number of variables in equation xi. For each variable
y̌i,j , with j ∈ [Ji], define a variable x̌i,j . Set x̌i,j = y̌i,j , if i ∈ A, and
x̌i,j = 0̌ otherwise.

• For each variable y̌i,j , with j ∈ [Ji], define pairing product equation

Yi,j as M̂i · y̌i,j − M̂i · x̌i,j = 0T.
• Modify pairing product equation xi by replacing each variable y̌i,j ,
with j ∈ [Ji], with variable x̌i,j . Let us call such modified equation
Xi.

10 A indicates what are the k equations the prover has a satisfying assignment for.
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Moreover, define pairing product equation K as
∑n

i=1 M̂i · ȟ−kĝ · ȟ = 0T.
At the end of this step, there will be n equations of types B,M,X ,
n
∑n

i=1 Ji equations of type Y, and one equation of type K.
2. For each equation of types B,M,Y,X generate appropriate commit-

ments (using GS.Com) to all variables, resulting in lists of commit-
ments CB,CM,CY ,CX respectively11. Then, for each equation of types
B,M,Y,X , run GS.Prove with the obvious inputs obtaining proof ele-
ments lists πB,πM,πY ,πX . For example, πB contains proof elements
πBi, with i ∈ [n], each of them obtained running GS.Prove for equation
Bi using commitments CBi (and related randomnesses) from CB.
Moreover, for equation K do the following12:
• Commit to M̂i, with i ∈ [n], with label comĜ and randomness (ri, si),

i.e., (comĜ, ĉM̂i
) ← GS.Com(comĜ, M̂i; (ri, si)), resulting in ĉM̂i

=

e⊤M̂i + v̂ri + ŵsi.
• Commit to ĝ with label baseĜ and randomness (0, 0), i.e., (baseĜ, ĉĝ)←
GS.Com(baseĜ, ĝ; (0, 0)), resulting in ĉĝ = (0, ĝ)⊤.

• Commit to ȟ with label baseȞ and randomness (0, 0), i.e., (baseȞ, ďȟ)←
GS.Com(baseȞ, ȟ; (0, 0)), resulting in ďȟ = (0, ȟ).

Do the following steps:
• Define Ĉ = (ĉM̂1

, . . . , ĉM̂n
, ĉĝ), Ď = (0, ȟ), rx = (r1, . . . , rn, 0)

⊤, sx =

(s1, . . . , sn, 0)
⊤, ry = 0, sy = 0. This means that π̂v̌ = −v̂α − ŵγ

and π̂w̌ = −v̂β − ŵδ.
• Compute rxΓĎ = (r1, . . . , rn, 0)

⊤(1, . . . , 1,−k)(0, ȟ) = (0,
∑n

i=1 riȟ).
Similarly, we have that sxΓĎ = (0,

∑n
i=1 siȟ). Define auxi = (aux1i , aux

2
i ) =

(riȟ, siȟ), with i ∈ [n].
• Compute π̌v̂ = rxΓĎ + αv̌ + βw̌ = (0,

∑n
i=1 aux

1
i ) + αv̌ + βw̌ and

π̌ŵ = sxΓĎ + δv̌ + γw̌ = (0,
∑n

i=1 aux
2
i ) + δv̌ + γw̌.

Let πK = (π̂v̌, π̂w̌, π̌v̂, π̌ŵ) and CK = (Ĉ, Ď). Output (Π = (CB,CM,
CY ,CX , CK,πB,πM,πY ,πX , πK),AUX = (aux1, . . . , auxn)).

– 0/1 ← PrVerify(crs, (k, x1, . . . , xn), Π) reconstruct equations of type B,M,
Y,X ,K, appropriately parse Π, and for every equation run GS.PrVerify with
the obvious inputs. For example, the proof for equation Bi is verified giving,
after appropriate parsing, commitments CBi and proof element πBi in input
to GS.PrVerify. Return 1 iff all the calls to GS.PrVerify return 1.

– (Π ′, auxn+1)← PrExtend(crs, (k, x1, . . . , xn), xn+1, Π) do the following:
1. Parse Π as (CB,CM,CY ,CX , CK,πB,πM,πY ,πX , πK),AUX = (aux1,

. . . , auxn).
2. For each of the 4 equation types B,M,Y,X , add a new equation related

to xn+1 by defining the corresponding new independent variables, bn+1 =
0, M̂n+1 = 0̂ and all the y̌n+1,j = 0̌, with j ∈ [Jn+1].

11 Whenever different equations share the same variables, we can think of the commit-
ments lists as containing copies of the exact same commitments. Clearly, in practice
data does not need to be replicated.

12 We report the whitebox computation of the GS prover to show how to compute the
auxiliary values. Furthermore, for sake of clarity, we report again commitments to
variables M̂i with i ∈ [n], which were already created to prove other equations.
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3. Compute commitments to new variables and appropriately add them to
CB,CM,CY ,CX .

4. Compute the related new GS proofs and add them to πB,πM,πY ,πX
accordingly.

5. Parse πK as (π̂v̌, π̂w̌, π̌v̂, π̌ŵ) and update π̌v̂ and π̌ŵ as π̌v̂ = π̌v̂ +
(0, rn+1ȟ), π̌ŵ = π̌ŵ +(0, sn+1ȟ), where rn+1 and sn+1 are the random-
nesses used to commit to the new variable M̂n+1 = 0̂.

6. Set auxn+1 = (aux1n+1, aux
2
n+1) = (rn+1ȟ, sn+1ȟ).

7. Output (Π, auxn+1).
– (Π ′, aux′α)← PrAdd(crs, (k, x1, . . . , xn), (w,α), aux, Π) do the following:

1. Parse Π as (CB,CM,CY ,CX , CK,πB,πM,πY ,πX , πK).
2. For each of the 4 equation types B,M,Y,X , replace the variables in

equations related to xα (i.e, Bα,Mα,Xα, and all Yα,j with j ∈ Jα) as

follows: bα = 1, M̂α = ĝ and all the y̌α,j = x̌α,j , with j ∈ [Jα].
3. Replace the commitments related to equations Bα,Mα,Xα, and all Yα,j ,

with j ∈ Jα with freshly generated ones updating CB,CM,CY ,CX
accordingly.

4. Replace the GS proofs related to equations Bα,Mα,Xα, and all Yα,j
with j ∈ Jα, with freshly generated ones replacing proof elements of
πB,πM,πY ,πX accordingly.

5. Parse πK as (π̂v̌, π̂w̌, π̌v̂, π̌ŵ) and update π̌v̂ and π̌ŵ as π̌v̂ = π̌v̂ −
(0, aux1α)+ (0, r′αȟ), π̌ŵ = π̌ŵ− (0, aux2α)+ (0, s′αȟ), where r

′
α and s′α are

the randomnesses used for the fresh commitment to M̂α = ĝ.
6. Set aux′α = (aux1α, aux

2
α) = (r′αȟ, s

′
αȟ).

7. Output (Π, aux′α).
– (Π ′, r1, . . . , rn)← RandPr(crs, (k, x1, . . . , xn), Π):

1. Run GS.RandPr on each of the proofs, appropriately fixing the random
coins when randomizing proofs related to equations involving shared
variables (i.e., s.t. we end up again with shared variables having the
exact same commitments). Let r′i, s

′
i, with i ∈ [n] be the randomnesses

used to update commitments to all M̂i, with i ∈ [n]. Define ri = (r′i, s
′
i).

Let randomized proof elements and commitments be contained in Π ′.
2. Output (Π ′, r1, . . . , rn)

– aux′ ← AuxUpdate(crs, aux, r):
1. Parse r as (r′, s′), and aux as (aux1, aux2).
2. Output aux′ = (aux1 + r′ȟ, aux2 + s′ȟ).

– 0/1← AuxVerify(crs, (k, x1, . . . , xn), ((w1, α1) . . . , (wk, αk)), (aux1, . . . , auxn),
Π):
1. Parse Π as (CB,CM,CY ,CX , CK,πB,πM,πY ,πX , πK). Parse CK as

Ĉ = (ĉM̂1
, . . . , ĉM̂n

, ĉĝ) and Ď = (0, ȟ).
2. Check that (auxα1

, . . . , auxαk
) all open (ĉM̂α1

, . . . , ĉM̂αk
) to ĝ. Namely,

check that ĉM̂i
·(ȟ, ȟ)+ v̂ ·(−aux1i ,−aux1i )+ŵ ·(−aux2i ,−aux2i ) = (0̂, ĝ)⊤ ·

(ȟ, ȟ), for all i ∈ A.
3. Check that remaining auxiliary values open commitments ĉM̂i

with i ∈
[n] \ A to 0̂. Namely, check that ĉM̂i

· (ȟ, ȟ) + v̂ · (−aux1i ,−aux1i ) + ŵ ·
(−aux2i ,−aux2i ) = (0̂, 0̂)⊤ · (ȟ, ȟ), for all i ∈ [n] \A.
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Theorem 2. If GS (cfr., Sec. 3.1) is a NIWI for all equation types and a NIWI
PoK for pairing product equations, then the construction above is an ENIWI
PoK. The base relation RL consists of pairing product equations in which all the
variables are elements of Ȟ, public constants are either paired with secret values
or with ȟ, and the target element is 0T.

See Suppl. A.7 for the proof.
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A Appendix

A.1 A Closer Look to the Results of [2]

In this section, we give a high-level overview of the two ETRS presented in [2].

SMLERS-based ETRS. The first ETRS given in [2] is based on same-message
linkable ring signatures (SMLERS). In a nutshell, a SMLERS is a ring signature
which is provided with the Extend algorithm. In addition, it allows to link two
signatures produced by the same signer on the same message, even on different
rings. This is done via a linkability tag that is uniquely determined by the signer
and the message. To construct an ETRS, it simply suffices to concatenate several
SMLERS on the same message, provided they do not carry the same linkability
tag, and to extend all the SMLERS to have the same ring. Their SMLERS
has size O(n), where n is the size of the ring. Therefore, the compiled ETRS
has size O(tn). The same reasoning applies to the time complexity of most of
the operations. Although the anonymity property was proven in [2] according
to their weaker definition, it seems reasonable to assume that this construction
could be proven secure under our stronger definition without much effort.

DL+SoK+PKE ETRS. The second construction of ETRS proposed in [2] works
with a prime order group, with two public group elements (g,H), and a signature
of knowledge for relation RL for knowledge of the discrete logarithm either of
a certain value h or of a pk. When the first signature is generated, the signer
generates N points of the form (xi, tdi) ∈ Z2

p. All these points define a unique
polynomial p of degree N such that p(0) = dlog(H) and p(xi) = tdi for all i ∈
[N ]. The discrete log of H is not known, but this polynomial can be interpolated
in the exponent to obtain a polynomial f s.t. f(x) = gp(x). To either sign or join
a signature, the signer has to produce a signature of knowledge for RL using a
random point (x, y = gp(x)) with x /∈ {xi}i∈[N ]. If the DL problem is hard, the
signer cannot know the discrete log of y and thus the signature of knowledge must
satisfy the second clause of RL which requires proving knowledge of the secret
key. To extend a signature instead, an x ∈ {xi}i∈[N ] will be used, so that the
corresponding trapdoor can be used to satisfy the first clause of the relation. The
used pair (xi, tdi) is removed from the list of trapdoors. However, to make the
owner of the public key pk able to join at a later time, along with the signature
of knowledge, the point xi is posted together with an encryption of tdi under
pk. As a result, the owner of pk can decrypt tdi and put it back to the list of
trapdoors, before producing a fresh signature of knowledge using her secret key as
a witness. Although neither space nor time complexities depend on the threshold
t, they all take time and space proportional to N even though the actual ring size
n << N . In particular, every operation requires to interpolate the polynomial in
the exponent, which takes quadratic time in the number of interpolated points
N . Regarding anonymity, it is pretty straightforward to observe that Def. 3 is
not satisfied. Indeed, after a join operation, a “trapdoored” point xi which was
related to a signature of knowledge for a certain key pki goes back in the trapdoor

31



list, and it is replaced by a new random “non-trapdoored” point. This movement
of xi from one list to another clearly indicates that pki has joined the signature.

A.2 Assumptions and Cryptographic Tools

Assumption 2 (DDH) The Decisional Diffie-Hellman (DDH) holds in Ĝ if
for all PPT adversaries A, the probability that A distinguishes the two distribu-
tions (ĝ, ξĝ, ρĝ, ξρĝ) and (ĝ, ξĝ, ρĝ, κĝ), where ξ, ρ, κ← Zp is negligible. Tuples of
the form (ĝ, ξĝ, ρĝ, ξρĝ) are called Diffie-Hellman (DH) tuples. The DDH prob-
lem in Ȟ is defined in a similar way.

Assumption 3 (SXDH) The Symmetric eXternal Diffie-Hellman (SXDH) as-
sumption holds relative to G if there is no PPT adversary A that breaks the DDH
problem in both Ĝ and Ȟ for gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)← G(1λ).

Public Key Encryption. A public key encryption scheme is a set of PPT
algorithms PKE = (Setup,KeyGen,Enc,Dec)

– pp← Setup(1λ): on input the security parameter, outputs public parameters
pp.

– (pk, sk)← KeyGen(): generates a new public and secret key pair.
– a ← Enc(m, pk): on input a message m, and a public key pk, output a

ciphertext a.
– m← Dec(a, sk) on input a ciphertext a, and a secret key sk, output a message

m.

Additionally, a public key encryption scheme is homomorphic w.r.t a function
f , if there exists a PPT algorithm that works as follows.

– a′ ← Eval(a, x, pk): on input a ciphertext a, a message x, and the public key
pk. Let y ← Dec(a, sk), it returns a ciphertext a′ s.t. f(y, x) = Dec(a′, sk).

A public key encryption scheme is is IND-CPA secure if the probability that a
PPT adversary A wins the following game is negligibly close to 1

2 . The game
involves the following steps: (i) A has access to the public key and outputs two
messages m0 and m1; (ii) the challenger encrypts one of the two messages; (iii)
A has to guess which message was encrypted.

ElGamal Encryption. The ElGamal encryption scheme is a public key encryp-
tion scheme with the following algorithms. The public parameters pp produced
by Setup are implicitly available to all other algorithms:

– pp ← Setup(1λ): on input the security parameter, sample a cyclic group Ĝ
of prime order p, a generator ĝ. Output pp = (Ĝ, ĝ).

– (pk, sk)← KeyGen(): sample an element ζ ←$Z∗
p. Define public key as pk =

v̂ = (ζĝ, ĝ)⊤ ∈ Ĝ2×1 and sk = ζ = (−ζ−1, 1). Output (pk, sk).
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– â ← Enc(m̂, pk): with input the public key and a message m̂ ∈ Ĝ, sample

r←$Zp and output ciphertext â = e⊤m̂+ v̂r ∈ Ĝ2×1, where e = (0, 1).

– m̂← Dec(â, sk): with input the secret key and a ciphertext a ∈ Ĝ2×1, output
m̂ = ζâ.

The ElGamal encryption scheme is also homomorphic, with the function f being
the group operation. In more detail:

– a′ ← Eval(a1, m̂2, pk): compute a2 = Enc(m̂2, pk), output a′ = a1 + a2. If
the ciphertexts contained messages m̂1 and m̂2, the output ciphertext will
contain message m̂1 + m̂2.

The ElGamal encryption is IND-CPA secure if the DDH assumption holds in Ĝ.
Additionally, ciphertexts updated with Eval are identically distributed to freshly
generated ciphertexts.

Non-interactive Witness Indistinguishable Proof of Knowledge. Let
us consider an NP language L with associated poly-time relation RL. A non-
interactive proof system for RL consists of the following algorithms. The group
key gk← G(1λ) is considered as an implicit input to all algorithms.

– crs←$CRSSetup(gk): on input the group key, output a uniformly random
common reference string crs ∈ {0, 1}λ.

– Π ← Prove(crs, x, w): on input statement x and witness w s.t. (x,w) ∈ RL,
output a proof Π.

– 0/1← PrVerify(crs, x,Π): on input statement x and proof Π, output either
1 to accept or 0 to reject.

– Π ′ ← RandPr(crs, x,Π): on input statement x and proof Π for x ∈ L, output
a randomized proof Π ′.

A non-interactive proof system is said to be witness indistinguishable (NIWI)
if all the properties below are satisfied.

Definition 10 (Completeness). A proof system for RL is complete if ∀λ ∈ N,
gk ← G(1λ), crs←$CRSSetup(gk), (x,w) ∈ RL, and Π ← Prove(crs, x, w) it
holds that Pr[PrVerify(crs, x,Π) = 1] = 1.

Definition 11 (Re-Randomizable Proof System). Consider the following
experiment:

– gk← G(1λ)
– crs←$CRSSetup(gk)
– (x,w,Π)← A(crs)
– If either PrVerify(crs, x,Π) = 0 or (x,w) /∈ RL output ⊥ and abort. Other-

wise, sample b←$ {0, 1}.
• If b = 0 Π ′ ← Prove(crs, x, w).
• If b = 1 Π ′ ← RandPr(crs, x,Π).

– b′ ← A(Π ′).
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We say that the proof system is re-randomizable if for every PPT A, there exists
a negligible function ν(·), such that Pr[b = b′] ≤ 1/2 + ν(λ).

Definition 12 (Witness Indistinguishability). We say that the proof sys-
tem is witness indistinguishable (WI), if the following holds. For all (x,w1, w2)
such that (x,w1), (x,w2) ∈ RL, the tuples (crs, Π1) and (crs, Π2), where crs←$

CRSSetup(gk), gk ← G(1λ) and for i ∈ [2], Πi ← Prove(crs, x, wi), are compu-
tationally indistinguishable. If the two tuples are identically distributed, we say
that the proof system is perfect WI.

Definition 13 (Soundness). For all PPT A, and for crs←$CRSSetup(gk),
gk ← G(1λ), the probability that A(crs) outputs (x,Π) such that x /∈ L but
PrVerify(crs, x,Π) = 1, is negligible.

Additionally, a NIWI is said to be a NIWI proof of knowledge (PoK) if the
property below is also satisfied.

Definition 14 (Adaptive Extractable Soundness). There exists a polynomial-
time extractor Ext = (Ext1,Ext2), for all gk← G(1λ), with the following proper-
ties:

– Ext1(gk) outputs (crsExt, xk) such that crsExt is indistinguishable from crs ob-
tained running crs←$CRSSetup(gk).

– For all PPT A, the probability that A(crsExt, xk) outputs (x,Π) such that
PrVerify(crsExt, x,Π) = 1 and (x,w) /∈ RL where w ← Ext2(crsExt, xk, x,Π)
is negligible.

A.3 Proof of Lem. 1

Proof. We build an adversary B for the DDH assumption which makes black-
box use of A. B gets the DDH challenge (â, b̂, ĉ). If â = 0̂ or b̂ = 0̂ or ĉ = 0̂, B
aborts. This event occurs with negligible probability. B sets the challenge for A
to be (ĉ, b̂). With probability ϵ, B gets back b̌′ ∈ Ȟ s.t. ĉ · ȟ+ b̂ · b̌′ = 0T from A.
B outputs 1 iff â · ȟ + ĝ · b̌′ = 0T, and 0 otherwise. If (â, b̂, ĉ) is a DH tuple, B
outputs 1 with probability exactly ϵ. In the other case, since â ̸= 0̂, b̂ ̸= 0̂, and
ĉ ̸= 0̂, there is no trivial b̌′ s.t. â · ȟ+ ĝ · b̌′ = 0T.

A.4 More on GS Proofs Internals

In Fig. 10, we report the possible commitment labels for each equation type of
GS proofs, while in Fig. 11, we report the proof re-randomization algorithm.

A.5 Proof of Lem. 2

Proof. We build an adversary B that uses A to extract a witness for an instance
of RL which is sampled by a challenger C. In particular, B replies to all oracle
queries of A, including queries to the random oracle.
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L Labels for xi, i ∈ [m] Labels for yj , j ∈ [n]

PPE baseĜ, pubĜ, comĜ baseȞ, pubȞ, comȞ
MEĜ baseĜ, pubĜ, comĜ scaȞ
MEȞ scaĜ baseȞ, pubȞ, comȞ
QE scaĜ scaȞ

Fig. 10. Possible GS commit labels for each equation type.

(Ĉ′, Ď′, π′)← RandPr(L, Γ, {(lxi , ĉi)}mi=1, {(lyj , ďj)}nj=1,π; r)

Parse r = (rx, sx, ry, sy)

Define Ĉ = (ĉ1 . . . ĉm) ∈ Ĝ2×m, Ď = (ď1 . . . ďn)
⊤ ∈ Ȟn×2and parse π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌)

if x ∈ Ĝm define Ĉ′ = Ĉ + v̂rx + ŵsx else if x ∈ Zm
p define Ĉ′ = Ĉ + v̂rx

if y ∈ Ȟn define Ď′ = Ď + ryv̌ + syw̌ else if y ∈ Zn
p define Ď′ = Ď + ryv̌

if L = PPE α, β, γ, δ←$Zp

if L = MEĜ α, β←$Zp

if L = MEȞ α, γ ←$Zp

if L = QE α←$Zp

π̌v̂
′ = π̌v̂ + rxΓĎ

′ + αv̌ + βw̌ π̂v̌
′ = π̂v̌ + ĈΓry − v̂α− ŵγ

π̌ŵ
′ = π̌ŵ + sxΓĎ

′ + γv̌ + δw̌ π̂w̌
′ = π̂w̌ + ĈΓsy − v̂β − ŵδ

return (Ĉ′, Ď′, π′ = (π̌v̂
′, π̂v̌

′, π̌ŵ
′, π̂w̌

′))

Fig. 11. Proof re-randomization algorithm of the GS proof system.
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We prove unforgeability via a sequence of hybrid arguments. In each hybrid,
B will change how it replies to certain queries, but in a way s.t. A cannot detect
the change. In the final hybrid, B will be able to use a forgery from A to extract
a valid witness for the instance sampled by C.

H0: This is exactly the unforgeability game of figure Fig. 5.
H1: This is equivalent to H0 except that when replying to Join queries, B uses

the Prove algorithm instead of the PrAdd algorithm. Additionally, before
performing AuxUpdate, each element of A is replaced with a fresh encryp-
tion of the auxiliary values in output of Prove algorithm. Let (k,Π0,A0) and
(k,Π1,A1) the output of a Join query inH0 andH1 respectively. If A can dis-
tinguish between the two hybrids, B can use A to break the re-randomizable
addition (Def. 7) of ENIWI. Let (Π ′,AUX′) be the proof and auxiliary val-
ues (i.e., not encrypted) held by B before the Join query. Let Cadd be the
challenger of Def. 7. B sends (x,w,Π ′,AUX′) (B can recover x, and w from
Lkeys) to Cadd and receives back (Π,AUX). Once A asks for a join operation,
B sends (k,Π,A), where A is the encryption of the elements in AUX (again
the encryption keys are available in Lkeys). This perfectly simulates the input
of the adversary of the re-randomizable addition game Def. 7.

H2: This is equivalent to H1 except that B tries to guess an index j∗ ∈ [qm],
where qm is a bound on the number of random oracle queries. In particular,
B’s guess is that the j∗-th different queried message will be the one w.r.t.
A outputs its forgery. If the message used by A in the forgery differs from
mj∗ , then B aborts. The probability that B does not abort in this hybrid is
at least 1

qm
.

H3: This is equivalent to H2 except that B programs the random oracle on
message mj∗ to give as output a CRS crsExt s.t. (crsExt, xk)← Ext1(gk). H3

is indistinguishable from H2 due to the adaptive extractable soundness of
ENIWI. (Def. 14). Indeed, crsExt is indistinguishable from a crs generated with
CRSSetup, which is in turn a random string.

H4 This is equivalent to H3 except that for every message mj , with j ̸= j∗, B
programs the random oracle to give as output a random pkOj

= (x1j , pk
1
ej) for

which B knows w1j s.t. (x1j , w1j ) ∈ RL. Since RL is public-coin samplable,
pkOj

is equally distributed in H3 and H4.
H5: Let us consider the forgery given in output byA as (k∗,mj∗ ,R∗, (k∗, Π∗,A∗)).

Let xj̃∗ be the trapdoor statement corresponding to message mj∗
13 and

{xi}i∈R∗ be the statements corresponding to all the users in the ring of
the forgery. For A to be admissible, there must be at least a statement
xi∗ ∈ {xi}i∈R∗ ∪ {xj̃∗} that was not involved in any corrupt query, or any
Join/Sign w.r.t. the forgery message mj∗ . If this does not hold, the checks of
the unforgeability experiment of line 8 of Fig. 5 cannot be successful.
Let H5 be equivalent to H4 except that B tries to guess i∗ sampling it
uniformly at random from {i}i∈[qKG]∪{j̃∗}, where qKG is a polynomial bound
on the number of key generation queries that A can do. When A outputs its

13 We use j̃∗ as a special index for the trapdoor statement related to mj∗ .
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forgery, B uses the extractor (w1, . . . , wk∗)← Ext2(crsExt, xk, (k
∗, {xi}i∈R∗ ∪

{xj̃∗}), Π∗) to extract the witnesses from proof Π∗. If the extraction fails,
or none of the extracted witnesses wz, with z ∈ [k∗], is s.t. (xi∗ , wz) ∈ RL, B
aborts. Due to the adaptive extractable soundness of ENIWI, the extraction
fails only with negligible probability. Thus, the probability that B does not
abort in this hybrid is at least 1

qKG+1 .

H6: This is equivalent to H5 except that every time A makes Sign or Join queries
involving i∗ for message mj ̸= mj∗ , B answers using the witness wj

1 for the
trapdoor statement x1j to compute the proof and the auxiliary values while
still encrypting ⊥ in ai∗ . The queries for message mj = mj∗ are answered in
the same way, since no query for message mj∗ ever involves i∗.

If i∗ is equal to j̃∗, then H5 and H6 are equally distributed since no Sign
or Join query can involve xj̃∗ by construction. Let us consider the case for
which i∗ is related to a registered key. We now argue that H5 is indistin-
guishable from H6 thanks to extended WI property (Def. 9). Let us call
D the distinguisher that distinguishes H5 from H6 with probability greater
than negligible. Let AEWI be the adversary that exploits D to break the ex-
tended WI of ENIWI against a challenger CEWI. W.l.o.g. we consider a query
OSign(mj ,R, i∗) for message mj , with j ̸= j∗, and signer index i∗. Trivially,
it can be extended to any query involving i∗.

1. AEWI chooses as statement x the public keys of the ring R, AEWI chooses
w0 = w1j̃

and w1 = wi∗ .

2. AEWI sends (x,w0, w1) to the challenger of extended WI CEWI, and re-
ceives back (Π,AUX)14.

3. AEWI generates the signature starting from (Π,AUX) as in the Sign algo-
rithm (except for the fact that ai∗ is obtained encrypting ⊥) and sends
this signature as answer to the query OSign(mj ,R, i∗) performed by A.

4. At the end of the experiment,A outputs the forgery (k∗,mj∗ ,R∗, (k∗, Π∗,
A∗)) to AEWI.

5. AEWI runs D on input its view.AEWI returns 1 if D says that the hybrid
is H5, and 0 otherwise.

AEWI breaks the extended WI property with the same advantage that D
has in distinguishing the two hybrids. Therefore, H5 and H6 are indistin-
guishable15. Additionally, we now argue that the probability of extracting
a witness for i∗ does not change between the two hybrids, except for a
negligible quantity. To see why this holds, let us consider an AEWI that
at step 5, runs the extractor Ext2(crsExt, xk, (k

∗, {xi}i∈R∗ ∪ {xj̃∗}), Π∗) to
extract the witnesses (w1, . . . , wk∗) used in the forgery instead of calling D.

14 Notice that here AUX does not include auxi∗ and auxj̃ .
15 Notice that this reduction in principle does not capture the fact that A can perform

multiple sequential queries in a single execution. Consider a modified EWI definition
with a game in which the challenger accepts multiple queries and always replies
according to the bit sampled at the beginning of the game. It is straightforward to
observe that a proof system which fulfils the regular EWI definition also fulfils the
modified EWI definition.
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If the forgery contains wi∗ s.t. (xi∗ , wi∗) ∈ RL, AEWI returns 1, and 0 oth-
erwise. If |Pr[AEWI outputs 1|H5]− Pr[AEWI outputs 1|H6]| > negl(λ), then
AEWI would itself be a distinguisher between the two hybrids. Therefore,
since this would break the extended WI property, we reach a contradiction.
Importantly, we exploit the fact that we have a different CRS for every mes-
sage. Indeed, we only switch one CRS to the extraction mode; namely the
one corresponding to the forgery message mj∗ . This allows us to simulta-
neously reduce to EWI for all the queries on messages mj ̸= mj∗ , and to
extract the witnesses from the forgery on message mj∗ in order to finalize
the game as shown in the next hybrid.

H7: This is equivalent to H6 except that when prompted to generate a key
pair for i∗, B would return as public key the pair (x, pke), where x, instead
of being freshly sampled, is the one that C sent to B in the hard relation
game. H6 and H7 are equally distributed. Now, B extracts from the forgery
a witness for the hard relation sampled by the challenger of the hard relation
game, thus reaching a contradiction.

A.6 Proof of Lem. 3

Proof. H0: This is exactly the anonymous extendability game of Fig. 6.

H1: This is equivalent toH0 except that when running the Join algorithm, B uses
the Prove algorithm instead of the PrAdd algorithm. Additionally, instead of
performing AuxUpdate, each element of A is replaced with a fresh encryption
of the auxiliary values in output of Prove algorithm. Showing that H1 is
indistinguishable from H0 basically mirrors the discussion of H1 in Lem. 2.

H2: This is equivalent to H1 except that when running the Extend algorithm in
the ladder, B uses the Prove algorithm instead of the PrExtend algorithm.
Additionally, instead of performing AuxUpdate, each element of A is replaced
with a fresh encryption of the auxiliary values in output of Prove algorithm.
Showing thatH2 is indistinguishable fromH1 basically mirrors the discussion
for the previous hybrid, except that now we would use A to break the re-
randomizable extension property (cfr., Def. 8) of ENIWI.

H3: This is equivalent to H2 except that, when processing the ladders, B en-
crypts ⊥ in all the signers’ ciphertexts. Note that auxiliary values are already
not used at all by B at this point. Recall that in order to win, A cannot cor-
rupt any of the signers. This is indistinguishable from H2 thanks to the
IND-CPA property of the encryption scheme 16.

16 Let us consider an extended version of the IND-CPA game that is trivially implied
by the standard IND-CPA game. In this extended game, the adversary A has access
to a key generation and a corruption oracle. Let n be the number of key generation
queries. At the end of this step, A outputs a pair of messages (m0,m1) and an index
i. C checks that i is not corrupted, and samples a random bit b←$ {0, 1}. C encrypts
mb using public key pkie, A wins if it guesses the value of b. Indistinguishability of
H3 and H2 can be proven via a reduction to this extended IND-CPA game through
a sequence of hybrids in which one ciphertext at a time is modified to encrypt ⊥.
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H4: This is equivalent to H3 except that B does not sample b at random but
fixes b = 0. If b = 0 also in H3, the hybrids are identical. Let us assume that
b = 1 in H3. Let Σ

Hj be the challenge list given to A at the end of Hj , with

j ∈ {3, 4}. Let us denote the i-th element of ΣHj as σ
Hj

i = (k,Π
Hj

i ,A
Hj

i ),
where i ∈ [l] and l is the length of the ladders. We now argue that A cannot
distinguish H4 from H3. First, since the ladders are well-formed all the σH3

i

and σH4
i contain an ENIWI w.r.t. the same statement. Let us assume A

corrupted all the keys that are not in the ladders17. Therefore, A gets to see
the corresponding auxiliary values. As a result, an A distinguishing between
H4 andH3 would get access to two ENIWI with auxiliary values associated to
keys whose corresponding witnesses were not used in any of the two ENIWI.
In addition to that, A just gets encryptions of values that are uncorrelated
with the two ENIWI and the auxiliary values. It follows that we can directly
reduce the indistinguishability between H4 and H3 to the security game of
extended witness indistinguishability (cfr., Def. 9).

A.7 Proof of Thm. 2

Lemma 5. The proof system described in Sec. 7.3 enjoys completeness and
transformation completeness.

Proof. Due to the completeness of GS, for honestly generated proofs the output
of PrVerify is always 1. Let us prove that the same holds for AuxVerify. Let
us consider a commitment to a group element x̂ as ĉ = ex̂ + v̂r + ŵs with
r, s←$Zp, with corresponding auxiliary value aux = (aux1 = rȟ, aux2 = sȟ).
The check performed by AuxVerify is the following, where x̂ ∈ {ĝ, 0̂} depends on
the commitment and the auxiliary value to be checked.

ĉ · (ȟ, ȟ) + v̂ · (−aux1,−aux1) + ŵ · (−aux2,−aux2) = (0̂, x̂)⊤ · (ȟ, ȟ)

Let us consider the left side of the above equation, we have:

[(0̂, x̂) + (rξĝ, rĝ)⊤ + (sρξĝ, sρĝ)⊤] · (ȟ, ȟ)+
(ξĝ, ĝ)⊤ · (−rȟ,−rȟ) + (ρξĝ, ρĝ)⊤ · (−sȟ,−sȟ) =
(0̂, x̂)⊤ · (ȟ, ȟ)

By observing that RandPr and AuxUpdate shift the commitments and the aux-
iliary values of the same randomness, it is straightforward to see that the first
requirement of transformation completeness is also satisfied. Similarly, regarding
the second requirement, PrAdd just replaces a commitment and corresponding
auxiliary value with new ones that still pass the check performed by AuxVerify.
The same holds for the third requirement, where PrExtend just adds a new com-
mitment with corresponding auxiliary value.

17 These are the only keys A can corrupt while still being admissible.
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Lemma 6. The proof system described in Sec. 7.3 enjoys re-randomizable ad-
dition. (Def. 7).

Proof. Let us point out the differences between the experiment executions with
b = 0 and b = 1. In both cases, RandPr and AuxUpdate are executed to update
both the proof and the auxiliary values before handling them to A. Let us now
consider what happens to the elements of Π and AUX before the above steps.
When b = 0 both Π and AUX are freshly computed using the witness provided
by A. When b = 1 all proofs and commitments are just taken from the proof Π∗

(provided by A), excluding the ones related to variables bαk
, M̂αk

, xαk
yαk,j ,for

j ∈ [Jαk
], which are freshly generated.

Let us now focus on commitments ĉM̂i
to variables M̂i, with i ∈ [n], contained

in proof Π∗. It is straightforward to observe that after running GS.RandPr, we
get new commitments that are equally distributed to randomly chosen commit-
ments to M̂i. The list AUX∗ contains group elements satisfying the verification
equations checked by AuxVerify18. Auxiliary values are updated as random group
elements of Ȟ, using the same randomness previously used to re-randomize the
commitments (which are elements of Ĝ). Due to transformation completeness,
re-randomized commitments together with updated auxiliary values still satisfy
such equation.

Therefore, the joint distribution of commitments and auxiliary values after
re-randomization and update is equally distributed to randomly chosen commit-
ments to M̂i along with corresponding auxiliary values satisfying the verification
equations checked by AuxVerify.

Finally, as already shown in previous works [23,6,13], re-randomized proof
elements (i.e, π values) are distributed as randomly chosen proof elements from
the space of all valid proof elements, given that the commitments to the involved
variables are fixed. Since the commitments are fully re-randomized, the result
is a randomly chosen proof given a fixed solution, along with openings of the
randomly chosen commitments contained in the proof. This means that, for all
equations involving any of the variables M̂i with i ∈ [n], the joint distribution
of commitments, proofs elements, and AUX is identically distributed both when
b = 0 and b = 119. Finally, for all the equations not involving any of the variables
M̂i with i ∈ [n], it suffices to reduce to the re-randomizability property of GS.

Lemma 7. The proof system described in Sec. 7.3 enjoys re-randomizable ex-
tension (Def. 8).

Proof. The proof basically mirrors the one of re-randomizable addition.

Lemma 8. The proof system described in Sec. 7.3 enjoys extended witness in-
distinguishability (Def. 9).

18 We are guaranteed of that since otherwise A would not be admissible.
19 In particular, note that after the invocation of PrAdd, all the proofs are accepting,

including the one of equation K.
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Proof. Notice that the proof Π contains a tuple of commitments and proof ele-
ments for each statement xi with i ∈ [n] (i.e., (CBi,CMi,CY i,CX i,πBi,πMi,
πY i,πX i)). Let us now consider the EWI experiment, where A chooses a state-
ment x = (k, x1, . . . , xn) and two witnesses w0 and w1 such that (x,w0) ∈ RLtr

and (x,w1) ∈ RLtr . Let (Πb,AUXb) be the output of the challenger conditioned
on the value of b. We argue that (Π0,AUX0) is indistinguishable from (Π1,AUX1).

For each of the tuples of the proof Πb, we have that either i ̸∈ S or i ∈ S.
If i ̸∈ S, AUX does not contain any information regarding the i-th tuple20.

In this case, the i-th tuples when b = 0 and b = 1 are indistinguishable thanks
to the WI of the underlying GS proof system.

If i ∈ S, we can distinguish two additional cases: (i) i is the index of a witness
used both in w0 and in w1, and (ii) i is an index of a statement not used in both
w0 and w1.

Let i ∈ S be an index used both in w0 and w1. In this case, the value in M̂i

is ĝ. A obtained the auxiliary value associated with M̂i. We now consider all the
elements of the i-th tuple and we argue that they are indistinguishable in both
hybrids:

1. (CBi,πBi) are indistinguishable since bi = 1 in both hybrids.
2. (CMi,πMi) are indistinguishable since M̂i = ĝ, bi = 1 in both hybrids;
3. Variables y̌i,q,j , x̌i,q,j may differ in the two hybrids. However, A cannot dis-

tinguish (CY i,πY i) in the two hybrids. Indeed, the distribution of the proof
elements is uniform over all possible terms satisfying the equation condi-
tioned on the commitments, and all the commitments and auxiliary values
are equally distributed in both hybrids.

4. Finally, (CX i,πX i) do not involve any M̂i, and thus they are not related
to AUX. They are indistinguishable thanks to the WI of the underlying GS
proof system.

Whenever i ∈ S is not used in both w0 and w1, we have that M̂i = 0̂ and
AUX will contain openings to random commitments to 0̂. We notice that in the
two hybrids, the entire i-th tuple is computed running the GS prover on the
same inputs. Therefore, they are identically distributed.

There are two last element to take into account, namely CK and πK. These
are indistinguishable in both hybrids for the reasons previously argued in 3.

Lemma 9. The proof system described in Sec. 7.3 enjoys adaptive extractable
soundness (Def. 14).

Proof. The algorithm Ext1 just runs GS.Ext1. The algorithm Ext2 runs GS.Ext2
for the equation K. Due to the soundness of GS proofs, and thanks to the proofs
of equations of typeM and B, we are guaranteed to extract, except with negligi-
ble probability, k values M̂i = ĝ. Let A = {α1, . . . , αk : M̂α1

= . . . = M̂αk
= ĝ}.

Ext2 runs GS.Ext2 for the k equations Xαi
with αi ∈ A. Let wi be the witness

20 Notice that the randomness used in different commitments is always uniformly sam-
pled.
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extracted from the proofs for equation Xαi
, with αi ∈ A. Due to the sound-

ness of GS proofs, and thanks to the proofs of equations of type Y it holds
that equations Xαi are the same as statement xαi , with αi ∈ A. Therefore,
w = {(w1, α1), . . . , (wk, αk)} is such that ((k, x1, . . . , xn), w) ∈ RLtr .
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