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Vogue: Faster Computation of Private Heavy
Hitters

Pranav Jangir, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal and Somya Sangal

Abstract—Consider the problem of securely identifying τ -heavy hitters, where given a set of client inputs, the goal is to identify those
inputs which are held by at least τ clients in a privacy-preserving manner. Towards this, we design a novel system Vogue, whose key
highlight in comparison to prior works, is that it ensures complete privacy and does not leak any information other than the heavy
hitters. In doing so, Vogue aims to achieve as efficient a solution as possible. To showcase these efficiency improvements, we
benchmark our solution and observe that it requires around 14 minutes to compute the heavy hitters for τ = 900 on 256-bit inputs when
considering 400K clients. This is in contrast to the state of the art solution that requires over an hour for the same. In addition to the
static input setting described above, Vogue also accounts for streaming inputs and provides a protocol that outperforms the
state-of-the-art therein. The efficiency improvements witnessed while computing heavy hitters in both, the static and streaming input
settings, are attributed to our new secure stable compaction protocol, whose round complexity is independent of the size of the input
array to be compacted.

Index Terms—private heavy hitters, secure stable compaction, secure multiparty computation
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1 INTRODUCTION

MANY real world applications require performing anal-
ysis on data aggregated across users (clients). This

data aggregation, followed by the analysis of the same,
allows deriving useful statistics regarding the clients. For
example, consider the scenario where a web browser ven-
dor is interested in finding the most widely used home-
pages across its users. Obtaining such statistics facilitates
the vendor in providing a personalized user experience.
The data collection is depicted in Fig. 1, where the web
browser vendor acts as the data aggregator to obtain URLs
as inputs from clients to determine those URLs whose fre-
quency exceeds a predetermined threshold. Such popularly
occurring client inputs (URLs in this case) are referred to as
heavy hitters. Identification of such heavy hitters also finds
use in several other domains–(i) web browser vendors are
interested in determining popular web pages that lead to
crashes, (ii) to identify potential threats, network service
providers require a mechanism to detect popular entities
with unusually high traffic [2], (iii) optimizing search en-
gines involves identifying frequent user queries, popular
links and advertisements [3], etc. In the above instances,
popular web pages, high-traffic entities, and popular queries
and links constitute the heavy hitters. Identifying these
heavy hitters requires the data aggregator to access each
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of the client’s inputs on clear. Since the inputs comprise
private information (e.g., client’s choice of homepage), re-
vealing this on clear to the data aggregator compromises
client privacy. Hence, it is imperative to design privacy-
preserving techniques to identify heavy hitters such that the
data aggregator identifies the heavy hitters while ensuring
no other information, including the clients’ inputs, is leaked.
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Fig. 1: Example for heavy hitter computation

Towards addressing this problem, we design a novel
system, Vogue, for securely determining heavy hitters. Infor-
mally, given a set of N clients, each of which holds an ℓ-bit
input string, a τ -heavy hitter is defined as that string which
is held by at least τ clients. To securely identify τ -heavy
hitters, we rely on the cryptographic technique of secure
multiparty computation (MPC). This technique enables a set
of n parties to jointly compute a function on their private
inputs while guaranteeing that no subset of at most t < n
parties controlled by an adversary learn anything other than
the function output. Thus, departing from the centralized
approach of having a single data aggregator, we move to
the distributed setting, where a set of hired servers collec-
tively effectuate the role of the aggregator. This translates to
each client secret sharing its input to the set of computing
servers, such that even if ≤ t servers collude, their shares
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do not leak any information regarding the client input. The
servers carry out the MPC protocol on the input shares to
securely compute shares of the heavy hitters. The servers
then reconstruct the output towards the data aggregator.
The use of MPC guarantees the correctness of the computed
output as well as privacy, i.e., the computing servers and the
web browser vendor do not learn the client inputs nor any
intermediate information. A schematic representation of this
is depicted in Fig. 2.
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Fig. 2: Example of private heavy hitter computation

We not only focus on designing a secure system, we also
aim to design as efficient a solution as possible. Specifically,
we aim to achieve the following desirable properties:
• Security against malicious servers: The protocol must be

secure even when a malicious adversary controlling a subset
of servers arbitrarily deviates from protocol specification.
Failing to do so is detrimental for overall system’s reliability.
• Security against malicious clients: In addition to mali-

cious servers, it is desirable for the system to guarantee
robustness against malicious clients, who may try to send
ill-formed inputs to influence the system and tamper with
the output. Further, the system must guarantee security
even when a subset of clients collude with corrupt servers.
• Client-side efficiency: Another essential factor to con-

sider is the client’s computation and communication cost.
It is desirable to minimize this overhead at the client to
facilitate the participation of low-end devices as well.
• Server-side efficiency: This directly impacts the response

time of the system, which is defined as the total time
taken from submission of the client’s input to the servers,
processing of the input, to delivery of the output. A quick
response time allows for expediting the necessary action to
be taken after obtaining the output. Hence, it is essential to
design a system that has efficient server-side computation.

Before we detail our solution that achieves the above
properties and contributions therein, we describe the rele-
vant literature that considers private heavy hitters.

1.1 Related Work
The work of [4] provides a system called STAR to compute
τ heavy hitters and operates in the single server setting.
Here, the client’s input is hidden from the servers until the
input string is identified as a τ heavy hitter. Hence, this
work comes close to the centralized model, albeit offering
better privacy. However, as described in [4], the protocol
suffers from information leakage, where the server learns
the set of clients that have the same input. In fact, the

protocol is designed to leverage such leakage of information
to achieve improved efficiency. In this way, the protocol
trades off privacy for efficiency, as opposed to the current
work where the servers learn no information apart from the
desired output. Departing from the centralized single server
setting, the work of [5] provides a system called Poplar,
which operates in the distributed setting with two malicious
data collecting servers. Thus, Poplar comes closer to the
current work. However, similar to STAR, Poplar also suffers
from information leakage, where it leaks the distribution
of the clients’ strings to the servers. Specifically, it leaks
all the τ heavy hitter prefixes and their count. The authors
claim that the leakage is modest and capture the same via
a leakage function. Further, to protect against this leakage,
Poplar suggests the use of differential privacy.

There are also works in the literature that consider the
specific case of identifying heavy hitters for streaming inputs
[6], [7], [8]. Here, the client inputs are assumed to arrive at
discrete time steps and the goal is to identify the top K client
strings which are popular in the entire stream of inputs
seen so far. Since the output is influenced each time new
clients’ inputs arrive, it is required to re-identify the heavy
hitters once sufficiently many new clients have arrived. This
is unlike the setting described previously, which we refer to
as static setting, where all the client inputs are available prior
to the computation, and hence the output is computed only
once. MPC based solutions to address the streaming setting
have also been previously considered [9], [10], [11]. These
provide differentially private output since the streaming
setting demands additional privacy guarantees as justified
in §4. Among these, the work of [11] forms state-of-the-art
and improves the efficiency in comparison to prior works.

1.2 Our Contributions

With the previously stated desirable properties in mind, we
design Vogue, a system to compute private heavy hitters
(PHH). It operates over the ring algebraic structure in the
threshold-optimal setting of 3-parties assuming an honest
majority (i.e., t < n/2) and provides malicious security. Our
detailed contributions are listed below.

Private heavy hitters: We propose a novel algorithm for
computing heavy hitters in the static setting where the set
of N client inputs is available at hand. Our algorithm is
highly intuitive and relies on the primitives depicted in
Fig. 3. A naive implementation of the protocol using secure
versions of these primitives found in the literature [12],
[13] is highly inefficient. To ameliorate the situation, we
design an improved protocol for secure compaction, details
of which are described later. Additionally, since our protocol
makes black-box calls to the underlying primitives, any en-
hancement in efficiency of these primitives is reflected duly
in the performance of our protocol. Further, the modular
design of our protocol and its generality allows instantiating
it with any MPC. Thus, it can inherit security guarantees of
the underlying MPC. In this way, instantiating our protocol
with the appropriate MPC allows achieving the strongest
security notion of guaranteed output delivery (GOD), which
ensures delivery of output regardless of any adversarial
misbehavior.
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Fig. 3: Building blocks of PHH protocol

Although the problem of computing private heavy hit-
ters was considered in the work of Poplar [5], our protocol
improves over it in the following ways.
• Security against malicious servers and clients: Unlike

Poplar that only guarantees privacy in the presence of a
malicious adversary, Vogue guarantees privacy as well as
correctness of output. This holds true even when a subset
of malicious clients collude with the malicious server.
• Client-side efficiency: Vogue focuses on minimizing the

client-side computation time as well as the client-to-server
communication. Specifically, a client is required to commu-
nicate O(ℓ) bits in comparison to Poplar, which requires
O(ℓ + logN ) bits to be communicated from a client to
server. Here, N denotes the number of clients, and ℓ denotes
the bit length of the client’s input string. With respect
to the computation, we note that Vogue entails the client
performing simple operations such as XORs, unlike Poplar,
which requires expensive operations such as generation of
distributed point function (DPF) keys. This is corroborated
by our experimental results where the computation over-
head at client is 5.82 (×10−6) seconds in Vogue, whereas it
is 173.1 (×10−6) seconds in Poplar for an input of 256 bits.
• Server-side efficiency: When designing Vogue, several

parameters are taken into account to ensure server-side
efficiency. We not only focus on improving the round
complexity but also ensure to minimize the computation
complexity, both of which play a key role in ensuring a
fast response time. In a typical setup where the number of
clients N = 400, 000 and the client’s input size is ℓ = 256
bits, determining the heavy hitter strings which are held by
at least 900 clients, results in a response time of around 14
minutes in Vogue when instantiated with the MPC of [14].
On the contrary, Poplar requires around 86 minutes for the
same. Thus, we observe a gain of up to 6× over Poplar.

The comparison of the round and communication com-
plexity of Vogue with Poplar is provided in Table 1.

Parameter Vogue Poplar [5]

Client-to-server communication O(ℓ) O(ℓ+N )
Server-to-server communication O(N log(N )ℓ) O(N ℓ)
Server-side round complexity O(log(N )) O(ℓ)

TABLE 1: Comparison of Vogue with Poplar.

Finally, unlike [5], our protocol does not leak any in-
formation (such as τ heavy prefixes or count of clients
possessing the same input) other than the τ heavy hitters,
which is achieved for the first time. In fact, our protocol
allows keeping threshold τ hidden from computing servers.
This is necessary for scenarios where external servers are
hired to carry out the computation (e.g., secure outsourced
computation), and τ should be hidden from them.

Private heavy hitters - The streaming case: We also consider the

case where inputs arrive in a streaming fashion and design
a secure protocol to identify the top K strings in the input
stream seen so far. In this setting, the work of [11] provides a
O(K) round protocol. Our contribution lies in designing an
improved protocol whose round complexity is independent
of K . Due to lack of public code for the protocol in [11], we
benchmark their solution in our 3PC setting [14] to draw a
fair comparison. The results showcase that our protocol has
an improvement of up to 3.5× in response time.

Secure stable compaction: Our secure protocol for private
heavy hitters, both in the static as well as the streaming
setting, requires a secure protocol for stable compaction.
Elaborately, given a vector t of 0s and 1s, compaction is
defined as the process of reordering the elements in t such
that all 1s appear before the 0s. Further, compaction is
said to be stable if the relative ordering among all the 1s
(and 0s) is preserved. Several works in the literature have
considered designing secure compaction protocols [15], [16],
[17], [18]. However, they are either not stable or inefficient.
The most recent work of [12] gives a stable protocol with
linear communication and round complexity in the number
of elements in t. We take a step ahead and design a secure,
stable compaction protocol that has round complexity in-
dependent of the size of t. Further, our compaction protocol
makes no additional assumptions regarding the distribution
of 1s and 0s being available publicly, unlike in [12]. In this
way, our protocol protects sensitive information that can
be derived from the input distribution, thereby providing
better privacy guarantees than that of [12]. It is worthwhile
to note here that our protocol is generic and modular,
which allows generalizing it to an arbitrary number of
parties. Complexity comparison of our protocol with [12]
is provided in Table 2.

Parameter Ours [12]

Round complexity O(log(ℓ)) O(N log(N ))
Communication complexity O(N ℓ) O(N ℓ)
Leaks #1’s ? × ✓

TABLE 2: Comparison of our compaction protocol with [12].

1.3 Organization
The paper is organized as follows. We begin with the
prelims in §2. This is followed by our secure protocol for
computing heavy hitters in the static setting, as well as
the secure compaction protocol in §3. Following this, the
secure protocol for the streaming case is described in §4.
To establish the performance improvement of our solution,
we benchmark it and compare it with the state-of-the-art
solutions in §5.

2 PRELIMINARIES

Threat model. While our protocols are generic and can be
instantiated with any MPC framework which provides sup-
port for the primitives described in Table 3, we restrict
our focus to the threshold optimal honest majority setting
of 3-party computation (3PC) for efficiency reasons. We
instantiate the 3PC using the robust framework of [14].
Let P = {P0, P1, P2} denote the set of three parties from
which at most one can be maliciously corrupted by a static,



4

probabilistic, polynomial-time adversary A. We assume that
parties are connected via pairwise private and authentic
channels.

Secret sharing scheme. The following different types of
sharing semantics are used in [14].
◦ [·]-sharing: A value v ∈ Z2ℓ is said to be (3, 1) replicated

secret shared or [·]-shared, if there exists [v]01 , [v]02 , [v]12 ∈
Z2ℓ such that v = [v]01 + [v]02 + [v]12, and each [v]ij ∈
{[v]01 , [v]02 , [v]12} is held by Pi, Pj ∈ P .
◦ J·K-sharing: A value v ∈ Z2ℓ is J·K-shared among P , if

there exists αv ∈ Z2ℓ that is [·]-shared, and there exists βv ∈
Z2ℓ such that βv = v + αv which is held by all parties in P .
We let JvKi denote the shares held by Pi ∈ P .

The above sharing over the arithmetic ring Z2ℓ is de-
fined as arithmetic sharing. Analogously, sharing over the
Boolean ring Z2 , where addition operations are replaced by
XOR, is defined as Boolean sharing ([·]B and J·KB). An ℓ-bit
value v is said to be J·KB-shared (or equivalently [·]B-shared)
if each bit in v is J·KB-shared ([·]B-shared). Henceforth, we
use shares and secret-shares interchangeably.

Shared key setup. Parties use a one-time key setup [14],
[19], [20], [21], [22] to establish common random keys for
a pseudo-random function (PRF) between them. This is
modelled as a functionality FSetup (Fig. 4). This enables each
subset of parties to non-interactively sample a common ran-
dom ℓ-bit string v ∈ Z2ℓ . Let F : {0, 1}κ × {0, 1}κ → X be
a pseudo-random function (PRF), with X = Z2ℓ . To enable
parties to sample common random values non-interactively,
the following keys (for the PRF F ) are established between
the parties: each pair of parties Pi, Pj ∈ P know a common
kij , and all parties in P know kP . Pi, Pj can now sample
a common value r ∈ Z2ℓ , non-interactively, by comput-
ing Fkij

(idij). Here, idij denotes a counter maintained by
Pi, Pj , which is updated after every PRF invocation.

FSetup interacts with the parties in P and the adversary S.
FSetup picks random keys kij for i, j ∈ {0, 1, 2}, i < j, and kP .
Let yx denote the keys corresponding to party Px. Then
– yx = (k01, k02 and kP) when Px = P0.
– yx = (k01, k12 and kP) when Px = P1.
– yx = (k02, k12 and kP) when Px = P2.
Output: Send (Output, yx) to every Px ∈ P .

Functionality FSetup

Fig. 4: Ideal functionality for shared-key setup

Primitives. In addition to the primitives in Table 3, Vogue
also relies on a secure protocol for shuffle and sort. These
are modeled via the ideal functionalities FShuffle,FSort as
described in Fig. 5, Fig. 6, respectively. In our work, we
instantiate FShuffle using the shuffle protocol from [13]. To
obtain a secure protocol for FSort, we follow the shuffle-
then-sort paradigm. Here, secure sort is realized by first
shuffling the input followed by performing an insecure sort,
i.e., the sorting protocol need not be data oblivious. For this,
we instantiate shuffle protocol via that of [13] followed by

performing quicksort1.

Let S denote the ideal world adversary. FShuffle interacts with
parties in P and S. It receives as input J·K-shares of the input
vector a from all parties.
FShuffle proceeds as follows.
– Reconstruct input a using J·K-shares of the honest parties.
– Sample a random permutation π from the space of all

permutations and generate ao = π(a).
– Generate J·K-shares of ao and send (Output, JaoKs) to
Ps ∈ P .

Functionality FShuffle

Fig. 5: Ideal functionality for shuffle

Let S denote the ideal world adversary. FSort interacts with
parties in P and S. It receives as input J·K-shares of the input
vector a from all parties.
FSort proceeds as follows.
– Reconstruct input a using J·K-shares of the honest parties.
– Sort a to generate ao.
– Generate J·K-shares of ao and send (Output, JaoKs) to
Ps ∈ P .

Functionality FSort

Fig. 6: Ideal functionality for sort

Protocol Functionality output

ΠSelect(JaK, JbK, JcKB) JaK if c = 1, else JbK
ΠCmp(JaK, JbK) J1KB if a < b else J0KB
ΠEq(JaK, JbK) J1KB if a = b else J0KB
Πbit2A(JbKB) JbK; arithmetic sharing of bit b ∈ Z2

Πmult(JaK, JbK) JcK where c = a · b
Πdotp(JaK, JbK) JcK where c =

∑N
i=1 ai · bi

TABLE 3: Building blocks used in Vogue. Here, a, b, c ∈ Z2ℓ

and a,b denote N -sized vectors.

Differential privacy. When operating on sensitive data,
the notion of differential privacy (DP) is used to introduce
privacy by bounding the effect that small changes in the
input data set can have on the output. This can be formally
captured as follows. A protocol Π is said to offer (ϵ, δ) -
differential privacy if, for all input sets I and I ′ that differ
in a single entry and all possible subset of outcomes O, the
following holds:

Pr[Π(I) ∈ O] ≤ exp(ϵ) · Pr[Π(I ′) ∈ O] + δ

One way to achieve DP is to add Laplacian noise to the
protocol output, as defined in [23]. The sensitivity of a proto-
col Π is defined as ∆ = max∀I,I′ |Π(I)−Π(I ′)|. The additive
noise is calibrated as Laplace(∆/ϵ), where Laplace(b) is a
random variable from the Laplace distribution with a scale
b and density Laplace(x; b) = 1

2b exp
(
− |x|

b

)
. In order to

achieve DP, we rely on the central model of DP, owing to
the need for high accuracy, as done in [11], as opposed to the
alternatives of local and the shuffle models. Since the central

1. Note that since our protocol for private heavy hitters treats both
shuffle and sort protocols as black boxes, it can be instantiated with
any efficient alternative. With respect to Quicksort, we note that to
ensure optimal performance, the entries to be sorted can be made free
of duplicates. For this, each input of length ℓ-bits can be extended to
ℓ + k bits by appending random bits towards the least significant bit.
This would randomize the inputs to mimic a uniform distribution.
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model assumes a trusted server applying DP on clear text
data, we instead simulate the same in a distributed setting
via MPC, as in [11].

3 STATIC SETTING

The process of identifying the τ -heavy hitters in the static
setting comprises the following three phases:

1. Input sharing and consistency check: Each of the N clients
secret-share their inputs among the servers. To ensure that
a malicious client does not share malformed inputs, the
servers verify the consistency of the received shares and
discard malformed inputs, if any.

2. Computation of private heavy-hitters: The servers execute
an MPC protocol on the N secret-shared inputs to compute
the set of τ -heavy hitters (in secret-shares).

3. Output Reconstruction: Servers reconstruct the set of τ -
heavy hitters towards the intended recipient.

Since the first and last step is dependent on the underly-
ing MPC, we refer an interested reader to [14] for the details.
We next discuss ideal functionality FPHH for computing τ -
heavy hitters and protocol ΠPHH, which securely realizes it.

3.1 Secure computation of τ -heavy hitters
Let a denote an N -sized vector with a[i] denoting the ℓ-bit
input string of client i. FPHH (Fig. 7) takes as input J·KB-
shares of a, which comprises J·KB-shares of each element in
a. It outputs J·KB-shares of h, where h[i] = 1 if a[i] is a
heavy hitter and i is the index of the string’s first occurrence
in a (i.e., ∀j < i, a[j] ̸= a[i]); h[i] = 0 otherwise.

Let S denote the ideal world adversary. FPHH interacts with
parties in P and S. It receives as input J·KB-shares of
elements in the N -sized vector a and proceeds as follows.
– Reconstruct elements in input a. Generate N -sized

vectors h, t, with all entries initialized to 0.
– For i = 1 to N ,
- Count number of occurrences of a[i] and store it in
count[i].
- If count[i] ≥ τ and a[i] ̸= a[j] for j < i, set h[i] = 1.

– Generate J·KB-shares of a and J·KB-shares of h, and send
(Output, JaKBs , JhKBs ) to Ps ∈ P .

Functionality FPHH

Fig. 7: Ideal functionality for computing private heavy hitters

We next give a high-level overview of the secure protocol
for ΠPHH. Note that unlike prior protocols such as Poplar
[5], our goal is to design a secure protocol that does not
leak any information other than the strings identified as
heavy hitters. Hence, all the steps described next will be
performed on J·K-shared (or J·KB-shared) values. An intu-
itive way to identify the heavy hitters is to securely sort
the input a, which ensures all the duplicate entries in a
occur together. In the sorted a, each unique occurrence of
a string is tagged with a 1, while all the duplicates that
follow the first occurrence of the string are tagged with a 0.
It is evident that the difference of indices of consecutive 1s
gives the count of each string. All those strings whose count
exceeds the threshold τ are then marked as heavy hitters.
This process is depicted in Fig. 8. While secure sorting can

be accomplished in O (logN ) rounds of interaction [24],
computing the count requires a linear traversal of a, thereby
requiring O (N ) rounds. Hence, to ensure that determining
the count of strings is not the bottleneck, departing from
the O (N )-round solution, we introduce novel approaches
to efficiently compute the same, as described next.

We observe that we can avoid the linear scan if there
is a way to ensure that the elements of a tagged with
a 1, together with their indices, appear first, followed by
all the elements and their corresponding indices that are
tagged with a 0. This is because such an ordering allows
calculating the distance between the consecutive 1s in the
sorted a without requiring a linear scan to identify the last
seen 1, as shown in Fig. 8. Thus, the difference of indices
of consecutive locations which hold a 1 can be calculated in
parallel, in constant rounds, to determine the count.

Input: An N -sized vector a, where each element of a
represents a client’s ℓ-bit input string, and N denotes the
number of clients.
Output: Reordered a, and an N -sized Boolean vector h
corresponding to (reordered) a such that

h[i] =

{
1, if a[i] is a heavy hitter and for j < i,a[j] ̸= a[i]

0, otherwise
Protocol:

1. Sort elements in a.
2. For j = 1 to N , initialize t[j] = 0, h[j] = 0, and

index[j] = j.
3. Populate elements in t by tagging duplicates in sorted

a with a 0 and non-duplicates with 1, as follows.

t[1] = 1; for j = 2 to N : t[j] =

{
0, if a[j] = a[j − 1]

1, otherwise

4. Compact the elements in a, t, index based on the 0/1
tags in t.

5. For j = 1 to N , mark a as a τ -heavy hitter, i.e., set
h[j] = 1 if t[j] = 1, AND

– t[j + 1] = 1 and index[j + 1]− index[j] ≥ τ , OR
– t[j + 1] = 0, and N − index[j] + 1 ≥ τ ,

6. Output a and h.

Algorithm Heavy hitter

Fig. 9: Computation of heavy hitters

Consequent to the above discussion, our goal is to obtain
a compacted ordering of the tags (together with the corre-
sponding entries in a and their indices) such that all the
1s appear first followed by all the 0s. Further, this should
be realized with sub-linear round complexity. Moreover, to
ensure correct computation of the count, it is required that
this compaction be stable, i.e., the relative ordering of 1 tags
in the input should be preserved in the compacted order.
We abstract this task via the ideal functionality FCompact.
This functionality takes as input J·K-shares of a vector t of
tags and shares of the corresponding vector of payloads p
(in this case, elements in a and the associated indices). It
outputs J·K-shares of the compacted vector tc together with
the shares of the corresponding payloads ordered as per tc.
Moreover, we define FCompact to be stable if for every i, j
entries in t that get mapped to i′, j′ in tc, where i < j,
t[i] = t[j], it holds that i′ < j′.

A simple solution to realize FCompact securely with
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Fig. 8: Toy example of PHH computation

sublinear round complexity is to perform sorting (via a
secure stable sort protocol) using elements in t as the
keys. Although this enables an O(logN ) round protocol,
eliminating the O (N ) overhead, we ask the question: can
we do better? We answer this affirmatively in §3.2 where we
design a secure and stable compaction protocol that requires
constant rounds in the FShuffle-hybrid model (defined in §2).
Thus, given a secure protocol to efficiently realize FCompact,
we can determine the private heavy hitters in O (log (N ))
round complexity, where the complexity is dominated by
that of secure sorting. Our algorithm for computing heavy
hitters appears in Fig. 9.

Note in steps 3, 5 in Fig. 9, it is important to ensure
that no information about whether a 0 or a 1 is assigned
to t[j],h[j], respectively, should be leaked. Hence, this
assignment task is performed obliviously using the ΠSelect

protocol (see Table 3 for description). Moreover, checking
the equality of elements as well as comparison operations
are performed securely using ΠEq and ΠCmp protocols (see
Table 3 for description). The secure version of the algorithm
appears in Fig. 10. Informally, the security of our protocol
follows from the security of the underlying primitives.

Lemma 3.1. The protocol, ΠPHH (Fig. 10) securely real-
izes the functionality FPHH (Fig. 7) against a malicious
adversary that corrupts at most one party in P , in the
(FSetup,FSort,FShuffle,FCompact)-hybrid model when instanti-
ated with the MPC of [14].

Having computed the J·KB-shares of the output via
ΠPHH, during output reconstruction one should not simply
reconstruct h and the corresponding entries in a when
h[j] = 1, for j = 1 to N . This is because of a subtle leak that
may be possible owing to the reordering of the elements in
a during the run of the protocol (where all unique elements
appear first, followed by groups of duplicates). Elaborately,
reconstructing only those entries in a which have a 1 in h
may leak information about the existence and identity of
non-heavy hitter strings that lie between two heavy hitter
strings. To understand this with an example, consider the
run of the protocol as illustrated in Fig. 8. If τ = 2, then
A,B,D constitute τ heavy hitters. Since a is ordered such
that all unique elements appear together followed by du-
plicates, reconstructing these entries in a leaks information
that there exists a string between B and D, and this string
is not a heavy hitter. Since it is common knowledge that
C is the only such string, an adversary can learn that C
was supplied as input by one or more clients and that there

were not sufficiently many clients with C as input to make
it a heavy hitter. To avoid leaking such information, it is
required to break the structure in a before reconstruction
can begin. Hence, we securely shuffle a as well as h before
reconstruction begins.

Input: J·KB-shares of an N -sized vector a, where each
element of a represents a client’s ℓ-bit input string, and N
denotes the number of clients.
Output: J·KB-shares of reordered a, and J·KB-shares of an
N -sized Boolean vector h corresponding to (reordered) a
such that

h[i] =

{
1, if a[i] is a heavy hitter and for j < i,a[j] ̸= a[i]

0, otherwise
Protocol:

1. Invoke FSort to securely sort the J·KB-shared elements
in a.

2. For j = 1 to N , initialize Jt[j]K = J0K, Jh[j]KB = J0K,
and Jindex[j]K = JjK.

3. Populate elements in t by tagging duplicates in sorted
a with a 0 and non-duplicates with 1, as follows.

– Jt[1]K = J1K
– For j = 2 to N :

- Jb1KB = ΠEq (Ja[j]K, Ja[j − 1]K)
- Jt[j]K = ΠSelect

(
J0K, J1K, Jb1KB

)
4. Invoke FCompact to securely compact the shared

elements in a, t, index based on the 0/1 tags in t.
5. For j = 1 to N :
– Jb21KB = ΠEq (Jt[j] + t[j + 1]K, J2K)
– Jb22KB = ΠCmp (JτK, Jindex[j + 1]− index[j] + 1K)
– Jb31KB = ΠEq (Jt[j] + t[j + 1]K, J1K)
– Jb22KB = ΠCmp (JτK, JN − index[j] + 2K)
– Jb2KB = Πmult

(
Jb21KB, Jb22KB

)
– Jb3KB = Πmult

(
Jb31KB, Jb32KB

)
– Jb4KB = Πmult

(
J1⊕ b2KB, J1⊕ b3KB

)
– Jh[j]KB = ΠSelect

(
J1KB, J0KB, J1⊕ b4KB

)
6. Output J·KB-shares of a and h.

Protocol ΠPHH

Fig. 10: Protocol for private heavy hitters

3.2 Secure stable compaction

Recall that the ideal functionality for stable compaction
FCompact (as described in Fig. 11) takes as input J·K-shares
of an N -sized vector t of tags (each element of t is either
0 or 1), and J·K-shares (or J·KB-shares) of the corresponding
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vector of payloads p. It outputs J·K-shares of the compacted
vector tc together with the J·K-shares (or J·KB-shares) of
the corresponding payloads ordered as per tc such that the
following hold:
– All 1s appear before all 0s in the compacted vector tc.
– For every i, j entries in t that get mapped to i′, j′ in tc,

where i < j, t[i] = t[j], it must hold that i′ < j′. This
property ensures that compaction is stable. The mapping
from t to tc is reflected in the output p too, i.e., for every i′

mapped to i p[i′] is defined to be p[i].

Let S denote the ideal world adversary. FCompact interacts
with parties in P and S. It receives as input J·K-shares of
elements in the N -sized vector t where each element is a 0
or 1, and J·K-shares of payloads associated with each entry
in t, denoted by the vector p. FCompact proceeds as follows.
– Reconstruct the inputs t and p.
– Construct tc by reordering elements of t while adhering

to the following.
- All 1s appear before all 0s.
- If entries at location i and j in t where i < j and
t[i] = t[j] get mapped to locations i′ and j′, respectively, in
tc, then i′ < j′.

– Use the mapping from t to tc to reorder elements in p.
– Generate J·K-shares of tc and p and send
(Output, JtcKs, JpKs) to Ps ∈ P .

Functionality FCompact

Fig. 11: Ideal functionality for stable compaction

The high level idea to obtain the compacted vector tc
from t, is to assign each element in t a unique label between
1 to N , such that the labels assigned to all the 1s are
smaller than the labels assigned to the 0s. Let label[i] denote
the label assigned to t[i]. Sorting the elements in t based
entries in label ensures that all the 1s appear before the 0s,
thereby generating the compacted vector. Further, to ensure
that the compaction is stable, labels assigned to 1s (and 0s,
respectively) should be such that if t[i] = t[j] and i < j,
then the label[i] < label[j]. Note that while the assignment
of labels should be done in secret shared format, the sorting
of t based on the labels can be performed after revealing the
labels on clear. This allows us to perform the sort operation
non-interactively. Elaborately, the secret shared label is
reconstructed, followed by locally sorting it. In the process,
the corresponding shares of t are also reordered locally.
Thus, our goal reduces to generating label, as described
above, with constant round complexity.

Before we describe our solution, we note that the recent
work of [12] that addresses this problem has the following
drawbacks: (i) it requires an O (N ) round complexity, (ii)
it assumes that the number of elements which are a 1 in
t, denoted by count1, is public knowledge. We overcome
both these drawbacks in our solution. We begin with briefly
explaining the solution in [12] to help better place ours. The
protocol of [12] proceeds by sequentially scanning t such
that each time t[i] = 1, it increments a counter (initialized
to 0) and assigns it as the label to the current 1-entry in
t. Similar is the case while assigning labels to the 0-entry,
except that the counter for 0s is initialized to count1, which
ensures that the 0s get a label higher than the 1s. We depart
from this approach and devise a method to not only assign

labels to all the elements in constant rounds but also do not
require public knowledge of count1. We proceed as follows.

We define two vectors, c1 and c0 where, cb for b ∈ {0, 1}
tracks the number of b’s present in t until index i. Assum-
ing that c1 and c0 are available (in secret-shared format),
label[i] can be set as c1[i] if t[i] = 1. On the other if
t[i] = 0, then label[i] can be set as c1[N ] + c0[i]. Observe
here that the offset c1[N ] ensures that all 0s get assigned
a label that is higher than that of 1s. This ensures that 0s
appear after the 1s when t is sorted based on the labels.
Since c1 is only available in shares, it ensures that we do
not leak any information about the number of 1s, unlike
in the protocol of [12]. Further, note that this assignment
of labels does not require a sequential scan of t and can be
performed in parallel for each entry in t, when c1 and c0 are
available. Such a parallel assignment of labels is not possible
in the protocol of [12] since they assign the labels based on
a counter (that keeps track of the number of 1s seen so far)
which is updated sequentially.

Consequent to the above discussion, we complete the
description of our constant round protocol by discussing
how c1 and c0 can be populated in constant rounds. In fact,
we note that these can be populated without any interaction,
as follows. Observe that c1[i] can be computed as

∑i
j=1 t[j].

Moreover, since t has either 1s or 0s, c0[i] can be computed
as i − c1[i]. Since computing c1[i] and c0[i] involves linear
operations, it can be performed non-interactively, given any
linear secret sharing scheme.

Input: An N -sized vector t whose elements are either 0 or 1,
and p which comprise payload associated with each
element of t.
Output: Compacted vector tc where all 1s appear before 0s,
and p with elements reordered as per tc.
Protocol:

1. Construct N -sized vectors c0 and c1 to count number
of 0s and 1s in t as follows.

– c1[1] = t[1], c0[1] = 1− c1[1]

– For j = 2 to N :
- c1[j] = c1[j − 1] + t[j]

- c0[j] = j − c1[j]

2. Construct N -sized vector label as follows.

label[j] =

{
c0[j] + c1[N ], if t[j] = 0

c1[j], otherwise

3. Shuffle the elements in p, t, label using the same
random permutation.

4. For i = 1 to N , set
– p[label[i]] = p[i]

– tc[label[i]] = t[i]

Algorithm Compaction

Fig. 12: Stable compaction

To summarize, the protocol begins by generating c1, c0,
non-interactively. This is followed by the generation of
label, which can be performed in constant rounds (indepen-
dent of N ). Following this, we can reconstruct the entries in
label, based on which we can sort the elements in t together
with their respective payloads. A subtle thing to note here is
that reconstructing the entries in label can leak information.
This is because the distribution of 1s and 0s in t induces a
structure on the entries in label. For example, assuming
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Fig. 13: A toy run of compaction protocol

Input: J·K-shares of an N -sized vector t whose elements are
either 0 or 1, J·K-shares of p which comprise payload
associated with each element of t.
Output: J·K-shares of compacted vector tc where all 1s
appear before 0s, and J·K-shares of p with elements
reordered as per tc.
Protocol:

1. Construct N -sized J·K-shared vectors c0 and c1 to
count number of 0s and 1s in t as follows.

– Jc1[1]K = Jt[1]K, Jc0[1]K = J1K − Jc1[1]K
– For j = 2 to N :

- Jc1[j]K = Jc1[j − 1]K + Jt[j]K
- Jc0[j]K = JjK − Jc1[j]K

2. Construct N -sized J·K-shared vector label as follows.

– JbKB = ΠEq (Jt[j], J0KK)
– Jlabel[j]K = ΠSelect

(
Jc1[j]K, Jc0[j] + c1[N ]K, JbKB

)
3. Invoke FShuffle to securely shuffle the J·K-shared

elements in p, t, label using the same random
permutation, and reconstruct elements in label.

4. For i = 1 to N , set
– Jp[label[i]]K = Jp[i]K
– Jtc[label[i]]K = Jt[i]K

Protocol ΠCompact

Fig. 14: Protocol for secure stable compaction

that there is at least one 1 in t, if the reconstructed value
label[1] = 1, it reveals that the first entry in t is a 1. Else if
label[1] > 1, it leaks the number of 1s in t. This leakage
is evident from the example given in Fig. 13. To avoid
such leakage, prior to reconstructing label, we securely
shuffle the entries in label, t and the respective payloads.
This allows to break any association among the entries in
label and t. In this way, the round complexity of our
protocol depends on that of the shuffle protocol. For the 3PC
setting considered in our work, we rely on the secure shuffle
protocol of [13], whose round complexity is independent of
N . Thus, the overall complexity of our compaction protocol
is also independent of N . The algorithm for compaction
appears in Fig. 12 while its secure variant appears in Fig.
14. Informally, the security of the protocol follows from the
security of the underlying primitives. Additionally, note that
the reconstructed label is always a random sequence of
elements between 1 to N since it is the output of shuffle.
Hence, this does not leak any additional information.

Lemma 3.2. The protocol, ΠCompact (Fig. 14) securely realizes
the functionality FCompact (Fig. 11) against a malicious adversary
that corrupts at most one party in P , in the (FSetup,FShuffle)-
hybrid model when instantiated with the MPC of [14].

4 STREAMING SETTING

This setting, unlike the static case, considers client inputs
arriving at discrete time steps. Due to this sequential nature
in which inputs arrive, heavy hitters must be identified at
intervals by considering all the inputs seen so far. To design
efficient solutions that can scale well with streaming inputs,
the objective is to identify the top-K most popular strings
among the input stream. Thus, the streaming setting is
parameterized by K that bounds the total number of strings
that can be output as a heavy-hitter, rather than identifying
all strings that occur more than τ times, as done in the static
setting. Note that recomputing heavy hitters at intervals
can compromise client privacy. For instance, consider the
computation of heavy hitters at time steps t and t′, where
the input stream in the latter additionally comprises a new
client’s input. In such a scenario, the outputs at t and t′ can
leak information about the input of the new client. Thus,
to guarantee additional privacy for clients when processing
streaming inputs, the use of differential privacy (DP) has been
widely adopted [3], [11], [25], [26].

The work of [11] provides the state-of-the-art secure
protocols for computing the heavy hitters in the streaming
setting. Among the various cleartext techniques that have
been used to detect heavy-hitters, [11] relies on a counter-
based approach which is known to be favorable for pro-
cessing a stream of inputs. This approach, where a set of
counters are updated each time a new input arrives, is
known to provide the best space and time complexity, along
with accuracy. Specifically, [11] considers the popular Misra-
Gries algorithm [27] that cleverly approximates the output,
even when the input domain is unknown. The Misra-Gries
algorithm maintains a vector v of size K to store the inputs
that could potentially be identified as the heavy-hitters as
well as their approximate counts in c. Each time a new
input arrives, say x, the following steps are carried out. If
an entry for the input is already present in v (i.e., x ∈ v),
then its corresponding count in c is incremented. However,
in case x is not present in v, there are two possibilities. If v
has empty slots, then x is inserted in one of the empty slots
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and its count in c is set to 1. On the other hand, if v has
no free slots, the count of all entries in c is decremented,
and all those entries that have zero count are removed from
v. Following these sequence of steps on a stream of inputs
is known to provide the guarantee that when evaluated
on N inputs while maintaining K counters, the estimated
frequency f ′[i] of each input i satisfies the following bound:
0 ≤ f [i] − f ′[i] ≤ N/(K + 1). Here, f [i] denotes the true
frequency of an input i and is defined as the ratio of the
number of times it occurs (count) to the total number of
inputs seen so far. We refer readers to [28] for the correctness
of the algorithm. Further, to provide (∆ϵ, δ)-differential
privacy, [11] modifies the algorithm to reveal noisy counts
that exceed a predetermined threshold τ ′, defined in [29] as

τ ′ = 1−∆ log
(
2− 2(1− δ)

1
∆

)
/ϵ

Here, ∆ denotes the maximum contribution of each
input string to its overall count and hence is set to 1. The
ideal functionality for the same is given in Fig. 15.

FSPHH maintains a vector v of size K to store the
heavy-hitters so far and their corresponding count in c.
Let S denote the ideal world adversary. FSPHH interacts with
parties in P and S. It receives as input J·K-shares of new
input, say x, and proceeds as follows.
– Reconstruct x.
– If x ∈ v at index i, then increment its count, c[i].
– Else if there is an empty slot in v, then set v[i] = x where
i denotes the first empty slot, and set its count as c[i] = 1.
– Else decrement count of each entry in c.

//Ensuring differential privacy before output reconstruction:
– For each entry v[i]

- Add Laplacian noise Laplace(∆/ϵ) to its count c[i].
- If c[i] < τ ′, set v′[i] = ⊥ else set v′[i] = v[i].

- Output J·K-shares of entries in v′.

Functionality FSPHH

Fig. 15: Ideal functionality for streaming private heavy hitters

When designing a secure variant for Misra-Gries, the
following aspects must be considered. We note that the al-
gorithm does not qualify to be data-oblivious. This is evident
from the fact that the following information is leaked by the
control flow of the algorithm - (i) the number of valid entries
in v, (ii) whether the input being processed is present in v
or not, (iii) the entry in v whose count in c is incremented
(if present), (iii) whether v has empty slots or not and
(iv) the entries in v that fail to satisfy the differentially
private threshold τ ′. Thus, one must ensure that none of
this information is leaked in its secure variant.

To ensure data obliviousness, [11] designs a secure
variant of Misra-Gries such that each branch of if-else is
evaluated, however, the use of flag bits ensure that only the
operations in the correct branch is evaluated. In this way,
information regarding which branch was evaluated is not
leaked. Further, their protocol is optimized to ensure- (i)
interactive operations such as multiplications are avoided
where possible, (ii) a reduced number of conditional swaps2,

2. A conditional swap is nothing but oblivious select operation which
takes three inputs and outputs either the first or the second input based
on whether the third input is a 1 or a 0.

and (iii) avoid explicitly deleting entries with zero count as
done in Misra-Gries, which additionally saves a few oper-
ations. We optimize their MPC protocol further to achieve
improved efficiency and overall run time, as described next.

State:
//Information maintained throughout the protocol

1. Vector v of size K to store the heavy-hitters so far,
such that each entry is initialized to ⊥.

2. Vector c of size K to store count of each entry in v,
such that each entry is initialized to 0.

Processing Client input
//Initiated when a new client arrives with its input x consisting of
an ℓ-bit string

1. Initialize the flags found and free to 0.
2. For i = 1 to K

- If the current entry v[i] = x, set the flag found = 1 and
increment the count in c[i] = c[i] + 1.
- Mark if current entry in v is empty by maintaining e as:

e[i] =

{
1, if c[i] < 1

0, otherwise

- Initialize index[i] = i

3. Having populated the empty vector e, set the free flag
as the dot-product of e and 1.

4. Invoke ΠCompact to securely compact elements in array
e with array index treated as its payload.

5. Determine the location j where x needs to be inserted
in v if not already present as:

j =

{
index[1], if free = 1

−1, otherwise

6. Set the flag dec = 1 if both found AND free are not
set to 1.

7. For i = 1 to K

- Update v[i] = x if i = j.
- Similarly, update the counts in c as:

c[i] =

{
1, if i = j

c[i]− dec, otherwise

Output reconstruction:
//Initiated when heavy hitters are to be found and requires as
input the Laplacian noise r and DP threshold τ ′

1. For i = 1 to K

- Add the Laplacian noise to each count value
c[i] = c[i] + r.
- Initialize the entry v′[i] to ⊥ if c[i] < τ ′ else set
v′[i] = v[i].

2. Output v′.

Algorithm Streaming heavy hitter

Fig. 16: Computation of private heavy hitters in streaming case

As described in Fig. 16, we begin by initializing v to
⊥ and c to all 0s. When a client’s input x arrives, the flag
found is set if x is present in v, and its count is incremented
in c. We additionally maintain a vector e to track all those
entries in v that correspond to empty entries, i.e., their count
in c is less than 1. The flag free is set if at least one entry in
e is set, indicating a free slot. In order to later identify the
index of a free slot where x can be inserted, we additionally
maintain the index vector, where the ith entry is initialized
to i. This corresponds to steps (1-3) in Fig. 16. Since each
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iteration of step (2) is independent of the other, they can
be carried out in parallel. The parallel iterations, however,
only allow identifying the presence or absence of a free slot
rather than the index of one such slot. The protocol in [11]
also suffers from the same issue. Hence, they resort to a
sequential approach to identify the empty slot. Instead, we
rely on the ΠCompact protocol to achieve this in constant
rounds. Specifically, in step (4), we securely compact the
array e while treating index as the payload. In this way, we
are guaranteed that the first index in the compacted index
corresponds to a free slot if the flag free was set previously
(step (2)). Next, to determine if x is to be inserted with count
1 or if the count of all entries is to be decremented, we use
the flag dec. This flag is set if x was not found in v and
if there were no free slots. In step (7), we update v and c
depending on dec. Note again that each iteration in step (7)
can be performed in parallel. Finally, we note that steps for

State:
1. JvK, which is initialized as Jv[i]K = ⊥, for i = 1 to K.
2. JcK, which is initialized as Jc[i]K = 0, for i = 1 to K.

Processing client input:
// Client inputs JxK to the servers

1. For i = 1 to K

– JbKB = ΠEq(Jv[i]K, JxK)
– JfoundKB = JfoundKB ⊕ JbKB

– Jc[i]K = Jc[i]K +Πbit2A(JbKB)
– Je[i]KB = ΠCmp(Jc[i]K, J1K)
– Jindex[i]K = JiK

2. JfreeKB = Πdotp(JeKB, J1KB) //1 denotes vector of all 1s
3. Invoke ΠCompact to securely compact elements in array

e with array index treated as its payload.
4. JjK = ΠSelect(Jindex[1]K, J−1K, JfreeKB)
5. JdecKB = JfoundKB · JfreeKB
6. JdecK = Πbit2A(JdecKB)
7. For i = 1 to K

– JbKB = ΠEq(JjK, JiK)
– Jv[i]K = ΠSelect(JxK, Jv[i]K, JbKB)
– JcK = Jc[i]K − JdecK
– Jc[i]K = ΠSelect(J1K, JcK, JbKB)

Output reconstruction:
// Servers have shares of Laplacian noise JrK & DP threshold Jτ ′K

1. For i = 1 to K

– Jc[i]K = Jc[i]K + JrK
– JbKB = ΠCmp(Jc[i]K, Jτ ′K)
– Jv′[i]K = ΠSelect(J⊥K, Jv[i]K, JbKB)
2. Output J·K-shares of array v′.

Protocol ΠSPHH

Fig. 17: Protocol to compute private heavy hitters when inputs
are streaming

output reconstruction is executed only when the heavy
hitters are to be identified. When doing so, to ensure differ-
ential privacy, the first step is to add noise (as done in [11])
to the count and output only those entries with count higher
than a predetermined threshold. In order to ensure the state
information remains unaffected, the output is updated and
stored separately in v′. In this way, rather than relying on
a sequential method to identify the empty slot where the

input can be inserted, we provide a solution where all steps
can be performed in parallel. Thus, we describe a constant
round protocol in comparison to the linear (in K) round
protocol in [11]. We note that all of the steps described
above are performed on secret shared values. The formal
description of the secure variant is provided in Fig. 17.
Informally, the security of the protocol follows from the
security of the underlying primitives.

Lemma 4.1. The protocol, ΠSPHH (Fig. 17) securely realizes the
functionality FSPHH (Fig. 15) against a malicious adversary that
corrupts at most one party in P , in the (FSetup,FCompact)-hybrid
model when instantiated with the MPC of [14].

5 BENCHMARKS

We analyze the performance of Vogue by considering var-
ious parameters and compare our static and streaming
solutions against their state-of-the-art solution of Poplar [5]
and [11], respectively. We benchmark the performance over
WAN using n1-standard instances of Google Cloud with 2.3
GHz Intel Xeon E5 v3 (Haswell) processors and 240GB of
RAM Memory. The machines have a bandwidth of 2Gbps.
The instances are located in Iowa(P0), South Carolina (P1)
and Oregon (P2). We rely on the 3-party computation of
[14] for the underlying MPC. We benchmark [14] on MO-
TION2NX framework [30] since it is not publicly available.
Our code accounts for multi-threading wherever possible.
Moreover, due to the unavailability of code for [11], and for
a fair comparison, we benchmark their protocol (streaming
setting) over the MPC of [14].

We follow the standard practice of benchmarking the
honest execution [14], [19], [21]. We consider the run time
and communication of the protocols as the benchmark pa-
rameters. Since the MPC of [14] works in the preprocess-
ing paradigm, we report both the online as well as the
preprocessing cost when doing so. Recall that online time
captures the response time of the system (which is the time
taken from submission of the input, processing it, to the
generation of output). We first analyze the performance of
our protocols in static setting, followed by streaming setting.

5.1 Static Setting
We adhere to similar experimental choices as considered in
[5] while reporting the performance of Vogue. To analyze
server side efficiency, we first vary the input string length of
clients for a fixed number of clients (= 100K) and report the
performance in Table 4. In comparison to [5], Vogue has a
response time that is up to 10× faster. Even when account-
ing for the overall time, Vogue significantly outperforms [5].
We also report the server-side performance for a varying
number of clients in Table 5. Here, we observe Vogue is up
to 6.1× faster. Our improvements can be attributed to our
improved heavy hitters protocol whose round complexity is
logarithmic in the number of clients as opposed that of [5],
which is linear in the length of client’s input string.

With respect to client-side efficiency, we report the com-
putational overhead at the client for varying input string
lengths in Table 6. As evident from Table 6, Vogue has up
to 48× improvements over [5]. The improvement is due
to the lightweight operations at the client, as opposed to
distributed point function key generation required in [5].
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In this way, Vogue outperforms Poplar [5] not only in
terms of efficiency but also by providing better security
(since Poplar only provides partial security against mali-
cious servers). To summarize, computation of heavy hitters
for τ = 100 with 400K clients on 256-bit input strings
takes around 86 minutes on Poplar, whereas it is around
14 minutes for us.

Client string
length (bits)

Vogue Poplar [5]
Preproc. Online

128 9.09 94.35 511.70
256 9.12 183.17 1041.38
512 9.19 396.96 3978.47

TABLE 4: Static: Server side run time in seconds for varying
client string lengths (τ = 900, #Client=100K).

#Client Vogue Poplar [5]
Preproc. Online

100K 9.13 183.17 1041.38
200K 9.99 382.37 2627.07
400K 10.33 850.21 5191.61

TABLE 5: Static: Server-side run time for varying number of
clients on 256-bit input string (τ = 900).

Client string length (bits) Vogue [5]

128 2.50 120.8
256 5.82 173.1
512 8.89 204.9

TABLE 6: Static: Client-side run time in (×10−6) seconds for
varying client string lengths.

5.2 Streaming Setting
The performance of our protocol for computing heavy hit-
ters when inputs arrive in a streaming fashion, as well as
that of [11] is dependent on the number of clients and K
(where K denotes the top-K inputs to be identified). Hence,
to capture improvements brought in by our protocol over
that of [11], we report the performance comparison of the
protocols by varying both these parameters. In Table 7, we
report the performance by varying K . We observe that the
run time of our protocol does not increase drastically, as
compared to [11] with increasing K . Further, we observe
improvements of up to 3.5× for K = 100, which when
extrapolated, will increase as K increases. This improve-
ment is due to the optimizations introduced in our protocol,
where, unlike in the case of [11], the round complexity of
our protocol is independent of K .

K
Vogue [11]

Preproc. (sec) Online (min) Preproc. (sec) Online (min)

4 9.65 11.46 9.33 9.64
8 9.16 11.49 10.62 10.72
16 9.47 11.46 12.84 13.04
32 9.43 11.43 17.39 18.65
64 9.84 11.33 23.57 28.80

100 9.36 11.48 27.46 40.94

TABLE 7: Streaming: Server-side run time for varying K for
#Clients = 300.

In Table 8, we report the performance comparison for
varying number of clients, where the computation of heavy

hitters is performed after a stream of the reported number
of client inputs arrives. As expected, in this scenario, the run
time of Vogue is better than that of [11]. Further, the factor
improvement in the run time of our protocol is observed to
increase gradually. This is because although the number of
clients has the same impact on both protocols, the gain in
the run time of our protocol due to its independence from
K gets accumulated with the increasing number of clients.

#Clients Vogue [11]

Preproc. (sec) Online (min) Preproc. (sec) Online (min)

30 6.97 1.18 7.19 1.29
300 15.65 11.47 18.83 13.04
3000 63.21 115.61 65.71 142.39

TABLE 8: Streaming: Server-side run time for varying num-
ber of clients with K = 16.

6 CONCLUSION

Our system Vogue addresses an important problem of iden-
tifying heavy hitters in a privacy-preserving manner. It
provides secure protocols to identify heavy hitters for two
cases: (i) static setting where all the client inputs are avail-
able prior to the identification of the heavy hitters, which
is computed once, (ii) streaming setting where the inputs
arrive in a streaming fashion, and hence heavy hitters have
to be computed at frequent intervals of time. Not only does
Vogue offer complete privacy in comparison to prior works
such as Poplar, but it also improves in terms of providing
a faster response time. Our efficiency improvements are
attributed to the simplicity of the designed protocols as
well as the newly designed compaction protocol, whose
round complexity is independent of the size of the input
array to be compacted, as opposed to the linear complexity
in prior work. We benchmark our system to establish the
concrete efficiency improvements of our system, where we
witness improvements of up to 10× in run time over Poplar
for an increased input length of 512 bits. With respect to
the streaming case, the gain is up to 3.5× in comparison
to the prior work. Finally, we note Vogue is designed to
be modular. Since our protocols make black-box use of
various primitives, any efficiency improvements in the same
will directly translate to improvements in our protocols
for identifying heavy hitters. Moreover, our protocols are
generic and can be instantiated with any underlying MPC
to obtain the desired level of security.
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APPENDIX A
SECURITY OF OUR PROTOCOLS

Lemma A.1. The protocol, ΠPHH (Fig. 10) securely real-
izes the functionality FPHH (Fig. 7) against a malicious

adversary that corrupts at most one party in P , in the
(FSetup,FSort,FShuffle,FCompact)-hybrid model when instanti-
ated with the MPC of [14].

Proof sketch Let A denote the real-world adversary and
S denote the corresponding ideal-world adversary. During
the emulation of FSetup, S establishes common keys with A.
These keys are used to sample the common randomness
between S and A as required throughout the protocol
execution. In this way, S is aware of all the randomness
used by A, as well as the shares of the input that A holds.
Following this, S simulates the steps of the PHH protocol
via the simulators of the underlying primitives for equality,
comparison, oblivious select, as provided by the MPC of
SWIFT [14], [31]. Further, simulation for sorting, shuffling
and compaction are performed by S by emulating the ideal
functionalities FSort,FShuffle,FCompact, respectively. At the
end of the interaction with A, note that S is aware of
the J·K-shares of a and h that A holds owing to the fact
that S has emulated FSetup and simulation of the other
primitives happen honestly. Thus, S now invokes FPHH

with the J·K-shares of the output that A possess to complete
the simulation. In summary, the indistinguishability of the
simulation of our protocol follows from the fact that the
underlying primitives are secure, and A cannot distinguish
between the real-world and ideal-world executions.

Lemma A.2. The protocol, ΠCompact (Fig. 14) securely realizes
the functionality FCompact (Fig. 11) against a malicious adversary
that corrupts at most one party in P , in the (FSetup,FShuffle)-
hybrid model when instantiated with the MPC of [14].

Proof sketch As before, let A denote the real-world adver-
sary and S denote the corresponding ideal-world adversary.
The simulation proceeds analogously to as done in the case
of simulation for ΠPHH. Additionally, here, after invoking
FShuffle, S is required to reconstruct the elements in label.
Recall that label is an N -sized vector with unique elements
between 1 to N . Since reconstruction of elements in label is
performed after invoking FShuffle, the simulator S provides
shares to A on behalf of the honest parties, which results in
reconstructing label such that it is a random sequence of
elements between 1 to N .

Similar to the case of ΠPHH, the indistinguishability of
the simulation for ΠCompact follows from the fact that the
underlying primitives are secure, and A cannot distinguish
between the real-world and ideal-world executions. Addi-
tionally, note that the reconstructed output of shuffle when
applied on label is always a random sequence of elements
between 1 to N in the real world as well as the ideal
world. Hence, A does not learn any additional information
from the reconstructed label, and indistinguishability of the
simulation holds.

Lemma A.3. The protocol, ΠSPHH (Fig. 17) securely realizes the
functionality FSPHH (Fig. 15) against a malicious adversary that
corrupts at most one party in P , in the (FSetup,FCompact)-hybrid
model when instantiated with the MPC of [14].

Proof sketch Since ΠSPHH does not have any intermediate
reconstructions and each step of the protocol invokes secure
protocols for the underlying primitives, security follows
from the security of the underlying protocols.
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