
ISAP+: ISAP with Fast Authentication

Arghya Bhattacharjee1, Avik Chakraborti2, Nilanjan Datta2, Cuauhtemoc
Mancillas-López3, Mridul Nandi1

1Indian Statistical Institute, Kolkata, India
2TCG Centres for Research and Education in Science and Technology, Kolkata, India

3 Computer Science Department, CINVESTAV-IPN, Mexico
bhattacharjeearghya29@gmail.com, avikchkrbrti@gmail.com,

nilanjan.datta@tcgcrest.org, cuauhtemoc.mancillas@cinvestav.mx,

mridul.nandi@gmail.com

Abstract. This paper analyses the lightweight, sponge-based NAEAD
mode ISAP, one of the finalists of the NIST Lightweight Cryptography
(LWC) standardisation project, that achieves high-throughput with in-
herent protection against differential power analysis (DPA). We observe
that ISAP requires 256-bit capacity in the authentication module to sat-
isfy the NIST LWC security criteria. In this paper, we study the analysis
carefully and observe that this is primarily due to the collision in the as-
sociated data part of the hash function which can be used in the forgery
of the mode. However, the same is not applicable to the ciphertext part
of the hash function because a collision in the ciphertext part does not
always lead to a forgery. In this context, we define a new security no-
tion, named 2PI+ security, which is a strictly stronger notion than the
collision security, and show that the security of a class of encrypt-then-
hash based MAC type of authenticated encryptions, that includes ISAP,
reduces to the 2PI+ security of the underlying hash function used in
the authentication module. Next we investigate and observe that a feed-
forward variant of the generic sponge hash achieves better 2PI+ security
as compared to the generic sponge hash. We use this fact to present
a close variant of ISAP, named ISAP+, which is structurally similar to
ISAP, except that it uses the feed-forward variant of the generic sponge
hash in the authentication module. This improves the overall security of
the mode, and hence we can set the capacity of the ciphertext part to
192 bits (to achieve a higher throughput) and yet satisfy the NIST LWC
security criteria.

Keywords: Authenticated Encryption, ISAP, ISAP+, Re-keying, Side Channel
Resistant, 2PI+, Sponge

1 Introduction

The emergence of side-channel and fault attacks [11,12,28,29] has made it clear
that cryptographic implementations may not always behave like a black box. In-
stead, they might behave like a grey box where the attacker has physical access

to the device executing a cryptographic task. As a result, designers have started
to design side-channel countermeasures such as masking [13,24]. However, cryp-
tographic primitives like block ciphers (for example, AES [17] and ARX-based
designs [7]) are costly to be mask-protected against side-channel attacks. Con-
sequently, designing primitives or modes with inherent side-channel protection
is becoming an essential and popular design goal. In this line of design, several
block ciphers (e.g., Noekeon [27], PICARO [34], Zorro [22]) and permutations
(e.g., ASCON-p [21], KECCAK-p [2, 26]) have been proposed with dedicated struc-
tures to reduce the resource requirements for masking. In addition, a few NAEAD
(Nonce based Authenticated Encryption with Associated Data) modes, such as
ASCON [14,21], PRIMATES [3], SCREAM [25], KETJE/KEYAK [10] have been
proposed and submitted to the CAESAR [16] competition with the same goal
in mind. However, they still lead to significant overheads.

In [31], Medwed et al. have proposed a new technique called fresh re-keying
to have inherent side-channel protection. Following their work, a series of works
[5,5,30] have been proposed that use this novel concept. This technique requires
a side-channel resistant fresh key computation function with the nonce and the
master key as the inputs. The main idea behind these designs is to ensure that
different session keys are used for different nonces. Hence, a new nonce should
be used to generate a fresh session key.

1.1 ISAP and Its Variants

In [20], Dobraunig et al. proposed a new authenticated encryption, dubbed ISAP
v1, following the re-keying strategy. It is a sponge-based design [8,9] that follows
the Encrypt-then-MAC paradigm [6]. We’ll traditionally use the terms rate and
capacity to represent the exposed part and the hidden part of the state of the
sponge construction respectively. ISAP v1 claims to offer higher-order differential
power analysis (DPA) protection provided by an inherent design strategy that
combines a sponge-based stream cipher for the encryption module with a sponge-
based MAC (suffix keyed) for the authentication module. Both the modules
compute fresh session keys using a GGM [23] tree-like function to strengthen
the key computation against side-channel attacks.

Later, ISAP v1 was improved to ISAP v2 [15, 19], and was submitted to
the NIST Lightweight Cryptography (LWC) standardization project [32] and
currently one of the finalists. ISAP v2 is equipped with several promising features
and currently is considered to be a strong candidate for the competition. It
recommends two variants, instantiated with the lightweight permutations ASCON-
p and KECCAK-p[400]. Precisely, ISAP v2 retains all the inherent DPA resistance
properties of ISAP v1 along with a better resistance against other implementation
based attacks. In addition, ISAP v2 is even more efficient in hardware resources
than the first version. ISAP v2 has been highly praised by the cryptography
community, and to the best of our knowledge, it is the only inherently DPA
protected NAEAD mode that aims to be implemented on lightweight platforms.
The ISAP mode is flexible and can be instantiated with any sufficiently large
permutation. Precisely, the security claims made by the designers depict that

2

ISAP needs around 256-bit capacity to satisfy the NIST security criteria and
hence needs a permutation with the state size larger than 256-bits. Thus it is
highly desirable to analyze the mode further to understand whether it can be
designed with a smaller capacity and hence a higher rate, that directly impacts
the throughput.

1.2 Improving the Throughput of ISAP

ISAP v2 proposes four instances with the ASCON-p and the KECCAK-p permuta-
tions. ISAP v2 with ASCON-p (a 320-bit permutation) is designed with a 64 bit
rate. However, it is better to achieve a higher rate design for a higher throughput.
The observation is similar for the other instances as well. A potential direction
can be to design an algorithm with an improved security bound over the capac-
ity to increase the rate without compromise in the security level. An increased
security bound can also help the designers to achieve the same security with a
lower state size. This in turn may reduce the register size by using a permutation
with a smaller state. A potential choice can be to analyze ISAP with a focus on
the BBB (Beyond Birthday Bound) NAEAD security.

We observe that ISAP adopts an efficient approach of applying an unkeyed
hash function on the nonce, the associated data, and the ciphertext, and then
uses a PRF (Pseudo Random Function) on the hash value. In this case, the se-
curity of the NAEAD mode boils down to the collision security of the underlying
hash function. This mode can bypass the requirement of storing the master key
and can get rid of the key register. However, the hash collision results in a rela-
tively low security bound that may not always be acceptable in ultra-lightweight
applications as low security bound forces the designs to adopt primitives with
high state size. Thus, an increase in the security bound has the full potential
to increase the hardware performance of the design significantly. Motivated by
this issue, we aim to study the tightness of the security bound to optimize the
throughput and the hardware footprint. Note that, ISAP is already an efficient
construction and has been reviewed rigorously by various research groups. Hence,
a more detailed mode analysis and any possible mode optimization can further
strengthen the construction.

The security proof in [20] by Dobraunig et al. showed that ISAP achieves
security up to the birthday bound on the capacity, i.e. of O(T 2/2c), where T
is the time complexity, and c is the capacity size (in bits). We observe that
this factor arises due to the simple sponge-type hash applied on the nonce, the
associated data, and the random ciphertext. It is obvious to get a collision in
the nonce and the associated data that can be trivially used by an adversary
to mount a forgery. However, it is not evident how a collision in the random
ciphertexts can lead to such an attack. In this regard we investigate the amount
of the ciphertext-bit that can be injected per permutation call during the hash
and ask the question:

“Can we increase the rate of absorption of the ciphertext blocks in the hash?”

3

We believe that a positive answer to this question will not only result in a
more efficient construction, but more importantly contribute significantly in the
direction of NAEAD mode analysis.

1.3 Our Contributions

In this paper, we study a simple variant of ISAP that achieves higher throughput
keeping all the primary features of ISAP intact. Our contribution is four-fold:

1. First, in Section 3, we propose a permutation-based generic EtHM (Encrypt
then Hash based MAC) type NAEAD mode using a PRF and an unkeyed
hash function. This is essentially a generalisation of ISAP type constructions.
Note that this generic mode does not guarantee any side-channel resistance;
only proper instantiation of the PRF ensures that. In Section 3.2, we have
shown that the NAEAD security of EtHM can be expressed in terms of the
PRF security of a fixed input length, variable output length keyed function
F , the 2PI+ security of H. Intuitively, the 2PI+ notion demands that given
a challenge random message of some length chosen by the adversary, it is
difficult for an adversary to compute the second pre-image of the random
message. We have introduced the notion in Section 2.6. This is in contrast
with the traditional collision security that was used for the analysis of ISAP.

2. Next, in Section 4, we first show that for generic sponge hash, a collision
attack can be extended to a 2PI+ attack. Thus, the generic sponge hash
achieves 2PI+ security of Ω(T 2/2c), where c is the capacity of the sponge
hash. Next, we consider a feed-forward variant of the sponge hash that uses
(i) generic sponge hash to process the nonce and the associated data and
(ii) a feed-forward variant of the sponge hash to process the message. We
show that the feed-forward property ensures that a collision attack can not
be extended to mount a 2PI+ attack. In fact, we prove that this variant of
sponge hash obtains an improved security of O(DT/2c). Note that D and T
are data and time complexity respectively, and we typically allow T ≈ D2.
Hence, feed-forward based sponge achieves a better 2PI+ security as we
consider security in terms of D and T instead of traditional one parameter
security.

3. Next, in Section 5, we have considered a simple variant of ISAP with minimal
changes, named ISAP+, which is a particular instantiation of the generic
EtHM mode. To be specific, the differences between ISAP+ and ISAP are as
follows:

(a) Instead of using the generic sponge hash as used in ISAP, we use the
feed-forward variant of sponge hash as discussed above.

(b) In the authentication module of ISAP+, we use the capacity of c′ bits
for nonce, associated data and first block of ciphertext processing. For
rest of the ciphertext blocks, we use capacity of c bits.

(c) We make a separation among the messages depending on whether its
length is less than r′ bits or not. The domain separation is performed by
adding 0 or 1 to the capacity part before the final permutation call.

4

This modification ensures that ISAP+ achieves improved security ofO(T 2/2c
′

+DT/2c), where n is the state-size or the size of the permutation (in bits),
c′ = n− r, c′ = n− r′). This security boost allows the designer to choose c′

and c (< c′) effectively to obtain better throughput.

4. Our primary proposal is denoted as ISAP+-A-128, which we have instanti-
ated with ASCON-p. For a fair comparison with ISAP, we have implemented
three more variants of ISAP+ in Section 6, comparable with the correspond-
ing ISAP instances. We’ve instantiated these variants with ASCON-p and
KECCAK-p[400] permutations. These variants are denoted as ISAP+-A-128,
ISAP+-A-128A, ISAP+-K-128 and ISAP+-K-128A. The first two use full
and round reduced variants of ASCON-p and the other two use full and round
reduced variants of KECCAK-p[400] respectively. Note that all these instances
follow the ISAP+ mode, and they only differ in the choice of the underly-
ing permutation. Also note that these four ISAP+ instances use ASCON-p or
KECCAK-p[400] with the same number of rounds as their ISAP counterparts
for a fair comparison. Finally, we provide a detail hardware implementation
in Section 6 for all the ISAP+ and ISAP instances.

Note that we propose only one instance of ISAP+ to stick to the security
assumption that we use one single permutation in our construction and only
the ISAP+-A-128 variant achieves the same. All the other three variants use
different number of rounds at different stages of our construction. We have
implemented them for a fair comparison with ISAP and to showcase the
efficiency of the ISAP+ mode in throughput.

1.4 Relevance of the Work

To understand the relevance of the improved security, let us consider the in-
stantiation of ISAP with ASCON and KECCAK and compare them with ISAP+. To
satisfy the NIST requirements, ISAP+ can use c = 192, c′ = 256, and hence,
it has a injection rate of r = 128-bits for the ciphertexts and an injection rate
of r = 64 bits for associated data. Table 2 demonstrate a comparative study of
ISAP and ISAP+ in terms of the number of permutation calls required for the
authentication module.

Table 1: Comparative Study of ISAP+ and ISAP on the no. of permutation calls
in the authentication module for associated data of length a bits, message of
length m bits.

Mode Permutation Parameters # permutation calls

ISAP ASCON r = 64 da+m+1
64
e

ISAP+ ASCON r = 128, r′ = 64 da+1
64
e+ d m

128
e

ISAP KECCAK r = 144 da+m+1
144

e
ISAP+ KECCAK r = 208, r′ = 144 da+1

144
e+ d m

208
e

5

This result demonstrates that for applications that require long message pro-
cessing, ISAP+ performs better than ISAP in terms of throughput and speed.
Let us consider a concrete example. Consider encrypting a message of length
1 MB with an associate data of length 1 KB using ASCON permutation. With
ISAP, the authentication module requires around 1, 31, 201 many primitive calls.
On the other hand, with ISAP+ this requires only 65, 665 many primitive calls,
which is almost half as compared to ISAP.

This paper depicts the robustness of the mode ISAP, and how one can increase
the throughtput of the mode at the cost of some hardware area preserving all
the inherent security features. This result seems relevant to the cryptography
community in the sense that ISAP is also a finalist of the NIST LWC project for
standardization.

1.5 Interpretation of Hardware Implementation Result

Both ISAP+ and ISAP have been implemented using VHDL and mapped on
Virtex 7XC7V585T (Vivado 2020.2), and the results are summarized in Table
2. The result depicts that all the ISAP+ instances are better in throughput
and throughput/area than the ISAP instances with a small compromise in the
hardware area. Blue coloured entry is our primary recommendation.

Table 2: FPGA Results of ISAP+ and ISAP

Instances
Slice

Registers
LUTs Slices

Frequency
(MHZ)

Encryption Throughput
(Gbps)

Authentication Throughput
(Gbps)

ISAP-A-128 818 1550 451 400 2.13 2.13

ISAP+-A-128 1081 1742 507 384.16 2.05 3.07

ISAP-K-128 1143 1932 582 300 3.60 2.16

ISAP+-K-128 1423 2245 613 300 3.60 2.64

ISAP-A-128A 810 1539 449 400 4.27 2.13

ISAP+-A-128A 1070 1728 501 384.16 4.09 3.07

ISAP-K-128A 1131 1850 574 300 5.40 2.70

ISAP+-K-128A 1412 2231 605 300 5.40 4.40

2 Preliminaries

2.1 Notations

We’ll usually use lowercase letters (e.g., x, y) for integers and indices, uppercase
letters (e.g., X, Y) for binary strings and functions, and calligraphic uppercase
letters (e.g., X , Y) for sets and spaces. N and Z will be used to denote the set of
natural numbers and the set of integers respectively. 0x and 1y will denote the
sequence of x 0’s and y 1’s respectively. {0, 1}x and {0, 1}∗ will denote the set
of binary strings of length x and the set of all binary strings respectively. For
any X ∈ {0, 1}∗, |X| and ‖X‖ will denote the number of bits, and the number
of blocks of the binary string X respectively, where the size of the blocks should

6

be clear from the context. For two binary strings X and Y , X‖Y will denote
the concatenation of X and Y . For any X ∈ {0, 1}∗, we define the parsing
of X into r-bit blocks as X1 · · ·Xx ←r X, where |Xi| = r for all i < x and
1 ≤ |Xx| ≤ r such that X = X1‖ · · · ‖Xx. For any X ∈ {0, 1}∗, X1 · · ·Xx �r X
does the work of X1 · · ·Xx ←r X, and follows it by the compulsory 10∗ padding.
Given any sequence X = X1 · · ·Xx and 1 ≤ a ≤ b ≤ x, we’ll represent the
subsequence Xa . . . Xb by X[a · · · b]. For integers a ≤ b, we’ll write [a · · · b] for
the set {a, . . . , b}, and for integers 1 ≤ a, we’ll write [a] for the set {1, . . . , a}.
We’ll use the notations dxer and bxcr to denote the decimal ceiling and floor
function on the integer x respectively, and similarly, dXer and bXcr, to denote
the most significant x bits and the least significant x bits of the binary string

X respectively. By X
$← X , we’ll denote that X is chosen uniformly at random

from the set X .

2.2 Distinguishing Advantage

For two oracles O0 and O1, an algorithm A which tries to distinguish between
O0 and O1 is called a distinguishing adversary. A plays an interactive game with
Ob where b is unknown to A, and then outputs a bit bA. The winning event is
[bA = b]. The distinguishing advantage of A is defined as

AdvO1,O0(A) := |Pr[bA = 1|b = 1]− Pr[bA = 1|b = 0]| .
Let A[q, t] be the class of all distinguishing adversaries limited to q oracle

queries and t computations. We define

AdvO1,O0 [q, t] := max
A[q,t]

AdvO1,O0(A) .

When the adversaries in A[q, t] are allowed to make both encryption queries and
decryption queries to the oracle, this is written as Adv±O1,±O0

[q, q′, t], where q
is the maximum number of encryption queries allowed and q′ is the maximum
number of decryption queries allowed. Encb and Decb denote the encryption
and the decryption function associated with Ob respectively. O0 conventionally
represents an ideal primitive, while O1 represents either an actual construction
or a mode of operation built of some other ideal primitives. Typically the goal
of the function represented by O1 is to emulate the ideal primitive represented
by O0. We use the standard terms real oracle and ideal oracle for O1 and O0

respectively. A security game is a distinguishing game with an optional set of
additional restrictions, chosen to reflect the desired security goal. When we talk
of distinguishing advantage with a specific security game G in mind, we include
G in the superscript, e.g., AdvGO1,O0

(A). Also we sometimes drop the ideal oracle

and simply write AdvGO1
(A) when the ideal oracle is clear from the context.

2.3 Authenticated Encryption and Its Security Notion

A Nonce based Authenticated Encryption with Associated Data (NAEAD)
involves a key space K, a nonce space N , an associated data space AD, a message

7

spaceM and a tag space T along with two functions Enc : K×N ×AD×M→
M× T (called the Encryption Function) and Dec : K × N × AD ×M× T →
M∪ {⊥} (called the Decryption Function) with the correctness condition that
for any K ∈ K, N ∈ N , A ∈ AD and M ∈M, it holds that

Dec(K,N,A,Enc(K,N,A,M)) = M .

In the NAEAD security game, the real oracle involves such a pair of functions

Enc1 and Dec1 with K
$← K. On the other hand, the ideal oracle involves an ideal

random function Enc0 : K × N × AD ×M → M× T and a constant function
Dec0 : K ×N ×AD ×M× T → {⊥}. The adversary (A) which interacts with
one of the two oracles is supposed to be:

1. Nonce-respecting, i.e., A should not repeat a nonce in more than one en-
cryption queries, and

2. Non-repeating, i.e., A should not make the decryption query (N,A,C, T) if
it has already made the encryption query (N,A,M) and received (C, T) in
response.

The distinguishing advantage of A will be denoted by AdvNAEAD
(Enc1,Dec1)(A). The

following two security notions are captured in this advantage.

1. Privacy or Confidentiality, i.e., A should not be able to distinguish the real
oracle from the ideal oracle.

2. Authenticity or Integrity, i.e., A should not be able to forge the real oracle.
In other words, A should not be able to make a decryption query to the real
oracle to which the response isn’t ⊥.

2.4 The Coefficients H Technique

The Coefficients H Technique is a proof method by Patarin [33]. Consider two
oracles O0 (the ideal oracle) and O1 (the real oracle). Let T denote the set of all
possible transcripts (i.e., the set of all query-response pairs) an adversary can
obtain. For any transcript τ ∈ T , we will denote the probability to realize the
transcript as ipreal(τ) or ipideal(τ) when it is interacting with the real or the ideal
oracle respectively. We call them the interpolation probabilities. W.l.o.g., we
assume that the adversary is deterministic. Hence, the interpolation probabilities
are the properties of the oracles only. As we deal with stateless oracles, these
probabilities are independent of the order of the query-response pairs in the
transcript.

Theorem 1. Suppose for a set Tgood ⊆ T of transcripts (called the good tran-
scripts) the following holds:

1. For any adversary A interacting with O0 (the ideal oracle), the probability
of getting a transcript in Tgood is at least 1 − εbad. We may denote the set
T \ Tgood by Tbad. Hence, the probability of getting a transcript in Tbad is at
most εbad.

8

2. For any adversary A and for any transcript τ ∈ Tgood,

ipreal(τ) ≥ (1− εratio) · ipideal(τ).

For an oracle O1 (the real oracle) satisfying (1) and (2), we have

AdvO0,O1
(A) ≤ εbad + εratio.

2.5 Fixed Input - Variable Output PRFs with Prefix Property

A fixed input variable output function (FIL-VOL) is a keyed function FK :
{0, 1}?×{0, 1}×N→ {0, 1}? that takes as input an input a string I ∈ {0, 1}?, a
flag b ∈ {0, 1} as input, a positive integer ` ∈ N, and outputs a string O ∈ {0, 1}`,
i.e., O := FK(I, b; `). We call such a keyed function a FIL-VOL pseudo random
function maintaining the prefix-property if

– for all inputs (I, b; `), (I ′, b′; `′) with (I, b) 6= (I ′, b′), FK(I, b; `), FK(I ′, b′; `)
are distributed uniformly at random, and

– for all inputs (I, b; `), (I, b; `′), with `′ > `, dFK(I ′, b′; `′)e` = FK(I ′, b′; `).

More formally,

AdvPRF
F (A) := |Pr[AFK = 1]− Pr[Af = 1]|,

where f is a random function from same domain and range maintaining the
prefix property.

2.6 Multi-Target 2nd Pre-Image with Associated Data

In this section, we discuss the notion of multi-target 2nd pre-image security of
permutation-based hash functions.

In this setting, an adversary (say A) chooses q (nonce, associated data,
length)-tuples to the challenger C, say (Ni, Ai, `i)i=1..q. The challenger in turn re-
turns q uniformly random messages of specified lengths respectively, say C1, . . . , Cq.
The queries (Ni, Ai, Ci)i=1..q are called challenge queries. The goal of A is to re-
turn q′ many (N ′j , A

′
j , C

′
j)j=1..q′ (called response queries) tuples such that at least

one of the hash values of (N ′j , A
′
j , C

′
j) matches with the hash value of any one

of the (Ni, Ai, Ci). Note that the adversaries are allowed to set some challenge
queries as response queries: (N ′j , A

′
j , C

′
j) = (Ni, Ai, Ci), for some i, j. However,

for the winning event the challenge and response queries should be distinct. The
adversary can make up to qp queries to p or p−1. Formally, the advantage of A
is defined as

Adv2PI+
H (A) := Pr[∃i, j, Hp(N ′j , A

′
j , C

′
j) = Hp(Ni, Ai, Ci),

(N ′j , A
′
j , C

′
j) 6= (Ni, Ai, Ci)].

where H is an IV-based hash function. Note that the adversary is allowed to
make hash queries before, after, or in between its interaction with the challenger

9

to obtain the challenge message(s). Also, note that the 2PI+ security does not
depend on the message length. The fact that the adversary submits a length `i
to the challenger to obtain each message before the submission of the challenge
message is merely because the 2PI+ security notion enables its adversary to
obtain messages of whatever lengths it pleases.

3 An EtHM Paradigm for NAEAD

This section introduces an efficient generalized Encrypt-then-Hash based MAC
(EtHM) paradigm for NAEAD modes. This is a generalized paradigm for con-
structing side-channel resilient modes such as ISAP.

3.1 Specification

Let n, k and τ be positive integers such that n > τ . The construction takes as
input a plaintext M , a nonce N , an associated data A, and outputs a ciphertext
C and a tag T . Given a permutation based FIL-VOL keyed-function with prefix
property F pK , and a permutation based un-keyed hash function Hp : {0, 1}∗ →
{0, 1}n the mode works as follows.

C = M ⊕ F pK(N, 0; |M |),
T‖D = p(F pK(X, 1; |X|)‖Z), where X‖Z = Hp(N,A,C) .

The authenticated encryption module is pictorially depicted in Figure 1.
Note that T denotes the most significant τ bits of the output of the permutation
call. The least significant (n − τ) bits is denoted by D. Note that we do not
need D from the construction point of view, however, we require it during the
security analysis. Notations F , H and F pK , Hp have been used in this paper
interchangeably for convenience, and aren’t supposed to create any confusion.
From time to time, we’ll address this paradigm as EtHM only.

3.2 Security of EtHM

In this subsection, we analyse the NAEAD security of EtHM with F as the
underlying function and H as the multi-target IV-respecting second pre-image
resistant hash function. Formally, we prove the following theorem.

Theorem 2 (NAEAD Security of EtHM). Consider EtHM based on a func-
tion F and a hash function H. For all deterministic nonce-respecting non-
repeating query making adversary A which can make at most qe encryption
queries, qv decryption queries and qp primitive queries to p and its inverse and
assuming q = qe + qv, there exists two adversaries B1 and B2 such that the
NAEAD advantage of A can be bounded by

10

N
F p
K

|M |

0
⊕

M

C
W

A

N

C

Hp

F p
K

|X|

1
p

T

D

X

Z

Y

τ
k

n− k

Fig. 1: Authenticated Encryption module of the EtHM paradigm.

AdvNAEAD
EtHM (A) ≤ AdvPRF

F (B1) + 2Adv2PI+
bHcn−k

(B2) +
qqp
2n

+
2kqv
2k

+
qv
2τ

+

(
qp
k

)
2τ(k−1)

+

(
qp
k

)
2(n−k)(k−1)

,

where B1 can make 2q PRF queries and B2 can make q challenge queries, q
response queries and qp primitive queries to p and its inverse.

Proof. Let EncF
p
K ,p and DecF

p
K ,p be the encryption and the decryption function

of EtHM respectively. Let us call its oracle O1 = (EncF
p
K ,p,DecF

p
K ,p, p). We

have to upper-bound the distinguishing advantage of A interacting with O1 or
O3 = ($,⊥, p). For our purpose, we define an intermediate oracle by replacing
F pK in O1 by a random functions $. Let us call this new intermediate oracle

O2 = (Enc$,p,Dec$,p, p). We will employ a standard reduction proof. We break
down the distinguishing game of A using the triangle inequality as follows.

AdvNAEAD
EtHM (A) = |Pr[AO1 = 1]− Pr[AO3 = 1]|

≤ |Pr[AO1 = 1]− Pr[AO2 = 1]|
+ |Pr[AO2 = 1]− Pr[AO3 = 1]| . (1)

Now, we bound each of the two terms.
2 Bounding |Pr[AO1 = 1] − Pr[AO2 = 1]|. We bound this term by the PRF
advantage of F . For that, let us consider the following adversary B1 that runs
A (any distinguisher of O1 and O2) as follows.

11

– Whenever A submits an encryption query (N,A,M), B1 submits (N, |M |, 0)
to its challenger. Suppose the challenger returns C. B1 calculates X‖Z =
Hp(N,A,C) with |X| = k and |Z| = n − k and submits (X, 1; k) to its
challenger. Suppose the challenger returns Y . B1 returns (C, p(Y ‖Z)) to A.

– Similarly, whenever A submits a decryption query (N̂ , Â, Ĉ, T̂), B1 submits
(N̂ , 0; |Ĉ|) to its challenger. Suppose the challenger returns M̂ . B1 calculates
X̂‖Ẑ = Hp(N̂ , Â, Ĉ) with |X̂| = k and |Ẑ| = n− k and submits (X̂, 1; k) to
its challenger. Suppose the challenger returns Ŷ . B1 calculates dp(Ŷ ‖Ẑ)eτ If
T = T̂ , then B1 returns M̂ to A. Otherwise it returns ⊥.

– At the end of the game, A submits the decision bit to B1 which it forwards
to its challenger. Note that when A supposedly interacts with O1 or B1
supposedly interacts with F pK , they submit b = 1. Otherwise, they submit
b = 0.

It is easy to see Pr[AO1 = 1] = Pr[BF
p
K

1 = 1] and Pr[AO2 = 1] = Pr[B$1 = 1],
and hence we obtain the following.

|Pr[AO1 = 1]− Pr[AO2 = 1]| = AdvPRF
F (B1). (2)

2 Bounding |Pr[AO2 = 1] − Pr[AO3 = 1]|. This bound follows from the lemma
given below, the proof of which is deferred to the next section.

Lemma 1. Let A be a deterministic nonce-respecting non-repeating query mak-
ing adversary interacting with oracle O2 or O3 which can make at most qe en-
cryption queries, qv decryption queries and qp primitive queries to p and its in-
verse. Assuming q = qe+ qv, there exists an adversary B2 such that the NAEAD
advantage of A can be bounded by

|Pr[AO2 = 1]− Pr[AO3 = 1]| ≤ 2Adv2PI+
bHcn−k

(B2) +
qqp
2n

+
2kqv
2k

+
qv
2τ

+

(
qp
k

)
2τ(k−1)

+

(
qp
k

)
2(n−k)(k−1)

,

where B2 can make q challenge queries, q response queries and qp primitive
queries to p and its inverse.

The proof of the theorem follows from Equation 1, Equation 2 and Lemma 1.

3.3 Proof of Lemma 1

Now we’ll prove Lemma 1 using Coefficients H Technique step by step.
Step I: Sampling of the Ideal Oracle and Defining the Bad Events.
We start with sampling of the ideal oracle and go on mentioning the bad events
whenever they occur. Note that whenever we mention a bad event, even if it’s
not explicitly mentioned, it’s implicitly understood that the previous bad events
haven’t occurred.

12

In the online phase, the adversary interacts with the oracles and receives
the corresponding responses. In this phase, it can make any construction or
permutation query. The i-th encryption query is (N i, Ai,M i), the i-th decryption
query is (N̂ i, Âi, Ĉi, T̂ i), H(N̂ i, Âi, Ĉi) = X̂i‖Ẑi with |X̂i| = k and |Ẑi| = n−k,
the i-th permutation query is U i if it’s a forward query (i.e., p query), and V i if
it’s a backward query (i.e., p−1 query).

1. Return (Ci, T i), ∀i ∈ [qe], where Ci
$← {0, 1}|Mi|, T i

$← {0, 1}τ .
2. Return ⊥,∀i ∈ [qv].
3. Return the true output values of the permutation queries.
4. Set Xi := dH(N i, Ai, Ci)ek, X̂i := dH(N̂ i, Âi, Ĉi)ek,
Zi := bH(N i, Ai, Ci)cn−k, Ẑi := bH(N̂ i, Âi, Ĉi)cn−k

The adversary aborts if the following (bad) event occurs.

– bad1: ∃i ∈ [qe] and j ∈ [qv] with i 6= j and (N i, Ai, Ci) 6= (N̂ j , Âj , Ĉj) such
that Zi = Ẑj .

– bad2: ∃i, j ∈ [qe] with i 6= j such that Zi = Zj .

In the offline phase, the adversary can no longer interact with any oracle, but
the challenger may release some additional information to the adversary before
it submits its decision.

1. Y i
$← {0, 1}k , ∀i ∈ [qe] and j ∈ [i− 1] with Xi 6= Xj .

2. Ŷ i
$← {0, 1}k , ∀i ∈ [qv], j ∈ [i− 1] and ` ∈ [qe] with X̂i 6= X̂j and X̂i 6= X`.

Again, the adversary aborts if any of the following (bad) events occur.

– bad3: ∃i ∈ [qe] and j ∈ [qp] such that Y i‖Zi = U j .
– bad4: There is a k-multi-collision at the τ most significant bits of the output

of the forward permutation queries.
– bad5: There is a k-multi-collision at the (n − k) least significant bits of the

output of the backward permutation queries.
– bad6: ∃i ∈ [qv] and j ∈ [qp] such that Ŷ i‖Ẑi = U j .

If none of the bad events occur, then

1. Di $← {0, 1}n−τ , ∀i ∈ [qe],

2. T̂ ′i‖D̂i $← {0, 1}n , ∀i ∈ [qv].

Again, the adversary aborts if any of the following (bad) event occurs.

– bad7: ∃i ∈ [qv] such that T̂ i = T̂ ′i .

Step II: Bounding the Probability of the Bad Events. Now we’ll upper
bound the probabilities of the bad events.

13

– bad1: This event says that the capacity part of the hash of an encryption
query matches with the capacity part of the hash of a forging query. This
is nothing but computing a second pre-image corresponding to a challenge
(N,A,C), where C is chosen uniformly at random. Thus, the probability of
this event is bounded by the 2PI+ security of H.

Pr[bad1] ≤ Adv2PI+
bHcn−k

(B2) ,

where B2 can make q challenge queries, q response queries and qp primitive
queries to p and its inverse.

– bad2: This event says that the capacity part of the hash of an encryption
query matches with the capacity part of the hash of another encryption
query. This is again nothing but computing a second pre-image correspond-
ing to a challenge (N,A,C), where C is chosen uniformly at random. Thus,
the probability of this event is bounded by the 2PI+ security of H.

Pr[bad2] ≤ Adv2PI+
bHcn−k

(B2) ,

where B2 can make q challenge queries, q response queries and qp primitive
queries to p and its inverse.

– bad3: For a fixed encryption query and a fixed permutation query, the prob-
ability of this event comes out to be equal to 1/2n due to the randomness of
U j . Applying union bound over all possible choices, we obtain

Pr[bad3] ≤ qeqp
2n

.

– bad4: For a fixed k-tuple of forward permutation queries, the probability
of this event comes out to be equal to 1/2τ(k−1) due to the randomness of
the permutation output. Applying union bound over all possible choices, we
obtain

Pr[bad4] ≤
(
qp
k

)
2τ(k−1)

.

– bad5: For a fixed k-tuple of backward permutation queries, the probability
of this event comes out to be equal to 1/2(n−k)(k−1) due to the randomness
of the permutation output. Applying union bound over all possible choices,
we obtain

Pr[bad5] ≤
(
qp
k

)
2(n−k)(k−1)

.

– bad6: We analyse this bad event in the three following sub-cases.

• In this case, the number of multi-collision at the τ most significant bits
of the output of the forward permutation queries is at most k. So the
adversary can make a hash query (N,A,C) to obtain X‖Z, fix Z as the
least significant bits and vary the rest of the bits to obtain the multi-
collision. Suppose the multi-collision happens at the value T . In that
case, if the adversary makes the decryption query (N,A,C, T), then the

14

probability of bad6 comes out to be equal to k/2k. For qv decryption
queries, this probability comes out to be equal to kqv/2

k.
• In this case, the number of multi-collision at the (n− k) least significant

bits of the output of the backward permutation queries is at most k. So
the adversary can fix the τ most significant bits (say T) and vary the
rest of the bits to obtain the multi-collisions. Suppose the multi collisions
happen at the values Z1, Z2, · · · , Zm. Also suppose that the adversary
has q1 hash pre-images of Z1, q2 hash pre-images of Z2, · · · , qm hash
pre-images of Zm, where q1 + q2 + · · ·+ qm = qv. For i ∈ [r], suppose the
adversary has a pre-image (N,A,C) of Zi. In that case, if the adversary
makes the decryption query (N,A,C, T), then the probability of bad6
comes out to be equal to k/2k. For qv pre-images, this probability comes
out to be equal to kqv/2

k.
• If the previous two cases don’t occur, i.e., there is no multi-collision, then

for a fixed decryption query and a fixed permutation query, he probabil-
ity of bad6 comes out to be equal to 1/2n due to the randomness of U j .
For qv decryption queries and qp permutation queries, this probability
comes out to be equal to qvqp/2

n.

Combining all the three cases, we obtain

Pr[bad6|(bad3 ∧ bad4 ∧ bad5)] ≤ 2kqv
2k

+
qvqp
2n

.

– bad7: For a fixed decryption query, the probability of this event comes out
to be equal to 1/2τ due to the randomness of T̂ ′i. Applying union bound
over all possible choices, we obtain

Pr[bad7] ≤ qv
2τ
.

Combining everything, we obtain

εbad := Pr[bad] ≤ Pr[bad1 ∨ bad2 ∨ · · · ∨ bad7]

≤ 2Adv2PI+
bHcn−k

(B2) +
qqp
2n

+
2kqv
2k

+
qv
2τ

+

(
qp
k

)
2τ(k−1)

+

(
qp
k

)
2(n−k)(k−1)

. (3)

Step III: Ratio of Good Interpolation Probabilities. We recall that to
obtain oracle O2, we replace the function F of O1 with a random function $.
All the remaining specification of O2 are similar to O1 (see Section 3.1). Let qx
be the number of construction queries with distinct Xi’s and X̂i’s and q′ be the
number of construction queries with distinct (N i, Ai, Ci)’s and (N̂ i, Âi, Ĉi)’s.
For any good transcript τ , we get

Pr
O2

[τ] =
1

2nσe

1

2kqx
1

(2n)q′+qp
.

15

The first term corresponds to the number of choices for W i. The second term
corresponds to the number of choices for Y i. The third term corresponds to the
number of choices for the outputs of the distinct permutation calls. We also get

Pr
O3

[τ] =
1

2nσe

1

2nq′
1

2kqx
1

(2n)qp
.

The first term corresponds to the number of choices for Ci. The second term
corresponds to the number of choices for T i‖Di. The third term corresponds to
the number of choices for Y i. The fourth term corresponds to the number of
choices for the outputs of the distinct permutation calls. Thus we finally obtain

PrO2
[τ]

PrO3
[τ]
≥ 1 , i.e., εgood = 0. (4)

Step IV: Final Calculation. The Lemma follows as we use Equation 3 and
Equation 4 in Theorem 1.

4 Multi-Target 2nd Pre-Image Security of Sponge Based
Hashes

This section analyses the 2PI+ security of the sponge hash and some of it’s
variants.

4.1 Sponge Hash and Its 2PI+ Security

First we briefly revisit the sponge hash. Consider the initial state to be N‖IV
for some fixed IV . Let p ∈ Perm where Perm is the set of all permutations on
{0, 1}n. We call the r most significant bits of the state as rate and the c′ least
significant bits of the state as capacity. The associated data A and the message
C is absorbed in r′-bit blocks by subsequent p-calls, and the output of the last
p-call is the hash output T . Figure 2 illustrates the sponge hash. Now let us look
at its 2PI+ security.

The following attack demonstrates that the sponge hash is vulnerable to a
meet-in-the-middle attack as follows.

– Suppose an adversary (say A) submits (N,A, 2) and receives the random
message C1‖C2 from its challenger where |C1| = |C2| = r′.

– A computes the hash as H = p(p(S1 ⊕ C1‖S2 ⊕ 0?1) ⊕ (C2‖0c)). Suppose
H = p(Y2‖Z2) where |Y2| = r′ and |Z2| = c.

– A makes some p-queries of the form ?‖IV and some p−1-queries of the form
?‖Z2, and stores the p-query outputs in the list L1 and the p−1-query outputs
in the list L2.

– Suppose the capacity of one entry in L1 (say Y1‖Z1 where |Y1| = r′ and
|Z1| = c′) matches with the capacity of one entry in L2 (say Y ?1 ‖Z1). Suppose
p(N ′‖IV) = Y1‖Z1 and p−1(Y ?2 ‖Z2) = Y ?1 ‖Z1.

16

N

IVA

k

p p p p p

r′ ⊕ ⊕ ⊕

A1

c′
· · ·

AaA2

r′

c′
ISN,A

0?1

ISN,A p p p p

⊕

⊕

⊕ ⊕r′

c′ c′ c′

C1 C2

r′

· · ·
r′

C`

k

n− k

H1

H2

Fig. 2: Sponge Hash with ` Message Blocks.

– A returns (N ′, ε, (Y1 ⊕ Y ?1)‖(Y2 ⊕ Y ?2)) to its challenger as the second pre-
image of the random message (N,C1‖C2).

It is easy to see that the attack succeeds with probability |L1‖L2|
2c′

. In other

words, if the adversary is able to make around 2c
′/2 p-queries and p−1-queries

each, it would be able to mount this 2PI+ attack with very high probability.
Thus, for the sponge hash, the 2PI+ security reduces to the collision security
due to the above meet-in-the-middle attack, and the 2PI+ security for sponge
hash is Ω(q2p/2

c′). Now, we are more interested in some other hash functions
where a such collision attack doesn’t induce a 2PI+ attack.

4.2 Feed Forward Based Sponge Hash and Its 2PI+ Security

Now, we consider a feed forward variant of the sponge hash. The nonce and
associated data processing remains as it is. However, the following modifications
during the random message processing:

– The capacity part of the output of the i-th permutation is xored with the
previous state capacity to obtain the updated i-th state capacity.

– The message injection rate for the first block of random ciphertext remains
r′ bits, and for all successive blocks the rate is r bits, where r ≥ r′. To make
things compatible, the capacity part before the first p-call is chopped to the
least significant c-bits while feed-forwarding.

– We use a domain separation before the final permutation call depending on
the size of the random message. If the size is less than or equal to r′, we xor
1 in the capacity.

17

0?1

ISN,A p p p p

⊕

⊕

⊕

⊕

⊕

⊕ ⊕

r′

c′
c c

chop
c′ c

C1 C2

r

· · ·
r

C`

k

n− k

S′
1

0/1

S′
2

Fig. 3: The Feed Forward Variant of the Sponge Hash. The initial state ISN,A
is generated identically as in the sponge hash, depicted in Fig. 2.

Figure 3 illustrates the feed forward variant of the sponge hash with n-bit hash
value H1‖H2. It is easy to see that the attack on the sponge hash can not be
extended to this hash due to the feed-forward functionality of this hash. Now let
us look at its 2PI+ security. Formally, we state the following lemma:

Lemma 2. Let H be the feed-forward based sponge hash as defined as above.
The 2PI+ security of the construction is given by

Adv2PI+
bHcn−k

(A) ≤ q2p
2c′

+
(qp + σv)σe

2c
+
σ2
e

2c
+

qv
2n−k

,

where A makes at most qe challenge queries with an aggregate of σe blocks, qv
forging attempt queries with an aggregate of σv blocks, and qp many permutation
queries.

Proof. First let us consider the scenario for all challenge queries with ` ≥ r′.
Suppose at the i-th step, the adversary (say A) submits the i-th message length
and receives the random message Ci from its challenger. A makes successive
queries to p to derive the hash value corresponding to the fixed IV and Ci.
Moreover, the adversary makes several additional queries to p or p−1.

Graph based Representation. Now we draw a graph corresponding to all the
challenge, permutation queries and forging attempts made by the adversary A.
A node of the graph is an n-bit state value. For a challenge or response query,
we consider all the permutation inputs as nodes. Suppose the (i − 1)th and ith

permutation inputs are Xi−1, and Xi respectively, then we draw an edge from
node Xi−1 to Xi with edge labelled as Ci, where Ci is ith message injected. The
starting vertex for each query (N,A,C) is defined as ISN,A ⊕ (C1‖0). Now we
consider the direct permutation queries. suppose A makes a p query with the
input X, and the output is Y (i.e., Y = p(X)), then we draw an edge from
vertex X to vertex Y ⊕ (0‖bXcc). Similarly, if A makes a p−1 query with input
Y ?, and the output is X? (i.e., p−1(Y ?) = X?), we draw an edge from X?

to Y ? ⊕ (0‖bX?cc) with label 0. Essentially, the p−1 queries behave similar to
the p queries, and we obtain a directed edge-labelled graph. This is depicted in
Fig. 4. Thus, overall we have a graph corresponding to all the queries. All the
nodes computed during the hash computation (corresponding to the challenge

18

queries) are called “H”-nodes and all the other nodes are called “P”-nodes.
So, by definition, the number of H-nodes is σe, the total number of primitive
calls required for the hash computation of all the challenge messages. The total
number of P-nodes are bounded by (qp+σv), qp being the total number of direct
p and p−1 calls, and σv being the number of p calls used in the hash computation
for the verification queries.

dXi−1e

bXi−1c
p p

dYi−1e ⊕

⊕

Ci

bYi−1c bXic bYic

dXie dYie

⇒
Xi−1 Xi

Ci

dXie

bXic
p

dYie

bYic ⇒

Xi Yi‖(0⊕ bXic)

0

Fig. 4: The graph representation: challenge and forging queries (top), direct per-
mutation queries (bottom).

Definition and Bounding the Probability of a Bad Graph. We call a
collision occurs in two nodes if there capacity values are same. Now we call such
a graph bad if there is a collision (i) among two starting “H” nodes, or (ii) due
to a “H” node and a “P” node, (iii) between two “H” nodes. Now let us try to
bound the probability that a graph is bad. For the first case, the initial state
collision will reduce to a simple collision attack. This is due to the fact that the
nonce and associated data are chosen by the adversary. Hence, this probability
can be bounded by q2p/2

c′ . For case (ii) and (iii), such a collision will occur with

probability at most 1
2c−qp , and the number of possible choice of H nodes and P

nodes are σe and (qp + σv) respectively. Thus, the probability that a graph is

bad can be bounded by (
q2p
2c′

+
(qp+σv)σe

2c +
σ2
e

2c).

Bounding 2PI+ Security for A Good Graph. It is easy to see that if a
graph is not bad, then we do not have any forgeries, except for random hash
value matching, which can be bounded by qv

2n−k .

Combining everything together, the lemma follows. ut

Note that to extend the analysis for shorter challenge queries with ` ≥ r′ we
need a domain separator at the end (adding 1 at the capacity). This is to resist
an attack by guessing the random ciphertext and transferring a collision attack
into a 2PI+ attack.

19

5 ISAP+: A Throughput-Efficient Variant of ISAP

In this section, we describe the ISAP+ family of NAEAD mode by instantiating
EtHM with a sponge based PRF and the hybrid sponge hash and ultimately
come up with the complete specification details of ISAP+.

5.1 Specification of ISAP+

Let n, k, r, r′ and r0 be five positive integers satisfying 1 < r, r′, r0 < n, and
IVKE , IVKA and IVA be three (n − k)-bit binary numbers. We call the last
three numbers as the initialization vectors. Let c = n − r, c′ = n − r′ and
c0 = n−r0. Let p be an n-bit public permutation. The authenticated encryption
module of ISAP+ uses a secret key K ∈ {0, 1}k, receives a nonce N ∈ {0, 1}k, an
associated data A ∈ {0, 1}∗ and a message M ∈ {0, 1}∗ as inputs, and returns a
ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. The verified decryption module
uses the same secret key K and receives a nonce N ∈ {0, 1}k, an associated
data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗ and a tag T ∈ {0, 1}τ as inputs.
In case of successful verification, it returns a message M ∈ {0, 1}|C|. In case
the verification fails, it returns ⊥. Both the modules use a sub-module named
re-keying (RK). The complete specification of ISAP+ is provided in Figure 5.
The pictorial representation of the same is provided in Figures 6, 7, and 8.

Viewing ISAP+ as an Instantiation of EtHM: It is easy to that ISAP+ can
be viewed as an instantiation of EtHM where the hash function Hp is given by
the feed-forward variant of sponge hash as depicted in Figure 8 and the FIL-VOL
keyed function F pk is described as follows:

– When flag = 1 (i.e., inside encryption module), F pk involves the rekeying
function with (n − k)-bit output followed by p calls as depicted in Figures
6 and 7. The inputs are the nonce N , flag = 1 and a parameter ` which
represents the message length. The number of p calls is equal to the number
of r-bit message blocks.

– When flag = 0 (i.e., inside authentication module), F pk involves only the
rekeying function with k-bit output as depicted in Figure 6. The inputs are
the k most significant bits of the hash output, flag = 0 and a parameter
` = k.

5.2 Design Rationale

In this section, we’ll try to highlight and explain the main points regarding what
motivated the design of EtHM, and in particular, ISAP+.

2 Improved Rate for Ciphertext Processing in the Hash: As we move
from collision security to 2PI+ security at the ciphertext absorption phase of
the authentication module, we achieve the same security with a smaller capacity
size, which allows us to use a larger rate size for ciphertext absorption.

20

Algorithm ISAP+.AEK(N,A,M)

1. C ← ISAP+.Enc/Dec(K,N,M)
2. T ← ISAP+.Auth(K,N,A,C)
3. return (C, T)

Algorithm ISAP+.Auth(K,N,A,C)

1. A1 · · ·Aa �r′ A
2. if |C| < r′ then

3. C1 ← C‖10r′−|C|

4. else if |C| = r′ then
5. C1 ← C
6. C2 ← 10r

7. else
8. C1 ← dCer′
9. C2 · · ·C` �r bCc|C|−r′

10. S ← N‖IVA

11. for i = 1 to a
12. S ← p(S)⊕ (Ai‖0c′)

13. S ← p(S)⊕ (C1‖0c′)⊕ 0n−11
14. for i = 2 to `
15. S ← p(S)⊕ (Ci‖0c)⊕ 0r‖bScc
16. S ← p(S)⊕ 0r‖bScc
17. S ←

(ISAP+.RK(K, dSek, 0, k))‖bScn−k

18. if |C| < r′ then
19. S ← S ⊕ (0n−1‖1)
20. return T ← dp(S)ek

Algorithm ISAP+.VDK(N,A,C, T)

1. T ′ ← ISAP+.Auth(K,N,A,C)
2. if T = T ′ then
3. return ISAP+.Enc/Dec(K,N,C)
4. else
5. return ⊥

Algorithm ISAP+.Enc/Dec(K,N,X)

1. X1 · · ·X` �r′ X
2. S ← N‖(ISAP+.RK(K,N, 1, n− k))
3. for i = 1 to `
4. S ← p(S)
5. Yi ← dSer′ ⊕Xi

6. Y ← dY1‖ · · · ‖Y`e|X|
7. return Y

Algorithm ISAP+.RK(K,X, flag, z)

1. IV ← (flag = 1)? IVKE : IVKA

2. X1 · · ·Xw ←r0 X
3. S ← p(K‖IV)
4. for i = 1 to (w − 1)
5. S ← p((dSer0 ⊕Xi)‖bScn−r0)
6. S ← p((dSe|Xw| ⊕Xw)‖bScn−|Xw|)
7. return dSez

Fig. 5: Formal specification of the authenticated encryption and the verified
decryption algorithms of ISAP+.

k

n− k

K

IV

p p p p

⊕

Y1

r0
r0

c0

· · ·
c0

⊕

Yw

r0
r0

z Y ′

Fig. 6: Re-keying module of ISAP+ on a w-bit input Y .

21

N N ′RK
k n− k

p p p

⊕M1 C1 ⊕M` C`

r′

c′

· · ·
k

n− k

K

IVE

N ′

N

Fig. 7: Encryption module of ISAP+ for ` block message.

N

IVA

k

p p p p p

r′ ⊕ ⊕ ⊕

A1

c′
· · ·

AaA3

r′

c′

S1

S2

S1

0?1

S2

p p p p

⊕

⊕

⊕

⊕

⊕

⊕ ⊕

r′

c′
c c

C1 C2

r

· · ·
r

C`

k

n− k

H1

0/1

H2

H ′
1

pRK
k k τ

H1 T

k

n− k

K

IVA

H ′
1

k

H2
n− k

Fig. 8: Authentication module of ISAP+ for a block associated data and ` block
message.

2 Last Domain Separator: The last domain separator is crucial to domain
separate the short and long messages. Without this domain separator, we can
have a forgery with one encryption query which consists of a message that is less
than one block in length and the corresponding forging attempt which consists
of more than one ciphertext blocks. As a result, a separator bit, applied to the
capacity just before the last permutation call, allows us to differentiate these
two cases, and ensure that the input to the last permutation is distinct for each
of the two queries, which in turn prevents the attack.

22

5.3 Recommended Instantiations

We recommend one primary instance of ISAP+, denoted by ISAP+-A-128, which
is instantiated with 12-round ASCON-p for all the permutation calls (i.e., each of
sH , sB , sE , and sK is equal to 12). To showcase the efficiency of ISAP+, we’ve
also implemented three other instances, comparable with the corresponding ISAP
instances, as mentioned below in Table 3. Blue coloured entry is our primary
recommendation.

Table 3: Recommended Parameter Values for ISAP+

Instances Permutation
Bit Size of No. of Rounds
n r′ r r0 sH sB sE sK

ISAP+-A-128 ASCON-p 320 64 128 1 12 12 12 12

ISAP+-A-128A ASCON-p 320 64 128 1 12 1 6 12

ISAP+-K-128 KECCAK-p[400] 400 144 208 1 20 12 12 12

ISAP+-K-128A KECCAK-p[400] 400 144 208 1 16 1 8 8

5.4 Security of ISAP+

In this subsection, we analyse the NAEAD security of ISAP+. We show that our
design follows that paradigm, and hence we can adapt its security result, and
the security of ISAP+ follows. Formally, we prove the following theorem.

Theorem 3 (NAEAD Security of ISAP+). For all deterministic nonce-
respecting non-repeating query making adversary A of ISAP+ which can make at
most qe encryption queries of a total of maximum σe blocks, qv forging queries
and qp primitive queries to p and its inverse, the NAEAD advantage of A can
be bounded by

AdvNAEAD
ISAP+ (A) ≤ σ2

e + σeqp + q2p
2c′

+
σ2
e + σeqp + σeσv

2c

+

(
qp
k

)
2τ(k−1)

+

(
qp
k

)
2(n−k)(k−1)

+
qqp
2n

+
2kqv + qp

2k
+
qp + qv
2n−k

+
qv
2τ
.

Proof. The proof follows directly from Theorem 2, as we bound the two terms
AdvPRF

F (B1) and Adv2PI+
bHcc(B2) for ISAP+.

– To bound the first term, we observe that the key can be randomly guesses
with probability

qp
2k

. Also, the state after re-keying might match with an
offline query with probability

qp
2n−k , as the capacity part can be controlled.

Otherwise the inputs of the outer sponge construction are fresh, and a col-
lision can happen at some stage only if two construction queries have a full

23

state collision, or a construction query has a full state collision with a prim-
itive query. The probability of the first case can be bounded by σ2

e/2
c′ and

the probability of the second case can be bounded by σeqp/2
c′ . Hence we

achieve the overall PRF security of F as
(
σeqp+σ

2
e

2c′
+

qp
2k

+
qp

2n−k

)
. Further

details can be found in [4].
– The second term, i.e., the 2PI+ security of the feed-forward based sponge

hash can be bounded by
(
q2p
2c′

+
(qp+σv)σe

2c +
σ2
e

2c + qv
2n−k

)
(See Lemma 2, Sec-

tion 4.2).

ut
Side-Channel Resistance. ISAP+ inherits its security against side-channel
leakage directly from ISAP. In [18], the author have clearly mentioned that
“There are no requirements on the implementation of the hash function H,
since it processes only publicly known data.” Following their argument, ISAP+
achieves same leakage resilience as it modifies only the hash function of ISAP
and retains the rest of the design as it is. Accordingly, ISAP+ will provide a
similar result on the leakage resilience bound as given in [19, Theorem 1].

6 Hardware Implementation Details

In this section, we provide the FPGA implementation detail of the ISAP+ family.
All the hardware implementation codes are written in VHDL and are mapped
on Virtex 7XC7V585T using Vivado 2020.2 as the underlying tool. The detail
results are provided below.

6.1 Round Based Implementation of ASCON-p and KECCAK-p

In this section, we describe our round-based implementation of ASCON-p and
adopted implementation of KECCAK-p[400]. The implementations are simply basic
round based with n-bit datapath (n is the permutation size in bits). In case of
ASCON-p, p receives a 320-bit (40-byte) input and processes it in 12 cycles (12
rounds in 12 clock cycles). Hence cpb for p is 40/12 = 3.33. The circuit maintains
a 320-bit internal state register which is initialised with the input and then gets
updated after every round. It also maintains an additional 4-bit register Round
to store the current round number. Round is initialized by 0 and is incremented
by one after every round. After all the rounds are executed, Round is again
initialised to 0. The architecture executes one round of p in one clock cycle and
each round consists of 3 sequential sub modules AC, SBox, and Lin. The state is
divided into 64 5-bit nibbles. The row representation of the state divides the state
into five rows (each of the rows is known as a Word), each consisting of 64 bits.
AC adds a round specific 1-byte constant to the third row of the intermediate
state. It takes two inputs, the intermediate state and the current round number.
Next, the SBox module applies a non-linear 5-bit sbox to each of the nibbles of
the state. The Lin module is used for linear diffusion of the state. This module

24

adds different rotated copies of each Word (horizontally, within each Word) to
the corresponding Word. We directly adopt the KECCAK-p[400] round function
implementation from [1] and implement the round based architecture on our
own. The Virtex 7 results for both the implementations are provided in Table 4.

Table 4: FPGA Results for ASCON-p and KECCAK-p[400]
Slice

registers
LUTs Slices

Clock Cycle Time
(nS)

Frequency
(MHZ)

Throughput
(Gbps)

ASCON-p 328 937 282 2.5 416.67 11.1

KECCAK-p[400] 415 980 283 2.6 384.61 8.55

6.2 Comparison Between ISAP+ and ISAP Virtex 7 Results

We compare the hardware implementation results of ISAP+ and ISAP versions
using our own implementation. We would like to point out that all our implemen-
tations follow a similar architecture and ignore the overheads associated with the
NIST LWC hardware API. Also note that, the throughputs for all the versions
have been computed for sufficiently long inputs and the clock cycle overheads
have been ignored.

Below, we provide FPGA comparison results of ISAP+ and ISAP versions. We
implement both ISAP+ and ISAP using VHDL and mapped the implementation
on Virtex 7XC7V585T (Vivado 2020.2). We use the same RTL approach and a
basic iterative type architecture. We use a common hardware architecture for all
the versions of ISAP and ISAP+. Note that we provide our own implementation
for ASCON-p (as our main recommendation is based on ASCON-p), and we use the
reference round function implementation of KECCAK-p[400] from [1].

The hardware implementation results for the four versions of ISAP+ is pre-
sented in Table 5. We also report our hardware implementation results for the
four versions of ISAP. We implement them on the same platform using the same
approach. The detailed results are described in Table 6 below. The result depicts
that all the ISAP+ versions are better in throughput than the corresponding ISAP
versions which in turn depicts that ISAP+ versions remain significantly better
than ISAP versions with respect to throughput/area metric. Blue coloured entry
in Table 5 is our primary recommendation.

Table 5: FPGA Results for ISAP+ versions.

Versions
Slice

Registers
LUTs Slices

Frequency
(MHZ)

Encryption Throughput
(Gbps)

Authentication Throughput
(Gbps)

ISAP+-A-128 1081 1742 507 384.16 2.05 3.07

ISAP+-K-128 1423 2245 613 300 3.60 2.64

ISAP+-A-128A 1070 1728 501 384.16 4.09 3.07

ISAP+-K-128A 1412 2231 605 300 5.40 4.40

25

Table 6: FPGA Results for ISAP Versions

Versions
Slice

Registers
LUTs Slices

Frequency
(MHZ)

Encryption Throughput
(Gbps)

Authentication Throughput
(Gbps)

ISAP-A-128 818 1550 451 400 2.13 2.13

ISAP-K-128 1143 1932 582 300 3.60 2.16

ISAP-A-128A 810 1539 449 400 4.27 2.13

ISAP-K-128A 1131 1850 574 300 5.40 2.70

7 Conclusion

In this paper, we have proposed a generic framework for a permutation-based
EtHM type NAEAD mode using a PRF and an unkeyed hash function with
2PI+ security. We have shown that ISAP follows the framework EtHM and hence
it’s security boils down to the 2PI+ security of the underlying hash function.
We propose a feed-forward variant of the sponge hash function with improved
security and use it to design a new variant of ISAP that achieves improved se-
curity, and that in turn improves the throughput of the construction. Designing
some new hash functions with better 2PI+ security and improving the security
or throughput of the mode instantiated with the newly designed hash seems to
be a challenging open problem.

Acknowledgement. The authors would like to thank all the anonymous review-
ers for their valuable comments and suggestions. Cuauhtemoc Mancillas López
is partially supported by the Cryptography Research Center of the Technol-
ogy Innovation Institute (TII), Abu Dhabi (UAE), under the TII- Cuauhtemoc
project.

References

1. https://keccak.team/hardware.html.

2. National Institute of Standards and Technology. FIPS PUB 202: SHA-3Standard:
Permutation-based hash and extendable-output functions. . Federal Information
Processing Standards Publication 202, U.S. Department ofCommerce, 8 2015.

3. Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel,
Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs
v1.02. Submission to CAESAR. 2016. https://competitions.cr.yp.to/round2/
primatesv102.pdf.

4. Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche. Security of
keyed sponge constructions using a modular proof approach. In Gregor Leander,
editor, FSE 2015, volume 9054 of Lecture Notes in Computer Science, pages 364–
384. Springer, 2015.

5. Sonia Beläıd, Fabrizio De Santis, Johann Heyszl, Stefan Mangard, Marcel Med-
wed, Jörn-Marc Schmidt, François-Xavier Standaert, and Stefan Tillich. Towards
fresh re-keying with leakage-resilient prfs: cipher design principles and analysis. J.
Cryptogr. Eng., 4(3):157–171, 2014.

26

6. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In Tatsuaki
Okamoto, editor, ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer
Science, pages 531–545. Springer, 2000.

7. Daniel J. Bernstein. ChaCha, a variant of Salsa20. 2008.
8. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge

functions, 2007. Ecrypt Hash Workshop 2007.
9. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the

indifferentiability of the sponge construction. In Nigel P. Smart, editor, EURO-
CRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 181–197.
Springer, 2008.

10. Guido Bertoni, Michaël Peeters Joan Daemen, Gilles Van Assche, and Ronny Van
Keer. Ketje v2. Submission to CAESAR. 2016. https://competitions.cr.yp.

to/round3/ketjev2.pdf.
11. Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.

In Burton S. Kaliski Jr., editor, CRYPTO ’97, Proceedings, volume 1294 of Lecture
Notes in Computer Science, pages 513–525. Springer, 1997.

12. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
checking cryptographic protocols for faults (extended abstract). In Walter Fumy,
editor, EUROCRYPT 1997, volume 1233 of Lecture Notes in Computer Science,
pages 37–51. Springer, 1997.

13. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,
editor, CRYPTO 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 398–412. Springer, 1999.

14. Christoph Dobraunig and Maria Eichlseder and Florian Mendel and Martin
Schläffer. Ascon v1.2. Submission to NIST Lightweight Cryptography, 2019. 2019.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf.
15. Christoph Dobraunig and Maria Eichlseder and Stefan Mangard and Florian

Mendel and Bart Mennink and Robert Primas and Thomas Unterluggauer. ISAP
v2.0. Submission to NIST. 2019. https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/ISAP-spec.pdf.

16. CAESAR Committee. CAESAR: Competition for Authenticated Encryption: Se-
curity, Applicability, and Robustness. http://competitions.cr.yp.to/caesar.

html/.
17. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced

Encryption Standard. Information Security and Cryptography. Springer, 2002.
18. Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,

Bart Mennink, Robert Primas, and Thomas Unterluggauer. Isap v2.0.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/finalist-round/updated-spec-doc/isap-spec-final.pdf.
19. Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, Bart

Mennink, Robert Primas, and Thomas Unterluggauer. Isap v2.0. IACR Trans.
Symmetric Cryptol., 2020(S1):390–416, 2020.

20. Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP - towards side-channel secure authenticated en-
cryption. IACR Trans. Symmetric Cryptol., 2017(1):80–105, 2017.

21. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Submission to CAESAR. 2016. https://competitions.cr.yp.to/

round3/asconv12.pdf.

27

22. Benôıt Gérard, Vincent Grosso, Maŕıa Naya-Plasencia, and François-Xavier Stan-
daert. Block ciphers that are easier to mask: How far can we go? In Guido
Bertoni and Jean-Sébastien Coron, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2013. Proceedings, volume 8086 of Lecture Notes in Computer
Science, pages 383–399. Springer, 2013.

23. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

24. Louis Goubin and Jacques Patarin. DES and differential power analysis (the ”du-
plication” method). In Çetin Kaya Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems, CHES 1999, Proceedings, volume 1717 of Lecture
Notes in Computer Science, pages 158–172. Springer, 1999.

25. Vincent Grosso, Gaëtan Leurent, Francois-Xavier Standaert, Kerem Varici, An-
thony Journault, Francois Durvaux, Lubos Gaspar, and Stéphanie Kerckhof.
SCREAM Side-Channel Resistant Authenticated Encryption with Masking. Sub-
mission to CAESAR. 2015. https://competitions.cr.yp.to/round2/screamv3.
pdf.

26. Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche. The Keccak
reference (version 3.0). 2011. https://keccak.team/files/Keccak-reference-3.
0.pdf.

27. Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. The
NOEKEON block cipher, 2000. Nessie Proposal. 2020. https://competitions.

cr.yp.to/round3/acornv3.pdf.
28. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and

other systems. In Neal Koblitz, editor, CRYPTO 1996, Proceedings, volume 1109
of Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

29. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, CRYPTO 1999, Proceedings, volume 1666 of Lecture
Notes in Computer Science, pages 388–397. Springer, 1999.

30. Marcel Medwed, Christophe Petit, Francesco Regazzoni, Mathieu Renauld, and
François-Xavier Standaert. Fresh re-keying II: securing multiple parties against
side-channel and fault attacks. In Emmanuel Prouff, editor, CARDIS 2011, volume
7079 of Lecture Notes in Computer Science, pages 115–132. Springer, 2011.

31. Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Francesco
Regazzoni. Fresh re-keying: Security against side-channel and fault attacks for low-
cost devices. In Daniel J. Bernstein and Tanja Lange, editors, AFRICACRYPT
2010, Proceedings, volume 6055 of Lecture Notes in Computer Science, pages 279–
296. Springer, 2010.

32. NIST. Lightweight cryptography. https://csrc.nist.gov/Projects/

Lightweight-Cryptography.
33. Jacques Patarin. The “coefficients h” technique. In Roberto Maria Avanzi, Liam

Keliher, and Francesco Sica, editors, Selected Areas in Cryptography, pages 328–
345, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

34. Gilles Piret, Thomas Roche, and Claude Carlet. PICARO - A block cipher allowing
efficient higher-order side-channel resistance. In Feng Bao, Pierangela Samarati,
and Jianying Zhou, editors, ACNS 2012. Proceedings, volume 7341 of Lecture Notes
in Computer Science, pages 311–328. Springer, 2012.

28

