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Abstract

We design and implement a simple zero-knowledge argument protocol for NP whose communication
complexity is proportional to the square-root of the verification circuit size. The protocol can be based
on any collision-resistant hash function. Alternatively, it can be made non-interactive in the random
oracle model, yielding concretely efficient zk-SNARKs that do not require a trusted setup or public-key
cryptography. Our protocol is obtained by applying an optimized version of the general transformation
of Ishai et al. (STOC 2007) to a variant of the protocol for secure multiparty computation of Damgård
and Ishai (CRYPTO 2006). It can be viewed as a simple zero-knowledge interactive PCP based on
“interleaved” Reed-Solomon codes.

This paper is an extended version of the paper published in CCS 2017 and features a tighter anal-
ysis, better implementation along with formal proofs. For large verification circuits, the Ligero prover
remains competitive against subsequent works with respect to the prover’s running time, where our effi-
ciency advantages become even bigger in an amortized setting, where several instances need to be proven
simultaneously.

Our protocol is attractive not only for very large verification circuits but also for moderately large
circuits that arise in applications. For instance, for verifying a SHA-256 preimage with 2−40 soundness
error, the communication complexity is roughly 35KB. The communication complexity of our protocol
is independent of the circuit structure and depends only on the number of gates. For 2−40 soundness
error, the communication becomes smaller than the circuit size for circuits containing roughly 3 million
gates or more. With our refined analysis the Ligero system’s proof lengths and prover’s running times
are better than subsequent post-quantum ZK-SNARKs for small to moderately large circuits.
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1 Introduction

Verifying outsourced computations is important for tasks and scenarios when there is an incentive for the
party performing the computation to report incorrect answers. In this work, we present a concretely efficient
argument protocol for NP whose communication complexity is proportional to the square root of the size of
a circuit verifying the NP witness. Our argument system is in fact a zero-knowledge argument of knowledge,
and it only requires the verifier to send public coins to the prover. The latter feature implies that it can be
made non-interactive via the Fiat-Shamir transform [FS86], yielding an efficient implementation of zero-
knowledge succinct non-interactive arguments of knowledge (zk-SNARKs [BCCT13]) without a trusted
setup. To put our work in the proper context, we provide some relevant background. The last decade has seen
tremendous progress in designing and implementing efficient proof system (see [WB15, BBC+17, Ish20,
Tha22] for surveys). These efforts can be divided into three broad categories according to the underlying
combinatorial machinery.

Doubly efficient interactive proofs: This line of work, initiated by Goldwasser, Kalai, and Rothblum
[GKR15] (following a rich line of work on interactive proofs with computationally unbounded provers
[GMR85, LFKN90, Sha90]), provides sublinear communication and efficiently verifiable proofs for low-
depth polynomial-time computations.1 See [CMT12, Tha13, VSBW13, RRR16] and references therein for
a survey of works along this line.

Probabilistically checkable proofs (PCPs) and their interactive variants: Originating from the works of
Kilian [Kil92] and Micali [Mic94], recent works [BCGT13, BCG+16, BBC+17] have shown how to obtain
efficient sublinear arguments for NP from PCPs [BFLS91, AS98, ALM+98]. Classical PCPs have been
extended to allow additional interaction with the prover, first in the model of interactive PCP (IPCP) [KR08]
and then in the more general setting of interactive oracle proofs (IOP) [BCS16, RRR16]. Arguments ob-
tained via PCPs and IOPs have the advantages of not relying on public-key cryptography, not requiring a
trusted setup, and offering conjectured post-quantum security. However, previous works along line were
still quite far from having good concrete efficiency.

Linear PCPs: This line of work, initiated by Ishai, Kushilevitz, and Ostrovsky [IKO07] (in the interactive
or designated verifier setting) and by Groth [Gro10] (in the non-interactive, public verification setting of
SNARKs) obtains sublinear arguments for NP with preprocessing by combining linear PCPs with homo-
morphic public-key cryptography. In a linear PCP the verifier can obtain a small number of linear com-
binations of a proof vector. Linear PCPs are simpler to construct than classical PCPs and have served as
the basis for some of the first implementations of verifiable computation protocols [SMBW12]. A very
efficient construction of linear PCPs for NP that served as the basis for most previous SNARK implementa-
tions, including the ones used in zerocash [BCG+14], was given by Gennaro, Gentry, Parno, and Raykova
in [GGPR13]. (The view of these SNARKs as being based on linear PCPs is due to Bitansky et al. [BCI+13]
and Setty et al. [SBV+13].) Two practical disadvantages of the protocols along this line are that they are
quite slow on the prover side (due to a heavy use of public-key cryptography), and their soundness in the
non-interactive setting crucially relies on the existence of a long and “structured” common reference string
that needs to either be generated by a trusted party or by an expensive distributed protocol.

Our goal in this work is to combine the best features of previous approaches to the extent possible:
1The GKR technique has been extended to the case of NP statements by Zhang et al. [ZGK+17], Wahby et al. [WTS+18], and

several subsequent works. However, the communication complexity of the resulting arguments still grows with the verification cir-
cuit depth, and moreover their instantiations require a polynomial commitment primitive whose efficient implementations typically
involve the use of public-key cryptography.
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Obtain a simple, concretely efficient, sublinear communication (public-coin) zero-knowledge
argument system for NP, without any setup, complex PCP machinery, or expensive public-key
operations.

As discussed above, all prior works fall short of meeting the above goal on one or more counts.

1.1 Our Results

The main result of this work is a zero-knowledge argument protocol for NP with the following features.

• It is sublinear, in the sense that the asymptotic communication complexity is roughly the square root
of the verification circuit size.

• It is simple to describe and analyze in a self-contained way.

• It only employs symmetric-key primitives (collision-resistant hash-functions) in a black-box way.

• It is public-coin, which means the protocol can be made non-interactive in the random oracle model
by using the Fiat-Shamir transform [FS86], thus providing a light-weight implementation of (publicly
verifiable) zero-knowledge SNARKs.

• It does not require any trusted setup, even in the non-interactive case.

• It is concretely efficient. We demonstrate its concrete efficiency via an implementation.

• In the multi-instance setting where many instances for the same NP verification circuit are required,
we obtain improved amortized communication complexity with sublinear verification time.

Our protocol can be seen as a light-weight instance of the second category of protocols discussed above.
However, instead of directly applying techniques from the PCP literature, we combine efficient protocols
for secure multiparty computation (MPC) with a variant of the general transformation of Ishai, Kushilevitz,
Ostrovsky, and Sahai (IKOS) [IKOS07] that transforms such MPC protocols to zero-knowledge interactive
PCPs (ZKIPCP). More concretely, we instantiate the MPC component with an optimized variant of the
protocol of Damgård and Ishai [DI06] (similar to the one described in Appendix C of [IPS09]) and transform
it into a ZKIPCP by applying a more efficient variant of the IKOS transformation in the spirit of the IPS
compiler [IPS08]. In a nutshell, the main difference with respect to the original IKOS transformation is that
we restrict the topology of the MPC network in a way that leads to a better trade-off between soundness
error and communication complexity.

A key feature of the underlying MPC protocol is that its total communication complexity between the
parties is independent of the number of parties and is roughly equal to the size of the circuit being evaluated.
Now, letting the number of parties be the square root of the circuit size, results in communication per party
that is also roughly the square root of the circuit size. This translates into a ZKIPCP with similar parameters.
See Section 4 for a self-contained presentation of the ZKIPCP obtained via the above approach.

The work of Giacomelli, Madsen and Orlandi [GMO16] and its improvement due to Chase et al.
[CDG+17] already demonstrated that the IKOS transformation can lead to concretely efficient zero-knowledge
arguments, but where the communication is bigger than the verification circuit size. In the present work, we
obtain a sublinear variant of this result by modifying both the IKOS transformation and the underlying MPC
machinery. To summarize, using the above approach we obtain a simple proof of the following theorem
with good concrete efficiency:
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Theorem 1.1 (Informal). Assume the existence of collision-resistant hash-functions. Then there is a public-
coin zero-knowledge argument for proving the satisfiability of a circuit C with communication complexity
Õ(
√
|C|).

Concrete efficiency. We now give more detailed information about the concrete efficiency of our imple-
mentation. The following numbers apply either to interactive zero-knowledge protocols based on collision-
resistant hash functions or to non-interactive zk-SNARKs in the random oracle model obtained via the
Fiat-Shamir transform. We refer the reader to Section 6 for more details and give only a few representative
figures below. The communication complexity of proving the satisfiability of an arithmetic circuit C is given

by κ · |F| ·
√

5·|C|
log2(3/2)·min(|F|,κ) which simplifies toO(|F| ·

√
|C| · κ) bits for large fields andO(κ ·

√
|C| · |F|)

bits for small fields (i.e. for |F| < κ).
The communication complexity becomes smaller than the circuit size for circuits over 30-bit primes

with more than 2.6 million gates at 40-bit security and around 20 million gates for 128-bit security. One
concrete benchmark that has been used in prior works is verifying a SHA-256 preimage in zero-knowledge.
For this benchmark, the communication complexity of our protocol with 2−40 soundness error is less than
35KB. In Section 6, we compare with other ZK-SNARKs with plausible post-quantum security. Our system
produces better proof lengths for small to moderately large circuits in comparison to all relevant previous
works and has better prover efficiency.

Our protocol easily extends to a multi-instance setting to provide additional benefits. In this setting,
we can handle N instances of a circuit of size s with soundness error 2−κ at an amortized communication
cost per instance smaller than s when N = Ω(κ2). Moreover, the amortized verification time in the multi-
instance setting is sublinear, involving a total of O(s log s+N logN) field operations. Finally, the prover’s
running time grows linearly with the number of instances but still remains practically feasible for reasonable
number of instances.

Related work. In a concurrent and independent work [BBHR19], Ben-Sasson et al. use different techniques
to construct concretely efficient IOPs that imply “transparent” proof systems, referred to as zk-STARKs, of
the same type we obtain here. These zk-STARK constructions significantly improve over the previous ones
from [BBC+17]. A preliminary comparison with the concrete efficiency of our construction suggests that
our construction is generally more attractive in terms of prover computation time and also in terms of proof
size for smaller circuits (say, of size comparable to a few SHA-256 circuits), whereas the construction
from [BBHR19] is more attractive in terms of verifier computation time and proof size for larger circuits.

Subsequent work. The area of zero-knowledge proof systems had been very active in the past five years.
Below we review the relevant literature published subsequent to [AHIV17].

In the design of ZKSNARKs based on symmetric-key primitives using IOPs, Aurora [BCR+19] is a
transparent zk-SNARKs for R1CS (Rank-1 Constraint Satisfaction) with polylogarithmic proof size. Addi-
tional [GKR08]-based zero-knowledge argument schemes were proposed in subsequent works [XZZ+19a,
ZXZS20]. The former work introduces Libra, a linear time prover for special structures circuits, whereas
the later work designs a new polynomial commitment scheme based on symmetric cryptographic primitives
without trusted setup. A more recent extension of [ZXZS20] for general circuits and similar features are
shown in [ZLW+21a] where the they design a GKR-style proof system with linear-time prover. Golovnev
et al. [GLS+21] provided an alternative mechanism to obtain a linear time prover for arbitrary fields which
admits competitive concrete efficiency.

In the context of MPC-in-the-head, [KKW18, dSGOT21] have optimized the communication cost size
of post-quantum signature schemes based on preprocessing-based dishonest majority MPC and multi-round
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IOPs, respectively. However, these schemes scale linearly with circuit size. [GSV21] further considered
a tailored version of Ligero in the Boolean setting and introduced several improvements to the proof size.
In [BFH+20], Bhadauria et al. designed an optimized sublinear IOP by combining Ligero and Aurora
[BCR+19], achieving tradeoffs between the prover complexity and proof length. Another sequence of
works [dSGMOS19, BN20, HKL22] extends [KKW18] to arithmetic circuits over field and ring operations,
introducing further improvements of signature sizes.

Another line of sublinear ZK systems is based on the hardness of discrete logarithm hardness assumption
e.g., [WTS+18, BBB+18] that imply higher running times due to a number of asymmetric operations that
grows with the circuit size. A new class of zk-SNARKs for R1CS under this assumption and improved
tradeoffs between the prover’s overhead, the proof length and the sublinear verification cost is introduced in
[Set20]. These proofs cannot attain post-quantum security.

Additional subsequent work in discussed in Section 7.

Comparison with [AHIV17]. This work is the extended version of the paper published in CCS’17 [AHIV17].
Specifically, this version contains complete proofs of the construction including tightening of the soundness
analysis and an analysis of the Fiat-Shamir transform. We have included a section about subsequent work
(specific to IOPs) and open problems and revised implementation section with optimizations and some com-
parison with relevant work.

2 Preliminaries

Basic notations. We denote the security parameter by κ. We say that a function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) . We use the
abbreviation PPT to denote probabilistic polynomial-time and denote by [n] the set of elements {1, . . . , n}
for some n ∈ N, and by [a]i the ith element ai from the set a. For an NP relation R, we denote by
Rx the set of witnesses of x and by LR its associated language. That is, Rx = {w | (x,w) ∈ R} and
LR = {x | ∃ w s.t. (x,w) ∈ R}.

We assume functions to be represented by a Boolean/arithmetic circuit C (with AND/MULTIPLY,
XOR/ADD gates of fan-in 2 and NOT gates), and denote the size of C by |C|. By default we define the
size to include the total number of gates, excluding NOT gates but including input gates. We specify next
the definitions of computationally indistinguishable distributions and statistical distance.

2.1 Collision-Resistant Hashing and Merkle Trees

Let {Hκ}κ∈N = {H : {0, 1}p(κ) → {0, 1}p′(κ)}κ be a family of hash functions, where p(·) and p′(·) are
polynomials so that p′(κ) ≤ p(κ) for sufficiently large κ ∈ N. For a hash function H ← Hκ a Merkle hash
tree [Mer89] is a data structure that allows to commit to ` = 2d messages by a single hash value h such that
revealing any message requires only to reveal O(d) hash values.

A Merkle hash tree is represented by a binary tree of depth d where the ` messages m1, . . . ,m` are
assigned to the leaves of the tree; the values assigned to the internal nodes are computed using the underlying
hash function H that is applied on the values assigned to the children, whereas the value h that commits
to m1, . . . ,m` is assigned to the root of the tree. To open the commitment to a message mi, one reveals
mi together with all the values assigned to nodes on the path from the root to mi, and the values assigned
to the siblings of these nodes. We denote the algorithm of committing to ` messages m1, . . . ,m` by h :=
CommitM(m1, . . . ,m`) and the opening of mi by (mi,path(i)) := OpenM(h, i). Verifying the opening
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of mi is carried out by essentially recomputing the entire path bottom-up and comparing the final outcome
(i.e., the root) to the value given at the commitment phase.

The binding property of a Merkle hash tree is due to collision-resistance. Intuitively, this says that it is
infeasible to efficiently find a pair (x, x′) so that H(x) = H(x′), where H ← Hκ for sufficiently large κ.
In fact, one can show that collision-resistance of {Hκ}κ∈N carries over to the Merkle hashing. Formally, we
say that a family of hash functions {Hκ}κ is collision-resistant if for any PPT adversary A the following
experiment outputs 1 with probability negl(κ): (i) A hash functionH is sampled fromHκ; (ii) The adversary
A is given H and outputs x, x′; (iii) The experiment outputs 1 if and only if x 6= x′ and H(x) = H(x′).

In the random oracle model, Merkle tree can be computed by replacing the function H with a random
oracle ρ where statistical binding follows due to the hardness of finding a collision in this model. We denote
this algorithm by CommitRO

M .

2.2 Zero-Knowledge Arguments

We denote by 〈A(w), B(z)〉(x) the random variable representing the (local) output of machine B when
interacting with machine A on common input x, when the random-input to each machine is uniformly and
independently chosen, and A (resp., B) has auxiliary input w (resp., z).

Definition 2.1 (Interactive argument system). A pair of PPT interactive machines 〈P,V〉 is called an in-
teractive proof system for a language L if there exists a negligible function negl such that the following two
conditions hold:

1. COMPLETENESS: For every x ∈ L there exists a string w such that for every z ∈ {0, 1}∗,

Pr[〈P(w),V(z)〉(x) = 1] ≥ 1− negl(|x|).

2. SOUNDNESS: For every x /∈ L, every interactive PPT machine P∗, and every w, z ∈ {0, 1}∗

Pr[〈P∗(w),V(z)〉(x) = 1] ≤ negl(|x|).

Definition 2.2 (Zero-knowledge). Let 〈P,V〉 be an interactive proof system for some language L. We say
that 〈P,V〉 is computational zero-knowledge with respect to an auxiliary input if for every PPT interactive
machine V∗ there exists a PPT algorithm S, running in time polynomial in the length of its first input, such
that

{〈P(w),V∗(z)〉(x)}x∈L,w∈Rx,z∈{0,1}∗
c≈ {〈S〉(x, z)}x∈L,z∈{0,1}∗

(when the distinguishing gap is considered as a function of |x|). Specifically, the left term denote the output
of V∗ after it interacts with P on common input x whereas, the right term denote the output of S on x.

2.3 Interactive Oracle Proofs

Interactive Oracle Proofs (IOP) [BCS16, RRR16] is a type of proof system that combines the aspects of
Interactive Proofs (IP) [Bab85, GMR85] along with Probabilistic Checkable Proofs (PCP) [BFLS91, AS98,
ALM+98] as well generalizes Interactive PCPs (IPCP) [KR08]. In this model, like the PCP model, the
verifier does not need to read the whole proof and instead can query the proof at some random locations
while similarly to the IP model, the prover and verifier interact over several rounds.

A k-round IOP has k rounds of interaction. In the ith round of interaction, the verifier sends a uniform
public message mi to the prover and the prover generates πi. After running k rounds of interaction, the
verifier makes some queries to the proofs via oracle access and will either accept it or reject it.
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Definition 2.3. Let R(x, ω) be an NP relation corresponding to an NP language L. An IOP system for a
relation R with round complexity k and soundness ε is a pair of PPT algorithms (P,V) if it satisfies the
following properties:

• SYNTAX: On common input x and prover input ω, P and V run an interactive protocol of k rounds.
In each round i, V sends a message mi and P generates πi. Here the verifier has oracle access to
{π1, π2, . . . , πk}. We can express π = (π1, π2, . . . , πk). Based on the queries from these oracles, V
accepts or rejects.

• COMPLETENESS: If (x, ω) ∈ R then,

Pr[(P(x, ω),Vπ(x)) = 1] = 1

• SOUNDNESS: For every x /∈ L, every unbounded algorithm P∗ and proof π̃

Pr[(P∗,V π̃) = 1] ≤ negl(λ)

The notion of IOP can be extended to provide zero-knowledge property as well. Next we define the
definition of zero-knowledge IOP.

Definition 2.4. Let 〈P,V〉 be an IOP for R. We say that 〈P,V〉 is a (honest verifier) zero-knowledge IOP
(or ZKIOP for short) if there exists a PPT simulator S, such that for any (x, ω) ∈ R, the output of S(x) is
distributed identically to the view of V in the interaction (P(x, ω),Vπ(x)).

2.4 Interactive PCPs

An interactive PCP [KR08] (IPCP) is a special case of IOPs (also known as probabilistically checkable
interactive proofs [RRR16]) in an IOP where the prover sends a proof oracle only in the first round and in
the subsequent rounds it simply responds to the verifier’s message with a message instead of an oracle (a
message can be viewed as an oracle with one value). We formally define the notion of IPCP below as the
main construction in this work is an IPCP.

Definition 2.5 (Interactive PCP). Let R(x,w) be an NP relation corresponding to an NP language L. An
interactive PCP (IPCP) system for R with parameters (q, l, ε) is a pair of PPT interactive machines 〈P,V〉
with the following properties.

1. Syntax: On common input x and prover input w, the prover P computes in time poly(|x|) a bit string
π (referred to as the PCP). The prover P and verifier V then interact, where the verifier has oracle
access to π.

2. COMPLETENESS: If (x,w) ∈ R then

Pr[(P(x,w),Vπ(x)) = 1] = 1.

3. SOUNDNESS: For every x /∈ L, every (unbounded) interactive machine P∗ and every π̃ ∈ {0, 1}∗,

Pr[(P∗,V π̃(x)) = 1] ≤ ε(|x|).

4. COMPLEXITY: In the interaction (P(x,w),Vπ(x)) at most l(|x|) bits are communicated and V reads
at most q(|x|) bits of π.
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A public-coin IPCP is one where every message sent by the verifier simply consists of fresh random bits.

Our zero-knowledge variants of IPCP achieve perfect zero-knowledge against an honest verifier.

Definition 2.6 (Zero-knowledge IPCP). Let 〈P,V〉 be an interactive PCP for R. We say that 〈P,V〉 is an
(honest verifier, perfect) zero-knowledge IPCP (or ZKIPCP for short) if there exists an expected polynomial
time algorithm S, such that for any (x,w) ∈ R, the output of S(x) is distributed identically to the view of
V in the interaction (P(x,w),Vπ(x)).

3 From MPC to ZKIPCP

3.1 Our MPC Model

As mentioned in the introduction, the efficiency of our constructions can be distilled to identifying the right
MPC model and designing an efficient protocol in this model. In this regards we deviate from the original
work of [IKOS07] which provided a general transformation from any honest majority MPC protocol that
can compute arbitrary functionalities. In particular, our model is more in line with the watchlist mechanism
(a-la [IPS08]). We begin with the description of the MPC model and the protocol specifications that we will
need to design our zero-knowledge protocol. In Section 4, we use such MPC protocols based on the works
[DI06, CC06, IPS08, IPS09].

In our model, we consider a sender client S, n servers s1, . . . , sn and a receiver client R. The sender has
an input x and a witness w with respect to some NP relationR. The receiver and the servers do not receive
any input, where the servers obtain random shares from the sender and evaluate the computed circuit. Upon
receiving (x,w) from the sender, the functionality computesR(x,w) and forwards the result to the receiver
R. We consider the specific network where the communication is restricted to a single message between
S and the servers at the beginning of the protocol and a single message from the servers to the receiver R
at the end of the protocol. Moreover, the only way the servers may communicate with each other is via a
broadcast. In our actual MPC protocol, the servers will never utilize such a broadcast. Nevertheless, our
transformation from MPC to ZK can be easily extended to allow for the servers to invoke a broadcast. For
simplicity, we will restrict the servers to not communicate with each other at all in our actual transformation.

We consider the security of our underlying protocols in both the honest-but-curious (passive) and the
malicious (active) models. In the former model, one may break the security requirements into the following
correctness and privacy requirements.

Definition 3.1 (Correctness). We say that Π realizes a deterministic n+1-party functionality (x, r1, . . . , rn)
with perfect (resp., statistical) correctness if for all inputs (x, r1, . . . , rn), the probability that the output of
some player is different from the output of f is 0 (resp., negligible in κ), where the probability is over the
independent choices of the random inputs r1, . . . , rn.

Definition 3.2 (tp-Privacy). Let 1 ≤ tp < n. We say that Π realizes f with perfect tp-privacy if there
is a PPT simulator S such that for any inputs (x, r1, . . . , rn) and every set of corrupted players T ⊂
[n], where |T | ≤ tp, the joint view ViewT (x, r1, . . . , rn) of players in T is distributed identically to
S(T, x, {ri}i∈T , fT (x, r1, . . . , rn)).

With respect to our MPC model defined above, we consider privacy in the presence of a static passive
adversary that corrupts the receiver R and at most tp servers. Our zero-knowledge property will reduce to
this security guarantee.
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In the malicious model, in which corrupted players may behave arbitrarily, security cannot be generally
broken into correctness and privacy as above. However, for our purposes we only need the protocols to
satisfy a weaker notion of security in the malicious model that is implied by the standard general definition.
Specifically, it suffices that Π be tp-private as above, and moreover it should satisfy the following notion of
correctness in the malicious model for which we reduce the soundness property to.

Definition 3.3 (Statistical tr-Robustness). We say that Π realizes f with statistical tr-robustness if it is
perfectly correct in the presence of a honest-but-curious adversary as in Definition 3.1, and furthermore
for any (unbounded) active adversary that adaptively corrupts a set T of at most tr players, and for
any inputs (x, r1, . . . , rn), the following robustness property holds. If there is no (r1, . . . , rn) such that
f(x, r1, . . . , rn) = 1, then the probability that R outputs 1 in an execution of Π in which the inputs of the
honest players are consistent with (x, r1, . . . , rn) is negligible in κ where κ is a statistical parameter that
the protocol Π receives as input.

Our main theorems about our two-party ZK protocol are proven in the presence of a static active ad-
versary, that corrupts the prover at the onset of the execution. Nevertheless, our proof relies on the security
of the underlying MPC protocol (utilized in the MPC-in-the-head paradigm) being robust against an ac-
tive adversary that adaptively corrupts a subset of the servers in the underlying MPC protocol. Concretely,
with respect to our MPC model defined above, we consider robustness in the presence of an adaptive active
adversary that corrupts the sender S and at most tr servers.

Finally, when used in the MPC-in-the-head paradigm, we need the notion of consistent views between
servers and the receiver that we define below.

Definition 3.4 (Consistent views). We say that a pair of views Vi, Vj are consistent (with respect to the
protocol Π and some public input x) if the outgoing messages implicit in Vi are identical to the incoming
messages reported in Vj and vice versa.

3.2 ZKIPCP for NP - The General Case

Next, we provide our compilation from an MPC protocol satisfying the requirements specified in Section
3.1 to an interactive PCP. We note that while the transformation presented in this section works for any MPC
in the model as described in the previous section, we will simplify our MPC model as follows:

Two-phase: The protocol we consider will proceed in two phases: In Phase 1, the servers receive inputs
from the sender and only perform local computation. After Phase 1, the servers obtain a public random
string r of length l sampled via a coin-flipping oracle and broadcast to all servers. The servers use this
in Phase 2 for their local computation at the end of which each server sends a single output message
to the receiver R.

No broadcast: The servers never communicate with each other. Each server simply receives inputs from
the sender at the beginning of Phase 1, then receives a public random string in Phase 2, and finally
delivers a message to R.

Formally, let L be an NP language with NP relationR, let x an NP statement that is the common input
and let w be the private input of the prover. We will now design a ZKIPCP protocol ΠZKIPCP (Figure 1) that
meets Definition 2.5 based on any MPC protocol Π that is defined according to our model described above.

We are now ready to prove the following theorem.
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• Input: The prover P and the verifier V share a common input statement x and a circuit description C that
realizesR. P additionally has input w such thatR(x,w) = 1.

• Oracle π: The prover runs the MPC protocol Π “in-its-head” as follows. It picks a random input rS and
invokes S on (x,w; rS) and a random input ri for every server si. The prover computes the views of
the servers up to the end of Phase 1 in Π, denoted by (V1, . . . , Vn), and sets the oracle as the n symbols
(V1, . . . , Vn).

• The interactive protocol.

1. V picks a random challenge r of length l and sends it to the sender.

2. Upon receiving the challenge r, prover P sends the view V of R. (As the prover possesses all
the information about the servers, and the verifier always receives the broadcast message from each
server, these broadcast messages can be sent directly from the prover to the verifier.)

3. V computes the output of R from the view and checks if R does not abort. It then picks a random
subset Q of [n] of size tp uniformly at random (with repetitions), and queries the oracle on Q.

4. V obtains from the oracle the views of the servers in Q.

5. V rejects if the views of the servers are inconsistent with the view of R. Otherwise, it accepts.

Figure 1: Protocol ΠZKIPCP

Theorem 3.5. Let f be the following functionality for a sender S and n servers s1, . . . , sn and receiver R.
Given a public statement x and an additional input w received from S, the functionality delivers R(x,w)
to R. Suppose that Π is a two-phase protocol in the MPC model specified in Section 3.1 that realizes f with
statistical tr-robustness (in the malicious model) and perfect tp-privacy (in the honest-but-curious model),
where tr < dn2 e − 1.2 Then protocol ΠZKIPCP described above is a ZKIPCP for NP relation R, with
soundness error

(
1− tr

n

)tp + δ(κ) where δ(κ) is the robustness error of Π.

Proof: Our proof follows by establishing completeness, soundness and zero-knowledge as required in
Definitions 2.5-2.6.

Completeness: Completeness follows directly from the correctness of the underlying MPC protocol.

Soundness: Consider a statement x 6∈ LR. We will show that no prover P∗ can convince V beyond
a negligible probability to accept a false statement. We will argue soundness by following an approach
similar to [IKOS07] where we first identify an inconsistency graph and then invoke the properties of the
underlying MPC. More precisely, we consider an inconsistency graph G based on the n views V1, . . . , Vn
and the view of the receiver R which contains the messages from servers s1, . . . , sn to R. Here, the servers
and the receiver correspond to nodes in G and inconsistency between every pair of nodes is defined as in
Definition 3.4. Then there are two cases depending on the graph G:

Case 1: There are more than tr edges in G. In this case, we will argue that with high probability the set
of servers opened by the verifier will hit one of these edges. Recall that the view of R is provided to the
verifier. Therefore, for any edge in G between R and Vi, if the corresponding server si falls in Q, then the
verifier rejects. The probability that all tp servers chosen by the verifier misses all inconsistent edges is at
most

(
1− tr

n

)tp .

2The size of tp is typically O(κ) and will be adjusted below in order to minimize the communication complexity.
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Case 2: There are fewer than tr edges in G. In this case, we will argue that by the statistical tr-robustness
of the underlying MPC protocol Π, the verifier will reject except with probability δ(κ). More precisely,
for every cheating strategy P∗ in the ZK proof we will demonstrate an adversarial strategy A attacking the
underlying MPC protocol such that the probability with which V accepts a false statement when interacting
with P∗ on a false statement will be bounded by the probability that R outputs 1 in an execution of the
underlying MPC protocol with adversary A.

More precisely, consider an adversary A that is participating in the MPC protocol with n servers, a
sender and a receiver. Internally, A incorporates the code of P∗ while emulating the roles of the oracle and
V . When the protocol begins, P∗ sets the oracle with the views of the servers as in Phase 1 of Π. These
views simply contain the inputs sent to the servers (as all computations are local). Upon obtaining the views
of the servers, A will corrupt the sender in the external MPC execution, and acting as the sender, it will
send as input to server si the value that was internally generated by P∗ as the view of that server, namely
Vi. Next, recall that in the MPC protocol the servers receive a random string from the coin-flipping oracle
(in our protocol the verifier picks r as the challenge in Step 1). A will internally forward this string r to P∗
as the message provided by the verifier.

Next,A proceeds with the internal execution by selecting tp indices for the verifier’s challenge, for which
the oracle will reveal the views of these corresponding servers. If V rejects in the internal execution because
any of these views are inconsistent, then A aborts. Otherwise, A continues with the external execution.
Recall that in Phase 2, each server sends a single message to R. Then just before the servers send these
messages, A computes the inconsistency graph G. Recall that an edge is present between a server si and
the receiver R in this graph if the view of si is inconsistent with the view of R and randomness r. Let T
be the set of servers of size t∗ that are connected to an edge in G. If t∗ > tr, then A aborts. Otherwise, A
(adaptively) corrupts the servers in T and replaces their (honestly generated) messages sent to R by what
was internally reported in the view of R, namely the messages sent by P∗ to the verifier in the proof.

It follows from this description that the acceptance condition of the verifier in the internal emulation
with A is identical to the output of R in the external MPC execution. Since the underlying MPC protocol is
tr-robust and the number of parties corrupted by A is bounded by tr, we have that R outputs 0 except with
probability δ(κ). We conclude that the verifier in the internal emulation by P∗ accepts the proof of a false
statement except with probability at most δ(κ). Next, we observe that the view of the verifier emulated byA
in the internal emulation is identically distributed to the view of an honest verifier in an interactive with P∗.
Therefore, we can conclude that an honest verifier accepts a false statement with probability at most δ(κ).

Applying a union bound, we conclude that the verifier accepts a false statement with probability at most(
1− tr

n

)tp + δ(κ).

Zero-knowledge: The zero-knowledge property follows from the tp-privacy of the underlying MPC proto-
col Π. Namely, we construct a simulator S that invokes the simulator for the MPC protocol, denoted by SΠ.
SΠ simulates an adversary A that statically corrupts the receiver R and adaptively corrupts the tp servers
whom their views are opened for checking consistency, where the servers corruptions take place at the end
of the computation. In this simulation, SΠ is required to produce the view of R upon receiving a challenge
r. Next, upon obtaining the query Q from the verifier, S instructs SΠ to output the views of these tp servers.
�

Communication complexity: The main source of complexity is in revealing the view of R in the third
message and revealing the view of the tp servers in the last message. If the maximum size of the view
of each server si for i ∈ tp, is vsize, and the size of the view of R is vR, then the total communication
complexity from the prover is tp · vsize + vR. In Section 4 we adjust the parameters of our protocol subject
to the constraint that vsize · vR = O(|C|). To minimize the communication complexity, if we set tp · vsize and
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vR to be roughly equal then we obtain the optimum complexity of our approach.

4 A Direct ZKIPCP Construction

In this section we give a self-contained description of our zero-knowledge interactive PCP protocol. This
protocol is a slightly optimized version of the protocol obtained by applying our variant of the general “MPC
to ZK” transformation from [IKOS09] (see Section 3) to the honest-majority MPC protocol from [DI06].

Coding notation. For a code C ⊆ Σn and vector v ∈ Σn, denote by d(v, C) the minimal distance of v from
C, namely the number of positions in which v differs from the closest codeword in C, and by ∆(v, C) the
set of positions in which v differs from such a closest codeword (in case of ties, take the lexicographically
first closest codeword), and by ∆(V,C) =

⋃
v∈V {∆(v, C)}. We further denote by d(V,C) the minimal

distance between a vector set V and a code C, namely d(V,C) = minv∈V {d(v, C)}. Our ZKIPCP protocol
uses Reed-Solomon (RS) codes, defined next.

Definition 4.1 (Reed-Solomon Code). For positive integers n, k, finite field F, and a vector η = (η1, . . . , ηn)
∈ Fn of distinct field elements, the code RSF,n,k,η is the [n, k, n− k + 1] linear code over F that consists of
all n-tuples (p(η1), . . . , p(ηn)) where p is a polynomial of degree < k over F.

Definition 4.2 (Encoded message). Let L = RSF,n,k,η be an RS code and ζ = (ζ1, . . . , ζ`) be a sequence of
distinct elements of F for ` ≤ k. For u ∈ L we define the message Decodeζ(u) to be (pu(ζ1), . . . , pu(ζ`)),
where pu is the polynomial (of degree < k) corresponding to u. For U ∈ Lm with rows u1, . . . , um ∈ L, we
let Decodeζ(U) be the length-m` vector x = (x11, . . . , x1`, . . . , xm1, . . . , xm`) such that (xi1, . . . , xi`) =
Decodeζ(u

i) for i ∈ [m]. Finally, when ζ is clear from the context, we say that U encodes x if x =
Decodeζ(U).

At a very high level, our ZKIPCP protocol proves the satisfiability of an arithmetic circuit C of size s in
the following way. The prover arranges (a slightly redundant representation of) the s wire values of C on a
satisfying assignment in an O(

√
s)×O(

√
s) matrix, and encodes each row of this matrix using an RS code.

The verifier challenges the prover to reveal linear combinations of the entries of the codeword matrix, and
checks their consistency with t randomly selected columns of this matrix, where t is a security parameter. In
the following we describe the ZKIPCP construction in a bottom-up fashion, first addressing the case of IPCP
(with no zero-knowledge) and then introduce the modifications required for making it zero-knowledge.

For convenience, we provide a list of our parameters in Table 1.

4.1 Testing Interleaved Linear Codes

We start by describing and analyzing a simple interactive prover-assisted protocol for simultaneously testing
the membership of multiple vectors in a given linear code L. It will be convenient to view m-tuples of
codewords in L as codewords in an interleaved code Lm. We formally define this notion below.

Definition 4.3 (Interleaved code). Let L ⊂ Fn be an [n, k, d] linear code over F. We let Lm denote the
[n,mk, d] (interleaved) code over Fm whose codewords are all m × n matrices U such that every row Ui
of U satisfies Ui ∈ L. For U ∈ Lm and j ∈ [n], we denote by U [j] the jth symbol (column) of U .

To test the membership of U in Lm, V challenges P to reveal a random linear combination of the rows
Ui, and then checks that the revealed codeword is consistent with a randomly selected set of t columns of
U .3 The complete test is described in Figure 2.

3This test is implicitly used in the verifiable secret sharing sub-protocol of efficient MPC protocols from the literature, and in

13



Parameter Description
w Extended witness
U Encoded extended witness
m #Rows in the extended witness
` #Columns in the extended witness
s Circuit size
k Message length
n Codeword length
d Codeword distance
e #Errors within a codeword
t #queries on U
κ Security parameter
σ Repetition parameter
h RO (Hash function) output length

Table 1: Description of our parameters.

Oracle: A purported Lm-codeword U . Depending on the context, we may view U either as a matrix in Fm×n in
which each row Ui is a purported L-codeword, or as a sequence of n symbols (U [1], . . . , U [n]), U [j] ∈ Fm.

Interactive testing:

1. V picks a random linear combination r ∈ Fm and sends r to P .

2. P responds with w = rTU ∈ Fn.

3. V queries a set Q ⊂ [n] of t random symbols U [j], j ∈ Q.

4. V accepts iff w ∈ L and w is consistent with U [Q] and r. That is, for every j ∈ Q we have

m∑
i=1

rj · Ui,j = wj .

Figure 2: Test-Interleaved (F, L[n, k, d],m, t;U)

The following lemma follows directly from the linearity of L.

Lemma 4.1. If U ∈ Lm and P is honest, then V always accepts.

Our soundness analysis will rely on the following lemma.

Lemma 4.2. Let e be a positive integer such that e < d/4. Suppose d(U∗, Lm) > e. Then, for a random
w∗ in the row-span of U∗, we have

Pr[d(w∗, L) ≤ e] ≤ (e+ 1)/|F|.
particular in the protocols from [DI06, IPS09] on which we build. Its soundness requires the MPC protocol to be adaptively secure
to accommodate P’s ability to make the locations of inconsistencies depend on V’s random challenge; when the MPC adversary is
adaptive, it can potentially corrupt all parties observing such inconsistencies. Indeed, the compiler from statistically secure MPC to
ZK proofs from [IKOS09] relies on the adaptive security of the underlying MPC protocol.
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Proof: Let L∗ be the row-span of U∗. We consider two cases.

CASE 1: There exists v∗ ∈ L∗ such that d(v∗, L) > 2e. In this case, we show that

Pr
w∗∈RL∗

[d(w∗, L) ≤ e] ≤ 1/|F|. (1)

Indeed, using a basis for L∗ that includes v∗, a random w∗ ∈ L∗ can be written as αv∗ + x, where
α ∈R F and x is distributed independently of α. We argue that conditioned on any choice of x, there can
be at most one choice of α such that d(αv∗ + x, L) ≤ e, which implies (1). This follows by observing
that if d(αv∗ + x0, L) ≤ e and d(α′v∗ + x0, L) ≤ e for α 6= α′, then by the triangle inequality we have
d((α− α′)v∗, L) ≤ 2e, contradicting the assumption that d(v∗, L) > 2e.

CASE 2: For every v∗ ∈ L∗, d(v∗, L) ≤ 2e. We show that in this case

Pr
w∗∈RL∗

[d(w∗, L) ≤ e] ≤ (e+ 1)/|F|. (2)

Let U∗i be the i-th row of U∗ and let Ei = ∆(U∗i , L). Note that, since 2e < d/2, each U∗i can be written
uniquely as U∗i = ui + χi where ui ∈ L and χi is nonzero exactly in its Ei entries. Let E = ∪mi=1Ei.
Since d(U∗, Lm) > e, we have |E| > e. We show that for each j ∈ E, except with 1/|F| probability over a
random choice of w∗ from L∗, either j ∈ ∆(w∗, L) or d(w∗, L) > e, from which the claim will follow.

Suppose j ∈ Ei. As before, we write w∗ = αU∗i + x for α ∈R F and x distributed independently of α.
Condition on any possible choice x0 of x. Define a bad set

Bj = {α : j 6∈ ∆(αU∗i + x0, L) ∧ d(αU∗i + x0, L) ≤ e}.

We show that |Bj | ≤ 1. Suppose towards contradiction that there are two distinct α, α′ ∈ F such that for
z = αU∗i + x0 and z′ = α′U∗i + x0 we have d(z, L) ≤ e, d(z′, L) ≤ e, j 6∈ ∆(z, L), and j 6∈ ∆(z′, L).
Since d > 4e, for any z∗ in the linear span of z and z′ we have j 6∈ ∆(z∗, L). Since U∗i is in this linear span,
we have j 6∈ ∆(U∗i , L), in contradiction to the assumption that j ∈ Ei.

We have shown that for each j ∈ E, conditioned on every possible choice of x, either j ∈ ∆(w∗, L) or
d(w∗, L) > e except with 1/|F| probability over the choice of α. It follows that the same holds for a random
choice of x. Taking a union bound over the first e+ 1 elements of E we get that Prw∗∈RL∗ [d(w∗, L) ≤ e] ≤
(e+ 1)/|F| as required. �

We now prove the soundness of the testing procedure when the given oracle is far from Lm.

Theorem 4.4. Let e be a positive integer such that e < d/4. Suppose d(U∗, Lm) > e. Then, for any
malicious P strategy, the oracle U∗ is rejected by V except with ≤ (1− e/n)t + (e+ 1)/|F| probability.

Proof: Letting w∗ = rTU∗, it follows from Lemma 4.2 that

Pr[V accepts U∗] ≤ Pr[V accepts | d(w∗, L) > e]

+ Pr[d(w∗, L) ≤ e]

≤
(
n−e−1

t

)(
n
t

) + (e+ 1)/|F|

≤ (1− e/n)t + (e+ 1)/|F|

as required. �
In Appendix B.1 we present a simple generalization of the testing algorithm that uses σ linear combina-

tions to amplify soundness.
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4.1.1 Improving the Analysis

In our preceding analysis we had the requirement e < d/4 in Theorem 4.4. Relaxing this to e < d/3 or
possibly even e < d/2 with essentially the same soundness error bound can improve the concrete parameters
of the ZKIPCP significantly. We remark that Theorem 4.4 holds for any linear code. However, when
considering concrete parameters it would suffice to present a tighter analysis for RS codes. In [AHIV17] we
conjectured that the analysis could be extended to the case e < d/3. Soon after, in private communication,
Ronny Roth and Gilles Zémor [RZ17] independently proved the stronger result for e < d/3. Below, we
present this analysis. At the end of this section, we discuss subsequent improvements and the current state-
of-the-art. For our implementation, we relied on the tightest analysis to identify concrete parameters.

The case e < d/3: As a first step, we reduce such a stronger version of Theorem 4.4 to a simple lemma
about the distance of points on an affine line from an RS code. We begin by showing that for any linear
code over a sufficiently large field, when e < d/3 we can restrict the attention to Case 1 from the proof of
Lemma 4.2.

Lemma 4.3. Let L be an [n, k, d] linear code over F. Let e be a positive integer such that e < d/3 and
|F| ≥ e. Suppose d(U∗, Lm) > e. Then, there exists v∗ ∈ L∗ such that d(v∗, L) > e, where L∗ is the
row-span of U∗.

Proof: Assume towards a contradiction that d(v∗, L) ≤ e for all v∗ ∈ L∗ and suppose that v∗0 ∈ L∗

maximizes the distance from L. Since d(U∗, Lm) > e, there must be a row U∗i such that ∆(U∗i , L) \
∆(v∗0, L) 6= ∅, as v∗0 introduces at most e errors. Let v∗0 = u0 + χ0 and U∗i = ui + χi for u0, ui ∈ L and
χ0, χi of weight ≤ e, as by our assumption above all elements in L∗ introduce at most e errors. We argue
that there exists α ∈ F such that for v̂ = v∗0 +αU∗i it holds that d(v̂, L) > d(v∗0, L), contradicting the choice
of v∗0 . Specifically, since d(v∗0, L) ≤ e and d(U∗i , L) ≤ e, there is a codeword w ∈ L that is at most 2e-far
from v̂, namely by setting w = u0 + αui and aggregating the errors on the worst case. Furthermore, since
d(v̂, L) ≤ e there must be a codeword w′ ∈ L that at most than e-far from v̂. Now, since d > 3e, it must be
the case thatw = w′, or else d(w,w′) ≤ 3ewhich is less than d. However, for any j ∈ ∆(v∗0, L)∪∆(U∗i , L)
there is at most one choice of α such that the jth component of χ0 + αχi goes to zero. By an union bound,
there are at most 2e such α’s. Considering any other α, we arrive at a contradiction. �

Given Lemma 4.3, as we argue below, that in order to obtain an equivalent guarantee to Lemma 4.2, it
will suffice to show that in any affine subspace of Fn, either all points are e-close to L or almost all are not.
This reduces to showing the same for 1-dimensional spaces which is claimed in the following lemma. The
proof of this lemma due to Roth and Zémor is presented in Appendix A.

Lemma 4.4. Let L = RSF,n,k,η be a Reed-Solomon code with minimal distance d = n − k + 1. Let e be
a positive integer such that e < d/3. Then for every u, v ∈ Fn, defining an affine line `u,v = {u + αv :
α ∈ F}, either (1) for every x ∈ `u,v we have d(x, L) ≤ e, or (2) for at most d points x ∈ `u,v we have
d(x, L) ≤ e.

We remark here that we do not have a counterexample to Lemma 4.4 when we relax e < d/2 and
even when L is a general linear code. Indeed, subsequent work analyzed an improved analysis for the case
e < d/2 with a relaxed version of condition (2) where d is replaced by n and this relaxed version will deliver
better efficiency of our ZKIPCP.

In order to extend the previous analysis to the case where e < d/3, we need an alternate version of
Lemma 4.2 which we state next:
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Lemma 4.5. Let L = RSF,n,k,η be a Reed-Solomon code with minimal distance d = n − k + 1 and e a
positive integer such that e < d/3. Suppose d(U∗, Lm) > e. Then, for a random w∗ in the row-span of U∗,
we have

Pr[d(w∗, L) ≤ e] ≤ d/|F|.

Before we prove Lemma 4.5, we can conclude analogously to the previous analysis that this lemma implies
the following stronger version of Theorem 4.4.

Theorem 4.5. Let e be a positive integer such that e < d/3. Suppose d(U∗, Lm) > e. Then, for any
malicious P strategy, the oracle U∗ is rejected by V except with ≤ (1− e/n)t + d/|F| probability.

Proof of Lemma 4.5. On a high-level Lemma 4.5 follows by extending Lemma 4.4 from lines to general
affine subspaces. This extension follows from the fact that if a subspace has a point that is far from L, then
we can partition the subspace (minus the point) into lines containing this point. Now, from Lemma 4.4
we have that at most d/|F | points can be near L for lines, therefore, we have that the same for affine
subspace L∗.

In more detail, we will follow the proof of Lemma 4.2. Case 1 of the analysis remains the same, so we
only have to argue Case 2 where we have that for every v∗ ∈ L∗, d(v∗, L) ≤ 2e. Next, since d(U∗, L) > e,
we use Lemma 4.3 to conclude that there exists v∗ ∈ L∗ such that d(v∗, L) > e. As before, we can express
the points in L∗ as x+αv∗ where α ∈R F and x is distributed independently of α. For any fixed x, we have
that there exists α such that x + αv∗ is more than e far from L. Now from part (2) in Lemma 4.4, we can
conclude that there are at most d values of α for which x + αv∗ is at most e-far from L. Since this is true
for each x (each line), it is true for the entire space L∗. This concludes the proof of Lemma 4.5.

Subsequent improvements. Subsequent to the publication of [AHIV17], several works [BBHR18, BGKS20,
BCI+20] have improved this analysis, where currently the best analysis is presented in [BCI+20].

Lemma 4.6. [BCI+20, Theorem 1.2] Let L = RSF,n,k,η be a Reed-Solomon code with minimal distance
d = n− k + 1 and e a positive integer such that e < d/2. Suppose d(U ′, Lm) > e. Then, for a random w∗

in the column-span of U ′, we have
Pr[d(w∗, L′) ≤ e] ≤ n/|F|.

4.2 Testing Linear Constraints over Interleaved Reed-Solomon Codes

In this section we describe an efficient procedure for testing that a message encoded by an interleaved RS
code satisfies a given set of linear constraints. This generalizes a procedure from [Gro09, IPS09] for testing
that such an encoded message satisfies a given set of replication constraints. In the following we assign a
message in F` to a codeword in Fn by considering a fixed set of ` evaluation points of the polynomial defined
by the codeword. Note that while each codeword has a unique message assigned to it, several different
codewords can be “decoded” into the same message. As the degree of the polynomial corresponding to the
codeword can be higher than `− 1. On the other hand, if the degree of the polynomial corresponding to the
codeword is restricted to be smaller than `, the encoding becomes unique.

We now describe a simple testing algorithm for checking that the message x encoded by U satisfies
a given system of linear equations Ax = b, for A ∈ Fm`×m` and b ∈ Fm`. (We will always apply this
test with a sparse matrix A containing O(m`) nonzero entries.) The test simply picks a random linear
combination r ∈ Fm` and checks that (rTA)x = rT b. Note that if Ax 6= b, the test will only pass with
1/|F| probability. To make the test sublinear, we let the prover provide a polynomial encoding (rTA)x
and check its consistency with rT b and with U on t randomly chosen symbols. To further simplify the
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description and analysis of the testing algorithm, we assume that U is promised to be e-close to Lm. Our
final IPCP will run the Test-Interleaved from Section 4.1 to ensure that if the promise is violated, this is
caught with high probability. The complete test is described in Figure 3.

Oracle: A purported Lm-codeword U that should encode a message x ∈ Fm` satisfying Ax = b.

Interactive testing:

1. V picks a random vector r ∈ Fm` and sends r to P .

2. V and P compute
rTA = (r11, . . . , r1`︸ ︷︷ ︸

multipliers for
the first block

, . . . , rm1, . . . , rm`︸ ︷︷ ︸
multipliers for
the last block

)

and, for i ∈ [m], let ri(·) be the unique polynomial of degree < ` such that ri(ζc) = ric for every c ∈ [`].

3. P sends the k + ` − 1 coefficients of the polynomial defined by q(·) =
∑m
i=1 ri(·) · pi(·)︸ ︷︷ ︸

pairwise product
within a block

, where pi(·) is

the polynomial of degree < k corresponding to row i of U .

4. V queries a set Q ⊂ [n] of t random symbols U [j], j ∈ Q.

5. V accepts if the following conditions hold:

(a)
∑
c∈[`] q(ζc) =

∑
i∈[m],c∈[`] ricbic.

(b) For every j ∈ Q,
∑m
i=1 ri(ηj) · Ui,j = q(ηj).

Figure 3: Test-Linear-Constraints-IRS(F, L = RSF,n,k,η,m, t, ζ, A, b;U)

The following lemma easily follows by inspection.

Lemma 4.7. If U ∈ Lm, U encodes x such that Ax = b, and P is honest, V always accepts.

Soundness is argued by the following lemma.

Lemma 4.8. Let e be a positive integer such that e < d/2. Suppose that a (badly formed) oracle U∗ is
e-close to a codeword U ∈ Lm encoding x ∈ Fm` such that Ax 6= b. Then, for any malicious P strategy,
U∗ is rejected by V except with at most 1/|F|+ ((e+ k + `)/n)t probability.

Proof: Let q(·) be the polynomial generated in Step 3 following the honest P strategy on input U . Since
we assume that Ax 6= b, it holds that

Pr
r

[rTAx = rT b] = 1/|F|.

Namely, except with probability 1/|F| over the choice of r in Step 1, the polynomial q(·) fails to satisfy the
condition in Step 5a. This is due to the fact that∑

c∈[`]

q(ζc) = (rTA)x
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and ∑
i∈[m],c∈[`]

ricbic = rT b.

Next, we analyze the probability that a malicious P strategy is rejected conditioned on q(·) failing as
above. Let q′(·) be the polynomial sent by the prover. If q′(·) = q(·), then V rejects in Step 5a with
probability 1/|F|. Else, using the fact that q(·) and q′(·) are of degree at most k + ` − 2, we have that the
number of indices j ∈ [n] for which q(ηj) = q′(ηj) is at most k + ` − 2. Let Q′ be the set of indices on
which they agree. Then V rejects in Step 5b whenever Q selected in Step 5 contains an index i 6∈ Q′ ∪ E,
where E = ∆(U∗, Lm). This fails to happen with probability at most

(
e+k+`−2

t

)
/
(
n
t

)
≤ ((e+ k + `)/n)t.

The lemma now follows by a simple union bound. �

4.3 Testing Quadratic Constraints over Interleaved Reed-Solomon Codes

In this section we describe a simple test for verifying that vectors x, y, z ∈ Fm` respectively encoded by
Ux, Uy, U z ∈ Lm, satisfy the constraints x� y + a� z = b for some known a, b ∈ Fm`, where � denotes
pointwise product. Letting L = RSF,n,k,η, Ua = Encode(a) and U b = Encode(b), this test reduces to
checking that Ux � Uy + Ua � U z − U b encodes the all zeros message 0m` in the (interleaved extension
of) L̂ = RSF,n,2k−1,η. This could be done using the general membership test for interleaved linear codes
(Test-Interleaved from Section 4.1), since the set of codewords in L̂ that encodes the all zeros message is
a linear subcode of L̂. In Figure 4 we present this test in a self-contained way, exploiting the promise that
Ux, Uy, U z are close to Lm for a tighter analysis.

The following lemma follows again directly from the description.

Lemma 4.9. Let U =
[
Ux Uy U z Uw

]T where Uw, Ux, Uy, U z ∈ Lm. If Ux, Uy, U z encode
vectors x, y, z ∈ Fm` satisfying x� y + a� z = b and P is honest, V always accepts.

Soundness is argued by the following lemma.

Lemma 4.10. Let e be a positive integer such that e < d/2. Let Ux∗, Uy∗, U z∗ be badly formed oracles
and let U∗ ∈ F3m×n be the matrix obtained by vertically juxtaposing the corresponding m × n matrices.
Suppose d(U∗, L3m) ≤ e, and letUx, Uy, U z , respectively, be the (unique) codewords inLm that are closest
to Ux∗, Uy∗, U z∗. Suppose Ux, Uy, U z encode x, y, z such that x� y+ a� z 6= b. Then, for any malicious
P strategy, (Ux∗, Uy∗, U z∗) is rejected by V except with at most 1/|F|+ ((e+ 2k)/n)t probability.

Proof: Let p0(·) be the polynomial generated in Step 3 following the honest P strategy on Ux, Uy, U z .
Since x, y, z do not satisfy the constraint x � y + a � z = b, the polynomial p0(·) fails to satisfy the
condition in Step 5a except with probability 1/|F| over the choice of r in Step 2. Indeed, we have p0(·) =∑m

i=1 ri · pi(·) and there must exist an index i and a point ζc such that pi(ζc) 6= 0.
Next, we analyze the probability that a malicious P strategy is rejected conditioned on p0 failing as

above. Let p′0(·) be the polynomial sent by the prover in Step 3. If p′0(·) = p0(·), then V rejects in Step 5a
with probability 1/|F|. Else, using the fact that p0(·) and p′0(·) are of degree at most 2k − 2, we have that
the number of indices j ∈ [n] for which p0(ηj) = p′0(ηj) is at most 2k − 2. Let Q′ be the set of indices
on which p0(·) and p′0(·) agree. Then V rejects in Step 5b whenever Q selected in Step 4 contains an index
i 6∈ Q′ ∪ E, where E = ∆(U∗, L3m). This fails to happen with probability at most(

e+ 2k − 2

t

)/(
n

t

)
≤ ((e+ 2k)/n)t.

The lemma now follows by a union bound. �
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Oracle: Purported L4m-codeword U , where U =
[
Ux Uy Uz

]T
, Ux, Uy, Uz ∈ Lm and Ux, Uy, Uz that

allegedly encode messages x, y, z ∈ Fm` satisfying x� y + a� z = b.
Interactive testing:

1. Let Ua = Encodeζ(a) and U b = Encodeζ(b).

2. V picks a random linear combinations r ∈ Fm and sends r to P .

3. P sends the 2k − 1 coefficients of the polynomial p0 defined by

p0(·) =

m∑
i=1

ri · pi(·), where pi(·) = pxi (·) · pyi (·) + pai (·) · pzi (·)− pbi (·),

and where pxi , p
y
i , p

z
i are the polynomials of degree < k corresponding to row i of Ux, Uy, Uz , and pai , p

b
i

are the polynomials of degree < ` corresponding to row i of Ua, U b.

4. V picks a random index set Q ⊂ [n] of size t, and queries U [j], j ∈ Q.

5. V accepts if the following conditions hold:

(a) p0(ζc) = 0 for every c ∈ [`].

(b) For every j ∈ Q, it holds that

m∑
i=1

ri ·
[
Uxi,j · Uyi,j + Uai,j · Uzi,j − U bi,j

]
= p0(ηj).

Figure 4: Test-Quadratic-Constraints-IRS(F, L = RSF,n,k,η,m, t, ζ, a, b;U)

4.4 IPCP for Arithmetic Circuits

In this section, we provide our IPCP for arithmetic circuits. Fix a large finite field F. Let C : Fni → F
be an arithmetic circuit. Without loss of generality, we will assume that the circuit contains only ADD and
MULTIPLY gates with fan-in two. We show how a prover can convince a verifier that C(w) = 1.

Protocol IPCP(C,F).

• Input: The prover P and the verifier V share a common input arithmetic circuit C : Fni → F and
input statement x. P additionally has input α = (α1, . . . , αni) such that C(α) = 1.

• Oracle π: Let m, ` be integers such that m · ` > ni + s where s is the number of gates in the circuit.
Then P generates an extended witness w ∈ Fm` where the first ni + s entries of w are

(α1, . . . , αni , β1, . . . , βs)

where βi is the output of the ith gate when evaluating C(α). P defines a system of constraints that
contains the following constraint for every multiplication gate g in the circuit C

βa · βb − βc = 0

and for every addition gate, the constraint

βa + βb − βc = 0
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where βa and βb are the input values to the gate g and βc is the output value in the extended witness.
For the output gate we include the constraint βa + βb − 1 = 1 if the final gate is an addition gate, and
βa · βb − 1 = 0 if it is a multiplication gate. P constructs vectors x, y and z in Fm` where the jth

entry of x, y and z contains the values βa, βb, and βc corresponding to the jth multiplication gate in
w. P and V construct matrices Px, Py and Pz in Fm`×m` such that

x = Pxw, y = Pyw, z = Pzw.

Finally, it constructs matrix Padd ∈ Fm`×m` such that the jth position of Paddw equals βa + βb− βc
where βa, βb, and βc correspond to the jth addition gate of the circuit inw. Let Uw, Ux, Uy, U z ∈ Lm
respectively encode w, x, y, z where L = RSF,n,k,η. P sets the oracle π as U ∈ L4m which is set as
the vertical juxtaposition of the following four matrices Uw, Ux, Uy, U z ∈ Lm.

All the linear constraints can be expressed as one large linear constraint matrix:

A =

[
I3m`×3m` −P
0m`×3m` Padd

]
, P =

PxPy
Pz

 , b = 04m`

• The interactive protocol:
V and P run the following tests.

1. Test-Interleaved (F, L, 4m, t;U)

2. Test-Linear-Constraints-IRS (F, L, 4m, t, ζ, A, b;U)

3. Test-Quadratic-Constraints-IRS(F, L,m, t, ζ, (−1)m`,0m`;U)

Since all the tests open the same number of columns t in Uw, Ux, Uy, Uz , then V will simply open t
columns of U . V rejects if it rejects in any of the tests above.

The completeness of our IPCP follows from the following lemma.

Lemma 4.11. If Uw, Ux, Uy, U z ∈ Lm encode vectors w, x, y, z ∈ Fm` satisfying

x = Pxw, y = Pyw, z = Pzw, x� y + (−1)m` � z = 0m`, Paddw = 0m`

and P is honest, V always accepts.

The proof follows directly from Lemmas 4.1, 4.7 and 4.9. Next, soundness is argued by the following
lemma.

Lemma 4.12. Let e be a positive integer such that e < d/3 and suppose that there exists no α such that
C(α) = 1. Then, for any maliciously formed oracle U∗ and any malicious prover strategy, the verifier
rejects except with at most (d+ 2)/|F|+ (1− e/n)t + 2((e+ 2k)/n)t probability.

Proof: On a high-level, soundness will essentially follow by the soundness of the individual tests and the
overall soundness error follows by a direct application of a union bound over the soundness of these tests.
In more detail, let U be the vertical juxtaposition of Uw∗, Ux∗, Uy∗, U z∗. Then we argue soundness by
considering the following cases and applying a union bound:
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Case d(U,L4m) > e: Since e < d/3, we can conclude from Theorem 4.5 that the verifier rejects in Test-
Interleaved executed in Step 1 except with probability (1− e/n)t + d/|F|.

Case d(U,L4m) ≤ e: Next, let Uw, Ux, Uy, U z ∈ Lm be the codes that are respectively close to Uw∗, Ux∗,
Uy∗, U z∗ and encode the messages w, x, y, z. Recall that there exists no w, x, y, z that satisfy all the
following constraints:

x = Pxw, y = Pyw, z = Pzw,
x� y + (-1)m` � z = 0m` and Paddw = 0m`.

Then we can conclude from Lemmas 4.8 and 4.10 by applying a union bound on the corresponding
tests that the verifier rejects except with probability:

2/|F|+ (e+ k + `)/n)t + ((e+ 2k)/n)t

< 2 ·
(
1/|F|+ ((e+ 2k)/n)t

)
.

�
The following theorem follows from the construction described above and the preceding Lemmas.

Theorem 4.6. Fix parameters n,m, `, k, t, e such that e < (n − k)/4. Let C : Fni → F be an arithmetic
circuit of size s, where |F| ≥ n and m · ` > ni + s. Then protocol IPCP(C,F) satisfies the following:

• COMPLETENESS: If α is such that C(α) = 1 and oracle π is generated honestly as described in the
protocol, then
Pr[(P(C, w),Vπ(C)) = 1] = 1.

• SOUNDNESS: If there is no α is such that C(α) = 1, then for every (unbounded) prover strategy P∗
and every π̃ ∈ F4mn,
Pr[(P∗,V π̃(C)) = 1] ≤ (d+ 2)/|F|+ (1− e/n)t + 2((e+ 2k)/n)t.

• COMPLEXITY: The number of field operations performed is poly(|C|, n). The number of field ele-
ments communicated by P to V is k+ (k+ `− 1) + (2 · k− 1) whereas V reads t symbols from F4m.

The first term in the communication cost is the communication incurred by the test-interleaved protocol, the
second term is due to the linear-constraint test and the final term results from our quadratic-constraint test.

4.5 IPCP for Boolean Circuits

In order to obtain the benefits in soundness from running our IPCP over a large field F, we show how we can
prove the validity of a Boolean circuit C : {0, 1}ni → {0, 1} by encoding the witness in any larger field F.
First, the prover will map the Boolean 0 within the witness to the additive identity ε0 in F, and the Boolean
1 to the multiplicative identity ε1 in F. Now, we can enforce that each element in the witness is a 0 or 1 by
introducing a quadratic constraint β2 − β = 0.

Next, given that binary constraints are already enforced, we proceed by demonstrating how we incorpo-
rate the constraints based on the XOR and ADD gates. In fact, we will show that all gate constraints can be
expressed as a linear relation on the witness bits. Let x be a column vector consisting of the witness string.
We will construct a matrixA and a column vectorw such that ifw is a binary valid witness then the elements
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of Aw will all be 0, and if w is binary and is not a valid witness then at least one element of Aw will be
nonzero. For each XOR and AND gate in the circuit we will create a row in the matrix corresponding to the
enforcement of that relation in the witness. Specifically, besides including the input bits x, the vector w will
include one additional bit for each XOR and AND gate. We explain the purpose of these extra bits next.

Given integers b1 and b2 consider the arithmetic constraint b1 + b2 = r0 + 2 · r1 over the integers. In
this constraint, if we enforce that all values are bits then r0 is the XOR of b1 and b2 and r1 is the AND of b1
and b2. In order to make sure that b1 XOR b2 equals b3 in w, we require the prover to include in the witness
an auxiliary bit d and enforce the linear constraint b1 + b2 = b3 + 2 · d, as well as the binary constraints that
b3 and d are bits. Analogously, to ensure b1 AND b2 equals b3, we include an auxiliary bit d and enforce the
linear constraint b1 +b2 = d+2 ·b3 and the binary constraint that b3 and d are bits. To conclude, we observe
that if the values have been enforced to be a binary constraint then checking the arithmetic constraints over
integers can be done by checking the equation modulo a sufficiently large prime (p ≥ 3).

We can also extend this idea to consider more complex gates such as addition modulo 232 over 32-bit
inputs and outputs. This can be expressed as a linear constraint over the bits. Suppose a = (a0, . . . , a31),
b = (b0, . . . , b31) and c = (c0, . . . , c31) are the input and output bits, the constraint a+ b = c mod 232 can
be expressed as

31∑
i=0

2i · ai +
31∑
i=0

2i · bi = 232 · d+
31∑
i=0

2i · ci

where d is an auxiliary input bit, and all values are enforced to be bits. However, this will require using a
finite field F with characteristic p > 233.

4.6 Achieving Zero-Knowledge

Note first that the verifier obtains two types of information in two different building blocks of the IPCP.
First, it obtains linear combinations of codewords in a linear code L. Second, it probes a small number of
symbols from each codeword. Since codewords are used to encode the NP witness, both types of information
give the verifier partial information about the NP witness, and thus the basic IPCP we described is not
zero-knowledge. Fortunately, ensuring zero-knowledge only requires introducing small modifications to the
construction and analysis. Specifically, the second type of “local” information about the codewords is made
harmless by making the encoding randomized, so that probing just a few symbols in each codeword reveals
no information about the encoded message. The high level idea for making the first type of information
harmless is to use an additional random codeword for blinding the linear combination of codewords revealed
to the verifier. However, this needs to be done in a way that does not compromise soundness. Below we
describe the modifications required for each of the IPCP ingredients.

4.6.1 ZK Testing of Interleaved Linear Codes

Recall that in the verification algorithm Test-Interleaved from Section 4.1, V obtains a linear combination
of the form w = rTU , where U ∈ Fm×n is a matrix whose rows should be codewords in L. A natural
approach for making this linear combination hide U is by allowing the prover to add to the rows of U an
additional random codeword u′ that is used for blinding. A simple implementation of this idea that provides
a slightly inferior soundness guarantee is as follows. Apply the algorithm Test-Interleaved to Lm+1, with
an extended oracle U ′ whose first m rows contain U and whose last row is u′. Letting w′ = rTU + r′u′

be the random linear combination obtained by V , the test fails to be zero-knowledge when r′ = 0, which
occurs with 1/|F| probability. Alternatively, settling for a slightly worse soundness guarantee (where e/|F|
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is replaced by e/(|F| − 1)), one could just let r′ be a random nonzero field element, and get perfect zero-
knowledge. It turns out, however, that one could fix r′ to 1 and still get the same soundness guarantee about
U as in Lemma 4.2 since we can apply the same the decomposition argument. This “affine” variant of
Test-Interleaved is described and analyzed in Appendix B.3.

4.6.2 ZK Testing of Linear Constraints over Interleaved Reed-Solomon Codes

The verification algorithm for the linear constraints Ax = b samples a random vector r, obtains rTAx, and
compares it with rT b. Looking more carefully at our actual protocol, the verifier obtains a polynomial q(·)
and checks whether the equality

∑
c∈[`] q(ζc) =

∑
i∈[m],c∈[`] ricbic holds. While the sum itself does not

reveal any additional information beyond what is already known, namely rT b, the individual evaluations of
q(·), i.e. q(ζc), may reveal information about the inputs. To hide this information, a simple idea is for P to
provide an additional vector u′ along with U that encodes a message (γ1, . . . , γ`) such that

∑
c∈[`] γc = 0,

and append to A the constraints that sum the entries in the message encoded in u′.
However, as before, this will yield less than optimal soundness guarantee. Instead, we consider the

following approach that provides the same soundness guarantee as the original (non-affine version of the)
test. We apply the algorithm Test-Linear-Constraints-IRS to Lm+1 where L = RSF,n,k,η, with an extended
oracle U ′ whose first m rows contain U and whose last row is u′ where additionally u′ encodes a message
(γ1, . . . , γ`) such that

∑
c∈[`] γc = 0. Letting q(·) =

∑m
i=1 ri(·) ·pi(·)+rBlind(·) be the polynomial obtained

by V where rBlind(·) is a polynomial (of degree < k + ` − 1) corresponding to u′, we can show that the
soundness of the resulting scheme will be the same as for Lemma 4.8. This “affine” variant of Test-Linear-
Constraints is described and analyzed in Appendix B.4.

4.6.3 ZK Testing of Quadratic Constraints over Interleaved Reed-Solomon Codes

Finally, we modify the quadratic constraint testing procedure in the same way as we modified the linear
constraint testing. Concretely, we apply the algorithm Test-Quadratic-Constraint to L3m+1 where L =
RSF,n,k,η, with an extended oracle U ′ whose first 3m rows contain Ux, Uy, U z and whose last row is u′

where additionally u′ encodes a message 0`. Letting p0(·) =
∑m

i=1 ri · pi(·) + rBlind(·) be the polynomial
obtained by V where rBlind(·) is a polynomial (of degree < 2k − 1) corresponding to u′, we can show
that the soundness of the resulting scheme will be the same as for Lemma 4.10. This “affine” variant of
Test-Quadratic-Constraints is described and analyzed in Appendix B.5.

4.7 The Final ZKIPCP

In this section provide a self contained description of the final ZKIPCP protocol, combining all of the
previous sub-protocols. In this section, we provide our ZKIPCP for arithmetic circuits over a large field F.
On a high-level, the protocol is essentially the IPCP construction from Section 4.4 with the exception that
we replace all the tests with the generalized affine version (with repetitions).

Protocol ZKIPCP(C,F).

• Input: The prover P and the verifier V share a common input arithmetic circuit C : Fni → F and
input statement x. P additionally has input α = (α1, . . . , αni) such that C(α) = 1.

• Oracle π: Let m, ` be integers such that m · ` > ni + s where s is the number of gates in the
circuit. Then P generates an extended witness w ∈ Fm` where the first ni + s entries of w are

24



(α1, . . . , αni , β1, . . . , βs) where βi is the output of the ith gate when evaluating C(α). P constructs
vectors x, y and z in Fm` where the jth entry of x, y and z contains the values βa, βb, and βc
corresponding to the jth multiplication gate in w. P and V construct matrices Px, Py and Pz in
Fm`×m` such that

x = Pxw, y = Pyw, z = Pzw.

Finally, it constructs matrix Padd ∈ Fm`×m` such that the jth row of Paddw equals βa + βb − βc
where βa, βb, and βc correspond to the jth addition gate of the circuit in w. The linear constraints can
be summarized as one large matrix as before.

A =

[
I3m`×3m` −P
0m`×3m` Padd

]
, P =

PxPy
Pz

 , b = 04m`

The prover samples random codewords Uw, Ux, Uy, U z ∈ Lm where L = RSF,n,k,η subject to w =
Decodeζ(U

w), x = Decodeζ(U
x), y = Decodeζ(U

y), z = Decodeζ(U
z) where ζ = (ζ1, . . . , ζ`) is

a sequence of distinct elements disjoint from (η1, . . . , ηn). Let u0
h, u

add
h be auxiliary rows sampled

randomly from L for every h ∈ [σ] where each of uaddh encodes an independently sampled random
` messages (γ1, . . . , γ`) subject to

∑
c∈[`] γc = 0 and u0

h encodes 0`. P sets the oracle as U ∈ L4m

which is set as the vertical juxtaposition of the matrices Uw, Ux, Uy, U z ∈ Lm.

• The interactive protocol:

1. For every h ∈ [σ], V picks the random elements rh ∈ F4m, raddh ∈ F4m` and rqh ∈ Fm and
sends them to P .

2. For every h ∈ [σ], P responds with

– (Interleaved Reed-Solomon Testing)

vh = (rh)TU + u′h ∈ Fn,

– (Linear Constraints Testing) Polynomial qaddh (·) of degree < k + `− 1 where

qaddh (·) = raddBlind,h(·) +
m∑
i=1

raddh,i (·) · pi(·),

such that

* pi is the polynomial of degree < k corresponding to row i of Uw,

* raddh,i (·) is the unique polynomial of degree < ` such that raddh,i (ζc) = ((raddh )TP )ic for
every c ∈ [`], and

* radd
Blind,h(·) is the polynomial of degree < k + `− 1 corresponding to uaddh .

– (Quadratic Constraints Testing)

p0,h(·) = r0
Blind,h(·) +

m∑
i=1

(
rqh
)
i
· (pxi (·) · pyi (·)− pzi (·))

where for a ∈ {x, y, z},
* pai is the polynomial of degree < k corresponding to row i of Ua,
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* r0
Blind,h is the polynomial of degree < 2k − 1 corresponding u0

h.

3. V picks a random index set Q ⊂ [n] of size t, and queries U [j] that is the vertical juxtaposition
of Uxh [j], Uyh [j], U zh [j], Uwh [j], uaddh [j], u′h[j], j ∈ Q and accepts if the following conditions hold
for every h ∈ [σ]:

– For every j ∈ Q we have

4m∑
i=1

rh[j] · Ui,j + u′h[j] = vh[j],

–
∑

c∈[`] q
add
h (ζc) = 0 and for every j ∈ Q we have

uaddh [j] +
4m∑
i=1

raddh,i (ηj) · Ui,j = qaddh (ηj),

– p0,h(ζc) = 0 for every c ∈ [`] and for every j ∈ Q,

u0
h[j] +

m∑
i=1

(rqh)i ·
[
Uxi,j · Uyi,j − U zi,j

]
= p0,h(ηj).

The completeness of our ZKIPCP follows from the next lemma.

Lemma 4.13. If Uw, Ux, Uy, U z ∈ Lm encode vectors w, x, y, z ∈ Fm` satisfying

x = Pxw, y = Pyw, z = Pzw, x� y + (−1)m` � z = 0m`, Paddw = 0m`

and P is honest, V always accepts.

Next, soundness is argued by the following lemma.

Lemma 4.14. Let e be a positive integer such that e < d/4. Suppose that there exists no α such that
C(α) = 1. Then, for any maliciously formed oracle U∗ and any malicious prover strategy, the verifier
rejects except with at most (d+ 2)/|F|σ + (1− e/n)t + 2((e+ 2k)/n)t probability.

The proofs of the preceding two lemmas follow analogously to the proofs of Lemma 4.11 and Lemma 4.12.
The next lemma establishes the honest verifier zero-knowledge property.

Lemma 4.15. If k > `+ t, 〈P,V〉 is an (honest verifier, perfect) zero-knowledge IPCP.

Proof: To demonstrate zero-knowledge against honest verifier, we need to provide a simulator S that can
given the randomness provided by the honest verifier V , be able to generate a transcript. For every h ∈ [σ],
the simulator first generates:

• random polynomial qaddh of degree < k + `− 1 such that
∑

c∈[`] q
add
h (ζc) = 0.

• random polynomial p0,h of degree < 2k − 1 such that p0,h(ζc) = 0 for every c ∈ [`].

• random vector vh ∈ Fn.

Next, it samples random elements from F for Uxh [j], Uyh [j], U zh [j], Uwh [j], for every j ∈ Q. Finally, given
the random challenges from V , it sets u′h[j], uaddh [j], u0

h[j] as follows:
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• u′h[j] =
∑4m

i=1 rh[j] · Ui,j − vh[j].

• uaddh [j] =
∑4m

i=1 r
add
h,i (ηj) · Ui,j − qaddh (ηj)

• u0
h[j] =

∑m
i=1(rqh)i ·

[
Uxi,j · Uyi,j − U zi,j

]
− p0,h(ηj).

Our simulation achieves perfect zero knowledge. This follows from the fact that in an honest execution
with the prover P , the distribution of {Uxh [j], Uyh [j], U zh [j], Uwh [j]}j∈Q are uniformly distributed and given
that u′h, u

add
h , uxh, u

0
h are uniformly chosen, the polynomials qaddh , p0,h and the vector vh are uniformly

distributed in their respective spaces. �
The following theorem follows from the construction described above and the preceding Lemmas.

Theorem 4.7. Fix parameters n,m, `, k, t, e such that e < (n − k)/4. Let C : Fni → F be an arithmetic
circuit of size s, where |F| ≥ ` + n, m · ` > ni + s and k > ` + t. Then protocol ZKIPCP(C,F) satisfies
the following:

• COMPLETENESS: If α is such that C(α) = 1 and oracle π is generated honestly as described in the
protocol, then
Pr[(P(C, w),Vπ(C)) = 1] = 1.

• SOUNDNESS: If there is no α is such that C(α) = 1, then for every (unbounded) prover strategy P∗
and every π̃ ∈ F4mn,
Pr[(P∗,V π̃(x)) = 1] ≤ (d+ 2)/|F|σ + (1− e/n)t + 2((e+ 2k)/n)t.

• ZERO KNOWLEDGE: For every adversary verifier V∗, there exists a simulator S such that the output
of SV

∗
(C) is distributed identically to the view of V in the (P(C, w),Vπ(C)).

• COMPLEXITY: The number of field F operations performed is poly(|C|, n). The number of field
elements communicated by P to V is σ ·n+σ · (k+ `−1) +σ · (2 ·k−1) whereas V reads t symbols
from F4m+5σ.

5 From ZKIPCP to ZK

In this section we describe variants of known transformations from (sublinear) zero-knowledge PCP to
(sublinear) zero-knowledge argument. The latter can either be interactive using collision-resistant hash
(CRH) functions, or non-interactive in the random oracle model or based on CRH (following the Fiat-Shamir
heuristic).

5.1 The Interactive Variant

General transformations from (non-interactive) ZKPCP to (interactive) ZK arguments that make a black-
box use of collision-resistant hash functions were given in [IMS12, IW14]. Here we address the more
general case of ZKIPCP, where in addition to the proof oracle there is additional interaction between the
prover and the verifier. Namely, using the ZKIPCP, an honest-verifier ZK protocol proceeds as follows. The
prover commits to each entry of the proof oracle using a statistically hiding commitment scheme and then
compresses the commitment using a Merkle hash tree (cf. Section 2.1). Note that both steps can be realized
by making a black-box use of any familyH of collision-resistant hash functions. The rest of the ZK protocol
mimics the ZKIPCP, where the prover opens the committed values that correspond to the verifier’s queries.
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Malicious verifiers can be handled using standard techniques (see e.g., Section 6.2 in the full version
of [IMS12]). The communication complexity of the ZK argument includes the communication complexity
of the ZKIPCP protocol and communication resulting from committing the oracle Π and decommitting to
the queries Q.

5.2 The Non-Interactive Variant

It is possible to directly compile our previous protocol into a non-interactive protocol using a random oracle,
where the verifier’s messages are emulated by applying the random oracle on the partial transcript in each
round following the Fiat-Shamir transform [FS86]. A formal description and analysis of this transformation
is presented in [BCS16] for interactive oracle proofs (IOP) model which generalizes (public-coin) IPCP.

In slight more detail, in this transformation the prover uses the random oracle to generate the verifier’s
messages and complete the execution (computing its own messages) based on the emulated verifier’s mes-
sages, where instead of using an oracle, the prover commits to its proof and messages using Merkle hash
trees. Completeness follows directly. If we start with an IOP that additionally is zero-knowledge (ZKIPCP
in our case), [BCS16] show that this transformation preserves (statistical) zero-knowledge property. Namely,
the resulting protocol can be proven to be zero-knowledge in the random-oracle model.

In [BCS16], the soundness of the transformed protocol is shown to essentially match the soundness of
the original protocol up to an additive term that roughly depends on the product of q2 and 2−κ where q is an
upper bound on the number of queries made to the random oracle by a malicious prover and κ is the output
length of the random oracle. More precisely, [BCS16] relates the soundness of the transformed protocol to
the state restoration soundness of the underlying IPCP and the collision-probability of queries to the random
oracle. State-restoration soundness refers to the soundness of the IOP protocol against cheating prover
strategies that may rewind the verifier back to any previously seen state, where every new continuation from
a state invokes the next-message function of the verifier with fresh randomness. In [BCS16], they show
that for any (IOP) the state-restoration soundness of an IOP protocol is bounded by

(
T
k(x)

)
· ε(x) and the

soundness of the transformed protocol is
(
T
k(x)

)
· ε(x) +O(T 2 · 2−κ) where T bounds the number of queries

made by cheating provers to the random oracle, k(x) is the round complexity of the IOP and ε(x) is the
(standard) soundness of the IOP.

Next, we tighten the analysis presented in [BCS16] for the particular ZKIPCP constructed in Section 4.7
and show that the soundness of the transformed protocol is T ·ε(x)+O(T 2 ·2−κ) where ε(x) is the soundness
of the ZKIPCP, T bounds the number of queries made by cheating prover to the random oracle and κ is the
output length of the random oracle.

In [CCH+19], Canetti et al., introduced the notion of round-by-round soundness, to provide a fine-
grained analysis of the Fiat-Shamir heuristic. We fist repeat (verbatim) the definition of round-by-round
soundness from [CCH+19] for completeness.

Definition 5.1. A 2r-round protocol Π has round-by-round soundness error ε(·) if there exists a (possi-
bly inefficient) mapping State from the tuple (x, τ) where x is the instance and τ a partial transcript of
interaction using Π to {accept, reject} such that the following hold:

1. If x 6∈ L, then State(x, ∅) = reject, where ∅ denotes the empty transcript.

2. If State(x, τ) = reject for a partial transcript up to 2i-rounds, then for every prover message α, it
holds that

Pr[β ← V (x, (τ, α)) : State(x, (τ, α, β)) = accept] < ε(|x|, |τ |).
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3. For any full transcript τ , if State(x, τ) = reject, then V (x, τ) = 0.

Next, we analyze the transformed protocol in the random-oracle model. Suppose the prover makes
at most T queries, then the probability it finds a collision is bounded by T 22−κ. Next, we analyze the
round-by-round soundness of the compiled interactive ZK argument. By our preceding analysis, the value
of ε(|x|, |τ |) for a partial transcript τ till the end of the first round will be at most (d + 2)/|F|σ, and for a
transcript till the end of the third round will be at most (1− e/n)t + 2((e+ 2k)/n)t. Finally, we apply the
Fiat-Shamir transformation where the prover generates the verifier’s message by applying the random oracle
on the partial transcript to obtain the randomness for the verifier. To argue the soundness of the transformed
protocol, we observe that the adversary succeeds only if State(x, (τ, α, β)) = accept. Suppose that, the
adversary makes T1 queries with τ as a partial transcript at the end of the first round and T2 queries for
partial transcripts at the end of the third round (where the prover was not already on a good partial transcript
at the end of the first round), then, the probability the adversary succeeds is bounded by

T1 · (d+ 2)/|F|σ + T2 ·
(
(1− e/n)t + 2((e+ 2k)/n)t

)
+ T 22−κ

≤ T ·
(
(d+ 2)/|F|σ + (1− e/n)t + 2((e+ 2k)/n)t

)
+ T 22−κ

For concrete security, we can conclude that for the non-interactive protocol to have κ-bit security (i.e. T ·
εNI = 2−κ), the (statisticaly) soundness of the interactive protocol can be set to εInt = 2−κ where the
output length of the random-oracle is set to 2 · κ-bits.

5.3 Sublinear Zero-Knowledge Argument

In this section, we describe how to set the parameters of our zero-knowledge argument protocol to obtain
communication that is sublinear in the circuit size. We consider first an arithmetic circuit over a large field
F. Following our transformation, the communication complexity of the zero-knowledge protocol that is
compiled based on our ZKIPCP is k · σ︸︷︷︸

code test

+ (k + `− 1) · σ︸ ︷︷ ︸
linear test

+ (2 · k − 1) · σ︸ ︷︷ ︸
quadratic test

+ t · (4 ·m+ 3 · σ)︸ ︷︷ ︸
parties’ views

 · dlog |F|e+ t · dlog ne · h︸ ︷︷ ︸
Merkle tree decommitments

where h denotes the output length of the random-oracle (i.e. hash-function) and the view includes 4m one for
each row of Uw, Ux, Uy, Uz and 3 ·σ that correspond to the rows of the blinding polynomials. An optimal set
of parameters that minimize the communication complexity for arithmetic circuits over F can be obtained by
having e = k which implies n = 3·k. For these parameters, we have e < d/2 and the soundness simplifies to
3·(2/3)t+(n+4)/|F|σ where σ is the number of times we repeat the test. For soundness to be at most 2−κ we
need σ ≈ λ/ log2(|F|) and t = λ/ log2(2/3). With these parameters set, communication complexity is then

minimized when ` =
√
|C|·min(|F|,κ)

5·log2(3/2) . Then, the communication complexity is κ · |F| ·
√

5·|C|
log2(3/2)·min(|F|,κ)

which simplifies to O(|F| ·
√
|C| · κ) bits for large fields and O(κ ·

√
|C| · |F|) bits for small fields (i.e. for

|F| < κ). We remark that when identifying concrete parameters we additionally need k to be a power of 2
(to use Cooley-Tukey style FFT for Reed-Solomon encoding).

For Boolean circuits, we can either embed the computation in a prime finite field or Galois GF(2n)
field. In either case, we need the field size to be at least as large as n + `. In the prime field, both XOR
and AND costs one arithmetic multiplication while in the Galois field XOR and AND map into addition and
multiplication in the field. Depending on which embedding is chosen, we need to set the circuit size C and
field F appropriately and use the preceding computation.
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5.4 Multi-Instance Amortization

If we want to prove that C(xi, ·) is satisfiable for N public inputs xi, we can simplify our ZKIPCP con-
struction as follows. The prover first computes the combined witness w = w1, . . . , wN that is comprised
of N witnesses, each is computed as in the single instance case. Next, it arranges the witnesses in blocks
of size ` = N , where block j contains the jth bits of each of the N witnesses. The number of blocks in
the extended witness equals the size of the witness of a single instance, which is m = |wi| = O(|C|). The
prover then encodes the blocks of messages into U ∈ Lm.

For moderately large N , the multi-instance variant provides significant savings in both computational
and communication costs. This is because we do not need to rearrange the wire values as we do in the single
instance case. The total asymptotic communication complexity for sufficiently large fields then becomes
O((N + κ · |C|) · |F|).

6 Implementation and Experimental Results
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We implemented our protocol in NFLlib library for the finite field operations. To pick the evaluation
points, we chose a prime that had sufficiently large power of two roots of unity and set ηi and ζj values
to be roots of unity. This enabled us to perform interpolation and evaluation using inverse FFT and FFT
operations. We ran our experiments on Amazon EC2 c6i.32xlarge with the Intel Xeon CPU 3.5 GHz,
128 cores, 256 GB RAM. For our collision resistant hash function we used SHA256.

We instantiated our interactive variant with soundness 2−128 in the random oracle model and imple-
mented the non-interactive variant by applying the Fiat-Shamir transform where we used SHA256 to imple-
ment the random oracle. We considered arithmetic circuits over a 30-bit prime field. We also refined our
proof of soundness. In Sections 4.2 and 4.3, we analyzed the linear and quadratic tests independently. If we
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analyze it in conjunction with the IRS code test, we can improve some of the terms. We present this analysis
in Appendix C.

In Figure 5, we compare the prover and verifier running times for verifying circuits of sizes varying
from 1000 gates to 107 gates. These are randomly generated arithmetic circuits over a 30-bit prime field.4

Specifically, for a circuit of size s, we sampled a circuit with s multiplication (fan-in 2) gates and s addition
gates (fan-in 2). The computational complexity of both the prover and the verifier in the single instance
setting is proportional to O(s log s) field operations when we optimize the packing factor to minimize the
proof length. Furthermore, the optimal field size can be asymptotically shown to be O(log s) resulting in
overall computational complexity of O(s log2 s). We remark here that if we make uniformity assumptions
on the circuit, then the verifier’s computational complexity becomes sublinear in the circuit size. In fact, in
the multi-instance setting which can be seen as a uniformity assumption, we achieve succinct verification,
i.e. our verifier’s complexity is smaller than the circuit size.

We observe that for small to medium circuit sizes (up to 1 million gates) the bulk of the time spent by
the prover is in reading the circuit corresponding to the NP statement, where for a fixed circuit this time can
be spent in a pre-processing phase. We provide the prover and verifier’s times excluding the pre-processing
step. As the circuit size increases, the prover and verifier’s efficiency improves, where at 107 gates they run
at 500ns per gate excluding pre-processing and 1.1µs per gate end-to-end.

In Figure 6, we provide the communication complexity in kilobytes (KB) of our zero-knowledge argu-
ment. We plot two instantiations of our protocol. We provide the communication cost for the vanilla Ligero
instantiated at 128-bit and 40-bit security. We also plot a line measuring the circuit size in bits and identify
the point at which the Ligero system is strictly sublinear in the circuit size. For 40-bit security this is around
2.6 million gates and for the 128-bit security it is around 20 million gates.

Comparing with IOP-based ZK-SNARKs We now provide a comparison with IOP-based ZK-SNARKs
that are plausibly post-quantum secure. In Table 2 we compare our proof lengths with the libiop im-
plementation of Ligero, Aurora, Brakedown and Shockwave. We obtain the data for these systems from
[GLS+21] where they set all these schemes at 128-bit security. The new analysis of the Ligero system
yields proof lengths that is significantly better than the other IOP-based implementations. We note here
that while the data from [GLS+21] is for a random R1CS statement over 128-bit/256-bit, we consider a
random arithmetic circuit of similar size over a 30-bit prime. In Table 3, we compare the running times of
the prover and verifier against [GLS+21]. Our prover times are better than Brakedown and Shockwave for
larger circuits and competitive for small circuits. Our end-to-end verification times are competitive, but if
we exclude the circuit setup time, we get better efficiency. We note here, however, this comparison is not
apples-to-apples as it was run on different machines but comparable architectures.

7 Related Work with Open Problems

Below we provide a list of open problems regarding IOPs.

Constant computational overhead. An important theoretical (and in some cases practical) question in
the design of succinct arguments is understanding the asymptotic computational overhead of the prover.
This overhead is defined as the ratio between the running time (or circuit size) of the implementation of
the prover and that of verifying the witness without any security requirements. The question of constant-
overhead cryptography was initiated in the work of Ishai et al. [IKOS08] and subsequent works [AM17,

4Note that our proof length and computation times are not influenced by the circuit topology and only depend on the witness
size which in turn depends only on the number of gates.
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Circuit Size 210 211 212 213 214 215 216 217 218 219 220

Ligero [AHIV17] 546 628 1,076 1,169 2,100 3,169 5,788 5,662 10,527 10,736 19,828
Aurora [BCR+19] 447 510 610 717 810 931 1,069 1,179 1,315 1,473 1,603
Brakedown(128-bit) 1,279 1,597 1,974 2,200 2,710 3,165 3,926 4,824 6,122 7,899 10,230
[GLS+21]
Shockwave(128-bit) 72 95 122 160 210 284 386 523 721 990 1,384
[GLS+21]
Ligero-128 (here) 48 56 71 87 103 135 177 229 320 417 602

Table 2: Comparison of proof length (in KB) between different IOP-based ZK-SNARKs.

Prover Time
Circuit Size 220 221 222 223

Brakedown (128-bit) 3 6 13 25
Shockwave (128-bit) 4 9 17 36
Ligero-128 (here) 4 5 7 11

Verifier Time
Circuit Size 220 221 222 223

Brakedown (128-bit) 0.7 1.1 2.1 3.8
Shockwave (128-bit) 0.5 0.9 1.7 3.5
Ligero-128 (here) 3.8 4.7 6.6 10

Table 3: Comparison of running times (in seconds) of prover and verifier between different IOP-based
ZK-SNARKs.

AHI+17, BIO14, BIP+18], where is was shown how to construct several primitives with constant overhead
under plausible cryptographic assumptions.

The prover overhead of the Ligero system is O(log |C|) for an arithmetic circuit C stemming from com-
puting the RS encodings, or polylog(|C|) in the Boolean case. A recent line of works has focussed on
designing succinct proof systems for non-uniform arithmetic circuits (modeled via so-called rank-1 con-
straint systems (R1CS)) over a large finite field where the size of the prover is linear in the size of the circuit
[BCG+17, BBB+18, XZZ+19b, BCG20, Set20, SL20, KMP20, ZXZS20, GLS+21, LSTW21, ZLW+21b,
BCL22]. Specific to IOPs, the works of [BCG20, GLS+21, BCL22] construct a linear-time IOP, i.e. the
overhead of the prover is constant for arithmetic circuits over a large finite field. More recently, the works
of [RR22, HR22] construct, for the first time, a linear time prover for Boolean circuits, but, for restricted
settings. Specifically, Ron-Zewi and Rothblum [RR22] build a linear-time IOP with constant-soundness er-
ror and Holmgren and Rothblum [HR22] build a linear-time IOP for restricted classes of circuits, including
batch Boolean statements, with 2−λ soundness error and polylog(λ) overhead. The state-of-the-art leaves
the following fundamental question regarding linear-time IOPs open.

Open Problem 1. Can we construct (sublinear-query) IOPs for Boolean circuits with constant computa-
tional overhead and negligible soundness error?

A bit more concretely, we would ideally like to have an IOP for proving the satisfiability of a Boolean
circuit of size s with 2−λ soundness error, where the verifier makes λ · polylog(s) queries and where the
prover is implemented by a Boolean circuit of size O(s) + poly(λ, log s).

Complexity preserving constructions. As mentioned above, recent works have shown how to improve
the prover’s computational complexity to essentially linear in the time taken to compute the underlying
relation (for an NP-language). However, these works come with a steep price in terms of space, namely, for
computations that take time T and space S, the space complexity of the prover is Ω(T ). Notably, only a few
works provide time and space efficient constructions that we discuss next. This fact turns out to be a major
bottleneck in scaling up zero-knowledge proofs to larger and larger computations. To make the context
precise, we focus on the task of proving that a non-deterministic RAM machine M accepts a particular
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instance x, i.e. uniform non-deterministic computations. The goal here is that if M accepts/rejects x in time
T and space S then the resulting ZK proof system preserves these complexities on the prover’s side while
being polylogarithmic in T (i.e. succinct) or even sublinear on the verifier’s side.

When considering designated verifier ZK-SNARKs, complexity preserving solutions (i.e. poly-logarithmic
overhead in space and time) have been constructed by Bitansky and Chiesa [BC12] and by Holmgren and
Rothblum [HR18] in the non-interactive setting. The work of Ephraim et al. [EFKP20] shows that, assuming
the existence of standard (circuit) SNARKs and collision-resistant hash functions (CRHF), one can construct
a non-interactive succinct argument of knowledge (i.e. SNARK) for parallel RAM computations where the
prover’s complexities are preserved whereas the verifier requires polylogarithmic in T time and space, and
the underlying CRHF and SNARK are used in a non-black-box manner. Publicly-verifiable ZK-SNARKs
with similar overheads can be accomplished via recursive composition [BGH19, COS20, BCMS20]. Nev-
ertheless, these constructions have significant overheads as they typically rely on non-black-box usage of
the underlying primitives.

More recently, two works by Block et al. [BHR+20, BHR+21] designed the first black-box construction
of a ZK-SNARKs with polylogarithmic overhead in space and time based on “more standard” assumptions.
The first work assumes hardness of discrete logarithm in prime-order groups and relies on the random
oracle to construct a public-coin zero-knowledge argument where the proof length is polylog(T ), the prover
is complexity preserving and the verifier runtime is T · polylog(T ) while using polylog(T ) space. The
second work improves the verifier’s runtime from T · polylog(T ) to n · polylog(T ), where n is the input
length, under hardness assumptions on hidden order groups. We note that these works make extensive
use of public-key operations - e.g., the prover needs to compute Ω(T ) exponentiations, where public-key
operations are typically orders of magnitude more expensive than symmetric key operations. The prior
works leave the following question open.

Open Problem 2. Can we construct complexity-preserving IOPs?

More precisely, consider the universal relationRU of instance-witness pairs (y, w), where y = (M,x, T ),
|w| ≤ T , and M is an abstract RAM machine, such that M accepts (x,w) after at most t steps. Let LU
be the corresponding language. We would like to have an IOP for proving membership in LU with 2−κ

soundness error such that for a polynomial p and any instance (M,x, T ) where M uses space S we have:

• the prover runs in time (|M |+ |x|+ T ) · p(κ+ log T ),

• the prover P runs in space (|M |+ |x|+ S) · p(κ+ log T ),

• the verifier V runs in time (|M |+ |x|+ log T ) · p(κ+ log T ),

• the total bits communicated to V is p(κ+ log T ).

We remark that if we only insisted on space-preserving IOPs (i.e. relax the time requirement) we can essen-
tially rely on the same constructions of [BCR+19, BFH+20] by observing that a Reed-Solomon encoding
of data of size T can be computed in time polynomial in T with multiple passes on the input using space
polylog(T ) (which is the bottleneck in terms of space for these constructions). We also highlight that
the above question is open even if we relax constant-overhead to polylogarithmic overhead. In recent work,
Bhadauria et al. made progress in answering the question where they construct a complexity-preserving IOP
that is somewhat succinct and the overhead is polylogarithmic [BBHV22]. Namely, for every NP relation
that can be verified in time T and space S by a RAM program, they constructed a complexity-preserving
(ZK)IOP, where the prover runs in time Õ(T ) and space Õ(S), the verifier runs in time Õ(T/S + S) and
space Õ(1) and the query-complexity is Õ(T/S), where Õ() ignores polynomial factors in log T and κ.
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Minimal assumptions for sublinear arguments. Since the original work of Kilian [Kil92] we have known
that (public-coin) sublinear arguments can be constructed from symmetric-key primitives. In particular, it
can be constructed from collision-resistant hash-functions. However, the question of what are the minimal
assumptions to design sublinear arguments is still open. We do not know if one-way functions are sufficient
or even necessary. The recent work of Pass and Venkitasubramaniam [PV20] shows that if public-coin
sublinear arguments exist for a language L, then either (a slight variant of standard) one-way functions exist
or there exists a two-round sublinear argument for the same language. This leaves the following fundamental
question open.

Open Problem 3. What are the minimal assumptions to construct sublinear arguments for all of NP?

8 Conclusions

We designed and implemented a zero-knowledge argument for NP that simultaneously offers good concrete
efficiency and sublinear communication in the circuit size. As the computational complexity of our protocol
is dominated by polynomial evaluations and interpolations, we can rely on efficient FFT implementations for
minimizing its computational cost. In the following we mention some additional optimizations that we have
not fully explored. The current implementation relies on prime fields. This allows us to optimize arithmetics
over integers by considering a sufficiently large prime. Moreover, we recall that for the Boolean case the
witness includes two bits per gate for both XOR and AND gates. If we instead rely on characteristic 2 fields,
then the witness size will require three bits per AND gate and 0 bits for XOR gates. Hence there is a tradeoff
in choosing between the two options. It is also unclear how the FFT algorithms compare for characteristic
2 and prime fields, though fast implementations for the characteristic 2 case are known [GM10, BHST16]
and used in designing ZKSNARKs based on IOPs [BBHR19].

The verification of our zero-knowledge argument needs to evaluate a polynomial on a subset of the
points in the domain. We currently implement this by having the verifier evaluate the polynomial on the
entire domain via FFT and extract the points in this subset. Improving this will improve the verifier’s
efficiency. Relying on GPU for FFT computations can also bring significant savings. Finally, one can exploit
a repetitive circuit structure (“uniformity”) to reduce verification time. We currently only take advantage of
this for reducing the amortized cost of verifying multiple evaluations of the same circuit.

Finally, it would be interesting to explore the concrete efficiency of other approaches to lightweight
sublinear zero-knowledge arguments. In particular, one could consider constructions of PCPs based on
bivariate polynomials such as the one of Polishchuk and Spielman [PS94] (see [BCGT13] for work in this
direction), or the zero-knowledge PCP obtained by applying our general transformation to the MPC protocol
from [DIK10]. This type of constructions can be further simplified by applying an interactive procedure for
testing linear constraints as we do in Section 4.2.
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A Case e < d/3: Proof of Lemma 4.4

In this section, we provide the proof of our main lemma for the case when e < d/3. The proof of claim A.2
below is due to Ronny Roth and Gilles Zémor [RZ17].5

Lemma A.1 (restatement of Lemma 4.4). Let e be a positive integer such that e < d/3. Suppose d(U,Lm) >
e. Then, for a random w∗ in the row-span of U , we have

Pr[d(w∗, L) ≤ e] ≤ (e+ 1)/|F|.

Proof. Suppose that d(U∗, Lm) > e andL∗ is the span of the vectors inU∗. Assume towards a contradiction
that d(v∗, L) ≤ e for all v∗ ∈ L∗. Suppose v∗0 ∈ L∗ maximizes the distance from L. Since d(U∗, Lm) > e,
there must be a row U∗i such that ∆(U∗i , L) \ ∆(v∗0, L) 6= ∅. Let v∗0 = u0 + χ0 and U∗i = ui + χi for
u0, ui ∈ L and χ0, χi of weight ≤ e. We argue that there exists α ∈ F such that for v̂ = v∗0 + αU∗i we
have d(v̂, L) > d(v∗0, L), contradicting the choice of v∗0 . This follows by a union bound, noting that for any
j ∈ ∆(v∗0, L) ∪∆(U∗i , L) there is at most one choice of α such that v̂j = 0.

Now, it suffices to show that in any affine subspace of Fn, either all points are e-close to L or almost all
are not. This reduces to showing the following claim. We state an explicit version of the conjecture for the
case of RS codes.

Claim A.2. Let L be an arbitrary linear code over F of length n. Let e be a positive integer such that
e < d/3. Then for every u, v ∈ Fn, defining an affine line `u,v = {u + αv : α ∈ F}, either (1) for every
x ∈ `u,v we have d(x, L) ≤ e, or (2) for at most d points x ∈ `u,v we have d(x, L) ≤ e.

We begin with the observation that for any two length n vectors u and v of weight at most e, `u,v contains
N points at most distance e from L if and only if `u,v+c contains N points of distance at most e from L for
any codeword c ∈ L. This means it suffices to prove the claim for vectors u and v of weight at most e.

We now prove the lemma in two cases

Case 1: |Support(u) ∪ Support(v)| ≤ e This means that `u,v is entirely contained in the ballBe(0) where
0 is the all 0s vector which in turn means all the vectors in the line are at most t from L.

Case 2: |Support(u) ∪ Support(v)| ≥ e+ 1 Since u and v each have weight at most e, the intersection of
their supports can be of cardinality at most e−1. For each of the coordinates in the intersection of the
supports, there can be at most one vector in `u,v such that the entry in that coordinate is 0. Therefore,
there are at most e− 1 vectors in `u,v that are contained in the ball Be(0) where 0 is the all 0s vector.

5In the case of length-n Reed-Solomon codes, a similar bound for e < d/2 was obtained by Ben-Sasson et al. [BCI+20], where
(e+ 1)/|F| is relaxed to n/|F|.
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To conclude this case, we need to demonstrate that there exists no codeword c 6= 0 such that the line
`u,v intersects with a vector inside the ball of radius e around c. Assume for contradiction there exists
a codeword c and vector w of weight at most e such that c+ w ∈ `u,v. Then we have that

c+ w = u+ αv

This means that c is equal to the sum of three vectors each of weight at most e. Now we arrive at a
contradiction because the minimum distance of L is d and e < d/3.

B Generalizing IPCP Tests

In this section, we provide the generalized versions of the tests in our basic IPCP. This is required for improv-
ing the soundness analysis and achieving better concrete parameters. We remark that the theorem statements
in this section are provided for the case e < d/4. But we can incorporate the subsequent improvement in
the analyses and directly generalize for the cases e < d/3 and e < d/2.

B.1 Generalized Interleaved Linear Code Testing

In this section we present a generalized version of the testing algorithm that uses σ linear combinations to
amplify soundness; see Figure 7. This algorithm is useful for obtaining better soundness over a small field F.

Oracle: A purported Lm-codeword U . Depending on the context, we may view U either as a matrix in Fm×n in
which each row is a purported L-codeword, or as a sequence of n symbols (U1, . . . , Un), Ui ∈ Fm.

Parameters:

• Probing parameter t < n (number of symbols Uj read by V).

• Repetition parameter σ (number of random linear combinations).

Interactive testing:

1. V picks σ random linear combinations r1, . . . , rσ ∈ Fm and sends them to P .

2. P responds with wh = rThU ∈ Fn, h = 1, . . . , σ.

3. V queries a set Q ⊂ [n] of t random symbols Uj , j ∈ Q.

4. V accepts iff all wh are in L and are consistent with UQ and rh. That is, for every j ∈ Q and 1 ≤ h ≤ σ,
we have

m∑
i=1

(rh)j · Ui,j = (wh)j .

Figure 7: Generalized-Test-Interleaved(F, L[n, k, d],m, t, σ;U)

Lemma B.1. If U ∈ Lm and P is honest, then V always accepts.

41



Lemma B.2. Let e be a positive integer such that e < d/4. Suppose d(U∗, Lm) > e. Then, for a random
w∗ in the row-span of U∗, we have

Pr[d(w∗, L) ≤ e] ≤ (e+ 1)/|F|σ.
The proof of Lemma B.2 follows identically as the proof of Lemma 4.2 with the exception that the

denominator |F| in Equations 1 and 2 need to be replaced by |F|σ. This is because in each of Cases 1 and 2,
we express w∗ = αv∗ + x and bound the probability of a bad event regarding w∗ claiming that any value
of x happens for a unique value of α ∈ F. Therefore this probability is bound by 1/|F|. In the repeated
version, there is one possible value in Fσ which happens with probability 1/|F|σ.

We can conclude the following theorem, the same way Theorem 4.4 is concluded from Lemma 4.2.

Theorem B.1. Let e be a positive integer such that e < d/4. Suppose d(U∗, Lm) ≥ e. Then, for any
malicious P strategy, the oracle U∗ is rejected by V except with ≤ (1− e/n)t + (e+ 1)/|F|σ probability.

B.2 Affine Interleaved Linear Code Testing

For the purpose of obtaining a zero-knowledge IPCP, the following “affine” variant of Test-Interleaved is
useful. Whenever V requests a random linear combination of the rows of U , this linear combination will be
masked with an additional blinding vector u′ ∈ Fn. The vector u′, which is also given as part of the proof
oracle, will be picked by an honest P at random from L and will therefore hide all information about U
whose rows are from L. The soundness of the test should hold even when u′ is adversarially chosen and is
not necessarily a codeword. The complete test is given in Figure 8.

Oracle: A purported Lm-codeword U and an additional auxiliary row vector u′ ∈ Fn.

Interactive testing:

1. V picks a random linear combinations r ∈ Fm and sends r to P .

2. P responds with w = rTU + u′ ∈ Fn.

3. V queries a set Q ⊂ [n] of t random symbols Uj , j ∈ Q, as well as u′j , j ∈ Q.

4. V accepts iff w ∈ L and w is consistent with UQ, u′Q, and r. That is, for every j ∈ Q we have
∑m
i=1 rj ·

Ui,j + u′j = wj .

Figure 8: Affine-Test-Interleaved(F, L[n, k, d],m, t;U, u′)

Completeness follows directly from the description.

Lemma B.3. If U ∈ Lm, u′ ∈ L, and P is honest, then V always accepts.

Our soundness analysis will rely on the following lemma.

Lemma B.4. Let e be a positive integer such that e < d/4. Suppose d(U∗, Lm) > e. Then, for arbitrary
u′ ∈ Fn and a random w∗ in the row-span of U∗, we have Pr[d(w∗, L) ≤ e] ≤ (e+ 1)/|F|.
Theorem B.2. Let e be a positive integer such that e < d/4. Suppose d(U∗, Lm) ≥ e. Then, for an arbitrary
u′ ∈ Fn and any malicious P strategy, the oracle U∗ is rejected by V except with≤ (1−e/n)t+(e+1)/|F|
probability.

We provide a formal proof of a generalization of this test in the next section.

42



B.3 Generalized Affine Interleaved Linear Code Testing

For the purpose of obtaining a zero-knowledge IPCP, the following “affine” variant of Test-Interleaved is
useful. Whenever V requests a random linear combination of the rows of U , this linear combination will
be masked with an additional blinding vector u′ ∈ Fn. The vector u′, which is also given as part of the
proof oracle, will be picked by an honest P at random from L and will therefore hide all information about
U whose rows are from L. The soundness of the test should hold even when u′ is adversarially chosen
and is not necessarily a codeword. We generalize it further following the previous section to achieve better
soundness by repetition; see Figure 9.

Oracle: A purported Lm-codeword U and additional auxiliary row vectors u′1, . . . , u
′
σ ∈ Fn.

Interactive testing:

1. V picks a random linear combinations r1, . . . , rσ ∈ Fm and sends r to P .

2. P responds with wh = rThU + u′h ∈ Fn, h = 1, . . . , σ.

3. V queries a set Q ⊂ [n] of t random symbols Uj , j ∈ Q, as well as (uσ)j , j ∈ Q.

4. V accepts iff all wh ∈ L and are consistent with wh and UQ, uh, and rh. That is, for every j ∈ Q we have∑m
i=1(rh)j · Ui,j + (u′h)j = wj .

Figure 9: Generalized-Affine-Test-Interleaved(F, L[n, k, d],m, t, σ;U, u′)

Completeness follows directly from the description. Soundness analysis follows as described in Sec-
tion B.1.

Lemma B.5. If U ∈ Lm, u′1, . . . , u
′
σ ∈ L, and P is honest, then V always accepts.

Lemma B.6. Let e be a positive integer such that e < d/4. Suppose d(U∗, Lm) > e. Then, for arbitrary
u′1, . . . , u

′
σ ∈ Fn and a random w∗ in the row-span of U∗, we have Pr[∀ h ∈ [σ], d(w∗ + u′h, L) ≤ e] ≤

(e+ 1)/|F|σ.

Theorem B.3. Let e be a positive integer such that e < d/4. Suppose d(U∗, Lm) ≥ e. Then, for arbitrary
u′1, . . . , u

′
σ ∈ F and any malicious P strategy, the oracle U∗ is rejected by V except with ≤ (1 − e/n)t +

(e+ 1)/|F|σ probability.

B.4 Generalized Affine Linear Constraint Testing over Interleaved Reed Solomon Codes

For the purpose of obtaining a zero-knowledge IPCP, we provide the following “affine” variant of Test-
Linear-Constraints-IRS. Whenever V provides the challenge vector r, the linear combination rTA of the
rows of U , will be masked with an additional blinding vector u′ ∈ Fn that encodes messages that sum up to
0. The vector u′, which is also given as part of the proof oracle, will be picked by an honestP at random from
L subject to the condition that it encodes messages that sum up to 0 and will therefore hide all information
about the individual column sums in the computation of rTAx. The soundness of the test should hold even
when u′ is adversarially chosen and is not necessarily a codeword. We will further generalize the test to
achieve better soundness. Namely, instead of relying on repetition, we improve soundness by considering
the challenge space from an extension field. The test is given in Figure 10. Note that just as in Section 4.2, we
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Oracle: A purportedLm-codewordU that should encode a message x ∈ Fm` satisfyingAx = b and an additional
auxiliary row vector u′ ∈ F̂n that encodes the message (γ1, . . . , γ`) such that

∑
c∈[`] γc = 0 where F̂ is an

extension field of F such that |F̂| = |F|σ .

Interactive testing:

1. V picks a random vector r ∈ F̂m` and sends r to P .

2. V and P compute
rTA = (r11, . . . , r1`, . . . , rm1, . . . , rm`)

and for i ∈ [m], let ri(·) be the unique polynomial of degree < ` such that ri(ζc) = ric for every c ∈ [`].

3. P sends the k+ `− 1 coefficients of the polynomial defined by q(·) =
∑m
i=1 ri(·) · pi(·) + rBlind(·), where

pi(·) is the polynomial of degree < k corresponding to row i of U and rBlind(·) is the polynomial of degree
< k corresponding to u′.

4. V queries a set Q ⊂ [n] of t random symbols Uj , j ∈ Q, as well as u′j , j ∈ Q.

5. V accepts if the following conditions hold:

(a)
∑
c∈[`] q(ζc) =

∑
i∈[m],c∈[`] ricbic.

(b) For every j ∈ Q we have u′j +
∑m
i=1 ri(ηj) · Ui,j = q(ηj).

Figure 10: Generalized-Affine-Test-Linear-Constraints-IRS(F, L = RSF,n,k,η,m, t, ζ, A, b, σ;U)

will analyze the test under the promise that the (possibly badly formed) U is close to Lm+1. Completeness
follows directly as u′ does not affect the verification. We argue soundness next.

Lemma B.7. Let e be a positive integer such that e < d/2. Suppose that a (badly formed) oracle U∗ that
is vertically juxtaposed with an arbitrary u′ is e-close to a codeword V ∈ Lm+1, where V contains the
codewords U ∈ Lm and u∗ ∈ L vertically juxtaposed, and U encodes x ∈ Fm` such that Ax 6= b. Then,
for any malicious P strategy, U∗ is rejected by V except with at most 1/|F|σ + ((e+ k+ `)/n)t probability.

B.5 Generalized Testing Quadratic Constraints over Interleaved Reed Solomon Codes

Finally, in this section we extend our quadratic constraint test over Interleaved Reed Solomon codes via
parallel repetition to improve soundness. The complete test description is provided in Figure 11. Next, we
state the completeness and soundness statements.

Lemma B.8. If Ux, Uy, U z ∈ Lm encode vectors x, y, z ∈ Fm` satisfying x � y + a � z = b and P is
honest, V always accepts.

Lemma B.9. Let e be a positive integer such that e < d/2. Let Ux∗, Uy∗, U z∗ be badly formed oracles
and let U∗ ∈ F3m×n be the matrix obtained by vertically juxtaposing the corresponding m × n matrices.
Suppose d(U∗, L3m) ≤ e, and letUx, Uy, U z , respectively, be the (unique) codewords inLm that are closest
to Ux∗, Uy∗, U z∗. Suppose Ux, Uy, U z encode x, y, z such that x� y+ a� z 6= b. Then, for any malicious
P strategy, (Ux∗, Uy∗, U z∗) is rejected by V except with at most 1/|F|σ + ((e+ 2k)/n)t probability.
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Oracle: Purported Lm-codewords Ux, Uy, Uz that should encode messages x, y, z ∈ Fm` satisfying x� y+a�
z = b and an additional auxiliary row vector u′ ∈ F̂n that encodes the all 0s message in RSF,n,2k,η where F̂ is an
extension field of F such that |F̂| = |F|σ .

Interactive testing:

1. Let Ua = Encodeζ(a) and U b = Encodeζ(b).

2. V picks a random linear combinations r ∈ F̂m and sends r to P .

3. P sends the 2k− 1 coefficients of the σ polynomials p10, . . . , p
σ
0 defined by p0(·) =

∑m
i=1 ri · pi(·), where

pi(·) = pxi (·) · pyi (·) + pai (·) · pzi (·) − pbi (·), and where pxi , p
y
i , p

z
i are the polynomials of degree < k

corresponding to row i of Ux, Uy, Uz , pai , p
b
i are the polynomials of degree < ` corresponding to row i of

Ua, U b and rBlind(·) is the polynomial of degree < 2k corresponding to u′.

4. V picks a random index set Q ⊂ [n] of size t, and queries Uxj , U
y
j , U

z
j , u
′
j , j ∈ Q.

5. V accepts if the following conditions hold:

(a) ph0 (ζc) = 0 for every c ∈ [`].

(b) For every j ∈ Q, it holds that p0(ηj) = u′j +
∑m
i=1 ri ·

[
Uxi,j · Uyi,j + Uai,j · Uzi,j − U bi,j

]
.

Figure 11: Generalized-Test-Quadratic-Constraints-IRS (F, L = RSF,n,k,η,m, t, ζ, a, b, σ;Ux, Uy, U z)

C Improving the Soundness Analysis

Recall that the soundness error is calculated by applying a union bound over the following tests: (1) Inter-
leaved Reed-Solomon Test, (2) Linear Constraints Test, and (3) Quadratic Test. We show next how we can
improve the soundness of the Linear and Quadratic tests assuming that the Interleaved Reed-Solomon Test
passes.

Interleaved Reed Solomon (IRS) test. The soundness of this test was bounded by (e+1)/|F|+(1−e/n)t

when e < d/4 and bounded by d/|F| + (1 − e/n)t when e < d/3. More recently, a better analysis
has been presented in [BCI+20] where they improve Lemma 4.4 from e < d/3 to e < d/2 bounding
the error by n/|F| where n is the code length (See Theorem 1.2: Unique decoding bound). Thus the
soundness of this test can be bounded by n/|F|+ (1− e/n)t for e < d/2.

We make a slight modification to the analysis here where we bound the following “bad” events.

• Let E1 be the event that more than e columns of U have errors. From the preceding analysis we
have that the probability the verifier accepts the IRS test in this case is at most n/|F|+(1−e/n)t

for e < d/2.

• Suppose that event E1 does not occur. Denote by the prover’s response to the IRS test by w∗.
Since e < (n − k)/2 and there are fewer than e errors, let U be the unique codeword such that
d(U,U∗) < e. Define w to be the codeword that is the result of correctly computing the IRS
test with the matrix U . In particular, w will agree columnwise with all columns of U∗ (except
the ones that have errors). Define the event E2 to be when w 6= w∗. We bound the probability
that the test passes if E2 occurs and E1 does not. If the test passes we have that w∗ is a valid
codeword. Therefore, w and w∗ can agree in at most k columns. With at most e columns with
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errors, the verifier can possible accept the test only if all the indices it chooses come from the k
columns they agree on and additionally the e columns containing errors. This probability is at
most (

k+e
t

)(
n
t

) ≤ (k + e

n

)t
≤
(

1− e

n

)t
where the last equality comes from setting k ≤ n− 2e.

• Let E3 be the event that the verifier picks any of the columns that contain errors. We argue that
then the IRS test would fail with probability 1/|F|. Let U and U∗ disagree on the ith column,
jth row. Then, in the IRS test, if E1 and E2 do not occur then given the random combination for
all the rows except the jth row, there will be exactly one possible value in the linear combination
corresponding the jth row that will make the test pass if i was selected by the verifier. This
occurs with probability 1/|F|.

We now have that:

Pr[V ∗ accepts IRS test ∧ (E1 ∨ E2 ∨ E3)]

≤ Pr[V ∗ accepts IRS test ∧ E1] + Pr[V ∗ accepts IRS test ∧ (E2 ∨ E3) ∧ ¬E1]

= Pr[V ∗ accepts IRS test |E1] · Pr[E1] + Pr[V ∗ accepts IRS test ∧ (E2 ∨ E3)|¬E1]

≤
[
n

|F| +
(

1− e

n

)t]
· Pr[E1]

+ Pr[V ∗ accepts IRS test ∧ (E2 ∨ E3) ∧ ¬E1]

≤ n

|F| +
(

1− e

n

)t
· Pr[E1]

+ Pr[V ∗ accepts IRS test ∧ E2|¬E1] · Pr[¬E1]

+ Pr[V ∗ accepts IRS test ∧ E3 ∧ ¬E1 ∧ ¬E2]

≤ n

|F| +
(

1− e

n

)t
· Pr[E1]

+
(

1− e

n

)t
· Pr[¬E1] + Pr[V ∗ accepts IRS test ∧ E3|¬E1 ∧ ¬E2]

≤ n

|F| +
(

1− e

n

)t
· Pr[E1]

+
(

1− e

n

)t
· Pr[¬E1] +

1

|F|
=
n+ 1

|F| +
(

1− e

n

)t
Linear Constraints Test: The analysis in [AHIV17] bounds this test by ((e + k + `)/n)t + 1/|F|. By

analyzing this test in conjunction with the IRS test we can replace the term ((e + k + `)/n)t with
((k + `)/n)t . The main idea here is that term ((e + k + `)/n)t computes the probability that the
verifier chooses all its t indices from within the e columns that have errors and an additional of at
most k + ` columns.

Now we analyze the linear test assuming E1, E2 and E3 do not occur as we have bounded them in the
IRS test. Specifically, since E3 does not occur, it suffices to bound the case when all the indices are
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chosen within the additional at most k + ` columns excluding the columns with errors. This can be
bounded by

(
k+`
n

)t
.

Therefore, the soundness of this test can be bounded by(
k + `

n

)t
+ 1/|F|

assuming that none of the columns containing errors are chosen.

Quadratic Test: The analysis in [AHIV17] bounds this test by ((e+ 2k)/n)t + 1/|F|. Following the same
arguments as in the Linear Test, the soundness of this test can be improved to simply(

2k

n

)t
+ 1/|F|.

Therefore, the overall the soundless error can be bounded by[
(1− e/n)t +

(
k + `

n

)t
+

(
2k

n

)t
+

(
n+ 3

(230)σ

)]
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