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Abstract—Data privacy concerns are increasing significantly
in the context of Internet of Things, cloud services, edge com-
puting, artificial intelligence applications, and other applications
enabled by next generation networks. Homomorphic Encryption
addresses privacy challenges by enabling multiple operations to
be performed on encrypted messages without decryption. This
paper comprehensively addresses homomorphic encryption from
both theoretical and practical perspectives. The paper delves
into the mathematical foundations required to understand fully
homomorphic encryption (FHE). It consequently covers design
fundamentals and security properties of FHE, and describes the
main FHE schemes based on various mathematical problems.
On a more practical level, the paper presents a view on privacy-
preserving Machine Learning using homomorphic encryption,
then surveys FHE at length from an engineering angle, covering
the potential application of FHE in fog computing, and cloud
computing services. It also provides a comprehensive analysis of
existing state-of-the-art FHE libraries and tools, implemented in
software and hardware, and the performance thereof.

Index Terms—Fully Homomorphic Encryption, Homomorphic
Encryption, Lattices, Neural Networks, Fog Computing, Cloud
Computing, IoT.

I. INTRODUCTION

The notion of fully homomorphic encryption, originally
called privacy homomorphism, was introduced by Rivest,
Adleman and Dertouzos [1] in 1978. For more than 30
years, this concept was considered to be the holy grail of
cryptography, until 2009, when Gentry proposed the first fully
homomorphic encryption scheme in his PhD thesis [2]. Homo-
morphic encryption enables operations on plaintexts without
decryption. Namely, a set of operations can be performed
over ciphertexts such that these operations are reflected as
additions and multiplications on the corresponding plaintexts.
Thus, homomorphic encryption allows data manipulation in
the encrypted domain. This has a tremendous application
potential since it allows privacy-preserving data processing,
which can be adopted in new emerging fields such as machine
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learning, cloud computing, or in the different data processing
layers of new generation networks.

Homomorphic encryption schemes that allow one type of
operation, or a limited number of operations, have existed for
a long time. Some examples are the RSA cryptosystem by
Rivest, Shamir and Adleman [3] (1978), encryption scheme
of Goldwasser and Micali [4] (1982), ElGamal [5] (1985),
Benaloh [6] (1994), Naccache and Stern [7] (1998), Paillier
[8] (1999) and Boneh, Goh and Nissim [9] (2005). In particular
in [9], the authors proposed the first scheme capable of
performing two operations: an arbitrary number of additions
and just one multiplication, then again an arbitrary number of
additions. Later, Aguilar Melchor, Gaborit and Herranz [10]
(2008) proposed a theoretical approach that permits chaining
several homomorphic schemes in order to have a fixed amount
of multiplications, i.e. more than one, for a given public key.

However, it was not until 2009, when Gentry [2], [11] pro-
posed the first fully homomorphic encryption (FHE) scheme
which supports the evaluation of arbitrary circuits. In his
thesis, Gentry not only proposed an FHE scheme, but also pro-
vided a method for constructing a general FHE scheme from
a scheme with limited but sufficient homomorphic evaluation
capacity. Since then, homomorphic encryption has triggered
significant interest, and novel constructions on FHE have been
proposed following Gentry’s idea, being BGV [12], FV [13],
TFHE [14], and CKKS [15] the most representative.

The majority of research efforts for FHE schemes focused
on public key encryption schemes. Symmetric FHE schemes
have gained less popularity among the scientific community,
due to their more limited applicability to cloud computing.
Also, some proposed symmetric key schemes still suffer from
security vulnerabilities, as pointed in [16]. Nevertheless, there
are some papers that proposed symmetric key FHE schemes,
which can be divided into two categories: i) schemes with
both symmetric key and public key versions [2], [17]–[19]; ii)
and purely symmetric key FHE schemes [20], [21]. It is also
worth commenting that, in 2011, Rothblum [22] published a
method to convert a symmetric key homomorphic encryption
scheme with sufficient homomorphic evaluation capacity, into
an asymmetric one. This survey only covers public key FHE
schemes, but more information on symmetric key schemes can
be found in [16].

This survey provides a comprehensive vision on homomor-
phic encryption since its genesis. We extend previous surveys
on the topic [16], [23]–[26], to cover the most relevant ad-
vances on FHE and its applications. Specifically, the survey is
structured as follows: i) Section II provides the preliminaries,
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containing the required definitions on Number Theory and
Probability Theory to understand the constructions of FHE
schemes; ii) Section III introduces the mathematical definition
of lattices, and the main mathematical problems used in lattice-
based cryptography; iii) Section IV defines the concept and the
construction of fully homomorphic encryption; iv) Section V
caters for an extensive description of FHE schemes in the
state of the art, classified according to their generation; and
v) Section VI discusses the security of FHE schemes by
presenting the different mathematical problems in which they
are based. Following a more practical perspective, the survey
also describes: i) the application of homomorphic encryption
in machine learning in Section VII; ii) the potential adoption of
homomorphic encryption for data aggregation in fog comput-
ing in Section VIII; iii) previously proposed techniques for the
application of homomorphic encryption in cloud computing
in Section IX; and iv) homomorphic encryption in practice,
describing the current frameworks and libraries, in Section X.
Finally, Section XI discusses open challenges in the field and
concludes this survey.

II. PRELIMINARIES

This section presents the mathematical foundations and the
notation required to understand the developments of homo-
morphic encryption covered in the next sections.

A. Number Theory

Groups: A group G is a set with an associative operation
such that there exists an identity element of G and every
element of G has an inverse. If the group operation is
commutative, the group is abelian (also called commutative).
For t ∈ N, a finite group Zt is the subgroup of positive integers
modulo t. This group is also referred to as Z/tZ in number
theory, and it can be seen as the set of integers in (−t/2, t/2].
A multiplicative group Z×

t , for some t ∈ N, is the set of
integers modulo t that are co-prime to t. Note that if t is
prime, then Zt is the (finite) field Ft.

Fields: A field is a set with two operations, addition and
multiplication. The set is an abelian group under addition with
0 as identity and its nonzero elements are an abelian group
under multiplication with 1 as identity. The multiplication is
distributive over addition. A finite field Fq is a field with q
elements and it exists if and only if q is prime or a prime
power. Finally, a number field is a vector space with finite
dimension over rational numbers Q and a cyclotomic field is
a number field obtained by adjoining a complex root of unity
to Q.

Rings: A ring generalizes a field since multiplication
does not need to be commutative and some elements do
not have the multiplicative inverse. A quotient ring R =
Z[x]/⟨f(x)⟩, is a ring of polynomials with integer coeffi-
cients modulo the (monic) polynomial f(x). Note that the
multiplication between two polynomials in R is a modular
multiplication. If the coefficients of the polynomial are in
Zq (integers modulo q), then we denote it Rq , specifically
Rq = Zq[x]/⟨f(x)⟩. It is worth pointing out that the ring R is
a field if and only if f(x) is an irreducible polynomial over Z.

Sets: Given a set E, we denote by E n the set of vectors
such that E n = {e = (e1, . . . , en) : ei ∈ E}. Let E be a
commutative ring, then the dot product of two vectors u,v in
E n is defined as ⟨u,v⟩ =

∑n
i=1 ui · vi. Similarly, Mh,w(E)

denotes the set of matrices of size h × w with entries in E.
Specifically, the term (Zq)

h denotes a vector of size h with
elements in Zq and (Zq)

h×w a matrix of size h×w also with
elements in Zq .

Ideal: An ideal I is a subset of a ring R containing 0
(i.e. the inverse element of the addition) such that the addition
of two elements in I is also in I , and the multiplication of
an element in I by an element in R is also in I . A principal
ideal is an ideal generated by one element. In other words, a
principal ideal generated by a is the set of multiples of a.

Real Torus: The real torus T is the set R/Z of real
numbers modulo 1. Note that T is a group, when using the
addition.

Norms: Let x be a vector in E, then we define ||x||ℓ :=
ℓ
√∑

i |xi|ℓ the ℓ-norm and ||x||∞ := maxi |xi| the infinity-
norm of x, where xi are the elements in x. We denote by ||x||
the Euclidean norm of the vector x, that is equivalent to the 2-
norm. The Euclidean norm can also be referred as the length of
a vector. The norms ||g(x)||ℓ and ||g(x)||∞ of a real or integer
polynomial g(x) are the norms of its coefficient vector. If g(x)
is a polynomial mod xn + 1, we take the norm of its unique
representative of degree less or equal than n − 1. Moreover,
when E is the real torus T, then the ℓ-norm of x ∈ Tk is
the ℓ-norm of the representative of x with all coefficients in
(−1/2, 1/2]. With abuse of notation, we denote it by ||x||ℓ.

B. Probability Theory

Negligible and Overwhelming probability: Let f(κ) :
N → R be a function where for any possible integer c
there exists a value N such that for all κ > N it holds
that |f(κ)| < 1

κc . This function is said to be negligible. If
the the output of a negligible function is a probability, then
the probability is negligible. In cryptography κ is frequently
referred to as security parameter and it represents the length
of the secret values. Normally, provably secure schemes are
defined by presenting an attack which probability of success
is negligible with respect to the security parameter, i.e. it
can become arbitrarily small by increasing κ. Analogously,
an overwhelming probability is the output of a function
f ′(κ) = 1− f(κ) such that f is a negligible function. Hence,
an overwhelming probability can become arbitrarily close to
1 by increasing κ.

Gaussian distribution: The general form of a normal (or
Gaussian) distribution χ for a random variable x ∈ R is

f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

where µ is the center or mean of the distribution and σ
is its standard deviation. Note that in the majority of the
FHE literature χ is defined as a discrete Gaussian distribution
on Z with centre zero and width parameter αq, denoted by
DZ,αq . The discrete Gaussian distribution DZ,αq over the
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integers is defined by assigning a weight proportional to
exp(−πx2/(αq)2) to all x ∈ Z. Namely, [27] for any x ∈ Z,

DZ,αq(x) =
f(x)

f(Z)
where f(Z) =

∑
z∈Z

1

αq
e−π( z

αq )
2

.

Moreover, the standard deviation of DZ,αq is σ ≈ αq/
√
2π

if σ is bigger than the smoothing parameter ηϵ(Z) of Z [28].

Let R = Z[x]/⟨f(x)⟩ be a polynomial ring. Informally,
we denote a B-bounded distribution χ over R, if the norm
of the coefficients of a polynomial sampled from χ is less
than B with overwhelming probability. In general, B is set
to be as small as possible while maintaining security (e.g.,
if χ in Rq , B ≪ q). In the rest of this work we denote
small element as any sample from a B-bounded distribution χ.

III. LATTICES

This section introduces the mathematical definition of lat-
tices, and it also describes the main mathematical problems, on
which the security of lattice-based homomorphic encryption
schemes relies. The section intends to be self-contained, but
it also provides references for interested readers to find full
mathematical descriptions and proofs.

A. Definitions

A k-dimensional lattice is a discrete additive subgroup of
Rn. Let B = (b1, . . . ,bk) be linearly independent vectors in
Rn, then we can define the lattice L(B) generated by B as
the set of all integer linear combinations of elements of B:

L = L(B) =
{ k∑

i=1

γibi : γi ∈ Z,bi ∈ B
}
.

The term B is called base of the lattice, and the paral-
lelepiped associated to the basis B, is defined as

P(B) =
{ k∑

i=1

xibi : xi ∈ [−1/2, 1/2)
}
.

The rank k of a lattice L ⊂ Rn is the dimension of
its linear span, that is, k = dim(span(L)). When k = n,
the lattice is said to be full rank. The volume of L (also
called determinant) is defined as Vol(L) =

√
det(BtB). In

the special case that L is a full rank lattice, we have that
Vol(L) = |det(B)|.

The dual of a lattice L is the set

L∗ = {v ∈ span(L) : ⟨v,b⟩ ∈ Z for all b ∈ L}.

Note that, for any B ∈ Rn×n, L(B)∗ = L((B−1)T ). From
this it follows that det(L∗) = 1/det(L). Moreover, given a
matrix A ∈ (Zq)

m×n for some integers q,m, n, we can define
two integer q-ary lattices [29],

Lq(A) := {x ∈ Zm : x = As mod q for some s ∈ Zn},
L⊥
q (A) := {x ∈ Zm : xA ≡ 0 mod q}.

Note that L⊥
q (A) is a scaled dual lattice of Lq(A), namely,

L⊥
q (A) = q · Lq(A)∗.

It is also worth defining the ideal lattice L(I), which is an
integer lattice L(B) ⊆ Zn where B = {g mod f : g ∈ I},
I ⊆ Z[x]/⟨f⟩ is an ideal, and f a monic polynomial of
degree n.

The Hermite factor δn0 is defined as

δn0 = ||b1||/Vol(L)1/n (1)

where b1 is a first basis vector, i.e. a shortest vector, in the
base B of the full rank lattice L. The factor δ0 is called the root
Hermite factor. It is worth highlighting that root Hermite factor
is an important indicator about the quality of some lattices
attacks, as shown in Section VI.

B. Lattice Distance

Most of the known attacks to FHE schemes are based on the
notion of distance. The concept of distance comes in natural a
way. Specifically, for any vector t in Rn and any element v of
a lattice L, the distance between these two vectors is defined
as dist(t,v) = ||t−v||. Consequently, the minimum distance
between t and any element in L, is

dist(t,L) = min{||t− v|| : v ∈ L}.

Let us define the minimum distance of lattice L as λ1(L),
which is the length of a shortest non-zero vector in L, i.e.

λ1(L) = min{||v|| : v ∈ L, v ̸= 0}.

We can generalize the notion of minimum distance by
defining the i-th successive minimum λi(L) as the smallest
radius r of a zero-centred ball that contains i (or more) linearly
independent lattice points.

A comprehensive explanation of lattices in cryptography can
be found in [30], [31] by Peikert and in [29] by Micciancio
and Regev.

C. Shortest Vector Problem

The security of many lattice-based FHE schemes relies on
the intractability of the shortest vector problem and its variants.
The Shortest Vector Problem (SVP) consists of finding the
shortest non-zero vector in a given lattice. If we restrict the
set of input lattices to ideal lattices, then we obtain the Ideal-
SVP [32]. The relevant variants of SVP problem are defined
below:

• γ-approximate Shortest Vector Problem (SVPγ) consists
in identifying a vector that is almost the shortest vector.
Formally, given γ ≥ 1, it consists in finding a non-zero
vector v ∈ L such that ||v|| ≤ γ · λ1(L).

• Decisional Shortest Vector Problem (GapSVPγ,r)
consists in establishing which given bound for the
shortest vector is correct. Specifically, given γ ≥ 1 and
r > 0, it consists in deciding if either λ1(L) ≤ r or
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λ1(L) ≥ γ · r.

• γ-unique Shortest Vector Problem (uSVPγ) consists
in finding a shortest non-zero vector in a lattice L
where λ1(L) is γλ1(L) < λ2(L) for γ ≥ 1. Namely,
the shortest vector is guaranteed to be at least γ times
smaller than λ2(L).

Note that if the shortest vector problem is solvable, then the
decisional shortest vector problem is also solvable, namely,
GapSVPγ,r ≤ SVP. Interested readers can find concrete
instantiations of the SVP problem in [33].

D. Closest Vector Problem

A generalization of the shortest vector problem is the
Closest Vector Problem (CVP). In this generalization, a target
vector t ∈ Rn is given instead of using the zero vector, and the
problem consists of finding a vector in the lattice v ∈ L that
is the closest to t, i.e. dist(t,v) = dist(t,L). This problem
also has some variants:

• γ-approximate Closest Vector Problem (CVPγ) consists
in finding a vector in the lattice that is almost a
closest to the target vector. Formally, given γ ≥ 1
and t ∈ Rn, it consists in finding v ∈ L such that
dist(t,v) ≤ γ · dist(t,L).

• Decisional Closest Vector Problem (DCVPγ,r), given
γ ≥ 1, r > 0 and t ∈ Rn, consists in deciding if either
dist(t,L) ≤ r or dist(t,L) ≥ γ · r.

• Let α ≤ 1. α-Bounded Distance Decoding (BDDα)
problem consists in, given a target vector t such that
dist(t,L) < αλ1(L), finding a lattice vector v ∈ L
closest to t.

E. Relations Between Shortest and Closest Vector Problems

Kumar and Sivakumar [34] proved that the uSVPγ problem
is NP-hard when γ = 1 + 2−nc

, for some constant c,
whereas Liu, Lyubashevsky and Micciancio [35] showed that
the BDDα problem is NP-hard for α > 1/

√
2. Moreover,

Lyubashevsky and Micciancio [36] also proved that uSVP ≤
BDD and uSVP ≤ GapSVP. More specifically, they proved
that for any γ ≥ 1 and γ ≤ poly(n), the problem uSVPγ ,
BDD1/γ and GapSVPγ are equivalent up to polynomial
approximation factors. Finally, Bai, Stehlé and Wen [37],
preprocessing the lattice with Khot’s sparsification technique
[38], gave a probabilistic polynomial-time reduction from
BDD1/(

√
2γ) to uSVPγ , for any γ > 1 and γ polynomial in n.

The latter restriction was lifted in Wen’s PhD thesis [39].

F. Short Integer Solution Problem

The Short Integer Solution (SIS) problem was introduced
in 1996 by Ajtai [40]. The goal of the SIS problem is to find
an integer vector with small norm that is a solution of a given
system of integer equations. More specifically, let q ∈ Z and

let A ∈ (Zq)
m×n be a matrix. Then, given β < q, the SISq,m,β

problem consists of finding a non-zero vector x ∈ Zm with
||x|| ≤ β such that xA ≡ 0 mod q. It is worth noting that
solving the SISq,m,β problem is equivalent to finding a vector
v with norm ||v|| ≤ β in the scaled dual L⊥

q (A) of the lattice
Lq(A). So this problem can be seen as a kind of SVPγ for
this particular family of lattices. Moreover, it is important to
highlight that the solution to the SIS problem needs to be
bounded on the length, i.e. ||x|| ≤ β. Without this restriction,
it would be easy to find x with the Gaussian elimination
technique.

The ring version of this problem is given by Micciancio
in 2002 [41] (extended version in 2007 [42]). Informally, let
q ∈ Z and Rq = Zq[x]/⟨f(x)⟩ where f(x) ∈ Z[x] is a monic
polynomial of degree d, and let a ∈ (Rq)

m be a vector of m
polynomials. Then, given β < q, the Ring-SISq,m,β problem
[43] consists of finding a non-zero vector of small polynomials
x ∈ Rm with ||x|| ≤ β such that aTx ≡ 0 mod q.

G. Learning With Errors Problem

The key role that lattice-based problems play in
cryptography nowadays is especially due to the Learning
With Errors (LWE) problem and its Decisional version, which
were introduced by Regev in 2005 [44] (full version [45]
in 2009) as an extension of the “learning from parity with
error” problem of Blum, Furst, Kearns, and Lipton [46].
Their definitions are provided below:

• Given a vector b ∈ Zm
q and a matrix A ∈ (Zq)

m×n,
the LWE problem1 consists in finding an unknown vector
s ∈ Zn

q such that

A s+ e = b mod q

where e ∈ Zm
q is sampled coordinate-wise from an error

distribution χ. In other words, the goal is to find a vector
s ∈ Zn

q given a list of m = n+ 1 noisy equations from

As,χ = {(ai, bi = ⟨ai, s⟩+ ei) ∈ Zn
q × Zq :

ai
$←− Zn

q , ei
$←− χ};

• the Decision Learning With Errors (DLWE) problem
consists of distinguishing (with non-negligible advantage)
m samples chosen according to As,χ (for uniformly
random s ∈ Zn

q ), from m samples chosen according to
the uniform distribution over Zn

q × Zq .
In [44], Regev reduced the worst case decisional shortest

vector GapSVP in a lattice to the LWE problem via a quantum
reduction. Namely, the paper shows that if it is possible to
find an algorithm to solve the LWE problem in polynomial
time, then it is also possible to solve quantumly the GapSVP
problem in polynomial time. Because of that, the security of
LWE-based homomorphic encryption schemes is intimately
related to lattice problems like SVP and its variants. In
the same paper, Regev proved that the LWE problem and

1This instance is also referred to as the search version of the LWE problem.
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its decisional version are computationally equivalent for any
prime q that is polynomially-bounded poly(n). Subsequently,
this result was extended to any modulus q in [47]–[51].
In 2009 Peikert [47] (and successively Lyubashevsky and
Micciancio [36]) provided a classical reduction from GapSVP
problem to LWE with exponential modulus. In [51] Brakerski,
Langlois, Peikert, Regev and Stehlé proved that the LWE with
polynomial modulus is at least as hard as worst-case lattice
problems, via a classical reduction.

H. Ring Learning With Errors Problem

The Ring Learning With Errors (RLWE) problem,
introduced by Stehlé, Steinfeld, Tanaka and Xagawa
in [32], is the “ring version” of LWE. Specifically, the
LWE is in (Zq)

n+1, while in RLWE is in (Rq)
2, where

Rq = Zq[x]/⟨f(x)⟩ where f(x) ∈ Z[x] is a monic,
irreducible polynomial of degree d and q is a prime.

• The RLWE problem is to discover s ∈ Rq given
access to arbitrarily many independent samples
(a, b = s · a + e) ∈ Rq × Rq , where a is chosen
uniformly at random in Rq , and e ∈ Rq is sampled from
an error distribution χ.

• The Decision Ring Learning With Errors (DRLWE)
problem consists in distinguishing with non-negligible
advantage between independent and uniformly random
samples in Rq×Rq and the same number of independent
RLWE instances (where s ∈ Rq is uniformly random).

It is worth highlighting that the secret s can be chosen from
the error distribution since, as Applebaum, Cash, Peikert and
Sahai [52] proved, it does not affect the hardness of the LWE
problem.

Initially, the RLWE problem was called Ideal-LWE problem
in [32] and, later, its decision version was called Polynomial
Learning With Errors (PLWE) in [18] by Brakerski and
Vaikunthanathan. Also, Lyubashevsky, Peikert and Regev [53]
slightly modified the initial definition of RLWE proposed in
[32]. Namely, the secret s and the noisy polynomial b are in
R∨

q , where R∨ is a particular ideal that is dual to R. One of
the main contributions in this paper is a search form to the
decision reduction.

I. Relations Between LWE, RLWE and Hard Lattice Problems

As explained in Sections III-G and III-H the hardness of
LWE and RLWE problems is related to various well-known
hard lattice problems [28], [29], [45], [51], [53]. Specifically,
the hardness of the RLWE problem is described in [32],
where the search variant was proved hard under the ideal-
SVP and, in [53] where Lyubashevsky, Peikert and Regev
cater for a quantum reduction from the γ-approximate SVP
to the RLWE problem and a classical reduction from search to
decisional RLWE assumption. Unlike the quantum reduction,
which works for any number field and (almost) any modulus,
the classical reduction works only for particular modulus q

and defining polynomial f(x). In [54] Ducas and Durmus
partially improved [53] by generalizing over f(x). The restric-
tion on q was lifted by Langlois and Stehlé [55]. Finally, in
2017 Peikert, Regev and Stephens-Davidowitz [56] presented
a polynomial-time quantum reduction from worst-case (ideal)
lattice problems to decision RLWE which works in any number
field and any modulus.

For completeness, we also mention the General Learning
With Errors (GLWE) problem introduced by Brakerski, Gentry
and Vaikunthanathan in [12]. The GLWE problem is the inter-
polation between the RLWE and LWE problems. Specifically,
it consists in finding s ∈ Rk

q given a list of noisy equations
from:

{(a, b = ⟨a, s⟩+ e) ∈ Rk
q ×Rq, where a

$←− Rk
q , e

$←− χ}

For R = Z we have LWE and for k = 1 we have RLWE.
The GLWE problem was proven to be hard by Langlois and
Stehlé in [55], hence generalizing the results of [53]. From
a cryptographic point of view, schemes based on the RLWE
problem are more computationally efficient and more compact
(in terms of ciphertext size) than the ones based on LWE [31].
We refer readers to [31] by Peikert for a comprehensive and
more detailed explanation about LWE, RLWE and the hardness
of these problems.

IV. FULLY HOMOMORPHIC ENCRYPTION

A fully homomorphic encryption scheme can be defined as
an encryption scheme where, given some ciphertexts, any oper-
ation over the plaintexts can be performed without decryption
by manipulating the ciphertexts directly. Such functionality is
achievable if and only if addition and multiplication operations
can be performed homomorphically, since these two operations
constitute a functionally complete set over finite rings. Specifi-
cally, any boolean (arithmetic) circuit can be represented using
only XOR (addition) and AND (multiplication) gates. In other
words, given two ciphertexts Enc(x) and Enc(y), where x and
y are plaintexts and Enc is the encryption operation, we can
obtain the encryption of x + y (or x · y) without decrypting
Enc(x) and Enc(y), by simply adding (or multiplying) these
two ciphertexts, and this is sufficient to evaluate any function
over encrypted data such that

Dec(Enc(x) △ Enc(y)) = x △ y,

where △ is the operation sum or product and Dec is the
decryption operation.

As shown in Section IV-A, homomorphic encryption is
based on probabilistic algorithms. Generally, the encryption
procedure adds a random element r which is called noise or
error2. The intrinsic feature of FHE is that the error increases
any time a homomorphic operation is carried out. So, after a
certain number of multiplications (or additions) the ciphertext
cannot be decrypted correctly due to the error growth. This
problematic limits encryption schemes with homomorphic
properties from being fully homomorphic. Only a bounded
number of operations can be performed homomorphically

2The noise can be added directly as input in the encryption algorithm or
included indirectly, e.g. in the public key [57]
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before the plaintext cannot be decrypted correctly, hence
these schemes are referred to as somewhat homomorphic. To
overcome this limitation, Gentry [2], [11] introduced a new
technique, bootstrapping, which is detailed in Section IV-B.
This procedure can be used to convert a scheme that is not
fully homomorphic into one that is. The method proposed by
Gentry can be divided into two steps:

1) Creating a somewhat homomorphic encryption scheme,
that is, a scheme that supports a limited number of
homomorphic operations;

2) Using bootstrapping to reduce the error added during
encryption, and making the ciphertext compact.

It is worth commenting that Gentry proposes an additional
step, before bootstrapping, to reduce the decryption com-
plexity. This technique, called (squashing), and it is used to
express the decryption function as a function with a lower
degree. Squashing the decryption circuit is necessary in order
to have a bootstrappable decryption circuit in Gentry’s scheme.
However, unlike bootstrapping, the squashing technique was
not generally adopted in subsequent schemes.

We refer the reader to the following interesting overviews on
fully homomorphic encryption [23], [24] and to the Homomor-
phic Encryption Security Standard white paper [58], where the
authors provide tables of recommended parameters used for
specific FHE schemes at various security levels, considering
particular attacks.

A. Definitions and Basic Notions

A public key homomorphic encryption scheme E [2] is
composed of a set of probabilistic polynomial-time (PPT)
algorithms (KeyGen,Enc,Dec,Eval) such that:

• The public key-generation algorithm KeyGen takes as
input the security parameter λ and outputs the secret key
sk, the public key pk and the (public) evaluation key evk,
which is needed to perform homomorphic operations
over ciphertexts.

• The public encryption algorithm Enc takes as input the
public key pk and a message m from the message space.
Subsequently, it outputs a ciphertext c.

• The decryption algorithm Dec takes as input the secret
key sk and a ciphertext c. Next, it outputs a message m.
The algorithm provides as output ⊥, if the decryption
algorithm cannot successfully recover the encrypted
message m.

• The evaluation algorithm Eval takes as input the
evaluation key evk, a function f and t-uple of
ciphertexts (c1, . . . , ct). It outputs a ciphertext cf ,
such that it decrypts to the result of the evaluation of
(m1, . . . ,mt) over f , i.e. cf = Evalevk(f, (c1, . . . , ct))
and Decsk(cf ) = f(m1, . . . ,mt). Note that the
ciphertexts cf and c ← Encpk(f(m1, . . . ,mt)) are
equivalent in the sense that they decrypt to the same
plaintext, but different in their construction (e.g. they

may have different noise levels).

There are two essential characteristics of a homomorphic
encryption scheme E : i) the maximum degree of a function that
the scheme supports; ii) the length increase of the ciphertext
after each homomorphic operation. The first property defines
what functions E is able to evaluate correctly. Specifically, the
scheme E is F-homomorphic if it can correctly evaluate any
function f in F , that is, if there exists an evaluation algorithm
Eval such that

Decsk(Evalevk(f, c1, . . . , ct)) = f(m1, . . . ,md) for all f ∈ F ,
where ci ← Encpk(mi) for any i ∈ {1, . . . , t}. Also, it defines
whether an evaluated ciphertext cf , namely an output of Eval,
can be used as an input of the evaluation algorithm. Specif-
ically, in a multi-hop homomorphic scheme [59], a sequence
of any (polynomial) i functions can be homomorphically
evaluated one by one on a ciphertext c produced by encrypting
a message m. The second property refers to the ciphertext
expansion, i.e. how much the ciphertext bit-length grows after
each evaluation. In the sense, if the bound of the bit-length
growth is independent of the complexity of f it is called
compact [59].

Depending on the previous notions, we have different
definitions of homomorphic encryption schemes:

• Fully Homomorphic Encryption scheme E is an
encryption scheme where the ciphertexts are compact,
and the scheme is F-homomorphic, where F is the set
of all the (efficiently computable) functions [60].

• Leveled fully homomorphic scheme is a scheme that
supports the evaluation of specific depth circuits. More
formally, it is F-homomorphic, where F is the set of
all functions of some specific degree and the bound
over the length of the ciphertext is independent of such
degree (i.e. it is compact) [12]. In this type of schemes
the depth is treated as a setup parameter of the scheme
and can adopt any value. It is worth commenting that if
the degree is bounded to a maximum value L then the
scheme is called L-Leveled fully homomorphic scheme.
Note that L-leveled schemes may not be compact.

• Somewhat Homomorphic Encryption (SHE) scheme is
a scheme that is F-homomorphic for a limited class
F , e.g. capable of evaluating “low-degree” multivari-
ate polynomials homomorphically [12]. Similarly to L-
leveled schemes, in an SHE scheme the compactness of
ciphertexts could be violated.

It is worth highlighting that, as mentioned in Section IV,
an SHE scheme (and a leveled fully homomorphic scheme),
with sufficient homomorphic evaluation capacity, can be trans-
formed into an FHE scheme by using the bootstrapping
technique.

B. Bootstrapping
Bootstrapping is a technique to decrease the error of the

ciphertext, proposed by Gentry in [2], [11]. Essentially, it
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Fig. 1. Bootstrapping technique.

consists of a re-encryption procedure of a ciphertext c to
refresh it, i.e. encrypt it again under another key obtaining
a new ciphertext (for the same plaintext) but with a smaller
error.

Let us consider a somewhat homomorphic encryption
scheme E , two pairs of keys (sk1, pk1) and (sk2, pk2), the
encryption algorithm Enc and the ciphertext c = Encpk1(m)
that encrypts m under pk1. The procedure to refresh c is
conducted in three steps as follows:

• Encrypting the secret key sk1 under pk2:
Encpk2(sk1) → sk1. The encryption of sk1 may
require its bit decomposition and thus produce many
ciphertexts.

• Encrypting the ciphertext c under pk2: Encpk2(c) = c.
In most schemes this step is essentially vacuous, in
the sense that Encpk2(c) is obtained by using null
randomness, i.e. viewing a plaintext directly as a
ciphertext (with proper padding/scaling).

• Decrypting homomorphically the new ciphertext using
the encrypted secret key: Decsk1(c̄). In this way, an
encryption of the same message under the second public
key Encpk2(m) is obtained. Namely:

Evalevk(Dec, c, sk1) =

Evalevk(Dec,Encpk2
(c),Encpk2

(sk1)) =

Êncpk2
(Decsk1

(c)) = Êncpk2
(m)

(2)

the value Êncpk2
(m) is equivalent to Encpk2

(m) in the
sense that both decrypt to m, .i.e

Decsk2(Êncpk2(m)) = Decsk2(Encpk2(m)) = m

The objective of bootstrapping is to reduce the error of the
ciphertext. Conceptually, bootstrapping applies the decryption
function and simultaneously performs a second encryption.
These operations produce a new ciphertext. This new cipher-
text contains the error of a new encryption plus the error
increase resulting from the homomorphic evaluation of the
decryption circuit. Hence, the error of the obtained ciphertext
is higher than a fresh ciphertext (obtained with the encryption
algorithm) but lower than a ciphertext obtained after homomor-
phic evaluating functions with higher depth than the decryption
circuit. The idea of bootstrapping is illustrated in Figure 1.
Bootstrapping can be applied to any ciphertext, hence it can be
used after several homomorphic evalations to reduce the error
level. This enables the homomorphic evaluation of functions
with arbitrarily large depth, but requires the decryption circuit
to be boostrappable.

The cornerstone result obtained by Gentry is the proof
that to construct an FHE scheme suffices to construct a
scheme that is capable of evaluating only a particular set of
small degree functions, i.e. an SHE scheme, which security
holds when the encryption of the secret key is published.
If that is the case, then bootstrapping can be applied (and
squashing if necessary) to obtain an FHE scheme. It is worth
highlighting that bootstrapping is the only known way to
obtain fully homomorphic encryption schemes. Unfortunately,
bootstrapping is computationally complex and requires a large
memory space.

C. Security Properties

A homomorphic encryption scheme must be semantically
secure, but optionally it can also be function or circuit private.
The scheme is secure if and only if it is semantically secure.
Semantic security is formally captured by the concept of
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Fig. 2. Timeline of the main FHE schemes.

indistinguishability under chosen-plaintext attack (IND-CPA
security), where an attacker can obtain encryptions of arbitrary
plaintexts, but it cannot decrypt arbitrary ciphertexts (note
that the encryption algorithm and the encryption key pk are
public, whereas the decryption key sk is not). If we restrict
the message space to {0, 1}, then:

Let E = (KeyGen,Enc,Dec,Eval) be a public homomorphic
scheme, and mb a message with {0, 1} as the message space.
Let us define an adversaryA that knows the evaluation key evk
and the public key pk and is given an encryption Encpk(m)
for m ∈ {0, 1}. A can make queries to the encryption oracle.
After a polynomial number of queries,A tries to guess whether
m = 0 or m = 1. Then, the scheme is IND-CPA secure if for
an efficient adversary A, it holds that:

∣∣∣Pr[A(pk, evk,Encpk(0)) = 1]−

Pr[A(pk, evk,Encpk(1))) = 1]
∣∣∣ = negl(λ)

where (sk, pk, evk)← KeyGen(λ).

The definition above expresses the fact that the adversary
is not able to tell apart encryptions of 0 from encryptions
of 1 with non-negligible probability. It is worth noting that
IND-CPA security is only achievable if the encryption scheme
randomizes the ciphertexts. If there is no randomization, the
adversary can encrypt messages, and then compare them with
the received ciphertext Encpk(m).

Finally, an encryption scheme that is secure against ad-
versaries who observe an encryption of the scheme’s secret
key under its public key is called circular secure. Current
constructions of fully homomorphic encryption schemes re-
quire an encryption of the secret key to be bootstrappable,
hence all known FHE constructions require circular security.
This implies that IND-CPA security has to hold under circular
security. Most FHE schemes are not proven IND-CPA secure
under circular security, and it is in general adopted as an
additional assumption on top of the scheme’s underlying
security assumptions. Optionally, the homomorphic encryption
scheme can be function private. That is, a ciphertext that has

been homomorphically evaluated over a function f and does
not reveal any information about f , beyond the outputs for
the queried inputs. Function privacy is the relaxed version
of the original circuit privacy [2], which requires that the
evaluated ciphertext is statistically indistinguishable from a
fresh ciphertext [61]. Note that for a scheme to be circuit
or function private, the property has to hold even against
an adversary that knows the secret key and can decrypt any
ciphertext.

V. FULLY HOMOMORPHIC ENCRYPTION SCHEMES

Gentry’s seminal works [2], [11] paved the way for novel
FHE schemes in four main research branches: i) the schemes
based on ideal lattices (Section V-A); ii) the schemes over
integers based on the Approximate - Greatest Common Divisor
(AGCD) problem (Section V-B); iii) the schemes based on
the LWE problem and on its ring version (Sections V-C, V-E
and V-F); and iv) the schemes based on NTRU (Section V-D).
Additionally, other research works have proposed schemes
based on other mathematical problems (Section V-H). Figure 2
describes the timeline of the main FHE schemes.

A. First Generation: FHE based on ideal lattices

improve

Gentry (2009)

Smart, Vercauteren (2010)
batching  

Gentry, Halevi (2011)

Scholl, Smart (2011)

Stehlé, Steinfeld (2010)

Fig. 3. Main FHE schemes based on ideal lattices.

The first fully homomorphic encryption scheme presented
by Gentry [2], [11] is based on ideal lattices. Figure 3 describes
the main schemes based on ideal lattices.

Following the notation of [62], we describe one of the
constructions presented by Gentry. This scheme uses the
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integer sublattice L(I) ⊆ Zm defined by the ideal I . The
encryption and decryption algorithms work as follows:

• encryption: the message m ∈ F2 (the message is a single
bit, m ∈ {0, 1}) is encoded into a point a = m + 2e in
Rd, where e is a small error, namely a random vector
with coefficients in {0,±1}, where the values ±1 are
taken with equal probability. The ciphertext c is the
translation of a into the parallelepiped P(Bpk) where
Bpk is the public key. Namely, c = a − (⌈aB−1

pk ⌋Bpk),
where ⌈·⌋ denotes rounding to the nearest integer.

• decryption: computes a′ = c − (⌈cB−1
sk ⌋Bsk), which is

the translation of c into the parallelepiped P(Bsk) where
Bsk is the secret key, and then outputs a′ mod 2 as the
decrypted plaintext.

Both the public and secret keys, Bpk and Bsk, are bases
of the ideal lattice L(I). However, the public key is a bad
basis for I , in the sense that it is formed by skewed vectors,
whereas the secret key is a good basis because it is formed
by orthogonal vectors (see Figure 4).

good basis
bad basis

Fig. 4. Good and bad bases for an ideal lattice.

Unfortunately, the scheme that we just described is not boot-
strappable due to the complexity of the decryption algorithm
(i.e. it cannot be evaluated homomorphically). To solve this
problem, Gentry proposed a method to squash the decryp-
tion function of an SHE scheme. This method consists of
transforming the original SHE scheme E into another scheme
E∗ with the same homomorphic capacity but with a simpler
decryption function that allows the bootstrapping. To reduce
the decryption algorithm’s complexity, Gentry proved [2], [11]
that it is enough to add to the evaluation key some “extra
information” about the secret key. Such extra information
consists of a set of vectors S = {si | i = 1, . . . , S} from which
a subset T is derived. The secret key sk is the sum of elements
of T , and the public information included in the evaluation key
is the set S. The security of this new scheme E∗ is based on

fact that set T is sparse and secret such that the Sparse Subset
Sum Problem (SSSP) applies. SSSP consists in verifying,
given a set of n integers S = {a1, . . . , an} ⊆ Z, whether
a sparse subset of S exists such that

∑
i∈I ai = 0, where

I ⊆ {1, . . . , n}. Its security is based on three mathematical
problems: i) the Sparse Subset Sum Problem; ii) the Bounded
Distance Decoding Problem (Section III-D); iii) the Ideal-
Shortest Vector Problem (Section III-C). Circular security is
also required but no proof is given in the paper, hence it is an
additional security assumption for this scheme.

Gentry’s scheme was initially implemented by Smart and
Vercauteren [63] who used principal ideal lattices and intro-
duced the batching technique. The batched version of a scheme
enables the packing of a vector of ℓ plaintexts to be encrypted
in a single ciphertext using the Chinese Remainder Theorem
(CRT). This technique permits processing several messages
simultaneously. The Smart-Vercauteren implementation was
improved in 2011 by Gentry and Halevi [64], who also
simplified the squashing procedure. Successively, Scholl and
Smart [65] ameliorated the Gentry-Halevi technique providing
a generalization over any cyclotomic field. Stehlé and Steinfeld
in [66] reduced the bit complexity (i.e. quantity of operations
per bit) for refreshing the ciphertext. Their technique can be
applied to different FHE schemes, such as Gentry [2] and
Smart and Vercauteren [63].

A drawback of ideal lattice-based FHE schemes is that they
are based on mathematical constructions that are difficult to
implement efficiently. Also, a vulnerability in schemes using
principal ideals was found by Cramer, Ducas, Peikert and
Regev [67] in 2016. Specifically, a key-recovery attack for
cryptographic constructions based on principal ideal lattices
is possible, given a quantum polynomial-time or classical
2n

2/3−ϵ

-time algorithm for finding the short generator of the
principal ideal problem.

B. First Generation: FHE based on the AGCD problem

A new (and simpler than ideal lattice-based) family of FHE
schemes dawned in 2010 thanks to van Dijk, Gentry, Halevi
and Vaikuntanathan, who introduced a fully homomorphic
encryption scheme over integers [19]. The basic construction
of the DGHV scheme is the following:

• key generation: outputs the secret key p, i.e. an odd
random integer, and the public key (x0, . . . , xn) where
x0 is odd and x0 > xi ∀i, where xi = pqi + ri with
qi, ri random integers.

• encryption: the message m ∈ F2 is encoded into the
ciphertext c = (m+2r+2

∑
i∈S xi) mod x0, where r is

a random integer and S is a random subset of {1, . . . , n}.

• decryption: computes (c mod p) mod 2.

The security of this scheme is based on SSSP and the
Approximate - Greatest Common Divisor (AGCD) problem
which consists of finding the “common near divisor” p, given
a set of integers {x0, . . . , xn} ∈ Z, all randomly chosen
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Fig. 5. Main FHE schemes based on the AGCD problem.

and close to multiples of a large integer p. The scheme also
assumes circular security.

The main drawbacks of the DGHV scheme are its high
computational complexity and large public key size. Several
optimizations and implementations have been proposed, as
depicted in Figure 5. Specifically, in [68], Coron, Mandal,
Naccache and Tibouchi reduced the elements of the public key
that have to be stored (2

√
n instead of n elements), since the

rest of the key elements can be recovered. This optimization
only requires a slight modification of the encryption procedure.
In [69] Chan and Nguyen presented new algorithms to solve
the AGCD problem, which are exponentially faster than the
previous one. As a consequence, they proved that the scheme
in [68] achieves lower security level than initially claimed.
Later Coron, Naccache and Tibouchi [70] further reduced the
size of the public key using the modulo switching technique.
The security of both these schemes is based on the AGCD
assumption with error-free problem. Informally, this problem
is similar to the AGCD problem but with the stronger as-
sumption that x0 does not have the error r0 considered in
the conventional AGCD assumption. It is worth commenting
that this is quantumly broken by Shor [71].

A batch version of DGHV scheme was independently pro-
posed in 2013 by Kim, Lee, Yun and Cheon [72] and by Coron,
Lepoint and Tibouchi [73] (the merged version is in [74]).
Moreover, Nuida and Kurosawa [75] proposed the batching
technique for non-binary message spaces. In 2014 Coron,
Lepoint and Tibouchi [76] improved the DGHV scheme using
the scale-invariance property given by Brakerski [50]. In
2015, Cheon and Stehlé [77], inspired by [50], introduced
a reduction from LWE to AGCD and then presented a new
AGCD-based fully homomorphic encryption scheme based on
the hardness of this new variant. It is worth highlighting that
this construction is the first DGHV variant that did not require
the SSSP hardness assumption.

C. Second Generation: FHE based on LWE and RLWE

In 2011, Brakerski and Vaikuntanathan introduced,
leveraging the bootstrapping technique, two FHE schemes
based on the LWE [17] (extended version in 2014 [78]) and
the RLWE [18] (see Sections III-G to III-I) problems, and
the circular security assumption. These works, described in
Figure 6, initiated the second generation of FHE schemes.
The LWE-based symmetric scheme described in [78], known

as BV, is described as follows:

• encryption: the message m ∈ F2 is encoded into a
ciphertext c such that

c = (a, b = ⟨a, s⟩+ 2e+m) ∈ Zn
q × Zq,

where e is the error randomly chosen from an error
distribution χ and s ∈ Zn

q is the secret key composed of
random elements in Zq .

• decryption: outputs the plaintext (b − ⟨a, s⟩ mod
q) mod 2, which is equal to (2e + m mod q) mod 2.
The decryption works properly if e is small enough,
specifically e < q/2.

In this paper, the authors also introduced two novel tech-
niques called re-linearization and dimension-modulus reduc-
tion. The re-linearization is needed to reduce the multiplication
ciphertext size from almost n2/2 back to regular size, i.e.
n + 1. To obtain this reduction the authors transform the
quadratic equation of c1 · c2 into a linear equation by means
of “encrypting” all the terms of the symmetric key under a
new key. Later on, Brakerski, Gentry and Vaikunthanathan [12]
called this technique key switching

The dimension-modulus reduction technique (called also
modulus switching [12] in subsequent works) converts an SHE
into an FHE scheme transforming a ciphertext c modulo q
into another ciphertext c′ modulo p, where p is sufficiently
smaller than q. Specifically, each element in Zq is converted
into an element in Zp by first multiplying it by p/q, and then
taking the closest integer. An interesting side effect of this
operation is that the error in the ciphertext decreases3. The
lower noise growth due to the adoption of modulus switching
allows to homomorphically evaluate the decryption circuit
without the squashing method proposed by Gentry. Thus, the
SSSP assumption is no longer required (see Section IV-B).

In [18], Brakerski and Vaikunthanathan proposed a new
version of the BV scheme, where the scheme security is
based on the polynomial LWE (PLWE) problem. Note that the
PLWE problem is equivalent to the RLWE problem [32] (see

3The error decreases when comparing ciphertexts before and after modulus
switching, but the new ciphertext has also reduced modulus, and the error
level relative to its modulus is actually higher after modulus switching since
this technique introduces some error.
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Section III-H). The main difference between the LWE version
of the BV scheme and the RLWE version is that it represents
the message, the ciphertext and the keys, as elements in Rq ,
where Rq = Zq[x]/⟨f(x)⟩ with f(x) ∈ Z[x] is a polynomial
of degree d and q is a prime.

In [12], Brakerski, Gentry and Vaikunthanathan proposed
a method for defining a leveled fully homomorphic scheme
(see Section IV-A), which avoids the computationally ex-
pensive bootstrapping technique. Based on this method, they
defined the BGV scheme, and provided batching and modulus
switching techniques. Additionally, the authors also gave a
bootstrapping technique to transform the leveled version into
an FHE version.

This new method made the scheme applicable to practical
scenarios, thus fostering increasing interest from the research
community. The authors introduced two variants of the BGV
scheme (one based on LWE and another on RLWE assump-
tion). The RLWE-based version of BGV scheme, described in
Scheme V.1, is more efficient than the LWE counterpart, and
it is implemented in the widely used FHE library HElib [79]
(from IBM). The library, implemented by Shai Halevi and
Victor Shoup, is open source and it enables the construction
of a boolean circuit of any depth (more information about
libraries can be found in Section V-G). It is worth commenting
that the architecture of the library is based on a variant of the
BGV scheme that introduces some optimizations, proposed

by Gentry, Halevi and Smart [80], for the specific implemen-
tation of the AES circuit [81]. Also, in [82] Gentry, Halevi
and Smart, using the batch techniques of Smart-Vercauteren
[63] and Brakerski-Gentry-Vaikuntanathan [17], provided the
asymptotically fastest scheme, with significant impact towards
fast bootstrapping.

Scheme V.1: BGV RLWE-based scheme [12]

Let d be a power of 2, q be an odd positive integer
modulus, and χ be an error distribution over R,
where R = Z[x]/⟨xd + 1⟩. Let B be a bound (with
overwhelming probability) on the length of elements
outputted by χ. B is set to be as small as possible
while maintaining security. For any natural integer p
we write Rp = Zp[x]/⟨xd +1⟩. The scheme works as
follows:

• key generation: takes as input the security
parameter λ and randomly chooses a small
secret element s ∈ χ and sets the secret key
sk = s = (1, s) ∈ R2

q . It generates a′ ∈ Rq

uniformly at random and computes b = a′s+ 2e
where e is a random error in χ. It outputs sk and
pk = a = (b,−a′).
Note that ⟨a, s⟩ = 2e.
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• encryption: takes as input the public key
pk ∈ R2

q and the message m ∈ R2. It converts
m into a vector m = (m, 0) ∈ R2

q and
chooses random r, e0, e1 ∈ χ. It outputs the
ciphertext c = m + 2(e0, e1) + ar. Namely,
c = (c0, c1) = (m+ 2e0 + br, 2e1 − a′r) ∈ R2

q .

• decryption: takes as input the secret key
s ∈ R2

q and the ciphertext c ∈ R2
q . It computes

⟨c, s⟩ = c0+c1s = m+2e0+2e1s+2er and out-
puts ((m+2(e0+e1s+er)) mod q) mod 2 = m.
Note that the decryption works properly because
e, e0, e1 and s are small enough (since are
elements of χ).

• (homomorphic) properties.
– The addition is a component-wise addition.

The decryption works as long as the resulting
error does not overlap the modulus q.

– The multiplication is slightly more compli-
cated. Note that,

⟨c, s⟩ · ⟨c′, s⟩ = (c0 + c1s)(c
′
0 + c′1s)

= c0c
′
0 + (c0c

′
1 + c1c

′
0)s+ c1c

′
1s

2

= d0 + d1s+ d2s
2.

So the extended ciphertext (d0, d1, d2) can
be decrypted using a extended secret key
(1, s, s2). The inconvenience is that every
multiplication expands the decryption key. So
to reduce the decryption key, the authors use
the key switching technique. Roughly speak-
ing, the basic idea of this method is to convert
the ciphertext term d2s

2 to c̄0 + c̄1s using
the encryption of s2 under s (this is possible
under a circular security assumption). Indeed,
Encs(s

2) = (β,−α), where

(β,−α) = (s2 + 2e+ a′rs, 2e1 − a′r)

≈ (s2 + αs,−α).

Thus, s2 ≈ β − αs and the extended cipher-
text d0+d1s+d2s

2 becomes a normal cipher-
text c̃0 + c̃1s encrypting the same plaintext.

The leveled version of the schemes can be found
in [12, sec. 4.4].

Brakerski [50] provided another variant of the BGV scheme,
based on a technique called scale invariant. This technique
reduces the error increase produced by homomorphic multipli-
cations from exponential to linear. Intuitively, the idea behind
the scale invariant technique is to scale down the ciphertext and
the error by a factor of q, where q is the ciphertext modulus.
This method replaces the modulus switching technique.

Another relevant contribution of [50] is a classical reduction
to prove that the security of the scheme is based on the
hardness of the GapSVP problem (see Section III-C). Previous

schemes were, initially, proven secure only with quantum
reductions (although now they also count with classical re-
ductions).

The RLWE version of the Brakerski scheme was imple-
mented and optimized by Fan and Vercauteren [13], and named
FV scheme (see Scheme V.2). In the following sections of
this work we refer to these two schemes as the B/FV scheme,
namely for the LWE/RLWE variants. The FV scheme is one
of the three schemes implemented in the Microsoft’s Simple
Encrypted Arithmetic Library (SEAL) [83], and it allows
modular arithmetic to be performed on encrypted integers.
Other libraries implementing the B/FV scheme can be found
in Section V-G.

Following this research line, Bajard, Eynard, Hasan and
Zucca [84] proposed an optimization, called RNS FV (BEHZ
variant), when the ciphertext has large coefficients. It is based
on the Residue Number System (RNS) since it uses CRT
representation. This variant is improved in a subsequent work
by Halevi, Polyakov and Shoup [85] (HPS variant). Both
approaches were evaluated in [86] by Al Badawi, Polyakov,
Aung, Veeravalli and Rohloff, where the authors show that
the HPS variant [85] has better decryption and homomorphic
multiplication runtimes with respect to [84]. However, a sub-
sequent note on this work by Bajard, Eynard, Martins, Sousa
and Zucca [87] shows that the noise growth for the BEHZ and
HPS variants is actually very close, and that HPS provides only
slightly better runtime with respect to BEHZ.

Chen and Han [88] improved the bootstrapping technique
of both BGV and FV schemes for a large plaintext modulus
(i.e. a large prime power). Based on this work, Halevi and
Shoup [89] proposed an improved variant for BGV, which
was implemented by the same authors in HElib [90]. Another
modification of the FV scheme is proposed in [91] by Kim,
Laine, Player and Xia. The plaintext space is switched from
Rt to Zbn+1, by means of using the Hoffstein and Silverman
trick [92] where the plaintext modulus t is substituted by a
polynomial x− b, specifically:

Rt = Z[x]/⟨x− b, xn + 1⟩ = Z[x]/⟨x− b, bn + 1⟩ ∼= Zbn+1.

A recent generalization of this work is given in [93] where
Bootland, Castryck, Iliashenko and Vercauteren proposed a
plaintext modulus as xm + b instead of x − b. Both works,
[91] and [93], follow a strand of articles ( [94]–[96]) studying
an encoding method for transforming a real input data (namely,
integer, rational or a complex number) into a polynomial,
which is an element of the message space (i.e. plaintext) of a
RLWE scheme. It is worth highlighting that both [91] and [93]
achieve a reduction of the error growth when compared to the
original version of the FV scheme and, as a consequence,
both of them enable the evaluation of circuits with higher
multiplicative depth. The main difference between these two
approaches is that whereas [91] encodes fractional numbers,
[93] encodes complex numbers.

In BGV and B/FV schemes (and similarly in other FHE
schemes) each ciphertext includes an error that grows with
each homomorphic operation. To avoid decryption failure, the
error must be below a certain threshold. This implies a trade-
off between security level and error margin that influences the
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parameter selection, and that is specific to each use case. Such
parameter choice requires a complex study of the error growth,
which has motivated some research works. Namely, Costache,
Laine and Player [97], extending a previous performance eval-
uation of Costache and Smart [98], compared the error growth
for BGV and FV schemes. Specifically, in [97] the authors
proved that, for a particular small plaintext modulus and circuit
depth, BGV requires a larger parameter set than FV. On the
other hand, BGV outperforms FV when the plaintext modulus
is medium or large. However, the analysis performed in [97]
does not consider some of the available optimizations for BGV
and FV. Mono, Marcolla, Land, Güneysu and Aaraj [99],
provided a dynamic (i.e. level dependent) noise estimation
following previous works [80], [97], [98] but also considering
the new fetures on BGV. Moreover, they provided an easy-to-
use interactive parameter generator tool4.

Kim, Polyakov and Zucca [100] proposed several optimiza-
tions to the FV and the BGV schemes and suggested a different
approach to compute the ciphertext modulus of the BGV
scheme, which does not require dynamic noise estimation, but
at the cost of increasing the ciphertext modulus. With these
optimizations, their FV variant has better noise growth than
BGV for all plaintext moduli. However, their FV variant is
faster than BGV only for small plaintexts, while BGV is still
faster for intermediate and large plaintexts. The differences
regarding the error growth between [97] and [100] can be
explained by two factors: i) in [100] the authors performed a
static noise estimation whereas in [97] is dynamic; and ii) the
analysis of [97] has some inaccuracies when computing the
noise growth for FV, as pointed in [100].

Scheme V.2: FV scheme [13]

Let R = Z[x]/⟨xd + 1⟩ where d is a power of 2.
Let q and p be positive integers, let ∆ = ⌊q/p⌋
and rt(q) = q mod p. For any natural number t we
write Rt = Zt[x]/⟨xd + 1⟩. Let χ be a B-bounded
probability distribution over Rq . Then, the FV scheme
is constructed as follows:

• key generation: takes as input the security
parameter λ and outputs the small secret key
sk = s ∈ χ. It generates a ∈ Rq uniformly at
random and computes −(a · s+ e) mod q where
e ∈ χ is a small random error. It outputs sk and
pk = (p0, p1) = (−(a · s+ e) mod q, a).

• encryption: takes as input the message m ∈ Rp

and the public key pk ∈ R2
q . It chooses at random

the values u, e1, e2 ∈ χ and outputs the ciphertext
c = (c0, c1), where c0 = (p0·u+e1+∆m) mod q
and c1 = (p1 · u+ e2) mod q.

• decryption: takes as input the secret key
s ∈ Rq and the ciphertext c ∈ R2

q . It computes

4https://github.com/Crypto-TII/fhegen

⌊p·(c0+c1·s) mod q
q ⌉ mod p = m.

• (homomorphic) properties. An extensive descrip-
tion can be found in [13, sec. 4]), here we cater
for a brief overview. The ciphertext c can be seen
as a polynomial evaluated in s, i.e. c(s), instead
of a vector with two components.

– The addition is trivial: c1(s) + c2(s) mod q
– The multiplication of two ciphertexts gives

as a result a quadratic polynomial

c1(s) · c2(s) = α0 + α1 · s+ α2 · s2

which can be transformed into a decryptable
ciphertext by means of a re-linearization
process, which reduces by one the degree of
the ciphertext.

D. Second Generation: FHE based on NTRU
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Fig. 7. Main FHE schemes based on NTRU.

NTRU [101] is a lattice-based encryption scheme
introduced by Hoffstein, Pipher and Silverman in 1996, with
a provisional patent filed, and granted in 2000 [102]. Since its
inception, the security of this scheme was under discussion by
the research community, until 2011, when Stehlé and Steinfeld
[103] slightly modified the scheme to obtain a variant which
security is based on the RLWE assumption. One year later,
López-Alt, Tromer and Vaikuntanathan [104] introduced
the first FHE scheme inspired from the Stehlé-Steinfeld
NTRU variant. It is considered part of the second generation
of FHE schemes. Specifically, the authors propose a new
notion of homomorphic encryption scheme called Multi-Key
FHE, which supports computation on ciphertexts encrypted
under different keys (for more details on Multi-Key FHE see
[25]). This scheme, called LTV, uses the bootstrapping and
modulus switching techniques and it is constructed as follows:

• key generation: chooses two small random polynomials
f ′, g ∈ χ, where χ is a B-bounded distribution
over R = Z[x]/⟨xd + 1⟩ and d is a power of 2.

https://github.com/Crypto-TII/fhegen
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It outputs the secret key f = 2f ′ + 1 ∈ R, where
f ≡ 1 mod 2 and f is invertible in Rq , and the public
key h = 2gf−1 mod q ∈ Rq .

• encryption: computes the ciphertext as c = hs+2e+m ∈
Rq , where m ∈ F2 is the message and s and e are
random small elements in χ. The ciphertext is an element
of Rq = Zq[x]/⟨xd + 1⟩.

• decryption: computes m = (fc mod q) mod 2.

The security of this scheme is based on circular security,
the RLWE problem and the Decisional Small Polynomial
Ratio (DSPR) problem. The DSPR problem states that it
is hard to distinguish between h (as defined in the scheme
construction) and an uniformly random polynomials in Rq .
One year later Bos, Laute, Loftus and Naehrig [105] modified
the LTV scheme [104] proposing two schemes: i) YASHE (i.e.
Yet Another Somewhat Homomorphic Encryption scheme),
for which they removed the DSPR assumption using the
scale invariant at the cost of having a large evaluation key
and a complex key switching method; ii) a YASHE version
including again the DSPR assumption to achieve a more
practical construction. In 2016, Albrecht, Bai, and Ducas [106]
and, in an independent work, Cheon, Jeong and Lee [107],
provided a sub-field lattice attack which renders any NTRU-
like scheme based on the DSPR problem insecure, for some
particular parameters choice. Finally, Doröz and Sunar [108],
adapted the GSW scheme [57] (see Section V-E) to the NTRU
setting by removing the DSPR assumption.

Although NTRU-like schemes are, in general, faster than
RLWE schemes, the work by Lepoint and Naehrig [109]
showed that the FV scheme [19] has lower error than the
YASHE scheme [105]. Also, Kim and Lauter [110] proved
that YASHE is better than BGV for a low-degree computation
but BGV is more efficient than YASHE for high circuit depths.
Moreover, Costache and Smart [98] demonstrated that YASHE
is more efficient than BGV for small plaintexts modulus, but
BGV is more efficient for large plaintexts. Figure 7 shows
the diagram of second generation schemes based on NTRU,
including the most relevant papers providing performance
comparisons. To conclude this section, it is worth comment-
ing that the parameters choice for NTRU-based schemes is
affected by the attacks proposed in [106], [107]. Namely, to
obtain a secure NTRU-based scheme the parameters should
be significantly increased with respect to the sizes proposed
before these attacks were published. This rendered NTRU-
based schemes significantly less efficient than its counter-parts,
thus they are no longer used nor supported by any library.

E. Third Generation: FHE based on LWE and RLWE

A second family of (R)LWE schemes (also called third
generation FHE, as Peikert notes in [31]) started with the
Gentry, Sahai and Waters [57] (GSW) scheme. The GSW
scheme proposes a different approach to perform homo-
morphic operations, introducing the approximate eigenvector
method, which removes the requirement for key and modulus

switching techniques. This new technique reduces the error
growth introduced by homomorphic multiplications to a small
polynomial-factor. As shown in [111], when multiplying ℓ
ciphertexts, all starting with the same error level, the final error
grows by a ℓ poly(n) factor, where n is the dimension of the
scheme (i.e. the dimension of the lattice). This is a distinctive
aspect with respect to previous schemes, such as BGV or FV,
for which the final error grows by a quasi-polynomial-factor.
The RLWE version of this scheme was given by Khedr, Gulak
and Vaikuntanathan in [112]. Figure 8 describes this second
family of (R)LWE schemes.

Adopting the notations used in [113] and [60], the (simpli-
fied) GSW scheme construction5 is as follows:

• key generation: outputs the secret key s = (1,
s2, . . . , sn) ∈ Zn

q , where the si’s are chosen at random
and a public key A ∈ Zn×n

q that is a matrix n× n such
that A · s = e ≈ 0;

• encryption: computes the ciphertext C = m In + RA,
where m ∈ Zq is the message, In is the identity
matrix, R is a random matrix with size n× n and with
coefficients in F2. This means that the entries of R are
small;

• decryption: First, computes C s = m In s + RAs =
m In + Re ≈ m Ins. Note that because R is small, if
As ≈ 0 then RAs ≈ 0. Finally, outputs the first element
of the vector x ≈ m Ins ≈ (ms1, . . . ,msn), which is
m, since s1 = 1.

The main drawbacks of the GSW scheme are the high
communication costs (the ciphertext is large with respect to
the corresponding plaintext) and the computation complexity.
To reduce the computational overhead, various optimizations
have been proposed to improve the bootstrapping procedure
(see Figure 8). Specifically, Alperin-Sheriff and Peikert [113],
[114] suggested a new bootstrapping algorithm considering de-
cryption as an arithmetic function instead of a boolean circuit.
Hiromasa, Abe and Okamoto [115] optimized the Alperin-
Sheriff and Peikert procedure [113] constructing an FHE
scheme (based on GSW scheme) that supports homomorphic
matrix operations. Moreover, Brakerski and Vaikunthanathan
[111], starting from GSW, proposed the first work that man-
aged to get FHE scheme based on GapSVP with polynomial
approximation factors (and circular security). Ducas and Mic-
ciancio [116] proposed a ring variant, the FHEW scheme, of
the Alperin-Sheriff and Peikert (AP) bootstrapping technique
[113]. They introduced a new method to homomorphically
compute the NAND of two standard LWE ciphertexts (with
standard we refer to the ones of Regev’s scheme [44]) by eval-
uating a look-up table during bootstrapping. This technique
was later called programmable bootstrapping (PBS) [117].

In this work, they also adopt the complex FFT which
enables the implementation of the scheme with the Fastest

5Note that, for the sake of clarity, this version is a simplified description of
the scheme and it is not homomorphic for multiplication. To get homomorphic
multiplications we would also need the bit decomposition.
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Fig. 8. Main third generation of FHE schemes based on the LWE and RLWE problems.

Fourier Transform in the West [118] library (the “W” of the
scheme’s name FHEW comes from this). These set of opti-
mizations render the GSW’s scheme bootstrapping procedure
faster than the BGV’s scheme one.

In a subsequent paper, Chillotti, Gama, Georgieva and
Izabachène [14] improved the Ducas-Micciancio’s result and
used a different bootstrapping technique, namely, the one
proposed by Gama, Izabachène, Nguyen and Xie (GINX)
in [119]. The authors proposed three different FHE schemes
over the Torus, generally called TFHE: i) TLWE, which is
a generalized version of the LWE problem for the Torus;
TRLWE, which is its ring variant; and iii) TRGSW, which
improves the ring version of GSW scheme. The messages
of the TLWE scheme are in the torus T and the ciphertexts
in Tn+1, whereas the ring version TRLWE of this scheme
works with plaintexts in the R-module, where R is the
ring of integer polynomials. Namely, the message space is
T = R[x]/⟨xd + 1⟩ mod 1. The TRGSW scheme encrypts
elements of the ring of integer polynomials into a vector
of TRLWE ciphertexts, namely, C ∈ T (k+1)ℓ. It is worth
commenting that [14] is an extended and improved version
of previous articles presented in Asiacrypt 2016 [120], where
they speed up the bootstrapping procedure and reduce the
bootstrapping key size compared to FHEW; and Asiacrypt
2017 [121], where they improve the leveled version of TFHE.

A detailed description of the TRLWE scheme is provided
in Scheme V.3.

Scheme V.3: TRLWE scheme [14]

Let us consider the following notations:
R = Z[x]/⟨xd + 1⟩, where d is a power of 2,
T = R[x]/⟨xd + 1⟩ mod 1 and R2 = F2[x]/⟨xd + 1⟩,
that is, any element in R2 is a polynomial in R
with binary coefficients (in a recent work [117], the
authors used Zq instead of a torus). Then, the TRLWE
scheme is constructed as follows:

• key generation: takes as input the security
parameter λ and outputs the small secret key
s ∈ Rn

2 .

• encryption: takes as input the secret key s ∈ Rn
2 ,

the error parameter α, and the message m ∈
T . Then, it chooses a uniformly random mask
a ∈ Tn, and a small error e ∈ χ, where χ
is a B-bounded distribution. Then it outputs the
ciphertext.

c := (a, s · a+m+ e) ∈ Tn × T.

• decryption: takes as input the secret key s ∈ Rn
2

and the ciphertext c ∈ Tn+1. Then it computes
the secret linear κ-Lipschitz function φs (called
phase) of the ciphertext c. The phase φs : T

n ×
T → T is such that φs(a, b) = b − s · a. Note
that this function is parametrized by the secret key
s ∈ Rn

2 . The phase φs(c) is close to the actual
message:

φs(c) = s · a+m+ e− s · a = m+ e.
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To conclude, it rounds φs(c) to the nearest point
in the message space M ⊂ T .

• (homomorphic) linear combinations of cipher-
texts. Let c1, . . . , cp be p independent ciphertexts
under the same key s, and let f1, . . . , fp be integer
polynomials in R.
We consider c =

∑p
i=1 fi · ci such that the

error amplitude remains smaller than 1/4, that
is, ||e||∞ ≤ 1/4. Then by [14, Fact 3.5], c is
a ciphertext and

Decs(c) =

p∑
i=1

fi · Decs(ci).

As the authors of [14] pointed out, the ciphertexts can
be linearly combined to obtain a new ciphertext which
is the linear combination of the messages. But when
we have to manipulate the ciphertext non-linearly,
TLWE seems to miss some properties. In order to
avoid this problem, the authors of [14] proposed the
generalized scale invariant version of GSW, called
TRGSW. Note that to “switch” from TRLWE to TLWE
(and vice-versa) we only have to consider the real torus
instead of T , {0, 1} instead of B and Z instead of R.

In [122], Micciancio and Polyakov compared FHEW and
TFHE schemes, and proved that the performance difference is
determined by the different bootstrapping algorithms adopted
in both schemes, AP [113] for FHEW and GINX [119] for
TFHE. Specifically, TFHE is faster than FHEW for a binary
secret, whereas for higher secret sizes (above ternary) FHEW
outperforms TFHE in running time. In terms of memory,
TFHE has a bootstrapping key smaller than FHEW. However,
it is worth commenting that in a very recent paper [123], Lee,
Micciancio, Kim, Choi, Deryabin, Eom, and Yoo introduced
a new bootstrapping procedure that achieves the advantages
of both algorithms, AP and GINX. The new method supports
arbitrary secret key distributions without increasing the run-
ning time (like AP/FHEW) and it also achieves a considerable
small bootstrapping key size (like GINX/TFHE).

A relevant feature of the TFHE scheme is that the boot-
strapping technique enables an univariate function to be eval-
uated simultaneously to the noise reduction operation [117]
(i.e. programmable bootstrapping). Several optimizations have
been proposed to improve the TFHE scheme and, in partic-
ular, its programmable bootstrapping procedure. Namely, in
[124], Carpov, Izabachène and Mollimard proposed a multi-
output version of the PBS, that is, a new technique to per-
form several homomorphic operations over different variables
with a single bootstrapping execution. This construction can
also be used to evaluate homomorphically several functions
over the same encrypted message simultaneously. In a re-
cent work, Guimarães, Borin and Aranha [125] optimized
the bootstrapping procedure to evaluate multiple functions
on large ciphertexts and Chillotti, Ligier, Orfila and Tap
[117] proposed several enhancements, including a generalized

method to evaluate several functions at once without adding
additional error. Finally, in [126], Chen, Chillotti and Song
proposed a multi-key homomophic encryption scheme from
TFHE. They provide two methods to multiply a ciphertext
encrypted with a single key by a ciphertext encrypted with
multiple keys. To conclude this section, we would like to
refer interested readers and TFHE practitioners to the recently
published guide of Joye [127], which presents implementation
details, theoretical examples and a clear description of the
programmable bootstrapping technique.

F. Fourth Generation: FHE based on LWE and RLWE

In 2017 a new generation of FHE schemes (see Figure 9)
was introduced by Cheon, Kim, Kim and Song [15]. The au-
thors proposed a method to construct a leveled Homomorphic
Encryption scheme for Approximate Arithmetic Numbers, and
included an open-source library implementing the scheme.
This scheme was initially called HEAAN, but nowadays
research community refers to the scheme as CKKS (from the
authors’ names) while HEAAN is used to denote the library.
The scheme construction is described in Scheme V.4. The
scheme was extended one year later to a fully homomorphic
encryption scheme by Cheon, Han, Kim, Kim and Song [128],
and, subsequently [129] the same authors presented a variant
of CKKS scheme by means of including a ciphertext packing
technique based on the CRT. In [130] Boemer, Costache,
Cammarota and Wierzynski introduced several optimizations,
based on complex packing, to improve the runtime of scalar
encoding and of ciphertext-plaintext addition and multiplica-
tion operations. Moreover, a different kind of complex packing
was introduced by Kim and Song in [131]. In [132], Kim, Pa-
padimitriou and Polyakov improved the usability of CKKS and
its RNS variant proposing a new technique that minimizes the
error during computation. Specifically, the idea is to rescale the
ciphertext before multiplication and not after, thus obtaining a
smaller error before performing the multiplication. Also, the
bootstrapping version [128] of CKKS was enhanced in [133]
by Chen, Chillotti and Song, whereas, in [134], Han and Ki
discussed and improved the bootstrapping version of [129].
The bootstrapping version of [128] includes an homomorphic
modular reduction, which is approximated by a trigonometric
function to improve efficiency. Parallel works improved this
approximation, such as Lee, Lee, Lee, Kim and No [135], who
improved the bootstrapping of the RNS-CKKS leveraging the
technique proposed in [132]. Also, Jutla and Manohar [136]
proposed a sine series to approximate the modular reduction,
and achieved a significantly higher precision than the previous
works. It is also worth mentioning other works that approxi-
mate the modular reduction without relying on trigonometric
functions, such as Jutla and Manohar in [137] and Lee,
Lee, Kim, and No in [138]. Bossuat, Mouchet, Troncoso-
Pastoriza and Hubaux [139] proposed the most efficient RNS-
CKKS bootstrapping implementation, and the first practical
instance of a bootstrapping algorithm with a dense secret. The
problematic of performing bootstrapping with a dense secret
is that the bootstrapping circuit depth increases, as well as the
bootstrapping failure probability. On the other hand, adopting
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Fig. 9. Main fourth generation FHE schemes based on the LWE and RLWE problems.

a sparse secret makes bootstrapping more efficient but renders
the scheme less secure due to some recent attacks (see Li-
Micciancio attack in the next paragraph and Section VI).
Motivated by this trade-off Bossuat, Troncoso-Pastoriza and
Hubaux [140] proposed a sparse-secret encapsulation tech-
nique, which overcomes the security vulnerability problem
of sparse secrets while preserving a negligible bootstrapping
failure probability. However, the bootstrapping technique in
[139] is still faster than [140], at the cost of higher failure
probability and a slightly less precision.

In a recent work, Li and Micciancio [141] presented an
attack against CKKS that works for a specific application
scenario. The authors proved that the CKKS scheme (as
well as all improvements and implementations of approximate
encryption schemes) is vulnerable to an attack by an adversary
that has access to the encryption functionality. Namely, the
adversary can extract a secret key using only linear algebra or
lattice reduction techniques. Specifically, the secret key can be
obtained if the decrypted element and corresponding ciphertext
are both known, because the error is a linear combination
of the secret key’s elements (see Scheme V.4). However, as
Cheon, Hong and Kim pointed out in [142], this attack can
be prevented if the owner of the secret key does not share the
result of the decrypted messages. Unfortunately, some appli-
cations such as secure multi-party computation or differential
privacy techniques require sharing some plaintexts. In such
cases, Li and Micciancio suggested that their attack could
be probably avoided by modifying the decryption function by
means of adding an error at the end of the decryption process,
as suggested in [141].

Scheme V.4: CKKS scheme [15]

Let R = Z[x]/⟨xd + 1⟩ and d = 2M . For a base p, a
modulus q0 and a natural integer L (chosen level), let
qℓ = pℓ · q0 for ℓ = 1, . . . , L. Note that a ciphertext of
level ℓ is a vector in Rqℓ . Let us consider the following
relevant distributions. For a real number σ, DG(σ2)
is a vectorial discrete Gaussian distribution over Zd,
which samples each of its components from indepen-
dent discrete Gaussian distributions of variance σ2. For
a real number 0 < ρ < 1, the distribution ZO(ρ) is
the distribution over {−1, 0, 1}d which draws 0 with
probability 1 − ρ and −1 or 1 with probability ρ/2.
Finally, let us consider χ a B-bounded distribution.
The leveled CKKS scheme is constructed as follows:

• key generation: takes as input the security
parameter λ and chooses M , integers h and
t, and a real number σ so that the best
attack against the associated RLWE instance
achieves a complexity 2λ. It computes a secret
key sk = (1, s), where s ∈ χ. It generates
a ∈ RqL uniformly at random and computes
−as + e mod qL, where e is DG(σ2). Finally,
it samples a′ ∈ Rt·qL and e′ ∈ DG(σ2) and
computes b′ = −as + e′ + ts′ mod t · qL. It
outputs the secret key sk = (1, s), the public key
pk = (b, a) and the evaluation key evk = (b′, a′).

• encryption: takes as input the message m ∈ R and
the public key pk ∈ R2

qL . It chooses at random
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the values v ∈ ZO(1/2) and e0, e1 ∈ DG(σ2)
and outputs

c = (β, α) = vpk+ (m+ e0, e1) mod qℓ.

• decryption: takes as input the secret key
sk = (1, s) and the ciphertext c ∈ R2

qℓ
. It

computes m = ⟨c, sk⟩ mod qℓ = β+αs mod qℓ.

• (homomorphic) properties.
– The addition is trivial: c1 + c2
– The multiplication of two ciphertexts ci =

(βi, αi) with i = 1, 2 is

c1 · c2 = (d0, d1) +
⌊
t−1d2evk

⌉
mod qℓ,

where (d0, d1, d2) = (β1β2, α1β2 + α2β1,
α1α2) mod qℓ.

It is worth clarifying that when we have two
ciphertexts c, c′ of two different levels ℓ′ < ℓ,
we should reduce the level of the ciphertext with
a higher level to match both levels, i.e. ℓ′ = ℓ.
This can be achieved with a rescaling procedure
that takes a ciphertext c ∈ R2

qℓ
at level ℓ and

outputs c′ = ⌊qℓ′/qℓ⌉ mod qℓ′ .
An interesting feature of CKKS is that the message
space can be represented as elements in the extension
field C. Informally, the message m can be embedded
in S = R[x]/⟨xd+1⟩ . Since, the roots of xd+1 are the
complex primitive roots of unity in C, to convert the
m ∈ S into a vector of complex numbers it is sufficient
to evaluate it at these complex roots. For more details
see [15, sec. 3].

The fourth generation schemes are similar to the second
generation. The main difference is that the fourth generation
schemes are approximate schemes, i.e. they use approximate
computation, which is considerably faster. Specifically, the
fourth generation embeds the message space into a complex
hyperplane, and the error during encryption is inserted as part
of the approximation error that is inherently introduced during
a computation over real-valued numbers. An interesting
feature of CKKS is the capability to homomorphically
operate over approximations of real numbers, which makes
it a suitable scheme to work with floating-point arithmetic.
Another similarity is that the schemes from both generations
have efficient packing techniques, and they can only compute
fast sum and product (any non-linear operation becomes
computationally expensive).

It is important to highlight the work proposed by Boura,
Gama, Georgieva and Jetchev [143], the CHIMERA scheme,
which is a hybrid solution combining three RLWE-based FHE
schemes: TFHE [14], B/FV [13], [50] and CKKS [128].
CHIMERA has the special property that it enables the switch-
ing between the three schemes. The authors start by defining
a common plaintext space between the three schemes by

constructing an embedding6 of the different message spaces.
By leveraging the bootstrapping technique, CHIMERA enables
switching ciphertexts from TFHE to FV (and vice-versa)
and from CKKS to FV (and vice-versa). FV must be used
as intermediate step for transformations between TFHE and
CKKS. CHIMERA was first presented as a solution to the
Idash’18 Track 2 competition [144], [124], and it was later
improved in PEGASUS [145] by Lu, Huang, Hong, Ma, and
Qu.

G. Final Considerations

To the best of the authors knowledge, BGV [12], B/FV
[13], TFHE [14] and CKKS [128] are the most practical
and widely adopted schemes. The second generation schemes,
BGV and B/FV, are suitable to work with finite fields in the
modular exact arithmetic. They are equipped with efficient
packing which enables the use of SIMD (namely, single
instruction multiple data) instructions to perform computations
over vectors of integers (i.e. batching). Thus, these schemes
are excellent candidates when large arrays of numbers are to
be processed simultaneously.

Second generation schemes are not good candidates for
circuits where bootstrapping is required (i.e. circuits with large
multiplicative depth), or where non-linear functions are to be
implemented. Third generation schemes should be adopted in-
stead, namely TFHE, which can outperform previous schemes
for bit-wise operations, i.e. when computations are expressed
as boolean circuits [58]. The main limitation of TFHE is
the lack of support for CRT packing (i.e. batching), hence
the scheme can be outperformed by previous approaches
when processing large amounts of data simultaneously. The
fourth generation, i.e. CKKS, is the best option for real
numbers arithmetic. Table I provides a comparison among the
schemes’ families, and Figure 10 depicts the main applications
for each generation of schemes. It is worth clarifying that,
although TFHE provides the fastest bootstrapping procedure,
the batching feature of 2nd and 4th generation schemes allows
for the parallel bootstrapping of several plaintexts. For the
specific case of CKKS, it is possible to obtain a more efficient
amortized bootstrapping than for TFHE (this special case has
been reflected in Table I with the  symbol). This is however
not true for 2nd generation schemes because the number of
slots is significantly lower than for CKKS. For example, in
BGV the number of slots is only about 1000 as compared
to 215 or so for CKKS. This renders CKKS bootstrapping
more than one order of magnitude (often two) faster than BGV
bootstrapping.

H. Other Works

In a recent work by Doröz, Hoffstein, Pipher, Silverman,
Sunar, White and Zhang [146], an FHE scheme based on a
new hard problem was introduced: Finite Field Isomorphism
Problems, that is based on the difficulty of recovering a
secret isomorphism between two finite fields. Moreover, in

6An instance of a mathematical structure that is contained within another
instance
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TABLE I
PROPERTIES OF THE MOST WIDELY ADOPTED FHE SCHEMES.

Scheme Fast operations Fast packing/batching Leveled design Fast bootstrappingscalar mult arithmetic non arithmetic
Second Generation (e.g. BGV, B/FV)   #   #
Third Generation (e.g. FHEW, TFHE)    #   

Fourth Generation (e.g. CKKS)   #    

efficient packing (SIMD)

2nd Generation

BGV

Integer Arithmetic

B/FV

3rd Generation

Bitwise operations

fast number comparison

TFHE
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CKKS

Real Number Arithmetic

fast polynomial approx.
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Fig. 10. Pros/cons of FHE schemes by generation.

2019 Joux [147] proposed a scheme whose techniques are
similar to those of (R)LWE, but with arithmetic modulo large
Fermat numbers, namely numbers given by the expression
F = 22

f

+ 1, where f ∈ N.

VI. SECURITY OF SCHEMES BASED ON (R)LWE PROBLEMS

As described in Section III-G, the LWE problem consists
of finding the secret vector s ∈ Zn

q , given b ∈ Zm
q

and A ∈ (Zq)
m×n such that As + e = b mod q, where

e ∈ Zm
q is sampled from the error distribution χ. The

security of LWE-based schemes depends on the intractability
of this problem, and attacks on these schemes are based on
finding efficient algorithms to solve them. In this framework,
Albrecht, Player and Scott [148], presented three different
methodologies to solve the LWE-problem (Figure 11): i) based
on the BDD problem (Section VI-B); ii) based on the SIS
problem (Section VI-C); and iii) a direct search of the secret
s (Section VI-D). Conceptually, the central part of the first
and the second methodology is based on a lattice reduction.
Namely, starting from a bad (i.e. long) lattice basis, find a
better (i.e. reduced and more orthogonal) basis. Note that, in
[148], the authors showed that there is no single-best attack
against all possible parameters.

Regarding the schemes based on the RLWE problem, the
same considerations apply. According to the Homomorphic
Encryption Security Standard [58], if we choose correctly the
error distribution then there are no better attacks on RLWE
than on LWE. This is because the best known attacks do not
leverage any property of the ring structure. In this claim, the
correct choice of the error distribution only refers to a suffi-
ciently well spread distribution [149]–[151] (Section VI-E).

A comprehensive explanation of lattice attacks can be found
in [148], [152]–[154]. Moreover, the work of Bindel, Buch-
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Fig. 11. Different solving approach to LWE problem

mann, Göpfert and Schmidt [155] extends previous studies
with an analysis of how the number of samples affects the
hardness of LWE. It is worth highlighting the work of Albrecht,
Player and Scott [148], which not only describes in detail LWE
attacks, but also provides a software tool to determine the
security level of LWE instances. The first version of this tool is
referred to as the LWE Estimator7, and has been adopted in the
Homomorphic Encryption Security Standard [58] to provide
specific parameters for FHE schemes. The new version, de-
noted by Lattice Estimator8, ”was born out of frustration with
the limitations of the old codebase” as Albrecht mentioned in
his blog [156].

A. Lattice Reduction Algorithms

The most well-known lattice reduction algorithm used in
practice is BKZ (block Korkin-Zolotarev reduction) due to
Schnorr and Euchner [157]. This is a block-wise iterative algo-
rithm for basis reduction that can be seen as a generalization of
the LLL algorithm introduced in 1982 by Lenstra, Lenstra and
Lovász [158]. Recently, several variants of the BKZ algorithm
have been proposed [159]–[163]. In these algorithms, the time
complexity and the outcome quality (i.e. the orthogonality of
the reduced basis) is characterised by the Hermite factor [164]
and is given as a trade-off. Specifically, the run time of the
BKZ algorithm is higher when the root-Hermite factor δ0 is
smaller [157]. This is also shown in Lindner and Peikert’s
estimation [165]: log tBKZ(δ0) = 1.8/ log δ0 − 110. This
is result is also supported by a more realistic estimation9

provided in [148]. Starting from the data provided by Liu
and Nguyen [166], a similar relation between δ0 and the run
time of the BKZ 2.0 algorithm [159] was found by Albrecht,
Cid, Faugére, Fitzpatrick and Perret [167]. It is also worth
commenting that the quality of the output decreases with

7https://bitbucket.org/malb/lwe-estimator
8https://github.com/malb/lattice-estimator
9As Albrecht pointed out [152] the LP model for estimating the cost of

lattice-reduction is not correct for several reasons and the formula proposed
by Lindner and Peikert turns out to be too optimistic.

https://bitbucket.org/malb/lwe-estimator
https://github.com/malb/lattice-estimator
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higher values of δ0. The formula linking the root-Hermite
factor attainable by BKZ and the block-size b of this algorithm
was heuristic established (and well-verified experimentally) by
Chen in her PhD thesis [168]:

δ0 =
(
(πb)

1
b · b

2πe

) 1
2(b−1)

.

For more details about lattice reduction algorithms we refer
the readers to [148] by Albrecht, Player and Scott, and the
survey on algorithms for the SVP and CVP by Hanrot, Pujol
and Stehlé [169].

B. Attacks Based on Bounded Distance Decoding Problem

These attacks are based on solving LWE by solving the
BBD problem (Section III-D). Specifically, the main strategy
of this kind of attacks consists in finding v, the closest vector
to As + e, for a lattice L = L(A). Note that knowing v,
which equals As, we can obtain s and thus solve the LWE
problem. The following strategies have been proposed:

1) BDD enumeration (decoding): This attack was proposed
by Lindner and Peikert [165], who modified the Nearest Plane
algorithm analyzed by Babai [170], using multiple planes to
decrease the failure probability of finding the vector Ats.
The Lindner-Peikert algorithm has two main steps. First, it
applies lattice reduction (using BKZ) to obtain a new basis
{β1, . . . , βn}. Second, it performs a recursive search for an
integer combination of the basis vectors βi that is close to the
target vector v. In 2013, Liu and Nguyen [166], starting from
the paper by Gama, Nguyen and Regev [171], ameliorated the
Lindner-Peikert algorithm as well as Babai’s.

Subsequently, Buchmann, Göpfert, Player and Wunderer
[172] provided a hybrid attack for the LWE setting, following
the approach of Howgrave-Graham [173], who combined the
lattice reduction and the meet-in-the-middle (MITM) attacks.
The authors showed that, for specific parameters and in the
binary error setting (i.e. the errors are random vectors in
{0, 1}m) their attack surpasses previous attacks on LWE. We
refer to Wunderer’s PhD thesis for the analysis of the hybrid
decoding attack [174].

2) Reduction of BDD problem to uSVP: The attacks based
on uSVP try to solve the LWE problem by constructing an
integer embedding lattice using either the Bai-Galbraith [175]
or Kannan [176] technique. The main idea is to embed the
lattice L(A) = {Ay : y ∈ Zn

q } into a higher-dimensional
lattice L(A′), where A′ = (A|Im| − b) and

L(A′) = {x ∈ Zn+m+1
q : A′x = 0 mod q}.

This new lattice L(A′) has dimension d = n+m+1 (note
that the dimension of L(A) is n) and a unique shortest vector
v = (s, e, 1), where e is the error and s is the secret of the
LWE instance (A,As + e). Thus, finding the shortest vector
v in L(A′) is equivalent to solving the LWE problem. The
advantage of adopting the lattice L(A′) is that finding the
shortest vector in L(A′) is tractable, whereas in L(A) it is

not since we do not know whether As is a shortest vector in
L(A).

There are two methods to estimate the cost for solving LWE
using the uSVP strategy. The first one is proposed by Gama
and Nguyen [164] (called 2008 estimate) and later updated by
Albrecht, Fitzpatrick and Göpfert [177]. The second method
(called 2016 estimate) is given in [178] by Alkim, Ducas,
Pöppelmann and Schwabe, where the authors predicted that e
can be found if

σ
√
b ≤ δ2b−d−1

0 · qm/d,

where σ is the standard deviation of the error distribution, b
is the block size of the underlying lattice reduction algorithm
and δ0 is the root-Hermite factor (Section III-A). After that,
Albrecht, Göpfert, Virdia and Wunderer [179] compared these
two estimates and verified experimentally the prediction of
[178] when the error vector was sampled coefficient-wise from
a discrete Gaussian distribution. In 2019, Bai, Miller and
Wen [180] revisited the previous analysis of [178], [179], and
provided experiments on estimating the cost of solving LWE
via the uSVP suggesting that the 2016 estimate has higher
accuracy than the 2008 estimate.

In a recent work, Dachman-Soled, Ducas, Gong and Rossi
[181] generalized the uSVP attack and proved that the pre-
dictions of [178], [179] are not accurate for small block
sizes (i.e. b ≤ 30). However, it is worth commenting that,
as the authors state, small block sizes are not relevant for
realistic implementations. In 2021, Postlethwaite and Virdia
[182] improved the result of [181] and provided a simulator
that predicts the block sizes needed to solve uSVP instances
via lattice reduction.

C. Attacks Based on the Short Integer Solution Problem

The attacks based on the dual strategy (also called dual
attack) consist in solving the LWE problem via the SIS strategy
(Section III-F), namely, of finding a short vector in the scaled
dual lattice L⊥

q = {x ∈ Zm
q : xA ≡ 0 mod q}. Note that

this problem is equivalent to solve the Decision-LWE problem.
Indeed, given LWE samples (A,b), we can decide whether
b = As + e or b is uniformly random by computing ⟨v,b⟩
where v is the short vector in the lattice L⊥

q . In fact, if b is
not random, i.e. b = As+ e, we have

⟨v,b⟩ = ⟨vA, s⟩+ ⟨v, e⟩ ≡ ⟨v, e⟩ mod q.

Since ⟨v, e⟩ is short (i.e. v and e are sufficiently short), the
adversary has to check if ⟨v,b⟩ is close to zero modulo q.

The advantage of distinguishing ⟨v, e⟩ from random, com-
puted by Lindner and Peikert in [165], is close to

e−π(||v||α)2 ,

where α is given by the Gaussian distribution χ, namely, αq
is the width parameter of χ (Section II-B). To produce such a
short v we require a lattice reduction algorithm. Note that, the
outcome of the lattice reduction is a vector ||v|| ≈ δm0 qn/m,
but δ0 depends on the algorithm used, and Micciancio and
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Regev [29] showed that the minimum for f(m) = δm0 qn/m is
obtained when m =

√
n log q/ log δ0.

Albrecht in [152] presented a variant for the dual attack tak-
ing into consideration small and sparse secrets. Also, Cheon,
Hhan, Hong and Son [183], proposed a new hybrid attack
combining the dual attack of Albrecht [152] and the MITM
attack on NTRU by Howgrave-Graham, Silverman and Whyte
[184]. This hybrid attack outperforms the dual attack for
some specific parameter sets of the homomorphic encryption
scheme, namely, for sparse ternary secrets, but it was extended
by Espitau, Joux and Kharchenko [185] to binary secrets as
well.

D. Exhaustive Search on Secret Key s

This strategy consists of directly finding s such that ||As−
b|| is small. This can be achieved by performing the Arora-Ge
algorithm [186]. This algorithm uses a linearization technique
that mainly consists of adding new variables in the system to
transform non-linear into linear equations. It also adopts the
assumption that the error lies in a fix range. The Arora-Ge
algorithm solves the LWE in time 2Õ(n2ε), where ε is such
that αq = nε and αq is the width parameter of the Gaussian
distribution χ (Section II-B).

E. Attacks on the RLWE Problem

As previously mentioned, RLWE-based schemes are, for
known attacks, equally secure as the LWE version when
the error distribution is correctly chosen. However, there are
known examples of error distributions that are insecure for
certain rings. In 2015, Elias, Lauter, Ozman and Stange [187]
provided an attack on the decision version of the RLWE
problem for two specific families of polynomial functions
(namely, the definition of the polynomial considers the ci-
phertext modulus of the scheme). In [188], Chen, Lauter and
Stange generalized this attack to certain Galois number fields
and defined a new solution for the RLWE problem. These
papers were later improved by Chen, Lauter and Stange in
[189] and by Castryck, Iliashenko and Vercauteren in [149],
[150].

Note that in the Homomorphic Encryption Security Stan-
dard paper [58], the authors provide secure parameters for
RLWE schemes over power-of-two cyclotomic rings. On the
other hand, for generic cyclotomic rings, Ducas and Dur-
mus [54], Lyubashevsky, Peikert and Regev [53], [190] and
Crockett and Peikert [191] investigated the types of the error
distribution and proposed different ways of choosing a safe
error polynomial.

F. Concrete Parameters

Finding an optimal set of parameters for a specific FHE
scheme is challenging since it is function dependent. For ex-
ample, for the second generation schemes, the complexity (i.e.
depth) of the function to be homomorphically evaluated im-
pacts the error growth. Higher depths, require higher ciphertext
modulus q, and the adoption of a higher modulus decreases the
security level. The security level can be increased by adopting

a higher polynomial degree, but this impacts efficiency. Some
works [97]–[99] have proposed theoretical bounds for error
growth estimation, which can be used to obtain the parame-
ters heuristically. However, these works are too conservative
with respect to the parameters used in practice. The reason
for this is that these theoretical bounds seek for very low
failure probability (e.g., less than 2−55), whereas in practical
scenarios smaller values are still probabilistically acceptable.
The main open problem in the field of parameter selection is
that there is a significant gap between the parameters obtained
theoretically using the previously proposed heuristics and the
parameters used in practice and obtained in a trial an error
fashion [97].

Homomorphic Encryption Security Standard [58] presents
some recommended (and conservative) parameters for FHE
schemes, following the LWE Estimator [148]. Specifically,
starting from the dimension n = 2k (with k = {10, . . . , 15}),
the authors of [58] cater for recommended values of the q, for
a given security level λ ∈ {128, 192, 256}. In this standard,
the error follows a discrete Gaussian distribution with standard
deviation σ ≈ 3.2, whereas the distribution for the secret key
can be:

• uniform ternary, i.e. the secret s is chosen uniformly at
random from {−1, 0, 1}n;

• uniform, i.e. the secret s is chosen uniformly at random
from Zn

q :
• Gaussian with σ ≈ 3.2, the same as the error distribution.
It is worth commenting that, despite the valuable contribu-

tion and the impact of the Homomorphic Encryption Security
Standard [58], there are some limitations, which have been
pointed out by Curtis and Player [192], namely:

1) The standard does not consider a sparse ternary secret
of Hamming weight h (i.e. a distribution where the
elements are sampled uniformly at random from
{−1, 0, 1}n with exactly h components different from
zero). Note that many implementations use exactly
this secret distribution (e.g. CKKS uses sparse ternary
secret with h = 64).

2) The consideration of sparse secrets is not included in
the standard since there exists a wider range of attacks
that can be applied [192].

3) The standard, as well as the LWE Estimator, does not
consider hybrid attacks. In particular, when the secret
vector follows a sparse distribution with Hamming
weight h = 128, hybrid attacks are very powerful
and, as a result, we have a noticeable security loss
[192]. In fact, the new version of the Estimator,
i.e. the Lattice Estimator, considers this kind of
attacks. It is also worth mentioning that the Lattice
Estimator was updated to state-of-the-art attacks, hence
covering not only hybrid but also exhaustive search and
MITM attacks (see the blog [193] of Curtis and Walter).

To conclude this section we highlight the weakness of
adopting secrets from a sparse distribution and the deleterious
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Fig. 12. Example of a potential privacy-preserving ML model.

effects of hybrid attacks with one example reported by [192,
Table 2] in Table II. Specifically, in Table II, λtarget is the
currently standardised LWE security level for specific n = 210

and q for a uniform ternary secret [88]. The last four columns
represent the security of each parameter set against uSVP
attacks (Section VI-B2), dual attacks (Section VI-C), hybrid
decoding attacks [172] (Section VI-B1), and hybrid dual
attacks [183] (Section VI-C) for a sparse secret with Hamming
weight h = 128, using the BKZ algorithm. Note that [192]
used a conservative analysis for both hybrid attacks.

TABLE II
SECURITY LEVEL IN BITS FOR A SPARSE TERNARY SECRET OF HAMMING

WEIGHT h = 128 AND HYBRID ATTACKS AS IN [192, TABLE 2].

n λtarget log q uSVP dual hybrid-dec hybrid-dual
128 27 124.9 127.8 111.5 106.2

1024 192 19 178.2 178.8 146.2 141.8
256 14 235.5 238.5 181.5 176.6

VII. FHE FOR MACHINE LEARNING

This section provides a comprehensive view on the com-
bined topic of privacy-preserving and machine learning,
which, though fairly new, has been the subject of multiple
research efforts. Machine Learning (ML) refers to a set of
algorithms and computing systems used to build models that
incorporate or learn structural knowledge of input datasets.
A limitation to a wide adoption is the fact that machine
learning mandates access to a large amount of data to achieve
high accuracy rates, thus introducing data privacy and security
concerns. FHE facilitates arithmetic evaluations of encrypted
data of real numbers, which in turn enables the development
of privacy-preserving machine learning training algorithms,
and potentially provides a way to overcome aforementioned
privacy and security concerns. FHE plays a critical role in
distributed Machine Learning as it has the ability to support
confidential secure computing scenarios. An example of a
potential privacy-preserving machine learning model is shown
in Figure 12.

A. Support Vector Machines

Support Vector Machines (SVMs) are widely used for their
performance in classifications tasks, and multiple privacy-
preserving SVM computing schemes have been proposed.
Laur, Lipmaa and Mielikäinen propose in [194] a privacy-
preserving scheme for both SVM training and classification
using additive homomorphic encryption and secret sharing
or secure multiparty computation protocols. Park, Byun, Lee,
Cheon and Lee [195] present an algorithm based on Homo-
morphic Encryption for the SVM training phase which avoids
inefficient operations within an encrypted domain. Rahula-
mathavan, Phan, Veluru, Cumanan and Rajarajan propose in
[196] a two-class and multi-class classification protocol which
uses SVMs, which exploits Paillier’s cryptosystem [8] and
secure two-party computation (client and server parties hold a
share of the secret). In a more practical implementation, Makri,
Rotaru, Smart and Vercauteren present EPIC [197], an image
classification system trained with an SVM computing scheme,
while input features are extracted based on the techniques of
transfer learning. EPIC used Multi-Party Computation (MPC)
tools to achieve privacy-preserving classification tasks and can
be applied to homomorphic encryption domain.

B. Neural Networks and Other Machine Learning Models

Neural networks can be thought of as a generalization
of regression to present elaborate relationships between high
dimensional input data and output data. Privacy-preserving
machine learning with neural networks has been addressed
by multiple research efforts, even though computational com-
plexity remains a challenge especially when neural networks
are used for training over encrypted data.

Graepel, Lauter and Naehrig, in [198] use training algo-
rithms, which can be expressed as low degree polynomials, in
order to train over encrypted data leveraging SHE. While this
works well on very limited applications, the accuracy of the
proposed system is relatively low and cannot compete with
neural networks. It also cannot be scaled to more complex
operations such as division or exponentiation. Nikolaenko,
Weinsberg, Ioannidis, Joye, Boneh and Taft [199] created
a high performance ridge regression system using homo-
morphic encoding (Additively Homomorphic Encryption) and
Garbled Circuits and evaluated it on very large scale datasets.
Bost, Popa, Tu and Goldwasser [200] propose a scheme that
uses three homomorphic systems (i.e. Paillier cryptosystem,
Quadratic Residuosity, and BGV scheme) and garbled circuits
to provide privacy-preserving classification for three different
machine learning algorithms: Hyperplane Decision, Naive
Bayes, and Decision trees, where features’ description is
assumed public. Mohassel and Zhang [201] present protocols
for privacy-preserving machine learning for linear regression,
logistic regression and neural network training using the
stochastic gradient descent method. Aslett, Esperança and
Holmes [202] present methodologies to train machine learning
models such as random forests - using a stochastic fraction
estimator - and naı̈ve Bayes - using a semi-parametric model
for class decision boundary - and demonstrate their accuracy
when applied to data encrypted with homomorphic encryption.
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Khedr, Gulak and Vaikuntanathan [203] present a hardware
architecture that implements Bayesian filters and Decision
Trees (DT) for homomorphically encrypted data. Li et al. [204]
investigate multi-key FHE using collaborative learning over
input datasets encrypted with different encryption schemes
and keys. The approach, however, suffers from scalability
issues and high computational complexity. Dowlin et al. [205]
present CryptoNets which applies a neural network - an
artificial feed-forward neural network, known to a specific
party and trained on plaintext data - to make predictions
with a high accuracy on homomorphically encrypted data.
The performance of CryptoNets is rather limited due to the
replacement of the sigmoidal activation function and the
computational overhead. Zhang, Yang, Chen, Li and Deen
[206] propose a privacy-preserving deep learning model - a
double-projection deep computation model whereas learning
is outsourced to a cloud layer to improve the learning effi-
ciency - trained with a back-propagation algorithm and uses
BGV scheme. Improving on CryptoNets, Brutzkus, Elisha and
Gilad-Bachrach [207] present a version of this latter which
improves latency and memory usage. Lee, Kang, Lee, Choi,
Eom and Deryabin [208] show the possibility of applying
FHE (with bootstrapping) to a deep neural network model
by implementing ResNet-20 over the residue number system
CKKS scheme.

The viability of FHE’s usage on large scale data and
sharing frameworks has been demonstrated in multiple works.
Hesamifard, Takabi, Ghasemi and Wright [209] present a
methodology to train a convolutional neural network (CNN)
model using homomorphically encrypted data, yielding high
performance overheads. Al Badawi et al. [210] presents a CNN
used for image classification with FHE properties on Graphics
Processing Units (GPU), to accelerate classification, while
maintaining a high accuracy rate. Blat, Gusev, Polyakov and
Goldwasser [211] propose a toolbox of optimized statistical
techniques that leverages FHE in order to perform studies
on reformulated genomic data, and prove the viability of
using homomorphic encryption on large scale data. Zhang and
Zhu [212] propose the usage of homomorphic encryption to
preserve privacy in sharing frameworks. The authors present
a novel privacy-preserving architecture, which collaboratively
trains a deep neural network while preserving the privacy of
the data of sharing parties via homomorphic encryption.

C. The Industry Role

In addition to research efforts, multiple commercial products
are being proposed to solve real-world problems across indus-
try verticals. Zama’s open source technology [213] enables
trained machine learning models, regardless of the underlying
architecture or training method, to run inference on encrypted
user data using homomorphic encryption. Application of this
technology could be extended to the medical field, image
classification, autonomous environments and smart cities data
processing. Intel [214] and Ant Group [215] have announced a
joint effort [216] to build Privacy-Preserving Machine Learn-
ing (PPML) on top of Intel’s Software Guard Extensions
(SGX) and Occlum, Ant Group’s memory-safe, multi-process

library operating system for Intel SGX, using cryptographic
technologies such as homomorphic encryption and differential
privacy. Duality Technologies [217] is a company providing
privacy-preserving data collaboration platforms using homo-
morphic encryption. It has been chosen by DARPA along
with other top research institutes to accelerate the use of FHE
as part of DARPA’s Data Protection in Virtual Environments
(DPRIVE) program, which seeks to develop a hardware ac-
celerator for FHE computations [218].

D. Research Directions

While considerable advances have been achieved, privacy-
preserving neural networks using homomorphic encryption
still suffer from high computational complexity, low efficien-
cies, and inadequacy of deployment in real world scenarios.
Further research is required to develop efficient frameworks
enabling training and evaluation of complex neural networks
over encrypted data or encrypted neural networks trained over
plaintext data. Research directions could include:

• Algorithmic improvements: this includes (i) usage of
pre-trained models to reduce computational complexity
during the training phase, (ii) approximation of activation
functions using polynomials, etc.

• Hardware acceleration: this includes parallelization and
partitioning of the implementation of privacy-preserving
models using homomorphic encryption and inherent oper-
ations on GPU cores (including hybrid CPU-GPU archi-
tectures), FPGAs, ASICs, and reconfigurable processors.

VIII. HE IN FOG COMPUTING FOR IOT

Fog computing was initially proposed by CISCO to support
scalable massive IoT deployments [219] [220], but a similar
concept has been adopted in 5G/6G cellular networks and
referred to as edge computing [221]. It defines a layer between
the IoT device and the cloud service, as close as possible to the
device, where data is pre-processed. Pushing pre-processing
operations close to the device is paramount to reduce both
bandwidth consumption and the latency of IoT applications.
In this scenario, HE can provide the missing privacy feature
since pre-processing tasks can be done over encrypted data.
However, fog computing also presents intrinsic characteristics
that must be taken into account at the time of applying HE.
Unlike cloud computing, fog computing considers data in mo-
tion, i.e. moving through the network at the generation rate of
each specific device. Data processing is event-driven (triggered
by the device) and performed packet-by-packet. Thus, data
processing is delay intolerant and the scope of the processing
tasks is limited to the information contained in a single data
packet: relevance/category evaluation; formatting; encoding;
expanding/compressing; filtering; or assessing thresholds and
real-time alerts.

The Smart City scenario provides an example of the appli-
cability of fog computing and how HE can become relevant.
Smart cities cover a wide set of applications [222] such as
intelligent transportation, efficient resource distribution (light-
ing, water and waste management), safety and security, or
environmental monitoring. These applications have a common
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requirement, they are supported by massive IoT deployments
composed of small sensors constantly fuelling data to smart
city data collectors. The fog layer is in charge of pre-
processing the data in intermediate gateways, which is fun-
damental to maintain scalability [223]. HE can be adopted to
provide privacy preservation for citizens. Specifically, sensors
can encrypt the data with the data collector’s public key, and
the fog layer processing operations can be performed over
encrypted data. Only the data collector can decrypt the data
with its secret key. This approach not only prevents data
disclosure in fog nodes, but also provides privacy for IoT
nodes with respect to the data collector since data samples
are aggregated [224], [225].

Despite its potential, HE presents a difficult fit in IoT due
to its computational complexity and the ciphertext expansion.
The latter refers to the fact that a ciphertext is far larger
than the corresponding plaintext, hence it adds a considerable
communication overhead. The former incurs a computational
delay at the time of acquiring and transmitting data samples.
This is aggravated by the limited hardware capabilities and
computational constraints of IoT devices, and the bandwidth
constraints of current IoT communication standards. Afore-
mentioned constraints have fostered research on hybrid pro-
tocols combining HE and symmetric key encryption (SKE).
In hybrid homomorphic encryption (HHE), the IoT device
encrypts data using a SKE scheme, with a randomly generated
key, and then encrypts this key with a HE scheme using the
data collector’s public key. A SKE scheme is less complex
and is not affected by ciphertext expansion. The intermediate
fog nodes can homomorphically evaluate the decryption circuit
of the SKE scheme and convert SK-encrypted data into HE-
encrypted data. Then, the data can be processed homomorphi-
cally and sent to the data collector, see Fig. 13.
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Fig. 13. Hybrid FHE scheme applied to fog computing for IoT.

The advantage is that the ciphertext expansion and the

complexity is moved from the IoT devices to the fog nodes.
The IoT device is only required to encrypt homomorphically a
short key. Several works have proposed AES as a SKE scheme,
[80] [76], since hardware acceleration for AES is a common
feature in modern chips integrated in IoT devices. However,
AES decryption circuit requires a multiplicative depth of at
least 40, which increases the complexity in fog nodes. Some
other approaches suggest public key encryption (PKE) instead
of SKE [226], since the multiplicative depth is lower. However
PKE has higher ciphertext expansion and complexity than
SKE. In this framework, low-depth symmetric key ciphers
such as [227], [228], [229] can provide noticeable gains.

Fog computing is not limited to the Smart City scenario.
New emerging concepts such as Industry 4.0 or eHealth, which
have coined the terms of Industrial IoT (IIoT) and Internet of
Medical Things (IoMT), will also depend on the feasibility
of deploying scalable micro-sensor systems. These scenarios
will impose even more strict privacy requirements that could
be potentially solved with HE. In general, hybrid HE should
be envisioned as a solution for privacy-preserving data aggre-
gation. However, it is worth commenting that hybrid protocols
are effective when data is encrypted with the receiver’s public
key (the data collector in the smart city scenario). In a scenario
where the IoT device encrypts with its own public key and the
communication is bidirectional (the IoT device receives the
encrypted processed data), the ciphertext expansion problem
is unavoidable.

IX. HE IN CLOUD COMPUTING

Homomorphic encryption can become a cornerstone com-
ponent for technologies within the 5G/6G realm, namely for
fog computing, but also for overarching technologies such as
cloud computing. While fog computing is a distributed and
decentralized infrastructure, cloud computing is a centralized
system where data processing is query-based, and can be
performed over large data sets from multiple application
sessions. At first glance, it seems that HE provides a perfect
solution to achieve privacy for cloud services. However, some
cloud service scenarios impose requirements that make plain
HE schemes unsuitable.

A. Homomorphic Proxy Re-Encryption

One of such scenarios occurs when a cloud service pro-
cesses data from multiple users. The majority of HE schemes
only support homomorphic operations over ciphertexts en-
crypted with the same public key. Hence, ciphertexts from
different users must be converted into ciphertexts encrypted
with the same key. This is called homomorphic proxy re-
encryption (HPRE).

Proxy re-encryption (PRE) is a widely adopted technique
in cloud computing for conventional (non homomorphic)
encryption. PRE is used to transform a ciphertext from one
user (the delegator) into a ciphertext of a different user
(the delegatee) through a proxy. As a result, the delegatee
can decrypt the delegator’s ciphetext without learning the
delegator’s secret key. The proxy can convert ciphertexts
without learning the plaintext or the users’ keys. In HPRE,
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this process has an additional value, since it allows the cloud
service to perform homomorphic operations over converted
ciphertexts. Fortunately, in his thesis, Gentry proposes a simple
construction to achieve HPRE. The delegator generates two
ciphertexts: i) encrypts homomorphically the secret key with
the delegatee’s public key; and ii) encrypts the data with its
own public key. Then, the proxy can evaluate the decryption
circuit of the homomorphic scheme to re-encrypt the ciphertext
with the delegatee’s public key (this technique is identical to
bootstrapping). Figure 14 shows how this process can be used
to evaluate data from different users.
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Fig. 14. HPRE for homomorphic evaluation of multi-user data.

Unfortunately, Gentry’s approach is not resilient to weak
collusion attacks. Specifically, the delegatee and the proxy
can collude to obtain the delegator’s secret key. New works
based on key-switching techniques propose HPRE schemes
that are resilient to collusion. Specifically, Derler et al. [230]
and Kawai et al. [231] propose a single-hop (only one re-
encryption is allowed) HPRE scheme that is partially ho-
momorphic (only some homomorphic operations are possible
after ciphertext conversion). Other works cater for fully homo-
morphic single-hop proxy re-encryption schemes, such as Ma
et al. [232] and Yasuda et al. [233]. Polyakov et al. provided
two IND-CPA secure constructions for multi-hop HPRE for
BV and NTRU schemes [234], which outperform previous
lattice-based proxy re-encryption schemes [235] [236] based
on NTRU and BV respectively. Also, Li, Ma and Wang
[237] [238] provided multi-hop HPRE schemes that are fully
homomorphic via branching programs.

All these works solve the collusion attack that Gentry’s
approach presents, however they are not resilient to strong
collusion attacks. Namely, the proxy and the delegatee cannot

obtain the delegator’s secret key but they can still obtain some
information about the delegator’s secret key [239]. Moreover,
as stated in [240], known HPRE schemes are only CPA secure,
which is not adequate in some scenarios [241]. Although it is
well known that HE schemes cannot achieve CCA2 security
(according to its standard definition), some can be CCA1-
secure [242]. This is not true for HPRE, all known CCA1-
secure HPRE schemes are only partially homomorphic.

B. Homomorphic Authenticated Encryption

In some scenarios, privacy is not sufficient. The user may
pay for a specific service [243], or use remote data processing
for safety-critical applications [244]. Thus, a guarantee that the
data has been processed correctly by the cloud service may be
required. Note that, even if the cloud service is not malicious,
it maybe be willing to submit wrong data to avoid the heavy
computational load of processing homomorphically encrypted
data. In this scenario, the user should be able to verify that the
decrypted data is the result of a specific arithmetic circuit over
the transmitted encrypted data. Fortunately, this feature can be
achieved with homomorphic authenticated encryption (HAE).
HAE can be obtained by composing HE and homomorphic
authentication (HA) [245], [246]. Specifically, the user sends
the ciphertexts and attaches homomorphic authenticators in
the form of homomorphic signatures (HS). These signatures
can be evaluated homomorphically, similarly to ciphertexts, to
produce a valid signature for the processed data (see Fig. 15).
In fact, composing HE and HA caters for the interesting
property that if both the HE and HA schemes are CPA secure
then the resulting HAE scheme is CCA1 secure [245].

user's data

data types

HE encrypted data

algorithms / schemes

HE cipher

users' keys

Legend

HE public key user
HE secret key user

user 1 cloud server

HA public key user
HA secret key user

HA signature

processed data

HA scheme

data processing algorithm

Fig. 15. FHAE by composition encrypt-then-sign.
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HS were initially proposed for linear arithmetic circuits
[247], [248], [249], [250]. Scenarios such as secure random
linear network coding (RLNC) adopted HS [251] to counteract
tag pollution attacks, although a symmetric-key based solution
such as homomorphic MACs [252] can also fit in RLNC.
Subsequent works provided HS schemes that accept polyno-
mial homomorphic operations [253], [254], [255]. Gorbunov,
Vaikuntanathan and Wichs [256] and Gennaro and Wichs [257]
provided constructions with the desirable feature of being
fully homomorphic (although the former is only leveled fully
homomorphic), hence enabling fully homomorphic authen-
ticated encryption (FHAE). However, previous HS schemes
(except for [256]) are selectively secure (i.e. the attacker is
only provided with signatures of chosen messages before the
challenge is available). Adaptive security was first achieved by
Boyen, Fan and Shi [258] and by subsequent works such as
[256], [259]. Unfortunately, previous HS constructions have
a limitation in terms of efficiency for circuits of polynomial
depth [258]. Another solution, potentially more efficient, is
the adoption of verifiable computation (VC) schemes that
work over encrypted data [260], [261], [262]. A VC scheme
provides a proof that each arithmetic gate of the arithmetic
circuit has had its inputs processed. Moreover, it is even
possible to provide such a proof of computation over a partially
private circuit (known only to the cloud service), since the
cloud service could prove that part in zero-knowledge.

C. Homomorphic Encryption in Multi-Party Computation

HE provides a solution for the centralization of private
computations. However, in a scenario where several parties
aim to interact, the direct application of HE is not so intuitive.
Specifically, several cloud services may want to evaluate a
function combining their private datasets without leaking any
information about the inputs (except for what can be inferred
from the output). Such scenario can be addressed with secure
multi-party computation (MPC) [263] [264] [265]. There are
different kinds of MPC protocols optimized for arithmetic and
boolean circuits, based on secret sharing techniques [266],
[267] and garbled circuits [268], [269] respectively. Interest-
ingly, some of these protocols follow a pre-processing model
where the computation is divided into two phases. The first
phase happens before the parties’ inputs are defined, and
consists of the generation of cryptographic material (secret-
shared elements or gabled circuits) that is later consumed
to speed up the second phase. In the second phase, parties
define their inputs and evaluate the circuit privately. The
concept of consuming elements refers to the fact that this
material cannot be used twice, hence it must be generated
for each execution. It is precisely in the generation of the pre-
processing material where HE still plays a fundamental role in
MPC. Protocols like SHE-BMR [269], Overdrive [267], and
the matrix multiplication protocol in [270] use leveled HE.
It is worth commenting that, in this context, HE could be
replaced by oblivious transfer (OT). In some protocols OT
is more efficient than HE, but this must be evaluated per
individual cases. Specifically, Overdrive [267] adopts a HE-
based approach that improves the OT-based version of the

same protocol, i.e. MASCOT [271]. However, HSS17 [272]
adopts OT and is more efficient than SHE-BMR [269], which
uses SHE. The key piece that makes HE faster than OT
in Overdrive is the existence of an efficient zero-knowledge
proof to prove knowledge of a plaintext in a HE-encrypted
ciphertext, which is required to provide active security. On
the other hand, HSS17 adopts OT because the OT protocol is
compatible with an optimization generally adopted in garbled
circuits (the FreeXOR technique).

Although less efficient than previous approaches, MPC can
also be constructed directly with Multi-Key FHE (MKFHE).
The work in [273] proposes a construction that requires only
two communication rounds, see Fig. 16. In the first round, each
party encrypts its inputs under multiple keys and broadcasts
the ciphertexts to all parties. Then, each party evaluates the
circuit homomorphically. Finally, in the second round, each
party partially decrypts the result and broadcasts its share of
the output. All shares can be combined locally by each party
to obtain the output.
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Fig. 16. MPC constructed with MKFHE. Only the operations performed by
cloud server 1 have been detailed in the figure, but the rest of the parties
behave analogously. For simplicity, the algorithm Enc in the figure generates
a ciphertext for multiple keys, but in [273] this is achieved with an Expand
algorithm.

In MKFHE, a ciphertext cannot be decrypted without all
partial decryptions from the secret key holders. Hence, the
input privacy is guaranteed. However, this also means that if
only one party fails in delivering its share of the output, the
MPC protocol would fail. This was addressed in [274] with
a three-round MPC protocol that adopts Threshold MKFHE
(TMFHE). TMFHE enables a smaller subset of parties to
decrypt a ciphertext. Hence, after an initial round of input
sharing, any subset of sufficient size can reconstruct the output.
This makes the protocol resilient to failures, but it also requires
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trust since smaller subsets can decrypt the parties’ private
inputs. It is worth commenting that MKFHE is sufficient
to provide MPC with passive security, i.e. malicious parties
follow the protocol specification and try to extract information
from the transmitted messages. But in a setting where parties
can deviate from the protocol specification (e.g. transmit
wrong shares of the output) active security is needed, and can
be achieved by integrating zero-knowledge proofs.

X. TOWARDS PRACTICAL FHE-BASED APPLICATIONS

The first FHE schemes were about 109 times slower than
plaintext computations [2], and were hence considered far
from being practical. Optimizations achieved over the past
decade have tremendously improved the performance of FHE
schemes [31].

From a software perspective, FHE libraries have been
pivotal in helping researchers and practitioners write the first
FHE-based applications, and their evolution and optimization
has significantly increased the efficiency of such applications
over the past years. However, utilizing such APIs requires
deep knowledge of FHE schemes. Recently, higher-level tools
have evolved, attempting to bridge the gap between engineers
developing privacy-preserving applications and the technical
FHE libraries at hand. Along the same lines, a number of FHE
compilers have become available with the objective of convert-
ing high-level programs to FHE-based implementations. These
compilers are a key step towards making FHE available to
non-experts that require such foundational blocks to design
privacy-preserving applications, hence contributing to broad
FHE adoption.

From a hardware point of view, considerable efforts lever-
aging specific hardware architectures (e.g., FPGA and ASIC-
based) have been made. Such designs are referred to as FHE
accelerators, and provide substantial improvements of FHE
schemes performance in software.

The rest of this section presents an overview of the most
relevant software and hardware works proposed in literature,
discusses trade-offs observed in terms of performance and
other metrics, and describes few real-world applications cur-
rently leveraging FHE in production systems.

A. FHE Libraries

The principal objective of FHE libraries is to make FHE
scheme operations available via an API. Besides the core
functionality provided by KeyGen, Enc, Dec and Eval, most of
the widely used libraries incorporate additional features that
allow ciphertext maintenance (i.e. noise growth management
during computations) and manipulation, as well as homomor-
phic addition and multiplication methods. However, the correct
utilization is left for the developers who must have an in-depth
knowledge of what each API call entails in a given privacy-
preserving solution.

Table III provides available open source FHE libraries, the
language in which they are written, supported FHE schemes,
and the date of the last update release. The first library
ever published is HElib (Homomorphic Encryption Library),
by Halevi and Shoup [79], [286], which is implemented

in C++ and built on top of the NTL library [287]. SEAL
(Simple Encrypted Arithmetic Library), which is developed
by Microsoft [83], is implemented in C++ and C# (to support
.NET). It utilizes Intel’s HEXL [288], a library providing effi-
cient implementations of homomorphic encryption operations,
specifically targeting AVX512-enabled processors. PALISADE
is developed by a DARPA consortium including Duality Tech-
nologies, the New Jersey Institute of Technology, Raytheon
BBN Technologies, the MIT, University of California San
Diego, and others [275]. It is written in C++ and can be
configured to use the NTL library.

Lattigo [276] was proposed by Mouchet, Bossuat, Troncoso-
Pastoriza and Hubaux [289] and is the first library written in
Go. The FHEW library [277] by Ducas and Micciancio, is
written in C++, however, has not been updated since 2017.
The TFHE library [278] was provided by the authors of the
TFHE paper [14], is written in C++ and C, and requires at least
one Fast Fourier Transform (FFT) processor to run. TFHE is
considered to be the successor of the FHEW library. Concrete
[279], [290] is Zama’s variant of TFHE implemented in Rust.
The HEAAN library [280] is implemented in C++ and is built
on top of the NTL library. The RNS-HEAAN library [281] by
Kyoohyung and Miran is implemented in C++; it has not been
updated since 2018. FV-NFLlib [282] is written in C++ and it
is based on the NFLlib C++ library [291]. NFLlib is a library
dedicated to ideal lattice-based cryptography, and it is based on
the Number Theoretic Transform (NTT). It is important to note
that FV-NFLlib has not been updated in the last 5 years. The
CuFHE [283] and NuFHE [284] are two GPU-based libraries
that implement TFHE in CUDA. Specifically, the CuFHE
library adopts an implementation of NTT, GPU-accelerated,
that is based on [292] by Dai and Sunar. The NuFHE library
provides support for either FFT or purely integer NTT. Finally,
OpenFHE [285] is a new library (published in July 2022)
designed by the authors of PALISADE, HElib, HEAAN, and
FHEW libraries. It is written in C++ and it includes all relevant
FHE schemes: BGV, B/FV, FHEW, TFHE and CKKS. It also
implements some recent improvements that are not covered
by PALISADE.

B. FHE Compilers
FHE compilers are high-level tools that aim at abstracting

the technical APIs exposed by FHE libraries, so that a wider
range of developers are able to implement privacy-preserving
mechanisms securely. As noted by Viand, Jattke and Hithnawi
[293], FHE compilers tackle some of the most common
engineering challenges that exist nowadays when designing
FHE-based applications:

• Parameters choice: defining appropriate parameter val-
ues for FHE schemes resulting in secure and efficient
instances is not a simple task. Some FHE compilers
allow for some sort of automatic parameter generation
according to some predefined requirements.

• Plaintext encoding: in FHE, the semantics of the plaintext
message are strictly related to the type of homomor-
phic computations that can be conducted. Some context-
specific FHE compilers can already be used to aid in this
particular item (e.g. nGraph-HE).
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TABLE III
OPEN SOURCE LIBRARIES FOR FHE SCHEMES

Library Language Scheme Date of last commitBGV B/FV FHEW TFHE CKKS
HElib [79] C++  # # #  1/10/2021
SEAL [83] C++/C#   # #  24/3/2022

PALISADE [275] C++      30/4/2022
Lattigo [276] Go #  # #  13/6/2022
FHEW [277] C++ # #  # # 30/5/2017
TFHE [278] C++/C # # #  # 16/9/2021

concrete [279] Rust # # #  # 10/5/2022
HEAAN [280] C++ # # # #  27/1/2022

RNS-HEAAN [281] C++ # # # #  26/10/2018
FV-NFLlib [282] C++ #  # # # 26/7/2016

CuFHE [283] Cuda/C++ # # #  # 9/2/2019
NuFHE [284] Python # # #  # 18/3/2020

OpenFHE [285] C++      18/8/2022

• Data-independent execution: given that FHE operations
are data-independent by nature, it is not trivial to conduct
data-dependent branching steps using FHE because they
can break privacy properties. In this case, it is possible to
have branching operations by means of evaluating both
branches and selecting the result at the end.

• Packing or batching: FHE schemes allowing for message
packing or batching into a single ciphertext can directly
leverage SIMD instruction sets. Some FHE compilers
already actively optimize for vectorized operations.

• Ciphertext maintenance: optimally managing how noise
grows during FHE operations is not straightforward, and
FHE compilers are starting to use advanced strategies to
assist in this traditionally complicated part.

Table IV presents a list of FHE compilers showing in
which programming language they are written, what FHE
libraries (from the ones previously highlighted in this work)
they utilize as well as the date of their latest released up-
date. ALCHEMY [294], [305], [306] is a compiler written
in Haskell by Crockett, Peikert and Sharp. It implements
BGV utilizing Λ ◦ λ [307] (pronounced “L O L”), a library
for ring-based lattice cryptography that supports also FHE.
Cingulata (previously called Armadillo) [295], [308] is a
compiler written in C++ by Carpov, Dubrulle and Sirdey. It
is built on top of the FLINT [309] and Sage [310] libraries.
The Encrypt-Everything-Everywhere (E3) [296], [311] is a
framework presented by Chielle, Mazonka, Tsoutsos and Ma-
niatakos. It is mainly written in C++ and supports a variety
of FHE libraries. SHEEP [297], a recursive acronym for
SHEEP is a Homomorphic Encryption Evaluation Platform, is
a framework developed by the Turing Institute, written in C++
and that comes with several off the shelf Jupyter notebooks
containing examples on how to use SHEEP. The Encrypted
Vector Arithmetic Language and Compiler (EVA) [298], [312]
was presented by Dathathri et al., is written in C++, and
incorporates CHET [302] to support tensor circuits. Marble
[299], [313] is a C++ compiler written by Viand and Shafagh,
and RAMPARTS [300] is a compiler written in Julia by Archer
et al. The Transpiler [301], [314] is a C++ tool developed
by Gorantala et al. that is currently leveraging two FHE
libraries. The nGraph-HE [303], [315] compiler by Boemer,

Lao, Cammarota and Wierzynski is based on Intel’s nGraph
ML compiler [316]. Support for non-polynomial activation
functions was added subsequently [317]. Finally, SEALion
[304] was presented by van Elsloo, Patrini and Ivey-Law. It is
important to highlight that CHET, nGraph-HE and SEALion
are domain-specific FHE compilers designed particularly for
ML applications. To the best of the authors knowledge, we
note that the libraries without a date provided for their last
committed update have not been found publicly. For more
details about the FHE libraries and compilers, we would like
to refer the readers to [293] by Viand, Jattke and Hithnawi.

C. FHE Accelerators

Previous sections presented state-of-the-art software tools
that are proving crucial in the wider adoption of FHE for
developing privacy-preserving solutions. Although such tools
have enabled a significant acceleration of FHE schemes, the
corresponding performance still falls short with respect to
plaintext computations. Therefore, FHE hardware accelerators
have emerged as a practical alternative to highly optimized
software implementations, thus, enabling a wider range of use
cases where FHE can be utilized.

Doröz, Öztürk and Sunar [318] designed an accelerator
for the Gentry and Halevi scheme [64] and were able to
significantly improve run times of FHE operations. Later on,
Cousins, Rohloff and Sumorok [319] designed an FPGA-
based accelerator focusing on the second-generation, NTRU-
based scheme, LTV. They targeted a Xilinx Virtex-7 FPGA
and benchmarked the performance of the CRT (and its in-
verse). Their results showed an improvement of 2 orders of
magnitude compared to the available reference software and
CPU-based version. In [320], Roy et al. presented a RLWE-
based co-processor targeting NTT optimizations and achieved
considerable speeds on a Virtex-6 FPGA. Moreover, Roy
et al. [321] proposed an architecture where they are able
to offload operations of the FV FHE scheme to an FPGA-
based accelerator. They validated their design on a Xilinx
Zynq UltraScale+ FPGA and obtained an improvement of over
13 times with respect to a reference FV scheme optimized
software implementation. Riazi, Laine, Pelton and Dai [322]
provided a new hardware design that heavily improved the
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TABLE IV
PUBLICLY AVAILABLE FHE COMPILERS

Compiler Language Library Date of last commitHElib SEAL PALISADE FHEW TFHE HEAAN
ALCHEMY [294] Haskell # # # # # # 15/3/2020

Cingulata [295] C++ # # # #  # 7/12/2020
E3 [296] C++      # 31/5/2022

SHEEP [297] C++    #  # 11/11/2019
EVA [298] C++ #  # # # # 1/5/2021

Marble [299] C++   # # # # 23/12/2020
RAMPARTS [300] Julia # #  # # # -

Transpiler [301] C++ # #  #  # 23/11/2022
CHET [302] C++ #  # # #  -

nGraph-HE [303] C++ #  # # # # 8/7/2021
SEALion [304] C++ #  # # # # -

NTT operation, implemented the CKKSN scheme, and can be
used with a wide range of parameter sets. They compared their
proposal on two FPGA devices from Intel, namely Arria 10
and Stratix 10, with an optimized version of the SEAL library
and demonstrated an improvement of more than 2 orders
of magnitude. Finally, Turan, Roy and Verbauwhede [323]
proposed the first accelerator to leverage FPGAs available in
the Amazon AWS cloud, and achieved a 20 times improvement
with respect to the software implementation of the smart meter
application that they consider in their case study.

Even though FPGA-based designs bear considerable im-
provements and can be run on accessible FPGA platforms,
they miss an important element of FHE computations, the data
movement, which, in extremely optimized designs, becomes
a non-negligible bottleneck. ASIC-based designs enable the
possibility to tackle potential issues caused by data movement
congestion. Following this approach, Juvekar, Vaikuntanathan
and Chandrakasan [324] designed Gazelle, which combines
two conventional techniques, namely, homomorphic encryp-
tion and garbled circuits. A low-latency ASIC targeting a
secure neural network inference running on Gazelle achieved
2-3 orders of magnitude speedups. Subsequently, Gazelle was
improved (i.e. 79 times faster) by Reagen et al. with Cheetah
[325]. Recently, Feldmann, Samardzic et al. have presented F1
[326], a programmable FHE accelerator that employs a wide-
vector processor, which is based on a static scheduling strategy
and minimizes data movement. F1 is capable of producing
speedups of up to 3-4 orders of magnitude with respect to
state-of-the-art software implementations, and supports BGV,
HEEAN and GSW. Moreover, F1 demonstrates that ASIC-
based accelerators can also be programmable, given that the
same resulting hardware can accelerate a variety of programs,
including multiple FHE schemes.

D. Standardization and Broad Adoption

Section X-A, Section X-B and Section X-C provide a
comprehensive list of the most relevant works in software
and hardware that have contributed towards making FHE more
practical, hence, broadening its adoption.

However, other types of initiatives equally play a key role
towards having large-scale FHE deployments. For instance,
the Homomorphic Encryption open industry / government
/ academic consortium [58] is working on a standard for

homomorphic encryption. The consortium was created in 2017
by Microsoft, IBM and Duality Technologies, and, at the
time of writing this work, has more than 40 participants
amongst industry, government and academia. Moreover, in-
dustrial players such as Duality Technologies [217], Zama
AI [213], or Cryptolab [327] aiming at deploying FHE-based
solutions, are greatly contributing to the overall ecosystem.
Lastly, large tech-based companies like Intel and Google,
are starting to leverage homomorphic encryption in privacy-
preserving solutions such as building PPML on top of Intel’s
SGX [216] and Google’s Password Checkup [328], which
employs Private Set Intersection.

XI. CONCLUSIONS

Homomorphic encryption has been a prolific research field
over the past decade. Since Gentry’s first proposed scheme in
2009, several generations of schemes have emerged, fostered
by the evolution of privacy-preserving technologies. Moreover,
synergies with other research fields (such as Machine Learn-
ing) and with other cryptographic protocols (such as secure
multi-party computation) have increased its relevance.

Nevertheless, despite the tremendous potential of the field,
current FHE schemes still present limitations that hinder
their applicability within real environments. The computational
complexity and ciphertexts expansion render FHE unsuitable
to delay-intolerant or bandwidth-limited applications. These
latter are the main impediments for FHE’s widespread adop-
tion in new generation networks.

Additionally, there are no known common schemes that
encompass features offered by second, third and fourth gener-
ation schemes simultaneously, which would otherwise be con-
venient in some scenarios, such as privacy-preserving Machine
Learning. More specifically, second and fourth generation
schemes are equipped with packing techniques, which make
them efficient for matrix multiplication, while third generation
schemes are the only ones to enable efficient evaluation of
non-linear functions. Moreover, second and fourth generation
schemes are not equipped with fast bootstrapping techniques;
this limits their application to their leveled version, not their
fully homomorphic version. Another limitation is the absence
of thorough efforts related to noise analysis, mainly for second
generation schemes. There is still a gap between theoretical
bounds and the real noise growth, which increases the com-
plexity of parameter selection. These limitations have triggered
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numerous research proposals, not only on new schemes and
analytical studies on parameters, but also on hardware accel-
erators. New technologies such as memory-based computation
have also been proposed for memory hungry applications, such
as private deep neural networks. It is precisely the advance-
ment on hardware acceleration that can make FHE a reality, by
reducing its time complexity by several orders of magnitude:
cloud computing will require more efficient implementations
that cannot be achieved with software-based optimizations.
The potential integration of FHE in massive IoT deployments
will also depend on the ongoing research efforts on hardware.
These new scenarios will define strict specifications in terms of
latency, bandwidth and energy efficiency, and the FHE layers
would have to meet these requirements.
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