
LightSwap: An Atomic Swap Does Not Require
Timeouts At Both Blockchains ?

Philipp Hoenisch1, Subhra Mazumdar2, Pedro Moreno-Sanchez3, and Sushmita
Ruj4

1 CoBloX Pty Ltd, Australia
philipp@coblox.tech

2 TU Wien, Christian Doppler Laboratory Blockchain Technologies for the Internet
of Things Vienna, Austria

subhra.mazumdar@tuwien.ac.at
3 IMDEA Software Institute, Madrid, Spain

pedro.moreno@imdea.org
4 School of Computer Science and Engineering, University of New South Wales,

Sydney, Australia
sushmita.ruj@unsw.edu.au

Abstract. Security and privacy issues with centralized exchange ser-
vices have motivated the design of atomic swap protocols for decen-
tralized trading across currencies. These protocols follow a standard
blueprint similar to the 2-phase commit in databases: (i) both users first
lock their coins under a certain (cryptographic) condition and a time-
out; (ii-a) the coins are swapped if the condition is fulfilled; or (ii-b)
coins are released after the timeout. The quest for these protocols is to
minimize the requirements from the scripting language supported by the
swapped coins, thereby supporting a larger range of cryptocurrencies.
The recently proposed universal atomic swap protocol [IEEE S&P’22]
demonstrates how to swap coins whose scripting language only supports
the verification of a digital signature on a transaction. However, the time-
out functionality is cryptographically simulated with verifiable timelock
puzzles, a computationally expensive primitive that hinders its use in
battery-constrained devices such as mobile phones. In this state of af-
fairs, we question whether the 2-phase commit paradigm is necessary for
atomic swaps in the first place. In other words, is it possible to design a
secure atomic swap protocol where the timeout is not used by (at least
one of the two) users?
In this work, we present LightSwap, the first secure atomic swap protocol
that does not require the timeout functionality (not even in the form
of a cryptographic puzzle) by one of the two users. LightSwap is thus
better suited for scenarios where a user, running an instance of LightSwap
on her mobile phone, wants to exchange coins with an online exchange
service running an instance of LightSwap on a computer. We show how
LightSwap can be used to swap Bitcoin and Monero, an interesting use
case since Monero does not provide any scripting functionality support
other than linkable ring signature verification.

? A full version of our paper is available in [2]
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1 Introduction

The functionality of atomic swaps [18] was introduced for trading assets between
two parties such that each of them holds assets in a different blockchain. The
concept of atomicity in such a setting is inspired by database systems where
either a multi-step transaction gets committed or it is rolled back in its entirety.
In the blockchain setting, it holds similar relevance guaranteeing that the swap
either fully occurs or fails entirely [17,44].

As an illustrative example, consider that a user Alice has asset α in blockchain
BA and user Bob has asset β in blockchain BB . An atomic swap is said to be
successful when Bob transfers asset β to Alice on BB contingent to the transfer
of asset α by Alice to Bob on BA. If Alice decides to cancel the swap, a refund
will be initiated. Upon asset refund, Alice will retain α in BA and Bob will retain
β in BB . A successful swap thereby leads to an exchange of asset’s ownership
[42]. Hence both the parties need to have accounts in each of the blockchains to
enable transfer of ownership [28].

While one can easily envision an atomic swap functionality leveraging a
trusted server, the blockchain community has put significant efforts into de-
centralized protocols for atomic swaps [1,36,18,45,44,35,29,26,39,30]. In a nut-
shell, these different protocols follow a standard blueprint based on two building
blocks: (i) a (cryptographic) locking mechanism that allows one user to locks
coins for another user in a given blockchain; and (ii) a timeout mechanism that
allows the creator of a lock to release it after a certain time has expired. With
these building blocks, current atomic swap protocols are based on the following
blueprint: first, Alice locks α in BA for Bob and establishes an expiration time
of TA to such lock. Afterward, Bob locks β in BB to Alice with an expiration
time of TB : TA > TB . At this point, the atomic swap has been committed and
one of the following two outcomes can happen: (i) Bob allows Alice to unlock β
in BB , which in turn “automatically” allows Bob to unlock α in BA; or (ii) both
parties decide to abort the swap by allowing to release the locks at times TB and
TA respectively.

This blueprint framework used by atomic swaps is based on two crucial prop-
erties. First, the (cryptographic) locks should allow to “relate” one to another in
the sense that if one party opens one lock in one blockchain, such opening oper-
ation automatically reveals enough information to the other party to open her
own lock in the other blockchain. Such “correlated locks” have been implemented
in practice using different techniques such as leveraging the Turing-complete
scripting language of blockchains like Ethereum [40] or more specific scripting
functionality like Hash-time lock contract [18,7,12,30], using a third blockchain
[21,22,41] as the coordinator or bridge of the two blockchains [43,23,24,34,3]
used for the swap , leveraging trusted hardware [6], or designing cryptographic
schemes crafted for this purpose such as adaptor signatures [39,13].
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The second crucial property is that locked funds must be released to the
original owner after a certain time has expired. Surprisingly, all alternative pro-
tocols previously mentioned share only two techniques with regard to handling
the timelock functionality. They either (i) rely on the scripting language of the
underlying blockchain to implement it; or (ii) rely on a cryptographic timelock
puzzle [33,37,10] where a secret is saved under a cryptographic puzzle that can
be solved after a certain number of serial cryptographic operations are executed.
Unfortunately, both of these techniques clearly hinder the adoption of atomic
swaps. On the one hand, timelock based on the scripting language restricts its
use from those cryptocurrencies that do not have such support, such as Monero
[31] or Zcash (shielded addresses) [20]. On the other hand, cryptographic puzzles
impose a computation burden on the users that need to compute such a puzzle
for each of the atomic swaps that they are involved in. Such a scheme is not suit-
able for lightweight applications as it would drain the battery of a smartphone
or would add a non-trivial cost if outsourced to a third party (e.g., Amazon Web
Services [11]).

In this state of affairs, we raise the following question: Is the timelock func-
tionality a necessary condition to design atomic swap protocols? Or in other
words, is it possible to design an atomic swap protocol such that the timelock
functionality is not required in (at least one of) the two involved blockchains?

1.1 Our contribution

In this work, we present for the first time a secure, decentralized, and trustless
atomic swap protocol that does not require any type of timelock in one of the
cryptocurrencies. In particular, we present LightSwap, a lightweight atomic swap
between Bitcoin and Monero. Similar to previous works, LightSwap leverages
adaptor signatures to implement the cryptographic condition that correlates the
locks over the committed coins. The crux of the contribution in LightSwap is
to depart from the 2-phase paradigm. Instead, we propose a novel paradigm
that maintains the security for the users (i.e., an honest user does not lose
coins) while removing the need to use timeouts in any form for one of the two
cryptocurrencies.

2 Notation and background

Transactions in UTXO model. In this work, we focus on the UTXO trans-
action model, as it is followed by both Bitcoin and Monero.

For readability, transaction charts are used to visualize the transactions, their
ordering, and usage in any protocol. We follow the notation in [5]. The charts
must be read from left to right as per the direction of the arrows. A transaction
is represented as a rectangular box with a rounded corners, input to such trans-
actions is denoted by incoming arrows and output by outgoing arrows. Each
rectangular box has square boxes drawn within. These boxes represent the out-
put of the transaction, termed as output boxes, and the value within represents
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Fig. 1: (Left) Transaction tx has two outputs, one of value x1 that can be spent
by B (indicated by the gray box) with a transaction signed w.r.t. pkB at (or
after) round t1, and one of value x2 that can be spent by a transaction signed
w.r.t. pkA and pkB but only if at least t2 rounds passed since tx was accepted
on the blockchain. (Right) Transaction tx′ has one input, which is the second
output of tx containing x2 coins and has only one output, which is of value x2
and can be spent by a transaction whose witness satisfies the output condition
φ1 ∨ φ2 ∨ (φ3 ∧ φ4). The input of tx is not shown.

the number of coins. Conditions for spending these coins are written on the out-
put arrows going out of these boxes. The notations and the illustration of the
transaction charts are provided in Figure 1.

The parties that can spend these coins present in the output box are rep-
resented below the outgoing arrows in form of a signature. Usually, these are
represented as the public keys which can verify this signature. Additional condi-
tions for spending the coins are written above the arrow. Conditions are encoded
in a script supported by the underlying cryptocurrency. For our paper, we use
the notation “+ t” or RelTime(t) which denotes the waiting time before a trans-
action containing an output can be published on-chain. This is termed as the
relative locktime. If absolute locktime is used, then it is represented as “ ≥ t”
or AbsTime(t). It means the condition for spending the output is satisfied if the
height of the blockchain is at least t. For representing multiple conditions, if it
is a disjunction of several conditions, i.e. φ = φ1 ∨ φ2 ∨ . . . ∨ φn, a diamond-
shaped box is used in the output box and each sub condition φi is written
above the output arrow. The conjunction of several conditions is represented as
φ = φ1 ∧ φ2 ∧ . . . ∧ φm.
Adaptor signatures. We recall the functionality for generation and verification
of adaptor signature with respect to a hard relation. This becomes one building
block in our approach to substitute the functionality of HTLC. In more detail,
given a hard relation R : (x,X) ∈ R, whereX is the statement and x is a witness,
public key pk having secret key sk, the language LR and a signature scheme
Σ = (Gen,Sign,Vrfy), an adaptor signature is defined using four algorithms
ΞR,Σ = (pSign, pVrfy, Adapt, Ext) as follows [4]:

– pSign(sk,m,X): A probabilisitc polynomial time algorithm which on input
of secret key sk, message m ∈ {0, 1}∗ and statement X ∈ LR, outputs an a
pre-signature σ̂.

– pVrfy(pk,m,X, σ̂): A deterministic polynomial time algorithm which on
input the public key pk, the message m ∈ {0, 1}∗, the statement X ∈ LR,
and pre-signature σ̂, outputs a bit b. If b = 1, σ̂ is a valid pre-signature on
message m.
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– Adapt(σ̂, x): A deterministic polynomial time algorithm which on input the
witness for the statement X, i.e. x and the pre-signature σ̂, outputs a sig-
nature σ.

– Ext(σ, σ̂,X): A deterministic polynomial time algorithm which on input
signature σ, pre-signature σ̂ and the statement X ∈ LR, outputs a witness
x : (x,X) ∈ R or ⊥.

In this work, we leverage the threshold adaptor signature for ECDSA [27]
for the Bitcoin side and the instance defined in [38,29] for Monero. In a 2-of-2
threshold adaptor signature instance, each participant has a share of the secret
key sk.

3 Problem Definition

Given a user Alice and the service provider Bob, the former holds x XMR in
Monero blockchain and Bob holds y BTC in Bitcoin blockchain. Alice wants to
exchange x XMR for Bob’s y BTC. A generic atomic swap protocol follows a
2-phase commit protocol similar to that used in databases: (i) each user commits
their assets and (ii) each user claims the assets of the counterparty. To initiate
an atomic swap, both parties need to lock their coins and set a timeperiod within
which the swap must be completed. If Alice wants to cancel the swap, she will
initiate a refund and the locked coins are refunded to the original owner after
the designated timeperiod.
Existing atomic swap protocols and their drawbacks. We discuss existing
approaches as solution for the problem defined above. We denote Alice as A and
Bob as B.

(i) Using HTLC based approach. The simplest trustless exchange protocol
widely used across several cryptocurrency exchange is based on Hash Time-
locked Contract or HTLC. We discuss an HTLC based solution where both A
and B hold their coins at time t0. The script used in HTLC takes the tuple
(α, h, t,A,B), where α is the asset to be transferred, h is the hash value, and t
is the contract’s timeout period. The contract states that A will transfer α to
B contingent to the knowledge r where h = H(r) where H is a standard crypto-
graphic hash function if the contract is invoked within the timeout period t. If
the timeperiod elapses and B fails to invoke the contract, the asset α is refunded
to user A.

A can initiate exchange of x XMR in BA for y BTC in BB using HTLC. The
former chooses a random value r and generates h = H(r). She next proceeds to
lock x XMR in the contractH1 = HTLC(x, h, t5,A,B) at time t1, where t1 > t0,
and sends h, t5 to B. The timeout period of the contract is t5. Now B will reuse
the same terms of the contract but set the timeperiod as t4 : t4 < t5. We will
explain why the timeout period must be less than the previous contract. B locks
y BTC in the contract H2 = HTLC(y, h, t4,B,A) at time t2, where t2 > t1. A
knows the preimage of h and claim the coins from B by invoking H2 at time
t3 : t2 < t3 < t4. B gets the preimage r which he can use for claiming coins from
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A. If he had used the timeout period t5 for H2, then it is quite possible that A
delays and claims the coins from B just at time t5. This would lead to a race
condition and B might fail to acquire the coins from A if the time at which H1

is invoked exceeds t5. Hence he sets the timeout period of the contract H2 less
than the timeout period of contract H1. B claims the coins from A by invoking
H1 at time t4 : t3 < t4 < t5. By time t5, A holds y BTC in BB and B holds x
XMR in BA. This depicts the situation when the swap succeeds and the state
transition from time t0 to t5 discussed above is termed as happy path. If either
of the party decides not to co-operate then it will lead to failure of swap.

Incompatibility of HTLC in scriptless cryptocurrencies (e.g., Monero).HTLC-
based approach requires the use of timelock on both the Monero side as well as
the Bitcoin side. The timeout mechanism is essential to allow users to recover
their assets in the case the swap does not go through. Thus we require two main
building blocks to implement atomic swaps for cryptocurrencies: an atomic lock-
ing mechanism and a timeout. However, the main challenge is that Monero does
not support hashlock and timelock. Without these two features, it will not be
possible for A to lock her coins at time t1. The use of timelock puzzles will make
our protocol unsuitable for lightweight applications. Hence none of the paths can
be initiated.

(ii) Without using HTLC for Monero. A fix for the challenges faced in HTLC
based protocol would be to design a protocol without having any hashlock and
timelock at Monero side, but B uses HTLC for locking y BTC in BB . In Monero,
coins locked in the address can be spend only by the party possessing the private
key of that particular address. The modified protocol allows A to lock her coins
in an address say pk, whose secret key is solely possessed by her. This will allow
A to initiate a refund at her will. Let the secret key be s. She locks x XMR in
address pk at time t1. Using this secret key, she generates hs : hs = H(s). She
shares hs with B. The latter locks y BTC into HTLC(y, hs, t4,B,A) at time t2.
For a successful swap, A invokes HTLC using the secret s at time t3 and claims
y BTC. B uses the secret key s to spend x XMR locked in address pk at t4 and
transfers it to his address in BA.

Attack on this approach. Apparently, it might look like we can accomplish
the swap using this approach. However, the problem is now A can initiate a
refund at any time she wants. Even if she initiates a refund after t2, she can still
invoke the HTLC as t2 < t4, and claim y BTC from B. The service provider B
will lose his coins. To counter this problem, we can resort to 2-of-2 secret sharing
where each half of the secret key s of address pk will be shared with A and B.
This will make A dependent on B for issuing a refund, violating our objective.
If B does not lock his coins at t2, A’s coins will remain locked forever.

From the above discussion, it is clear that designing an efficient protocol
without any kind of timeout in one of the two chains is a challenging task. We
provide a high-level overview of our proposed solution in the next section.
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4 Our approach

4.1 Solution overview

Our protocol must ensure that the party moving first is allowed to issue a refund
without depending on the counterparty. However, it must also be ensured that
if the swap is canceled, both parties must get a refund. Since Monero does not
support timelocks, we need to design a protocol that leverages the timelock used
in the Bitcoin script. We use threshold adaptor signature for seamless redemption
and refund of coins without any party suffering a loss in the process.
Signing refund transaction in Monero. Consider an atomic swap where
Alice (or A) wants to exchange her monero for Bob’s (or B) bitcoin. If she
locks her coins in an address whose secret key is known to her, she can spend
the coins at any time. It is better if the secret key is shared where each half is
possessed by A and B. However, this would mean that A has to depend on B
for initiating a refund. If B does not cooperate, then A’s coin will remain locked
forever. Hence both of them must collaborate and sign the refund transaction
even before A locks her coins. The signature generated uses threshold version of
adaptor signature. To generate such a signature, B uses his portion of the secret
key as well as a cryptographic condition, say R, to generate the incomplete
signature. A can complete the signature using her share of the secret key and
upon fulfilling the hard relation R inserted by B. On the Bitcoin side, once A
invokes the redeem transaction, the coins can be redeemed by her only after
a certain timeperiod, say t, elapses. In the meantime, if B finds that A has
refunded her coins but still invoked the redeem transaction at the Bitcoin side,
then he can publish his refund transaction within the timeperiod t. A valid
signature for a refund transaction can be generated by providing a witness to
the relation R. Once A has published her refund transaction on BA, B will know
the witness and hence, he can claim a refund easily.

We now describe our proposed two-party atomic swap protocol ensuring that
none of the parties lose coins in the process.

4.2 Protocol description

We discuss a lightwieght atomic swap protocol where A wants to exchange xA
XMR for yB BTC of B. The protocol consists of six phases: setup, lock, redeem,
cancel, emergency refund and punish. The transaction schema for BTC to XMR
atomic swap is shown in Figure 2. xA coins are held in blockchain BA and yB
coins are held in blokchain BB .
Setup phase. In this phase, A and B jointly create the public key pk in
BA. A uses pk to generate an address for locking her coins. Each party will
generate one-half of the secret key, i.e., A will generate sA, and B will generate
sB . A linear combination of their secret keys will result in s. The latter serves
as the private key of the address pk. Additionally, A samples an additional
secret rA and generates the statements RA for BA and R∗A for BB (For example,
RA = raG and R∗A = raH for two different groups having generator G and H
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(i) BTCl

yA ∧ yB

(iii) BTCc

yB

(ii) BTCr

yA ∧ yB

(v) BTCt

yA

(iv) BTCe

yB

+t1

pkA, pkB

pkA, pkB , S
∗
A

+t2

pkA, pkB

R∗A, pkB

(A) XMRl

xA

(B) XMRr

xB

(C) XMRc

xA

SA, SB

SA, SB , RA

Fig. 2: New transaction schema for BTC to XMR atomic swaps. Top: Trans-
action schema for Bitcoin. Bottom: Transaction schema for Monero. Here xA
and xB denotes the fact that x Monero coins belong to either Alice or Bob
correspondingly. Similarly with yA and yB in Bitcoin.

respectively). A generates a proof πra that proves rA is the witness to both the
statements RA and R∗A. Similarly, using one half of secret key, sA,A generate the
statements SA and S∗A for the blockchains BA and BB respectively. B generates
a proof πsa that proves sa is the witness to SA and S∗A. B also generates a
proof πsb that proves that sb is the witness of statement SB . Both parties share
((πra , RA, R

∗
A), (πsa , SA, S

∗
A), (πsb , SB)). The readers may refer the full version

of the paper for details on generation of proof for each statement.
Pre-signing of Monero Refund transaction: A creates a Monero refund trans-

action XMRc, box (C) in Figure 2, where xA coins locked in address pk is send to
another address on BA controlled by A.

XMRc : pk
xA−→ A

Later, A and B collaborate and pre-sign XMRc based on the statement RA. Both
parties provide their share of private spend keys in the process of generating
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the adaptor signature without revealing it explicitly. This allows A to opt for a
refund anytime she wants.

Exchanging signatures for the transactions on Bitcoin side:B shares his fund-
ing source, txfund, with A. The source has a balance of at least yB coins. The
transaction BTCl, box (i) in Figure 2, is created where B will lock his coins in a
2-of-2 multisig redeem script, pklockA,B . The output is denoted as yA ∧ yB .

BTCl : txfund
yA∧yB
−−−−−→ pklockA,B

The coins can either be redeemed by A or refunded by B after a certain
timeperiod t1. A can publish the transaction BTCr, box (ii) in Figure 2, spends
the output of BTCl and again locks into a 2-of-2 multisig redeem script, pkredeemA,B .

BTCr : pk
lock
A,B

yA∧yB
−−−−−→ pkredeemA,B

The output of BTCr can either be refunded to B, if there is an emergency, or
it can be claimed by A after a certain timeperiod t2. A creates the transaction
BTCt, box (v) in Figure 2, which will allow her to spend the output of BTCr after
timeperiod t2 and shares it with B.

BTCt : pk
redeem
A,B

yA
−−−−−→ A

The latter signs BTCt and sends it to A. Later B creates the transaction BTCc,
represented in box (iii) in Figure 2. It allows him to refund the output yA ∧ yB
coins of BTCl.

BTCc : pk
lock
A,B

yA
−−−−−→ B

B sends BTCc to A for signature. A sends BTCr to B. The latter verifies the
transaction, pre-signs the transaction BTCr based on the statement S∗A and sends
the partially signed transaction to A. Now A will sign the transaction BTCl and
send it to B.
Lock phase. A creates the transaction XMRl, box (A) in Figure 2 where she
locks xA coins into address pk.

XMRl : A
xA

−−−−−→ pk

B, upon verification that A has locked the coins, proceeds with publishing
BTCl and locks his coins as well.
Redeem phase. A knows the witness sA for the statement S∗A and thus she
generates a valid signature for BTCr. She publishes the transaction but cannot
spend the output before a timperiod of t2 has elapsed. Meanwhile, B extracts
sA from the signature on BTCr. He will create the transaction XMRr, box (B)
in Figure 2 that will allow him to redeem the coins locked in address pk.

XMRr : pk
xB

−−−−−→ B



10 Authors Suppressed Due to Excessive Length

By combining the secret keys sA and sB , he will be able to sign XMRr and publish
it on-chain.
Cancel swap. If A wants to cancel the swap, she will generate a valid signature
for XMRc using the witness rA and publish it to claim her coins. Meanwhile, B
can wait till t1 has elapsed since BTCl was published and A has not initiated the
swap. He publishes BTCc and unlocks his coins.
Emergency refund. Suppose A has initiated the swap by publishing BTCr
but she has unlocked her coins by publishing XMRc. Once XMRc is published, B
extracts rA from the signature on XMRc. He will create transaction BTCe, box (iv)
in Figure 2 and spend yA ∧ yB coins locked in pkredeemA,B .

BTCe : pk
redeem
A,B

yB
−−−−−→ B

Now he will sign the transaction using rA and publish the transaction on-chain
before t2 elapses.

From the above discussion on emergency refund, we emphasize the utility of
not allowing A to redeem the coins locked by B. Instead, a waiting time of t2
allows B to recover his coins, if A is malicious. On one hand, A can initiate a
refund any time she wants but on the other hand, she cannot claim the bitcoins
instantly.
Punish. If B has published XMRr and claimed xB coins, then A waits for t2
timeperiod to elapse after publishing BTCr. She will publish BTCt and claim yA
coins.

Now, consider that B has stopped responding and has neither claimed xB
coins nor initiated a refund. In that case,A can punish him for remaining inactive
by publishing BTCt. Hence, this phase is called punish phase and B loses his
bitcoins. A detailed description of the protocol can be found in the full version
of our paper [2].

4.3 Security and privacy goals

– Correctness: If both parties are honest, with one party willing to exchange
x units of coin for y units of coins of the other party, then the protocol
terminates with each party obtaining the desired amount.

– Soundness: An honest party must not lose funds while executing the pro-
tocol with an adversary.

– Unlinkability: Any party not involved with the atomic swap must not be
able to link two cross-chain transactions responsible for the atomic swap,
except with negligible probability.

– Fungibility: An adversary must not be able to distinguish between a normal
transaction and a transaction for atomic swap in Monero Blockchain, except
with negligible probability.

We discuss how the security properties defined above holds for our proposed
protocol:
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– Correctness: If both parties A and B are honest, then the atomic swap
protocol ensures that if party A is able to redeem yA coins then party B can
redeem xB coins as well within a bounded timeperiod. This is possible since
when A publishes BTCr, B extracts the secret sA from signature on BTCr and
uses the same for signing transaction XMRr.

– Soundness: If party A initiates the swap but publishes XMRc before B pub-
lishes XMRr, then a relative locktime of t2 on spending the output of BTCr
allows B to opt for an emergency refund by publishing BTCe and refund his
coins.

– Linkability: Since Monero transactions are confidential and signatures on
transactions are generated from random values, any malicious party observ-
ing both the Monero and Bitcoin blockchains will be able to link a pair of
Bitcoin and Monero transactions involved in the swap with negligible prob-
ability.

– Fungibility: There is no structural difference between a normal Monero
transaction and a Monero transaction constructed for LightSwap. Any ma-
licious party observing the Monero blockchain can distinguish between such
a pair of transactions with negligible probability.

A detailed security analysis of LightSwap in the Global Universal Composability
(GUC) [9] framework has been discussed in the full version of our paper [2].

5 Discussion

5.1 Building Monero transactions

Pre-signing transactions involve signing a transaction where the outputs that
need to be spent as input in this transaction have not been added to the
blockchain. Since the private spend key and private view key for spending the
output of XMRl is generated using 2-of-2 secret sharing, it requires both parties
to co-operate and generate a valid signature for spending this output. However,
if Bob stops responding, Alice will never get back her coins. Pre-signing XMRc
will allow her to go for refund anytime she wants prior to signing of XMRl [25].
Unfortunately, it is not possible to implement the pre-signing of Monero trans-
action in its present form. We specify the key components for building a Monero
transaction - (i) a transaction has a ring signature per input to hide exactly
which output is being spent, (ii) a unique key image for an input being spent
to avoid double-spending, (iii) Pedersen commitments [32] for every input and
output, retaining the confidentiality of the transaction, and lastly, (iv) to show
that difference in input and output of a transaction is non-negative, bulletproofs
[8] are used.

The input of a Monero transaction, denoted as vin, consists of the amount,
key offsets, and key image. Since the amount is confidential, it is set to 0. The
key offset allows verifiers to find ring member keys and commitments in the
blockchain. It consists of the real output public key along with 10 other decoy
outputs. The first offset value is the absolute height of the block where the first
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member is present. Rest are assigned values relative to the absolute value. For
example, if the set of 11 public keys forming ring members have real offsets
{h, h + 4, h + 6, h + 10, h + 20, h + 33, h + 45, h + 50, h + 67, h + 77, h + 98},
then it is recorded as {h, 4, 2, 4, 10, 13, 12, 5, 17, 10, 21} where h is the height of
the block where the first public key can be found and each subsequent offset
is relative to the previous. This set is termed as “ring” and is stored in the
transaction. To ensure that a particular output can only be used once as an
input, Monero includes a key image of the output’s public key. The key image
is constructed using the public key of the output that will be spent. This avoids
double-spending attacks in Monero blockchain. Next, we discuss how the input
“ring” is used for constructing the ring signature CLSAG.

For computing the signature hash ci+1,∀i ∈ {0, 1, . . . , 10} where c11 = c0,
“ring” is taken as input along with other parameters and concatenated with
Li and Ri. To generate the signature, the offsets must be known. Offsets are
not known until and unless all the outputs in set ring have been added to the
blockchain. Lack of offsets violates the policy of pre-signing where the transaction
must be signed before the output that needs to be spent gets added to the
blockchain. To avoid this problem, instead of using the key offsets as input for
generating a signature hash, the set of public keys can be used as input. However,
this would require changing Monero’s codebase but the change is necessary for
realizing Layer 2 protocols in Monero blockchain.

5.2 Building Bitcoin transactions

We created the necessary Bitcoin transactions for LightSwap and deployed these
transactions on the Bitcoin testnet. We observed and recorded the size of trans-
actions in bytes, where BTCl and BTCr is 360 B each, BTCc is 230 B, BTCe is
231 B, and BTCt is 229 B. Our result demonstrates the compatibility of the
protocol with the current Bitcoin network. The code is available in https:
//anonymous.4open.science/r/btc_xmr_swap-A7B1, forked from https:
//github.com/generalized-channels/gc.

6 Related work

There have been efforts to design time locks on Monero. DLSAG [29] mentions
that Monero is locked in a 2-of-2 joint address comprising two different public
keys. Any one of the public keys can be used to spend Monero from the address
based on certain conditions, for example, pre-defined block height. However,
Monero needs to undergo a hard fork to implement DLSAG. Thyagarajan et al.
[38] proposed the first payment channel for Monero, PayMo, without requiring
any system-wide modifications. Additionally, the authors have also proposed
a secure atomic cross-chain swap using PayMo. The payment channel uses a
new cryptographic primitive called Verifiable Timed Linkable Ring Signature
(VTLRS). The signature scheme uses the timed commitment of a linkable ring
signature on a given Monero transaction. However, timed commitment requires

https://anonymous.4open.science/r/btc_xmr_swap-A7B1
https://anonymous.4open.science/r/btc_xmr_swap-A7B1
https://github.com/generalized-channels/gc
https://github.com/generalized-channels/gc
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a huge computation overhead, making it unsuitable for designing lightweight
protocols.

Threshold ring multi-signature proposed by Goodell and Noether [15] was
used for spender-ambiguous cross-chain atomic swaps. Their construction doesn’t
involve any timelock mechanism, it is based on sharing of secret keys - whenever
one party goes on-chain for claiming the amount, the other party can reconstruct
the secret key completely. However, the paper doesn’t formally define the refund
method in case one of the parties acts maliciously. Gugger [16] proposed atomic
swaps between Monero and Bitcoin. However, as per the concept of the atomic
swap, the party which initiates the swap must lock its money first in its native
blockchain. However, Gugger’s protocol requires the counterparty selling Bitcoin
in exchange for Monero to move first. This is not desired as it puts the counter-
party at risk. Since there is a timelock involved before which the Bitcoins can
be refunded, the buyer of Bitcoin may resort to mounting draining attack [14]
by not locking his Monero. We have provided a detailed comparison of Gugger’s
protocol and LightSwap in Section A of Appendix. Hoenisch and Pino [19] pro-
vide a high-level sketch of a protocol that mitigates the limitations of Gugger’s
protocol. However, it avoids any detailed description of the construction of the
adaptor ring signature on Monero.

7 Conclusions

We propose LightSwap, a lightweight two-party atomic swap facilitating the ex-
change of Bitcoin and Monero. LightSwap does not require any type of timeout
at one of the two blockchains, without additional trust assumptions. Our proto-
col is thus efficient, fungible, scalable, and can be used for any cryptocurrency
whose script does not support timelock. Either the party can initiate a refund,
even if the counterparty does not cooperate. We provide steps for implement-
ing LightSwap that demonstrate the ability to seamlessly deploy the protocol if
Monero’s codebase is changed to enable Layer 2 protocols. In the future, we are
interested to study if a protocol can be designed without using timelock even at
the Bitcoin side and what additional trust assumptions would be needed.
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A Detailed comparison with Gugger protocol

Gugger proposed a protocol for swapping B’s bitcoins for A’s monero without
using timelocks at the Monero side[16]. A locks her monero in an address, whose
one half of the private spend key is with A and other half with B. On the other
hand, B locks bitcoin in a 2-of-2 multi-sig address having two outputs, one is
redeemed and one is for refunding. The redeem script uses a hashlock where
the preimage of the hash must be used for claiming Bitcoins. Initially B locks
bitcoin and upon confirmation, A locks her monero. After A has verified that
B has locked bitcoin, she sends the preimage of the hash defined in the redeem
script. Using it, B publishes the redeem transaction and releases his part of the
private spend key to A. The latter uses it to construct the private spend key and
claim monero. A is at risk of losing her deposit forever if B refuses to collaborate
while refunding. There is no way A can refund her coins without B’s secret. The
schematic diagram of the protocol is shown in Figure 3.
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Fig. 3: Transaction schema for BTC to XMR atomic swaps from Gugger et al [16].
Top: Transaction schema for Bitcoin. Bottom: Transaction schema for Monero.
Note: Monero view keys are omitted for clarity.

To address these problems, we propose a protocol that allows A to refund
instead of depending on B. With this guarantee, she can always move first by
locking XMR before B locks BTC. We use the adaptor ring signature for the
refund transaction of Monero. But making this minor change in [16] won’t help
since providing freedom to A puts B at risk of losing money. It is quite possible
thatA publishes the refund transaction first and then claims bitcoins. To prevent
such a situation, A will be allowed to claim bitcoins only after B has redeemed
monero. Thus once A publishes the redeem transaction, the money cannot be
spent immediately. A contest period is added before she can claim bitcoins.
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