
DeV-IP: A k-out-n Decentralized and verifiable BFV for

Inner Product evaluation∗

Jose Contreras1 and Hardik Gajera2

1 Humanode,
tanogedler@humanode.io

2 Humanode,
hgajera@humanode.io

Abstract

The biometric system has become the desired alternative to a knowledge-based authen-
tication system. An authentication system does not provide uniqueness, as a single user
can create multiple registrations with different identities for authentication. Biometric au-
thentication identifies users based on physical traits (fingerprint, iris, face, voice), which
allows the system to detect multiple authentications from the same user. The biometric
templates must be encrypted or hidden to preserve users’ privacy. Moreover, we need a
system to perform the matching process over encrypted data without decrypting templates
to preserve the users’ privacy. For the euclidean distance-based matching process, central-
ized server-based authentication leads to possible privacy violations of biometric templates
since the power of computing inner product value over any two encrypted templates allows
the server to retrieve the plain biometric template by computing a few inner products. To
prevent this, we considered a decentralized system called collective authority, which is a
part of a public network. The collective authority computes the collective public key with
contributions from all nodes in the collective authority. It also performs a matching process
over encrypted biometric templates in a decentralized manner where each node performs
partial matching. Then the leader of the collective authority combines it to get the final
value. We further provide a lattice-based verification system for each operation. Every
time a node performs some computations, it needs to provide proof of the correctness of
the computation, which is publicly verifiable. We finally make the system dynamics using
Shamir’s secret sharing scheme. In dynamic collective authority, only k nodes out of the
total n nodes are required to perform the matching process. We further show that the
security of the proposed system relies on the security of the underlying encryption scheme
and the secret sharing scheme.

1 Introduction

Due to advancements in the Internet of Things (IoT) and digitization of systems, there has been
an increase in interaction with mobile devices in our day-to-day life. There are several authen-
tication methods to prevent any unauthorized access to any personal device knowledge-based
authentication (PIN, password), smart-card-based authentication, context-aware (location, IP
address), and biometric-based authentication (fingerprint, iris, voice, face), among others. [13].
In a service-based system, a user interacts with a service provider through a personal device
like a laptop, smartphone, tablet, or smart device. In this scenario, user authentication can be
performed either locally on the user’s device or remotely on the service provider platform [17].

In a system where the uniqueness of a user is necessary, biometric authentication is used
over traditional password-based authentication. Biometric authentication has several advan-
tages over password-based authentication. There is no requirement to keep the secret key

∗Reviewed by Humanode Core team, MOZGIII, and Dmitry Lavrenov.

A k-out-n Decentralized BFV J. Contreras, H. Gajera

safe and secure; challenging to forge (Sybil resistant) and hard to guess. However, biometric
authentication has an intrinsic limitation as well. Password-based authentication requires an
exact match in the input string and stored password, while biometric authentication relies on
the closeness between two biometric feature vectors. This closeness can be based on either eu-
clidean distance, cosine similarity, or hamming weight [20]. Here, we consider euclidean distance
to compare feature vectors.

In remote biometric authentication, a server must store the biometric templates of all the
users. In database leakage, an adversary may obtain a valid user’s template. The adversary can
use the template for some other biometric authentication-based application or try to obtain the
user’s biometric data by reverse engineering the template. It is essential to keep the biometric
templates secure so that no one other than the user can access their plaintext form. On the other
hand, we also want to check the closeness between two biometric templates for authentication
purposes, leading to a system with the following requirements:

• The biometric template must not leave the user’s device plain, and no other party should
be able to retrieve the template.

• System should be able to check the closeness of two encrypted templates without decrypt-
ing any of the templates.

In this paper, we are considering the euclidean distance between two templates as a closeness
property. Euclidean distance computation is a non-linear function, but we can write it as an
inner product. Therefore, it is enough to have a system to compute the inner product over
encrypted templates. Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be two n-dimensional
vectors. Then we have

(d(u,v))2 = (u1 − v1)
2 + (u2 − v2)

2 + . . .+ (un − vn)
2

= (u2
1 + u2

2 + . . .+ u2
n) + (v21 + v22 + . . .+ v2n)− 2(u1v1 + u2v2 + . . .+ unvn)

= u · u+ v · v− 2u · v

Assume we have a centralized system where a server takes two encrypted templates and
computes inner product value. In this scenario, the power of computing the inner product value
over any two encrypted templates allows the server to retrieve the plain biometric template by
computing a few inner products. For example, to retrieve the vector u = (u1, u2, . . . , un), the
server can get the individual component ui by computing inner product u · ei where ei is the
vector with 1 at i-th position and 0 on all other positions. For this reason, we considered a
decentralized system where the inner product is computed collectively by several parties, and
no single party can compute the inner product independently. In a decentralized system, when
some operation involves several parties, everyone has to trust that other parties have done
their task correctly and as required. However, in a public network, you can not trust others
blindly, as there will always be a malicious party who may try to affect the system’s operations.
If a malicious party does not provide correct input to the computation of the inner product
between two templates, that might lead to data compromise. In the proposed scheme, we verify
computation. Whenever a party computes something and shares it with another party in the
network, it has to prove the computation’s correctness. The other party verifies the proof before
proceeding further.

We considered a public network of nodes where a user controls each node through biomet-
ric authentication. A node becomes active and performs tasks in the network only after the
corresponding user passes through biometric authentication. For the authentication part, we
considered a random subset of the network. We call it collective authority (CA). It includes

2

A k-out-n Decentralized BFV J. Contreras, H. Gajera

a CA leader and several other nodes. Initially, the CA collectively computes the public key
for some homomorphic encryption scheme. The corresponding collective secret key remains
distributed among the nodes of the collective authority. This collective public key is made
available to all the nodes in the system.

During the registration process, a user encrypts its biometric template using the collective
public key and sends it to the network. The collective authority performs the inner product with
an existing encrypted biometric template (this is possible because of the homomorphic property
of the underlying encryption scheme). Then it decrypts it collectively using all nodes of the
collective authority. Finally, it uses the inner product value to check the euclidean distance.
If no match is found, then all nodes of the collective authority store the encrypted template.
Note that no node can view the template in plaintext form.

For authentication, a user sends an encrypted biometric template along with the node id
to the collective authority. Here, we assume a liveness detection check is in place to prevent
any replay or spoof attack. The collective authority fetches the corresponding stored biometric
template for the particular node id and then computes the inner product with the help of nodes
in the collective authority. For this kind of system, the essential requirement is a decentralized
encryption scheme where collective authority can perform operations over encrypted values and
decrypt them later with the help of all nodes of the collective authority. For this purpose, we
proposed a (k, n) decentralized and verifiable BFV scheme for inner product evaluation.

1.1 Our Contribution

• In this paper, we proposed a decentralized version of BFV encryption using the idea of
collective authority where the collective public key is computed collectively in such a way
that the corresponding collective secret key remains in distributed form.

• We provide verifiable BFV public key generation, which allows anyone to verify that the
public key pk is in the form −(p1s+ e) where s, e are sufficiently small, and p1 is a public
value.

• To make the system dynamic, we propose (k, n) decentralized system where any k parties
out of n parties can perform decryption. We use the idea of Shamir’s secret-sharing
scheme to distribute shares of a collective secret without any trusted setup. We further
provide proof for the correctness of the computation of each of the shares.

• Finally, we present verifiable decentralized decryption where each participating node pro-
vides proof of correct computation for its partial decryption.

2 Related Work

Homomorphic Encryption (HE) is a cryptographic primitive that allows performing computa-
tions on encrypted data. It is a fundamental building block for privacy-preserving applications.
The first homomorphic encryption scheme was proposed by Gentry in 2009 [10]. Since then,
many homomorphic encryption schemes have been proposed, each with advantages and disad-
vantages. The most popular homomorphic encryption schemes are based on the learning with
errors (LWE) problem [11, 6].

There has been a natural application of homomorphic Encryption to privacy-preserving ma-
chine learning. Suppose we can perform computations on encrypted data. In that case, we can
train a machine-learning model on encrypted data, which can then be used to predict encrypted

3

A k-out-n Decentralized BFV J. Contreras, H. Gajera

data. A machine learning model that allows performing calculations is a compelling application
of homomorphic Encryption. However, training machine learning models is a computationally
intensive task that relies on identifying features in the data. Since the encryption scheme does
not reveal any feature of the actual data, it is difficult to train a machine-learning model on
encrypted data.

Inner product encryption is a cryptographic primitive that allows users to compute the inner
product of two vectors without revealing the vectors. The inner product of two vectors is the
sum of the products of the corresponding elements of the vectors. The inner product of two
vectors is used in many applications, such as secure computation, secure multi-party computa-
tion, and secure machine learning, including biometric authentication systems. Function-hiding
Encryption is a cryptographic primitive that allows a user to compute a function of a vector
without revealing the vector. The function of a vector is the result of applying a function to
the elements of the vector, including biometric authentication systems [14].

A unique property of inner product calculation is that it can be extracted from the product
of two ciphertexts without revealing the plaintexts. The inner product of two vectors is the sum
of the products of the corresponding elements of the vectors after a suitable encoding procedure
of the vectors before the encryption [7]. For instance, in a biometric authentication system that
uses a neural Network, the matching process can use inner product calculation to compare the
encrypted features of the enrolled and the probe without revealing the plain vectors, allowing
to perform the authentication process in a privacy-preserving manner.

For instance, in a biometric authentication system that uses a Neural Network, the matching
process can use inner product calculation to compare the encrypted features of the enrolled and
the probe without revealing the plain vectors, allowing to perform the authentication process
in a privacy-preserving manner.

Privacy-preserving cryptographic schemes have been studied for a long time. The first one
was proposed by Chaum in 1981 [5]. The first practical scheme was proposed by Goldwasser,
Micali, and Rackoff in 1984 [12]. In every case, centralization is a critical aspect of the scheme.
The main idea of the scheme is to use a trusted third party (TTP) to perform cryptographic
operations. The TTP is a central authority trusted by all the users and responsible for generat-
ing the keys, encrypting, and decrypting the data. The TTP is also responsible for performing
cryptographic operations. There are several security concerns when using a centralized, trusted
third party in privacy-preserving authentication systems [1]. The TTP can be a single point
of failure. If the TTP is compromised, all the user’s keys are compromised. The TTP can
also be a single point of attack and control of the cryptographic operations. The main idea of
the decentralized scheme is to use a decentralized network of users to perform cryptographic
operations.

However, the server can also be compromised. Using a decentralized homomorphic encryp-
tion scheme is a way to protect the server. In a decentralized homomorphic encryption scheme,
the server is replaced by a set of nodes. The nodes are connected using a network. The nodes
can communicate with each other using the network. The nodes can also communicate with
the user. The user can send the biometric feature to its node via a secure channel. The owner’s
node can then encrypt the biometric feature vector using a homomorphic encryption scheme
and send the encrypted biometric feature to the other nodes in the network. The nodes can
then decrypt the encrypted biometric feature and compare it with the stored biometric feature.
If the two features match, the user is authenticated.

The idea of a decentralized trusted third party could be found in [19], where the authors
explore the concept of Collective Authority. In general, the collective authority serves the
purpose of a trusted third party that uses a secret sharing protocol and a verification system

4

A k-out-n Decentralized BFV J. Contreras, H. Gajera

to ensure that the collective authority is not compromised. The collective authority can be
used to perform cryptographic operations. An excellent example of a general-purpose collective
authority that uses the ElGamal encryption scheme is UnLynx [9].

In terms of verifying the operations in a Neural Network, a series of works explores how
to implement an efficient Zero-knowledge Proof System that verifies the operations and the
output of a Neural Network [16, 8, 4, 15]. However, these works consider a scenario where the
Neural Network is private, and the input/output data are public. Some of the work even uses
a trusted third party to set up a zero-knowledge common reference string. The trusted third
party is a central authority trusted by all the users and is responsible for generating the keys
and encrypting and decrypting the data.

3 Cryptographic preliminaries

We begin with a brief introduction to the cryptographic primitives used in this paper. We then
describe the primary cryptographic operations used in the protocol and the security properties
of the scheme.

3.1 Lattices

In group theory, a lattice in Rn is an algebraic subgroup of Rn that spans the vector space Rn

with integer coefficients in its basis.

Formally, let n ∈ N, B ∈ Rn×n a matrix, and bi ∈ Rn the i-th row of B, with 1 ≤ i ≤ n.
The linear combinations of bi, defined as

L(B) =

{
n∑

i=1

mib
i : mi ∈ Z, 1 ≤ i ≤ n

}

is a subgroup of Rn. If the bi are linearly independent, we say that L(B) is a Lattice in Rn

of dimension n.

3.2 BFV scheme

The BFV scheme is a fully homomorphic encryption scheme that allows the execution of com-
putations on encrypted data. The scheme is based on the learning with errors problem, which
is a problem in the computational learning theory consists of finding a function f that maps
a set of inputs X to a set of outputs Y such that the error between the output of f and the
actual output is small. The BFV scheme is based on the hardness of the learning with errors
problem in the context of lattices. The scheme comprises three algorithms: the key generation
algorithm, the encryption algorithm, and the decryption algorithm.

A decentralized BFV scheme is a BFV scheme where the public key is distributed among
the users. The key is distributed in a way that allows anyone to perform encrypted data
computations without a central authority. This paper presents a decentralized BFV scheme
where the public key is distributed among n users, and k of them are needed to perform
computations on encrypted data.

Here, we describe the BFV scheme and in the following section, we describe the decentralized
version based on Collective Authority.

5

A k-out-n Decentralized BFV J. Contreras, H. Gajera

3.2.1 Set-up parameters

The parameters of the BFV scheme are the following:

• m degree parameter

• q prime, defining the ring Rq = R/qR = Zq[x]/fm(x). This ring is the ciphertext space.

• t an integer, with t << q, defining the ring Rt = R/tR = Zt[x]/fm(x). This ring is the
plaintext space.

• σ the parameter for the discrete Gaussian distribution χ = DZm,σ

3.2.2 Key generation

1. Sample s as polynomial of degree (m− 1) with coefficients from {0, 1}.

2. Take a random p1 ∈ Rq and the error e← χ.

Then the public-key is defined as pk = (p0, p1), where p0 = −(p1s + e), and the secret-key
is sk = s.

3.2.3 Encryption

After encoding the plaintext v as an element in Rt and giving the public-key pk = (p0, p1), we
sample u, f, g ← χ and compute

Enc(v, pk) = (c0, c1) = (p0u+ g +∆v, p1u+ f)

where, ∆ =
⌊q
t

⌋
.

3.2.4 Decryption

Given the secret-key sk = s and the ciphertext Enc(v, pk) = (c0, c1) = c, we compute

Dec(c, sk) =

⌈
t(c0 + c1s)

q

⌋
(mod t) ∈ Rt

Homomorphic Operations:

The BFV scheme allows the execution of homomorphic operations on encrypted data. The
homomorphic operations are the following:

c = (c0, c1), c
′ = (c′0, c

′
1)

c+ c′ = (c0 + c′0, c1 + c′1)

c ∗ c′ = (c0 ∗ c′0, c0 ∗ c′1 + c1 ∗ c′0, c1 ∗ c′1)

6

A k-out-n Decentralized BFV J. Contreras, H. Gajera

3.3 Inner product extraction

Let P = (p0, . . . , pl−1) and Q = (q0, . . . , ql−1) bit sequence representations of vectors, with
m ≥ l over the ring R = Z[x]/(xm + 1).

We can define a transformation F onto the ring R such that.

fP =

l−1∑
i=0

pix
iq fQ =

l−1∑
j=0

qjx
m−j

If we multiply fP ∗ fQ, then

fP ∗ fQ =

l−1∑
i=0

piqix
m + · · ·

= ⟨P,Q⟩xm + · · ·

Thus, if we encrypt fP and fQ, thanks to the homomorphic properties of the encryption
scheme, we can extract the inner product as a constant term from the encrypted result:

Dec(Enc(fP) ∗ Enc(fQ)) = ⟨P,Q⟩xm + · · ·

3.4 Collective Authority

One of the most critical problems to solve when defining encryption schemes in decentralized
environments is handling cryptographic keys. In addition, the calculations are performed and
verified by peers through Multi-party Computation. In this sense, we will consider a subgroup
of the network, whom we will call Collective Authority, whose objective is to generate the
collective keys for homomorphic Encryption and also verify the calculations performed by each
node.

The collective authority works as a trusted third party for key generation and verification
but is composed of several network nodes. Here, the trust in the collective authority is de-
rived from verifying each communication within the network. During the Setup process, the
collective authority is the one who defines the generic parameters for the establishment of the
cryptographic protocols. Each node in the collective authority takes these generic parameters
and locally generates its public and private keys.

The node keeps its private key secured locally but sends the public key to the collective
authority leader. After collecting the public keys from each node, the collective constructs
a public key and distributes it back to all nodes. This collective public key is the one used
to encrypt the feature vectors. If a malicious user intercepts the public key in a traditional
cryptosystem, obtaining the private key is computationally challenging. Since the collective
public key is the sum of the individual public keys, it does not reveal any additional information.
Therefore, the collective public key generation process is as secure as the underlying public key
generation.

3.5 Shamir’s Secret Sharing

Shamir’s secret sharing scheme is a famous secret sharing scheme for sharing a secret among
n parties [18]. The party with secret s ∈ Zp creates shares s1, s2, . . . , sn in such a way that
any k shares are enough to retrieve the secret s but k− 1 shares do not reveal any information

7

A k-out-n Decentralized BFV J. Contreras, H. Gajera

about the secret. For this, the party randomly picks a k − 1 degree polynomial f(x) such that
f(0) = s and computes the shares {si = f(i)}ni=1. Note that the shares are points on the curve
defined by k−1 degree polynomial f(x). Since f(x) is of degree k−1, any k points on the curve
are sufficient to compute the polynomial f(x). Given any k− 1 points on the curve, there are p
many possibilities for k − 1 degree polynomial which pass through those k − 1 points, each of
them gives different value for f(0).

Using Lagrange interpolation, we can reconstruct the secret from k shares. Let I =
{i1, i2, . . . , ik} be set of indices corresponding to the selected k shares. For the index ij ∈ I, we
define Lagrange polynomial as follows:

Lij ,I =
∏

i∈I,i̸=ij

x− i

ij − i
mod p

Note that Lij ,I(ij) = 1 and Lij ,I(it) = 0 for it ̸= ij . Using shares and corresponding
Lagrange polynomial, we construct the polynomial f(x) as follows:

f(x) =
∑
ij∈I

Lij ,I(x)sij mod p

Since the secret s is a point on the curve at x = 0, we have

s =
∑
ij∈I

Lij ,I(0)sij mod p.

4 Protocols

This section provides concrete constructions of each algorithm in the (k, n) − decentralized and
verifiable BFV encryption scheme.

4.1 Setup

The leader of the collective authority generates the setup parameters used for the key generation.

• σ: the standard deviation.

• T : Relinearization parameter

• m: degree of polynomial

• t: size of the plaintext space, Rt

• q: size of the ciphertext space, Rq

• p1: public polynomial sampled from Rq

4.2 Collective Key-Generation Process

The collective authority will generate the encryption key, which we call the collective public
key. Once the leader publishes the setup parameters, each node in the collective authority runs
the key generation algorithm of BFV to generate their key pair.

1. Each node will have a key pair (ski, pki) where,

8

A k-out-n Decentralized BFV J. Contreras, H. Gajera

• Each node sample ski = si ← {0, 1}m

• Sample an error ei ← χ

2. Calculate p0i = − (p1si + ei)

3. Send public key pki = (p0i, p1) to the leader.

The leader will take the public keys of all the nodes and add them to compute the collective
public key as follows:

K =

(∑
i

p0i, p1

)
The corresponding private key is never constructed and stays distributed among the collec-

tive authority members. The leader publishes the collective public key, K, in the network so
that other nodes can use it to encrypt their plaintexts.

4.2.1 Verification of Key Generation:

When a node sends the public key pki to the leader, the leader must be sure whether the public
key is correct. If the noise in the public key is too large, then that will result in incorrect
message decryption. Therefore, it is necessary to ensure that the corresponding secret key si
and the noise ei are selected from the required distributions. For this, we use an LWE-based
zero-knowledge proof scheme [3].

Prover:The node picks rs randomly from {0, 1}m and re randomly from χ. It then computes
t = −(p1rs+ re). It then use a collision-resistant and cryptographically secure hash function
H : 0, 1∗ −→ {0, 1, 2, . . . , 2m− 1} and computes c = H(t||pki).
It further computes

ss = rs +Xcsi se = re +Xcei.

It sends (t, ss, se) to the leader along with the public key pki.

Verifier:The leader verifies the following equation:

Xcpki + t = −(p1ss + se)

It also checks whether ∥ss∥ ≤ 2n and ∥se∥ ≤ 2
√
nσ where ∥ · ∥ is Euclidean norm.

4.3 Encoding and Encryption

If the plaintext is not an integer, it needs to be encoded in a suitable form to extract the
inner product. We assume that the plaintext is already in a quantized form, i.e., all entries are
integers only.

Given such quantized plaintext v = (a0, a1, . . . , am−1), the encoding produces two polyno-
mials va and vb in the ring Rt = Zt[X]/(xm + 1) with the forms:

va = a0 + a1x+ . . .+ am−1x
m−1

vb = a0x
m−1 + a1x

m−2 + . . .+ am−1

The coefficient of xm−1 in va ∗ vb will be the inner product, ⟨v,v⟩.
The Encryption of the plaintext will be done using the collective public key K = (p0, p1).

9

A k-out-n Decentralized BFV J. Contreras, H. Gajera

1. Encode the plaintext v as va and vb

2. Encrypt va and vb using the collective public key K as follows:

ca = Enc(va,K) cb = Enc(vb,K)

After encrypting the plaintext, the node can send it to the network either for registration
or authentication.

4.4 Sub-share and Master share generation

Given two encrypted feature vectors, any node can perform a matching process over it. However,
we must decrypt the final output to get the matching score. Since the collective secret key is
in distributed form, we need to perform decryption in a decentralized manner. This requires
participation from each node in the collective authority, and if any one node goes offline for
any reason, then the system will not be able to perform decryption. Ideally, the system should
work even if a few collective authority nodes are unavailable.

To ensure this, we convert our system into a k-out-of-n system where the collective authority
can perform the decryption process as long as at least k out of the total n nodes of the collective
authority are available. For this, we use Shamir’s secret-sharing method to create shares of the
collective secret in a distributed manner.

Figure 1: Sub-share and Master share Generation

10

A k-out-n Decentralized BFV J. Contreras, H. Gajera

• Sub share generation: Let the collective authority has n nodes, {P1, P2, . . . , Pn}. Each
node has their secret key si ∈ Rq. The collective secret key is s =

∑
si, which is unknown

to anyone in the system.

The node Pi randomly picks {gij ∈ Rq}k−1
j=1 and set gi(y) =

∑k−1
j=0 gijy

j where gi0 = si.

In other words, the node Pi randomly picks a k − 1 degree polynomial whose coefficients
are in Rq, and the constant term is si. This polynomial will generate sub-shares for other
participant nodes. Let

g(y) =

n∑
i=1

gi(y).

For each participant node Pj , the node Pi computes sij = gi(j). The node Pi publishes
{sij}i ̸=j,1≤j≤m

• Master share generation: Using sij , each node Pi computes their own master share
as follows:

Si = gi(i) +

n∑
j=1,j ̸=i

sji = gi(i) +

n∑
j=1,j ̸=i

gj(i) =

n∑
j=1

gj(i) = g(i)

At the end, each participant has master secret Si = g(i) and g(y) is a k−1 degree polynomial
over Rq with g(0) =

∑n
i=1 gi(0) =

∑n
i=1 si = s (collective secret).

This setting becomes similar to Shamir’s secret-sharing scheme but over polynomials without
a trusted third party.

4.4.1 Verification of sub-shares

When the node a sends the sub-share sab to the node b, it is necessary for the node b verify
that sab is computed correctly.

The node a has secret key ska = sa, public key p0a = −(p1sa + ea) and secret polynomial
ga(y) with ga(0) = sa.

It then computes public polynomial ha =
(
ha0, ha1, . . . , ha(k−1)

)
where

ha0 = p0a hai = −(p1gai + e′ai)

with ei is noise from the distribution χ.
The node computes the sub-share sab for the node b. Let ra =

(
ra0, ra1, . . . , ra(k−1)

)
where

rai is randomly selected from the distribution χ. It further computes

• yab =
∑k−1

j=0 e
′
ajb

j

• tab =
∑k−1

j=0 rajb
j

• cab = H(tab||yab||sab)

The node a publishes cab and waits for cib from other nodes. Once it receives all {cib}i̸=a,b,
it further computes

• cb = H(c1b|| . . . ||cnb)

• For 0 ≤ i ≤ k − 1, uai = rai +Xcbe′ai

11

A k-out-n Decentralized BFV J. Contreras, H. Gajera

let u′
ab = (ua0, ua1, . . . , ua(k−1)) It sends {sab, ha, tab, u

′
ab} to the node b.

The node b first computes y′ab = ha(b) + p1sab and cb = H(c1b|| . . . |cnb) where cib =
H(tab||y′ab||sab). It then checks

Xcby′ab + tab =

k−1∑
j=0

uajb
j

and ∥uai∥ ≤ 2
√
nσ.

4.5 Decentralized Decryption using Master shares

The normal decryption of a ciphertext c = (c0, c1) is as follows:

msg =

⌈
t(c0 + c1 ∗ s)

q

⌋
(mod t).

Using Lagrange interpolation method, we have

s =

k−1∑
j=0

g(xj)

k−1∏
i=0,i̸=j

xi

xi − xj

where {(xj , g(xj))}k−1

j=0 are k many distinct points on the polynomial g(y). Each node Pi has a
point (i, Si = g(i)). Using any k of these points we can compute s.

Also, we have

c1 ∗ s = c1 ∗
k−1∑
j=0

g(xj)

k−1∏
i=0,i̸=j

xi

xi − xj

 =

k−1∑
j=0

c1 ∗ g(xj)

k−1∏
i=0,i̸=j

xi

xi − xj

 .

At the start of the decryption process, the leader of the collective authority will first find
online nodes and pick any k of them. Assume that {P1, P2, . . . , Pk} are the selected nodes. The
leader publishes this list and asks each to participate in decryption.

Then each of them will compute

dj = c1 ∗ Sj

k∏
i=1,i̸=j

i

i− j
+ p1ζ1j + ζ2j and zj = p1ζ1j + ζ3j

where ζ1j , ζ2j , and ζ3j are noise polynomial from distribution χ. The node shares (dj , zj) with
the leader.

Note that

k∑
j=1

(dj − zj) =

k∑
j=1

c1 ∗ Sj

k∏
i=1,i̸=j

i

i− j
+ ζ2j − ζ3j =

k∑
j=1

c1 ∗ Sj

k∏
i=1,i̸=j

i

i− j
+ ζ ′j

where ζ ′j = ζ2j − ζ3j .
The leader then computes

msg =

t
(
c0 ++

∑k
j=1(dj − zj)

)
q

 (mod t) =

⌈
t (c0 + c1 ∗ s+ ζ)

q

⌋
(mod t)

12

A k-out-n Decentralized BFV J. Contreras, H. Gajera

where ζ =
∑k

j=0 ζ
′
j and each coefficients of ζ is less than

q

2t
.

Figure 2: Decentralized Decryption

4.5.1 Verification of Decentralized Decryption

In decentralized decryption, a participating node a performs partial decryption using its master
share and outputs da. If the node a is malicious and does not compute da correctly, it will lead
to incorrect final decryption. By checking da, it is impossible to say whether the node a has
computed it correctly. To ensure the correctness of da, we use a verification system based on a
zero-knowledge proof for LWE secrets.

Assume that the node a is participating in the decentralized decryption of the ciphertext
c = (c0, c1). The node a will compute (da, za) as described in the section 4.5. It further picks
r01, r02, r11, r12 randomly from the distribution χ. It then computes

• t0 = p21r01 + p1r02

• t1 = p1r11 + r12

• v01 = r01 +Xcaζ1a

• v02 = r02 +Xcaζ2a

13

A k-out-n Decentralized BFV J. Contreras, H. Gajera

• v11 = r11 +Xc′aζ1a

• v12 = r12 +Xc′aζ3a

where ca is the same value that was computed by the node a during the verification of the
subshares sia and c′a = H(t0||t1||ca||da||za).

It then sends (t0, t1, v01, v02, v11, v12) along with (da, za) to the CA leader.

The leader computes

ya = p1da + πac1h(a)

where πa =
∏k

i=1,i̸=a

i

i− a
and h =

∑n
i=1 hi.

It then uses {tia}ni=1 and {u′
ia}ni=1 from the sub share verification and checks the correctness

of the following equalities:

Xcaya + πac1

n∑
i=1

tia + t0
?
= πac1

n∑
i=1

⟨u′
ia,
−→a ⟩+ p21v01 + p1v02

Xc′a + t1
?
= p1v11 + v12

where ⟨·, ·⟩ represents inner product function and −→a = (1, a, a2, . . . , ak−1).

The leader also checks whether ∥v01∥, ∥v02∥, ∥v11∥, ∥v12∥ ≤ 2
√
mσ. If all verification steps

are valid, then the leader proceeds to the final decryption step described in the section 4.5, else
it aborts.

5 Security Analysis

We analyze the security of each protocol by going through each step of our decentralized proto-
cols presented in section 4. We separately analyze the security of the corresponding verification
protocols.

Collective Key-Generation:In this protocol, each node in the system generates a BFV key
pair (ski, pki) and keeps the secret key ski hidden. Only public key pki is shared with the
CA leader, who aggregates all individual public keys to compute the collective public key
K. The corresponding collective secret key,

∑
i ski remains unknown as long as at least one

(ski, pki) is safe.

Encoding and Encryption:A vector is encoded as a polynomial and then encrypted using
BFV encryption. As long as the parameters for BFV are selected for 128 bit security as
recommended in [2], the encoding and Encryption of the vector remain secure.

Sub-share Generation:In this protocol, each node in the collective authority uses Shamir’s
secret sharing scheme to create secret shares (called sub-share) for the individual secret
key ski. The node i sends the sub share sij to the node j via a private channel to keep it
confidential.

For k out of n secret sharing scheme, the secret is hidden as long as the attacker cannot get
at least k of the corresponding sub-shares. Overall, the security of the sub-share generation
is equivalent to that of Shamir’s secret-sharing scheme.

14

A k-out-n Decentralized BFV J. Contreras, H. Gajera

Decentralized Decryption:In this protocol, a selected node performs partial decryption of
the ciphertext (c0, c1) using its master share. The noise noisej in the partial decryption dj
hides information about the master share.

Assume that the leader has multiple partial decryptions of different ciphertexts from the
same node j. That means the leader has list of partial decryptions, {Sj ∗ xi + noisei}, and
tries to learn about the master share Sj . However, this is equivalent to the learning with
errors (LWE) problem, which is assumed to be a hard problem for selected parameters.

The CA leader gets dj from each participating node and performs the final step to retrieve
the message. However, the leader cannot learn anything about the corresponding master
share from the partial decryption dj .

5.1 Security Analysis of Verification

Now, we analyze the security of each of the verification protocols. In all the verification proto-
cols, we use the idea from Zero-Knowledge proof for LWE-secrets s, e such that y = as+ e for
some public value a [3]. The relation is as follows:

R =
{
((a, y), (s, e)) : y = as+ e ∧ ∥s∥, ∥e∥ ≤ O(

√
nα)

}
Given (a, y), the protocol provides zero-knowledge proof that the prover knows short ele-

ments s, e such that y = as + e, that is, y is a linear combination of short elements for some
publicly known linear coefficients.

We consider a more generalized version of the ZKP for LWE secrets in verifying sub-share
generation and decentralized decryption. The generalized relation is as follows:

R =

{
((a1, a2, . . . , ak, y), (e1, e2, . . . , ek)) : y =

k∑
i=1

aiei ∧ ∥e1∥, . . . ∥ek∥ ≤ O(
√
mα)

}
• Verification of Key Generation: Here, we used ZKPoK of LWE secrets to prove that
the public key pki generated by the node i is in correct form with the corresponding secret
and the noise having a small norm. The corresponding relation is as follows:

R =
{
((−p1,−1, pki), (si, ei)) : pki = (−p1) ∗ si + (−1) ∗ ei ∧ ∥e1∥, . . . ∥ek∥ ≤ O(

√
mσ)

}
where σ is the parameter of the noise distribution χ.

• Verification of sub-shares: Here, we used a generalized version of ZKPoK of LWE
secrets to prove that the sub share sab = ga(b) indeed is generated for the secret sa and
{sab}nb=1 are all generated using the same polynomial ga.

Since the polynomial ga must be kept secret, the node a computes ha = −(p1 ∗ ga + e′a)
and makes ha public. Finding ga from ha is as hard as solving the LWE problem. We use
this ha to verify the claim about the sub share sab. Note that

ha(b) + p1sab = −(p1ga(b) + e′a(b)) + p1ga(b) = e′a(b)

where e′a(b) =
∑k−1

j=0 e
′
ajb

j−1 and e′aj are selected from the noise distribution χ. Therefore,
we prove that y = ha(b) + p1sab is indeed a linear combination of small elements. The
corresponding relation is as follows:

15

A k-out-n Decentralized BFV J. Contreras, H. Gajera

R =
{
((1, b, . . . , bk−1, y), (e′a0, e

′
a1, . . . , e

′
a(k−1))) :

y =

k−1∑
i=0

e′aib
i ∧ ∥e′a0∥, . . . ∥e′a(k−1)∥ ≤ O(

√
mσ)

}

• Verification of Decentralized Decryption: The participating node performs partial
decryption and computes (da, za). The verification process ensures that the da is computed
correctly using a valid master share. We use ZKPoK twice to prove that ya = p1da +
πac1h(a) and za are both linear combinations of small elements.

Note that the master share for the node a is g(a) =
∑n

i=1 gi(a). Using the public polyno-
mials {hi = −(p1gi + e′i)}ni=1, one can compute

h(a) =

n∑
i=1

hi(a) =

n∑
i=1

−(p1gi(a) + e′i(a)) = −

(
p1g(i) +

n∑
i=1

e′i(a)

)
.

We use this ha to remove the term involving master share in da and then use ZKPoK of
LWE secrets for the remaining part.

ya = p1da + πac1h(a) = p21ζ1a + p1ζ2a − πac1

m∑
i=1

e′i(a)

Note that ya is a linear combination of small elements; therefore, we can verify it using
ZKPoK for LWE-secrets. Similarly, we verify that za is a linear combination of small
elements.

Now, assume that d′a = πac1S
′
a + p1ζ1a + ζ2a where S′

a ̸= Sa. That means an incorrect
master share is used for the computation of d′a. In this case, y′a = ya + πac1(S

′
a − Sa).

Then d′a passes through the verification if and only if an attacker can write πac1(S
′
a−Sa)

as a linear combination of short elements in the ring Rq. This is equivalent to a short
vector solution problem in the ring R⨿.

6 Implementation

(a) KeyGen (b) Encrypt (c) Decrypt

Figure 3: Execution time for the different operations in the protocol

16

A k-out-n Decentralized BFV J. Contreras, H. Gajera

6.1 Parameter Generation

The selection of the parameter for classic (no decentralized) homomorphic encryption was stan-
dardized in the document [2]. Most researchers agree that although it is essential to consider
the Standard suggestions, the process for selecting them is mostly heuristic. In our case, we
have several constraints that need to be satisfied. The basic parameter is the number m, that
is a j-th power of 2, with j = 10, 11, 12,

The following constraint is the security level l, the number of bits of the ciphertext. When
generating the parameters for the encryption scheme, we need to consider the number of nodes
in the Collective Authority (CA) and the value σ, which is the parameter for the discrete
Gaussian distribution. It is important to note that the number of nodes in the CA differs from
the number in the network. The number of nodes in the CA is the number of nodes that can
participate in the two-round decryption, inner-product calculation, and the matching protocol.

An open question is whether the number of nodes in the CA impacts the encryption scheme’s
security level. In summary, the parameters for the encryption scheme are two prime numbers,
q, and t. The number q is the size of the encrypted space, and t is for the plaintext space. The
constrains for q and t are as follows:

1. q and t are prime numbers

2. q|(2 ∗m− 1)

3. (q − 1)|t

4. 3 ∗m ∗ n ∗ σ < q
2∗t

where n is the number of nodes in the Collective Authority, and σ is the parameter needed
for the random distributions and usually is set to σ = 3.2

The pseudocode for the parameter generation is as follows:

Algorithm 1 Parameter Generation

1: procedure GenerateParameters
2: m← base param
3: l← security level
4: n← number of nodes in CA
5: σ ← parameter for random distributions
6: top:
7: if l = 128 and m = 210 then
8: size of encrypted space q is 29 bits.
9: else

10: if l = 128 and m = 211 then
11: size of encrypted space q is 56 bits.

12: loop:
13: GeneratePrimes q and t
14: while (q|(2 ∗m− 1) ∧ (q − 1)|t ∧ 3 ∗m ∗m ∗ sigma < q

2∗t) do
15: GeneratePrimes q and t

17

A k-out-n Decentralized BFV J. Contreras, H. Gajera

6.2 Complexity analysis

Let n be the number of nodes in the network and k be the number of nodes in the CA. Let m
be the degree of the polynomials. We now present the complexity of the different operations in
the protocol.

Key Generation: In this case, we have two operations, the generation of each node’s private
key and the generation of the collective public key. The complexity of each node’s public
key generation is determined by a multiplication of a polynomial of degree m by a constant
number and an addition of two polynomials of degree m. the complexity in this case is
O(m). The complexity of the collective public key generation is determined by adding k
polynomials of degree m. The complexity, in this case, is O(k). The total complexity of the
key generation is O(m+ k).

Encryption: The complexity of the Encryption is determined by the product of two polyno-
mials of degree m. The complexity will be O(m2). If the polynomial multiplication is done
using the FFT algorithm, the complexity will be O(m logm). Then there is an addition of
two polynomials of degree m. Thus, the total complexity of the Encryption is O(m logm).
Each node in the network performs Encryption, so it does not depend on the number of
nodes in the CA.

Two-round decryption: The two-round decryption is done in two phases. The first phase
is the calculation of the master shares. The complexity of the master shares calculation
is determined by sub-share generation for each node. The sub-share is the sum of k − 1
products of polynomials of degree m. This gives us a complexity of O(km logm). Then the
master share is the sum of n sub shares from the rest of the nodes and its sub share. This
gives us a complexity of O(nm logm).

Then we use the Lagrange interpolation to calculate the secret using at least k master shares.
The complexity of the Lagrange interpolation is O(km2). Then we multiply the secret by one
of the components of the ciphertext. The complexity of the multiplication O(m logm). Then
each node in the network calculates the partial decryption using its master share and the
previous multiplication. Taking into account the Lagrange interpolation, the multiplication
of the Lagrange interpolation by the first polynomial of degree m, and the multiplication
of the secret by the second polynomial of degree m, the total complexity of the two-round
decryption is O(km2 logm+ nm logm).

The next table summarizes the complexity of the different operations in the protocol:

Operation Complexity
Key Generation O(m+ k)

Encryption O(m logm)
Two-round decryption O(km2 logm+ nm logm)

Table 1: complexity of the different operations in the protocol

6.3 Execution time

Now we will present the execution time for the different operations in the protocol. Figure 3
shows the execution time for the different operations in the protocol.

18

A k-out-n Decentralized BFV J. Contreras, H. Gajera

We tested the protocol with 150 nodes in the network and a variation of two third of the
nodes in the CA. The execution time for key generation is presented in figure 3a. As expected,
the execution time increases linearly as we increase the node. This become constant time when
we consider each node generating their public keys simultaneously.

The execution time for the Encryption is presented in figure 3b. The encryption time is
more or less constant as increasing the number of nodes does not affect the encryption key
and the encryption algorithm. The time cost for two-round decryption is presented in 3c. The
decryption time increases as we increase the number of nodes due to the decentralized nature
of the decryption. We considered two-thirds of the total nodes as the threshold number. As
the number of nodes increases, the threshold number also increases, which results in a linear
increase in the decryption time.

7 Conclusion

In this paper, we presented a new collective public key encryption scheme. The scheme uses
a CA to generate the collective public key. The CA is a group of nodes in the network that
generates the collective public key and distributes it to the rest of the nodes in the network. The
nodes in the network use the collective public key to encrypt their data. The CA uses a two-
round decryption protocol to decrypt the data. Using this CA, we developed a new decentralized
version of BFV that uses a (k,n) secret sharing scheme to create shares of the collective secret
in a distributed manner. Also, we studied this new scheme’s security properties and presented
a complexity analysis and execution time for the different operations in the protocol. This work
can be applied to biometric authentication in a decentralized network.

References

[1] Aysajan Abidin and Aikaterini Mitrokotsa. Security aspects of privacy-preserving biometric au-
thentication based on ideal lattices and ring-lwe. In 2014 IEEE International Workshop on Infor-
mation Forensics and Security (WIFS), pages 60–65, 2014.

[2] Martin Albrecht, Melissa Chase, Hao Chen, and et al. Homomorphic encryp-
tion standard. http://homomorphicencryption.org/wp-content/uploads/2018/11/

HomomorphicEncryptionStandardv1.1.pdf, 2018.

[3] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, and Gregory Neven.
Better zero-knowledge proofs for lattice encryption and their application to group signatures. In
ASIACRYPT, 2014.

[4] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.
Zexe: Enabling decentralized private computation. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 947–964, 2020.

[5] David L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun.
ACM, 24(2):84–90, feb 1981.

[6] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Paper 2012/144, 2012. https://eprint.iacr.org/2012/144.

[7] Shisen Fang, Shaojun Yang, and Yuexin Zhang. Inner product encryption from ring learning with
errors. Cybersecurity, 3, 12 2020.

[8] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu. Zen: Efficient zero-
knowledge proofs for neural networks. IACR Cryptol. ePrint Arch., 2021:87, 2021.

19

http://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf
http://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf
https://eprint.iacr.org/2012/144

A k-out-n Decentralized BFV J. Contreras, H. Gajera

[9] David Froelicher, Patricia Egger, João Sá Sousa, Jean Louis Raisaro, Zhicong Huang, Christian
Mouchet, Bryan Ford, and Jean-Pierre Hubaux. Unlynx: A decentralized system for privacy-
conscious data sharing. Proceedings on Privacy Enhancing Technologies, 2017:232 – 250, 2017.

[10] Craig Gentry. Fully homomorphic encryption using ideal lattices. STOC ’09, page 169–178, New
York, NY, USA, 2009. Association for Computing Machinery.

[11] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013, pages 75–92, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[12] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems. In Symposium on the Theory of Computing, 1985.

[13] Anil K. Jain and Karthik Nandkumar. Biometric authentication: System security and user privacy.
Computer, 45 (11):87 – 92, 11 2012.

[14] Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy, and David J. Wu.
Function-hiding inner product encryption is practical. Cryptology ePrint Archive, Paper 2016/440,
2016. https://eprint.iacr.org/2016/440.

[15] Seunghwan Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vcnn: Verifiable convolutional neural
network. IACR Cryptol. ePrint Arch., 2020:584, 2020.

[16] Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkcnn: Zero knowledge proofs for convolutional neural
network predictions and accuracy. Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, 2021.

[17] Dhananjay Nigam, Shilp Patel, P. M. Durai Raj Vincent, Kathivaran Srinivasan, and Sinouvassane
ArunMozhi. Biometric authentication for intelligent and privacy-preserving healthcare systems.
Journal of Healthcare Engineering, 2022:1 – 15, 03 2022.

[18] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[19] Ewa Syta, Iulia Tamas, Dylan Visher, David Wolinsky, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ismail Khoffi, and Bryan Ford. Keeping authorities ”honest or bust” with decentralized
witness cosigning. 2016 IEEE Symposium on Security and Privacy (SP), pages 526–545, 2016.

[20] Kai Zhou and Jian Ren. Passbio: Privacy-preserving user-centric biometric authentication. IEEE
Transactions on Information Forensics and Security, 13(12):3050–3063, 2018.

20

https://eprint.iacr.org/2016/440

	Introduction
	Our Contribution

	Related Work
	Cryptographic preliminaries
	Lattices
	BFV scheme
	Set-up parameters
	Key generation
	Encryption
	Decryption

	Inner product extraction
	Collective Authority
	Shamir's Secret Sharing

	Protocols
	Setup
	Collective Key-Generation Process
	Verification of Key Generation:

	Encoding and Encryption
	Sub-share and Master share generation
	Verification of sub-shares

	Decentralized Decryption using Master shares
	Verification of Decentralized Decryption

	Security Analysis
	Security Analysis of Verification

	Implementation
	Parameter Generation
	Complexity analysis
	Execution time

	Conclusion

