
Stronger Security and Generic Constructions for

Adaptor Signatures

Wei Dai∗1, Tatsuaki Okamoto∗2, and Go Yamamoto3

1Bain Capital Crypto
2NTT

3NTT Research

October 23, 2022

Abstract

Adaptor signatures have seen wide applications in layer-2 and peer-to-peer blockchain ap-
plications such as atomic swaps and payment channels. We first identify two shortcomings of
previous literature on adaptor signatures. (1) Current aim of “script-less” adaptor signatures
restricts instantiability, limiting designs based on BLS or current NIST PQC candidates. (2) We
identify gaps in current formulations of security. In particular, we show that current notions do
not rule out a class of insecure schemes. Moreover, a natural property concerning the on-chain
unlinkability of adaptor signatures has not been formalized. We then address these shortcomings
by providing new and stronger security notions, as well as new generic constructions from any
signature scheme and hard relation. On definitions:

1. We develop security notions that strictly imply previous notions.

2. We formalize the notion of unlinkability for adaptor signatures.

3. We give modular proof frameworks that facilitate simpler proofs.

On constructions:

1. We give a generic construction of adaptor signature from any signature scheme and any
hard relation, showing that theoretically, (linkable) adaptor signatures can be constructed
from any one-way function.

2. We also give an unlinkable adaptor signature construction from any signature scheme and
any strongly random-self reducible relation, which we show instantiations of using DL,
RSA, and LWE.

∗Work done while at NTT Research.

1

Contents

1 Introduction 3
1.1 Background and Problems . 3
1.2 Our contributions . 4

2 Preliminary 5

3 Definitions and Relations 6
3.1 Relations with previous notions . 11
3.2 Modular proofs from simple notions . 15

4 Generic Constructions 20

References 27

2

1 Introduction

1.1 Background and Problems

The invention of Bitcoin has ignited a vast amount of research in the area of distributed ledger
technologies in the past decade. Scalability and interoperability are two crucial challenges for the
mass adoption of blockchain technology. One fruitful direction towards solving these challenges is
the study of layer-2 and peer-to-peer (P2P) protocols. For example, atomic swaps allow users to
swap asset across different chains without a trusted third party, payment channels allow a group
of users to conduct many off-chain payments while only posting a small number of transactions
to the blockchain, while payment channel networks (PCNs) generalize payment channels to enable
large-scale P2P payments. One important functionality underlying these applications is that of
atomicity. Roughly, atomicity guarantees that a set of transactions should either all be posted
(to their respective ledgers) or none are. We briefly review the two currently known techniques to
achieve atomicity.

Atomicity in blockchains: scripting vs. adaptor signatures. One seminal technique put
forth by the work of the Bitcoin Lightning Network is the so-called “Hash Time Lock Contracts”
(HTLC) [20]. Roughly, it is a Bitcoin spending script that, in addition to verification of a signature,
also checks the release of a hash pre-image. Atomicity for a set of transactions is achieved by
requiring the release of the same pre-image. Hence, if one transaction is processed, then the same
pre-image can be used in other transactions. Such techniques are used to build applications such
as atomic swaps, payment channels, and payment channel networks.

Aiming to eliminate the use of special scripts for the above applications, Poelstra proposed a
technique called “adaptor signatures” [19, 18], which replaces the role of “hash-locks”. Roughly,
an adaptor signature for some underlying signature scheme achieves the following: If Alice gives
to Bob a “pre-signature” σ̂ on some message m and instance Y , then any signature on message
m, that is valid against public key of Alice, given by Bob will allow Alice to learn the witness y
for instance Y . Hence, adaptor signature is a “script-less” hash-lock, in the sense that the release
of the signature by Bob also releases the witness to Alice. Following the work of Poelstra, there
have been numerous work proposing various forms of adaptor signatures [2, 14, 8, 23] and applying
them in applications to payment channels [14, 1].

Do we need script-less adaptor signatures? It is understood [19, 18, 7] that eliminating
the need for scripts allows “applications” to blockchains that do not support it. Indeed, adaptor
signatures allow atomic swap between say Bitcoin and Monero [10]. However, we point out that it is
not clear if constructions of more complex applications, e.g. payment channels, can be realized for
script-less blockchains such as Monero. Indeed, currently known techniques for payment channels
crucially rely on the use of scripts [14, 2, 1]. Hence, we reconsider the requirement of “script-less”—
we consider adaptor signatures whose verification requires minimal additions to the underlying
signature supported by the blockchain. This leads to the first shortcoming of the current approach.

Problem 1: Restricted design space and limited compatibility with post-quantum
signature candidates. Previous works on adaptor signatures have one common theme—the
adaptor signature scheme must work with a known underlying signature scheme, that is supported
directly by the blockchain, e.g. ECDSA [13] and Schnorr [22]. This is due to the desire to eliminate
the use of more complex spending scripts such as HTLC. However, one significant downside to such
an approach is that adaptor signatures are not possible for all signature schemes. Indeed, it is
known [7] that adaptor signature schemes are impossible for unique signatures such as BLS [5].

3

The problem of aiming for “script-less” adaptor signatures is even more pronounced when con-
sidering post-quantum (PQ) adaptor signatures. Neither of the two currently known post-quantum
constructions, i.e. LAS [8] (based on LWE), and IAS [23] (based on isogenies), are compatible with
the NIST PQC Round 3 PQ signature candidates [15]. The underlying signature scheme of LAS is a
(strict) variant of Dilithium [6]. The underlying signature scheme of IAS is CSI-FiSh [4], which was
proposed after the NIST PQC submission deadline. This means that even if the community arrives
at a consensus on PQ standard signatures, further standardization and selection efforts might be
required for extensions to adaptor signatures.

Prior works also leave open some natural theoretical questions, which we raise and answer in our
work: What are the minimal assumptions required to construct adaptor signatures? In particular,
are adaptor signatures in Minicrypt (i.e. can be constructed from one-way functions)?

Problem 2: Definitional gaps. The security definition for adaptor signatures, first proposed
by [2], is later adopted by all subsequent follow-up works [8, 23, 1, 7]. However, there is a serious
gap in this security definition. In particular, we demonstrate that such notions do not guarantee
security against multiple queries to the pre-signature oracle with the same message and instance
pair (m,Y). Moreover, we show that such gap is not just theoretical—we give a counterexample
scheme that is secure against previous notions but renders many applications insecure if they are
used in practice. The root cause of this gap is the weak forms of attacks considered. Specifically,
the security game (for notions called aEUF-CMA and aWitExt) only allows a single challenge query
to pre-sign, and hence does not rule out attacks that access pre-sign more than once.1 Secondly,
previous definitions fail to capture a natural property of adaptor signature schemes—on-chain
unlinkability. For example, it is understood that atomic swaps based on Schnorr signatures give
more privacy guarantees than HTLC-based solutions. Indeed, we show that such a property does
not follow from prior formalization.

1.2 Our contributions

Our work addresses the problems outlined above. First, we give stronger definitions for adaptor
signatures, as well as new definitions of unlinkability. We also give a modular proof framework
to facilitate simpler proofs. Second, we give generic constructions of adaptor signatures from any
secure signature scheme and any hard relation. The construction is unlinkable if the relation is
assumed to be strongly random-self-reducible (SRSR). Our constructions are compatible with any
of the current NIST PQC candidates. Answering the theoretical questions, we show (linkable)
adaptor signatures can be constructed from one-way functions, and unlinkability can be achieved
assuming additionally the existence of SRSR relations.

New security notions and modular proof framework. A significant portion of our technical
contribution is regarding the security definition of adaptor signature. First, we close the definitional
gap by giving two security notions, called (strong) full extractability, abbreviated as (S)FExt, that
exposes rich sets of attack interfaces. We show that full extractability strictly implies previous
notions. Next, we formalize the notion of unlinkability for adaptor signatures. Lastly, we present
a modular proof framework, allowing the security of adaptor signatures to be proved against much
simpler notions than full extractability, which we call simple and unique extractability.

Generic construction and unifying perspective. We revisit the main design constraint so
far considered for adaptor signatures, namely that they should be “script-less scripts.” We allow

1We remark that this is not a weakness of previous constructions, but rather a gap in the formal security guarantees
and the security is expected for applications.

4

the use of minimal scripts and define “augmented” signature scheme SigR, which is defined against
any signature Sig and any relation R. Augmented scheme SigR additionally verifies the release of
a witness alongside a valid signature. We then give an adaptor signature scheme GAS1 for SigR
and prove it secure (Theorem 4.1). We remark that adaptor signature GAS1 is generic in the sense
that it is constructed from any signature scheme and any hard relation. However, we remark that
implementing augmented signature schemes for existing blockchains such as Bitcoin amounts to
using scripts. Our work can be seen as a formalization of HTLCs as adaptor signatures.

Achieving on-chain unlinkability. We formally define the notion of unlinkability, which has
not been formally studied previously. Unlinkability asks adapted signatures to be indistinguishable
from standard ones, even if one knows the instance and witness pair used to derive the adapted
signature. We show how to add unlinkability to GAS1, assuming that relation R is strongly random-
self-reducible (SRSR), obtaining a new construction which we name GAS2, whose security proofs
are given in Theorem 4.3. We show how to instantiate SRSR from standard number theoretical
problems such as DL and RSA, as well as the learning with errors problem (LWE).

Flexible instantiations and minimal assumptions. We remark that our generic constructions
can work with any signature scheme and any hard relation. In particular, our constructions can
be instantiated with any of the NIST PQC Round 3 candidate schemes. For example, we could
use Rainbow, which is NIST PQC round 3 [15] finalist based on multivariate polynomials, and
with any post-quantum-secure SRSR relation, which could be based on lattice problems. More
generally, our work shows that linkable adaptor signature is in Minicrypt (Theorem 4.2), meaning
it can be constructed assuming the existence of one-way functions (GAS1). Our construction of
GAS2 shows that the existence of strong random-self reducible relations implies the existence of
unlinkable adaptor signatures (Theorem 4.4). Moreover, we remark that the overhead of GAS1 and
GAS2 are also minimal in terms of computational overhead and signature size. GAS1 has virtually
no computational overhead and GAS2 requires re-randomization of instances from the hard relation.
An adapted signature for both schemes contains a standard signature of the underlying signature
scheme as well as an instance and witness pair for the hard relation.

2 Preliminary

We use [n] for a positive integer n to denote the set {1, . . . , n}. Let S be a finite set. We use
x ↞ S to denote sampling from set S uniformly at random and assigning the result to variable
x. “PT” denotes polynomial-time, also referred to as efficient. We use λ ∈ N to denote the
security parameter. We recall that a function f : N → R is negligible if for every c ∈ N, there
exists nc ∈ N such that |f(n)| < n−c for all n > nc. Algorithms are probabilistic unless specified
otherwise. Suppose A is an algorithm expecting oracles O1, . . ., we use x ↞ AO1,...(· · ·) to denote
an execution of algorithm A and assigning its output to variable x. We use [AO1,...(· · ·)] to denote

the set of all possible outputs of algorithm A. We use S
∪← x to denote adding an element x to

the set S. Integer variables are initialized to 0 and set variables are initialized to the empty set.
We adopt the code-based game-playing framework of [3]. A game G is usually parameterized by
some cryptographic scheme S and an adversary A. A game consists of list of named oracles. The
execution of a game is the execution of the Main procedure. Variables in game oracles are global
by default. An “Assert” statement inside an oracle call will immediately terminate the execution
of the oracle call and return False if the given expression evaluates to False. For an example of a
game, see Figure 3.

5

Relations and random self-reducibility. We recall that a relation R ⊆ {0, 1}∗ × {0, 1}∗ is an
NP relation if there exists PT algorithm R.Vf such that R.Vf(Y, y) = True if and only if (Y, y) ∈ R.
The language LR for relation R is defined as the set {Y ∈ {0, 1}∗ | ∃y ∈ {0, 1}∗ : (Y, y) ∈ R}.
A generator for R is a PT algorithm R.Gen that on input 1λ returns a pair (Y, y) ∈ R. For
any positive integer q, we define the q-one-wayness advantage of an adversary A against R to be
Advq-ow

R,A (λ) := Pr[Gq-ow
R,q,A(λ)], where the one-wayness game is given below.

Game Gq-ow
R,A (λ):

1 For i ∈ [q] do (Yi, ·) ↞ R.Gen(1λ)

2 (I, y′) ↞ A(Y1, . . . , Yq) ; Return (YI , y
′) ∈ R

Above, adversary A returns an index I ∈ {1, . . . , q} and a guess y′. We say that R is a hard relation
if for polynomial q and any PT A , Advq-ow

R,A (λ) is negligible. We define the following unique-witness

advantage of an adversary A to be the Advuwit
R,A (λ) := Pr[(Y, y) ∈ R, (Y, y′) ∈ R, y ̸= y′ | (Y, y, y′) ↞

A(1λ)].
We say that a hard relation R is random self-reducible (RSR) if there exists sets R.Rλ and

efficient deterministic algorithms R.A,R.B,R.C such that the following holds for any (Y, y) ∈
[R.Gen(1λ)] and r ↞ R.Rλ: (1) Y ′ ← R.A(Y, r) is distributed identically to R.Gen(1λ). (2) For
y′ ← R.B(y, r) it holds that (Y ′, y′) ∈ R where Y ′ = R.A(Y, r). (3) For y ← R.C(y′, r), where
y′ = R.B(y, r), it holds that (Y, y) ∈ R.

Signature schemes. A signature scheme Sig consists of PT algorithms KeyGen, Sign, and Vrf.
Via (pk, sk) ↞ KeyGen(1λ), the key generation algorithm generates a public key pk and a secret key
sk. Via σ ↞ Sign(sk,m), the signing algorithms generates a signature σ. Via b ↞ Vrf(pk,m, σ),
the verification algorithm returns a boolean value b ∈ {True,False}, indicating the validity of the
message signature pair. Consider the game Guf-cma

Sig given below.

Game Guf-cma
Sig,A (λ), Gsuf-cma

Sig,A (λ)

1 (pk, sk) ↞ KeyGen(1λ) ; (m,σ) ↞ ASign(pk) ; Assert Vrf(pk,m, σ)

2 Guf-cma
Sig,A : Return (m ̸∈ S)

3 Gsuf-cma
Sig,A : Return ((m,σ) ̸∈ U)

Sign(m):

4 σ ↞ Sign(sk,m) ; S ← S ∪ {m} ; U ← U ∪ {(m,σ)} ; Return σ

We define the (S)UF-CMA advantage of an adversaryA against Sig to beAdvuf-cma
Sig,A (λ) (Advsuf-cma

Sig,A (λ)).

We say that scheme Sig is (S)UF-CMA-secure if Advuf-cma
Sig,A (λ) (Advsuf-cma

Sig,A (λ)) is negligible for any
PT adversary A.

3 Definitions and Relations

The inception of Adaptor signatures was due to the idea of “script-less scripts” by Polstra, who
proposed ways to construct applications of atomic swaps [19] and atomic multi-hop payments [18]
without the use of special spending scripts. In a follow-up work, Malavolta el al. implicitly gave
constructions of Schnorr and ECDSA adaptor signatures in their work on anonymous multi-hop
locks for payment channel networks [14]. The notion of adaptor signature was formally defined
and studied by [2] and independently by [9]. Follow-up works have constructed two-party adaptor
signatures [7] and post-quantum adaptor signatures [8, 23], as well as building other applications

6

Pictorial depiction

Alice

Public input: pk, Y,m
Private input: sk

3 σ̂ ↞ pSign(sk,m, Y)

8 y ← Ext(σ̂, σ, Y)
9 b3 ← (Y, y) ∈ R

σ̂ -

σ�

Bob

Public input: pk, Y,m
Private input: y

4 b1 ← pVrf(pk,m, σ̂)
5 If not b1 then Abort
6 σ ← Adapt(pk, σ̂, y)
7 b2 ← Vrf(pk,m, σ)

Game Gcorrect
aSig,m(λ)

1 (pk, sk) ↞ KeyGen(1λ)

2 (Y, y) ↞ R.Gen(1λ)

3 σ̂ ↞ pSign(sk,m, Y)

4 b1 ← pVrf(pk,m, σ̂, Y)

5 If not b1 then Abort

6 σ ← Adapt(pk, σ̂, y)

7 b2 ← Vrf(pk,m, σ)

8 y ← Ext(Y, σ̂, σ)

9 b3 ← (Y, y) ∈ R

10 Return (b1 ∧ b2 ∧ b3)

Figure 1: Left: Pictorial depiction of an honest execution of adaptor signing protocol between
Alice and Bob. Alice holds the secret key sk corresponding to her public key pk. Bob holds the
witness y corresponding to his public instance Y . We assume that Alice and Bob have agreed on the
message m to be signed before the execution of the protocol. In this depiction, we have simplified
the release of σ from Bob. In practical settings, Alice could learn σ from an indirect channel, e.g.
a public ledger. We also remark that Bob does not need his private input y for lines 4 and 5, and
his private input y is only needed for line 6. Right: game defining the correctness of an adaptor
signature scheme.

on top of adaptor signatures [1]. All follow-up works follow the security definitions of [2]. Our
definitions align with that of [2] in terms of syntax, correctness, and basic security (called pre-
signature adaptability). Our framework deviates from and significantly improves upon the main
security definitions of [2].

Syntax and correctness. Let Sig = (KeyGen,Sign,Vrf) be a signature scheme. Let R be a
hard relation with generator Gen. An adaptor signature scheme aSig for signature scheme Sig
and relation R specifies (probabilistic) algorithm pSign, and deterministic algorithms pVrf, Adapt,
and Ext. We assume that algorithms of Sig, i.e. KeyGen, Sign,Vrf, are additionally defined to be
algorithms of aSig. Let (pk, sk) ∈ [Sig.KeyGen(1λ)] and (Y, y) ∈ [Gen(1λ)]. The adaptor signature
algorithms behave as follows.

• Via σ̂ ↞ pSign(sk,m, Y) the pre-sign algorithm generates a pre-signature.

• Via b← pVrf(pk,m, σ̂, Y), the pre-signature verification returns a boolean.

• Via σ ← Adapt(pk, σ̂, y), the adapt algorithm returns a signature σ.

• Via y ← Ext(σ, σ̂, Y), the extract algorithm extracts a witness y.

To introduce correctness, let us first consider an example of honest execution of adaptor signature
between two parties Alice and Bob. Consider the protocol given in Figure 1. In typical usage of
adaptor signatures, algorithms pSign and Ext are executed by some party (Alice) holding sk, and
pVrf and Adapt are executed by a party (Bob) holding secret witness y. We note that Alice and
Bob can execute the protocol up to step 5 even if Bob does not know secret witness y; on the
other hand, execution of steps 6-9 requires Bob’s knowledge of the witness y. We say that aSig
is correctness if for all message m, Pr[Gcorrect

aSig,m(λ)] = 1. We remark that inputs to extraction are
all public, meaning that any external observer can extract out a witness y. This is an intended
property of adaptor signatures which allows Alice to delegate witness extraction to third parties.

7

Notion(s)
Secret key holder Witness holder Observer

Alice Bob Carol

Correctness Honest Honest -

Adaptability Malicious Honest -

Extractability Honest Malicious -

Unlink (new) Honest Honest Malicious

Relations among

extractability notions

FExt

SFExt

aEUF-CMA
+

aWitExt[2]
UF-CMA

SUF-CMA

Ext+OW

+uExt

//

Figure 2: Top: Guide to correctness and security notions. Bottom: Relations among security
notions for the secret-key holder (Alice). An arrow A → B means that if an adaptor signature
scheme is A-secure, then it is B-secure. Additional assumptions are marked on top of arrows. All
implications are tight, meaning reductions preserve running time and success advantage up to small
additive constants.

Adaptor signatures with canonical signing. Any adaptor signature scheme aSig gives an
alternative way to generating signatures via pSign and Adapt. Specifically, we consider the following
signing algorithm.

Algorithm Sign′(m)

1 (Y, y) ↞ R.Gen(1λ) ; σ̂ ↞ pSign(sk,m, Y) ; Return σ ← Adapt(pk, σ̂, y)

We say that an adaptor signature scheme has canonical signing if the above signing algorithm gives
signatures that are identically distributed to those given by Sign for any secret-key sk and message
m. Any adaptor signature scheme can be turned into a canonical one by simply replacing the
signing algorithm with the one defined above. All schemes considered in this work are canonical
without modifications.

Security of Bob: Adaptability. The first security notion we introduce is called adaptability.
Intuitively, it guarantees that if Bob is convinced of the validity of the pre-signature σ̂ and knows a
corresponding witness y, then Bob can generate a valid signature σ. More specifically, we ask that
for any pk, m, and σ̂, if (Y, y) ∈ R and pVrf(pk,m, σ̂, Y) returns true, it must be that Adapt(pk, σ, y)
returns a valid signature σ on message m wrt to public key pk. Referring back to Figure 1, pre-
signature adaptability guarantees the safety of Bob—he can always turn a valid pre-signature into
a signature if he learns a corresponding witness. Formally, consider the following game.

Game Gadapt
aSig,A(λ)

1 (pk, sk) ↞ KeyGen(1λ) ; (m, σ̂, (Y, y)) ↞ A(pk)
2 Assert ((Y, y) ∈ R ∧ pVrf(pk,m, σ̂, Y))

3 Return Vrf(pk,m,Adapt(pk, σ̂, y))

8

Game Gfext
aSig,A(λ), G

sfext
aSig,A(λ)

1 (pk, sk) ↞ KeyGen(1λ)

2 (m∗, σ∗) ↞ ANewY,Sign,pSign(pk)

3 Assert Vrf(pk,m∗, σ∗) // Forgery must be valid

4 Gfext
aSig,A: Assert (m∗ ̸∈ S)

5 Gsfext
aSig,A: Assert ((m∗, σ∗) ̸∈ U)

6 Ret
(
∀(Y, σ̂) ∈ T [m∗] st Y ̸∈ C // All adversarial Y, σ̂
: (Y,Ext(Y, σ̂, σ∗)) ̸∈ R

)
// Extraction fails

NewY:

7 (Y, ·) ↞ R.Gen(1λ) ; C
∪← Y ; Return Y

Sign(m):

8 σ ↞ Sign(sk,m)

9 S
∪← m

10 U
∪← (m,σ)

11 Return σ

pSign(m,Y):

12 σ̂ ↞ pSign(sk,m, Y)

13 T [m]
∪← (Y, σ̂)

14 Return σ̂

Figure 3: Games defining (strong) full extractability notions.

We say that aSig satisfies pre-signature adaptability if 1 − Pr[Gadapt
aSig,A(λ)] is negligible for all PT

adversary A. We say that aSig has perfect pre-signature adaptability if for all adversary A,
Pr[Gadapt

aSig,A(λ)] = 1. Our definition of pre-signature adaptability aligns with that of [2].

Security of Alice: Full Extractability (FExt). The most involved part of the security defini-
tion is for the secret-key holder of the signature scheme (Alice). This is where previous definitions
fall short. We give a unified definition of security for the safety of the secret-key holder. Before
we give the formal definition, we give a high-level description of the available attack surfaces. A
secret-key holder, Alice, could potentially expose the following interfaces.

• Sign(sk,m) for adversarially chosen m. Exposing such signing oracle models the applications
in which honestly generated signatures of Alice are released. Note that we cannot prevent
previous honestly generated signatures from being valid. This is similar to the signing oracle
that is in UF-CMA and SUF-CMA notions. In fact, we will consider two variants of security
for Alice as well.

• pSign(sk,m, Y) for adversarially chosen m and instance Y . This models all interactions that
Alice could have with external parties where Alice gives out pre-signatures. Each query
generates a tuple (m,Y, σ̂), and we store them in a table indexed by message m, i.e. each
query adds the pair (Y, σ̂) to the set T [m], which is initialized to the empty set.

• Forgery guarantee: For Alice, after given out many signatures and pre-signatures, the follow-
ing guarantee is desired: if some forgery (m∗, σ∗) is given by an adversary, then one of the
following must hold: (1) (m∗, σ∗) must have come from a signing query (2) There must be a
corresponding tuple (Y, σ̂) in table T [m] such that σ∗ gives a valid extraction, i.e. Ext(Y, σ̂, σ∗)
gives some y such that (Y, y) ∈ R.

Additionally, in the above scenario where Bob (the adversary) returns a signature that extracts,
we would like to additionally restrict the instances with respect to which extraction could happen.
Specifically, we would like to separate instances given to pSign into two categories: (1) those for
which Bob knows a witness and (2) those for which Bob does not know a witness. This is to
ensure that even if Bob learns a pre-signature on some instance Y for which it does not know the
witness, it cannot adapt it into a valid signature. This is achieved in the formal security notion by
introducing an oracle NewY that samples honest instances for Bob.

To summarize, extractability guarantees that if Alice gives out signatures and pre-signatures,
then the only forgery that some adversary Bob can give is (1) those already given by Alice as

9

signatures (2) some forgery that leads to a valid extraction of a witness. Formally, consider the
games Gfext

aSig,A and Gsfext
aSig,A given in Figure 3. In either game, the adversary is given some honestly

sampled public key pk and has access to oracles NewY,Sign, pSign (line 2). Each query to Sign
is recorded as the allowed forgery budget (set S for the normal case and U for the strong case).
Each query m,Y to pSign derives some σ̂ (line 15) and these values are recorded in table T [m]
(line 14). In the end, to win the game, the adversary needs to produce a valid forgery (line 2-3)
which is fresh (line 4 or 5) and does not produce any valid extraction (line 6) against instances
chosen by Bob (i.e. excluding those Y generated by NewY). Note that the full extractability game
only requires the forgery to be on a fresh message (line 4), and the strong full extractability game
requires the entire forgery to be fresh (line 5). This differentiation is consistent with the difference
between UF-CMA and SUF-CMA security of signatures. We define the (S)FExt advantage of an
adversary A to be Advfext

aSig,A(λ) (Advsfext
aSig,A(λ)), and we say that scheme aSig is (S)FExt-secure if

the corresponding advantage function if negligible for efficient adversaries.

Intuitively, if messages to be signed and pre-signed has high entropy and do not repeat, then it
suffices to only assume FExt. On the other hand, if applications expect messages to repeat, then
it is crucial to additionally aim for SFExt.

Strict implications to notions given by [2]. We show that FExt implies previous notions
of unforgeability and extractability (Theorem 3.1), formally aEUF-CMA and aWitExt as defined
in [2]. Their notions have since been adopted in following works [1, 7, 8, 23]. Roughly, their
security notion guarantees “unforgeability” and “extractability” against a single challenge pre-sign
query. Unlike our full extractability notion, their notions specify an explicit phase for the challenge
message selection and forgery generation. This results in the adversary only learning exactly one
pre-signature σ̂∗ = pSign(sk,m∗, Y ∗) on challenge message m∗ and instance Y ∗. It is not hard
to see that our notion of FExt implies aEUF-CMA and aWitExt. On the other hand, we give a
counterexample scheme to show that such implication is strict (Theorem 3.2), meaning there are
schemes which are aEUF-CMA- and aWitExt-secure that are not FExt-secure. We give a sketch
of the counterexample below and give the full analysis in Section 3.1.

Counterexample. We will modify a secure (in the sense of aEUF-CMA and aWitExt) adaptor
signature scheme aSig so that pSign leaks an additional signature on message m if and only if pSign
is called with the same message m and instance Y more than once. In more detail, pSign will do
the following: upon a query pSign(sk,m, Y), we first compute a pre-signature σ̂ exactly as in aSig.
Additional to σ̂, pSign will return some string Cb for a random bit b where (1) C0 is a random
encryption pad and (2) C1 = C0 ⊕ σ is a one-time pad encryption of a signature σ = Sign(sk,m; r)
under randomness r. To make these values consistent across different runs of pSign, we derive values
of (C0, r) via a PRF F (with secret key sk) applied to the input (m,Y), i.e. (C0, r)← F(sk, (m,Y)).
Hence, any single call to pSign(m,Y) does not reveal any information. Indeed, We will show that
the resulting scheme is secure in the sense of aEUF-CMA and aWitExt. However, even two calls
pSign(m,Y) reveals a fresh signature with half probability, hence breaking FExt security.

Our counterexample scheme demonstrates that security guaranteed by aEUF-CMA and aWi-
tExt is weaker than expected for applications where many protocols might be executed concurrently
since both notions only guarantee security against a single challenge instance. Moreover, aEUF-
CMA is also a selective notion, in that the honest instance Y1 is not known to the adversary until
after the adversary selects a challenge message m∗. This further weakens the security guaranteed.
In contrast, our security notion FE gives the challenge instance Y1 to the adversary and allows any
number of challenge queries to pSign.

10

Modular proofs from simpler notions. Full extractability and strong full extractability are
fairly complex notions, where the adversary is given many attack interfaces. To facilitate simpler
proofs and better intuitive understanding, we give a framework in Section 3.2 for proving FExt
and SFExt security. In particular, we show that proofs can be modularized if a simplified notion
called simple extractability is achieved (Theorem 3.3). Roughly, simple extractability removes the
interfaces of NewY and Sign. Furthermore, we show that if the adaptor signature scheme is also
uniquely extractable then it also satisfies strong full extractability (Theorem 3.4). Roughly, unique
extractability says that with access to an oracle pSign, an adversary cannot find two valid signatures
that both extracts.

New privacy notion: unlinkability. Unlinkability requires adapted signatures, using pSign and
Adapt, to be indistinguishable from honestly generated signatures from Sign, even with adversarial
access to pre-signatures and signatures. Formally, consider the following game Gunlink

aSig,A.

Game Gunlink
aSig,A(λ)

1 b ↞ {0, 1}
2 (pk, sk) ↞ KeyGen(1λ)

3 b′ ↞ ASignChl,Sign,pSign(pk)

4 Return (b = b′)

SignChl(m, (Y, y)):

5 Assert ((Y, y) ∈ R)

6 σ̂ ↞ pSign(sk,m, Y)

7 σ0 ↞ Adapt(pk, σ̂, y)

8 σ1 ↞ Sign(sk,m)

9 Return σb

Sign(m):

10 σ ↞ Sign(sk,m)

11 Return σ

pSign(m,Y):

12 σ̂ ↞ pSign(sk,m, Y)

13 Return σ̂

We define the unlink-advantage of an adversary A against adaptor signature scheme aSig to be
Advunlink

aSig,A(λ) = 2Pr[Gunlink
aSig,A(λ)] − 1. We say that scheme aSig is (1) unlinkable if Advunlink

aSig,A(λ)
is negligible for efficient adversaries (2) perfectly unlinkable if the unlink advantage is 0 for any
adversary.

We briefly explain how unlinkability guarantees on-chain privacy for the application of atomic
swaps. In atomic swaps, Alice and Bob aim to atomically post signature σA (for some message mA)
and σB (for some message mB) to a public ledger. To do this, Bob would first generate a pair (Y, y)
and gives Alice his pre-signature σ̂B ↞ pSign(skB,mB, Y). Alice will verify the validity of such pre-
signature before giving her pre-signature σ̂A ↞ pSign(skA,mA, Y) to Bob. Now, Bob can adapt the
pre-signature of Alice to a valid signature, via σA ← Adapt(pkA, σ̂A, y), and post to the ledger. But
if Bob does so, then Alice can extract witness y via y ← Ext(Y, σ̂A, σA) and adapt the pre-signature
of Bob to a valid signature using witness y. Unlinkability of the adaptor signature scheme ensures
that the adapted signatures σA and σB to be indistinguishable from honestly generated signatures.
Hence, an outside observer cannot deduce that σA and σB are “linked.”

3.1 Relations with previous notions
Restating aEUF-CMA and aWitExt notions of [2]. Their security notions are defined as
games where the adversary is run in two stages. We note that it is not clear (in their pseudocode)
if the first and second stage of the adversaries are allowed to share any state. Hence, we take the
stronger interpretation that implicit state-sharing is allowed. To keep the presentation consistent,
we slightly rewrite their security games (while preserving the semantics, assuming the state of first
stage adversary is passed to the second stage) so that there is only a single stage. The functionality
of the two stages is instead realized via a challenge oracle that can only be called once2. Formally,
we introduce the notions of [2] by considering games GaEUFCMA and GaWitExt given in Figure 4.

2One can think of the “first stage” as everything leading up to the challenge oracle call and the “second stage”
being everything following the challenge oracle call

11

Game GaEUFCMA
aSig,A (λ)

1 (pk, sk) ↞ KeyGen(1λ)

2 (Y ∗, y∗) ↞ Gen(1λ)

3 σ∗ ↞ ASign,pSign,pSignChl(pk)

4 Return (Vrf(pk,m∗, σ∗) ∧ m∗ ̸∈ S)

pSignChl(m∗): // Exactly once
5 σ̂ ↞ pSign(sk,m, Y ∗) ; Return (σ̂, Y ∗)

Sign(m):

6 S ← S ∪ {m}
7 Return σ ↞ Sign(sk,m)

pSign(m,Y):

8 S ← S ∪ {m}
9 Return σ̂ ↞ pSign(sk,m, Y)

Game GaWitExt
aSig,A (λ)

1 (pk, sk) ↞ KeyGen(1λ)

2 σ∗ ↞ ASign,pSign,pSignChl(pk)

3 Assert (Vrf(pk,m∗, σ∗) ∧ m∗ ̸∈ S)

4 Return ((Y ∗,Ext(Y ∗, σ̂∗, σ∗)) ̸∈ R)

pSignChl(m∗, Y ∗): // Exactly once
5 Return σ̂∗ ↞ pSign(sk,m, Y ∗)

Sign(m):

6 S ← S ∪ {m}
7 Return σ ↞ Sign(sk,m)

pSign(m,Y):

8 S ← S ∪ {m}
9 Return σ̂ ↞ pSign(sk,m, Y)

Figure 4: Games defining aEUF-CMA and aWitExt notions [2] for adaptor signature scheme aSig.

Full extractability implies previous notions. We first show that our notion of full extractabil-
ity implies both aEUF-CMA and aWitExt. Specifically, we show that given any adversary attacking
aEUF-CMA or aWitExt, then we can give an adversary attacking FExt. Notice that an aEUF-
CMA adversary or aWitExt adversary specifies a message m∗ and eventually returns σ∗. We will
construct a FExt adversary that (1) forwards all Sign and pSign queries (2) simulates pSignChl
oracle with pSign while recording m∗ and (3) returns exactly m∗, σ∗ at the end. The proof below
checks that these adversaries win the FExt game whenever the starting adversary wins aEUF-CMA
game or aWitExt game.

Theorem 3.1 (FExt =⇒ aEUF-CMA + aWitExt) Let AaEUFCMA and AaWitExt be aEUF-
CMA and aWitExt adversaries. The proof constructs adversaries Afext,1 and Afext,2, which have
the same running time as the given adversaries, such that

Pr[GaEUFCMA
aSig,AaEUFCMA

(λ)] = Advfext
aSig,Afext,1

(λ) , (1)

Pr[GaWitExt
aSig,AaWitExt

(λ)] = Advfext
aSig,Afext,2

(λ) . (2)

Proof of Theorem 3.1: Consider the following adversaries Afext,1 and Afext,2.

Adversary ANewY,Sign,pSign
fext,1 (pk):

1 σ∗ ↞ ASign,pSign,pSignChl
aEUFCMA (pk)

2 Return (m∗, σ∗)

pSignChl(m):

3 m∗ ← m ; Y ∗ ← NewY()

4 Return σ̂∗ ↞ pSign(m∗, Y ∗)

Adversary ANewY,Sign,pSign
fext,2 (pk):

1 σ∗ ↞ ASign,pSign,pSignChl
aWitExt (pk)

2 Return (m∗, σ∗)

pSignChl(m,Y):

3 m∗ ← m ; Y ∗ ← Y

4 Return σ̂∗ ↞ pSign(m∗, Y ∗)

We check that the given adversaries wins if the given reduction adversary does. For aEUF-CMA,
AaEUFCMA wins if m∗ has not been queried previously to either Sign or pSign oracles of game
GaEUFCMA. Furthermore, for the single pSignChl query that AaEUFCMA makes, our reduction

12

adversary Afext,1 uses an instance Y ∗ from NewY to derive a presignature σ∗. Therefore, for Afext,1

the table at m∗ is a singleton set, i.e. T [m∗] = {(Y ∗, σ̂∗)} for which Y ∗ is in the challenge set of
instances C. Hence, our adversary Afext,1 wins as long as signature σ∗ is valid on m∗, which is
exactly the condition that AaEUFCMA needs to satisfy to win as well. This justifies (1).

A similar analysis holds for AaWitExt, namely that T [m∗] = {(Y ∗, σ̂∗)} at the end of its execution.
Notice that AaWitExt wins if Ext(Y

∗, σ̂∗, σ∗) is not a valid extraction, which is exactly what Afext,2

needs to satisfy as well to win. This justifies (2).

Insufficiency of previous notions. To show that previous notions are insufficient, we give a
scheme that is secure against previous notions, namely aEUF-CMA and aWitExt, but not FExt-
secure. The informal intuition on our scheme is as follows. We will modify a secure adaptor
signature scheme aSig so that pSign leaks (depending on a random coin flip) either (1) a one-time
encryption pad C0 or (2) a one-time encryption C1 = C0⊕ σ, where σ is a signature on m. We use
a PRF to derive C0 and the signing randomness for σ so that they are consistent across different
runs of pSign.

Formally, let aSig be any FE-secure adaptor signature for underlying signature scheme Sig and
relation R. Suppose that Sig.KeyGen(1λ) returns secret keys that are uniformly distributed over
some set Sλ. Let Lλ = {Y | ∃y : (Y, y) ∈ [Gen(1λ)]}. Let (pk, ·) ∈ [Sig.KeyGen(1λ)]. Suppose
Sig.Sign(pk, ·) uses random coins of length at most rλ and that [Sig.Sign(pk, ·)] ⊆ {0, 1}nλ . Let F
be a pseudo-random function of the form Fλ : Sλ × ({0, 1}∗ × Lλ)→ {0, 1}nλ × {0, 1}rλ , where Sλ

is the key space and {0, 1}∗ ×Lλ is the input space. Consider adaptor signature scheme AS0 given
below.

Scheme AS0

pSign(sk,m, Y):

1 b ↞ {0, 1}
2 σ̂′ ↞ aSig.pSign(sk,m, Y)

3 (C0, r)← Fsk(m,Y)

4 σ ← Sig.Sign(sk,m; r)

5 C1 ← C0 ⊕ σ

6 Return (σ̂, Cb)

pVrf(pk,m, σ̂, Y):

7 (σ̂′, C)← σ̂

8 Return aSig.pVrf(pk,m, σ̂′, Y)

Adapt(pk, σ̂, y):

9 (σ̂′, C)← σ̂

10 σ ← Adapt(pk, σ̂′, y)

11 Return σ

Ext(σ̂, σ, Y):

12 (σ̂′, C)← σ̂

13 y ← aSig.Ext(σ̂′, σ, Y)

14 Return y

We claim that AS0 satisfies aEUF-CMA and aWitExt (if aSig is FExt-secure and F is a se-
cure PRF), but AS0 is not FE-secure even if aSig is FE-secure. Intuitively, any single run of
pSign(sk,m, Y) only leaks a presignature, as the second part of the output Cb is random. However,
given any two evaluations of (σ̂i, Ci) ↞ pSign(sk,m, Y) for i ∈ {1, 2}, it holds with probability 1/2
that σ = C1 ⊕ C2 is a valid signature on m. This breaks extractability. Since in the FE game,
adversaries are allowed to query pSign any number of times for any given Y , even for the challenge
instance Y1. However, for aEUF-CMA and aWitExt, the adversary is only allowed to call pSignChl
exactly once. This means that pSignChl does not leak an extra signature and the scheme can be
shown to satisfy aEUF-CMA and aWitExt.

Theorem 3.2 (aEUF-CMA+aWitExt ≠⇒ FExt) Scheme AS0 satisfies aEUF-CMA and aW-
itExt if aSig does and F is a secure PRF. In particular, for any adversary AaEUFCMA and AaWitExt,

13

the proof gives reduction adversaries A′
aEUFCMA, A′

aWitExt, Aprf,1, and Aprf,2, all about as efficient
as the starting adversaries, such that

Pr[GaEUFCMA
AS0,AaEUFCMA

(λ)] ≤ Pr[GaEUFCMA
aSig,A′

aEUFCMA
(λ)] +Advprf

F,Aprf,1
(λ) , (3)

Pr[GaWitExt
AS0,AaWitExt

(λ)] ≤ Pr[GaWitExt
aSig,A′

aWitExt
(λ)] +Advprf

F,Aprf,2
(λ) . (4)

However, scheme AS0 is not Ext-secure even if aSig is. In particular, the proof gives efficient
adversary Aext, that makes two queries to pSign, such that

Advfext
AS0,Afext

(λ) =
1

2
. (5)

Proof of Theorem 3.2: We first show (5). Consider the following adversary

Adversary ANewY,pSign
fext (pk):

1 Y ← NewY() ; (σ̂0, D0) ↞ pSign(m,Y) ; (σ̂1, D1) ↞ pSign(m,Y)

2 Return (m,D0 ⊕D1)

Note that, by the construction of AS0.pSign, it holds with probability a half that D0⊕D1 is a valid
signature on m. Since Afext only queries pSign with a challenge Y , it wins as long as it produces a
valid signature for m. This justifies (5).

Next, we justify (3). Consider the following games. Game G0 is the aEUF-CMA game of scheme
AS0. Game G1 changes all invocations of PRF F to a truly random function. Note that the
challenge instance must be fresh for the game to return true, hence we can assume that the point
(m∗, Y ∗) has not been queried to the PRF before (line 7).

Game G0, G1

1 (pk, sk) ↞ KeyGen(1λ)

2 σ∗ ↞ ASign,pSign,pSignChl(pk)

3 Return Vrf(pk,m∗, σ∗) ∧m∗ ̸∈ S

pSignChl(m∗):

4 (Y ∗, ·) ↞ R.Gen(1λ)

5 σ̂∗ ↞ aSig.pSign(sk,m∗, Y ∗)

6 (C0, r)← F(sk, (m∗, Y ∗))

7 C0 ↞ {0, 1}|nλ|; r ← {0, 1}rλ

8 σ ← Sig.Sign(sk,m∗; r)

9 C1 ↞ C0 ⊕ σ ; b ↞ {0, 1}
10 Return ((σ̂∗, Cb), Y

∗)

Sign(m):

11 σ ↞ AS0.Sign(sk,m)

12 S ← S ∪ {m} ; Return σ

pSign(m,Y):

13 σ̂ ↞ aSig.pSign(sk,m, Y)

14 If T [(m,Y)] = ⊥ then

15 T [(m,Y)]← F(sk, (m,Y))

16 T [(m,Y)] ↞ {0, 1}nλ+rλ

17 (C0, r)← T [(m,Y)]

18 σ ← Sig.Sign(sk,m; r)

19 C1 ← C0 ⊕ σ ; b ↞ {0, 1}
20 S ← S ∪ {m} ; Return (σ̂, Cb)

It is straightforward to give a PRF-adversary whose advantage upper bounds the distance between
G0 and G1, i.e.

Pr[G0] ≤ Pr[G1] +Advprf
F,Aprf,1

(λ) . (6)

We omit the details. Finally, note that in game G1 all oracles pSignChl, Sign,pSign can now be
simulated using corresponding oracles for the underlying scheme aSig. This means that we could
construct adversary A′

aEUFCMA such that

Pr[G1] ≤ Pr[GaEUFCMA
aSig,A′

aEUFCMA
] . (7)

14

In particular, A′
aEUFCMA needs to invoke both pSign and Sign to simulate one query to pSignSim,

but the query to pSignChl that AaEUFCMA makes can be simulated with only one query to pSignChl
oracle that A′

aEUFCMA has access to. The pseudocode of A′
aEUFCMA is given below.

Adversary A′Sign,pSign,pSignChl
aEUFCMA (pk):

1 σ∗ ↞ ASign,pSignSim,pSignChlSim
fext (pk)

2 Return σ∗

pSignChlSim(m∗):

3 (Y ∗, ·) ↞ R.Gen(1λ)

4 σ̂∗ ↞ pSign(sk,m∗, Y ∗)

5 C ↞ {0, 1}nλ ; Return (σ̂∗, C)

pSignSim(m):

6 σ̂ ↞ pSign(sk,m, Y)

7 If T [(m,Y)] = ⊥ then

8 T [(m,Y)] ↞ {0, 1}nλ

9 S[(m,Y)]← σ ↞ Sign(m)

10 C0 ← T [(m,Y)]

11 C1 ← C0 ⊕ S[(m,Y)] ; b ↞ {0, 1}
12 S ← S ∪ {m} ; Return (σ̂, Cb)

This concludes the proof for (3). The proof for (4) and constructions of Aprf,2 and A′
aWitExt are

extremely similar and we omit the details here.

3.2 Modular proofs from simple notions

Full extractability and strong full extractability are fairly complex notions, where the adversary is
given many attack interfaces. To facilitate simpler proofs and better intuitive understanding, we
give a framework for proving FExt and SFExt security. In particular, we show that proofs can be
modularized if a simpler extractability notion (Ext) is achieved.

Simple Extractability (Ext). We first define simple extractability (Ext). The notion eliminates
some of the attack surfaces considered in FExt without weakening the security guaranteed. The
formal definition is given in Figure 5. The adversary is given access to a pre-signature oracle pSign
and, to win, must produce a valid signature that does not extract against any previous queries to
pSign. We show that, assuming R is a hard relation, Ext implies FExt.

Theorem 3.3 (Ext + OW =⇒ FExt) Let aSig be an adaptor signature scheme for a hard re-
lation R. Suppose it satisfies Ext then it also satisfies FExt. Formally, given any FExt-adversary
Afext, we can construct Aext and Aow such that

Advfext
aSig,Afext

(λ) ≤ Advext
aSig,Aext

(λ) +Advq-ow
R,Aow

(λ) . (8)

If Afext makes qSign and qpSign queries to Sign and pSign, respectively. Then Aext makes qSign+qpSign
queries to the pSign oracles. Furthermore, Aext and Aow are about as efficient as Afext.

We first give a high-level proof sketch here before giving the full proof. The reduction adversary
Aext will need to simulate NewY and Sign, since it only has access to a pre-signature oracle. The
adversary will simulate NewY itself and use pSign to simulate queries to Sign. The latter is possible
due to the requirement of aSig to be canonical. In particular, each query to Sign is simulated by
first sampling a fresh pair (Y, y) ∈ R and a signature is then derived using oracle pSign and Adapt
algorithm. In doing so, table T for adversary Aext becomes larger than that for Afext. However, it
is not hard to see that for the forgery message m∗, the set T [m∗] is the same for both Afext and
Aext, assuming Afext wins. This is because Afext can only win if the returned message m∗ is not in
the set S, which means that there were no previous queries of the form Sign(m∗). Finally, we need
to make sure that the forgery (m∗, σ∗) does not extract for a challenge instance Y ∈ C (those Y
that was returned by NewY). This event should not happen with high probability since we have

15

assumed that R is hard. Indeed, it is not hard to give a OW adversary whose OW-advantage can
be used to upper-bound the probability of this event.

Proof of Theorem 3.3: The proof is via a sequence of three games, which are given below.
Game G0 is Gfext

aSig,A(λ). Game G1 derives signatures using pSign and Adapt instead of Sign.

Game G0, G1, G2

1 (pk, sk) ↞ KeyGen(1λ)

2 (m∗, σ∗) ↞ ANewY,Sign,pSign(pk)

3 Assert Vrf(pk,m∗, σ∗) ∧m∗ ̸∈ S

4 b1 ←
(
∀(Y, σ̂) ∈ T [m∗] st Y ̸∈ C
: (Y,Ext(Y, σ̂, σ∗)) ̸∈ R

)
5 b2 ←

(
∀(Y, σ̂) ∈ U [m∗] st Y ̸∈ C
: (Y,Ext(Y, σ̂, σ∗)) ̸∈ R

)
6 b3 ←

(
∀(Y, σ̂) ∈ T [m∗] ∪ U [m∗] st Y ∈ C
: (Y,Ext(Y, σ̂, σ∗)) ̸∈ R

)
7 G0,G1: Return b1

8 G2: Return b1 ∧ b2

9 G3: Return b1 ∧ b2 ∧ b3

10 G4: Return b1 ∧ b2 ∧ ¬b3

NewY:

11 (Y, ·) ↞ R.Gen(1λ) ; C
∪← Y ; Return Y

Sign(m): // G0

12 σ ↞ Sign(sk,m)

13 S ← S ∪ {m} ; Return σ

Sign(m): // G1, . . . ,G4

14 (Y, y) ↞ R.Gen(1λ)

15 σ̂ ↞ pSign(sk,m, Y)

16 U [m]← U [m] ∪ {(Y, σ̂)}
17 σ ← Adapt(pk, σ̂, y)

18 S ← S ∪ {m} ; Return σ

pSign(m,Y):

19 σ̂ ↞ pSign(sk,m, Y)

20 T [m]← T [m] ∪ {(Y, σ̂)}
21 Return σ̂

Game G1 samples signatures by using the alternative signing algorithm involving pSign and Adapt
for freshly sampled pair (Y, y). Since we know that aSig is canonical, we have

Pr[G0] = Pr[G1] . (9)

Next, we would like to rewrite G2 so that contents of table U is treated in the same way as table
T . In other words, we need to make sure that the additional elements added to table T does not
change whether a forgery is valid. In particular, consider G2, where the game additionally checks
that not only the forgery σ∗ does not extract from set T [m∗], but also U [m∗]. We argue that this
change does not change the probability of the game returning true, meaning

Pr[G1] = Pr[G2] . (10)

Note that line 3 ensures that m∗ ̸∈ S. Hence, for the forgery message m∗, the set U [m∗] is the
empty set, which implies that flag b2 is trivially set to true. Moving on, we need to additionally
check if the forgery signature σ∗ can yield any valid extraction for challenge Y ∈ C. This condition
is checked in flag b3. We separate the winning condition of game G2, into two games G3 and G4,
depending on the value of b3. Clearly,

Pr[G2] = Pr[G3] + Pr[G4] . (11)

We now give adversary Aext such that

Pr[G3] ≤ Advext
aSig,Aext

(λ) . (12)

16

Game Gext
aSig,A(λ)

1 (pk, sk) ↞ KeyGen(1λ) ; (m∗, σ) ↞ ApSign(pk) ; Assert Vrf(pk,m∗, σ)

2 Return (∀(Y, σ̂) ∈ T [m∗] : (Y,Ext(Y, σ̂, σ)) ̸∈ R) // Extraction fails for all Y, σ̂

pSign(m,Y):

3 σ̂ ↞ pSign(sk,m, Y) ; T [m]
∪← (Y, σ̂) ; Return σ̂

Game Guext
aSig,A(λ)

1 (pk, sk) ↞ KeyGen(1λ) ; (m,Y, σ̂, σ, σ′) ↞ ApSign(pk)

2 Assert (σ ̸= σ′ ∧ pVrf(pk,m, σ̂, Y) ∧ Vrf(pk,m, σ) ∧ Vrf(pk,m, σ′))

3 y ← Ext(Y, σ̂, σ) ; y′ ← Ext(Y, σ̂, σ′)

4 Return ((Y, y) ∈ R ∧ (Y, y′) ∈ R) // Both extraction succeeds

pSign(m,Y):

5 Return σ̂ ↞ pSign(sk,m, Y)

Figure 5: Games defining extractability and unique extractability.

Adversary ApSign
ext (pk):

1 (m∗, σ∗) ↞ ANewY,SignSim,pSign
fext (pk)

2 Assert Vrf(pk,m∗, σ∗) ∧m∗ ̸∈ S

3 Return (m∗, σ∗)

NewY(m):

4 (Y, ·) ↞ R.Gen(1λ) ; C
∪← Y ; Return Y

SignSim(m):

5 (Y, y) ↞ R.Gen(1λ)

6 σ̂ ↞ pSign(m,Y)

7 σ ↞ Adapt(pk, σ̂, y)

8 S ← S ∪ {m}
9 Return σ

The adversary is very simple, it simulates a signing oracle SignSim for Afext and forwards other
inputs and outputs accordingly. Finally, we give adversary Aow such that

Pr[G4] ≤ Advq-ow
R,Aow

(λ) , (13)

where q is the maximum number of queries that Afext makes to oracle NewY. Consider the following
adversary Aow against q-OW.

Adversary Aow(Y1, . . . , Yq):

1 (pk, sk) ↞ KeyGen(1λ)

2 (m∗, σ∗) ↞ ANewY,SignSim,pSign
fext (pk)

3 Assert Vrf(pk,m∗, σ∗) ∧m∗ ̸∈ S

4 For ((Y, σ̂) ∈ T [m∗] st ∃I ∈ [q] : Y = YI) do

5 y ← Ext(Y, σ̂, σ∗)

6 If (Y, y) ∈ R then Return (I, y)

7 Return ⊥
NewY(m):

8 i← i+ 1; Return Yi

Sign(m):

9 (Y, y) ↞ R.Gen(1λ)

10 σ̂ ↞ pSign(sk,m, Y)

11 σ ↞ Adapt(pk, σ̂, y)

12 T [m]
∪← (Y, σ̂)

13 S ← S ∪ {m}
14 Return σ

pSign(m,Y):

15 σ̂ ↞ pSign(sk,m, Y)

16 T [m]
∪← (Y, σ̂)

17 Return σ̂

Equation (8) is obtained by combining the above inequalities.

Next, we show that if aSig is shown to satisfy Ext, then we can also show that it satisfies SFExt
security if an additional security notion, which is conceptually simple and easy to verify, is satisfied.

17

SFExt from unique extractability (uExt). Unique extractability requires that an adversary,
with access to a pre-signature oracle, cannot find (m,Y, σ̂, σ, σ′) where σ, σ′ are two distinct valid
signatures on message m that also both extracts against instance Y and pre-signature σ̂. Formally,
consider the game Guext given in Figure 5. The adversary has access to a pre-signature oracle
returning honestly generated pre-signatures. The adversary wins if it successfully finds two distinct
valid signatures σ, σ′ that both extracts. We define the uExt advantage of an adversary A to
be Advuext

aSig,A(λ). We say that aSig satisfies uExt if the advantage of any efficient adversary is
negligible. We show that if an adaptor signature for a hard relation R satisfies Ext, and uExt, then
it must also satisfy SFExt.

Theorem 3.4 (Ext + OW + uExt =⇒ SFExt) Let aSig be a canonical adaptor signature
scheme for a hard relation R. Suppose it satisfies Ext and uExt, then it also satisfies SFExt.
Formally, given any SFExt-adversary Asfext, we can construct Aow, Aext, Auext such that

Advsfext
aSig,Asfext

(λ) ≤ Advext
aSig,Aext

(λ) +Advq-ow
R,Aow

(λ) +Advuext
aSig,Auext

(λ) . (14)

If Asfext makes qSign and qpSign queries to Sign and pSign, respectively. Then Aext and Auext makes
qSign + qpSign queries to their pSign oracles. Furthermore, all adversaries are about as efficient as
Asfext.

We first give a high-level proof sketch here before giving the full proof. Similar to before, the
reduction adversary Aext will need to simulate oracles NewY and Sign, which is done exactly as in
the proof of Theorem 3.3. However, for SFExt, we can no longer assume that table T [m∗] is the
same for our reduction adversary. This is because Asfext can return a valid forgery message m∗

for which there were previous queries of the form Sign(m∗). However, since for all simulated Sign
queries, the reduction adversary Aext already knows a valid signature that extracts (the signature
that is returned at the end of the Sign oracle call), we can use the notion of unique extractability
to upper bound the probability that the forgery signature σ∗ also extracts. On the other hand, if
the forgery does not extract, then our reduction adversary Afext will win by simply forwarding the
forgery (m∗, σ∗). Finally, a reduction to one-wayness of R is done similarly as before to bound the
probability that extraction succeeds for some Y ∈ C.

In upshot, to prove FExt or SFExt, we can first show that a scheme aSig satisfies Ext, which
implies FExt security. If aSig is shown to additionally satisfy uExt, then we know that aSig is also
SFExt-secure.

Proof of Theorem 3.4: The proof is via a sequence of five games, which are given below. Game
G0 is Gsfext

aSig,A(λ). Game G1 derives signatures using pSign and Adapt instead of Sign. Game G2 to
G4 rewrites the winning conditions of game G1.

18

Game G0 – G4

1 (pk, sk) ↞ KeyGen(1λ)

2 (m∗, σ∗) ↞ ASign,pSign
fext (pk, Y1)

3 Assert ((m∗, σ∗) ̸∈ U ∧ Vrf(pk,m∗, σ∗))

4 b1 ←
(
∀(Y, σ̂) ∈ T [m∗] st Y ̸∈ C
: (Y,Ext(Y, σ̂, σ∗)) ̸∈ R

)
5 b2 ←

(
∀(Y, σ̂) ∈ V [m∗] st Y ̸∈ C
: (Y,Ext(Y, σ̂, σ∗)) ̸∈ R

)
6 b3 ←

(
∀(Y, σ̂) ∈ T [m∗] ∪ U [m∗] st Y ∈ C
: (Y,Ext(Y, σ̂, σ∗)) ̸∈ R

)
7 G0,G1: Return b1

8 G2: Return ¬b2
9 G3: Return ¬b3

10 G4: Return b1 ∧ b2 ∧ b3

NewY:

11 (Y, ·) ↞ R.Gen(1λ)

12 C
∪← Y ; Return Y

Sign(m): // G0

13 σ ↞ Sign(sk,m)

14 S ← S ∪ {m} ; Return σ

Sign(m): // G1 to G5

15 (Y, y) ↞ R.Gen(1λ)

16 σ̂ ↞ pSign(sk,m, Y)

17 V [m]← V [m] ∪ {(Y, σ̂)}
18 σ ← Adapt(pk, σ̂, y)

19 U ← U ∪ {(m,σ)}
20 Return σ

pSign(m,Y):

21 σ̂ ↞ pSign(sk,m, Y)

22 T [m]← T [m] ∪ {(Y, σ̂)}
23 Return σ̂

Game G1 samples signatures by using the alternative signing algorithm involving pSign and Adapt
for freshly sampled pair (Y, y). Since we know that aSig is canonical, we have

Pr[G0] = Pr[G1] . (15)

Next, we split winning condition of G1 into depending on bit b2 and b3, whose probability of being
false are captured as game G2 and G3. We have

Pr[G1] = Pr[b1] (16)

= Pr[b1 ∧ b2] + Pr[b1 ∧ ¬b2] (17)

≤ Pr[b1 ∧ b2] + Pr[¬b2] (18)

= Pr[b1 ∧ b2 ∧ b3] + Pr[b1 ∧ b2 ∧ ¬b3] + Pr[¬b2] (19)

≤ Pr[b1 ∧ b2 ∧ b3] + Pr[¬b3] + Pr[¬b2] (20)

= Pr[G4] + Pr[G2] + Pr[G3] . (21)

We first analyze game G2. Intuitively, if b2 is false, then there is some (Y, σ̂) ∈ V [m∗] such that
Ext(Y, σ̂, σ∗) is a valid witness for Y . In this case, we will have obtained two signatures that are
both valid and extracts, for the same pair (Y, σ̂)—one being the signature returned in Sign and the
other being σ∗. Hence, we will be able to break uExt. We give adversary Auext such that

Pr[G2] ≤ Advuext
aSig,Auext

(λ) . (22)

Adversary Auext simulates a signing oracle SignSim for Asfext and forwards other inputs and outputs
accordingly. At the end, it finds if the forgery (m∗, σ∗) extracts under a previously derived (Y, σ̂).
If it does, then it returns (m,Y, σ̂, σ∗, σ) where σ is the signature generated by SignSim for m∗

(with pre-signature σ̂).

19

Adversary ApSign
uext (pk):

1 (m∗, σ∗) ↞ ASignSim,pSign
fext (pk, Y1) ; Assert (m∗ ̸∈ S)

2 If (∃(Y, σ̂, σ) ∈ V [m∗] : (Y,Ext(Y, σ̂, σ∗)) ∈ R) then

3 Return (m,Y, σ̂, σ, σ∗)

NewY:

4 (Y, ·) ↞ R.Gen(1λ) ; C
∪← Y ; Return Y

SignSim(m):

5 (Y, y) ↞ R.Gen(1λ) ; σ̂ ↞ pSign(m,Y) ; σ ↞ Adapt(pk, σ̂, y)

6 V [m]← V [m] ∪ {(Y, σ̂, σ)} ; U ← U ∪ {(m,σ)} ; Return σ

Next, we analyze game G3. We will construct Aext and Aow such that

Pr[G3] ≤ Advq-ow
R,Aow

(λ) , (23)

where q is the maximum number of queries that Asfext makes to oracle NewY. Adversary Aow

against q-OW is given as follows.

Adversary Aow(Y1, . . . , Yq):

1 (pk, sk) ↞ KeyGen(1λ)

2 (m∗, σ∗) ↞ ANewY,Sign,pSign
fext (pk)

3 Assert Vrf(pk,m∗, σ∗) ∧m∗ ̸∈ S

4 For ((Y, σ̂) ∈ T [m∗] st ∃I ∈ [q] : Y = YI) do

5 y ← Ext(Y, σ̂, σ∗)

6 If (Y, y) ∈ R then Return (I, y)

7 Return ⊥
NewY(m):

8 i← i+ 1; Return Yi

Sign(m):

9 (Y, y) ↞ R.Gen(1λ)

10 σ̂ ↞ pSign(sk,m, Y)

11 σ ↞ Adapt(pk, σ̂, y)

12 T [m]
∪← (Y, σ̂)

13 S ← S ∪ {m}
14 Return σ

pSign(m,Y):

15 σ̂ ↞ pSign(sk,m, Y)

16 T [m]
∪← (Y, σ̂)

17 Return σ̂

Finally, we bound the probability of G4 returning true. Specifically, we construct Aext such that

Pr[G4] ≤ Advext
aSig,Aext

(λ) . (24)

Adversary Aext simulates a signing oracle SignSim for Afext and forwards other inputs and outputs
accordingly.

Adversary ApSign
ext (pk):

1 (m∗, σ∗) ↞ ANewY,SignSim,pSign
sfext (pk)

2 Assert ((m∗, σ∗) ̸∈ U)

3 Return (m∗, σ∗)

NewY(m):

4 (Y, y) ↞ R.Gen(1λ) ; C
∪← Y ; Return Y

SignSim(m):

5 (Y, y) ↞ R.Gen(1λ)

6 σ̂ ↞ pSign(m,Y)

7 σ ↞ Adapt(pk, σ̂, y)

8 U ← U ∪ {(m,σ)}
9 Return σ

Equation (14) is obtained by combining the above inequalities.

4 Generic Constructions

In this section, we give generic constructions of adaptor signatures from any signature scheme Sig
and any hard relation R. The reason we use the word “from” but not “for” is that the generated
signature σ′ is not exactly a standard signature σ for Sig. However, the verification of σ′ will require

20

Scheme
Assumptions Security

on Sig on R FExt SFExt Unlink

GAS1 UF-CMA OW ✓ × ×
GAS1 SUF-CMA OW, uWit ✓ ✓ ×
GAS2 UF-CMA OW, SRSR ✓ × ✓
GAS2 SUF-CMA OW, SRSR, uWit ✓ ✓ ✓

Figure 6: Table comparing constructions and their instantiations.

minimal modification to verification of σ, in that it only additionally perform a membership check
of relation R.

In more detail, our adaptor signature schemes generate signatures σ′ that are a combination
of a standard signature σ from Sig and a pair (Y, y) from R, i.e. σ′ = (σ, Y, y). Additionally,
the verification must perform checks of the standard signature σ as well as a membership check
that (Y, y) ∈ R. Hence, in terms of applications, our adaptor signatures can be supported by the
blockchain as only as it supports signature Sig and relation R as well as basic scripting capabilities.
For example, if Sig is taken to be ECDSA over secp256k1 and R is taken to be the relation induced
by hashing 256-bit inputs with sha256, then SigR can be realized via a Bitcoin script, which coincide
with the construction of a “hash-lock” contract. We first formalize such an “augmented” signature
scheme.

Augmented signature schemes SigR. Let Sig be any signature scheme and R be any hard
relation. Roughly, the augmented signature scheme SigR is a signature scheme whose signatures
additionally (1) attest to an instance Y alongside a message m and (2) releases a valid witness y of
instance Y . Formally, the signing and verification algorithms are given in Figure 7 (key generation
is unchanged).

Our constructions can be seen as a generalization to “hash-lock” contracts (coined and used by
the Bitcoin Lightning network [20]). We study the notion of adaptor signatures in a general setting
where there is no restriction on the underlying signatures schemes. We remark that implementing
augmented signature schemes for existing blockchains such as Bitcoin require usage of “scripts.”
We first present a construction GAS1 that achieves all security properties, but unlinkability.

Generic Adaptor Signature (GAS) 1. Let Sig be any signature scheme and any hard relation
R. Consider construction GAS1 given in Figure 7. We show that GAS1 satisfies FExt as long as Sig
is Unforgeable, and additionally SFExt if Sig is strongly unforgeable and R has unique witnesses.

Theorem 4.1 Adaptor signature scheme GAS1 satisfies correctness and pre-signature adaptability.
If Sig is UF-CMA-secure and R is one-way then GAS1 is FExt-secure. Given adversary Afext, we
can construct adversaries Auf-cma and Aow, with running times similar to that of Afext such that

Advfext
GAS1,Afext

(λ) ≤ Advuf-cma
Sig,Auf-cma

(λ) +Advq-ow
R,Aow

(λ) . (25)

Furthermore, if Sig is SUF-CMA-secure and R has unique witnesses, then GAS1 is SFExt-secure.
Formally, given adversary Asfext, we can construct adversaries Asuf-cma, Aow, and Auwit with run-
ning times similar to that of Asfext such that

Advsfext
GAS1,Asfext

(λ) ≤ 2Advsuf-cma
Sig,Auf-cma

(λ) +Advq-ow
R,Aow

(λ) +Advuwit
R,Auwit

. (26)

We give a rough proof intuition first before giving the full proof. Correctness and adaptability
are straightforward to check. We rely on Theorem 3.3 and Theorem 3.4 so that we only need to

21

Scheme SigR

Sign(sk,m):

1 (Y, y) ↞ R.Gen(1λ)

2 σ ↞ Sig.Sign(sk, (m,Y))

3 Return (σ, Y, y)

Vrf(pk,m, σ′):

4 (σ, Y, y)← σ′

5 Return (Sig.Vrf(pk, (m,Y), σ) ∧ (Y, y) ∈ R)

Scheme GAS1

pSign(sk,m, Y):

1 σ′ ↞ Sig.Sign(sk, (m,Y))

2 Return (σ′, Y)

pVrf(pk,m, σ̂, Y):

3 Return Sig.Vrf(pk, (m,Y), σ̂)

Adapt(pk, σ̂, y):

4 (σ′, Y)← σ̂ ; σ ← (σ′, Y, y)

5 Return σ

Ext(σ̂, σ, Y):

6 (σ′, Y, y)← σ

7 Return y

Scheme GAS2

pSign(sk,m, Y):

1 r ↞ R.Rλ ; Y ′ ← R.A(Y, r)

2 σ′ ↞ Sig.Sign(sk, (m,Y ′))

3 Return (σ′, Y, r)

pVrf(pk,m, σ̂, Y):

4 (σ′, ·, r)← σ̂ ; Y ′ ← R.A(Y, r)

5 Return Sig.Vrf(pk, (m,Y ′), σ′)

Adapt(pk, σ̂, y):

6 (σ′, Y, r)← σ̂ ; y′ ← R.B(y, r)

7 Y ′ ← R.A(Y, r)

8 Return (σ′, Y ′, y′)

Ext(σ̂, σ, Y):

9 (σ′, Y, r)← σ̂ ; (σ′, Y ′, y′)← σ

10 y ← R.C(y′, r)

11 Return y

Figure 7: Top: Augmented signature scheme SigR for any signature scheme Sig and relation R.
Bottom: adaptor signature schemes GAS1 and GAS2 for signature scheme SigR.

verify Ext- and uExt-security of GAS1. It is not hard to verify that extractability follows from the
unforgeability of Sig. For unique extractability, it is not hard to see that we at least need to assume
strong extractability of Sig and that R has unique witnesses, since otherwise SigR is not strongly
unforgeable. It turns out that these assumptions are also sufficient to show unique extractability.

Proof of Theorem 4.1: First, correctness holds by construction. Next, we check adaptabil-
ity. Let (pk, sk) ∈ [KeyGen(1λ)] and m ∈ {0, 1}∗. Let σ̂, (Y, y) be such that (Y, y) ∈ R and
pVrf(pk,m, σ̂, Y) = True. This means that σ̂ = (σ, Y) and Sig.Vrf(pk, (m,Y), σ) = True. Hence, by
the verification of SigR, it must be that SigR.Vrf(pk,m, (σ, Y, y)) = True.

We move on to FExt and SFExt. With the help of Theorem 3.3 and Theorem 3.4, we simply need
to show that for any adversary Aext and Auext,

Advext
GAS1,Aext

(λ) ≤ Advuf-cma
Sig,Auf-cma

(λ) , (27)

Advuext
GAS1,Auext

(λ) ≤ Advsuf-cma
Sig,Asuf-cma

(λ) +Advuwit
R,Auwit

(λ) , (28)

where Auf-cma,Asuf-cma,Auwit are reduction adversaries to be constructed.

We first show (27). Consider the following game G0 and adversary Auf-cma.

22

Game G0

1 (pk, sk) ↞ Sig.KeyGen(1λ)

2 (m∗, σ∗) ↞ ASign,pSign
ext (pk)

3 (σ′, Y ∗, y∗)← σ∗

4 Assert (Sig.Vrf(pk, (m∗, Y ∗), σ′) ∧ (Y ∗, y∗) ∈ R)

5 Return (∀Y ∈ T [m∗] : (Y, y∗) ̸∈ R)

pSign(m,Y):

6 σ ↞ Sig.Sign(sk, (m,Y)) ; T [m]
∪← Y

7 Return (σ, Y)

Adversary ASign
uf-cma(pk):

1 (m∗, σ∗) ↞ ApSign
ext (pk)

2 (σ′, Y ∗, y∗)← σ∗

3 Return ((m∗, Y ∗), σ′)

pSign(m,Y):

4 σ ↞ Sign((m,Y))

5 Return (σ, Y)

We claim that

Advext
Sig,Aext

(λ) = Pr[G0] ≤ Advuf-cma
Sig,Auf-cma

(λ) . (29)

This is straightforward, because if G0 returns true, then it must be that Y ∗ returned by the
adversary is fresh, meaning it has not queried pSign(m∗, Y ∗) previously. Finally, we note that
adversary Auf-cma also wins exactly when (m∗, Y ∗) is fresh.

Next, we bound (28). Consider the following games G1,G2,G3. Game G1 is Guext
GAS1,Auext

. Games
G2 and G3 rewrites the winning condition of G1 depending on disjoint events b1 and b2.

Game G1, G2, G3

1 (pk, sk) ↞ Sig.KeyGen(1λ)

2 (m,Y, σ̂, σ, σ′) ↞ ApSign
uext (pk)

3 (σ0, Y, y)← σ ; (σ1, Y
′, y′)← σ′

4 b1 ← (Y ̸= Y ′)

5 b2 ← (Y = Y ′) ∧ (y ̸= y′)

6 b3 ← Vrf(pk, (m,Y), σ0) ∧ Vrf(pk, (m,Y ′), σ1) ∧ (Y, y) ∈ R ∧ (Y, y′) ∈ R

7 G1: Return (b1 ∨ b2) ∧ b3

8 G2: Return b1 ∧ b3

9 G3: Return b2 ∧ b3

pSign(m,Y):

10 σ ↞ Sig.Sign(sk, (m,Y)) ; Return (σ, Y)

Clearly, we have

Advuext
GAS1,Auext

(λ) = Pr[G1] = Pr[G2] + Pr[G3] . (30)

Next, we construct adversaries Asuf-cma and Auwit, such that

Pr[G2] ≤ Advsuf-cma
Sig,Asuf-cma

(λ) , (31)

Pr[G3] ≤ Advuwit
R,Auwit

(λ) . (32)

This is straightforward, Asuf-cma can simulate pSign with its Sign oracle, and Auwit can sample its
own key pair to simulate game G3. The specifications of these adversaries are given below.

23

Adversary ASign
suf-cma(pk):

1 (m,Y, σ̂, σ, σ′) ↞ ApSign
uext (pk)

2 (σ0, Y0, y0)← σ ; (σ1, Y1, y1)← σ′

3 If ∃i ∈ {1, 2} : (m,Yi, σi) ̸∈ U then

4 Return ((m,Yi), σi)

pSign(m,Y):

5 σ ↞ Sign((m,Y))

6 U
∪← (m,Y, σ)

7 Return (σ, Y)

Adversary Auwit():

1 (pk, sk) ↞ Sig.KeyGen(1λ)

2 (m,Y, σ̂, σ, σ′) ↞ ApSign
uext (pk)

3 (σ0, Y0, y0)← σ ; (σ1, Y1, y1)← σ′

4 Return (Y0, y0, y1)

pSign(m,Y):

5 σ ↞ Sign(sk, (m,Y))

6 Return (σ, Y)

This concludes the proof of Theorem 4.1.

We observe the following theorem.

Theorem 4.2 If one-way functions exist then SFExt-secure adaptor signatures exist.

The proof follows from the fact that one-way functions imply SUF-CMA-secure signatures
[16, 21, 11] as well as (e.g. length doubling) pseudo-random generators (PRG) [12], which in turn
imply hard relations with computationally unique witnesses consisting of pairs (PRG(x), x).

Our second construction adds unlinkability to GAS1. To achieve this, we additionally need to
assume that relation R is random-self-reducible. For example, hash-preimage relation is not RSR
while discrete-logarithm relation is.

Generic Adaptor Signature (GAS) 2. First, we assume that R is random-self-reducible. The
idea for adding unlinkability is simple: in pSign, we first derive a random instance Y ′ from the input
instance Y and then only use Y ′ in Sig.Sign; furthermore, we need to return the randomness r for
the derivation of Y ′ as part of the pre-signature. To keep the scheme well specified, other parts
of the scheme are modified accordingly. Formally, consider construction GAS2 given in Figure 7.
We will show that in addition to all the properties of GAS1, scheme GAS2 also achieves perfect
unlinkability.

We will however need a slightly stronger form of RSR called strong RSR, which is captured via
the following security game.

Game Gsrsr
R,A(λ):

1 b ↞ {0, 1} ; b′ ↞ ANew()

New(Y, y):

2 Assert (Y, y ∈ R) ; (Y ′, y′) ↞ R.Gen(1λ) ; r ↞ R.Rλ

3 Y0 ← R.A(Y ′, r) ; y0 ← R.B(y′, r)

4 Y1 ← R.A(Y, r) ; y1 ← R.B(y, r)

5 Return (Yb, yb)

We say that R is strongly random self-reducible (SRSR) if the advantage of any PT adversary A,
defined to be Advsrsr

R,A(λ) := 2Pr[Gsrsr
R,A(λ)]− 1, is negligible.

Theorem 4.3 Adaptor signature scheme GAS2 satisfies correctness and pre-signature adaptability.
If R is strongly random-self reducible, then GAS2 is unlinkable. Specifically, given any adversary
Aunlink, the proof gives an adversary Asrsr, as efficient as Aunlink, such that

Advunlink
GAS2,Aunlink

(λ) ≤ Advsrsr
R,Asrsr

(λ) . (33)

Furthermore, if Sig is UF-CMA-secure and R is one-way then GAS2 is FExt-secure. Given adver-
sary Afext, we can construct adversaries Auf-cma and Aow, with running times similar to that of

24

Auf , such that

Advfext
GAS2,Afext

(λ) ≤ Advuf-cma
Sig,Auf-cma

(λ) +Advq-ow
R,Aow

(λ) . (34)

Lastly, if Sig is SUF-CMA-secure and R has unique witnesses, then GAS1 is SFExt-secure. For-
mally, given adversary Asfext, we can construct adversaries Asuf-cma, Aow, and Auwit with running
times similar to that of Asfext such that

Advsfext
GAS1,Asfext

(λ) ≤ 2Advsuf-cma
Sig,Auf-cma

(λ) +Advq-ow
R,Aow

(λ) +Advuwit
R,Auwit

. (35)

Unlinkability follows from SRSR property in a straightforward manner and the rest of the proofs
are very similar to those for Theorem 4.1. Note that any hard relation trivially implies one-way
functions: for example, the mapping fλ(r) := Y , where (Y, y)← R.Gen(1λ; r) and r is any element
of the randomness space of R.Gen(1λ), is one-way. Hence, similar to Theorem 4.2, we observe the
following theorem.

Proof of Theorem 4.3: First, correctness and adaptability holds similar to GAS1. We give a
reduction that turns any unlink adversary to a strong RSR adversary for R. The reduction is very
straightforward and we keep the descript at a high-level here. The SRSR adversary sample a key
pair (pk, sk) ↞ Sig.KeyGen(1λ), using which it can run pSign and Sign algorithms. It can simulate
oracles Sign and pSign honestly. It uses the New oracle given to it from the strong RSR game to
simulate SignChl, the pair (Y, y) that is in the input of SignChl is simply forwarded to New.

We check extractability. Similar to GAS1, we need to show that for any adversary Aext and Auext,

Advext
GAS2,Aext

(λ) ≤ Advuf-cma
Sig,Auf-cma

(λ) , (36)

Advuext
GAS2,Auext

(λ) ≤ Advsuf-cma
Sig,Asuf-cma

(λ) +Advuwit
R,Auwit

(λ) , (37)

where Auf-cma,Asuf-cma,Auwit are reduction adversaries to be constructed.

We first show (36). Consider the following game G0 and adversary Auf-cma.

Game G0

1 (pk, sk) ↞ Sig.KeyGen(1λ)

2 (m∗, σ∗) ↞ ApSign
ext (pk)

3 (σ′, Y ∗, y∗)← σ∗

4 Assert (Sig.Vrf(pk, (m∗, Y ∗), σ′) ∧ (Y ∗, y∗) ∈ R)

5 Return (∀(Y, r) ∈ T [m∗] : (Y,R.C(y∗, r)) ̸∈ R)

pSign(m,Y):

6 r ↞ R.Rλ ; Y ′ ← R.A(Y, r) ; T [m]
∪← (Y, r)

7 σ′ ↞ Sig.Sign(sk, (m,Y ′)) ; Return (σ′, Y, r)

Adversary ASign
uf-cma(pk):

1 (m∗, σ∗) ↞ ApSign
ext (pk)

2 (σ′, Y ∗, y∗)← σ∗

3 Return ((m∗, Y ∗), σ′)

pSign(m,Y):

4 r ↞ R.Rλ

5 Y ′ ← R.A(Y, r)

6 σ′ ↞ Sign((m,Y ′))

7 Return (σ′, Y, r)

We claim that

Advext
Sig,Aext

(λ) = Pr[G0] ≤ Advuf-cma
Sig,Auf-cma

(λ) . (38)

We claim that if G0 returns true, it must be that Y ∗ returned by adversary is fresh, meaning
the adversary has not queried Sign((m∗, Y ∗)) previously. Seeking a contradiction, suppose that
adversary has incurred a query Sign(m∗, Y ∗), then this query must have come from some query
pSign(m∗, Y0), where the game has sampled some r0 such that R.A(Y0, r0) = Y ∗. By line 4,
(Y ∗, y∗) ∈ R. So, R.C(y∗, r) must be a witness of Y0. This means that the game must return False
at line 5. Therefore, there was no signature on message (m∗, Y ∗) if the game returns True. We note
that adversary Auf-cma also wins exactly when (m∗, Y ∗) is fresh. This verifies (36).

25

Next, we bound (37). Consider the following games G1,G2,G3. Game G1 is Guext
GAS2,Auext

. Games
G2 and G3 rewrites the winning condition of G1 depending on disjoint events b1 and b2.

Game G1, G2, G3

1 (pk, sk) ↞ Sig.KeyGen(1λ)

2 (m,Y, σ̂, σ, σ′) ↞ ApSign
uext (pk)

3 (σ0, Y, y)← σ ; (σ1, Y
′, y′)← σ′

4 b1 ← (Y ̸= Y ′)

5 b2 ← (Y = Y ′) ∧ (y ̸= y′)

6 b3 ← Vrf(pk, (m,Y), σ0) ∧ Vrf(pk, (m,Y ′), σ1) ∧ (Y, y) ∈ R ∧ (Y, y′) ∈ R

7 G1: Return (b1 ∨ b2) ∧ b3

8 G2: Return b1 ∧ b3

9 G3: Return b2 ∧ b3

pSign(m,Y):

10 r ↞ R.Rλ ; Y ′ ← R.A(Y, r) ; σ′ ↞ Sign(sk, (m,Y ′)) ; Return (σ′, Y, r)

Clearly, we have

Advuext
GAS1,Auext

(λ) = Pr[G1] = Pr[G2] + Pr[G3] . (39)

Next, we construct adversaries Asuf-cma and Auwit, such that

Pr[G2] ≤ Advsuf-cma
Sig,Asuf-cma

(λ) , (40)

Pr[G3] ≤ Advuwit
R,Auwit

(λ) . (41)

This is straightforward, Asuf-cma can simulate pSign with its Sign oracle, and Auwit can sample its
own key pair to simulate game G3. The specifications of these adversaries are given below.

Adversary ASign
suf-cma(pk):

1 (m,Y, σ̂, σ, σ′) ↞ ApSign
uext (pk)

2 (σ0, Y0, y0)← σ ; (σ1, Y1, y1)← σ′

3 If ∃i ∈ {1, 2} : (m,Yi, σi) ̸∈ U then

4 Return ((m,Yi), σi)

pSign(m,Y):

5 r ↞ R.Rλ ; Y ′ ← R.A(Y, r)

6 σ′ ↞ Sign((m,Y ′))

7 U
∪← (m,Y ′, σ′) ; Return (σ′, Y, r)

Adversary Auwit():

1 (pk, sk) ↞ Sig.KeyGen(1λ)

2 (m,Y, σ̂, σ, σ′) ↞ ApSign
uext (pk)

3 (σ0, Y0, y0)← σ ; (σ1, Y1, y1)← σ′

4 Return (Y0, y0, y1)

pSign(m,Y):

5 r ↞ R.Rλ ; Y ′ ← R.A(Y, r)

6 σ′ ↞ Sign(sk, (m,Y ′)) ; Return (σ′, Y, r)

This concludes the proof of Theorem 4.3.

Theorem 4.4 If SRSR relations exist then SFExt-secure and unlinkable adaptor signatures exist.

Strong RSR relations from any epimorphic (homomorphic and onto) one-way func-
tion. Suppose fλ : Dλ → Rλ is a homomorphic one-way function, where Dλ and Rλ are both
abelian groups (where Dλ has group operation + and Rλ has group operation ·). For example, two
instantiations are fG,g(y) = gy and f(N,e)(y) = ye mod N , where (G, g) is a group instance and
(N, e) is an RSA public key. Then it is clear that the relation containing pairs (f(y), y) can be
made strongly RSR. In particular, we consider R.A(Y, r) := Y · f(r), where r is sampled uniformly
randomly from Dλ. The corresponding algorithms B and C are defined as R.B(y, r) = y + r and
R.C(y′, r) = y′− r. It is easy to check that the relation is SRSR since (f(y+ r), y+ r) is uniformly
random regardless of the value of y, as long as f is homomorphic and onto.

26

Strong RSR relations from LWE. We sketch how LWE gives rise to a SRSR relation. Recall
that for LWE, the dimension n is the LWE security parameter. Take any m that is polynomial in
n. We fix3 a random matrix Aλ ∈ Zm×n

q for each security parameter λ. (We can take n = O(λ).)
Let q be the modulus and αe and αt be parameters that we shall fix at the end. Consider the
following relation R consisting of pairs (Y, y) with y ↞ Zn

q and Y = Ay+ e, where each component
of e is sampled from a discrete Gaussian of width αeq. We define the rerandomize algorithm
R.A(Y, (r, t)) := Y + Aλr + t, where r is uniformly random in Zn

q and t ∈ Zm
q is such that each

component of t is sampled from a discrete Gaussian of width αtq. Lastly, we define R.B(y, (r, t)) :=
y + r and R.B(y, (r, t)) := y − r. Above, components of e and t are from (discretized) Gaussian
distributions of parameter αeq and αtq, respectively, where αe = O(1/f2(n)), αt = O(1/f(n)), and
q = O(f3(n)) for a super-polynomial function f(n). For example, the parameter of distribution
e is O(nlogn), that of t is O(n2 logn), and modulus q is O(n3 logn). Note that given some value
of error e, one cannot distinguish between e + t and e′ + t for freshly sampled e′ (i.i.d to e) and
t. This is because t is “wider” than e by a factor of nlog(n), which is super-polynomial. Finally,
by [17, Theorem 4.2.4], the relation R is SRSR if GapSVPγ and SIVPγ are hard against quantum
adversaries, where γ = Õ(n1−log(n)).

References

[1] L. Aumayr, O. Ersoy, A. Erwig, S. Faust, K. Hostáková, M. Maffei, P. Moreno-Sanchez, and
S. Riahi. Bitcoin-compatible virtual channels. Cryptology ePrint Archive, Report 2020/554,
2020. https://eprint.iacr.org/2020/554. 3, 4, 7, 10

[2] L. Aumayr, O. Ersoy, A. Erwig, S. Faust, K. Hostakova, M. Maffei, P. Moreno-Sanchez,
and S. Riahi. Generalized bitcoin-compatible channels. Cryptology ePrint Archive, Report
2020/476, 2020. https://eprint.iacr.org/2020/476. 3, 4, 6, 7, 8, 9, 10, 11, 12

[3] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 409–426. Springer, Heidelberg, May / June 2006. 5

[4] W. Beullens, T. Kleinjung, and F. Vercauteren. CSI-FiSh: Efficient isogeny based signa-
tures through class group computations. In S. D. Galbraith and S. Moriai, editors, ASI-
ACRYPT 2019, Part I, volume 11921 of LNCS, pages 227–247. Springer, Heidelberg, Dec.
2019. 4

[5] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd,
editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, Dec.
2001. 3

[6] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehle. CRYSTALS
– Dilithium: Digital signatures from module lattices. Cryptology ePrint Archive, Report
2017/633, 2017. https://eprint.iacr.org/2017/633. 4

[7] A. Erwig, S. Faust, K. Hostáková, M. Maitra, and S. Riahi. Two-party adaptor signatures
from identification schemes. In J. Garay, editor, PKC 2021, Part I, volume 12710 of LNCS,
pages 451–480. Springer, Heidelberg, May 2021. 3, 4, 6, 10

3More formally, A should be sampled as a parameter for each security parameter, but we fix such A here for
simplicity.

27

https://eprint.iacr.org/2020/554
https://eprint.iacr.org/2020/476
https://eprint.iacr.org/2017/633

[8] M. F. Esgin, O. Ersoy, and Z. Erkin. Post-quantum adaptor signatures and payment channel
networks. Cryptology ePrint Archive, Report 2020/845, 2020. https://eprint.iacr.org/

2020/845. 3, 4, 6, 10

[9] L. Fournier. One-time verifiably encrypted signatures aka adaptor signatures, 2019. 6

[10] J. Gugger. Bitcoin-monero cross-chain atomic swap. Cryptology ePrint Archive, Report
2020/1126, 2020. https://eprint.iacr.org/2020/1126. 3

[11] Q. Huang, D. S. Wong, and Y. Zhao. Generic transformation to strongly unforgeable signa-
tures. In J. Katz and M. Yung, editors, ACNS 07, volume 4521 of LNCS, pages 1–17. Springer,
Heidelberg, June 2007. 24

[12] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions
(extended abstracts). In 21st ACM STOC, pages 12–24. ACM Press, May 1989. 24

[13] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature algorithm
(ECDSA). International journal of information security, 1(1):36–63, 2001. 3

[14] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and M. Maffei. Anonymous
multi-hop locks for blockchain scalability and interoperability. In NDSS 2019. The Internet
Society, Feb. 2019. 3, 6

[15] D. Moody, G. Alagic, D. C. Apon, D. A. Cooper, Q. H. Dang, J. M. Kelsey, Y.-K. Liu, C. A.
Miller, R. C. Peralta, R. A. Perlner, et al. Status report on the second round of the nist
post-quantum cryptography standardization process. 2020. 4, 5

[16] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.
In 21st ACM STOC, pages 33–43. ACM Press, May 1989. 24

[17] C. Peikert. How (not) to instantiate ring-LWE. Cryptology ePrint Archive, Report 2016/351,
2016. https://eprint.iacr.org/2016/351. 27

[18] A. Poelstra. Lightning in scriptless scripts. https://lists.launchpad.net/mimblewimble/
msg00086.html, 2017. Accessed: Aug, 2021. 3, 6

[19] A. Poelstra. Scriptless scripts. https://download.wpsoftware.net/bitcoin/wizardry/

mw-slides/2017-03-mit-bitcoin-expo/slides.pdf, 2017. Accessed: Aug, 2021. 3, 6

[20] J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain instant payments.
https://lightning.network/lightning-network-paper.pdf, 2016. Accessed: Aug, 2021.
3, 21

[21] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd ACM
STOC, pages 387–394. ACM Press, May 1990. 24

[22] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–
174, Jan. 1991. 3

[23] E. Tairi, P. Moreno-Sanchez, and M. Maffei. Post-quantum adaptor signature for privacy-
preserving off-chain payments. Cryptology ePrint Archive, Report 2020/1345, 2020. https:

//eprint.iacr.org/2020/1345. 3, 4, 6, 10

28

https://eprint.iacr.org/2020/845
https://eprint.iacr.org/2020/845
https://eprint.iacr.org/2020/1126
https://eprint.iacr.org/2016/351
https://lists.launchpad.net/mimblewimble/msg00086.html
https://lists.launchpad.net/mimblewimble/msg00086.html
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://lightning.network/lightning-network-paper.pdf
https://eprint.iacr.org/2020/1345
https://eprint.iacr.org/2020/1345

	Introduction
	Background and Problems
	Our contributions

	Preliminary
	Definitions and Relations
	Relations with previous notions
	Modular proofs from simple notions

	Generic Constructions
	References

