
Funshade: Function Secret Sharing for Two-Party Secure
Thresholded Distance Evaluation

Alberto Ibarrondo
Copper.co∗

Sophia Antipolis, France
ibarrond@eurecom.fr

Hervé Chabanne
Idemia & Telecom Paris

Paris, France

Melek Önen
EURECOM

Sophia Antipolis, France

ABSTRACT
We propose a novel privacy-preserving, two-party computation of
various distance metrics (e.g., Hamming distance, Scalar Product)
followed by a comparison with a fixed threshold, which is known as
one of the most useful and popular building blocks for many differ-
ent applications including machine learning, biometric matching,
etc. Our solution builds upon recent advances in function secret
sharing and makes use of an optimized version of arithmetic se-
cret sharing. Thanks to this combination, our new solution named
Funshade is the first to require only one round of communica-
tion and two ring elements of communication in the online phase,
outperforming all prior state-of-the-art schemes while relying on
lightweight cryptographic primitives. Lastly, we implement our so-
lution from scratch in portable C and expose it in Python, testifying
its high performance by running secure biometric identification
against a database of 1 million records in ∼10 seconds with full
correctness and 32-bit precision, without parallelization.

KEYWORDS
Function Secret Sharing, Secure Two Party Computation, Scalar
Product, Hamming Distance

1 INTRODUCTION
The computation of privacy-preserving distance metrics 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚)
between two vectors 𝒙,𝒚 followed by a comparison with a threshold
𝜃 is a very popular building block in many applications in need
of privacy protection, including machine learning (e.g., k-nearest
neighbors [68], linear regression [35]), biometrics (e.g., biometric
authentication [46, 57], biometric identification [32]) etc.

The literature counts many solutions based on various crypto-
graphic techniques that allow computation over sensitive data while
preserving its privacy: Secure Multiparty Computation (MPC) (gar-
bled circuits [65], secret sharing (SS) [39, 60]) to split the distance
computation acrossmultiple entities [19, 29, 33], Fully Homomorphic
Encryption (FHE) [23, 34, 36] supporting addition and multiplica-
tion between ciphertexts [4, 7, 22], and Functional Encryption (FE)
[2, 9] as a public-key encryption scheme that supports evaluation
of scalar products when decrypting the ciphertexts [3, 10].

However, not all operations are born equal. While linear opera-
tions are widely covered by all the privacy-preserving techniques,
the protection of non-linear operations including the comparison to

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies YYYY(X), 1–14
© 2023 Copyright held by the owner/author(s).
https://doi.org/XXXXXXX.XXXXXXX

a threshold 𝜃 is much harder to attain. Computing this non-linear
operation with most MPC primitives is often communication inten-
sive (e.g., [29, 64]) both in terms of communication size and in num-
ber of rounds; FHE-based techniques must resort to computation-
intensive algorithms [24, 42]; and FE-based techniques are limited
to linear function evaluations. Luckily, recent solutions [11, 14, 58]
show a considerable improvement to securely realize the compari-
son to 𝜃 by resorting to Function Secret Sharing (FSS) primitives.

In [15], the authors study the computation of distance metrics.
They propose GSHADE, a decomposition of each metric into a
combination of local single-input functions and a cross-product, and
preserve the privacy of these operations via Oblivious Transfer [54].

We draw inspiration from the family of distance metrics covered
inGSHADE. Integrating FSS-based threshold comparison primitives
from [11] with an optimized version of Secret Sharing [53] in a two-
party computation (2PC) protocol to perform privacy-preserving
distance metric computations with a subsequent comparison to 𝜃 .
To summarize our contributions, our solution:

• requires just one round of communication in the online
phase, lowering the communication costs with respect to the
two-round state-of-the-art solutions from AriaNN [58] and
Boyle et. al. [11] by merging the communication required
for the scalar product with that of the comparison to 𝜃 ,
• sends two ring elements only in the online phase, reducing
the communication size of previous solutions by a factor of
2𝑙 (for input vectors with 𝑙 elements),
• features 100% correctness in the comparison result, as op-
posed to [58],
• is implemented and open-sourced in a portable C module
with lightweight wrapping to high-level languages such as
Python, Rust or Golang,
• is extensively tested, showcasing its high efficiency and cor-
rectness in a variety of scenarios (LAN/WAN, Authentica-
tion/ Identification), requiring less than 300ms for realistic
biometric identification against 5000 identities with full 32-
bit precision, and ∼10s against 1 million identities.

The paper is outlined as follows. Section 2 describes the prelim-
inaries, the distance metrics we consider in this work and some
applications. Section 3 details the proposed solution, including its
security analysis. Section 4 tackles the implementation and ex-
periments. Section 5 addresses previous work and positions our
contribution, wrapping up with the conclusions in Section 6.

∗This work was carried out at Idemia.

1

https://orcid.org/0000-0003-4079-4127
https://orcid.org/0000-0002-5916-3387
https://orcid.org/0000-0003-0269-9495
https://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXX.XXXXXXX

Proceedings on Privacy Enhancing Technologies YYYY(X) Ibarrondo et al.

2 PRELIMINARIES
Notation
We use bold letters to denote vectors (e.g., 𝒙 , 𝒚) and plain letters
(e.g., 𝑎, 𝑘) for scalars. 𝒙 (𝑖) denotes the 𝑖th element of vector 𝒙 . For
convenience we omit the (𝑖) superscripts in element-wise additions
of the form Σ[𝒂 (𝑖) + 𝒃 (𝑖) + . . .]. We write 𝒂 · 𝒃 = 𝒄 to denote the
element-wise multiplication of two vectors where 𝒄 (𝑖) = 𝒂 (𝑖)𝒃 (𝑖) ,
and 𝒂𝑇 𝒃 to denote the inner (scalar) product between two vectors.

P0, P1 denote the two computing parties in the 2PC paradigm.
We generalize behavior common to these two computing parties
by resorting to P𝑗 , where 𝑗 ∈ {0, 1}. Similarly, we reserve R𝑑𝑒𝑠𝑐𝑟
to indicate an entity in our scenario playing a role with a certain
description, e.g., R𝑠𝑒𝑡𝑢𝑝 for the entity in charge of the setup, R𝑖𝑛𝒙
for the entity holding the input vector 𝒙 . We write P𝑗 ⊇ R𝑑𝑒𝑠𝑐𝑟 to
denote that party P𝑗 takes on a role R𝑑𝑒𝑠𝑐𝑟 . We use 𝑞 ← 4 to set a
local variable 𝑞 to 4, and P𝑎 :Send 𝑞 ⇒ P𝑏 for party 𝑎 sending value
𝑞 to party𝑏. We noteU[𝑆] as the uniform random distribution in the
set 𝑆 , and write 𝑟 ∼ U[𝑆] to indicate sampling that distribution and
assigning the sample to 𝑟 . We employ 1𝑥∈𝐴 to denote the indicator
function (e.g., 1𝑥>5 = 1 ⇔ 𝑥 > 5):

1𝑥∈𝐴 ≡ 1𝐴 (𝑥) ≜
{
1 if 𝑥 ∈ 𝐴,
0 if 𝑥 ∉ 𝐴,

As a special case of indicator function, the unit step function
is defined as 1𝑥∈R∗+ = 1𝑥⩾0. We implicitly consider a two’s com-
plement encoding to map between signed and unsigned 𝑛-bit inte-
gers, a bijective mapping between [−2𝑛−1, 2𝑛−1 − 1] and [0, 2𝑛 −
1] by applying mod 2𝑛 , where the interval of negative values
[−2𝑛−1,−1] is mapped to the upper half of the unsigned inter-
val [2𝑛−1, 2𝑛 − 1]. As such, the unit step function for 𝑛-bit integers
corresponds to 1𝑥∈Z∗

𝑛+
= 10⩽𝑥⩽2𝑛−1−1.

We write ⟨𝑥⟩ to indicate that value 𝑥 is arithmetically secret
shared into shares (𝑥0, 𝑥1) among computing parties (P0, P1) such
that P0 holds the share 𝑥0 and P1 holds the share 𝑥1. Likewise, we
write ⟨⟨𝑥⟩⟩ to indicate that value 𝑥 is Π-secret shared (Section 2.1.2)
into three shares (Δ𝑥 , 𝛿𝑥0, 𝛿𝑥1), where both parties (P0, P1) hold
Δ𝑥 and each party P𝑗 holds 𝛿𝑥 𝑗 .

2.1 Multi-Party Computation
Secure multi-party computation (or MPC) [6, 21, 39, 65] allows
two or more parties to compute any mathematical function on
private inputs without revealing anything but the output of the
function. Typically, MPC is instantiated in the preprocessing model,
where specially crafted randomness is generated in an offline input-
independent phase from either a trusted dealer or via an offline
interaction, and then this randomness is used in the online phase to
compute the function, once the inputs are known. This two-phase
approach yields considerable performance benefits. Some examples
of this correlated randomness include Beaver multiplication triples
[5] and garbled circuit preprocessing [29, 65].

When used to evaluate circuits based on only binary or only
arithmetic interactions, MPC protocols present very fast online
execution. However, applications such as biometrics or machine
learning require a combination of linear operations (additions and
multiplications over a large ring) and non-linear operations such as
integer comparison or truncation. The cost of blindly implementing

these two types of operations with only one MPC circuit type can
be prohibitively high. To address this, many works have tackled
mixed-mode MPC to provide efficient conversions between arith-
metic and binary domains, supporting both linear and non-linear
operations [19, 29, 50, 53]. Yet, these conversions often entail a hefty
communication overhead in the online phase.

In line with the TinyTable protocol [27] to secret share truth
tables in a succinct manner, Boyle et al. propose a very promising
approach [11, 14] based on Function Secret Sharing (FSS) [12, 13].
Offering the same online communication and round complexity
for non-linear function evaluations as for pure arithmetic compu-
tations in arithmetic-only circuits, FSS relies on fast symmetric
cryptography primitives to also yield fast online evaluation.

The present work will benefit from standard arithmetic secret
sharing techniques [5], more evolved secret sharing techniques em-
anating from research in mixed-mode operations [53] and modern
FSS approaches [11] to achieve a lightweight and highly commu-
nication efficient biometric matching protocol. As such, we now
delve into the details of these techniques.

2.1.1 Additive Secret Sharing. Secret sharing is a cryptographic
primitive that allows a secret 𝑥 to be shared among 𝑛 parties, such
that any 𝑡 of them can reconstruct the secret. The secret sharing
scheme is defined by 𝑘 , the number of parties, and threshold 𝑡 ,
minimum number of parties required to reconstruct the secret. In
the domain of two-party computation (2PC), the number of parties
is 𝑛 = 2 and the threshold is 𝑡 = 2. This work focuses on 2PC
arithmetic secret sharing in rings (shortened to SS for convenience),
where a secret value 𝑥 is split into two random shares 𝑥0 and 𝑥1 such
that 𝑥 = 𝑥0 +𝑥1 mod 𝑁 , with 𝑁 being the ring size. The shares are
distributed to the two computing parties such that party P𝑗 receives
the share 𝑥 𝑗 . With this sharing scheme, the two parties can perform
local addition/subtraction of two secret shared values. Additionally,
parties can resort to Beaver’s multiplication triples [5] to perform
multiplication at the cost of one round of communication:

SS.add: Online(P0, P1): ⟨𝑥 ± 𝑦⟩ = ⟨𝑥⟩ ± ⟨𝑦⟩
SS.mult:Offline(R𝑠𝑒𝑡𝑢𝑝): ⟨𝑎⟩ , ⟨𝑏⟩ ∼ U[Z2×2

𝑁
]

⟨𝑐⟩ ← ⟨𝑎 · 𝑏⟩
Send(𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗) ⇒ P𝑗

Online(P0, P1): Send(𝑥 𝑗 − 𝑎 𝑗 , 𝑦 𝑗 − 𝑏 𝑗) ⇒ P1− 𝑗
⟨𝑥 · 𝑦⟩ = ⟨𝑏⟩ (𝑥−𝑎) + ⟨𝑎⟩ (𝑦−𝑏) + ⟨𝑐⟩

+ (𝑥−𝑎) (𝑦−𝑏)
(1)

At the end of the computation, the resulting secret shared value
can be reconstructed by sending both shares to a chosen party
P𝑟𝑒𝑠 , to add the two shares together and reconstruct the result. We
work with 𝑁 = 2𝑛 for values of 𝑛 ∈ {8, 16, 32, 64} to benefit from a
considerable speedup when dealing with 𝑛-bit modular arithmetic
thanks to native integer types present in modern computers.

Of special interest for this work,computing a scalar product
𝒙𝑇𝒚 =

∑𝑙
𝑖=1 𝒙

(𝑖) · 𝒚 (𝑖) with SS requires sending 2 terms per multi-
plication, for a total of 2𝑙 values sent.

2.1.2 Π-Secret Sharing. Originally inspired by ASTRA [20] in
the 3PC scenario, ABY2.0 [53] introduced a novel way to perform

2

Funshade: Function Secret Sharing for Two-Party Secure Thresholded Distance Evaluation Proceedings on Privacy Enhancing Technologies YYYY(X)

additive secret sharing in 2PC1, where a value 𝑥 is split into three
random shares (Δ𝑥 , 𝛿𝑥0, 𝛿𝑥1) such that Δ𝑥 = 𝑥 + 𝛿𝑥0 + 𝛿𝑥1 mod 𝑁 .
The𝛿-shares𝛿𝑥 𝑗 are distributed to each computing partyP𝑗 forming
an arithmetic secret sharing ⟨𝛿𝑥 ⟩ of 𝛿𝑥 = 𝛿𝑥0 + 𝛿𝑥1, while the Δ-
share Δ𝑥 is held by both parties at once. We name this sharing
scheme as Π-secret sharing, due to the "horizontally" mutual Δ-
share and the two "vertically" separated 𝛿-shares, and denote the
Π-sharing of value 𝑥 as ⟨⟨𝑥⟩⟩. The Π-sharing scheme allows local
addition/subtraction, and multiplication at the cost of one round
of communication. The essential difference with respect to the
SS scheme is that the 𝛿-shares can be precomputed (leaving only
the Δ-share to be determined in the online phase), and thus carry
extra correlation that was not possible with standard SS. The main
arithmetic operations in ΠSS are defined as follows:

ΠSS.add: Online(P0, P1): ⟨⟨𝑥 ± 𝑦⟩⟩ = ⟨⟨𝑥⟩⟩ ± ⟨⟨𝑦⟩⟩
ΠSS.mult:Offline(R𝑠𝑒𝑡𝑢𝑝): ⟨𝛿𝑥 ⟩ ,

〈
𝛿𝑦

〉
, ⟨𝛿𝑧⟩ ∼ U[Z3×2

𝑁
]〈

𝛿𝑥𝑦
〉
←

〈
𝛿𝑥 · 𝛿𝑦

〉
Send (𝛿𝑥 𝑗 , 𝛿𝑦 𝑗 , 𝛿𝑥𝑦 𝑗) ⇒ P𝑗

Online(P0, P1): ⟨𝑥 · 𝑦⟩ ≡ ⟨𝑧⟩ ← 𝑗 ·Δ𝑥Δ𝑦 − Δ𝑥
〈
𝛿𝑦

〉
− Δ𝑦 ⟨𝛿𝑥 ⟩ +

〈
𝛿𝑥𝑦

〉
⟨Δ𝑧⟩ ≡ ⟨𝑧⟩ + ⟨𝛿𝑧⟩
Send (Δ𝑧 𝑗) ⇒ P1− 𝑗
⟨⟨𝑧⟩⟩ ≡ (Δ𝑧0 + Δ𝑧1, ⟨𝛿𝑧⟩)

(2)
Crucially, the online phase of the Π-sharing multiplication first

computes a local arithmetic sharing of the result, and then uses one
round of communication to convert the result back into Π-shares.
As promptly explained in [53], this moves the communication from
the multiplication inputs to the multiplication outputs, which yields
sizeable advantages in terms of communication size for operations
such as the scalar product: computing a scalar product 𝒙𝑇𝒚 =∑𝑙
𝑖=1 𝒙

(𝑖) · 𝒚 (𝑖) with ΠSS requires sending 2 values only for the
entire operation, thus reducing the communication size by a factor
of 𝑙 with respect to SS.

2.1.3 Function Secret Sharing. A 2PC Functional Secret Sharing
(FSS) scheme [12, 13] for a function family F splits a function
𝑓 ∈ F into two additive shares (𝑓0, 𝑓1), such that each 𝑓𝑗 hides 𝑓
and 𝑓0 (𝑥) + 𝑓1 (𝑥) = 𝑓 (𝑥) for every input 𝑥 . Beyond trivial solutions
such as secret-sharing the truth-table of 𝑓 , FSS schemes seek suc-
cinct descriptions of 𝑓𝑗 (function keys 𝒌0, 𝒌1) with efficient online
execution. Since both function shares must evaluate on the same
value 𝑥 , this value must be made public to both computing parties
P𝑗 . To maintain input data privacy, a random mask 𝑟 is added to the
secret input 𝑥 , so that the opened value 𝑥 = 𝑥 + 𝑟 completely hides
𝑥 before using it as input to the FSS evaluation. In order to obtain
full correctness on the function evaluation with respect to 𝑓 (𝑥),
the class of functions F is restricted to 𝑓𝑟 (𝑥) = 𝑓 (𝑥 + 𝑟), where the
mask is known by the dealer and used for the key generation.

1Note that ABY2.0 [53] refers to arithmetic secret sharing as [·]-sharing and
Π-secret sharing as ⟨·⟩-sharing.

For addition and multiplication gates over a ring Z2𝑛 , the FSS
gates correspond to Beaver’s protocol [5]. A much more interest-
ing case arises in [11, 14], where non-linear operations including
zero-test, integer comparison or bit decomposition are efficiently
constructed using a small number of invocations of FSS primi-
tives. Luckily, these FSS gates make a black-box use of any secure
pseudorandom generator (PRG), yielding short keys and fast imple-
mentations based on AES.

Grounded on the MPC preprocessing model, a FSS gate is com-
posed of two algorithms:
• Gen(1𝜆 , 𝑓)→(𝒌0, 𝒌1) is a PPT key generation algorithm that,
given the security parameter 𝜆 and the description of a func-
tion 𝑓 : G𝑖𝑛 ↦→ G𝑜𝑢𝑡 , outputs a pair of function keys (𝒌0,
𝒌1) containing the descriptions for 𝑓0, 𝑓1 and the input mask
shares 𝑟0, 𝑟1 respectively.
• Eval(𝑗 , 𝒌 𝑗 , 𝑥)→ 𝑓 (𝑥) is a polynomial-time deterministic
algorithm that, given the party index 𝑗 , the function key 𝒌 𝑗
and the masked input 𝑥 outputs an additive share 𝑓𝑗 (𝑥), such
that 𝑓0 (𝑥) + 𝑓1 (𝑥) = 𝑓 (𝑥).

As central building block ofmany FSS gates, we recall the concept
of Distributed Comparison Function (DCF) (Section 3 of [11]) to be a
comparison function 𝑓 <

𝛼,𝛽
outputting 𝛽 if 𝑥 > 𝛼 and zero otherwise.

Built on top of two evaluations of DCF, [11] later proposes a FSS
gate for Interval Containment (IC) computing 𝑓𝑝,𝑞 (𝑥) = 1𝑥∈[𝑝,𝑞]
(Section 4.1 of [11]). To compute the unit step function of a 𝑛-bit
signed integer, it suffices to employ their construction (detailed in
Figure 3 of [11]) setting 𝑝 = 0 and 𝑞 = 2𝑛−1 − 1, obtaining 1𝑝⩽𝑥⩽𝑞 .
For convenience, we detail this FSS gate instantiation in Protocols
1 (key generation) and 2 (evaluation), keeping the DCF calls to the
original protocol in [11].

Algorithm 1 FSS.Gen𝐼𝐶 (𝜆, 𝑛, 𝑟)→ 𝒌𝐼𝐶0 , 𝒌𝐼𝐶1

Inputs: 𝜆: computational security parameter.
𝑟 : Mask for the input to the function.

Output: 𝒌0, 𝒌1: preprocessing keys, to send to P0, P1 respectively.
⟨𝛿𝒙 ⟩ ,

〈
𝛿𝒚

〉
: 𝛿-shares of input vectors, to send to P𝑖𝑛𝒙 , P𝑖𝑛𝒚
(input owners) resp.

Note: All arithmetic operations (+,−,·) are defined in Z2𝑛 , thus their
results are susceptible to "overflow" due to modular reduction.

Define the interval [𝑝,𝑞] for sign extraction:
1: 𝑝 ← 0; 𝑞 ← 2𝑛−1 − 1

Generate a DCF for 𝛾 , an arbitrary value above the two interval limits:
2: 𝛾 ← (2𝑛 − 1)
3: (𝒌𝛾0, 𝒌𝛾1) ← FSS.Gen<𝑛 (1𝜆, 𝛾 + 𝑟, 1,U[Z2𝑛])

Generate the correction terms2to fix overflows:
4: 𝑐 ← 1𝑝+𝑟>𝑞+𝑟 + 1𝑞+𝑟+1>𝑞+1 − 1𝑝+𝑟>𝑝 + 1𝑝+𝑟=2𝑛−1
5: 𝑐0 ∼ U[Z2𝑛] ; 𝑐1 ← 𝑐 − 𝑐0

Compose keys:
6: 𝒌𝐼𝐶0 ← (𝒌𝛾0, 𝑐0); 𝒌𝐼𝐶1 ← (𝒌𝛾1, 𝑐1)
7: return 𝒌𝐼𝐶0 , 𝒌𝐼𝐶1

2The correction terms test three standard overflow cases and one corner case. The
standard case terms test if𝑞+𝑟 overflows (1𝑝+𝑟>𝑞+𝑟), if𝑞+𝑟+1 overflows (1𝑞+𝑟+1>𝑞+1),

3

Proceedings on Privacy Enhancing Technologies YYYY(X) Ibarrondo et al.

Table 1: Reformulation of the distance metrics into a composition of local evaluations of 𝑓𝑙𝑜𝑐𝑎𝑙 and the cross product 𝑓𝑐𝑝 · 𝒙𝑇𝒚

Distance Metric Formula 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒙) + 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒚) + 𝑓𝑐𝑝 · 𝒙𝑇𝒚 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒗) 𝑓𝑐𝑝

Scalar/Inner Product
∑
𝒙 (𝑖) · 𝒚 (𝑖) 0 + 0 + 1∑(𝒙 (𝑖) · 𝒚 (𝑖)) 0 1

Hamming Distance
∑
𝒙 (𝑖) ⊕ 𝒚 (𝑖) ∑(𝒙 (𝑖))2 +∑(𝒚 (𝑖))2 − 2∑(𝒙 (𝑖) · 𝒚 (𝑖)) ∑(𝒗)2 -2

Squared Euclidean
∑(𝒙 (𝑖) −𝒚 (𝑖))2 ∑(𝒙 (𝑖))2 +∑(𝒚 (𝑖))2 − 2∑(𝒙 (𝑖) · 𝒚 (𝑖)) ∑(𝒗)2 -2

Squared Mahalanobis (𝒙−𝒚)𝑇𝑴 (𝒙−𝒚) 𝒙𝑇𝑴𝒙 + 𝒚𝑇𝑴𝒚 − 2 (𝒙𝑇𝑴) · 𝒚 (𝒗𝑇𝑀𝒗) -2

Algorithm 2 FSS.Eval𝐼𝐶 (𝑗 , 𝒌 𝑗 , 𝑥)→ 𝑜0, 𝑜1

Inputs: 𝑗 : The party number, 𝑗 ∈ {0, 1}.
𝒌 𝑗 : The key for P𝑗 , composed of a DCF key for 𝛾 and a

correction share 𝑐 𝑗 .
𝑥 : Masked public input, result of reconstructing 𝑥 + 𝑟 .

Output: 𝑜0, 𝑜1: Additive secret shares of 1𝑥∈[0,2𝑛−1−1] .

Define the interval [𝑝,𝑞] for sign extraction:
1: 𝑝 ← 0; 𝑞 ← 2𝑛−1 − 1

Deserialize key and obtain local overflow term 𝜂:
2: (𝒌𝛾 𝑗 , 𝑐 𝑗) ← 𝒌 𝑗
3: 𝜂 ← 1𝑥>𝑝 − 1𝑥>𝑞+1

Evaluate the DCF with two inputs and compute result:
4: 𝑜𝐿

𝑗
← FSS.Eval<𝑛 (𝑗, 𝒌𝛾 𝑗 , 1, 𝑥 − 1)

5: 𝑜𝑅
𝑗
← FSS.Eval<𝑛 (𝑗, 𝒌𝛾 𝑗 , 1, 𝑥 − 𝑞 − 2)

6: return 𝑜 𝑗 ← 𝑗 · 𝜂 − 𝑜𝐿
𝑗
+ 𝑜𝑅

𝑗
+ 𝑐 𝑗

2.1.4 On security guarantees. This work focuses on 2PC with
security against a semi-honest adversary non-adaptively corrupting
at most one computing party. Also referred to asHonest-but-Curious,
the computing parties 𝑃 𝑗 are to follow the protocol faithfully, while
a party corrupted by the adversary will try to extract as much
information as possible from his computation.

Employing simulation based security proofs [17, 38], previous
works have proven SS and ΠSS to be perfectly information theoretic
secure against computationally unbounded semi-honest adversaries
[29, 53]. In contrast, FSS schemes rely on the security of the un-
derlying PRG to be proven computationally secure against time
bounded adversaries [11].

2.2 Thresholded Distance Metrics and
Applications

Inspired by GSHADE [15], we introduce the thresholded distance
metrics that we seek to protect in this work alongside motivating
real-world applications:
• Scalar Product: 𝑓𝑆𝑃 (𝒙,𝒚) = 𝒙𝑇𝒚 =

∑𝑛
𝑖=1 𝒙

(𝑖)𝒚 (𝑖) is a com-
mon distance metric in face recognition where 𝒙,𝒚 ∈ R𝑛 are
two vectors of the same dimension.
• Hamming Distance: 𝑓𝐻𝐷 (𝒙,𝒚) =

∑𝑛
𝑖=1 (𝒙 (𝑖) ⊕ 𝒚 (𝑖)) is a

distance metric frequently used in information theory and

and if 𝑝 + 𝑟 does not overflow (1𝑝+𝑟>𝑝 , which is always 1 in our instantiation since
𝑝 = 0 and 𝑟 < 2𝑛 − 1). The corner case term tests whether 𝑝 + 𝑟 = 2𝑛 − 1 (1𝑝+𝑟=2𝑛−1 ,
yielding zero except if 𝑟 = 2𝑛 − 1 in our case). Proofs of the need of these correctness
terms are given in [11].

computer science to measure the distance between two bit-
strings. Besides its interest in iris and fingerprint recognition,
it is the base of the perceptual hashing technique [49] used
in image comparison, with applications ranging from im-
age watermarking [31] to detection of Child Sexual Abuse
Material (CSAM)[25].
• Squared Euclidean Distance: 𝑓𝑆𝐸𝐷 (𝒙,𝒚) =

∑𝑛
𝑖=1 (𝒙 (𝑖) −

𝒚 (𝑖))2 is a distance metric used in many machine learning
applications, such as clustering [48]. It is also used in the
context of face recognition [37].
• Squared Mahalanobis Distance: 𝑓𝑀𝐷 (𝒙,𝒚) = (𝒙 −𝒚)𝑇𝑴
(𝒙 −𝒚) is a distance metric used in many machine learning
applications, such as clustering [48] and recognition of hand
shape/keystrokes/signatures [15].

3 OUR SOLUTION
We now describe our solution for a lightweight and efficient 2PC
distance metric with comparison, requiring a single round of com-
munication and two ring elements in the online phase.

3.1 Distance Metrics
We start off by writing the generic function we wish to protect:

𝑓 (𝑓𝑑𝑖𝑠𝑡 , 𝜃, 𝒙,𝒚) = 1𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚)⩾𝜃 =

{
1 if 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) ⩾ 𝜃,
0 if 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) < 𝜃,

(3)

To adapt to 2PC, we reformulate the distance metrics 𝑓𝑑𝑖𝑠𝑡 from
Section 2.2 as

𝑧 = 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) = 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒙) + 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒚) + 𝑓𝑐𝑝 ·
∑︁
(𝒙 (𝑖) · 𝒚 (𝑖)) (4)

where 𝑓𝑙𝑜𝑐𝑎𝑙 is a function that can be computed locally by each
input data holder, and 𝑓𝑐𝑝 is the "cross product" constant factor that
applies to the scalar product evaluation present in all the metrics.
Using this blueprint, we rewrite all the distance metrics in Table 1.

We remark that the Hamming Distance can be reformulated as
the Squared Euclidean Distance as long as the input vectors are
composed of binary values 𝒙 (𝑖) ,𝒚 (𝑖) ∈ {0, 1}∀𝑖 , since the boolean
XOR operation between two binary values can be rewritten in the
arithmetic domain as 𝒙 (𝑖) ⊕ 𝒚 (𝑖) = (𝒙 (𝑖) −𝒚 (𝑖))2, the square of its
difference.

3.2 The Two-Party Computation Scenario
This work is set in a context of two party computation (2PC), where
two non-colluding parties (P0, P1) are in charge of performing the
secure computation. We argue the security of our protocols assum-
ing these two parties behave in a semi-honest manner, following
the protocol steps faithfully while attempting to extract as much

4

Funshade: Function Secret Sharing for Two-Party Secure Thresholded Distance Evaluation Proceedings on Privacy Enhancing Technologies YYYY(X)

information as possible from the process. In this context, Funshade
guarantees privacy of all the input data against a semi-honest ad-
versary corrupting either of the two parties (see Section 3.6 for a
detailed security analysis).

Our work is set in the MPC with preprocessing model, leveraging
off a setup/offline phase in order to optimize the cost of the online
(input-dependent) phase. Much like for other 2PC scenarios [19,
29, 53, 55], our protocols also require several additional roles to be
filled in a complete solution:
• R𝑠𝑒𝑡𝑢𝑝 : The setup covers the generation of preprocessing
material during the offline phase, and its distribution to the
computing parties involved in the online phase.
• R𝑖𝑛𝒙 ,R𝑖𝑛𝒚 : The input data holders, with access to the input
vectors 𝒙 and 𝒚 respectively. These vectors are to be shared
with the computing parties either during the offline phase if
available beforehand, or at the beginning of the online phase.
By convention, and following Equation 3, we employ 𝒙 for
the live template and 𝒚/𝒀 for the reference template(s).
• R𝑟𝑒𝑠 : Receives the shares of the secure computation and
reconstructs the result.

A role can be performed by more than one party at the same time,
e.g., P0, P1 can jointly perform the role R𝑠𝑒𝑡𝑢𝑝 (more in Section 3.5).
A party can carry out multiple roles as well.

3.3 Sketching the Solution
With the different parties and roles in place, we are now ready
to sketch our solution. In a nutshell, we combine Π-sharing to
locally compute a scalar product, with the FSS gate for interval
containment from [11] with full correctness.

The key insight driving our design stems from the intermediate
SS state in the Π-sharing multiplication (Equation 2). By providing
Π-shared input vectors to the computing parties P𝑗 , we can locally
obtain the SS shares of the element-wisemultiplication, and perform
local cumulative addition to obtain shares of the scalar product
result. Compared to the pure SS approach, we no longer need a
round of communication to reconstruct the intermediate values 𝑥−𝑎
and𝑦−𝑏 masked by Beaver triples (Mult. in Equation 1). As pointed
out in ABY2.0 [53], the communication in a ΠSS multiplication gate
happens at the output wires, as opposed to SS multiplication gates
where the round of communication is tied to the input wires.

The subsequent FSS gate for interval containment requires a
publicly reconstructed input held by both parties, which, to preserve
the input data privacy, must be masked prior to its reconstruction
(in line with previous FSS-based works [11, 14, 58]). Crucially, the
masking of the private input via local shares addition followed
by its reconstruction (at the cost of one round of communication)
happens at the input wire of the FSS gate.

All we have left is to put together the two pieces of the puzzle.
We can skip the Π-sharing reconstruction and instead add the input
mask directly to the scalar product output, and then reconstruct
this masked value to serve as public input for the FSS interval
containment gate. Figure 1 depicts our idea applied to the scalar
product metric.

To obtain the other metrics wewould have each input data holder
R𝑖𝑛𝒙 ,R𝑖𝑛𝒚 run 𝑓𝑙𝑜𝑐𝑎𝑙 on its input and secret share this result with
the computing parties to add it to the output of the scalar product. In

addition to that, both parties would multiply the shares of the scalar
product result with the corresponding public value 𝑓𝑐𝑝 , resulting
in the correct distance metric evaluation 𝑧 = 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚).

To keep the threshold 𝜃 hidden from the computing parties (and
known only by R𝑠𝑒𝑡𝑢𝑝), we subtract the value of 𝜃 from the additive
random mask 𝑟 during the offline/setup phase to get 𝑟𝜃 , and then
compute 𝑧𝜃 = 𝑧 − 𝜃 .

3.4 Protocol Specification
Embracing this combination of ΠSS for the locally computed scalar
product and FSS for the comparison to 𝜃 , we can now outline each
of the protocols that compose the full solution:

(1) Funshade.Setup (Protocol 3): generation of the correlated
randomness required for the scalar product multiplications,
as well as the keys for the interval containment, and distri-
bution of all the preprocessing material.

Protocol 3 Funshade.Setup(𝑙 , 𝑛, 𝜆, 𝜃)→ 𝒌0, 𝒌1, ⟨𝛿𝒙 ⟩ ,
〈
𝛿𝒚

〉
Players: R𝑠𝑒𝑡𝑢𝑝
Input: 𝑙 : length of the input vectors.

𝑛: number of bits for the secret sharing ring Z2𝑛 .
𝜆: security parameter.
𝜃 : threshold for the comparison ∈ Z2𝑛 .

Output: 𝒌0, 𝒌1: preprocessing keys, sent to P0, P1 respectively.
⟨𝛿𝒙 ⟩ ,

〈
𝛿𝒚

〉
: 𝛿-shares of input vectors, sent to P𝑖𝑛𝒙 , P𝑖𝑛𝒚
(input owners) resp.

Note: All arithmetic operations (+,−,·) are defined in Z2𝑛 .

Beaver Triples for Π-sharing scalar product:
1: ⟨𝜹𝑥 ⟩ ,

〈
𝜹𝑦

〉
≡ ((𝜹𝑥0 , 𝜹𝑥1), (𝜹𝑦0 , 𝜹𝑦1)) ∼ U[Z𝑙×42𝑛]

2: 𝜹𝑥𝑦0 ∼ U[Z𝑙2𝑛]
𝜹𝑥𝑦1 ← (𝜹𝑥0 + 𝜹𝑥1) · (𝜹𝑦0 + 𝜹𝑦1) − 𝜹𝑥𝑦0〈
𝜹𝑥𝑦

〉
≡ (𝜹𝑥𝑦0 , 𝜹𝑥𝑦1)

3: ⟨𝑟 ⟩ ≡ (𝑟0, 𝑟1) ∼ U[Z22𝑛] 𝑟 ← 𝑟0 + 𝑟1
⟨𝑟𝜃 ⟩ ≡ (𝑟𝜃0, 𝑟𝜃1) ← (𝑟0, 𝑟1 − 𝜃)

FSS interval containment:
4: 𝒌𝐼𝐶0 , 𝒌𝐼𝐶1 ← FSS.Gen𝐼𝐶 (𝜆, 𝑛, 𝑟)
5: 𝒌 𝑗 ≡ (𝜹𝑥 𝑗 , 𝜹𝑦 𝑗 , 𝜹𝑥𝑦 𝑗 , 𝑟𝜃 𝑗 , 𝒌𝐼𝐶𝑗), 𝑗 ∈ {0, 1}

Dealing the preprocessing material :
6: Send 𝒌0 ⇒ P0, (𝜹𝒙0 + 𝜹𝒙1) ⇒ R𝑖𝑛𝒙

𝒌1 ⇒ P1, (𝜹𝒚0 + 𝜹𝒚1) ⇒ R𝑖𝑛𝒚

(2) Funshade.Share (Protocol 4): R𝑖𝑛𝒙 and R𝑖𝑛𝒚 prepare the Π-
shares of their corresponding inputs using the correlated
randomness and then send these shares to P0, P1.

(3) Funshade.Eval (Protocol 5): P0, P1 engage in an online pro-
tocol upon acquiring the Π-shares of both inputs, using local
multiplication and addition to compute the scalar product,
and then evaluate the interval containment FSS scheme to
determine whether the result is below the threshold 𝜃 .

(4) Funshade.Result (Protocol 6): P0, P1 send the arithmetic
shares of the result to R𝑟𝑒𝑠 for its reconstruction.

5

Proceedings on Privacy Enhancing Technologies YYYY(X) Ibarrondo et al.

𝑃0 𝚫𝒗

𝜹𝒗0 𝜹𝒗1

𝚫𝒗 𝑃1

𝛱 Secret sharing of 𝒗

Scalar Product z ← 𝒙𝑻𝒚
& Comparison: o ← 1z≥𝜃

“Beaver” Mult. Triples

R𝑠𝑒𝑡𝑢𝑝

𝜹𝒙𝒚 = 𝜹𝒙 ⋅ 𝜹𝒚

𝑃0
𝜹𝒙𝒚𝟎, 𝜹𝒙𝟎, 𝜹𝒚𝟎

𝑃1
𝜹𝒙𝒚𝟏, 𝜹𝒙𝟏, 𝜹𝒚𝟏

𝑃0 𝑃1𝜹𝒙𝒚0, 𝜹𝒙0, 𝜹𝒚0, 𝚫𝒙, 𝚫𝒚, 𝒌0, 𝑟𝜃0 𝜹𝒙𝒚1, 𝜹𝒙1, 𝜹𝒚1, 𝚫𝒙, 𝚫𝒚, 𝒌1, 𝑟𝜃1

𝑧0 ←∑ 𝜹𝒙𝒚0 −𝚫𝒙𝜹𝒚0 −𝚫𝒚𝜹𝑥0
Ƹ𝑧𝜃0 ←𝑧0 + 𝑟𝜃0

𝑧1 ←∑ 𝜹𝒙𝒚1 −𝚫𝒙𝜹𝒚1 −𝚫𝒚𝜹𝑥1 +𝚫𝒙𝚫𝒚

Ƹ𝑧𝜃1 ←𝑧1 + 𝑟𝜃1

Ƹ𝑧𝜃0 Ƹ𝑧𝜃1

𝑜 = 1𝑧≥𝜃 ∀𝒙, ∀𝒚, ∀𝜃

𝑜0 ← FSS. EvalIC ො𝑧𝜃, 𝒌0

Ƹ𝑧𝜃 ← Ƹ𝑧𝜃0 + Ƹ𝑧𝜃1 Ƹ𝑧𝜃 ← Ƹ𝑧𝜃0 + Ƹ𝑧𝜃1

𝑜1 ← FSS. EvalIC ො𝑧𝜃, 𝒌1

R𝑖𝑛𝑣

𝚫𝒗 = 𝒗 + 𝜹𝒗

R𝑖𝑛𝑦R𝑖𝑛𝑥

𝜹𝒙 𝜹𝒚

𝒗 ∈ {𝒙, 𝒚}

Offline phase Online phase Either

Figure 1: Overview of Funshade primitives

Protocol 4 Funshade.Share(𝒗, 𝜹𝒗)→ 𝚫𝑣, ⟨𝑑𝒗⟩
Players: R𝑖𝑛𝒗 , holding the input vector 𝒗 (where 𝒗 ∈ {𝒙,𝒚}).
Input: 𝒗: input vector ∈ Z𝑙2𝑛 held by P𝑖𝑛𝒗 .

𝜹𝒗 : Precomputed sum of 𝛿-shares ∈ Z𝑙2𝑛 .
Output: 𝚫𝑣 : Δ-shares of vector 𝒗 distributed to both P0 & P1.

𝑑𝒗𝑗 : Arithmetic shares of the local computation 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒗).

1: 𝚫𝑣 ← (𝒗 + 𝜹𝒗)
2: 𝑑𝒗 ← 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒗); ⟨𝑑𝒗⟩ ≡ (𝑑𝒗0, 𝑑𝒗1) ← (∼ U[Z2𝑛] , 𝑑𝒗 − 𝑑𝒗0)
3: Send (𝚫𝑣, 𝑑𝒗0) ⇒ P0, (𝚫𝑣, 𝑑𝒗1) ⇒ P1

3.5 Applications and Practical Considerations
We can employ our solution in a variety of use-cases, from biometric
verification to CSAM detection. In this section we apply Funshade
to a scenario of biometric authentication for access control.

There is a Gate allowing access to a flight/train/concert with a
small computer and a camera, and a Biometric Provider (BP) op-
erating a server that holds the database of registered/enrolled users.
𝒚 corresponds to a biometric template belonging to an enrolled
user, and 𝒙 to a freshly captured biometric template. This setting
naturally includes two computing parties {𝐺𝑎𝑡𝑒, 𝐵𝑃} ≡ {P0, P1},
each of them playing specific roles, with 𝐺𝑎𝑡𝑒 ⊇ R𝑖𝑛𝒙 ,R𝑟𝑒𝑠 and
𝐵𝑃 ⊇ R𝑖𝑛𝒚 . The solution is split into two phases:

Enrollment (offline):
1 R𝑠𝑒𝑡𝑢𝑝 carries out the generation of preprocessingmaterial

and distributes it to BP and Gate.
2 BP (R𝑖𝑛𝒚) enrolls an user by collecting its biometric tem-

plate 𝒚, and then secret shares it with Gate (P0).

Protocol 5 Funshade.Eval(𝑗,Δ𝒙 ,Δ𝒚 , ⟨𝑑𝒙 ⟩ ,
〈
𝑑𝒚

〉
, 𝒌 𝑗)→ ⟨𝑜⟩

Players: P𝑗 , 𝑗 ∈ {0, 1} computing parties.
Input: Δ𝒙 ,Δ𝒚 : Δ-shares of ⟨⟨𝒙⟩⟩, ⟨⟨𝒚⟩⟩ (Π-shared inputs 𝒙,𝒚) held

by both P0 and P1.
⟨𝑑𝒙 ⟩ ,

〈
𝑑𝒚

〉
: Arithmetic shares of locally computed single-

input terms 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒙), 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒚) of 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚).
𝒌 𝑗 : preprocessing keys from Funshade.Setup containing:
𝜹𝒙 𝑗

, 𝜹𝒚𝑗
: 𝛿-shares of Π-shared input vectors 𝒙,𝒚,

𝜹𝒙𝒚𝑗
: arith. shares of Beaver triple s.t. ⟨𝜹𝑥 ⟩

〈
𝜹𝑦

〉
=
〈
𝜹𝑥𝑦

〉
,

𝑟𝜃 𝑗 : arith. shares of FSS input mask 𝑟 minus threshold 𝜃 ,
𝒌𝐼𝐶
𝑗
: FSS key for the IC gate of [11].

Output: ⟨𝑜⟩: arithmetic shares of the result 𝑜 = 1𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚)⩾𝜃 .
Note: All steps apply to both computing parties P𝑗 , 𝑗 ∈ {0, 1}. All

arithmetic operations (+,−,·) are defined in Z2𝑛 .

Π-sharing based scalar product:
1: 𝑧𝜃 𝑗 ← 𝑟𝜃 𝑗 +𝑑𝒙 𝑗

+𝑑𝒚𝑗
+ 𝑓𝑐𝑝 𝑓 ·

∑𝑙 [𝑗·Δ𝒙·Δ𝒚−Δ𝒙·𝛿𝒚𝑗
−Δ𝒚·𝛿𝒙 𝑗

+𝛿𝒙𝒚𝑗
]

Reconstruction of masked input to FSS gate:
2: P𝑗 : Send 𝑧𝜃 𝑗 ⇒ P1− 𝑗 ; 𝑧𝜃 ← 𝑧𝜃0 + 𝑧𝜃1

Interval Containment for sign extraction:
3: 𝑜 𝑗 ← FSS.Eval𝐼𝐶 (𝑗, 𝒌𝐼𝐶

𝑗
, 𝑧𝜃)

4: return 𝑜 𝑗

Identification (Online):
3 A user3 attempts to cross the Gate. Gate (R𝑖𝑛𝑥) gets and

secret shares his live template with BP (P1).

3Note that the users are not participating in the protocol themselves.

6

Funshade: Function Secret Sharing for Two-Party Secure Thresholded Distance Evaluation Proceedings on Privacy Enhancing Technologies YYYY(X)

Reference
biometric
template 𝒚

𝑆ℎ𝑎𝑟𝑒 𝒚,…

Biometric
Provider (BP)

𝐸𝑣𝑎𝑙 0, 𝚫𝒙, 𝚫𝑦, . . .4

𝑆𝑒𝑡𝑢𝑝 …1

𝑅𝑒𝑠𝑢𝑙𝑡 𝑜0, 𝑜15

Gate

Match (1)
Reject (0)

Live/probe
biometric
template 𝒙

2

Δ𝒚, 𝑑𝑦1 , …
𝑑𝑦1 , Δ𝒚

𝑆ℎ𝑎𝑟𝑒 𝒙,…3

Δ𝒙, 𝑑𝒙0 , …
Δ𝒙, 𝑑𝒙0

𝐸𝑣𝑎𝑙 1, 𝚫𝒙, 𝚫𝑦, . . .4
𝑜1𝑜0

Ƹ𝑧1 Ƹ𝑧0

A
u

th
en

tica
tio

n
En

ro
llm

en
t

[…][…]

User

Figure 2: Diagram of a privacy-preserving biometric authentication solution for flight boarding.

Protocol 6 Funshade.Result(⟨𝑜⟩)→ 𝑜

Players: P𝑗 , 𝑗 ∈ {0, 1} computing parties, R𝑟𝑒𝑠 result holder.
Input: ⟨𝑜⟩: secret shares 𝑜0, 𝑜1 ∈ Z2𝑛 of the result 𝑜 held by P0, P1.
Output: 𝑜 : Output value.

1: P𝑗 : Send 𝑜 𝑗 ⇒ R𝑟𝑒𝑠 .
2: R𝑟𝑒𝑠 : 𝑜 ← (𝑜0 + 𝑜1)

4 Gate (P0) and BP (P1) jointly perform Protocol 5, incurring
in one round of communication where each party sends
its share of the distance evaluation to the other.

5 The final result is sent to Gate (R𝑟𝑒𝑠), who accepts or rejects
the user accordingly.

This instantiation can be parallelized for different reference in-
puts𝒚 (𝑘) in cases where the reference database contains more than
one record, e.g., biometric identification against a database of mul-
tiple subjects, CSAM detection against a large database of image
hashes. In these cases, the individual secret shared outputs 𝒐 (𝑘)

𝑗
can

be locally summed up to yield a single value as output. Additionally,
these use-cases normally gather their reference databases ahead of
time, allowing for early deployment of the Π-shares of 𝒚 (𝑘) .

Realizing the setup R𝑠𝑒𝑡𝑢𝑝 . In line with previous work on semi-
honest MPC [8, 26, 45, 56, 64], fresh randomness is generated for
each 1:1 verification in the offline phase and used only once in
the online phase, as the security of our protocols would weaken
if we were to reuse randomness/masks. Protocols in this work
are presented in the preprocessing model, where P0, P1 receive
correlated randomness from a trusted dealer taking the role of
R𝑠𝑒𝑡𝑢𝑝 . Protocols within this model can be converted to protocols
in the standard model by:
(a) Resorting to trusted hardware [52]. The role R𝑠𝑒𝑡𝑢𝑝 can be emu-

lated within a trusted execution environment inside one of the
computing parties, such as Intel SGX or ARM TrustZone [51].

(b) A semi-honest 3PC setting with honest-majority [63]: A third
party P2 can be added to the protocol to enact R𝑠𝑒𝑡𝑢𝑝 during
the offline phase and remain dormant in the online phase.

(c) Pure 2PC [11]: R𝑠𝑒𝑡𝑢𝑝 can be jointly emulated by the two parties
P0, P1 via a small-scale two-party secure protocol.

For the biometric authentication solution illustrated in Figure
2 we favor the 2PC approach, resorting to generic 2PC techniques
for the FSS gate key generation (Appendix A.2 of [11]), and either
Oblivious Transfer (OT) or Homomorphic Encryption (HE) for the
preprocessing of the ΠSS scalar product (Section 3.1.3 of [53]).

3.6 Security Analysis
We consider security against a Honest-but-Curious adversary A
that corrupts up to one of the two computing parties P𝑗 .We consider
a static corruption model where the adversary must choose which
participant to corrupt before the execution of the computations.
This is a standard security model in previous MPC frameworks
[11, 19, 29, 50, 53, 58]. Under this threat model, we define and later
prove the security and correctness of our constructions.

We employ the standard real world - ideal world paradigm, pro-
viding the simulation for the case of a corrupt P𝑗 . The ideal world
simulation contains an additional trusted party that receives all
the inputs from P0, P1, computes the ideal functionality correctly
and sends the corresponding results back to P0, P1. Conversely, the
real world simulation executes the protocol as described in the
Funshade algorithms in the presence of A.

Our security proof works in the FFunshade.𝑠𝑒𝑡𝑢𝑝 -hybrid model
whereFFunshade.𝑠𝑒𝑡𝑢𝑝 represents the ideal functionality correspond-
ing to protocol Funshade.setup.

Definition 1 (Security of Funshade). For each 𝑗 ∈ {0, 1}, there
is a PPT algorithm S (simulator) such that ∀𝜃 ∈ Z∗𝑛+, ∀𝒙,𝒚 ∈ Z𝑙𝑛 and
every function 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) : Z𝑙𝑛 → Z𝑛 from Table 1, S realizes the
ideal functionality F𝑡ℎ−𝑑𝑖𝑠𝑡 , such that its behavior is computationally

7

Proceedings on Privacy Enhancing Technologies YYYY(X) Ibarrondo et al.

indistinguishable from a real world execution of protocols 4-5-6 in the
presence of a semi-honest adversary A.

Ideal Functionality F𝑡ℎ−𝑑𝑖𝑠𝑡
F𝑡ℎ−𝑑𝑖𝑠𝑡 interacts with the parties P0, P1 and the adver-
sary S and is parametrized by a publicly know function
𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) and a threshold 𝜃 .
• Inputs: F𝑡ℎ−𝑑𝑖𝑠𝑡 receives the inputs Δ𝒙 ,Δ𝒚 , 𝛿𝒙 𝑗

, 𝛿𝒚𝑗

from the computing parties P0, P1.
• Computation: F𝑡ℎ−𝑑𝑖𝑠𝑡 reconstructs 𝒙 = Δ𝒙 − (𝛿𝒙0 +
𝛿𝒙1) and𝒚 = Δ𝒚−(𝛿𝒚0+𝛿𝒚1), computes 𝑧 = 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚)
and 𝑜 = 1𝑧⩾𝜃 .
• Output: Sends 𝑜 𝑗 to P𝑟𝑒𝑠 .

Theorem 1. In the FFunshade.𝑠𝑒𝑡𝑢𝑝 -hybrid model, protocols 4-5-6
(online phase) securely realize the functionality F𝑡ℎ−𝑑𝑖𝑠𝑡 .

Proof. The semi-honest adversary corrupts P𝑗 during the se-
quential execution of protocols 4-5-6. For this case, S executes
the setup phase honestly on behalf of P1− 𝑗 (in case of interactive
setup), and will simulate the entire circuit evaluation, assuming the
circuit-inputs of P1− 𝑗 to be 0. In the Funshade.Result protocol, S
adjusts the shares of ⟨𝑜⟩ on behalf of P1− 𝑗 so that A sees the same
transcript as in the real-world protocol.
• Funshade.Setup: For the offline phase, we consider it as an
ideal functionality FFunshade.𝑠𝑒𝑡𝑢𝑝 , which generates the re-
quired FSS preprocessing keys and 𝛿-shares. Since we make
only black-box access to Funshade.setup, its simulation fol-
lows from the security of the underlying primitive used to
instantiate it (OT or HE for the ΠSS preprocessing mate-
rial stemming from setupMULT of [53], generic 2PC for the
FSS keys following Appendix A.2 of [11]). Alternatively, the
Setup can be delegated into a third party, emulated with
trusted hardware inside P0|P1 or with an independent semi-
honest party (as explained in Section 3.5).
• Funshade.Share: We generalize the behavior of S for both
inputs 𝒗 ∈ {𝒙,𝒚}. For the instances where P𝑗 is the owner
of the values (e.g., P𝑗 ⊇ R𝑖𝑛𝒙), S has to do nothing since
A is not receiving any messages. S receives Δ𝒗 from A on
behalf of P1− 𝑗 . For the instances where P1− 𝑗 is the owner,
S sets 𝒗 = 0 and performs the protocol steps honestly.
• Funshade.Eval: During the online phase, S follows the pro-
tocol steps honestly using the data obtained from the setup
phase. The scalar product requires 𝑙 local additions (non-
interactive and thus they don’t need to be simulated) and
a subsequent reconstruction of ⟨𝑧𝜃 ⟩ as 𝑧𝜃 = 𝑧𝜃0 + 𝑧𝜃1 that
behaves just like Funshade.Result and serves as input to the
FSS IC gate. For the FSS IC gate, we resort to the Simulation-
based security of [11] (Definition 2) to argue computational
indistinguishability of the ideal and real world executions,
hiding the information of 𝑟 contained in 𝒌0 and 𝒌1 from A.
• Funshade.Result: To reconstruct a value ⟨𝑜⟩, S is given the
output 𝑜 , which is the output of A. Using 𝑜 and the share
𝑜1− 𝑗 corresponding to P1− 𝑗 , S computes 𝑜 𝑗 = 𝑜 − 𝑜1− 𝑗 and
sends this to A on behalf of P1− 𝑗 . S receives 𝑜 𝑗 from A on
behalf of P1− 𝑗 . □

Definition 2 (Correctness of Funshade). For every threshold
𝜃 ∈ Z∗𝑛+, every pair of input vectors 𝒙,𝒚 ∈ Z𝑙𝑛 and every function
𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) : Z𝑙𝑛 → Z𝑛 from Table 1,

if (𝒌0, 𝒌1, ⟨𝛿𝒙 ⟩ ,
〈
𝛿𝒚

〉
) ← Funshade.Gen(𝑙, 𝑛, 𝜆, 𝜃)

and (𝚫𝒙 , ⟨𝑑𝒙 ⟩ ← Funshade.Share(𝒙, ⟨𝛿𝒙 ⟩),
𝚫𝒚 ,

〈
𝑑𝒚

〉
← Funshade.Share(𝒚,

〈
𝛿𝒚

〉
))

then Pr[Funshade.Eval(0,Δ𝒙 ,Δ𝒚 , 𝑑𝒙0 , 𝑑𝒚0 , 𝒌0)
+ Funshade.Eval(1,Δ𝒙 ,Δ𝒚 , 𝑑𝒙1 , 𝑑𝒚1 , 𝒌1)

= 1𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚)⩾𝜃] = 1.

(5)

Theorem 2. Jointly, protocol 3 (offline), and protocols 4-5-6 (on-
line), realize the function 𝑓 (𝑓𝑑𝑖𝑠𝑡 , 𝜃, 𝒙,𝒚) = 1𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚)⩾𝜃 correctly.

Proof. We first decompose the Π-sharing based scalar product
(step 1 of Protocol 5) for the joint result of the two computing
parties 𝑧𝜃 in Equation 6,

𝑧𝜃 = 𝑧𝜃0 + 𝑧𝜃1 = (𝑟𝜃0 + 𝑟𝜃1) + (𝑑𝒙0 + 𝑑𝒙1) + (𝑑𝒚1 + 𝑑𝒚1) + 𝑓𝑐𝑝 ·
∑𝑙

[Δ𝒙Δ𝒚−(Δ𝒙𝛿𝒚0+Δ𝒙𝛿𝒚1)−(Δ𝒚𝛿𝒙0+Δ𝒚𝛿𝒙1)+(𝛿𝒙𝒚0+𝛿𝒙𝒚1)]

= 𝑟𝜃 + 𝑑𝒙 + 𝑑𝒚 + 𝑓𝑐𝑝 ·
∑𝑙 [Δ𝒙Δ𝒚− Δ𝒙𝛿𝒚−Δ𝒚𝛿𝒙 +𝛿𝒙𝒚]

= 𝑟 − 𝜃 + 𝑑𝒙 + 𝑑𝒚 + 𝑓𝑐𝑝 ·
∑𝑙 [Δ𝒙Δ𝒚− Δ𝒙𝛿𝒚−Δ𝒚𝛿𝒙 +𝛿𝒙𝛿𝒚]

= 𝑟 − 𝜃 + 𝑑𝒙 + 𝑑𝒚 + 𝑓𝑐𝑝 ·
∑𝑙 (Δ𝒙−𝛿𝒙) · (Δ𝒚−𝛿𝒚)

= 𝑟 − 𝜃 + 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒙) + 𝑓𝑙𝑜𝑐𝑎𝑙 (𝒚) + 𝑓𝑐𝑝 ·
∑𝑙 (𝒙 (𝑖) · 𝒚 (𝑖))

= 𝑟 − 𝜃 + 𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚) = 𝑧𝜃 + 𝑟
(6)

where we group all the SS shares and reconstruct their original
values, replace 𝑟𝜃 and 𝛿𝒙𝒚 by the corresponding values (from defi-
nitions in protocol 1), group the Π-shares of 𝒙 and 𝒚 to later recon-
struct their values, and finally make use of Equation 4.

With the public input 𝑧 sorted out, we analyze the Interval Con-
tainment evaluation with output reconstruction in Equation 7,

𝑜 = 𝑜1 + 𝑜2 = FSS.Eval𝐼𝐶 (0, 𝒌𝐼𝐶0 , 𝑧𝜃) + FSS.Eval𝐼𝐶 (1, 𝒌𝐼𝐶1 , 𝑧𝜃)

= FSS.Eval𝐼𝐶 (0, FSS.Gen𝐼𝐶 (𝜆, 𝑛, 𝑟) (0) , 𝑧𝜃 + 𝑟)

+ FSS.Eval𝐼𝐶 (1, FSS.Gen𝐼𝐶 (𝜆, 𝑛, 𝑟) (1) , 𝑧𝜃 + 𝑟)
= 1𝑧𝜃 ∈Z∗𝑛+

= 10⩽𝑧−𝜃 = 1𝑓𝑑𝑖𝑠𝑡 (𝒙,𝒚)⩾𝜃

(7)

where we resort to Theorem 3 of [11] to argue that the two pro-
tocols (FSS.Gen𝐼𝐶 (𝜆, 𝑛, 𝑟), FSS.Eval𝐼𝐶 (𝑗, 𝒌𝐼𝐶

𝑗
, 𝑧𝜃)) constitute an FSS

gate4correctly realizing 𝑓 (𝑧𝜃) = 1𝑝≤𝑧𝜃 ≤𝑞 . Then, following Defini-
tion 2 (Correctness) of [11], we can argue that

Pr[FSS.Eval𝐼𝐶 (0, 𝒌𝐼𝐶0 , 𝑧𝜃) + FSS.Eval𝐼𝐶 (1,𝒌𝐼𝐶1 , 𝑧𝜃) =
10≤𝑧𝜃 ≤2𝑛−1−1] = 1

equating the FSS gate output to 1𝑧𝜃 ∈Z∗𝑛+
, the unit step function. □

4There are several notation elements to adapt in order to align with [11]. Our
mask 𝑟 is written as 𝑟 𝑖𝑛 in Figure 3 of [11] depicting the FSS IC gate. We set the
parameters 𝑝 = 0 and 𝑞 = 2𝑛−1 − 1 to define the interval containing all positive
integers. 1𝑝≤𝑧𝜃 ≤𝑞 = 𝑔𝐼𝐶,𝑛,𝑝,𝑞 (𝑧𝜃) is a function that belongs (per definition of IC gate
in Section 4 of [11]) to the family of functions G𝐼𝐶

𝑛,𝑝,𝑞 referenced in Theorem 3 of [11].

8

Funshade: Function Secret Sharing for Two-Party Secure Thresholded Distance Evaluation Proceedings on Privacy Enhancing Technologies YYYY(X)

Table 2: Communication size, computation time and latency (in both LAN andWAN settings) for the different steps of Funshade
applied to biometrics, with 𝑛 = 32 and 𝜆 = 𝑙 = 128, in two scenarios: authentication (𝐾 = 1) and identification (𝐾 = 5000).

Phase/Step Authentication (K=1) Identification (K=5000)
Comm. Computation Latency LAN|WAN Total Comm. Computation Latency LAN|WAN Total

O
ff
li
ne 1 Setup10 5.7 KB 33.63 𝜇𝑠 10.46 ms | 70.46 ms 10.49 ms | 70.49 ms 28.5 MB 133 ms 2.29 s | 2.35 s 2.42 s | 2.48 s

2 Share({𝒚}) 512 B 0.038 𝜇𝑠 10.04 ms | 70.04 ms 10.04 ms | 70.04 ms 2.56 MB 0.54 ms 215 ms | 275 ms 215 ms | 275 ms
Total 6.2 KB 33.67 𝜇𝑠 20.50 ms | 140.50 ms 20.53 ms | 140.53 ms 31.06 MB 133.54 ms 2.50 s | 2.62 s 2.63 s | 2.90 s

O
nl
in
e

3 Share(𝒙) 512 B 0.038 𝜇𝑠 10.04 ms | 70.04 ms 10.04 ms | 70.04 ms 512 B 0.038 𝜇𝑠 10.04 ms | 70.04 ms 10.04 ms | 70.04 ms
4 Eval (SP) 8 B 0.19 𝜇𝑠 10.00 ms | 70.00 ms 10.00 ms | 70.00 ms 40 KB 1.22 ms 10.40 ms | 70.40 ms 11.62 ms | 71.62 ms
4 Eval (IC) - 9.2 𝜇𝑠 - 9.2 𝜇𝑠 - 46.65 ms - 46.65 ms
5 Result 4 B - 10.00 ms | 70.00 ms 10.00 ms | 70.00 ms 4 B - 10.00 ms | 70.00 ms 10.00 ms | 70.00 ms
Total 524 B 9.43 𝜇𝑠 30.04 ms | 210.04 ms 30.05 ms | 210.05 ms 40.5 KB 47.87 ms 30.44 ms | 210.44 ms 78.31 ms | 258.31 ms

4 EXPERIMENTS
4.1 Implementation and Environment
We implement Funshade in a compact5, portable6 and standalone7
C module, and we open source it8. We also provide a lightweight
wrapper to Python by virtue of Cython.We instantiate the PRG func-
tion 𝐺 (employed in the DCF gate) with a Miyaguchi-Preneel one-
way compression function over an AES block cipher, an extended
variant of Matyas-Meyer-Oseas function used in previous works
[58]. We concatenate several fixed key block ciphers to achieve the
desired output length.

4.2 Results
To assess the efficiency of our constructions, we test the execution
of the full set of protocols from Figure 2 on a single core with an
Intel(R) Core(TM) i7-7800X CPU, limiting the RAM consumption
to up to 8GB, averaging measurements over at least 10 runs. For
the intra and inter-protocol communication we employ a secure
channel with capacity of 100𝑀𝑏𝑝𝑠 and consider two scenarios:
• A LAN setting with 10𝑚𝑠 of transmission latency.
• A WAN setting with 70𝑚𝑠 of transmission latency.

We time the execution of the FSS primitives, summarizing the
results in Table 3. We remark a ×5 speedup in the PRG function
G by resorting to AES-NI CPU instructions, and therefore employ
it for all the FSS primitives. As expected, the cost of both Gen and
Eval algorithms increase linearly with 𝑛, the bit size of the ring
Z2𝑛 where the operations take place.

Subsequently, we assess the communication costs for each step
of our solution using the Scalar Product (SP) as metric9, and we
list them in Table 4. The size of the offline phase’s output can be
interpreted as the total preprocessing. Overall, we highlight the
extremely low communication size in the online phase, of just 2𝐾𝑛
bits (2 ring elements for each of the 𝐾 distance evaluations).

5Around 1000 Lines of Code for the core implementation.
6We employ only generic integer types, C arrays and plain C89 instructions

(supported by every C compiler) to integrate smoothly with higher-level languages
such as Python, Rust or Golang.

7The only optional dependency is libsodium for secure randomness generation.
8Our code is available at https://<anonymous>/funshade.
9Note that the evaluation of other distance metrics would require adding just 𝑛

bits (one ring element, corresponding to a share of 𝑑𝒗) to the sharing of 𝒙 and 𝒚 .
10Depends on the instantiation of Funshade.Setup (Section 3.5). Trusted hardware

or a third party would yield the results from Table 2 while requiring only one round of
communication; a 2PC instantiationwould require more rounds andmore computation.

Table 3: Timings (ns) for the execution of FSS primitives over
𝑛-bit inputs, for 𝜆 = 128. The PRG function Gtiny implements
a standalone AES block, whereas Gni does so with faster AES-
NI CPU instructions. All the FSS primitives use Gni internally.

Algorithm
Input Size 8-bit 16-bit 32-bit 64-bit

Gni 162 162 162 202
Gtiny 871 871 871 1149
FSS.Gen<𝑛 4306 6818 11521 26720
FSS.Eval<𝑛 1207 2372 4700 11974
FSS.Gen𝐼𝐶𝑛 4974 7387 12287 28461
FSS.Eval𝐼𝐶𝑛 2409 4727 9296 23872

Table 4: Communication costs for each of the Funshade proto-
cols. 𝐾 is the number of reference vectors (𝐾 =1 for biometric
authentication, 𝐾 >1 for identification), 𝑙 is the vector length,
𝑛 is the bit size of the vector elements, and 𝜆 is the security
parameter.

Phase / Step # rounds Comm. size (bits)

O
ff
li
ne 1 Setup (∗)10 𝐾𝑛(2𝜆+8𝑙+4𝑛+10)+2𝐾𝜆

2 Share({𝒚1 · · ·𝒚𝐾 }) 1 𝐾𝑛𝑙

Total (∗)10 𝐾𝑛(2𝜆+9𝑙+4𝑛+10)+2𝐾𝜆

O
nl
in
e

3 Share(𝒙) 1 𝑛𝑙

4 Eval (SP) 1 2𝐾𝑛
4 Eval (IC) 0 -
5 Result 1 2𝑛
Total 3 𝑛(𝑙+2𝐾+2)

Focusing on the biometrics use-case, we resort to the Labelled
Faces in the Wild (LFW) dataset [40] (13233 faces from more than
5000 identities) and extract biometric templates of length 𝑙 = 128
with an ArcFace-based [30] feature extractor11. We set 𝑛 = 32 to
ensure that the protocols perfectly mimic the plaintext operations
and thus obtain the exact same results, without any drop in accuracy.
We report in Table 2 the results for two scenarios:
• Authentication, a 1:1 verification of the live template with a
single reference.
• Identification, a 1:K verification of the live template with a
set of 𝐾 references, employing a subset (𝐾 = 5000) of the
identities in the LFW dataset, enough to be of use for the

11Feature extractors with similar characteristics can be obtained from https://
github.com/deepinsight/insightface/wiki/Model-Zoo

9

https://<anonymous>/funshade
https://github.com/deepinsight/insightface/wiki/Model-Zoo
https://github.com/deepinsight/insightface/wiki/Model-Zoo

Proceedings on Privacy Enhancing Technologies YYYY(X) Ibarrondo et al.

102 103 104 105 106

K

20 ms

50 ms

100 ms

200 ms

500 ms

1 s

2 s

5 s

10 s

On
lin

e
la

te
nc

y
(L

AN
)

l
128
256
512
1024

n
8
16
32
64

102 103 104 105 106

K

20 ms

50 ms

100 ms

200 ms

500 ms

1 s

2 s

5 s

10 s

On
lin

e
la

te
nc

y
(W

AN
)

l
128
256
512
1024

n
8
16
32
64

Figure 3: Online latency timings for the evaluation of Funshade with varying K (number of reference vectors), l (vector length)
and n (size of vector elements in bits).

10
2

10
3

10
4

10
5

10
6

K

0

10

20

30

40

50

60

70

80

90

100

%
 o

f l
at

en
cy

 fo
r c

om
m

. (
LA

N
)

l
128
256
512
1024

n
8
16
32
64

10
2

10
3

10
4

10
5

10
6

K

0

10

20

30

40

50

60

70

80

90

100

%
 o

f l
at

en
cy

 fo
r c

om
m

. (
W

AN
)

l
128
256
512
1024

n
8
16
32
64

Figure 4: Ratio (%) between communication latency and total latency (communication + computation) for the online execution
of Funshade with varying 𝐾 (number of reference vectors), 𝑙 (vector length) and 𝑛 (size of vector elements in bits).

applications mentioned beforehand (e.g., access control for
a flight/train).

As shown in Table 2, the computation costs of our solution for
authentication are negligible with respect to the communication
latency. The total online latency for the identification scenario is
more balanced in the LAN setting, whereas communication still
dominates in the WAN setting. In any case, the total online latency
amounts to less than 300ms including input sharing and output
reconstruction, as well as its low-interaction lightweight communi-
cation makes Funshade an ideal solution for privacy-preserving
biometric verification in real time due to its low interaction.

Last but not least, we test our protocols with randomized input
vectors of varying length 𝑙 corresponding to typical template sizes
of modern biometric feature extractors [30], employing bit-sizes (𝑛)
corresponding to common CPU integer types to benefit from cheap

modular operations. We record the total online latency of all these
experiments in the identification scenario for increasing references
𝐾 . Figure 3 displays these results and shows how the vector size 𝑙
has a much lower impact in the latency than 𝑛, hinting that appli-
cations that require lower numerical precision (e.g., 𝑛 = 16) will be
noticeably faster. Figure 4 shows the ratio of the communication
latency to the total online latency. We observe that communication
is the main bottleneck up until 𝐾 ≈ 1000 in the LAN setting, and
𝐾 ≈ 10000 in WAN. While this suggests that applications with
higher requirements of 𝐾 (e.g., nation-wide identification) should
consider additional optimizations for the local computation (e.g.,
using multiple cores for parallelization or even resorting to a GPU),
our non-parallelized solution requires around 10𝑠 to identify an
individual against a database of 1 million records for 𝑛 = 32.

10

Funshade: Function Secret Sharing for Two-Party Secure Thresholded Distance Evaluation Proceedings on Privacy Enhancing Technologies YYYY(X)

To conclude, we verify the 100% correctness of our constructions
in these experiments as long as natural overflows (−2𝑛−1 ≥ 𝑧 ≥
2𝑛−1 − 1 for signed integers, 0 ≥ 𝑧 ≥ 2𝑛 − 1 for unsigned integers)
are avoided.

5 PREVIOUS WORK
Distance metric evaluations, specially for Hamming Distance and
Scalar Products, range among the most typical applications of
privacy-preserving computation techniques. Consequently, a wide
variety of previous work in MPC, FHE and FE have dealt with some
form of it.

The Multi Party Computation field includes a plethora of works
covering distance metric evaluations. All the frameworks for pri-
vacy preserving neural networks cover scalar-product-based matrix
multiplications often followed by ReLU activations [8, 26, 45, 56, 64],
covering a mixture of Garbled Circuits, Secret Sharing and their
conversions. Secure hamming distance evaluation has motivated
work such as [16] based on Oblivious Transfer, with its generaliza-
tion to multiple metrics in [15]. Mixed-mode protocols have also
tackled distance evaluations [29, 50, 53]. However, the majority of
these solutions incur in a considerable communication cost to per-
form comparison. More recently, solutions based on FSS [11, 14, 58]
have shown promising results, leading to this work.

In the field of Homomorphic Encryption, the biometrics use-case
has led to a variety of approaches, including [4, 47] for hamming
distance or [66] for scalar product. However, these approaches do
not include comparison to a threshold, and often rely on costly
cryptographic primitives that make them slow.

Since the advent of Functional Encryption [9], scalar product and
hamming distance have been the most suitable candidates to study.
Inner Product Encryption (IPE) started off with selective security
in [1], already envisioning biometric use-cases, and reaching full
security with [28] and [61]. [44] applied FE to biometric authen-
tication with hamming distance and to nearest-neighbor search
on encrypted data; [46] employs IPE for hamming-weight based
matchings of real-world iris templates. [43] and [41] are the latest
iterations of privacy-preserving scalar product techniques based on
FE, demonstrating performances in the order of hundreds of𝑚𝑠 for
vectors of 128 values. While FE does not require an extra operation
after the "evaluation" to retrieve the result, these schemes scale
polynomially with the input vector length (thus are unsuitable for
very large vectors), and their computation does not include com-
parison to a threshold. To include it, one must resort to techniques
such as Threshold Predicate Encryption [67].

There also exist techniques in the literature not resorting to these
three main fields, such as [68] with a custom scheme, or [59] with
Identity Based Encryption.

To position Funshade in the literature, we compare the costs of
the online phase of our solutionwith that of selected previous works
in Table 5. Funshade is the first work in the 2PC setting requiring
one single round of communication to evaluate 1𝒙𝑇 𝒚>𝜃 while also
presenting the lowest communication size of 2 ring elements. An
additional side-by-side comparison with AriaNN [58] is provided
in Appendix A.

On the importance of the threshold comparison in privacy-preserving
distance metrics. The security provided by our construction, and

that of all privacy-preserving techniques in general (MPC, FHE, FE),
does not prevent the reconstructed outputs 𝑜 = 𝑓 (𝒙,𝒚) from reveal-
ing information about the inputs 𝒙,𝒚. Indeed, P𝑟𝑒𝑠 can leverage on
his knowledge about the function being computed and attempt to
extract information about the inputs from the outputs by inverting
the function being computed 𝐿𝑒𝑎𝑘 (𝒙,𝒚) ← 𝐿𝑒𝑎𝑘 (𝑓 −1 (𝑜)). Labeled
as "input leakage" in previous works [41], this leakage affects the
practical privacy of real-world deployments of privacy-preserving
solutions. Applications using distance metric calculations as one of
many building blocks (e.g., Machine Learning) might be more natu-
rally protected thanks to the complexity of the function (beware!
black-box model extraction attacks are real [62]), yet applications
requiring only one distance metric evaluation (e.g., biometric match-
ing, CSAM detection) are much more sensitive to this leakage, since
these distance metrics are linear functions and thus easily invertible.

While solutions exist to add controlled noise to the input (e.g.,
Differential Privacy in [18]), the most straightforward method to
reduce this leakage is to output the least information possible. For
applications like biometric matching and CSAM detection, one-bit
outputs suffice to determine whether there is a match or not, and
hence performing the comparison in a privacy-preserving manner
reduces considerably the input leakage of the construction. As such,
FHE and FE-based solutions without privacy-preserving threshold
comparison are more risky to apply in real-world scenarios than
threshold-enabled solutions that MPC (ours included) offers out of
the shelf.

6 CONCLUSIONS
In this work we presented Funshade, a novel 2PC privacy preserv-
ing solution of various distance metrics (e.g., Hamming distance,
Scalar Product) followed by threshold comparison. We build our
protocols upon ΠSS, a version of arithmetic secret sharing opti-
mized for the secure evaluation of scalar products, and function
secret sharing with 100% correctness for comparison. Thanks to
this, Funshade proposes the first solution in the 2PC literature
requiring one single round of communication in the online phase
while outperforming all previous works in online communication
size (two ring elements), all while relying on lightweight crypto-
graphic primitives. We implement our solution from scratch in a
portable C module, and showcase its extreme efficiency by achiev-
ing secure biometric identification against 5000 records in less than
300ms with 32-bit precision, and against 1 million records in ∼10s.

ACKNOWLEDGMENTS
This work has been partially supported by the 3IA Côte d’Azur
program (ANR19-P3IA-0002).

REFERENCES
[1] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. 2015.

Simple functional encryption schemes for inner products. In IACR International
Workshop on Public Key Cryptography. Springer, USA, 733–751.

[2] Shashank Agrawal and David J Wu. 2017. Functional encryption: determinis-
tic to randomized functions from simple assumptions. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
France, 30–61.

[3] Manuel Barbosa, Dario Catalano, Azam Soleimanian, and Bogdan Warinschi.
2019. Efficient function-hiding functional encryption: From inner-products to
orthogonality. In Cryptographers’ Track at the RSA Conference. Springer, USA,
127–148.

11

Proceedings on Privacy Enhancing Technologies YYYY(X) Ibarrondo et al.

Table 5: Benchmark of theoretical costs on evaluating a scalar product and comparison to threshold between two vectors with 𝑙
integers of 𝑛-bits each. We exclude the costs of input sharing (1 round of communication) and output reconstruction (1 round
of communication), which are equivalent for all protocols.

Work Type #Rounds of
communication

#ring elements
in communication Correctness Online Computation Blocks

AriaNN [58] 2PC
SS: Arith., FSS 2 (1+1) 4𝑙 + 4 N SS scalar product,

FSS Comparison (1 DCF)

Boyle et. al. [11] 2PC
SS: Arith., FSS 2 (1+1) 4𝑙 + 4 Y SS scalar product,

FSS IC gate (2 DCF)

ABY [29] 2PC
SS: Boolean&Arith, GC 3 (1+2+0) ≫ 6𝑙 Y

SS scalar product,
Arith. to Yao conversion,
GC evaluation

ABY2.0 [53] 2PC
ΠSS: Boolean&Arith. 5 (1+1+3) ≫ 2 Y

ΠSS scalar product,
Arith. to Boolean conversion,
BitExtraction

GSHADE [15]
(only scalar prod.)

2PC
OT 2 > 2𝑙 Y correlated OTs.

CryptFlow2 [55] 2PC
SS: Arith., OT 5 > (128 + 14)𝑙 Y Linear layer (1-dim weights),

dReLU

Falcon [64] 3PC
Replicated SS: Arith. 8 (1+7) > 6 Y MatMult with 1-dim matrices,

Private Compare

Funshade (ours) 2PC
ΠSS: Arith., FSS 1 2 Y ΠSS scalar product,

FSS IC gate (2 DCF)

[4] Mauro Barni, Tiziano Bianchi, Dario Catalano, Mario Di Raimondo, Rug-
gero Donida Labati, Pierluigi Failla, Dario Fiore, Riccardo Lazzeretti, Vincenzo
Piuri, Alessandro Piva, et al. 2010. A privacy-compliant fingerprint recogni-
tion system based on homomorphic encryption and fingercode templates. In
2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and
Systems (BTAS). IEEE, USA, 1–7.

[5] Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization.
In Annual International Cryptology Conference. Springer, Germany, 420–432.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 2019. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation. In Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali. ACM, New York, NY, USA, 351–371.

[7] Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and Shafi Goldwasser. 2020. Se-
cure large-scale genome-wide association studies using homomorphic encryption.
Proceedings of the National Academy of Sciences of the United States of America
117, 21 (26 May 2020), 11608–11613. https://doi.org/10.1073/pnas.1918257117

[8] Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schneider, and
Hossein Yalame. 2020. MP2ML: A mixed-protocol machine learning framework
for private inference. In Proceedings of the 15th International Conference on Avail-
ability, Reliability and Security. Association for Computing Machinery, Ireland,
1–10.

[9] Dan Boneh, Amit Sahai, and Brent Waters. 2011. Functional encryption: Def-
initions and challenges. In Theory of Cryptography Conference. Springer, USA,
253–273.

[10] Florian Bourse. 2017. Functional encryption for inner-product evaluations. Ph. D.
Dissertation. PSL Research University.

[11] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant
Kumar, and Mayank Rathee. 2021. Function Secret Sharing for Mixed-Mode
and Fixed-Point Secure Computation. In Advances in Cryptology–EUROCRYPT
2021: 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, October 17–21, 2021, Proceedings, Part II. Springer,
Croatia, 871–900.

[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function secret sharing. In
EUROCRYPT. Springer, Bulgaria, 337–367.

[13] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function secret sharing: Improve-
ments and extensions. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, Austria, 1292–1303.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2019. Secure Computation with Prepro-
cessing via Function Secret Sharing. In 17th International Conference on Theory
of Cryptography, TCC 2019. Springer, Germany, 341–371.

[15] Julien Bringer, Herve Chabanne, Melanie Favre, Alain Patey, Thomas Schneider,
and Michael Zohner. 2014. GSHADE: Faster privacy-preserving distance compu-
tation and biometric identification. In Proceedings of the 2nd ACM workshop on
Information hiding and multimedia security. ACM, Austria, 187–198.

[16] Julien Bringer, Hervé Chabanne, and Alain Patey. 2013. Shade: Secure hamming
distance computation from oblivious transfer. In International Conference on
Financial Cryptography and Data Security. Springer, Japan, 164–176.

[17] Ran Canetti. 2000. Security and composition of multiparty cryptographic proto-
cols. Journal of CRYPTOLOGY 13, 1 (2000), 143–202.

[18] Mahawaga Arachchige Pathum Chamikara, Peter Bertok, Ibrahim Khalil, Dongxi
Liu, and Seyit Camtepe. 2020. Privacy preserving face recognition utilizing
differential privacy. Computers & Security 97 (2020), 101951.

[19] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. 2019. EzPC: programmable and efficient secure two-party computation
for machine learning. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, Sweden, 496–511.

[20] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019. AS-
TRA: high throughput 3pc over rings with application to secure prediction. In
Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop. ACM, UK, 81–92.

[21] David Chaum, Claude Crépeau, and Ivan Damgard. 1988. Multiparty uncondi-
tionally secure protocols. In Proceedings of the twentieth annual ACM symposium
on Theory of computing. ACM, USA, 11–19.

[22] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast Private Set Intersection
from Homomorphic Encryption. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security (Dallas, Texas, USA) (CCS ’17).
Association for Computing Machinery, New York, NY, USA, 1243–1255.

[23] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic Encryption for Arithmetic of Approximate Numbers. In Advances in
Cryptology – ASIACRYPT 2017. Springer, China, 409–437.

[24] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee, and Keewoo
Lee. 2019. Numerical method for comparison on homomorphically encrypted
numbers. In International Conference on the Theory and Application of Cryptology
and Information Security. Springer, Japan, 415–445.

[25] European Commission. 2022. Proposal for a regulation laying down rules to
prevent and Combat Child Sexual abuse. https://eur-lex.europa.eu/legal-content/
EN/ALL/?uri=COM:2022:209:FIN.

[26] Anders PK Dalskov, Daniel Escudero, and Marcel Keller. 2021. Fantastic Four:
Honest-Majority Four-Party Secure Computation With Malicious Security. In
USENIX Security Symposium. 2183–2200.

[27] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci.
2017. The TinyTable protocol for 2-party secure computation, or: gate-scrambling

12

https://doi.org/10.1073/pnas.1918257117
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2022:209:FIN.
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2022:209:FIN.

Funshade: Function Secret Sharing for Two-Party Secure Thresholded Distance Evaluation Proceedings on Privacy Enhancing Technologies YYYY(X)

revisited. In Annual International Cryptology Conference. Springer, USA, 167–187.
[28] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. 2016. Functional encryp-

tion for inner product with full function privacy. In Public-Key Cryptography–PKC
2016. Springer, Taiwan, 164–195.

[29] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-
work for efficient mixed-protocol secure two-party computation.. In 22nd Annual
Network and Distributed System Security Symposium, NDSS. Usenix, San Diego,
CA, USA, 15.

[30] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. 2019. Arcface:
Additive angular margin loss for deep face recognition. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 4690–4699.

[31] Ling Du, Anthony TS Ho, and Runmin Cong. 2020. Perceptual hashing for image
authentication: A survey. Signal Processing: Image Communication 81 (2020),
115713.

[32] David Evans, Yan Huang, Jonathan Katz, and Lior Malka. 2011. Efficient privacy-
preserving biometric identification. In Proceedings of the 17th conference Network
and Distributed System Security Symposium, NDSS, Vol. 68. Usenix, USA, 90–98.

[33] Diana-Elena Fălămaş, KingaMarton, and Alin Suciu. 2021. Assessment of Two Pri-
vacy Preserving Authentication Methods Using Secure Multiparty Computation
Based on Secret Sharing. Symmetry 13, 5 (2021), 894.

[34] J Fan and F Vercauteren. 2012. Somewhat Practical Fully Homomorphic Encryp-
tion. IACR Cryptology ePrint Archive 2012, 144 (2012), 29.

[35] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner,
Samee Zahur, and David Evans. 2017. Privacy-Preserving Distributed Linear
Regression on High-Dimensional Data. Proc. Priv. Enhancing Technol. 2017, 4
(2017), 345–364.

[36] Craig Gentry. 2009. A fully homomorphic encryption scheme. Vol. 20. Stanford,
USA.

[37] Babak Poorebrahim Gilkalaye, Ajita Rattani, and Reza Derakhshani. 2019.
Euclidean-distance based fuzzy commitment scheme for biometric template
security. In 2019 7th International Workshop on Biometrics and Forensics (IWBF).
IEEE, USA, 1–6.

[38] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.
Cambridge university press, UK.

[39] Oded Goldreich, Silvio Micali, and Avi Wigderson. 2019. How to play any mental
game, or a completeness theorem for protocols with honest majority. In Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali. ACM, USA, 307–328.

[40] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. 2007. La-
beled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained
Environments. Technical Report 07-49. University of Massachusetts, Amherst.

[41] Alberto Ibarrondo, Hervé Chabanne, and Melek Önen. 2021. Practical Privacy-
Preserving Face Identification based on Function-Hiding Functional Encryption.
In International Conference on Cryptology and Network Security. Springer, Austria,
63–71.

[42] Ilia Iliashenko and Vincent Zucca. 2021. Faster homomorphic comparison opera-
tions for BGV and BFV. Proceedings on Privacy Enhancing Technologies 2021, 3
(2021), 246–264.

[43] Seong-Yun Jeon and Mun-Kyu Lee. 2021. Acceleration of Inner-Pairing Product
Operation for Secure Biometric Verification. Sensors 21, 8 (2021), 2859.

[44] SamKim, Kevin Lewi, AvradipMandal, Hart Montgomery, Arnab Roy, and David J
Wu. 2018. Function-hiding inner product encryption is practical. In International
Conference on Security and Cryptography for Networks. Springer, Italy, 544–562.

[45] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-
togi, and Rahul Sharma. 2020. Cryptflow: Secure tensorflow inference. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, USA, 336–353.

[46] Joohee Lee, Dongwoo Kim, Duhyeong Kim, Yongsoo Song, Junbum Shin, and
Jung Hee Cheon. 2018. Instant privacy-preserving biometric authentication for
hamming distance. Cryptology ePrint Archive 2018, 1214 (2018), 28.

[47] Ying Luo, S Cheung Sen-ching, and Shuiming Ye. 2009. Anonymous biometric
access control based on homomorphic encryption. In 2009 IEEE International
Conference on Multimedia and Expo. IEEE, USA, 1046–1049.

[48] T Soni Madhulatha. 2012. An overview on clustering methods. arXiv preprint
2012, 1205.1117 (2012), 7.

[49] David Marr and Ellen Hildreth. 1980. Theory of edge detection. Proceedings of
the Royal Society of London. Series B. Biological Sciences 207, 1167 (1980), 187–217.

[50] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework
for machine learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, Canada, 35–52.

[51] Muhammad Asim Mukhtar, Muhammad Khurram Bhatti, and Guy Gogniat. 2019.
Architectures for Security: A comparative analysis of hardware security fea-
tures in Intel SGX and ARM TrustZone. In 2019 2nd International Conference on
Communication, Computing and Digital systems (C-CODE). IEEE, 299–304.

[52] Muqsit Nawaz, Aditya Gulati, Kunlong Liu, Vishwajeet Agrawal, Prabhanjan
Ananth, and Trinabh Gupta. 2020. Accelerating 2PC-based ML with Limited
Trusted Hardware. arXiv preprint arXiv:2009.05566 (2020).

[53] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. ABY2.
0: Improved Mixed-Protocol Secure Two-Party Computation. In 30th USENIX

Security Symposium (USENIX Security 21). USENIX Association, USA, 2165–2182.
[54] Michael O Rabin. 2005. How to exchange secrets with oblivious transfer. Cryp-

tology ePrint Archive 2005, 187 (2005), 27.
[55] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya

Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-party
secure inference. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. ACM, USA, 325–342.

[56] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A hybrid secure
computation framework for machine learning applications. In Proceedings of the
2018 on Asia Conference on Computer and Communications Security. ACM, Korea,
707–721.

[57] Zhang Rui and Zheng Yan. 2018. A survey on biometric authentication: Toward
secure and privacy-preserving identification. IEEE access 7 (2018), 5994–6009.

[58] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. 2022. AriaNN:
Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing.
Proceedings on Privacy Enhancing Technologies 1 (2022), 291–316.

[59] Amit Sahai and Brent Waters. 2005. Fuzzy identity-based encryption. In EURO-
CRYPT. Springer, Germany, 457–473.

[60] Adi Shamir. 1979. How to share a secret. Comm. of the ACM 22, 11 (1979),
612–613.

[61] Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. 2016. Efficient functional
encryption for inner-product values with full-hiding security. In International
Conference on Information Security. Springer, USA, 408–425.

[62] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. Stealing machine learning models via prediction apis. In 25th USENIX
Security Symposium (USENIX Security 16). USENIX Association, Canada, 601–
618.

[63] Sameer Wagh. 2022. Pika: Secure Computation using Function Secret Sharing
over Rings. Proceedings on Privacy Enhancing Technologies 4 (2022), 351–377.

[64] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek
Mittal, and Tal Rabin. 2020. FALCON: Honest-Majority Maliciously Secure
Framework for Private Deep Learning. arXiv preprint arXiv:2004.02229 2020,
2004.02229 (2020), 1–21.

[65] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, Canada,
162–167.

[66] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and
Takeshi Koshiba. 2013. Packed homomorphic encryption based on ideal lat-
tices and its application to biometrics. In International Conference on Availability,
Reliability, and Security. Springer, Germany, 55–74.

[67] Kai Zhou and Jian Ren. 2018. PassBio: Privacy-preserving user-centric biometric
authentication. IEEE Transactions on Info. Forensics and Security 13, 12 (2018),
3050–3063.

[68] Youwen Zhu and Tsuyoshi Takagi. 2015. Efficient scalar product protocol and its
privacy–preserving application. International Journal of Electronic Security and
Digital Forensics 7, 1 (2015), 1–19.

A SIDE-BY-SIDE COMPARISONWITH ARIANN
In terms of theoretical gains, we display in Figure 5 the main differ-
ences between our approach and that of AriaNN [58], strengthening
the comparison provided in Table 5.

In terms of performance, AriaNN is expected to run the local
computation of FSS.cmp in roughly half the time required for our
primitive FSS.Eval𝐼𝐶 (since their construction requires just one call
to a DCF instead of two), at the expense of non-negligible error
rates. While these errors are shown in [58] to be inconsequential for
Machine Learning inference use-cases, their consequences to use-
cases such as biometric verification would be much more severe
(e.g., yielding high rates of false positives that would break the
purpose of the verification). Even then, thanks to the reduction in
intermediate rounds of communication from 2 to 1, Funshade is
faster than AriaNN when the distributed comparison to 𝜃 takes less
than the transmission latency (10ms for LAN, 70 ms for WAN).

13

Proceedings on Privacy Enhancing Technologies YYYY(X) Ibarrondo et al.

ARIANN FUNSHADE (ours)

Arithmetic Secret Sharing 𝑥 :
𝑥 = 𝑥0 + 𝑥1

𝛱 Secret Sharing ⟪𝑥⟫:
𝑥 = Δ𝑥 − (𝛿𝑥0 + 𝛿𝑥1)

𝑃0 Δ𝑥

𝛿𝑥0 𝛿𝑥1

Δ𝑥 𝑃1

Secret sharing of 𝑥

Scalar Product z = 𝒙𝑻𝒚
& Comparison: z ≥ 𝜃

“Beaver” Mult. Triples𝑃𝑠𝑒𝑡𝑢𝑝
𝑐 = 𝑎 ⋅ 𝑏

𝑃𝑠𝑒𝑡𝑢𝑝
𝛿𝑥𝑦 = 𝛿𝑥 ⋅ 𝛿𝑦

𝑃0
𝑐0, 𝑎0, 𝑏0

𝑃1
𝑐1, 𝑎1, 𝑏1

𝑃0 𝑃1
𝛿𝑥𝑦0, 𝛿𝑥0, 𝛿𝑦0 𝛿𝑥𝑦1, 𝛿𝑥1, 𝛿𝑦1

𝑃0 𝒄0, 𝒂0, 𝒃0, 𝒌0,
𝒙0, 𝒚0, 𝑟𝜃0

𝑃1𝒄1, 𝒂1, 𝒃1, 𝒌1,
𝒙1, 𝒚1, 𝑟𝜃1

𝑃0 𝑃1𝜹𝒙𝒚0, 𝜹𝒙0, 𝜹𝒚0,

𝚫𝒙, 𝚫𝒚, 𝒌0
′ , 𝑟𝜃0

𝜹𝒙𝒚1, 𝜹𝒙1, 𝜹𝒚1,

𝚫𝒙, 𝚫𝒚, 𝒌1
′ , 𝑟𝜃1

𝒅0 ← (𝒙0 − 𝒂0)
𝒆0 ← (𝒚0 − 𝒃0)

𝒅1 ← (𝒙1 − 𝒂1)
𝒆1 ← (𝒚1 − 𝒃1)

𝒅0, 𝒆0 𝒅1, 𝒆1
𝒅←𝒅0+𝒅1; 𝒆←𝒆0+𝒆1
Ƹ𝑧𝜃0 ←∑(𝒅·𝒃0 + 𝒆·𝒂0

+𝒄0) + 𝑟𝜃0
Ƹ𝑧𝜃1←∑(𝒅·𝒃1 + 𝒆·𝒂1
+ 𝒅·𝒆 + 𝒄1) + 𝑟𝜃1

Ƹ𝑧𝜃0 Ƹ𝑧𝜃1

𝑃0
𝑥0 𝑥1

𝑃1

𝑜0
∗ ←FSS.cmp Ƹ𝑧, 𝒌0
Ƹ𝑧𝜃 ← Ƹ𝑧𝜃0 + Ƹ𝑧𝜃1

𝑜∗ = z ≥ 𝜃 with high prob.

Ƹ𝑧0←∑(𝜹𝒙𝒚0 − 𝚫𝒙·𝜹𝒚0
−𝚫𝒚·𝜹𝑥0)

+ 𝑟𝜃0

Ƹ𝑧1←∑(𝜹𝒙𝒚1 − 𝚫𝒙·𝜹𝒚1
−𝚫𝒚·𝜹𝑥1 + 𝚫𝒙·𝚫𝒚)

+ 𝑟𝜃1

Ƹ𝑧0 Ƹ𝑧1

𝑜 = z ≥ 𝜃 ∀𝒙, ∀𝒚, ∀𝜃

𝑜1
∗ ←FSS.cmp Ƹ𝑧, 𝒌1
Ƹ𝑧𝜃 ← Ƹ𝑧𝜃0 + Ƹ𝑧𝜃1

𝑜0 ←FSS. EvalIC Ƹ𝑧, 𝒌0
′

Ƹ𝑧𝜃 ← Ƹ𝑧𝜃0 + Ƹ𝑧𝜃1
𝑜1 ←FSS. EvalIC Ƹ𝑧, 𝒌1

′
Ƹ𝑧𝜃 ← Ƹ𝑧𝜃0 + Ƹ𝑧𝜃1

𝑃𝑠𝑒𝑡𝑢𝑝 𝒄0, 𝒂0, 𝒃0, 𝒌0, 𝑟𝜃0,
𝒄1, 𝒂1, 𝒃1, 𝒌1, 𝑟𝜃1

𝑃𝑠𝑒𝑡𝑢𝑝𝜹𝒙𝒚0, 𝜹𝒙0, 𝜹𝒚0, 𝒌′0, 𝑟𝜃0,

𝜹𝒙𝒚1, 𝜹𝒙1, 𝜹𝒚1, 𝒌′1, 𝑟𝜃1,

𝒅←𝒅0+𝒅1; 𝒆←𝒆0+𝒆1

Offline phase Online phase Either

Figure 5: Side-by-side comparison between AriaNN and Funshade (ours)

14

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Multi-Party Computation
	2.2 Thresholded Distance Metrics and Applications

	3 Our Solution
	3.1 Distance Metrics
	3.2 The Two-Party Computation Scenario
	3.3 Sketching the Solution
	3.4 Protocol Specification
	3.5 Applications and Practical Considerations
	3.6 Security Analysis

	4 Experiments
	4.1 Implementation and Environment
	4.2 Results

	5 Previous Work
	6 Conclusions
	Acknowledgments
	References
	A Side-by-side comparison with AriaNN

