
JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

Area-time Efficient Implementation of NIST
Lightweight Hash Functions Targeting IoT

Applications
Safiullah Khan, Graduate Student Member, IEEE, Wai-Kong Lee, Member, IEEE, Angshuman Karmakar, Jose

Maria Bermudo Mera, Abdul Majeed, and Seong Oun Hwang, Senior Member, IEEE

Abstract—To mitigate cybersecurity breaches, secure commu-
nication is crucial for the Internet of Things (IoT) environment.
Data integrity is one of the most significant characteristics of
security, which can be achieved by employing cryptographic hash
functions. In view of the demand from IoT applications, the
National Institute of Standards and Technology (NIST) initiated a
standardization process for lightweight hash functions. This work
presents field-programmable gate array (FPGA) implementations
and carefully worked out optimizations of four Round-3 finalists
in the NIST standardization process. A novel compact PHOTON-
Beetle implementation is proposed wherein the underlying matrix
multiplication is executed in serialized fashion to achieve a small
hardware footprint. SPARKLE implementations are carried out
by implementing the ARX-box in serialized, parallelized, and
hybrid approaches. For Ascon and XOODYAK, the proposed
implementations compute certain permutation rounds in one
clock cycle in order to explore the trade-off between computation
time and hardware area. As a result, this work achieves the
smallest hardware footprint for PHOTON-Beetle consuming an
area 3.4× smaller than state-of-the-art implementations. Ascon
and XOODYAK are implemented in a flexible manner that
achieves throughput-to-area (TP/A) ratios 1.8× and 3.9× higher,
respectively, compared to implementations found in the literature.
In addition, we propose the first FPGA implementations for the
SPARKLE hash function. These efficient implementations provide
guidelines for choosing a suitable architecture for applications in
demand that can be employed in the IoT environment to achieve
data integrity for various applications.

Index Terms—Hash Functions, IoT, Lightweight Cryptogra-
phy, Field-programmable Gate Array (FPGA), National Institute
of Standards and Technology (NIST).

I. INTRODUCTION

THE Internet of Things (IoT) emerged as a technology
that motivated numerous ingenious applications. The IoT

incorporates a variety of smart applications that can signifi-
cantly enhance the quality of our lives when combined with

Manuscript received April 19, 2021; revised August 16, 2021.
This work was supported by the National Research Foundation of Ko-

rea Grant funded by the Korea Government (MSIT) under grant (No.
2020R1A2B5B01002145).

Safiullah Khan is with the Department of IT Convergence Engineering,
Gachon University, 13120 Seongnam, South Korea (safi@gachon.ac.kr),

Angshuman Karmakar and Jose Maria Bermudo Mera are with the
COSIC Research Group, Katholieke Universiteit Leuven, Belgium (angshu-
man.karmakar@esat.kuleuven.be; josemaria.bermudomera@kuleuven.be),

Wai-Kong Lee, Abdul Majeed and Seong Oun Hwang are with the
Department of Computer Engineering, Gachon University, 13120 Seong-
nam, South Korea (waikonglee@gachon.ac.kr; ab09@gachon.ac.kr; so-
hwang@gachon.ac.kr),

Corresponding author: Seong Oun Hwang; sohwang@gachon.ac.kr

other important technologies such as artificial intelligence (AI)
and cloud computing. Common examples like smart cities [1]
and smart homes [2] are only possible when the IoT merges
with other appropriate technologies. In an IoT environment,
sensitive and important data are communicated at high speed
[3]. The integrity of the transmitted data must remain intact
to achieve secure communications.

Data integrity is highly desirable for IoT applications, which
can be achieved by employing cryptographic hash functions.
A hash function converts input of an arbitrary length to
a fixed-length, deterministic output hash value. It can be
used to verify the integrity of messages (e.g., IoT sensor
data) communicated over IoT networks. Traditional hash func-
tions like SHA-3 [4], [5] may not be suitable for resource-
constrained IoT sensor nodes that demand low computation
and memory consumption. Therefore, the National Institute of
Standards and Technology (NIST) initiated a competition [6]
to select a standard for Lightweight Cryptography (LWC) with
applications to resource-constrained systems.

A large number of hashes need to be computed at sensor
nodes (generating tags), gateways, and cloud servers (verifying
integrity). However, sensor nodes are mostly built on resource-
constrained devices like microcontrollers (e.g., Cortex-M0,
AVR) or low-power application-specific integrated circuits
(ASICs). Although the existing LWC schemes can provide
reasonable performance in sensor nodes, they may not work
for all IoT applications. For instance, some IoT applications
require high throughput (TP) (e.g., video surveillance), while
others are more concerned with small hardware areas and
low power consumption (e.g., a remote weather station). This
implies there is no single hardware architecture that matches
all the demands from hash computation in IoT applications.

To address this concern, this work implements the four
finalists in the NIST competition in such a way to realize the
demands for varying performance for IoT applications. Ascon
[7] and XOODYAK [8] are implemented based on a certain
number of permutation rounds executed in each clock cycle.
This provides flexibility to choose from the area-constrained to
high-speed architectures suitable for different IoT applications.
Similarly, SPARKLE [9] hardware implementations are based
on serialized, parallelized, and hybrid approaches for permu-
tation function, which again address the varying requirements
for the IoTs. This work also suggests the implementation of
PHOTON-Beetle [10] that consumes the least hardware by
serializing the underlying matrix multiplication. Therefore, by



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 2

employing careful design and optimization strategies, LWC
hardware architectures can either produce a high TP, a bal-
anced area-time, or extremely small hardware footprints. As a
result, all of these implementation strategies found their own
applications in the IoT environments.

A. Contributions
In this work, we propose several architectures for NIST

finalist hash functions that achieve high TP, area-time effi-
ciency, or low hardware area consumption. This allows IoT
practitioners to select the architectures that best suit their
needs. The contributions of this article can be summarized
as follows.

• There are few implementations of PHOTON-Beetle in the
existing literature that are based on round-based execu-
tions. In this work, we explore the possibility of achieving
the most area-efficient architecture for PHOTON-Beetle
catering to IoT applications. Hence, we propose a novel
serialized architecture that re-uses the multiplier hardware
architecture to achieve the matrix multiplication neces-
sary for the MixColumnSerial step. We also propose a
parallelized version based on implementation of a single
permutation round in one clock cycle with an area-
optimized S-box architecture. The serialized version can
reduce hardware consumption by 40%, compared to the
parallelized version, while the critical path delay remains
the same.

• This work presents the first FPGA implementations for
SPARKLE that explore various possible combinations of
parallelized and serialized implementation strategies. The
first architecture is a round-based implementation that
executes one permutation round-per-clock cycle. The
second architecture executes the ARX-box in a serialized
fashion to reduce area consumption. The third archi-
tecture combines the two design approaches, wherein
a certain number of ARX-boxes work in a serialized
manner while the others work in parallel. The round-
based approach achieved the highest TP and area-time
efficiency, while the serialized ARX-box provided the
smallest hardware footprint.

• The design space for Ascon and XOODYAK has not
been explored fully in the literature as they suggest
implementing one round in one clock cycle [11], [12].
This work proposes executing several possible permu-
tation rounds in one clock cycle. Extensive evaluation
of the available design space exploration is performed,
which is missing from prior works. Trade-offs between
different implementation parameters are observed. Imple-
mentation results for Ascon showed that by executing
four permutations per clock cycle, maximum TP can be
achieved. Increasing the number of permutation rounds
increases the critical path, which in turn limits the op-
erating frequency. XOODYAK, on the other hand (which
is inherently serialized), is also studied based on several
permutation rounds for each clock cycle. The flexible
implementations for Ascon and XOODYAK outperformed
the state-of-the-art implementations with respect to area
consumption and TP/A ratios.

The rest of this article is organized as follows. Section II
presents the background, literature review, and descriptions
of the selected hash functions. Implementation of the hash
functions, along with optimized architectures and preliminary
results, are given in Section III. Section IV is dedicated to
the analysis of the hash functions and comparison with other
counterparts. The applications are discussed in Section V.
Finally, the article concludes in Section VI.

II. BACKGROUND AND LITERATURE REVIEW

This section describes how secure communication is possi-
ble in IoT environments by employing hash functions. Further-
more, an overview of the literature is provided, and a summary
of the selected hash functions is accommodated at the end of
this section.

A. Secure communication in the IoT environment

The typical IoT architecture comprises three main entities:
sensor nodes, gateways, and cloud servers. The sensor nodes
are responsible for collecting and transmitting important data
to the gateways. They are resource-constrained, introducing
additional tasks (e.g., a data-integrity checking mechanism)
can pose non-negligible overhead in terms of hardware area
and computation time. Therefore, design considerations for
secure sensor nodes target a small area and low latency,
which require specialized optimization strategies to achieve.
Gateway devices capable of handling large amounts of data
from IoT sensor nodes usually incorporate a processor with
a higher power. This in turn requires an implementation
strategy that fulfills the demand for higher TP. Normally,
sensor nodes are not connected directly to the Internet. They
communicate with gateway devices via wireless technology
such as Bluetooth Low Energy (BLE) or Zigbee [13]. On the
other hand, gateway devices are connected to cloud servers
through Internet communications, often secured by the TLS
protocol. Microcontrollers and FPGAs [14] are typically used
to implement IoT sensor nodes. On the other hand, gateway
devices can be implemented on the FPGA platform or can
utilize an FPGA accelerator [15]. The overall architecture of
typical IoT communication is shown in Fig. 1.

Fig. 1. The typical IoT communication architecture

IoT edge devices are so prevalent that sensitive or confiden-
tial information is frequently included in the transmitted data.



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 3

It is important for the transmitted data to be secured against
malicious manipulation in order to guarantee data privacy and
confidentiality. As a result, IoT sensor nodes must incorporate
cryptographic features. In order to ensure that the gathered
sensor data are not maliciously altered during the transmission
process from sensor nodes to the cloud server, data integrity
is critical. Any malicious change of the conveyed sensor data
can be easily identified using a cryptographic hash function.
This enables us to validate sensor data integrity at the gateway
or on the server, considerably enhancing the security of IoT
connectivity. In addition, hash functions are used to create
mutual authentication protocols [16] and hash-based message
authenticated codes (HMAC) [17].

B. Literature Review

In this subsection, we review several implementations found
in the literature on lightweight hash functions. Hardware
implementations of PHOTON-Beetle on a Startix-IV device
were provided [18]. The focus of that work was parallel
architecture implementations with one round-per-clock cycle.
A 2×1 multiplexer is employed to select either the initial value
or feedback from the internal state. PHOTON-Beetle, Ascon,
and XOODYAK implementations were reported in [11] and
[12]. The aim of these two articles was to provide a benchmark
for all candidates in the NIST LWC standardization process.
Performance optimization was not the main focus.

Ascon implementations reported in [19] are based on a
basic iterative architecture. For hash function implementation,
permutation is performed in 12 clock cycles where one permu-
tation round is executed in one clock cycle. Implementations
have been performed for the Artix-7 platform. Implementation
of a variant of Ascon was introduced [20]. The authors claimed
the permutation function to be more lightweight than the
original Ascon because of a modified S-box. The authors have
used the Kintex-7 platform for the implementations. Ascon im-
plementations based on unrolled, round-based, and serialized
permutation functions were presented in [21]. Although the
implementations were performed for the authenticated encryp-
tion, the underlying permutation function is the same. Note
that our work is the first to provide optimized architectures
for SPARKLE hash functions.

C. Lightweight hash functions

NIST announced the finalists for the standardization com-
petition in March 2021. For all the candidates, computation of
the hash is based on permutation functions. This subsection
provides an overview of four hash functions. More detailed
explanations about the respective specifications can be found
in the NIST submission to the standardization process [22].
Table I provides the notations employed to describe operations
involved in the hash functions.

1) PHOTON-Beetle: PHOTON256 [23] is the underlying
256-bit permutation for the PHOTON-Beetle family. The
permutation is applied to a state comprising 64 elements of
four bits each. The state is represented as an 8 × 8 matrix,
X . The permutation consists of 12 rounds where each round
includes four steps: AddConstant, SubCells, Shiftrows, and

TABLE I
OPERATIONS INVOLVED IN LIGHTWEIGHT HASH FUNCTIONS.

Symbol Operation
⊕ Bit-wise sum (XOR)
· Bit-wise product (AND)
⊙ Matrix multiplication
Ā Bit-wise complement of A
≫ Right rotate
≪ Left rotate
≫ Right shift
≪ Left shift

MixColumnSerial. A description of a single round of permu-
tations is in Algorithm 1. The first step, AddConstant, adds
a constant to each element of the first column of the internal
state. SubCells is simply a substitution box for each four-bit
element, while Shiftrows rotates the positions of the elements
in the matrix for each row. Finally, MixColumnSerial mixes
all the columns by employing matrix multiplication.

Algorithm 1 PHOTON256(X)

Require: X ′ (Updated 8× 8 matrix)
Ensure: X (Input 8× 8 matrix)

AddConstant (X, k)
1: RC[12] ← {1, 3, 7, 14, 13, 11, 6, 12, 9, 2, 5, 10}
2: IC[8] ← {0, 1, 3, 7, 15, 14, 12, 8}
3: for i = 0 to 7 do
4: X[i, 0] ← X[i, 0] ⊕ RC[k] ⊕ IC[i];
SubCells (X)
5: for i = 0 to 7, j = 0 to 7 do
6: X[i, j] ← S-box (X[i, j]);
ShiftRows (X)
7: for i = 0 to 7, j = 0 to 7 do
8: X[i, j] ← X[i, (j + i)%8];
MixColumnSerial (X)
9: M ← Serial[2, 4, 2, 11, 2, 8, 5, 6];
10: X ′ ← M8 ⊙X;
return X ′

PHOTON-Beetle-Hash takes as input a message, M ∈
{0, 1}∗, of arbitrary length, and generates a hash, H ∈
{0, 1}256. The first 128 bits of the input message along
with 128-bit 0’s are absorbed by the permutation function
(12 rounds) as the initial vector followed by a consecutive
absorption rate of r = 32. The final message block, if
incomplete, is concatenated with the minimum zeros to make it
32-bit, and acts as input to the next permutation. In addition,
for the final message block, a small constant is XORed in
the capacity part, depending on whether the final block is
partial or full, to support the domain separation. The 256-
bit hash is generated in two steps of 128-bit each. Fig. 2
shows the architecture of PHOTON-Beetle-Hash. The only
recommended size for the hash function is PHOTON-Beetle-
Hash [32], where message M is parsed into blocks, each
of 32-bit after the first 128-bit block. This architecture aims
to achieve an extremely small hardware footprint along with
excellent throughput and energy efficiency.

2) Ascon: Ascon permutations are applied to an internal
state of 320-bit and follow an iterative substitution permutation



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 4

Fig. 2. The PHOTON-Beetle Hash architecture.

network (SPN)-based round transformation [24]. The state
is updated in three steps: addition of a round constant, a
substitution layer, and the linear diffusion layer. The state for
Ascon is divided into five 64-bit words where the first word
constitutes the outer r-bit part, Sr, and the next four words
compose the inner c-bit part, Sc, as shown in (1):

S = Sr ∥ Sc = x0 ∥ x1 ∥ x2 ∥ x3 ∥ x4 (1)

The first step of the permutation is addition of the round
constant, in which constant cr is added to word x2 of the
internal state for each permutation round. (the values for round
constants can be found in [25]):

x2 ← x2 ⊕ cr (2)

The substitution layer can be seen as 64 parallel operations
of the five-bit S-box. The S-box is applied to each bit-slice
of the five internal registers. For hardware implementations,
the S-box for Ascon can be implemented with a few logical
operations, making it highly parallelized. The final step is
the linear diffusion layer. The linear diffusion layer provides
diffusion within each of the 64-bit words. The description of
a single round of permutations is given in Algorithm 2.

Algorithm 2 Ascon Permutation.
Require: S′ (Updated 320-bit state)
Ensure: S (Input 320-bit state)

AddConstant (S)
1: S = x0 ∥ x1 ∥ x2 ∥ x3 ∥ x4

2: x2 ← x2 ⊕ cr;
S-Box (S)
3: for i = 0 to 63 do
4: S[i] ← S-box (S[i]);
LinearDiffusion (S)
5: for i = 0 to 4, do
6: x′

i = xi ⊕ (xi ≫ li)⊕ (xi ≫ ri)
7: S′ = x′

0 ∥ x′
1 ∥ x′

2 ∥ x′
3 ∥ x′

4

return S′

The Ascon hash is based on a mode of operation similar
to sponges [26]. Fig. 3 shows the overall architecture for the
Ascon hash. The first step in hash computation is initialization.
During initialization, the 320-bit internal state is formed by
concatenation of the initialization vector (IV) with a certain
number of 0′s to make it 320-bit. The IV in turn is a constant
specifying the algorithm parameters, and is pre-defined by the
algorithm. The IV contains information about the rate, r, the

number of rounds, and the length of the output hash. The
permutation for the IV can also be pre-computed because it is
independent of the input message. The next step is absorbing
the message. The arbitrary length of the message, M , is
parsed into blocks of r-bits. The final block of the message
is appended with a single 1 and a minimum number of 0′s to
make it a multiple of r in case it is not already a multiple of
r. Each message block is XORed with the r-bit of the internal
state followed by 12 permutation rounds. Eq. 3 explains the
absorbing of the message:

S ← p12((Sr ⊕Mi) ∥ Sc) (3)

Finally, during the squeezing step, the hash is extracted from
the state in the form of r-bit blocks until the required length of
the hash is completed. After each extraction, 12 permutation
rounds are applied to the state to generate the next block of
the hash. Eq. 4 explains the squeezing step:

Hi ← Sr, S ← p12(S), 1 ≤ i ≤ ⌈l/r⌉ (4)

Fig. 3. The Ascon hash architecture.

3) SPARKLE: The SPARKLE family comprises permuta-
tions SPARKLE256ns

, SPARKLE384ns
, and SPARKLE512ns

with block sizes of 256, 384, and 512 respectively, where
ns is the number of steps taken during the permutation. The
permutation consists of two main steps: the ARX-box, which is
a 64-bit cipher with a 32-bit key, and the linear diffusion layer.
Algorithm 3 and Algorithm 4 show the high-level structure for
the permutation functions.

Algorithm 3 SPARKLE384ns
.

Require: ((x′
0, y

′
0), ..., (x

′
5, y

′
5)) (Updated 384-bit state)

Ensure: ((x0, y0), ..., (x5, y5)) (Input 384-bit state)
(c0, c1)← (0xB7E15162, 0xBF715880)
(c2, c3)← (0x38B4DA56, 0x324E7738)
(c4, c5)← (0xBB1185EB, 0x4F7C7B57)
(c6, c7)← (0xCFBFA1C8, 0xC2B3293D)
1: for all s ∈ [0, ns − 1] do
2: y0 ← y0 ⊕ c(s mod 8)

3: y1 ← y1 ⊕ (s mod 232)
4: for all i ∈ [0, 5] do
5: (xi, yi)← Aci(xi, yi)
6: ((x′

0, y
′
0), ..., (x

′
5, y

′
5))← L6((x0, y0), ..., (x5, y5))

return ((x′
0, y

′
0), ..., (x

′
5, y

′
5))

The ARX-box Alzette, known as A for short, can be realized
as a four-round iterated block cipher where each round differs



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 5

Algorithm 4 SPARKLE512ns
.

Require: ((x′
0, y

′
0), ..., (x

′
7, y

′
7)) (Updated 512-bit state)

Ensure: ((x0, y0), ..., (x7, y7)) (Input 512-bit state)
(c0, c1)← (0xB7E15162, 0xBF715880)
(c2, c3)← (0x38B4DA56, 0x324E7738)
(c4, c5)← (0xBB1185EB, 0x4F7C7B57)
(c6, c7)← (0xCFBFA1C8, 0xC2B3293D)
1: for all s ∈ [0, ns − 1] do
2: y0 ← y0 ⊕ c(s mod 8)

3: y1 ← y1 ⊕ (s mod 232)
4: for all i ∈ [0, 7] do
5: (xi, yi)← Aci(xi, yi)
6: ((x′

0, y
′
0), ..., (x

′
7, y

′
7))← L8((x0, y0), ..., (x7, y7))

return ((x′
0, y

′
0), ..., (x

′
7, y

′
7))

in the constant set for the rotations. After rotation, the 32-bit
key is XORed to the left. This provides non-linearity to the
permutation. For x and y as inputs, and for c as the key, the
ARX-box can be realized as follows:
x← x+ (y ≫ 31), y ← y ⊕ (x ≫ 24), x← x⊕ c

x← x+ (y ≫ 17), y ← y ⊕ (x ≫ 17), x← x⊕ c

x← x+ (y ≫ 00), y ← y ⊕ (x ≫ 31), x← x⊕ c

x← x+ (y ≫ 24), y ← y ⊕ (x ≫ 16), x← x⊕ c

(5)

The linear diffusion layer, Lnb
, where nb is the number

of branches, consists of the Feistel round and the branch
permutation. L6 is employed for SPARKLE384 while L8 is
employed for SPARKLE512. The output from the ARX-box
is fed to the Feistel round, which performs the following
operations:

(tx, ty)← (x0 ⊕ x1 ⊕ x2, y0 ⊕ y1 ⊕ y2)

(tx, ty)← (tx ⊕ (tx ≪ 16)) ≪ 16, (ty ⊕ (ty ≪ 16)) ≪ 16

(y3, y4, y5)← (y3 ⊕ y0 ⊕ tx, y4 ⊕ y1 ⊕ tx, y5 ⊕ y2 ⊕ tx)

(x3, x4, x5)← (x3 ⊕ x0 ⊕ ty, x4 ⊕ x1 ⊕ ty, x5 ⊕ x2 ⊕ ty)
(6)

(tx, ty)← (x0 ⊕ x1 ⊕ x2 ⊕ x3, y0 ⊕ y1 ⊕ y2 ⊕ y3)

(tx, ty)← (tx ⊕ (tx ≪ 16)) ≪ 16, (ty ⊕ (ty ≪ 16)) ≪ 16

(y4, y5, y6, y7)← (y4 ⊕ y0 ⊕ tx, y5 ⊕ y1 ⊕ tx, y6 ⊕ y2 ⊕ tx,

y7 ⊕ y3 ⊕ tx)

(x4, x5, x6, x7)← (x4 ⊕ x0 ⊕ ty, x5 ⊕ x1 ⊕ ty, x6 ⊕ x2 ⊕ ty,

x7 ⊕ x3 ⊕ ty)
(7)

Branch permutation is just swapping left branches with right
branches:

(x0, x1, x2, x3, x4, x5)← (x4, x5, x3, x0, x1, x2)

(y0, y1, y2, y3, y4, y5)← (y4, y5, y3, y0, y1, y2)
(8)

ESCH256 and ESCH384 are the two instances for the
hash, as shown in Fig. 4. The lengths of the hash output
for ESCH256 and ESCH384 are 256-bit and 384-bit, re-
spectively, with primary member ESCH256. A sponge con-
struction is employed where a slim version is employed

during absorption and squeezing while a big version is
employed during these phases. Rate r is fixed at 128-bit,
which means the message should be padded with 1 fol-
lowed by the minimum number of 0’s to make it a multiple
of 128. Different numbers of permutations are required for
both hashes: SPARKLE3847 and SPARKLE38411 for ESCH256;
SPARKLE5128 and SPARKLE51212 for ESCH384. The mes-
sage block is first transformed throughMhb

, where hb = nb/2
in which nb is the number of branches. To generate the output,
128-bit blocks are extracted from the state, and permutation
is performed again before the final block is extracted. For the
input message where the length is a multiple of r, no padding
is performed. A constant is XORed to the inner part of the
state, which is different depending on whether the message is
padded or not.

Fig. 4. (a) ESCH256 and (b) ESCH384.

4) XOODYAK: XOODYAK is a symmetric key crypto-
graphic object that can be employed for hashing, pseudo-
random bit generation, authentication, encryption, and authen-
ticated encryption. The underlying permutation in XOODYAK
is XOODOO, specified by the number of rounds, nr. XOODOO
was inspired by Gimli, [27] and the round function is much
closer to Keccak. The permutation is an iterated structure
applied to round functions in the 384-bit state, which is divided
into three planes, each a 128-bit state. Sheets are arrays of
three lanes on top of each other. The XOODOO state, sheet,
and plane are illustrated in Fig. 5.

The permutation for the hash computation consists of 12
round functions, and each round function in turn has five
steps. Algorithm 5 shows the steps involved in one permutation
round. For the first step (the mixing layer), the planes (Ai)
are added, and the result is given a cyclic shift, which is then
added to each plane. The next step is plane shifting for which
two planes are given as a cyclic shift with a certain constant
specified in the algorithm. This is followed by addition of the
constant. The next-to-last step is the non-linear layer. This step
takes the bit-wise complement of each plane and computes



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

Fig. 5. XOODOO state, sheet, and plane

the bit-wise product (AND) with the un-complemented plane
values. The updated values are then XORed with the original
plane values. The non-linear layer operates in three-bit units,
so it can be considered a parallel application of three-bit S-
boxes on 128 columns. Another plane shifting with different
constant values constitutes the final step of the round function.
One of the limitations mentioned by the authors is that
XOODYAK is inherently serial at the construction level.

Algorithm 5 XOODOO.
Require: A′

0, A
′
1, A

′
2 (Updated 128-bit sheets)

Ensure: A0, A1, A2 (Input 128-bit sheets)
Mixing Layer θ
1: P ← A0 +A1 +A2

2: E ← P ≪ (1, 5) + P ≪ (1, 14)
3: Ay ← Ay + E for y ∈ {0, 1, 2}
Plane Shifting ρwest

4: A1 ← A1 ≪ (1, 0)
5: A2 ← A2 ≪ (0, 11)
Addition of Constant i
6: A0 ← A0 + Ci

Non-linear Layer (X )
7: B0 ← A1 ·A2

8: B1 ← A2 ·A0

9: B2 ← A0 ·A1

10: Ay ← Ay +By for y ∈ {0, 1, 2}
Plane Shifting ρeast
11: A1 ← A1 ≪ (0, 1)
12: A2 ← A2 ≪ (2, 8)

III. HASH FUNCTION IMPLEMENTATIONS AND
OPTIMIZATIONS

A. PHOTON-Beetle

The implementations of PHOTON-Beetle in the literature
follow a single round-based architecture where one permu-
tation is executed in one clock cycle. However, some IoT
applications use sensor nodes that demand a highly area-
optimized implementation. Therefore, this work explores a
novel strategy to implement a serialized version of the Mix-
ColumnSerial operation by re-using the multiplier design,
that is area-optimized. A round-based architecture with a novel
S-box based on K-map simplification is also presented in this
work.

To illustrate the implementation of PHOTON-Beetle, a
single permutation round is presented first from the hardware

point of view. From Algorithm 1, the first step during permuta-
tion is AddConstant, which can be accomplished in hardware
as an XOR operation of the state matrix with constants defined
by the algorithm. RC is the round constant while IC is the
internal constant. The constants are added to the first column
of the state matrix. The next step is SubCells, simply a
substitution for each of the elements in the state matrix. This
can be achieved by either storing the corresponding values in
block RAM (BRAM) or computing the values on the fly. For
faster execution and to reduce memory accesses, this work
proposes to design the S-Box at the gate level instead of
storing the values. To design the S-box, the K-map technique
is employed, which can provide an optimized version of the
S-box with respect to the number of gate levels in order to
reduce the critical path delay. Fig. 6 shows the architecture of
the S-box. Each of the four-bit elements of the state is fed to
the circuit, and the corresponding output for the S-box is gen-
erated. Parallel operations of such S-boxes compute this step.
This is followed by the Shiftrows operation, which is a very
simple operation in the hardware, equivalent to rearranging
the wires with no actual hardware involved. In order to obtain
the hash, the most expensive operation for this algorithm is
MixColumnSerial which involves matrix multiplication. For
efficient hardware implementations of PHOTON-Beetle-Hash,
this work proposes two techniques: parallelized and serialized.
The terms parallelized and serialized for the hash function
originate from implementation of the parallel and serial ver-
sions of the matrix multiplication, because it is the most
expensive operation in the computation of the permutation.

Fig. 6. The S-box for PHOTON-Beetle.

The matrix multiplication operation can be depicted using
Fig. 7. Prior works from the literature followed the parallelized
technique, where the final result of matrix multiplication is
computed in one clock cycle. This can be achieved because all
the elements in the state matrix can be accessed independently,
providing a chance to design an architecture that is able
to compute the resultant matrix in one clock cycle. The
multipliers x01...x64 take one row from matrix M and one
column from matrix X and generate one element of the resul-
tant matrix. All these multipliers operate in parallel. For the
proposed novel serialized technique, the MixColumnSerial
operation is computed in series. This technique takes the first
row of matrix M and multiplies it with all the columns of
matrix X in one clock cycle. In this way, multiplication can
be computed in eight clock cycles. The multipliers x01...x64 are
divided into groups, each having eight multipliers. The same



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

Fig. 7. The underlying matrix multiplication.

hardware is utilized, thus reducing the area consumption at the
cost of clock cycle utilization, but the critical path remains
the same. For the PHOTON-Beetle-Hash computation, Mix-
ColumnSerial consumes around 70% of the total hardware
area. Comparing both techniques, by employing the serialized
technique, an area reduction of almost 40% can be achieved.

Fig. 8. Clock cycle instances for PHOTON-Beetle.

A detailed explanation with respect to clock cycles and
hardware re-utilization is presented in Fig. 8. Fig. 8 (a) shows
one permutation round executed in one clock cycle under the
parallelized architecture. Because the permutation is repeated
12 times, 12 clock cycles are required to compute the whole
permutation function. The number of clock cycles for the
parallelized architecture can be estimated as 12×p+2, where
p represents the number of permutation functions employed,
which in turn is dependent upon the length of the input
message. Each permutation function requires 12 clock cycles,
where two clock cycles are required to extract the hash. The
same hardware is utilized as the output is fed again into the
same hardware to compute the next permutation round. Fig.
8 (b) illustrates the operations performed during each clock
cycle under the serialized architecture. One permutation round
consumes 10 clock cycles (one clock cycle is overhead from
arranging the values). Twelve rounds for permutation thus
require 120 clock cycles, and clock cycles for hash compu-
tation employing the serialized architecture can be estimated

TABLE II
IMPLEMENTATION RESULTS FOR PHOTON-BEETLE HASH.

Technique Area Freq. Latency Time TP TP/A ratio
(LUTs) (MHz) (cc) (µs) (Mbps) (Mbps/LUT)

Virtex-7
Parallelized 998 254.45 38 0.149 1073.82 1.075
Serialized 602 241.95 362 1.496 106.95 0.177

as 120× p+2. Instead of using the whole parallel multiplier,
this architecture reuses only eight multipliers, which leads to
area reduction.

The performance of parallelized and serialized hash func-
tions is given in Table II. As can be seen, hardware con-
sumption in terms of LUTs can be reduced by employing
the serialized version, but at the cost of more clock cycles.
The serialized version achieved almost a 40% reduction in
hardware area because the hardware is re-utilized. The op-
erating frequency for both the designs is the same because
the critical path for both architectures is identical. Processing
more multiplications add circuitry that runs in parallel, thus
increasing the hardware area. For a single permutation round,
the serialized version takes nine clock cycles, making clock
cycle consumption 10× more than the parallelized version.
This directly affects computation time, which increases by
10× that of the parallelized version. TP and TP/A ratios follow
the same trend.

B. Ascon

Unlike the execution of one permutation round per clock
cycle, the design space for Ascon has been fully explored
based on several possible number of permutations in each
clock cycle. We observed a trade-off between various impor-
tant performance parameters, which is missing from the prior
works.

A round-based implementation of Ascon is presented where
different numbers of permutation rounds are executed in one
clock cycle. The architecture for a single permutation round
is given in Fig. 9. Each permutation round is divided into
three steps, which are discussed here with respect to the
hardware implementations. The addition of the round constant
is a simple operation as it takes the round constant and
XORs it to the content of word x2. A single XOR operation
is employed. The next step is S-box implementation, which
consumes the majority of the area for the permutation round.
Although realization of the S-box through BRAM is possible,
this work focuses on implementation of the S-box using
combinational logic. The combinational logic implementation
based on a bit-slice technique has the advantage of being
fast and secure simultaneously, because side-channel attacks
can compromise the values stored in BRAM. 64 of such S-
boxes operate in parallel for each round to update the whole
state. The final layer (a linear diffusion layer) is shifting, and
the XOR operation is applied to the words, which is again
simple to achieve in hardware. Shifting requires no hardware
because it can be achieved through correct bit selection. This
constitutes the Ascon round core, when one permutation round
is implemented in one clock cycle. The internal state between



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

permutation operations is stored in five 64-bit registers. The
number of permutation rounds implemented in one clock cycle
can be increased as well. This work presents z permutation
rounds to be implemented in one clock cycle. Because the
algorithm specifies the number of permutation rounds to be
12, the possible number of permutations to be fit into one
clock cycle must be a factor of 12. A round core (employing z
permutation rounds) is employed, and the updated intermediate
state is again fed into the same hardware, thus re-utilizing
the hardware. The round core consumes the majority of area,
but a small amount is consumed by the control circuit that is
responsible for managing the inputs and outputs for the round
core.

The proposed strategy implements several permutation
rounds in one clock cycle; therefore, for Ascon hash hardware
implementations, z permutations are computed in one clock
cycle, where z = {1, 2, 4, 6}. Squeezing in more permutations
per clock cycle can reduce clock cycle consumption but at
the cost of more hardware area. The number of clock cycles
utilized can be computed as cc = 96/z + 4.

Fig. 9. A single permutation round for Ascon.

Table III provides performance results for the Ascon hash
on the FPGA platform. As the number of permutation rounds
executed in one clock cycle increases, area consumption
increases linearly, as depicted by the growing number of LUTs.
When more permutations are packed in per clock cycle, the
critical path increases, thus limiting the operating frequency.
However, the number of clock cycles required is reduced
because more permutations are forced to execute in one clock
cycle. The overall time to compute the hash is an important
parameter, which in turn is dependent upon both operating
frequency and clock cycles. More clock cycles mean more

TABLE III
IMPLEMENTATION RESULTS FOR ASCON HASH.

Technique Area Freq. Latency Time TP TP/A ratio
(LUTs) (MHz) (cc) (µs) (Mbps) (Mbps/LUT)

Virtex-7
1-round 773 272.03 100 0.367 697.54 0.993
2-rounds 1290 224.56 52 0.231 1108.22 0.869
4-rounds 2550 162.68 28 0.172 1488.37 0.581
6-rounds 3855 108.45 20 0.184 1391.30 0.373

time consumed, i.e., a direct relation, while time is inversely
related to frequency. The overall time period decreases till four
permutation rounds are executed in a clock cycle, while for
six rounds in one clock cycle, the time period increases. This
is because the critical path becomes long enough to negate
the reduced clock cycle effect. Two important parameters are
TP and TP/A because they incorporate every parameter and
provide a picture for the overall architecture performance. By
increasing the number of permutations in one clock cycle, TP
increases. The maximum TP can be achieved for z = 4 but
further increasing the permutations results in degradation of
TP. This is because the critical path increases, limiting the
operating frequency, and thus TP. Consequently, the overall
computation time increases despite the decrease in latency.
TP/A incorporates area as well, and is the ratio of TP to LUTs
consumed. TP/A decreases linearly as the area increases with
more permutation rounds per clock cycle.

C. SPARKLE

The first FPGA implementations of the SPARKLE hash
function based on a possible configuration of the ARX-box are
provided in this work. Similar to the previous hash function
architectures that we propose, we explored the possibilities
of serializing the ARX-box in SPARKLE to achieve an area-
efficient architecture. Optimized hardware implementations of
ESCH256 and ESCH384 are presented in this section. For both
ESCH256 and ESCH384, the input message is not directly
fed into the permutation rounds. The pre-processing is first
performed, on the input message. Module M , responsible for
pre-processing, consumes four clock cycles because the full
message length can be simultaneously processed in parallel
irrespective of the number of blocks in messages. Once
the message is transformed, the hash computations can be
performed. For the computation of ESCH256 and ESCH384,
three optimization techniques have been employed.

1) Parallelized ARX-box: In the first version, one permu-
tation round is executed in one clock cycle. The ARX-box
inside each permutation round is processed in a fully parallel
fashion. The output from the ARX-box is then transferred
to the diffusion layer. Six and eight ARX-boxes are em-
ployed for ESCH256 and ESCH384, respectively, in parallel
for each round. During the computation of the hash, one
such round of permutations is adopted, which is then re-used
to compute the entire hash. The transformed input message
(192-bit for ESCH256 and 256-bit for ESCH384) is the input
for the permutation round. The permutation round is re-
used for the next seven clock cycles to generate the output
for SPARKLE3847, and eight clock cycles are needed for



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 9

SPARKLE5128. Once complete, the next transformed input
message block is XORed to the internal state. For the last
message block, SPARKLE38411 is employed for ESCH256,
and SPARKLE51212 is employed for ESCH384 and the first
128-bit hash are extracted at the end of the permutation. This
requires 11 and 12 clock cycles; after that SPARKLE3847 and
SPARKLE5128 are employed again, and the final 128-bit hash
is extracted. SPARKLE5128 is employed three times because
the length of the output hash is 384-bit. The hash outputs
are concatenated to achieve the final hash value. The clock
cycle consumption in this case is equivalent to the number
of permutation rounds plus the initial message processing
overhead. Fig. 10 (a) shows a single permutation round based
on the parallelized approach.

2) Serialized ARX-box: For the second version of hash
computation, a serialized approach was adopted. Since all the
ARX-boxes operating in parallel consume a larger hardware
area, it is beneficial to employ a serialized approach to reduce
area consumption. The basic component for this approach
consists of one single ARX-box and one diffusion layer.
The message pre-processing is the same, and once the pre-
processing is completed, the input is provided to a single
ARX-box. The output is fed into the same hardware again to
compute the required ARX-box output. To compute the ARX-
box output during each round, this architecture requires six and
eight clock cycles for ESCH256 and ESCH384, respectively.
One clock cycle is required to compute the diffusion layer.
Computing the hash by employing a serialized architecture
has certain advantages. Only a single ARX-box is required.
The length of the registers that save the intermediate state is
also reduced, and as a result, hardware area can be minimized.
Fig. 10 (b) shows a single permutation round based on the
serialized approach.

3) Hybrid approach: Carrying this work forward, a hybrid
approach is proposed, where there is the possibility of process-
ing a certain number of ARX-boxes in one clock cycle. This
version of the hash implementation refers to such a technique.
From the performance point of view, this approach is balanced
between the two techniques discussed above, where hardware
consumption is slightly increased to reduce the clock cycles.
The hash computation is the same. For one permutation round,
three clock cycles are required for the ARX-boxes and one
clock cycle for the diffusion layer with ESCH256. ESCH384
requires one more clock cycle for the permutation round. Fig.
10 (c) shows a single permutation round based on the hybrid
approach.

Fig. 10. Single permutation round in SPARKLE for (a) the parallelized ARX-
box, (b) the serialized ARX-box, and (c) the hybrid approach.

Table IV provides the implementation results for the three
versions of ESCH256 and ESCH384 on the FPGA platform.
Area consumption is linearly related to the number of ARX-
boxes employed in one clock cycle. The first version consumes
the most hardware area, where one round of permutations is
computed for all the parallelized ARX-boxes. However, this
architecture consumes the fewest clock cycles because the
maximum number of operations are parallelized. Since the
critical path elongates, it engenders a limit on the operating
frequency in this case. In the second version, where only
one ARX-box is employed with a serialized structure, the
critical path is smaller, and the maximum operating frequency
is achieved. Since the highest parallelized version consumes
the fewest clock cycles, which in turn affects the overall
computation time, which is hence the least for this architecture.
The longest time is taken by the serialized version because
maximum clock cycles are consumed for this architecture. TP
and TP/A show the same trend, with the most parallel version
generating the highest TP and TP/A.

TABLE IV
IMPLEMENTATION RESULTS FOR SPARKLE HASH.

Technique Area Freq. Latency Time TP TP/A
(LUTs) (MHz) (cc) (µs) (Mbps) (Mbps/LUT)

ESCH256 (Virtex-7)
Parallelized 2015 149.63 31 0.207 1236.71 0.613
Serialized 1530 186.70 206 1.103 232.09 0.151

Hybrid 1656 184.63 132 0.714 358.54 0.216
ESCH384 (Virtex-7)

Parallelized 2665 144.42 43 0.297 861.95 0.323
Serialized 1762 188.60 367 1.945 131.61 0.074

Hybrid 1931 184.19 223 1.210 211.57 0.109

D. XOODYAK

Previous implementations of XOODYAK in the literature are
limited to executing one round per clock cycle. In this paper,
the XOODYAK architecture was designed to execute multiple
permutations per clock cycle.

The mode of operation on top of the XOODOO permutation
is called a cyclist. For the hash computation, the cyclist
is initialized with no key. In unkeyed mode, the cyclist is
equivalent to the sponge construction, where an input message
of arbitrary length is absorbed, and a specific length of output
is then squeezed. For the hash computation in XOODYAK, the
rate, r, is 128-bit while the capacity, c, is 256-bit. The message
is parsed into 128-bit groups, and then permutation is applied.
The state represents the digest of all the states absorbed this
far, and the digest is referred to as history. The 256-bit of the
hash is also extracted the same way, in two steps. A cyclist
uses up to two bytes for domain separation.

For the hardware implementation of XOODOO, a single hash
round is computed first. Since the basic hardware architecture
is simple, i.e., one permutation round for XOODOO with very
little space for optimizations, round-based implementations are
therefore the best choice for hash computation. The basic
architecture for a single permutation round implemented on
the hardware is shown in Fig. 11.

The hardware architecture for XOODOO consists of five
steps. The first step (the mixing layer) is a simple XOR



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

operation and shifting. These operations can be realized by
employing XOR gates. The shifting operation does not con-
sume any hardware because it can be achieved through the
right selection of bits. The second and third steps can be
parallelized because the inputs are not dependent upon each
other, and hence, parallelization can be achieved. Again, plane
shifting does not involve any hardware consumption. The
constant addition can be realized through XOR operations.
The operations involved in a non-linear layer require inversion
plus AND operations, which are not expensive in hardware.
The final step is plane shifting, which does not require any
actual hardware. The final two steps are computed in series as
they wait for the updated plane values. This constitutes one
permutation round. Several permutation rounds are grouped
together to compute the permutation.

Fig. 11. A single permutation round for XOODOO.

For the hash, we implemented a round-based approach.
We chose one, two, and three rounds of permutations to be
executed in one clock cycle. As the number of rounds in one
clock cycle increases, clock cycle utilization decreases. The
clock cycles for each technique can be estimated as (36/n)+2,
where n is the number of rounds executed in one clock cycle.

The implementation results are shown in Table V. The
results show that with the increase in the number of rounds
executed per clock cycle, hardware consumption also increases
linearly. On the other hand, doing so increases the critical path
length, therefore decreasing the operating frequency. Clock
cycle consumption decreases when more permutation rounds
are packed into each clock cycle. TP also increases with the
increasing number of rounds because of the reduced time
needed for computation. On the other hand, TP/A decreases
as the area increases, with more rounds executed per clock
cycle.

TABLE V
IMPLEMENTATION RESULTS FOR THE XOODYAK HASH.

Technique Area Freq. Latency Time TP TP/A
(LUTs) (MHz) (cc) (µs) (Mbps) (Mbps/LUT)

Virtex-7
1-round 678 325.41 38 0.116 2206.89 3.255
2-rounds 1192 241.83 20 0.082 3121.95 2.619
3-rounds 1701 180.44 14 0.077 3327.67 1.954

IV. ANALYSIS AND COMPARISON

A. Analysis of the proposed architectures

This section first provides an analysis of the hash functions
implemented in the previous sections. The insights into the
architectures that make them stand apart from each other are
discussed. Furthermore, a comparison of the proposed archi-
tectures with state-of-the-art implementations is presented.

1) Internal architecture: PHOTON-Beetle is based on
AES-like architecture [28]. For PHOTON-Beetle, the diffusion
matrix is very lightweight, and shows good potential for
a highly parallelized implementation. Each element of the
matrix multiplication can be computed separately, independent
of the others, providing a high level of parallelization. In
addition, for the PHOTON-Beetle-Hash, the first 128-bit input
message block followed by the 32-bit blocks, requires more
permutation calls than the other corresponding hash functions,
and as a result, generates lower TP. PHOTON is also part of
the ISO-IEC:29192-5 standard, which deals specifically with
lightweight cryptography.

For Ascon, unlike the other algorithms, the first input for the
permutation round is defined by a constant initialization vector
that specifies the algorithm parameters. After that, 12 rounds
of permutation are applied to it. From the implementation
point of view, this permutation call can be saved by saving
the values of the permutation in BRAM, and then fetching
them before the permutation starts. However, we do not save
the values in BRAM, and compute them before processing the
input message. The reason is that the proposed architecture
for Ascon re-utilizes the hardware core and does not have
any area overhead when processing IV. There is only an
overhead of a few clock cycles, depending on the Ascon
implementation variant. Therefore, our strategy refrains from
saving data to BRAM and then fetching it again. The authors
in [21] demonstrated a serialized version of the Ascon S-box
making it ideal for area-constrained applications.

SPARKLE processes input messages that are not directly fed
into the permutation rounds, but are expanded through the
application of a linear function. The introduction of the linear
layer to pre-process the message blocks exerts overhead on
area consumption. As a result, SPARKLE has the highest area
consumption, compared to the other hash functions. Compar-
ing single-round implementations of all the hash functions,
SPARKLE used the most LUTs.

XOODYAK has a structure similar to Gimli and follows a
sponge-based architecture. The main property of XOODYAK
is that it characterizes the simplest round function where it
only employs XOR, AND, and inversion, which can easily be
accomplished through logic gates. Each of the five steps in the
round function has to wait for the output from the previous
step, pushing it more towards a serialized architecture. This is
also admitted by the authors, in that XOODYAK permutations
are inherently serial at the construction level.

2) TP and TP/A ratio: The important performance metrics
are TP and TP/A ratio because they incorporate all the perfor-
mance metrics together. TP can be realized as the number of
bits that any hardware architecture can process in a specific
time. TP was calculated in mega-bits per second during the



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 11

evaluation process. TP/A also incorporates hardware area
consumption, and is the ratio of TP to LUTs utilized by
any architecture. TP and TP/A for the hash functions based
on one round of permutation per clock cycle are shown in
Fig. 12. Because TP is the number of bits processed in a
certain time, it is therefore dependent upon the size of the
input chunk processed in one clock cycle. Both XOODYAK
and SPARKLE have a 128-bit block size, but XOODYAK has
a simpler architecture, so it provided the highest TP. Ascon
achieved the lowest TP, because it lacks parallelization in
a single round and processes the input in 64-bit chunks.
TP/A ratio was also the highest for XOODYAK because of
the simpler architecture that consumes less area. SPARKLE,
on the other hand, had the lowest TP/A ratio because it incurs
overhead in the hardware by processing the input messages in
a transformed state. Ascon and PHOTON-Beetle are similar
in TP/A ratio.

Fig. 12. TP and TP/A ratio for the hash functions.

B. Comparison

Hash functions that are candidates in the ongoing stan-
dardization process have few FPGA implementations in the
literature. Table VI provides the comparison of the proposed
architectures with other implementation strategies. PHOTON-
Beetle was implemented in [11] and [12], where the au-
thors performed bench-marking for the hash functions during
Round-2 of the NIST competition. Both techniques apply a
single permutation function round in one clock cycle. Our
proposed parallel architecture for the same platform also
applies a single permutation round in one clock cycle. But the
novel optimized S-box, along with the matrix multiplication
architecture, reduces the area consumption to half. Similarly,
the serial architecture helps with a further area reduction of
40%. The serial implementation of PHOTON-Beetle has lower
TP compared to the implementations presented in [11] and
[12]. This is because the serial implementations are designed
to achieve the smallest hardware area, trading off the TP
performance. The area reduction of almost 3× can be achieved
at the cost of TP reduction to almost 42% compared to [11]
and [12]. The overall TP/A ratio for our serial implementation
is still higher, demonstrating that the area reduction is signifi-

TABLE VI
COMPARISON WITH THE STATE-OF-THE-ART IMPLEMENTATIONS.

Technique Platform Area Freq. TP TP/A ratio
(LUTs) (MHz) (Mbps) (Mbps/LUT)
PHOTON-Beetle

[11] Artix-7 2065 178 227.8 0.110
[12] Artix-7 2100 - 230 0.109

Parallel Artix-7 1021 210.79 888.88 0.870
Serial Artix-7 609 215.19 95.12 0.156

Ascon
[11] Artix-7 1723 219 987 0.572
[12] Artix-7 1700 - 980 0.576
[19] Artix-7 2181 242 1032 0.473
[20] Kintex-7 629 429 - -

1-round Artix-7 770 260.75 668.40 0.868
6-rounds Artix-7 3728 64.07 792.56 0.208
1-round Kintex-7 702 268.24 646.46 0.846
6-rounds Kintex-7 3728 100.36 1354.49 0.356

SPARKLE
1-round Virtex-7 2015 149.62 1236.71 0.613

1 ARX-box Virtex-7 1530 186.70 232.09 0.151
XOODYAK

[11] Artix-7 2040 170 920 0.450
[12] Artix-7 2100 - 1180 0.561

1-round Artix-7 750 239.92 1620.25 2.160
3-rounds Artix-7 1728 146.79 2694.73 1.559

cant. This implementation strategy can be highly beneficial to
applications that are area constrained.

Ascon implementations in [11] and [12] provided round-
based implementations. The proposed bit-sliced S-box archi-
tecture needs up to 2.2× fewer LUTs for the same plat-
form. Similarly, our proposed architecture generates a 35%
higher TP/A ratio (1-round). The authors in [19] introduced
round-based implementations for Ascon. In addition, there
are multiplexers that select the appropriate value for the data
during each iteration. Compared to our proposed architecture,
we use almost 2.8× fewer LUTs. The implementations in
[19] engendered higher TP at the cost of more area, and
therefore, we achieved almost double the TP/A ratio. Ascon
with a modified version of the S-box was presented in [20],
which was implemented on the Kintex platform. There is no
direct comparison possible in this case, because it implements
a modified version of the S-box. This work also presents
several trade-off strategies during implementations. For Ascon
implementations (1-round), the TP is lower compared to [11],
[12], and [19]. However, the area reduction of 2.2− 2.8× can
be achieved by TP reduction of 68%. The TP/A ratio of 1-
round Ascon is still higher compared to [11], [12], and [19],
demonstrating that the area reduction is notable.

The first SPARKLE implementations for the FPGA platform
have been presented in this paper, and therefore, there is no
candidate for comparison. We proposed XOODYAK implemen-
tations where a certain number of rounds are executed in
a clock cycle. XOODYAK has a serialized architecture, but
our proposed architecture achieves the best reduced critical
path by executing some components in parallel. This directly
affects the operating frequency. The operating time is reduced
as a result, and a higher TP can be achieved. The achieved
TP is almost double that from state-of-the-art implemen-
tations. For XOODYAK implementations, as the number of
permutations executed in each clock cycle increases, the TP



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 12

is also increased. However, the TP escalation comes at the
cost of more area consumption. The area has been traded-off
for better results in TP for the XOODYAK implementations.
SPARKLE implementations exhibit similar performance when
the underlying ARX-box is assessed by serial, parallel and
hybrid approaches.

V. APPLICATIONS

Hash functions are an integral part of the blockchain.
Blockchain is based on the concept of consensus algorithms,
i.e., proof-of-work [29]. Proof-of-work refers to the fact that
one must be able to prove a certain amount of computational
resources was put into solving a problem. By employing
a cryptographic hash function and then requesting an input
that yields a hash result with a specific pattern is a popular
choice for proof-of-work. The more confined the hash output
is, the harder it is to solve the problem, thus demanding
more work. In the current era, merging IoT technology with
blockchain is a potential research direction. In order to use
the computationally expensive blockchain technology for the
IoT environment, the consensus algorithm must be modified.
Using lightweight hash functions can reduce the computation
overhead for consensus algorithms, making blockchain com-
patible with IoT environments. In addition, modified versions
of the consensus algorithms that are based on lightweight hash
functions have been presented [30].

VI. CONCLUSION AND FUTURE WORK

To achieve data integrity in an IoT environment, hash
functions are of prime importance. This work presented imple-
mentations and optimizations for lightweight hash functions
that are finalists in the NIST standardization competition
(PHOTON-Beetle, Ascon, SPARKLE, and XOODYAK). Im-
plementation results showed that PHOTON-Beetle can save
50% of the hardware area, whereas the serialized version
of the algorithm can further reduce area consumption by
40%. For the Ascon implementations, an increase in TP and
TP/A ratio was achieved. The simplified implementations for
XOODYAK achieved almost double the TP compared to state-
of-the-art implementations. We also provided the first FPGA
implementations for the SPARKLE hash function. In addition,
analysis based on internal architectures was conducted on the
hash functions.

The proposed work can contribute to protecting IoT com-
munications through an integrity check that can be helpful
in many IoT applications. Apart from that, the hardware
implementations are also important for reviewers in choosing
the final candidate for the hash competition.

Carrying this work forward, the lightweight hash functions
and their corresponding hardware implementations can be used
to design lightweight hash-based signatures for authenticating
the IoT devices. Efficient hash-based message authentication
codes can also be developed to verify the legitimacy of data
sent through the IoT network [31]. Both the lighter version of
signatures and message authentication codes are essential in
securing the IoT applications.

REFERENCES

[1] M. A. Rahman, M. M. Rashid, M. S. Hossain, E. Hassanain, M. F.
Alhamid, and M. Guizani, “Blockchain and IoT-based cognitive edge
framework for sharing economy services in a smart city,” IEEE Access,
vol. 7, pp. 18 611–18 621, 2019.

[2] A. H. Sodhro, A. Gurtov, N. Zahid, S. Pirbhulal, L. Wang, M. M. U.
Rahman, M. A. Imran, and Q. H. Abbasi, “Toward convergence of
AI and IoT for energy-efficient communication in smart homes,” IEEE
Internet of Things Journal, vol. 8, no. 12, pp. 9664–9671, 2020.

[3] S. Sengupta and S. S. Bhunia, “Secure data management in cloudlet
assisted IoT enabled e-health framework in smart city,” IEEE Sensors
Journal, vol. 20, no. 16, pp. 9581–9588, 2020.

[4] M. M. Sravani and S. A. Durai, “On efficiency enhancement of SHA-3
for FPGA-based multimodal biometric authentication,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 4,
pp. 488–501, 2022.

[5] M. J. Dworkin et al., “SHA-3 standard: Permutation-based hash and
extendable-output functions,” 2015.

[6] L. Bassham, Ç. Çalık, K. McKay, and M. S. Turan, “Submission
requirements and evaluation criteria for the lightweight cryptography
standardization process,” US National Institute of Standards and Tech-
nology, 2018.

[7] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1.
2,” Submission to the CAESAR Competition, vol. 5, no. 6, p. 7, 2016.

[8] J. Daemen, S. Hoffert, M. Peeters, G. V. Assche, and R. V. Keer,
“Xoodyak, a lightweight cryptographic scheme,” 2020.

[9] C. Beierle, A. Biryukov, L. C. dos Santos, J. Großschädl, L. Perrin,
A. Udovenko, V. Velichkov, Q. Wang, and A. Biryukov, “Schwaemm
and esch: lightweight authenticated encryption and hashing using the
sparkle permutation family,” NIST round, vol. 2, 2019.

[10] Z. Bao, A. Chakraborti, N. Datta, J. Guo, M. Nandi, T. Peyrin, and
K. Yasuda, “PHOTON-beetle authenticated encryption and hash family,”
NIST Lightweight Compet. Round, vol. 1, p. 115, 2019.

[11] K. Mohajerani, R. Haeussler, R. Nagpal, F. Farahmand, A. Abdulgadir,
J.-P. Kaps, and K. Gaj, “FPGA benchmarking of round 2 candidates in
the NIST lightweight cryptography standardization process: methodol-
ogy, metrics, tools, and results,” Cryptology ePrint Archive, 2020.

[12] K. Mohajerani, R. Haeussler, R. Nagpal, F. Farahmand, A. Abdulgadir,
J.-P. Kaps, and K. K. Gaj, “Hardware benchmarking of round 2 can-
didates in the NIST lightweight cryptography standardization process,”
in 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2021, pp. 164–169.

[13] S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi, “Internet
of things (IoT) communication protocols,” in 2017 8th International
conference on information technology (ICIT). IEEE, 2017, pp. 685–
690.

[14] B.-L. Tan, K.-M. Mok, J.-J. Chang, W.-K. Lee, and S. O. Hwang,
“Risc32-lp: Low-power fpga-based IoT sensor nodes with energy reduc-
tion program analyzer,” IEEE Internet of Things Journal, vol. 9, no. 6,
pp. 4214–4228, 2021.

[15] S. Hadayeghparast, S. Bayat-Sarmadi, and S. Ebrahimi, “High-speed
post-quantum cryptoprocessor based on RISC-V architecture for IoT,”
IEEE Internet of Things Journal, 2022.

[16] M. Adil, M. A. Jan, S. Mastorakis, H. Song, M. M. Jadoon, S. Abbas,
and A. Farouk, “Hash-MAC-DSDV: mutual authentication for intelligent
iot-based cyber-physical systems,” IEEE Internet of Things Journal,
2021.

[17] A. Abduvaliev, S. Lee, and Y.-K. Lee, “Simple hash based message
authentication scheme for wireless sensor networks,” in 2009 9th Inter-
national Symposium on Communications and Information Technology.
IEEE, 2009, pp. 982–986.

[18] S. Abed, R. Jaffal, B. J. Mohd, and M. Al-Shayeji, “An analysis
and evaluation of lightweight hash functions for blockchain-based IoT
devices,” Cluster Computing, vol. 24, no. 4, pp. 3065–3084, 2021.

[19] B. Rezvani, F. Coleman, S. Sachin, and W. Diehl, “Hardware imple-
mentations of NIST lightweight cryptographic candidates: A first look,”
Cryptology ePrint Archive, 2019.

[20] K. Mandal, D. Saha, S. Sarkar, and Y. Todo, “Sycon: a new milestone
in designing ASCON-like permutations,” Journal of Cryptographic
Engineering, pp. 1–23, 2021.

[21] S. Khan, W.-K. Lee, and S. O. Hwang, “Scalable and efficient hardware
architectures for authenticated encryption in IoT applications,” IEEE
Internet of Things Journal, vol. 8, no. 14, pp. 11 260–11 275, 2021.

[22] “Lightweight cryptography,” NIST, 2018. [Online]. Available: https:
//csrc.nist.gov/Projects/Lightweight-Cryptography



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 13

[23] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON family of
lightweight hash functions,” in Annual cryptology conference. Springer,
2011, pp. 222–239.

[24] E. Miles and E. Viola, “Substitution-permutation networks, pseudoran-
dom functions, and natural proofs,” Journal of the ACM (JACM), vol. 62,
no. 6, pp. 1–29, 2015.

[25] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon
v1. 2: Lightweight authenticated encryption and hashing,” Journal of
Cryptology, vol. 34, no. 3, pp. 1–42, 2021.

[26] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Sponge
functions,” in ECRYPT hash workshop, vol. 2007, no. 9. Citeseer,
2007.

[27] D. J. Bernstein, S. Kölbl, S. Lucks, P. M. C. Massolino, F. Mendel,
K. Nawaz, T. Schneider, P. Schwabe, F.-X. Standaert, Y. Todo et al.,
“Gimli: a cross-platform permutation,” in International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 2017, pp.
299–320.

[28] J.-S. Ng, J. Chen, K.-S. Chong, J. S. Chang, and B.-H. Gwee, “A highly
secure FPGA-based dual-hiding asynchronous-logic AES accelerator
against side-channel attacks,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2022.

[29] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, 2016, pp. 3–16.

[30] S. Khan, W.-K. Lee, and S. O. Hwang, “Aechain: a lightweight
blockchain for IoT applications,” IEEE Consumer Electronics Magazine,
vol. 11, no. 2, pp. 64–76, 2021.

[31] G. Saldamli, L. Ertaul, and A. Shankaralingappa, “Analysis of
lightweight message authentication codes for IoT environments,” in 2019
Fourth International Conference on Fog and Mobile Edge Computing
(FMEC). IEEE, 2019, pp. 235–240.

Safiullah Khan (Student Member, IEEE) received
his B.Sc. in electronic engineering from the Univer-
sity of Engineering and Technology, Peshawar, Pak-
istan, in 2013, and an M.Sc. in electrical engineering
from COMSATS University Islamabad, Abbottabad
campus, Pakistan, in 2017. He is currently pursuing
his Ph.D. in computer engineering from Gachon
University, Seongnam, South Korea.

He worked in R&D department of National Radio
and Telecommunication Corporation, Haripur, Pak-
istan, for two years. His research interests include

efficient hardware implementations of cryptographic protocols, blockchain,
and network security. He is the Chair of IEEE Student Branch at Gachon
University, South Korea.

Wai-Kong Lee (Member, IEEE) received a B.Eng.
and an M.Sc. from Multimedia University in 2006
and 2009, respectively. He received a Ph.D. degree in
engineering from Universiti Tunku Abdul Rahman,
Malaysia, in 2018.

He was a Visiting Scholar at Carleton University,
Canada, in 2017, at Feng Chia University, Taiwan, in
2016 and 2018, and at OTH Regensburg, Germany,
in 2015, 2018, and 2019. Prior to entering academia,
he worked for several multi-national companies, in-
cluding Agilent Technologies (Malaysia) as an R&D

engineer. His research interests are cryptography, numerical algorithms, GPU
computing, the Internet of Things, and energy harvesting. He is currently a
postdoctoral researcher at Gachon University, South Korea.

Angshuman Karmakar received a B.E. in com-
puter science and engineering from Jadavpur Uni-
versity, Kolkata, an M.Tech. in computer science and
engineering from the Indian Institute of Technology,
Kharagpur, and a Ph.D. from Katholieke Universiteit
Leuven (KU Leuven), Belgium, for his dissertation
titled “Design and Implementation Aspects of Post-
Quantum Cryptography.” He is one of the primary
designers of the post-quantum Saber KEM scheme
which is one of the finalists in the NIST’s post-
quantum standardization procedure. He is currently

an FWO Post-Doctoral Fellow with the COSIC Research Group, KU Leuven.
His research interests span different aspects of lattice-based post-quantum
cryptography and computation on encrypted data.

Jose Maria Bermudo Mera received a B.Eng.
and an M.Sc. in telecommunications engineering
from the Technical University of Madrid, Spain.
He is currently pursuing a Ph.D. with the COSIC
Research Group, Katholieke Universiteit Leuven,
Belgium, with a research project titled “Implemen-
tation Aspects of Lattice-Based Cryptography.” He
is a Team Member of the post-quantum Saber key-
encapsulation mechanism scheme, which is one of
the finalists in the NIST’s post-quantum standardiza-
tion procedure. His research interests include imple-

mentation of cryptography on software and hardware platforms and physical
security.

Abdul Majeed received a B.S. in Information Tech-
nology from the UIIT, PMAS-UAAR, Rawalpindi,
Pakistan, in 2013, an M.S. in Information Security
from the COMSATS University, Islamabad, Pak-
istan, in 2016, and a Ph.D. in Computer Information
Systems and Networks from the Korea Aerospace
University, in 2021. He worked as a Security Analyst
with Trillium Information Security Systems (TISS),
Rawalpindi, Pakistan, from 2015 to 2016. He is
currently an Assistant Professor with the Department
of Computer Engineering, Gachon University, South

Korea. His research interests include privacy-preserving data publishing,
statistical disclosure control, privacy-aware analytics, and machine learning.

Seong Oun Hwang (Senior Member, IEEE) re-
ceived a B.S. in mathematics from Seoul National
University in 1993, an M.S. in information and com-
munications engineering from the Pohang University
of Science and Technology in 1998, and a Ph.D. in
computer science from the Korea Advanced Institute
of Science and Technology in 2004, South Korea.

He worked as a Software Engineer with LG-CNS
Systems, Inc., from 1994 to 1996. He worked as a
Senior Researcher with the Electronics and Telecom-
munications Research Institute (ETRI), from 1998

to 2007. He was as a Professor with the Department of Software and
Communications Engineering, Hongik University, from 2008 to 2019. He is
currently a Professor with the Department of Computer Engineering, Gachon
University. His research interests include cryptography, cybersecurity, and
artificial intelligence.

He is an Editor of ETRI Journal.


