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Abstract. A critical aspect for the practical use of non-interactive zero-
knowledge (NIZK) arguments in the common reference string (CRS)
model is the demand for a trusted setup, i.e., a trusted generation of the
CRS. Recently, motivated by its increased use in real-world applications,
there has been a growing interest in concepts that allow to reduce the
trust in this setup. In particular one demands that the zero-knowledge
and ideally also the soundness property hold even when the CRS gen-
eration is subverted. One important line of work in this direction is the
so-called updatable CRS for NIZK by Groth et al. (CRYPTO’18). The
basic idea is that everyone can update a CRS and there is a way to
check the correctness of an update. This guarantees that if at least one
operation (the generation or one update) have been performed honestly,
the zero-knowledge and the soundness properties hold. Later, Lipmaa
(SCN’20) adopted this notion of updatable CRS to quasi-adaptive NIZK
(QA-NIZK) arguments.
In this work, we continue the study of CRS-updatable QA-NIZK and
analyse the most efficient asymmetric QA-NIZKs by González et al.
(ASIACRYPT’15) in a setting where the CRS is fully subverted and
propose an updatable version of it. In contrast to the updatable QA-
NIZK by Lipmaa (SCN’20) which represents a symmetric QA-NIZK and
requires a new non-standard knowledge assumption for the subversion
zero-knowledge property, our technique to construct updatable asym-
metric QA-NIZK is under a well-known standard knowledge assump-
tion, i.e., the Bilinear Diffie-Hellman Knowledge of Exponents assump-
tion. Furthermore, we show the knowledge soundness of the (updatable)
asymmetric QA-NIZKs, an open problem posed by Lipmaa, which makes
them compatible with modular zk-SNARK frameworks such as LegoS-
NARK by Campanelli et al. (ACM CCS’19).

1 Introduction

Zero-knowledge proofs [24] are a fundamental concept which allows one party
(the prover) by interacting with another party (the verifier) to convince the lat-
ter that a statement in any NP language is true without revealing any additional
information (the zero-knowledge property). At the same time, the prover is not



able to make the verifier accept proofs about false statements (the soundness
property). In many of its practical applications it is important to remove inter-
action in that the prover only needs to compute a single message (a proof), which
can then be verified by everyone. These so called non-interactive zero-knowledge
(NIZK) proofs, especially for algebraic languages in bilinear groups [26, 30, 31],
play an important role in the design of cryptographic primitives and protocols.
The non-interactivity, however, comes at a price and in particular (apart from
NIZK secure in the random oracle model) demands a trusted setup that gener-
ates a so called common reference string (CRS). This CRS is an input to the
prover and all potential verifiers. The critical issue is that if this setup is not
performed honestly, i.e., the underlying trapdoor is known to some party, then
all security is lost.

A long line of research has focused on obtaining very efficient NIZK proofs
in this CRS model [23, 27, 28, 30–35, 39], covering efficient pairing-based zero-
knowledge Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) for
any NP language and succinct Quasi-Adaptive Non-Interactive Zero-Knowledge
arguments (QA-NIZKs) for restricted languages, i.e., membership in linear sub-
spaces. QA-NIZKs are a relaxation of NIZK arguments, where the CRS is spe-
cialized to the linear space for which membership should be proven [7,8,25,32,33,
35, 37, 38]. This specialized part is called the language parameter. In this paper
our focus will be on QA-NIZK arguments.

1.1 Motivation

For the practical application of NIZK primitives in general, a crucial question
is how the CRS generation should be performed. While in theory it is simply
assumed that some universally trusted party will perform the CRS generation,
such a party is challenging to impossible to find in the real world. Consequently,
this is typically a too strong assumption.

Now there are different approaches to reduce the required trust that needs to
be put in the CRS generation. First, the CRS can be generated by a potentially
huge set of parties via the use of secure multi-party computation (MPC), so
called ceremonies, [1, 10, 11, 36]. And while this approach has seen use in the
real world3, such ceremonies are cumbersome and require significant effort even
beyond the technical realisation. Despite the required efforts, however, it can give
very strong guarantees, i.e., if at least as one party behaves honest then security
is preserved. Second, to remove this additional effort, one can rely on so called
subversion NIZKs [9], subversion zk-SNARKS [2,20] and subversion QA-NIZKs
[3,6]. In this subversion zero-knowledge model, one introduces a way to check the
CRS and the prover does not require to trust the CRS, i.e., the zero-knowledge
property (so-called subversion zero-knowledge) is still maintained even if the
CRS generation is malicious. Unfortunately, the verifier is still required to trust
the CRS generation and it is actually impossible to obtain subversion soundness
when at the same time requiring zero-knowledge to hold [9]. Third, an interesting

3 The “powers of tau” ceremony of Zcash: https://z.cash/technology/paramgen/.
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middle ground is the recent technique of a so called updatable CRS introduced by
Groth et al. [29], which is an increasingly popular model [5,12,14,18,22,40–43,46].
In this updatable CRS model, everyone can update a CRS along with providing
update proofs such that the correctness of updates can be verified by everyone.
This guarantees that zero-knowledge for the prover holds in the presence of
an adversarial CRS generator. Moreover, the verifier can trust the CRS, i.e.,
soundness holds, as long as one operation, either the CRS generation itself or
one of the updates of the CRS have been performed honestly. Thus, to be certain
that soundness holds, a verifier could do a CRS update on its own and then send
the updated CRS to the prover.

Initially, Groth et al. [29] defined CRS updates with a focus on zk-SNARKs,
and then Lipmaa [40] proposed an updatable CRS version of the QA-NIZK con-
struction of [3, 35]. While Lipmaa considers so called symmetric QA-NIZK, i.e.,
where the language is defined in one of the source groups of a bilinear group, it
is not known how this applies to asymmetric QA-NIZK [25], i.e., where the lan-
guage is defined over both source groups (also called bilateral linear subspaces).4
Asymmetric QA-NIZKs [17, 25, 45], however, are useful for many applications
where commitments to the same value are available in both source groups of
a bilinear group (e.g., proof aggregation, ring signatures, range proofs). As we
will discuss soon, despite not being known how to construct it, having what we
call an updatable asymmetric QA-NIZK does have interesting implications for
concrete applications discussed below.

Applications. zk-SNARKs and QA-NIZKs are appealing as they are succinct,
i.e., they allow proving circuits of arbitrary size and linear subspace languages
respectively, with a compact proof. They are also concretely very efficient and in
particular in bilinear groups we have constructions with proofs represented by
three group elements for zk-SNARKs for arithmetic circuits [28], one group ele-
ment for symmetric QA-NIZK for linear subspace languages [35], and two group
elements for asymmetric QA-NIZK for bilateral linear subspace languages [25].
While (asymmetric) QA-NIZKs have many interesting applications (cf. [25, 32,
33]), our focus will be on their application in the modular design of zk-SNARKs
and in particular on LegoSNARK [13].

LegoSNARK is a toolbox for commit-and-prove zk-SNARKs with the aim
of constructing a global zk-SNARK for some computation C via the linking of
smaller specialized zk-SNARKs for various subroutines that overall compose to
C. The central idea is that by allowing each subroutine of C to be handled by
a different proof system, one can select the one that maximizes a metric (e.g.,
efficiency) that is important for the concrete application. Now LegoSNARK uses
succinct QA-NIZKs as efficient zk-SNARKs for linear subspace languages. Ab-
dolmaleki and Slamanig [6] recently showed how one can construct a subversion
zero-knowledge variant of symmetric [35] as well as asymmetric QA-NIZK [25] in

4 To avoid confusion we intentionally do not call them QA-NIZK for symmetric or
asymmetric groups as done in [25], as both types are instantiated in asymmetric,
i.e., type-3, bilinear groups.
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a setting where the CRS is subverted but the language parameters are generated
honestly. As they mention, the honest language parameters do not represent a
problem for practical applications, as they can typically be obtained in a trans-
parent way without trust in their generation (e.g., by deriving them using a ran-
dom oracle). Furthermore, they show how to integrate a knowledge-sound version
of their subversion zero-knowledge symmetric QA-NIZK into LegoSNARK. This
represents a step towards a subversion variant of the LegoSNARK toolbox and
thus a way to use LegoSNARK with a reduced trust in the required setup.

As most of the recent zk-SNARK constructions focus on the updatable-CRS
setting [5,12,14,18,22,41–43,46], it is desirable to enable composable zk-SNARK
frameworks such as LegoSNARK also in the updatable CRS setting. If one
thereby wants still to take advantage of using QA-NIZK as one of its build-
ing blocks, then updatable QA-NIZK are required. While, as mentioned above,
there are numerous constructions of zk-SNARKs with an updatable CRS, to date
there is only an updatable symmetric QA-NIZK by Lipmaa [40] available. To
prove the zero-knowledge property, it requires a new and non-standard knowl-
edge assumption (KW-KE). Adaptive soundness can be shown under a standard
assumption, but achieving knowledge soundness, a property that would be re-
quired for composable zk-SNARKs, is left as an open problem in [40]. Lipmaa
works in a model where the complete CRS including the language parameter
(what he calls key) can be generated maliciously. Additionally proofs (what he
calls arguments) under previous versions of the CRS can be updated to newer
versions of the CRS. While latter extends potential applications, in the context
of composable zk-SNARK frameworks, this feature is not required.

Now, apart from the missing knowledge-soundness property in [40], it could
be tempting to think that two parallel symmetric QA-NIZK can be used to
emulate what is provided by asymmetric QA-NIZK. However, the problem is that
one would require an additional “linking proof” that would guarantee that both
proofs use the same witness. And exactly this issue, which would increase the
proof size and decrease efficiency, is what one can avoid when using asymmetric
QA-NIZK in LegoSNARK, whenever the respective commitments are available
in both source groups.

Consequently, when having updatable asymmetric QA-NIZKs, which avoid
the aforementioned issue, this is another step towards an updatable variant of
the LegoSNARK toolbox.

1.2 Our Results

We investigate the most efficient asymmetric QA-NIZK (denoted as Π ′asy) by
González et al. (GHR) [25] in an updatable CRS setting. We show that for Π ′asy
we can construct updatable asymmetric QA-NIZK arguments (which requires a
witness samplable distribution [32]) by extending the CRS suitably and adding
two new algorithms for updating the CRS and verify CRS updates. Compared to
the recent updatable symmetric QA-NIZK in [40], we consider a variant where
the CRS is subverted and can be updated, but the language parameter is chosen
honestly. As already mentioned above that latter does not represent a problem
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for practical applications and in particular composable zk-SNARK frameworks
such as LegoSNARK [13].

In contrast to the updatable symmetric QA-NIZK in [40], which relies on
a new non-standard knowledge assumption for their subversion zero-knowledge
property (KW-KE), our construction of updatable QA-NIZK can be shown to
have this property under the Bilinear Diffie-Hellman Knowledge of Exponents
(BDH-KE) assumption [2,4] and is asymmetric. Furthermore, under the discrete
logarithm assumption in the Algebraic Group Model (AGM) due to Fuchsbauer
et al. [21], we prove the knowledge soundness property of the proposed updat-
able asymmetric QA-NIZK. We also show that this also yields the knowledge
soundness property of the original GHR asymmetric QA-NIZK.

Technical overview. In Section 3, we give constructions of succinct updat-
able asymmetric QA-NIZK arguments of membership in bilateral linear sub-
spaces. Using implicit notation, we represent the elements of G1 (respectively
of G2) as [z]1 ∈ G1 (respectively, as [z]2 ∈ G2). Given the language parame-
ters [M ]1 ∈ Gn1×m

1 and [N ]2 ∈ Gn2×m
2 , we consider QA-NIZK arguments of

membership of the statements ([y]1, [x]2) in the language

L[M ]1,[N ]2 =
{

([y]1, [x]2) ∈ Gn1
1 ×Gn2

2 : ∃w ∈ Zmp s.t. y = Mw,x = Nw
}
.

As mentioned, to construct our updatable asymmetric QA-NIZK arguments
we start from the asymmetric QA-NIZK by González et al. (GHR) [25] (cf.
Fig. 1) and change GHR’s QA-NIZK by adding extra elements to the CRS so
that the CRS becomes publicly verifiable and trapdoor extractable. Importantly,
our aim for the updatable asymmetric QA-NIZK, is to keep the prover and the
verifier unchanged compared to GHR’s QA-NIZK.

More precisely, the CRS of GHR’s QA-NIZK contains crs = ([A,C2,P 2]2,
[A,C1,P 1]1) where [A]i ∈ Gk×ki , Ci ∈ Zni×k

p , and P i ∈ Zm×kp for i ∈ {1, 2}
and integers ni, m and k. The prover uses [P 2]2 and [P 1]1 to generate a proof
and the verifier uses the rest of the CRS to verify the proof. We add two new
elements [C1]2 and [C2]1 to the CRS of the GHR scheme to make the CRS
publicly verifiable. The trapdoor extractability is guaranteed using the new el-
ements [C1]2 and [C2]1 and under the Bilinear Diffie-Hellman Knowledge of
Exponents assumption (the extracted trapdoor will be used to prove subversion
zero-knowledge). To achieve the updatability property, we design two new algo-
rithms Ucrs and Vcrs. The Ucrs algorithm takes the crs and updates it to a new
crsup so that the update is publicly verifiable. More precisely, given the crsup,
the language parameters [M ]1, and [N ]2, the Vcrs algorithm checks the well-
formedness of crsup. The latter checking guarantees the existence of a trapdoor
tc for the crsup, which will be required to prove the zero-knowledge property (cf.
Section 3.2).

This step is necessary and will be sufficient for subversion zero-knowledge
(as the prover can check the well-formedness of the CRS) and updatable sound-
ness (as the verifier can check and update the CRS) in the updatable set-
ting. However, choosing which elements to add to the CRS is not straightfor-

5



ward since the QA-NIZK must remain secure even given this extended CRS as
adding too much information into the CRS can easily break the security, i.e.,
zero-knowledge and/or soundness. For instance, one may achieve the aforemen-
tioned properties by adding [P 1]2 and [P 2]1 to the CRS of GHR’s QA-NIZK.
But adding such elements bring a fundamental issue that under the Bilinear
Diffie-Hellman Knowledge of Exponents assumption, the simulator in the zero-
knowledge proof can also extract the language parameters M and N . Given
statements ([y]1, [x]2), the simulator obtains more information of the witness w
of the language L[M ]1,[N ]2 , which would violate the zero-knowledge property.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security pa-
rameter. By x ←$ D we denote that x is sampled according to distribution D
or uniformly randomly if D is a set. We denote by negl(λ) an arbitrary negligi-
ble function. We write a ≈λ b if |a− b| ≤ negl(λ). Algorithm Pgen(1λ) returns
BG = (p,G1,G2,GT , ê), where G1, G2, and GT are three additive cyclic groups
of prime order p, and ê : G1 × G2 → GT is a non-degenerate efficiently com-
putable bilinear map (pairing). We use the implicit bracket notation of [19], that
is, we write [a]ι to denote agι where gι is a fixed generator of Gι. We denote
ê([a]1, [b]2) as [a]1[b]2. Thus, [a]1[b]2 = [ab]T . By y ← A(x;ω) we denote the fact
that A, given an input x and random coins ω, outputs y. Let RND(A) denote
the random tape of A, and let ω ←$ RND(A) denote the random choice of the
random coins ω from RND(A).

Computational Assumptions. We require the following assumptions.

Definition 1 (BDH-KE Assumption [2,4]). We say that BDH-KE holds rel-
ative to K0, if for any PPT adversary A there exists a PPT extractor ExtBDH-KE

A ,
such that

Pr

[
p←$ K0(1λ);ωA ←$ RND(A),

([α1]1, [α2]2||a)←(A||ExtBDH-KE
A )(p, ωA)

:[α1]1[1]2 =[1]1[α2]2 ∧ a 6= α1

]
≈λ 0 .

Here auxR is the auxiliary information related to the relation generator of
R. Note that the BDH-KE assumption can be considered as a simple case of the
PKE assumption of [16]. Also, BDH-KE can be seen as an asymmetric-pairing
version of the original KoE assumption [15].
In the following definitions let Dk be a matrix distribution in Z(k+1)×k

p .

Definition 2 (Dk-Matrix Diffie-Hellman (Dk-MDDH) Assumption [44]).
The Dk-MDDH assumption for ι ∈ {1, 2} holds relative to K0, if for any PPT
adversary A, |ExpMDDH

A (p)− 1/2| ≈λ 0, where ExpMDDH
A (p) :=

Pr

p←$ K0(1λ);A←$ Dk;v ←$ Zkp;
u←$ Zk+1

p ; b←$ {0, 1};
b∗ ← A(p, [A]ι, [b ·Av + (1− b) · u]ι)

: b = b∗

 .
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Definition 3 (Dk-SKerMDH Assumption [25]). The Dk-SKerMDH assump-
tion holds relative to K0, if for any PPT A,

Pr

[
p← K0(1λ);A←$ Dk; ([s1]1, [s2]2)← A(p, [A]1, [A]2) :

s1 − s2 6= 0 ∧A>(s1 − s2) = 0k

]
≈λ 0 .

Let D`k be a probability distribution over matrices in Z`×kp , where ` > k.
Next, we define five commonly used distributions (see [19] for references), where
a, ai, aij ←$ Z∗p: Uk (uniform), Lk (linear), ILk (incremental linear), Ck (cas-
cade), SCk (symmetric cascade):

Uk: A =

( a11 ... a1k
... ... ...
ak1 ... akk

ak+1,1 ... ak+1,k

)
, Lk: A =

 a1 0 ... 0 0
0 a2 ... 0 0
0 0 ... 0 0
... ... ... ... ...
0 0 ... 0 ak
1 1 ... 1 1

,
ILk: A =

 a 0 ... 0 0
0 a+1 ... 0 0
0 0 ... 0 0
... ... ... ... ...
0 0 ... 0 a+k−1
1 1 ... 1 1

, Ck: A =

 a1 0 ... 0 0
1 a2 ... 0 0
0 1 ... 0 0
... ... ... ... ...
0 0 ... 1 ak
0 0 ... 0 1

,
SCk: A =

 a 0 ... 0 0
1 a ... 0 0
0 1 ... 0 0
... ... ... ... ...
0 0 ... 1 a
0 0 ... 0 1

.
Assume that D`k outputs matrices A where the upper k× k submatrix Ā is

always invertible, i.e., D`k is robust [32].

QA-NIZK Arguments. Let a language L% defined by a relation R% which
is parametrized by some parameter %, called the language parameter, chosen
from a distribution Dp. We recall the definition of QA-NIZK arguments from
Jutla and Roy [32]. A QA-NIZK argument provides a proof for membership of
words x with according witnesses w in the language L%. The distribution Dp

is witness samplable if there exist an efficient algorithm that samples (%, tc%)
so that the parameter % is distributed according to Dp and membership of the
language parameter % can be efficiently verified with tc%. The CRS of a QA-
NIZK depends on a language parameter % and as mentioned in [32], it has to be
chosen from a correct distribution Dp.

Let % be sampled from a distribution Dp over associated parameter language
Lp. A QA-NIZK argument in the CRS model contains four PPT algorithms
Π = (Pgen,P,V,Sim) for a set of witness-relations Rp = {R%}%∈Supp(Dp) , if
the following properties (i-iii) hold. We call the QA-NIZK knowledge sound if
instead of (iii) the property (iv) holds. Here, Pgen is the parameter and the
CRS generation algorithm, more precisely, Pgen consists of two algorithms K0

(generates the parameter p) and K (generates the CRS), P is the prover, V is
the verifier, and Sim is the simulator.
(i) Completeness. For any λ, and (x,w) ∈ R%,

Pr

[
p← K0(1λ); %←$ Dp; (crs, tc)← K(%);π ← P(%, crs, x,w) :

V(%, crs, x, π) = 1

]
= 1 .
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K([M ]1, [N ]2)

- A←$ D̂k;K1 ←$ Zn1×k̂
p ;K2 ←$ Zn2×k̂

p ;Z ←$ Zm×k̂
p ;C1 ← K1A ∈ Zn1×k

p ;

- C2 ← K2A ∈ Zn2×k
p ; [P 1]1 ← [M ]

>
1 K2 + [Z]1 ∈ Zm×k̂

p ;

- [P 2]2 ← [N ]
>
2 K1 + [Z]2 ∈ Zm×k̂

p ;

- tc← (K1,K2); crs← ([A,C2,P 2]2, [A,C1,P 1]1);
- return (tc, crs);

P([M ]1, [N ]2, crs, [y]1, [x]2,w):

- r ←$ Zk̂
p;

- [π1]1 ← [P 1]
>
1 w + [r]1 ∈ Gk̂

1 ;

- [π2]2 ← [P 2]
>
2 w + [r]2 ∈ Gk̂

2 ;
- return ([π1]1, [π]2);

V([M ]1, [N ]2, crs, [y]1, [x]2, [π1]1, [π2]2):

- if [y]
>
1 [C2]2 − [π1]

>
1 [A]2 = [π2]

>
2 [A]1 − [x]

>
2 [C1]1 return 1;

- else return 0;

Sim([M ]1, [N ]2, crs, tc, [y]1):

- r ←$ Zk̂
p; - [π1]1 ← K

>
2 [y]1 + [r]1 ∈ Gk̂

1 ; - [π]2 ← K
>
1 [x]2 + [r]2 ∈ Gk̂

1 ;

- return ([π1]1, [π]2);

Fig. 1: Asymmetric QA-NIZK Πasy (D̂k = Dk and k̂ = k+1) and Π ′asy (D̂k = D̄k
and k̂ = k) from [25].

(ii) Statistical Zero-Knowledge. For any computationally unbounded ad-
versary A, |εzk0 − εzk1 | ≈λ 0, where εzkb :=

Pr
[
p← K0(1λ); %←$ Dp; (crs, tc)← K(%); b←$ {0, 1} : AOb(·)(%, crs) = 1

]
.

The oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R%, and otherwise it
returns P(%, crs, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R%,
and otherwise it returns Sim(%, crs, tc, x).

(iii) Adaptive Soundness. For any PPT A,

Pr

[
p← K0(1λ); %←$ Dp; (crs, tc)← K(%); (x, π)← A(%, crs) :

V(%, crs, x, π) = 1 ∧ ¬(∃w : (x,w) ∈ R%)

]
≈λ 0 .

(vi) Adaptive Knowledge Soundness. For any PPT A there exists a non-
uniform PPT extractor ExtA,

Pr

p← K0(1λ); %←$ Dp; (crs, tc)← K(%);ωA ←$ RND(A);

(x, π)← A(ωA; %, crs);w ← ExtA(ωA; %, crs) : (x,w) 6∈ R%
∧ V(%, crs, x, π) = 1

 ≈λ 0 .

Asymmetric QA-NIZK for Concatenation Languages.We recall the asym-
metric QA-NIZK arguments of membership in bilateral linear subspaces of Gn1

1 ×
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Gn2
2 given by González et al. [25] for the language

L[M ]1,[N ]2 =
{

([y]1, [x]2) ∈ Gn1
1 ×Gn2

2 : ∃w ∈ Zmp s.t. y = Mw,x = Nw
}
.

This language is also known as the concatenation language, since one can de-
fine R as a concatenation of language parameters [M ]1 and [N ]2 so that R =(

[M ]1
[N ]2

)
. In other words ([y]1, [x]2) ∈ L[M ]1,[N ]2 iff

(
[y]1
[x]2

)
is in the span of R.

We recall the full construction of asymmetric QA-NIZK arguments in the CRS
model in Fig. 1.

Notice that the QA-NIZK in Fig. 1 for L[M ]1,[N ]2 is a generalization of Πas

of [35] in two groups when we set D̂k = Dk and k̂ = k + 1 (denoted as Πasy).
Also it is a generalization of Π ′as of [35] in two groups when we set D̂k = D̄k and
k̂ = k (denoted as Π ′asy).

Theorem 1. [Theorem 3 of [25]] If D̂k = Dk and k̂ = k+1, the QA-NIZK proof
system in Fig. 1 is perfect complete, computational adaptive soundness based on
the Dk-SKerMDH assumption, perfect zero-knowledge.

Theorem 2. [Theorem 4 of [25]] If D̂k = D̄k, k̂ = k and Dp is a witness
samplable distribution, Fig. 1 describes a QA-NIZK proof system with perfect
completeness, computational adaptive soundness based on the Dk-KerMDH as-
sumption, perfect zero-knowledge.

3 Updatable Asymmetric QA-NIZK

In this section, we investigate asymmetric QA-NIZK arguments when the CRS
can be maliciously generated and propose corresponding updatable asymmetric
QA-NIZK arguments. Formally, we prove the following theorem:

Theorem 3. Let Πasy-up be an updatable asymmetric QA-NIZK argument for
linear subspaces from Fig. 4. (i) Πasy-up is crs-update correct, crs-update hiding,
and complete, (ii) if the BDH-KE assumption hold, then Πasy-up is statistically
subversion zero-knowledge, and (iii) if the Dk-SKerMDH, (for the case D̂k = D̄k,
the distribution Dp should be witness samplable) then Πasy-up is computationally
updatable sound.

First, we discuss subversion security of QA-NIZKs in the updatable CRS
setting, then propose an updatable version of the most efficient asymetric QA-
NIZK construction Π ′as in [25] (cf. Fig. 1).

3.1 Security Definitions for Updatable QA-NIZK Arguments

As already mentioned, the notion of updatability to achieve subversion security
for NIZKs in the CRS model with respect to zero-knowledge and soundness was
introduced by Groth et al. in [29] with a focus on zk-SNARKs. Later, Lipma [40]
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applied the underlying ideas to the setting of QA-NIZKs and in particular when
both the language parameter % and the CRS can be subverted. More precisely,
Lipmaa obtains a version of the Kiltz-Wee QA-NIZK [35] (in the bare public-key
(BPK) model) in the aforementioned setting under a new non-falsifiable KW-KE
knowledge assumption. In this work, motivated by [6] and their application to
composable zk-SNARK frameworks such as LegoSNARK [13], we investigate the
security of QA-NIZKs in the CRS model when the CRS is subverted and can be
updated but with honestly chosen %5. Our security definition thus then enables
us to construct an updatable asymmetric QA-NIZK that can be used to extend
the LegoSANRK [13] with updatable CRS. More precisely such schemes can
be used as the updatable zk-SNARKs for bilateral subspace languages as they
provide better efficiency than general updatable zk-SNARKs for these types of
languages.

Concretely, we define updatable QA-NIZKs security with some changes in the
updatable CRS model. A tuple of PPT algorithms Π = (Pgen,Ucrs,Vcrs,P,V,
Sim) is an updatable QA-NIZK if properties (i-v) hold. We call an updatable
QA-NIZK updatable knowledge sound if instead of (v) property (vi) holds. Here,
Ucrs(%, crs) is an algorithm to update the CRS that takes the language parameter
% and a CRS crs and outputs an updated CRS crsup and corresponding trapdoor
tcup. Vcrs(%, crs, crsup) is an algorithm to verify the correctness of a CRS update
and takes an old crs to a new CRS crsup and checks the well-formedness of the
updated CRS.
(i) CRS-update Correctness. For any λ,

Pr

[
p← K0(1λ); %←$ Dp; (crs, tc)← K(%);

(crsup, tcup)← Ucrs(%, crs) : Vcrs(%, crs, crsup) = 1

]
= 1 .

(ii) CRS-update Hiding. For any λ,

Pr

[
p← K0(1λ); %←$ Dp; (crs, tc)← K(%); (crsup, tcup)← Ucrs(%, crs)

Vcrs(%, crs, crsup) = 1 : crsup ≈λ crs

]
= 1 .

Note that this property holds the initial crs is maliciously generated and an
honest updater Ucrs updates it.

(iii) Completeness. For any λ, and (x,w) ∈ R%,

Pr

[
p← K0(1λ); %←$ Dp; (crs, tc)← K(%); (crsup, tcup)← Ucrs(%, crs);

π ← P(%, crsup, x,w) : Vcrs(%, crs, crsup) = 1 ∧ V(%, crsup, x, π) = 1

]
= 1 .

(iv) Statistical Subversion Zero-Knowledge. For any PPT subverter Z

5 We recall that in such applications % represents public keys of the commitment
scheme and can typically derived in a way (e.g., via a random oracle) such that
subversion is not possible.
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there exists a PPT extractor ExtZ, such that for any computationally unbounded
adversary A, |εzk0 − εzk1 | ≈λ 0, where εzkb :=

Pr

[
p← K0(1λ); %←$ Dp;ωZ ←$ RND(Z); (crs, auxZ)← Z(%;ωZ);

tc← ExtZ(%;ωZ); b←$ {0, 1} : Vcrs(%, crs) = 1 ∧ AOb(·,·)(%, crs, auxZ) = 1

]
.

The oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R%, and otherwise it returns
P(%, crs, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R%, and other-
wise it returns Sim(%, crs, tc, x).

(v) Updatable Adaptive Soundness. For any PPT A,

Pr

[
p← K0(1λ); %←$ Dp; (crs, tc)← K(%); (x, π, crs′)← A(%, crs)

: (x,w) 6∈ R% ∧ Vcrs(%, crs, crs′) = 1 ∧ V(%, crs′, x, π) = 1

]
≈λ 0 .

(vi) Updatable Adaptive Knowledge Soundness. For any PPT A there
exists a non-uniform PPT extractor ExtA,

Pr

p← K0(1λ); %←$ Dp; (crs, tc)← K(%);ωA ←$ RND(A);

(x, π, crs′)← A(ωA; %, crs);w ← ExtA(ωA; %, crs, crs′) : (x,w) 6∈ R%
∧ Vcrs(%, crs, crs′) = 1 ∧ V(%, crs′, x, π) = 1

 ≈λ 0 .

3.2 Construction of Updatable Asymmetric QA-NIZKs

In this section we describe our updatable QA-NIZK for bilateral subspace lan-
guages. We first recall some notation and the primitives used in the construction.

Ingredients and notation. Our updatable asymmetric QA-NIZK uses the
following assumption and primitives:

– Asymmetric QA-NIZK in the CRS model, i.e., the asymmetric QA-NIZK
Π ′asy of [25] (cf. Theorem 2).

– The knowledge assumption BDH-KE [2, 4]. (cf. Definition 1).
– The algorithm MATV([A]2) of [3] that checks if a matrix [A]2 from Dk ∈
{Lk, ILk, Ck,SCk} is efficiently verifiable (cf. Fig. 2).

– The algorithm isinvertible([A]2, [A]1) of [3] that checks the invertibility of a
square matrix A←$ Dk = Uk for k ∈ {1, 2} given in both source groups (cf.
Fig. 3).

Construction. We start with the asymmetric QA-NIZK argument Π ′asy from
Fig. 1 and show how to obtain an updatable asymmetric QA-NIZK Π ′asy-up. To
this goal, similar as in previous work on updatable NIZK variants [29, 40], we
design two new algorithms Ucrs and Vcrs. The Ucrs algorithm takes the original
crs and updates it to a new crsup such that this update is publicly verifiable. Given

11



MATV([A]2) // Dk ∈ {Lk, ILk, Ck,SCk}

check [a11]2 6= [0]2 ∧ . . . ∧ [akk]2 6= [0]2;

if Dk = Lk then check i 6= j ⇒ [ai,j ]2 = [0]2;
elseif Dk = ILk then check i 6= j ⇒ [aij ]2 = [0]2;

∀i, [ai,i]2 = [a1,1]2 + [i− 1]2;
elseif Dk = Ck then check i 6∈ {j, j + 1} ⇒ [aij ]2 = [0]2;

∀i, [ai+1,i]2 = [1]2;
elseif Dk = SCk then check i 6∈ {j, j + 1} ⇒ [aij ]2 = [0]2;
∀i ([ai+1,i]2 = [1]2 ∧ [aii]2 = [a11]2) ;fi

return 1 if all checks pass and 0 otherwise;

Fig. 2: Auxiliary procedure MATV from [3] for Dk ∈ {Lk, ILk, Ck,SCk}
.

isinvertible([A]2, [A]1) // Dk = Uk

if k = 1 then check [a11]2 6= [0]2
else check [a11, a12]1 ∈ G1×2

1 ∧ [a11]1[1]2 = [1]1[a11]2∧
[a12]1[1]2 = [1]1[a12]2 ∧ [a11]1[a22]2 − [a12]1[a21]2 6= [0]T ;fi

Fig. 3: Auxiliary procedure isinvertible for A ∈ Zk×kp and k ∈ {1, 2}.

the crsup, the language parameters [M ]1, and [N ]2, the Vcrs algorithm checks
the well-formedness of the crsup. The latter checking guarantees the existence of
a trapdoor tc for the crsup, which will be required to prove the zero-knowledge
property. Now, we take a closer look at the design of the update procedure.

Updating procedure. The updating phase is tricky as the updated elements need
to be publicly verifiable via the Vcrs algorithm. Inspired by [40], we use both
multiplicative and additive updating approaches. We let Ucrs adaptively update
the element P i for i ∈ {1, 2}, since due to the structure of crs of our updatable
asymmetric QA-NIZK in Fig. 4, by using the crs, crsint, and crsup, the Vcrs
algorithm can publicly verify them. But updating the element A is more tricky.
In particular, if one updates it additively then in order to be able to verify the
elements Ci, which are needed to make trapdoor extraction possible, one would
need to have [Ki]i for i ∈ {1, 2}. More precisely, with additively updating A,
we would have Aup = A+Aint and the updating procedure of elements Ci is as
follows:

[Ci,up]i = [Ki,upAup]i = [(K int +Ki)(Aint +A)]i

= [C int]i + [Ci]i + [K intA]i + [KiAint]i,

where for verifying [K intA]i and [KiAint]i one needs to have [Ki]i. However,
having these elements in the crs would leak information about the trapdoor.
Thus, we need to update A multiplicatively as Aup = AAint.
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Zero-knowledge property. In the zero-knowledge proof, we use the well-known
BDH-KE knowledge assumption and show that if the possibly maliciously gen-
erated crsup passes the Vcrs algorithm, then under the knowledge assumptions
there exists an extractor that extracts the trapdoor tc of crsup. Using such a
trapdoor tc, the simulator can simulate proofs.

Soundness property. Since to achieve publicly verifiability of the crsup, we add
some new elements [C2]1 and [C1]2 in the CRS, we need to show that the sound-
ness of the updatable asymmetric QA-NIZKs still holds. We prove the soundness
under the standard SKerMDH assumption.

We depict the full construction of the updatable asymmetric QA-NIZK ar-
guments in Fig. 4. Here, the elements with index int are intermediate elements
generated by the algorithm Ucrs and can be viewed as update proofs, i.e., en-
abling to verify consistency of the old and updated crs. The elements with index
up are the updated elements, i.e., the new crs. We note that our updatable asym-
metric QA-NIZK in Fig. 4, the prover and the verifier are unchanged compared
to GHR’s QA-NIZK [25].

Remark 1. We note that, one can adapt the updatable asymmetric QA-NIZKs
construction in Fig. 4 to other languages like as the sum in subspace language
and obtain the updatable version of the argument of sum in subspace of [25].

3.3 Security Proof for Our Construction

In this section we prove Theorem 3.

Proof. The security properties (i-iii), crs-update correctness and completeness
are straightforward from the construction. The crs-update hiding proof is simi-
lar [40] (see Appendix A for more details).
(iv: Subversion Zero-Knowledge:) For proving the zero-knowledge property,
we need to construct a simulator that can construct proofs without knowing the
witness but a trapdoor tc. To this aim, in Lemma 1 (in the extraction phase),
we show that from any adversary producing a valid crs from scratch it is possi-
ble to extract the trapdoors (K1,K2). Then in the simulation phase, given the
trapdoor tc, we show how the zero-knowledge simulator can simulate proofs.
Extraction phase. Let the BDH-KE assumption hold. Let A be an adversary
that computes crs so as to break the subversion zero-knowledge property of the
updatable asymmetric QA-NIZK in Fig. 4. That is, A([M ]1, [N ]2;ωA) outputs
(crs, auxA). In Lemma 1, based on the BDH-KE assumption, we show how one
can construct an extractor to extract the trapdoor tc of a possibly maliciously
generated crs.

Lemma 1. Let the BDH-KE assumption hold and let [M ]1, [N ]2 ←$ Dp. Then
for any PPT adversary A there exists extractor ExtA such that the probability
that A on input ([M ]1, [N ]2) and randomness ω outputs crs such that Vcrs([M ]1,
[N ]2, crs) = 1 and that ExtA on the same input, outputs tc = (K1,K1), is
overwhelming.
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K([M ]1, [N ]2)

- A←$ D̂k;K1 ←$ Zn2×k
p ;K2 ←$ Zn1×k

p ;Z ←$ Zm×k
p ;C1 ← K1A ∈ Zn2×k

p ;

- C2 ← K2A ∈ Zn1×k
p ; [P 1]1 ← [M ]

>
1 K2 + [Z]1 ∈ Zm×k

p ;

- [P 2]2 ← [N ]
>
2 K1 + [Z]2 ∈ Zm×k

p ; crs← ([A,C1,C2,P 2]2, [A,C1,C2,P 1]1);

- tc← (K1,K2);
- return (tc, crs);

Ucrs([M ]1, [N ]2, crs):

- Aint ←$ D̄k;K1,int ←$ Zn2×k
p ;K2,int ←$ Zn1×k

p ;Z int ←$ Zm×k
p ;Aup ← AAint;

- C1,int ← K1,intAup ∈ Zn1×k
p ;C2,int ← K2,intAup ∈ Zn2×k

p ;

- [P 1,int]1 ← [M ]
>
1 K2,int + [Z int]1 ∈ Zm×k

p ; [P 2,int]2 ← [N ]
>
2 K1,int + [Z int]2 ∈ Zm×k̂

p ;

- C1,up ← C1,int +C1Aint;C2,up ← C2,int +C2Aint;

- [P 1,up]1 ← [P 1]1 + [P 1,int]1; [P 2,up]2 ← [P 2]2 + [P 2,int]1;

- crsint ← ([Aint,C1,int,C2,int.P 2,int]2, [Aint,C1,int,C2,int,P 1,int]1);

- return crsup ← ([Aup,C1,up,C2,up,P 2,up]2, [Aup,C1,up,C2,up,P 1,up]1, crsint);

Vcrs([M ]1, [N ]2, crs, crsup):

- if

- for i ∈ {1, (1, int), (1, up)}: : if [Ci]1 ∈ Gn1×k
1 ∧ [P i]1 ∈ Gm×k

1 ∧ [Ai]1 ∈ Gk×k
1 ;

- for i ∈ {2, (2, int), (2, up)}: if [Ci]2 ∈ Gn2×k
2 ∧ [P i]2 ∈ Gm×k

2 ∧ [Ai]2 ∈ Gk×k
2 ;

- for i ∈ {1, 2, (1, int), (1, up), (2, int), (2, up)}: if [Ai]1[1]2 = [1]1[Ai]2;∧[Ci]1[1]2 = [1]1[Ci]2;

- [Aup]1[1]2 = [A]1[Aint]2

- [C1,up]1[1]2 = [C1,int]1[1]2 + [C1]1[Aint]2 ∧ [C2,up]1[1]2 = [C2,int]1[1]2 + [C2]1[Aint]2

- [P 1,up]1 = [P 1,int]1 + [P 1]1 ∧ [P 2,up]1 = [P 2,int]1 + [P 2]1;

- [P 1]1[A]2 − [A]1[P 2]2 = [M ]1[C2]2 − [N ]2[C1]1;

- [P 1,int]1[Aint]2 − [Aint]1[P 2,int]2 = [M ]1[C2,int]2 − [N ]2[C1,int]1;

- [P 1,up]1[Aup]2 − [Aup]1[P 2,up]2 = [M ]1[C2,up]2 − [N ]2[C1,up]1;

- for i ∈ int, up: if Dk is efficiently verifiable then MATV([Ai]2) = 1 ∧MATV([A]2) = 1

else check isinvertible([Ai]2, [Ai]1) = 1;

- return 1;

- else return 0;

P([M ]1, [N ]2, crsup, [y]1, [x]2,w):

- r ←$ Zk
p; [π1]1 ← [P 1]

>
1 w + [r]1 ∈ Gk

1 ∧ [π2]2 ← [P 2]
>
2 w + [r]2 ∈ Gk

2 ;

- return ([π1]1, [π]2);

V([M ]1, [N ]2, crsup, [y]1, [x]2, [π1]1, [π2]2):

- if [y]
>
1 [C2]2 − [π1]

>
1 [A]2 = [π2]

>
2 [A]1 − [x]

>
2 [C1]1 return 1;

- else return 0;

Sim([M ]1, [N ]2, crs, tc, [y]1):

- r ←$ Zk
p; - [π1]1 ← K

>
2 [y]1 + [r]1 ∈ Gk

1 ; - [π]2 ← K
>
1 [x]2 + [r]2 ∈ Gk

1 ;

- return ([π1]1, [π]2);

Fig. 4: Updatable Asymmetric QA-NIZK Π ′asy-up. Here k is an arbitrary value if
Dk ∈ {Lk, ILk, Ck,SCk} and k ∈ {1, 2} in Dk = Uk.
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A([M ]1, [N ]2;ωA)

(crs, auxA)← A([M ]1, [N ]2;ωA); return crs;

ExtA([M ]1;ωA)

- (A,C1,C2)← ExtBDH-KE
ABDH-KE

([M ]1, [N ]2;ωA);

Compute K1 = C1A
−1 and K2 = C2A

−1

- return tc = (K1,K2);

ABDH-KE([M ]1, [N ]2;ωA)

(crs, auxA)← A([M ]1, [N ]2;ωA);
return ([A]1, [A]2, [C]1, [C]2);

Fig. 5: The extractors and the constructed adversary A for Lemma 1.

Proof. Let adversary A output crs such that Vcrs([M ]1, [N ]2, crs) = 1, which
guarantees that elements from P i, A and Ci for i ∈ {1, 2} are consistent and in
particular that [P 1]1[A]2− [A]1[P 2]2 = [M ]1[C2]2− [N ]2[C1]1and A is invert-
ible. Assume an internal subverter ABDH-KE against the BDH-KE assumption. We
note that both the subverter and the adversary are in connection and separating
them is just for readability of the proof. Let ωA = ωABDH-KE . Let ABDH-KE run A
and output ([A]1, [A]2, [C1,C2]1, [C1,C2]2). Then under the BDH-KE assump-
tion, there exists an extractor ExtBDH-KE

ABDH-KE
, such that if Vcrs([M ]1, [N ]2, crs) = 1

then ExtBDH-KE
ABDH-KE

([M ]1, [N ]2;ωA) outputs (A,C1,C2).
Let ExtA be an extractor that with input ([M ]1, [N ]2;ωA) and running

ExtBDH-KE
ABDH-KE

as subroutine, extracts tc = (K1,K2). For the sake of simplicity,
the full description of the algorithms is depicted in Fig. 5. More precisely, the
extractor ExtA first runs ExtBDH-KE

ABDH-KE
([M ]1, [N ]2;ωA) which outputs (A,C1,C2).

Then, ExtA computes (K1,K2). Indeed, by having A, Ci, and the fact that A
is invertible, the extractor ExtA can compute Ki = CiA

−1 for i ∈ {1, 2}. ut

Simulation phase. In the second step, given the trapdoor tc, we show how a
simulator Sim can simulate proofs. Fix concrete values of λ, p ∈ im(Pgen(1λ)),
([y]1, [x]2,w) ∈ R[M ]1,[N ]2 , ωA ∈ RND(A), and run ExtA([M ]1, [N ]2;ωA) to
obtain (K1,K2). Thus, it suffices to show that if Vcrs([M ]1, [N ]2, crs) = 1 and
([y]1, [x]2,w) ∈ R[M ]1,[N ]2 then

O0([y]1, [x]2,w) =P([M ]1, [N ]2, crs, [y]1, [x]2,w) ,

O1([y]1, [x]2,w) =Sim([M ]1, [N ]2, crs, [y]1, [x]2,K1,K2)

have the same distribution. Since O0 and O1 have the same distribution, Π ′asy-up
is zero-knowledge under the BDH-KE assumption.

(v: Updatable Adaptive Soundness:) The proof is similar to the adaptive
soundness proof of Π ′as in [25] but with some modifications. Let m′ := n1 + n2

andW := (MN ). Let an adversary B against Dk-SKerMDH assumption be given
a challenge ([A]1, [A]2), A← Dk .
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B samples ([M ]1, [N ]2,M ,N) ∈ Rp and computes W⊥ ∈ Zm
′×(m′−r)

p ,
where r = rank(W ), a basis of the kernel ofW>. By definition,W> = (M>||N>)
and W>W⊥ = 0 and thus we can write W⊥ = (W 1,W 2), for some matrices
such that M>W 1 = −N>W 2.

Adversary B samples R ∈ Z(m′−r−1)×(k+1)
p and for i ∈ {1, 2} defines,

[A′]i ←
(

[A]i
R·[A]i

)
∈ Z(k+m′−r)×k

p .

Then B samples (K ′1,K
′
2)← Zm′×kp . Let A0 be the first k rows of A′ (or A) and

A′ rows, and TA′ = A′1A
−1
0 . Then B implicitly sets (K1,K2) := (K ′1,K

′
2) +

TA′(W 1||W 2), and for i ∈ {1, 2} and computes:

[C1]i := K2[A0]i = (K ′2 + TA′W 2)[A0]i = (K ′2||W 2)[A′]i,

and
[C2]i := K1[A0]i = (K ′1 + TA′W 1)[A0]i = (K ′1||W 1)[A′]i.

Adversary B also needs to compute [M ]>1 K2 + [Z]1 and [N ]>2 K1 − [Z]2.
The adversary B does not know how to compute N>K1 or M>K2, but she
can compute their sum in Zp as:

N>K1+M>K2 =
(
M>

N>

)
(K ′1,K

′
2)+TA′(W 1||W 2) = N>K ′1+M>K ′2 := T ,

due to the fact that M>W 1 = −N>W 2.
Thus, B picks Z ←$ Zm×kp and outputs [P ]2 := [T ]2− [Z]2 and [P ]1 := [Z]1.

Now, when the adversary outputs a valid proof for some ([y]1, [x]2) /∈ L[M ]1,[N ]2 ,
it holds that:

[y]>1 [C2]2 − [π1]>1 [A0]2 = [π2]>2 [A0]1 − [x]>2 [C1]1.

In which both the RHS and LHS of the last equation are:

LHS = [y]>1 (K ′2||W 1)[A′]2 − ([π1]>1 ||[01×(m′−r)]1)>[A′]2 = [s>1 ]1[A′]2,

RHS = ([π2]>2 ||[01×(m′−r)]2)[A′]1 − [x]>2 (K ′1||W 2)[A′]1 = [s>2 ]2[A′]1.

Here [s>1 ]1 := ([y]>1 K
′
2 − [π1]>1 ||[y]>1 W 1) and [s>2 ]2 := ([x]>2 K

′
1 − [π2]>2 || −

[x]>2 W 2).
This concludes that (s1−s2) is in the kernel space of (A′)>. In other words,

we have that (s1−s2)>A′ = 0, and by definition, s1−s2 = c1 +R>c2 and thus

(s>1 − s>2 )A = (c>1 + c>2 R)A = c>A′ = 01×k .

Since c 6= 0 and R leaks only through A′ (in the definition of Ci for i ∈ 1, 2)
as RA,

Pr[c1 +R>c2 = 0 | RA] ≤ 1/p ,

where the probability is over R. This solves the Dk-SKerMDH. ut
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4 Knowledge Soundness of (Updatable) Asymmetric
QA-NIZK Arguments

In the following we investigate a stronger soundness notion, i.e., the knowledge
soundness, of (updatable) asymmetric QA-NIZK. We recall that for a proof
system to be compatible with modular zk-SNARK frameworks such as LegoS-
NARK [13], it needs to provide knowledge soundness. Consequently, this guar-
antees that (updatable) asymmetric QA-NIZK can safely be used within such
frameworks.

Similar to as it is done in [6,13], we analyse the knowledge soundness in the
Algebraic Group Model (AGM) due to Fuchsbauer et al. [21]. In particular, we
first directly prove the knowledge soundness property of the updatable asymmet-
ric QA-NIZK in Fig. 4. Moreover, we show that this also yields the knowledge
sound property of the original asymmetric QA-NIZK [25] in Fig. 1.

Theorem 4. Let Π ′asy-up be an asymmetric QA-NIZK argument for linear sub-
spaces from Fig. 1. Assume D̂k = D̄k and the distribution Dp is witness samplable
matrix distribution. If the discrete logarithm assumption in asymmetric bilinear
groups in the AGM holds, then the updatable asymmetric QA-NIZK Π ′asy-up in
Fig. 4 is computationally updatable adaptive knowledge sound.

Proof. We show the theorem under the discrete logarithm assumption in asym-
metric bilinear groups in the AGM. Without loss of generality, we consider the
updatable asymmetric QA-NIZK scheme Π ′asy-up for D̂k = D̄k, in the MDDH
setting where k = 1.

Without loss of generality, we assume an algebraic adversary A([M ]1, [N ]2,
aux) against the updatable knowledge soundness of Π ′asy-up, where aux is an
associated auxiliary input, such that it first generates a crsA which verifies under
the algorithm Vcrs. Then an honest updator Ucrs([M ]1, [N ]2, crsA) outputs an
updated crs = ([A,C1,C2,P 2]2, [A,C1,C2,P 1]1).

Let [ζ]1 and [ζ′]2 be vectors that contain M (and the portion of aux that
has elements from the group G1) and N (and the portion of aux that has ele-
ments from the group G2). We assume that [ζ]1 and [ζ′]2 also contains the crsA’s
elements in G1 and G2, respectively. Due to the CRS-update hiding property,
the crsA’s elements are indistinguishable from the crs generated by an hon-
est Ucrs and so they will give no advantage to A. Also assume that [ζ]1 and
[ζ′]2 include [1]1 and [1]2, respectively. A([M ]1, [N ]2, crs, aux) returns a tuple
([y]1, [x]2, [π1]1, [π2]2) along with coefficients that explain these elements as lin-
ear combinations of its input in the groups G1 and G2. Let these coefficients
be:

[y]1 = Y 0[P 1]1 + Y 1[ζ]1 + Y 2[A]1 + Y 3[C1]1 + Y 4[C2]1

[π]1 = Z0[P 1]1 +Z1[ζ]1 +Z2[A]1 +Z3[C1]1 +Z4[C2]1

[x]2 = Y ′0[P 2]2 + Y ′1[ζ′]2 + Y ′2[A]2 + Y ′3[C1]1 + Y ′4[C2]2

[π]2 = Z ′0[P 2]2 +Z ′1[ζ′]2 +Z ′2[A]2 +Z ′3[C1]2 +Z ′4[C2]2
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Let the extractor ExtA([M ]1, [N ]2, crs, aux) be the algorithm that runs A
and returns w = Z0 = Z ′0. Then, we have to show that the probability that
the output of (A,ExtA) satisfies verification while y 6= Mw and x 6= Nw are
negligible. In other words, assume that the output of A is such that [y]1 6=
[M ]1Z0, [x]2 6= [N ]2Z

′
0, and [y]>1 [K2a]2 − [π1]>1 [a]2 = [π2]>2 [a]1 − [x]>2 [K1a]1;

If it happens with non-negligible probability, we can construct an algorithm B
that on input ([K1,K2]1, [K1,K2]2) outputs nonzero elements α,α′ ∈ Z`×`p ,
β,β′ ∈ Z`p, and γ, γ′ ∈ Zp such that

[K>1 αK1 +K>1 β + γ]1[1]2 + [1]1[K>2 α
′K2 +K>2 β

′ + γ′]2 = [0]T .

Then we can construct an algorithm C against the discrete logarithm assump-
tion in asymmetric bilinear groups such that given elements ([t, t′]1, [t, t

′]2) it re-
turns the exponent t, t′ ∈ Zp. More precisely, the algorithm B([K1,K2]1, [K1,K2]2)
proceeds as follows:

- Choose ([M ]1, [N ]2, aux) from Dp along with corresponding elements in G1

and G2 (i.e., vectors ζ, ζ′ of entries in Zp ).
- Sample a ←$ Zp and run A([ζ′,C1,C2,P 1, a]1, [ζ

′, a,P 2,C1,C2]2. We note
that A’s input can be efficiently simulated.

- Once received the output of A, it sets α := Y 0M
>, β := Y 1ζ + Y 2a +

Y 3C1 + Y 4C2 −MZ0 and γ := −Z1ζ −Z2a−Z3C1 −Z4C2.
- Also it sets α′ := Y ′0N

>, β′ := Y ′1ζ
′ + Y ′2a + Y ′3C1 + Y ′4C2 −NZ ′0 and

γ′ := −Z ′1ζ′ −Z ′2a−Z ′3C1 −Z ′4C2.

Notice that,

K>1 αK1 +K>1 β + γ = K>1 Y 0M
>K1 +K>1 Y 1ζ +K>1 Y 2a+K>1 Y 3C1+

K>1 Y 4C2 −K>1 MZ0 −Z1ζ −Z2a−Z3C2 −Z4C2

=K>1 Y 0M
>K1 +K>1 Y 1ζ +K>1 Y 2a+K>1 Y 3C1 +K>1 Y 4C2 − π1

=K>1 y − π1,

and

K>2 α
′K2 +K>2 β

′ + γ′ = K>2 Y
′
0N
>K2 +K>2 Y

′
1ζ
′ +K>2 Y

′
2a+K>2 Y

′
3C1+

K>2 Y
′
4C2 −K>2 NZ ′0 −Z ′1ζ′ −Z ′2a−Z ′3C2 −Z ′4C2

=K>2 Y
′
0N
>K2 +K>2 Y

′
1ζ
′ +K>2 Y

′
2a+K>2 Y

′
3C1 +K>2 Y

′
4C2 − π2

=K>2 x− π2.

From the verification equation, we have

(K>1 αK1 +K>1 β + γ) + (K>2 α
′K2 +K>2 β

′ + γ′)

= K>1 y − π1 +K>2 x− π2 = 0.
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Note that, one among α, β, and γ (α′, β′, and γ′) must be nonzero. Indeed, if
they are all zero then Y 1ζ + Y 2a + Y 3C −MZ0 = 0 (Y ′1ζ′ + Y ′2a + Y ′3C −
NZ ′0 = 0), that is y = MZ0 (x = NZ ′0), which contradicts our assumption on
A’s output.

Finally we show how the above problem can be reduced to discrete logarithm
problem in asymmetric groups, i.e., the adversary C on input ([t, t′]1, [t, t

′]2)
returns t′ and t′.

Indeed C samples r, s, r′, s′ ∈ Z`p and implicitly sets K1 = tr + s and
K2 = tr′ + s′. We see that ([K1,K2]1, [K1,K2]2) can be efficiently simulated
with a distribution identical to the one expected by B. Next, given a solution
(α,β, γ,α′,β′, γ′) such that K>1 α +K>1 β + γ +K>2 α

′ +K>2 β
′ + γ′ = 0, one

can find e1, e2, e3 ∈ Zp and e′1, e′2, e′3 ∈ Zp such that:

0 =(tr + s)>α(tr + s) + (tr + s)>β + γ + (tr′ + s′)>α′(t′r′ + s′)+

(t′r′ + s′)>β′ + γ′

=t2(r>αr) + t(r>αs+ s>αr + r>β) + t′2(r′>α′r′) + t′(r′>α′s′+

s′>α′r′ + r′>β′) + (s>αs+ s>β + γ) + (s′>α′s′ + s′>β′ + γ′)

=e1t
2 + e2t+ e3 + e′1t

′2 + e′2t
′ + e′3.

In particular, with overwhelming probability (over the choice of s and s′ that are
information theoretically hidden from B’s view) e3, e

′
3 6= 0. From this solution,

C can solve the system and extract t and t′. ut

Theorem 5. Let Π ′asy-up be an updatable knowledge sound asymmetric QA-
NIZK argument for linear subspaces from Theorem 4. Then the asymmetric
QA-NIZK Π ′asy [25] in Fig. 1 is computationally knowledge sound.

Proof. We prove it by contradiction in a way that we assume that there is
an adversary AΠ′asy that breaks the knowledge soundness of the asymmetric
QA-NIZK Π ′asy . Then, one can build an adversary BΠ′asy-up against the updat-
able asymmetric QA-NIZK Π ′asy-up who runs AΠ′asy as a subroutine algorithm
and breaks the updatable knowledge soundness Π ′asy-up. More precisely, given
([M ]1, [N ]2, crs) where crs = ([A,C1,C2,P 2]2, [A,C1,C2,P 1]1), the adver-
sary BΠ′asy-up sets crsΠ′asy := ([A,C2,P 2]2, [A,C1,P 1]1) and sends it to AΠ′asy and
returns back a valid πΠ′asy for ([y]1, [x]2) 6∈ L[M ]1,[N ]2 . This concludes the proof.

ut

5 Discussion and Future Work

In this paper we investigate QA-NIZKs in the full subversion setting via the up-
datable CRS model. In particular, we analyse the security of the most efficient
asymmetric QA-NIZK Π ′asy by González et al. [25] for k = 1, 2 (when Dk = Uk)
and for arbitrary k (when Dk ∈ {Lk, ILk, Ck,SCk}), when the CRS is full sub-
verted and propose an updatable version of these QA-NIZKs. Since in practice,
due to increased efficiency, one is mostly interested in shorter proof size (smaller
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k as proofs are of size 2k) and thus even when relying on Dk = Uk the focus on
schemes for k = 1, 2 is most reasonable. Especially as for these values of k one
obtains constructions from the most common standard assumptions. But from
a theoretical point of view, it is interesting to construct an updatable version of
asymmetric QA-NIZK (or even symmetric QA-NIZK) for arbitrary k > 2 even
in the case of Dk = Uk. Here, the main obstacle is to design a general (effi-
cient) version of the algorithm isinvertible(·, ·) [3] for checking the invertibility of
a matrix of group elements of size k (see Fig. 3).

We recall that our main motivation in this work was to fill the existing gap
towards obtaining an updatable version of LegoSNARK [13]. An interesting ques-
tion is to study how one can combine all the existing updatable CRS building
blocks, i.e., updatable CRS SNARKs and QA-NIZKs as well as our construction,
to construct an updatable LegoSNARK framework and investigate its efficiency.
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A CRS-update Hiding Proof

Lemma 2 ( [40], Lemma 6.). Assume that K,K int ∈ DK and A,Aint ∈ DA
, where DK and DA satisfy the following conditions for random variables Y1

and Y2: (i) if Y1, Y2 ←$ DK then Y1 + Y2 ∈ DK , and (ii) if Y1, Y2 ←$ DA then
Y1 · Y2 ∈ DA. Then, Π ′asy-up is key-update hiding.

Proof. Since Vcrs(crs, lpar) = 1, thus, crs is honestly created, C = KA. So,
Cup = CAint + K intAAint = (K + K int)AAint = (K + K int)Aup = KupAup.
Similarly holds for P . Due to the assumption on DA and DK , crs and crsup
come from the same distribution.
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