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Abstract—This paper demonstrates the first side-channel at-
tack on homomorphic encryption (HE), which allows comput-
ing on encrypted data. We reveal a power-based side-channel
leakage of Microsoft SEAL prior to v3.6 that implements
the Brakerski/Fan-Vercauteren (BFV) protocol. Our proposed
attack targets the Gaussian sampling in the SEAL’s encryption
phase and can extract the entire message with a single power
measurement.

Our attack works by (1) identifying each coefficient index
being sampled, (2) extracting the sign value of the coefficients
from control-flow variations, (3) recovering the coefficients with
a high probability from data-flow variations, and (4) using a
Blockwise Korkine-Zolotarev (BKZ) algorithm to efficiently ex-
plore and estimate the remaining search space. Using real power
measurements, the results on a RISC-V FPGA implementation
of the SEAL (v3.2) show that the proposed attack can reduce the
plaintext encryption security level from 2128 to 24.4. Therefore,
as HE gears toward real-world applications, such attacks and
related defenses should be considered.

I. INTRODUCTION

Homomorphic encryption (HE) is a form of encryption that
allows computations on encrypted data without knowing the
secret key. Thus, data can remain confidential while it is pro-
cessed, enabling useful computations to be accomplished with
data residing in untrusted environments. This is achieved by a
public-key encryption scheme where the data is encrypted first
with a public (encryption) key and then by homomorphically
evaluating the ciphertext. The result of such computations
remains in encrypted form, and can exclusively be revealed
by the owner of the corresponding secret (decryption) key.
HE has been applied to the evaluation of various algorithms
on encrypted financial, medical, and genomic data [1]–[4].
Such applications typically envision a user (i.e., device) that
encrypts/decrypts information and a cloud (i.e., server) that
performs homomorphic evaluations.

To accelerate and spread the employment of HE, the
Cryptography and Privacy Research Group at Microsoft Re-
search has developed the SEAL, which aims to provide a
high-performance and easy-to-use HE software library. SEAL
indeed became a popular library and has been used by many
works [5], [6] including the Intel Neural Network Compiler
nGraph [7], [8]. Although HE is a promising cryptographic
primitive to protect data against mathematical cryptanalysis,
its implementation may be vulnerable to physical attacks, e.g.,
to software fault injection attacks [9].

In this paper, we propose the first side-channel attack on
HE. The proposed attack reduces the plaintext encryption
security level to extract the plaintext messages by targeting
the device-side encryption operations. We perform a power-

consumption-based side-channel attack that abuses a vulner-
ability during the Gaussian sampling sub-routine. Unfortu-
nately, the existing Gaussian sampling code in SEAL (v3.2)1

has operations conditioned on the sampled coefficient’s sign.
But such an attack has to succeed with a single power
measurement trace because the sampled coefficients change
for each encryption. We, therefore, first reveal that the chosen
condition (i.e., taken vs. not taken) can be identified from
a single-trace by observing the power consumption because
the conditions execute different instructions. This can expose
if a coefficient is either negative, positive, or zero. We then
apply horizontal side-channel analysis within the single-trace
to recover the sampled coefficients. Finally, we apply the
Blockwise Korkine-Zolotarev (BKZ) algorithm to efficiently
explore the remaining search space and estimate the complex-
ity of revealing the message.

Our work is different from earlier side-channel attacks on
the Gaussian sampling [10]–[12] because it evaluates specific
vulnerabilities of SEAL. By contrast, prior works analyze
Cumulative Distribution Table based [10], [12] and Bernoulli
based [11] sampling techniques, which are not used in SEAL.
These works are thus not directly applicable on SEAL.

Likewise, our work is orthogonal to multi-trace attacks
as they do not work by default on the encryption but can
instead be useful when targeting decryption. We do not
cover attacks on decryption as they are relatively straight-
forward extensions of earlier multi-trace analysis of lattice-
based cryptography [13], [14]. At the same time, our work
is orthogonal to prior single-trace side-channel attacks on
other building blocks of lattice-based cryptography that have
targeted the Number Theoretic Transform (NTT) [15], [16],
rejection [17], polynomial multiplication [18]–[20], and mes-
sage encoding/decoding [14], [21]. Although such attacks
have not been exclusively shown on HE (or on SEAL),
defenses built exclusively for their extension on HE will fail
against our attack targeting Gaussian Sampling operations.

A summary of our contributions is as follows.
• We propose the first side-channel attack on HE. The

proposed attack can be used to extract the plaintext
messages that are being encrypted in the Brakerski/Fan-
Vercauteren (BFV) scheme of HE. The attack is orthog-
onal to the possible extensions of earlier attacks on HE.

• We identify the vulnerabilities in the Gaussian sam-
pling sub-routine of SEAL—a major HE library. We

1SEAL v3.6 and later use different sampling algorithm: if the version
number is not mentioned it means Microsoft SEAL prior to version 3.6



Fig. 1. Homomorphic encryption functions at the client and the cloud. The
public key (pk) encrypts the message (m) to generate the ciphertext (c) and the
secret key (sk) decrypts the received homomorphically evaluated ciphertext
(c’) – both operations execute on the client’s device while homomorphic
evaluations execute in the cloud.

demonstrate that the sign and the value of the sampled
coefficients can be extracted from a single-trace.

• We apply the proposed attack on a RISC-V softcore pro-
cessor on an FPGA running the SEAL (v3.2) software.
The results showed that our attack reduces the security
of the plaintext encryption from 2128 to 24.4.

II. PRELIMINARIES

This section provides the basics of HE along with a
mathematical background and the threat model.

A. Homomorphic Encryption (HE)
Fig. 1 outlines HE, which comprises a set of four functions

KeyGen, Encrypt, Decrypt, and Evaluate.
• KeyGen: Client generates public key pk, secret key sk,

and evaluation key evk. The public key pk is the key
used for encryption. The pk can be shared and used by
anyone to encrypt messages. The secret key sk is used for
decryption. The evaluation key evk is used for evaluation.
KeyGen is omitted in figure for simplicity.

• Encrypt: This function takes as input the public key
and any message m, performs encryption, and outputs
a ciphertext c.

• Evaluate: Cloud takes as input the evaluation key evk, the
ciphertext c, performs computations on the ciphertext,
and produces an evaluation output c’.

• Decrypt: Client takes input secret key sk, evaluation
output c’, and produces result m’. If the scheme operates
correctly, result m’ is the correct result of the operation
on m.

There are many HE libraries such as SEAL [22], HE-
lib [23], PALISADE [24], and HEAAN [25]. Specifically,
we focus on SEAL and the HE protocol implementation of
BFV [26] in SEAL, which is a popular implementation.

The BFV scheme is based on the Ring-LWE problem of
ideal lattices. The plaintext and ciphertext spaces are the
rings Rt and Rq . The elements are thus polynomials and the
arithmetic operations are polynomial addition and polynomial
multiplication with polynomials of degree n. The q parameter
denotes modulus in the ciphertext space (coefficient modulus)
of the form q1 × ... × qk, given k is the size of the ciphertext,
and where qi (1 ≤ i ≤ k) is prime. The t parameter denotes
modulus in the plaintext space (plaintext modulus). We use
b·c, b·e, and [·]q to denote rounding down, round to nearest
integer, and reduction by modulo q, respectively. By a $←−
S, we denote that a is uniformly sampled from the finite
set S. χ denotes a Gaussian sampling, and ∆ = bq/tc. The
key values sk and encryption samples u are sampled with a

random distribution R2. The key generation, encryption and
decryption operations in BFV is as follows.

• SecretKeyGen: Sample s $←− R2 and output sk=s.
• PublicKeyGen: Sample a $←− Rq , and a←− χ.

Output pk=([−(as+ e)]q, a).
• Encrypt: Form m ∈ Rt, let pk= (p0, p1).

Sample u $←− R2, and e1,e2 ←− χ.
(c0, c1)=([∆·m+ p0·u+e1]q , [p1·u+e2]q]).

• Decrypt: Output [b tq [c0 + c1s]qe]t.
SEAL has several parameter settings. In this paper, we

have targeted 128-bit security and set n=1024. SEAL also
supports n= 2048, 4096, 8192, 16384, and 32768. We used
the default value of the sampling parameter, which is 3.19 ≈
8/
√

2π. Therefore, each sampled coefficient is between -41
and 41. Although we show our attack with this particular
configuration, our attack is applicable to all security levels
and values of n.
B. Threat Model and Comparison to Earlier Work

This paper describes an attack on the encryption procedure
of SEAL in which the adversary tries to learn the plaintext
message being encrypted. We assume the adversary knows
SEAL software and its encryption parameters. This is a fair
assumption given the publicly available source code [27].
Moreover, the adversary has physical access to the target
device and can obtain power measurements while the device
processes the encryption operations. The adversary can profile
the target device before running the actual attack but does not
know the message values when running the attack. These are
common assumptions in template attacks. Since secret and
error values are freshly computed for each new encryption
operation, the adversary has to perform the attack with a
single power measurement trace.

We show the side-channel vulnerability of Gaussian sam-
pling but we do not claim that it is the only vulnerable
operation. Other parts of the encryption such as the NTT [15],
[16], rejection [17], message encoding/decoding [14], [21],
and polynomial multiplication [18]–[20] can be broken by ex-
tending these earlier attacks. Likewise, decryption operations
can be targeted by simply extending earlier multi-trace attacks
[13], [14] to HE. We chose to attack Gaussian sampling
because a single-trace on it can evade the defenses that are
built for multi-trace attacks (e.g., masking) and for single-
trace attacks that target other operations.

III. THE PROPOSED ATTACK
This section presents the proposed attack strategy for

recovering the plaintext messages which are encrypted with
SEAL. We first identify the target operation and illustrate how
attacking it enables full message recovery. We then identify
the vulnerable points within the implementation of this target
operation.

A. The Target Operation and Rationale
The proposed attack targets SEAL’s Gaussian sampling

operation because extracting sampled coefficient exposes the
private message.

(c0, c1) = ([∆ ·m+ p0 · u + e1]q, [p1 · u + e2]q) (1)



1 void Encryptor::set_poly_coeffs_normal
2 (uint64_t *poly, random, &context_data) const
3 {
4 ...
5 RandomToStandardAdapter engine(random);
6 ClippedNormalDistribution
7 dist(0,
8 parms.noise_standard_deviation(),
9 parms.noise_max_deviation());

10 for (size_t i = 0; i < coeff_count; i++)
11 {
12 int64_t noise = dist(engine);
13 if (noise > 0)
14 {
15 for (j = 0; j < coeff_mod_count; j++)
16 poly[i + (j * coeff_count)] = noise;
17 }
18 else if (noise < 0)
19 {
20 noise = - noise;
21 for (j = 0; j < coeff_mod_count; j++)
22 poly[i + (j * coeff_count)] =
23 coeff_modulus[j].value() - noise;
24 }
25 else
26 {
27 for (j = 0; j < coeff_mod_count; j++)
28 poly[i + (j * coeff_count)] = 0;
29 }
30 }
31 }

Fig. 2. SEAL’s reference noise sampling implementation. The highlighted
code lines shows the lines we target.

Equation (1) describes SEAL’s BFV encryption scheme
where m is the private message, while c0 and c1 are the en-
crypted ciphertexts. This scheme encrypts the private message
m using the public keys p0, p1, encryption sample u, and error
polynomials e1, e2. The error polynomials e1, e2 have non-
uniform coefficients sampled from a Gaussian distribution,
while polynomial u has uniform coefficients. Since the public
keys and ciphertexts are known, an adversary can extract the
private message m if it can first recover the error polynomials.

u = [(c1 − e2)/p1]q (2)

Equation (2) re-formulates the term u in the calculation c1.
Inserting this formulation of u in the calculation of c0 and
representing m yields to:

m = [(c0 − (p0 · ((c1 − e2)/p1)− e1)/∆]q (3)

Equation (3) denotes that, using the encryption equations,
the private message m can be reformulated with known
variables (c0, c1, p0, p1, q, ∆) and unknown variables (e1,
e2). Therefore, SEAL’s BFV encryption hardness is based on
the error polynomials e1 and e2. This is why we chose to
attack the aforementioned Gaussian sampling operation and
extracted the sampled coefficients of error polynomials e1 and
e2.
B. Identifying the vulnerabilities in the SEAL’s Gaussian
Sampling Implementation

To sample the error polynomials e1 and e2, SEAL’s BFV
scheme executes the set_poly_coeffs_normal func-
tion. Fig. 2 shows this function’s implementation in C++,
which we obtain from the SEAL’s official GitHub reposi-
tory [27]. Note that the implementation has more code lines

than shown in Fig. 2 but we omit those that are unnecessary
to describe our attack for brevity.

The set_poly_coeffs_normal function mainly con-
sists of two sub-operations: sampling from a normal dis-
tribution and sign bit assignment, respectively. This imple-
mentation first samples double floating point values from
the UniformRandomNumberGenerator provided by the C++
standard library implementation, repeat if values are greater
than noise max deviation, and round them to the nearest in-
tegers in ClippedNormalDistribution function. The
function returns a non-uniform value from the Gaussian
distribution with the given standard deviation σ and mean
µ parameters that are 3.19 and 0 for SEAL.

The next step is the sign bit assignment. SEAL’s Gaussian
sampling implementation controls the sign bit assignment
with conditional statements—if-elseif-else branches. First, in
line 13 of Fig. 2, if the sampled value is positive, the im-
plementation assigns the sampled value to the corresponding
coefficient (in line 16). If the sampled value is negative (in
line 18), its sign is negated (in line 20). Then, the sampled
value is subtracted from the modulus value and assigned to
the corresponding coefficient (in line 23). If the sampled
coefficient is neither positive nor negative, the else branch
executes (in line 25) to assign 0.

We identify three vulnerabilities in the reference imple-
mentation that reveal the sampled coefficient of error polyno-
mials. The first vulnerability is the branch operations: if the
adversary can identify which branch is taken in Fig. 2, it can
recover the coefficient’s sign bit (positive or negative) or if
the coefficient is equal to zero.

The second vulnerability is the non-uniform value as-
signment right after the sampling as shown in line 12 of
Fig. 2. If the adversary exposes this assignment, it can extract
the sampled coefficients of error polynomials. The major
challenge in exploiting this vulnerability is the leakage model.
If the adversary uses the Hamming weight (HW) model,
many possible coefficients have the same HW representation.
Therefore, the attack struggles with the false-positives.

The third vulnerability is the negation operation for the
negative sampled value, line 20 in Figure 2. The adversary
can eliminate some false-positives observed in the second
vulnerability by targeting this negation. If any two distinct
numbers have the same HW representation, their 2’s comple-
ment will have different HW values. Hence, the attacker can
eliminate false-positive guesses for negative sampled values
by combining the second vulnerability with the third one.
ClippedNormalDistribution function of SEAL it-

self can be considered a possible attack point. This function,
however, operates with 64-bit numbers internally, which com-
plicates the attack because 264 templates are needed.
C. Pinpointing Regions of Interest and Estimating the Sign

To exploit the described three vulnerabilities, we need to
first isolate sampling operations of each coefficient from a
full encryption execution. Since SEAL’s BFV scheme runs
the sampling operation 1024 times2 to generate one error

2Polynomial degree in SEAL’s BFV scheme range is between 1024 and
32768 so the sampling operation can run up to 32768 times.



Fig. 3. (a) A sample portion of the full power trace, (b) the sub-traces
correspond to the branch execution. Power measurements expose which
branch is taken.

polynomial, isolating the sampling operations of each coeffi-
cient is challenging. Another challenge is that the distribution
function in line 12 of Fig. 2 shows time-variant execution
behavior. The adversary thus cannot simply locate just one
iteration and then shift the sampling window for a fixed
amount of time to locate other iterations. Therefore, it is
essential to find a clear start and an endpoint indicator in
a power trace to locate each distribution function call and the
sign bit assignment.

The set_poly_coeffs_normal function samples the
coefficient within a nested loop. Fig. 3 (a) presents a power
trace for three coefficient samplings, corresponding to the
three iterations of the outermost loop in Fig. 2. The ad-
versary can locate the distribution function calls since there
are distinguishable and visible peaks corresponding to the
three iterations. The double-headed horizontal arrows show
the parts that correspond to each independent coefficient’s
sampling. Indeed, these peaks are our start and an endpoint
indications in the power trace to locate each distribution
function call and the sign bit assignment.

Fig. 3 (b) reflects the power consumption sub-traces of
three different branch’s executions taken for the three different
cases (noise = 0, noise > 0, and noise < 0). The adversary
is able to distinguish each branch taken case since they have
distinct power patterns caused by control flow variations (i.e.,
different instructions executing). Although we present only
three iterations that cover the three branch taken scenarios in
Fig. 3 for the ease of visualization, we tested the system with
multiple traces to make sure whether there are indications in
a power trace to locate each distribution function call and
the sign bit assignment. Fig. 3 thus supports our initial claim
about the first vulnerability.
D. Recovering the Sampled Coefficient Value and Exploring
the Remaining Search Space

To exploit the second and third vulnerability, we used a
template attack [28]. This attack configures the device with
all possible secrets (sampled coefficients in our case) and

TABLE I
ATTACK SUCCESS PERCENTAGES (%) FOR EACH COEFFICIENT. THE ROWS

SHOW THE SAMPLED COEFFICIENT LABELS FOR THE TEMPLATES AND
THE COLUMNS REPRESENT THE SAMPLED COEFFICIENTS.

. . . -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 . . .
-14 . . . 4 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
-13 . . . 21.9 0.9 0 0.1 0 0 0 0 0 0 0 0 0 0 0 . . .
-12 . . . 0.5 0.6 0.2 0 0.1 0 0 0 0 0 0 0 0 0 0 . . .
-11 . . . 22.4 0.3 0 0.1 0.1 0 0 0 0 0 0 0 0 0 0 . . .
-10 . . . 1 39.6 0.8 0.3 0.1 0 0 0 0 0 0 0 0 0 0 . . .

-9 . . . 1.5 1.1 21.8 0 18.9 0 0 0 0 0 0 0 0 0 0 . . .
-8 . . . 1 0.3 0 3.6 0 0.3 0.2 0 0 0 0 0 0 0 0 . . .
-7 . . . 41.2 0.9 0 0.1 0 0 0 0 0 0 0 0 0 0 0 . . .
-6 . . . 1.5 54.2 0.3 0.2 0.2 0 0 0 0 0 0 0 0 0 0 . . .
-5 . . . 1 0.6 54.9 0 19.4 0 0 0 0 0 0 0 0 0 0 . . .
-4 . . . 1 0.6 0.3 91 0 3.4 0.9 0 0 0 0 0 0 0 0 . . .
-3 . . . 1.5 0.3 21.50.260.7 0.2 0.1 0 0 0 0 0 0 0 0 . . .
-2 . . . 1 0.3 0.2 3.8 0.4 92.5 3.1 0 0 0 0 0 0 0 0 . . .
-1 . . . 0.5 0 0 0.6 0.1 3.6 95.7 0 0 0 0 0 0 0 0 . . .
0 . . . 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 . . .
1 . . . 0 0 0 0 0 0 0 0 31.814.9 0.8 10.7 2.7 2.2 2.6 . . .
2 . . . 0 0 0 0 0 0 0 0 14.127.7 1.3 12.3 3 3.3 1.1 . . .
3 . . . 0 0 0 0 0 0 0 0 6.7 9.9 23.5 7.6 9.3 11.7 5.8 . . .
4 . . . 0 0 0 0 0 0 0 0 13.213.4 7 20.6 5.3 4.8 4.2 . . .
5 . . . 0 0 0 0 0 0 0 0 6.4 8.8 13.9 8 18.110.9 4.2 . . .
6 . . . 0 0 0 0 0 0 0 0 4 5.8 12.3 6.8 10.517.2 5.4 . . .
7 . . . 0 0 0 0 0 0 0 0 2.1 1.2 5.7 1.7 7.3 6.8 16 . . .
8 . . . 0 0 0 0 0 0 0 0 12.4 11 3.6 9.4 6.3 4.1 11.6. . .
9 . . . 0 0 0 0 0 0 0 0 3.1 3 8.1 6.7 11.410.611.1. . .

10 . . . 0 0 0 0 0 0 0 0 2.7 2.5 10.1 7.1 11.1 9.8 6.3 . . .
11 . . . 0 0 0 0 0 0 0 0 0.9 0.4 2.9 1.3 2 4.4 10.1. . .
12 . . . 0 0 0 0 0 0 0 0 1.6 1.1 7.5 5.9 10.810.4 7.9 . . .
13 . . . 0 0 0 0 0 0 0 0 0.4 0.1 1.8 0.9 0.8 2.4 7.4 . . .
14 . . . 0 0 0 0 0 0 0 0 0.6 0 1.5 1 1.3 1.4 6.3 . . .

uses template profiling [28] to extract the target device’s
power measurement behavior. The template is effectively a
multivariate distribution that describes the key samples in the
power traces. The attack calculates the probability of a given
power measurement belonging to each template and chooses
the one that maximizes the probability.

Since using the entire power trace makes an impractical
template [29], we selected special point of interests (POI)
within each power trace that has relatively higher leakage.
We used sum-of-squared differences (SOSD) method [30]
to identify POIs. Then, we build the templates with the
selected POIs and conduct the template attack. Our attack
combines the two template results: the template build on
the third vulnerability reduces false positives in the second
vulnerability.

We use extracted coefficients from the template attack and
combine it with the sign information to explore the remaining
search space with the BKZ algorithm [31] and estimate the
complexity of revealing the private message of SEAL. The
next section discusses how we quantify the amount of hints
of sampled coefficients and the remaining search space.

IV. ATTACK RESULTS

A. Experimental Setup
We implemented the hardware on SAKURA-G Board

which has a Xilinx Spartan-6 FPGA. We set the operating
frequency at a constant 1.5 MHz since this is in the range
of RFIDs/MCUs [32], [33]. Note that there are multiple prior
works [18]–[20] on single-trace side-channel attacks demon-
strated with similar frequencies. We used RISC-V based
architecture and specifically selected the PicoRV32 core [34]



for the implementation with the RV32IM configuration that
supports 32-bit based integer and standard extension for
integer multiplication and division.

The SAKURA-G Board has a designated SMA port that
provides the power drop across a shunt resistor of 1Ω on the
main supply line. To obtain power measurements, we use a
PicoScope 6424E model oscilloscope at 1GS/s.

B. Side-Channel Analysis Accuracy
SEAL’s BFV scheme generates fresh samples for each

message. Our attack thereby aims to recover the error polyno-
mial’s coefficients from a single side-channel measurement.
We ran the Gaussian sampling operation 220,000 times to cre-
ate template profiles sampled coefficients. We then captured
25,000 power traces for the attack stage. Note that the actual
attack only uses a single measurement but we ran the attack
many times to get a statistical estimate of our success rate.

Table I shows our attack scores for different coefficients.
The columns represent the actual value of the sampled co-
efficients during the attack stage, while the rows show the
predicted value. Although the range is between -41 and 41,
we observed values between -14 and 14 with 220,000 tests—
Table I shows attack scores for coefficients between -7 and 7
for brevity.

Our attack has 100% success rate for guessing the sign
of the coefficients. Table I shows that, as expected, the
negative values are more accurately extracted given the third
vulnerability (negation operation) we exploit. For example,
HWs of coefficient -2 and -3 are the same but the HWs of 2
and 3 are different. Therefore, when -2 and -3 are negated,
they will manifest different power consumption behaviors.

C. Integrating ‘LWE with Hints’.
To estimate the remaining search space based on our attack

results, we applied a recent technique [31], which integrates
side-channel information into the Learning-with-Errors in-
stance to analyze its effect on the cryptanalytic security of the
scheme. The framework extends the primal attack reductions
by inserting distorted bounded distance decoding (DBDD)
problem before the unique shortest vector problem (uSVP). It
then reports the hardness of the uSVP instance as the block
size of the BKZ algorithm. To translate the block size to the
bit security, related SVP hardness must be calculated. Their
seminal paper reports that bikz corresponds to 2.98× of the
bit-level security [31]3. We follow the same approach, apply
their code on our results, and report security results in
the same manner.

Embedding LWE instance into DBDD allows analyzing
security effects of information gained by side-channel leak-
ages. To this end, the framework [31] is able to integrate the
following information into the DBDD instance:

• Perfect hints: 〈s, v〉 = l
• Modular hints: 〈s, v〉 = l mod k
• Approximate hints: 〈s, v〉 = l + εσ
• Short vector hints: v ∈ Λ

3For example, we choose SEAL parameter set for 128-bit security level
which corresponds to 382.25 bikz.

TABLE II
GUESSING PROBABILITIES DERIVED FROM SELECTED MEASUREMENTS.
WE FOLLOW THE EARLIER METHOD [31], THE ATTACK IS “NOT” DONE
JUST FOR -2 TO +2 BUT FOR THE FULL SET OF COEFFICIENTS; RESULTS

GIVEN HERE IS FOR A SUBSET AS IN [31] FOR SIMPLICITY.
. . . -2 -1 0 1 2 . . . centered variance

0 . . . 0 0 1 0 0 . . . 0 0
1 . . . 0 0 0 ≈ 1 2.7 · 10−10 . . . 1 2.7 · 10−10

-1 . . . 0 1 0 0 0 . . . −1 0
2 . . . 0 0 0 2.8 · 10−53 ≈ 1 . . . 2 0

-2 . . . 1 0 0 0 0 . . . −2 0

TABLE III
COST OF ATTACK WITH/WITHOUT HINTS FOR SEAL-128 PARAMETER

SETS.
SEAL-128

Attack without hints (bikz) 382.25
Attack with hints (bikz) 12.2

TABLE IV
COST OF ATTACK WITH/WITHOUT HINTS USING “ONLY” BRANCH

VULNERABILITY FOR SEAL-128 PARAMETER SETS
SEAL-128

Attack without hints (bikz) 382.25
Attack with hints (bikz) 253.29
Attack with hints & guesses (bikz) 252.83
Number of guesses 1
Success probability 20%

For the single-trace attack, we focus on perfect and approx-
imate hints since the perfect hints allow integrating infor-
mation gained by noisy power leakages with high guessing
confidence. Approximate hints allow integrating the same
information when the guessing confidence is lower.

The framework takes the scores of each measurement
and creates probabilities for each output. Then, it generates
n secret values and selects measurements for those values
uniformly at random. Finally, the probability tables for those
measurements are integrated into DBDD instance in order
to estimate the hardness of the problem. Our experiments in
Table I show that some coefficients can be guessed correctly
with very high probability, while others have relatively lower
probability. Thus the framework uses them as the perfect hints
or approximate hints in accordance with their probabilities.
Table II shows the probabilities of guesses for several secrets
as an example. The probability of the correct guesses in the
Table II is very close to 1. Therefore, the framework selects
those measurements as prefect hints.

For simplicity, Table II only includes the guessing prob-
abilities of (−2, 2) intervals since they are more frequently
observed. We have noticed that some possibilities rounded
up to 1 or down to 0 because of the floating-point precision,
therefore we marked those values with ≈ sign.

Note that Table I shows the success rates when most likely
template is selected as the result while Table II computes the
success rate from the possibilities of each template without
selecting any candidates as in [31]. Thus there might be a
slight difference between them. Table III shows the cost of
primal attack for the smallest parameter set of SEAL-128
where q = 132120577, n = 1024, and σ = 3.2. Since our
attack can guess most of the coefficients of the secret with
high confidence, i.e., the distribution has a variance that is
very close if not equal to 0, the cost when the hints are used
is only 12.2 bikz, which can be interpreted as complete break
of the scheme (i.e., security level of about 24.4 [31]).



We also analyze the case where the adversary only lever-
ages the branch-related vulnerability. In this scenario, the
adversary can guess the sign of the coefficient and if the
coefficient is equal to zero correctly4. The cost of the primal
attack is given in Table IV. The hints reduce security bikz
from 382.25 to 253.29 (equivalently, from a security level of
2128 to 284.34 [31]). Therefore, signs alone cannot recover
the plaintext message. The second and third vulnerabilities
we identify should be used for a successful attack.

V. DISCUSSIONS
A. Potential Defenses

Our goal is to inform the single-trace side-channel vulner-
abilities and to quantify if they have the potential to lead to
a successful attack. We urge the developers to incorporate
some form of countermeasures to prevent the attacks we pro-
pose. Such defenses may involve shuffling or other forms of
randomization/obfuscation. We do not recommend masking-
based defenses as they are known to be susceptible against
single-trace side-channel attacks [15]. The combination of
various defense approaches is most likely the best option for
both single-trace and multi-trace side-channel attacks.

Microsoft SEAL has been patched since the beginning of
this research. SEAL v3.6 update uses an iterator function
instead of using if-else conditions we analyzed [35]. There-
fore, SEAL v3.6 and later versions may have a different
vulnerability, which is left for future work.
B. Drawbacks of Our Attack

Template attacks need profiling and the ability to configure
keys. They may require a great number of traces to create a
good template. They also need to take the curse of dimension-
ality into account [36]. We limit our attack to a single device,
cross-device attacks may need a more complicated, machine-
learning-based profiling [20]. Since the noise of the platform
increases with the operating frequency of the device, we set
the operating frequency of the design to a constant 1.5 MHz.
Attacking devices with higher clock frequency may require
utilizing more advanced measurement equipment. Likewise,
attacking more secure versions (196-bit or 256-bit) is likely
to be harder because of the increased precision and number
of coefficients.

VI. CONCLUSIONS

So far, the research on HE has been on making it more
practical given its high computational overhead. However, as
HE is now starting to move into real-world applications, more
focus is needed on their implementation security. This paper
proposes the first side-channel attack on Microsoft SEAL,
which is a major HE software library. We demonstrate the
unique vulnerabilities of the Gaussian sampling sub-routine
in SEAL and validate the practicality of our attack with real
measurements. Therefore, some form of countermeasure is
needed. Since we apply a single-trace side-channel analysis,
masking would not be a viable option to mitigate this vulnera-
bility. We thus encourage countermeasures based on shuffling
and better software coding practices to eliminate conditional
executions on sensitive values.

4Our attack can guess the correct branches with 100% success rate.
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