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Abstract—Many currently deployed public-key cryptosystems
are based on the difficulty of the discrete logarithm and integer
factorization problems. However, given an adequately sized
quantum computer, these problems can be solved in polynomial
time as a function of the key size. Due to the future threat
of quantum computing to current cryptographic standards,
alternative algorithms that remain secure under quantum com-
puting are being evaluated for future use. As a part of this
evaluation, high-performance implementations of these candidate
algorithms must be investigated. This work presents a high-
performance implementation of all operations of CRYSTALS-
Dilithium and one operation of FALCON (signature verification)
targeting FPGAs. In particular, we present a Dilithium design
that achieves the best latency for an FPGA implementation
to date and, to the best of our knowledge, the first FALCON
hardware implementation to date. We compare our results with
the hardware implementations of all viable NIST Round 3 post-
quantum digital signature candidates.

Index Terms—Post-Quantum Cryptography, Digital Signature,
Number Theoretic Transform, FPGA

I. INTRODUCTION

Current public key cryptographic standards, such as RSA
and ECC, rely on the difficulty of the integer factorization and
the discrete logarithm problem. However, with a sufficiently
large quantum computer, Shor’s algorithm [1] can be applied
to solve these problems in superpolynomial run time [2].

While there is no known quantum computer capable of run-
ning Shor’s algorithm to break current public-key standards,
the process of selecting, standardizing, and deploying new
public-key cryptosystems may take a substantial amount of
time. In 2016, NIST announced the Post-Quantum Cryptogra-
phy (PQC) standardization process aimed at developing new
public-key standards resistant against quantum computers. In
July 2020, NIST selected seven third-round finalists, includ-
ing two lattice-based digital signature schemes: CRYSTALS-
Dilithium and FALCON. All remaining candidates are cur-
rently being evaluated in terms of their security, key and
ciphertext/signature size, performance in both software and
hardware, and several other criteria. While software imple-
mentations are relatively easy to develop and benchmark,
hardware implementations require a substantial amount time
and design effort to determine their efficiency in terms of
speed, area, power, and energy. FPGA implementations of
PQC submissions are necessary to provide insight into the
cost and performance of these algorithms in hardware.
Contributions. In this work, we present a high-performance
FPGA implementation of CRYSTALS-Dilithium designed at

the Register Transfer Level (RTL) using Verilog. We also
present a high-performance implementation of FALCON ver-
ification designed in VHDL. In particular, we make the fol-
lowing contributions:

• We present a high-performance implementation of
Dilithium supporting all operations and security levels
and achieving the lowest reported latency for all opera-
tions.

• We also present a hardware implementation of FALCON
verification, which is, to the best of our knowledge, the
first reported hardware implementation of FALCON.

The source code for Dilithium in this paper is publicly
available at: https://github.com/GMUCERG/Dilithium. The
source code for FALCON verification will be made public
upon publication.

II. PREVIOUS WORK

The existing hardware and hardware/software (HW/SW)
implementations of digital signatures schemes qualified to
Round 3 of the NIST PQC standardization process are sum-
marized in Table I. Hardware design may focus either on
maximizing performance or minimizing the area and power
the design consumes. These approaches lead to substantial
differences in hardware architecture, and thus both types
of implementations are important to measure an algorithm’s
performance in hardware. Therefore, the implementations in
Table I are split into High-Speed or Lightweight. However,
the dividing line is not always apparent as designs may seek
to make area/performance trade-offs. These labels are to help
differentiate the results of various implementations but should
not be considered absolute.

Currently, the lattice and symmetric-based algorithms are
the most viable candidates as multivariate schemes have re-
ceived concerning success in cryptanalysis [3]. The lattice-
based algorithms have better performance and smaller sig-
natures size, making them strong candidates. However, the
symmetric-based signatures may provide more confidence
in their security, which is based on preexisting symmetric
primitives.

Prior to our previously reported work [14], Dilithium had
received two implementations. In [4], a high-performance
design for Dilithium version 2 [15] is described. The authors
report area for individual modules instantiated for level 3 and
performance for security levels 1-4. To improve polynomial
arithmetic performance, they used a 2 × 2 butterfly for their

https://github.com/GMUCERG/Dilithium


TABLE I: Status of RTL implementations for Round 3 digital
signature schemes

Algorithms High-Speed Lightweight HW/SW

Lattice-based

CRYSTALS-Dilithium [4], TW [5], [6]∗∗∗ [7], [8]∗, [9], [10]∗∗∗
FALCON TW – –

Multivariate

GeMSS – – –
Rainbow [11]∗∗ – –

Symmetric-based

Picnic [12] – –
SPHINCS+ [13] – –

∗extended version of [7]
∗∗only for Round 1 and Round 2 parameter sets

∗∗∗ Supports Dilithium and Saber

Number Theoretic Transform (NTT) and duplicated the mod-
ule multiple times in certain operations. As an example, their
sign operation is split into many parallel operations, including
12 instances of their NTT unit. This allows this design to
achieve high performance, but at the cost of a large number
of DSPs and BRAM. They also used multiple Keccak cores to
enable more parallelization in polynomial sampling. Another
implementation, [5], describes a mid-range implementation
for version 3.1 of Dilithium and focuses on achieving the
best performance possible with reasonable resource utilization.
This design consists of three top-level modules, each capable
of performing all operations at a single security level and an
individual module that only performs a single operation at
a single security level. This design does utilize some paral-
lelization, for example, the use of two butterfly cores in the
NTT. However, it limits duplication to maintain lower resource
utilization. Since releasing our work on Dilithium, a HW/SW
implementation [9] and two RTL implementations supporting
both Saber and Dilithium [6], [10] have been made public.
In particular, [10] notes that the Dilithium NTT parameters
can be applied to Saber for polynomial multiplication with
almost no modification if a slight failure rate is accepted. A
similar multiplier approach is used by [6], which implements
the entire Saber and Dilithium algorithms. The HW/SW imple-
mentation [9] investigates the performance area trade-offs of
moving the Keccak core and polynomial multiplier into FPGA
accelerators on several platforms and compares them against
C and NEON optimized implementations.

FALCON has not received any form of hardware imple-
mentation to date. This is likely due to the complexity of
the algorithm. In particular, the key generation and signature
generation functions are both complex and not naturally hard-
ware friendly. For example, these functions require floating-
point FFT operations with 53 bits of precision, which are
costly to implement on FPGA. Further, the authors of the
algorithms note that a limitation of FALCON is the complexity
of key generation and signature generation, which are delicate
to implement [16]. The tree sampling of signature genera-
tion requires recursive FFT operations, which are challenging
to implement in hardware and require a large amount of
memory. Given the difficulty posed in fully implementing

all operations of FALCON and the short timeline remaining
for the conclusion of NIST round 3, we chose to focus on
implementing verification. Verification is a simpler operation
requiring only integer polynomial operations. It is also the
most common and most likely operation to be performed on
resource-constrained Internet of Things (IoT) devices, which
rarely generate signatures but frequently verify signatures to
confirm the authenticity of connections. This makes verifica-
tion performance an important metric for evaluation.

III. BACKGROUND

A. Dilithium

Dilithium is a member of the Cryptographic Suite for Alge-
braic Lattices (CRYSTALS) along with the Key Encapsulation
Mechanism (KEM) Kyber. The core operations of Dilithium
are the arithmetic of polynomial matrices and vectors. As
described in [17], Dilithium is a Fiat-Shamir with Aborts [18],
[19] style signature scheme and bases its security upon the
Module Learning with Errors (M-LWE) and Module Short
Integer Solution (M-SIS) problems. The M-LWE problem can
be briefly described as follows: Let A ∈ Rk×l

q be uniformly
chosen, s1 ∈ Rl

q , and s2 ∈ Rk
q . Then, the standard M-LWE

problem is to distinguish (A,A · s1 + s2) from (A, u), where
u is a uniformly chosen vector. The M-SIS problem can be
briefly described as follows: Let A be a uniformly chosen
Rk×l

q matrix, then find a non-zero vector x ∈ Rl
q such that

the norm of x is less than β for some β and A · x = 0.
Dilithium is built upon polynomial arithmetic using these hard
problems. The security of the algorithm is primarily adjusted
by changing the k, l parameters, which determine the size of
matrices and arrays.

The full description of the key generation of CRYSTALS-
Dilithium is shown in Algorithm 1. The only input is a random
32-byte seed ζ. The public A matrix is sampled from a 32-
byte seed ρ using the SHAKE128 XOF, and the secret s
polynomials are sampled from the 32-byte seed σ using the
SHAKE256 XOF. An incrementing nonce is appended to seed
when sampling each polynomial in the vectors and matrices to
generate a unique output. As an example, s2 is sampled using
the same seed as s1, s1 is sampled using the nonce values
from [0, l − 1] and s2 from [l, 2l − 1]. The core polynomial
operation is the matrix multiplication and vector addition:

t⃗ =

 a0,0 · · · al−1,0

...
. . .

...
a0,k−1 · · · al−1,k−1


 s1(0)

...
s1(l − 1)

+

 s2(0)
...

s2(k − 1)


The resulting polynomial vector t can be released publicly
as the M-LWE problem ensures that the secret values s1, s2
cannot be recovered only knowing A, t. To reduce the size
of the public key, only the upper bits of t are transmitted.
Power2Round accomplished this by splitting t into two
vectors, one containing the 23 − d most significant bits of
the coefficient and the other containing the d least significant
bits, where d is a parameter value shown in Table II. This
greatly reduced the transmission size of the public key but



required additional information in verification to recover from
the missing bits. This is accomplished through the use of a
hint, which is generated using the lower bits of t during sign.

Algorithm 1: Dilithium Key Generation

Input: ζ ∈ {0, 1}256
Output: pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

1 (ρ, σ,K)← H(ζ)
2 A←ExpandA(ρ) s1, s2 ←ExpandS(σ)
3 t← A · s1 + s2
4 (t0, t1)← Power2Round(t, d)
5 tr ← H(ρ||t1)

Algorithm 2: Dilithium Signature Generation
Input: sk = (ρ,K, tr, s1, s2, t0),M ∈ {0, 1}∗
Output: σ = (ĉ, z, h)

1 A←ExpandA(ρ) µ← H(tr||M) ρ′ ← H(K||µ)
2 k ← 0 abort← 1
3 while abort do
4 abort← 0
5 y ←ExpandMask(ρ′, k)
6 w ← A · y
7 w1 ←HighBits(w, 2γ2)
8 ĉ← H(µ||w1)
9 c←SampleInBall(ĉ)

10 z ← y + c · s1
11 w0 ←LowBits(w, 2γ2)
12 if ||z||∞ ≥ γ1−β or ||w0− c · s2||∞ ≥ γ2−β then
13 abort← 1
14 else
15 h←MakeHint(w1, w0 − c · s2 + c · t0, 2γ2)
16 if ||c · t0||∞ ≥ γ2 or

∑
hi > ω then

17 abort← 1
18 k = k + l

Algorithm 3: Dilithium Signature Verification
Input: pk = (ρ, t1), M ∈ {0, 1}∗, σ = (ĉ, z, h)
Output: Valid or Invalid

1 A←ExpandA(ρ)
2 µ← H(H(ρ∥t1)∥M)
3 c←SampleInBall(ĉ)
4 (w1, w0)←UseHint(h,A · z − c · t1 · 2d)
5 if ||z||∞ < γ1 − β & ĉ = H(µ||w1) &

∑
hi ≤ ω then

6 return Valid
7 return Invalid

Signature generation is described in Algorithm 2. The first
step is to sample a vector y based on the secret key and the
hash of the message. This vector is then multiplied by the
public matrix A, and the result is designated w.

w⃗ =

 a0,0 · · · al−1,0

...
. . .

...
a0,k−1 · · · al−1,k−1


 y1(0)

...
y1(l − 1)


This vector is decomposed into two polynomial vectors w1,
w0 by a constant α such that w1(i) · α + w0(i) = w(i)
for all w(i) ∈ w. This allows the effect of small noise to
be removed from w before hashing. The quotient coefficients
w1(i) are referred to as the high-order bits, and the remainder
w0(i) is referred to as the low-order bits. HighBits is the
function that returns a polynomial vector composed of the
higher-order bits of the input vector w. We denote this vector
as w1. LowBits gives a vector composed of the lower-order
bits of w. We denote this vector as w0. The coefficients of w1

are concatenated and hashed with µ to generate a byte vector
ĉ. A short polynomial c is sampled from ĉ using a variant
of the Fisher-Yates shuffle [17]. The function to perform this
operation is called SampleInBall. The polynomial c has τ
coefficients equal to ±1. The remaining coefficients are 0. This
polynomial is then used to calculate z as follows.

z⃗ =

 y(0)
...

y(l − 1)

+ c ·

 s1(0)
...

s1(l − 1)


As mentioned in key generation, a hint is also needed so
that the verifier can recover from the missing bits in t1.
This hint contains the coefficient indices that require a carry
bit in the verification operation. The hint is generated by
the MakeHint operation using c, w0, s2 and t0. Once this
operation is complete, the (c̄, z, h) set is a potential signature
candidate. However, it can be observed above that z and s1 are
closely related, with the secret s1 only being masked by multi-
plication with the public polynomial c and addition with the y
vector. In some circumstances, z may leak information about
the long-term secret s1. As such, the max-norm of several
vectors must be checked to ensure security. The max norm of a
polynomial x ∈ Rn is defined as ||x||∞ = max(x0, ..., xn). If
it exceeds certain predefined bounds, the signature is rejected,
and a new attempt is generated by sampling y with a new
nonce. Further, the hint has a maximum size ω. If too many
hint bits are needed, a new attempt will be needed as well.
Dilithium requires 3 − 5 attempts on average to generate a
secure signature depending on the security level.

In Algorithm 3, verification is described. It attempts to
recreate the ĉ seed using the message, public key, and sig-
nature. This is accomplished using the following operations:

w⃗′ =

 a0,0 · · · al−1,0

...
. . .

...
a0,k−1 · · · al−1,k−1


 z(0)

...
z(l − 1)

−c ·

 s1(0)
...

s1(k − 1)


Presuming all inputs are valid, w′

1 will be equivalent to w1

as

w′ = A · z − c · t = A · (y + c · s1)− c · (A · s1 + s2)

=⇒ w′ = A · y − c · s2



TABLE II: Dilithium parameters for version 3.1 at all sup-
ported security levels (2, 3, and 5).

Parameter Value
2 3 5

q [modulus] 223 − 213 + 1
d [dropped bit from t] 13
τ [# of +/- 1’s in c] 39 49 60

ω [max # of 1’s in hint] 80 55 74
(k, l) [Vector Dimensions] (4,4) (6,5) (8,7)
η [secret coefficient range] 2 4 2
γ1 [y coefficient range] 217 219 219

γ2 [low-order rounding range] q−1
88

q−1
32

q−1
32

Dilithium FALCON (Verify)
Security Basis M-LWE, SIS NTRU-SIS
NTT-Friendly Yes Yes
Hash Function SHA-3 SHA-3

Elements Vectors/matrices of polynomials Polynomials
(k, l) ∈ [(4, 4), (6, 5), (8, 7)]

Polynomial Degree 256 [512,1024]
Coefficient Modulus 8,380,417 (23-bit) 12,289 (14-bit)

TABLE III: High level comparision between Dilithium and
FALCON verification

As noted previously, since only the upper bits of t are
used in this operation, a hint is applied using UseHint to
account for the carry bits from the missing lower bits of
t. Both s2 and c have small coefficients and thus will not
contribute substantially to the higher-order bits of w′. When it
is decomposed, the upper bits will be equivalent to the upper
bits of A · y, and thus when it is hashed, it will recreate ĉ.

B. FALCON

FALCON is a lattice-based cryptosystem for digital sig-
natures over NTRU lattices. While Dilithium is lattice-based
as well, there are substantial differences. Unlike Dilithium,
FALCON builds its security on the NTRU Short Integer Solu-
tion (NTRU-SIS) problem [16]. In FALCON, key generation
and signature generation are very complex, involving matrix
decomposition, a complex trapdoor sampler, and floating-point
Fast Fourier Transform operations. However, verification is
much simpler and has very high performance. It also has
smaller signatures and public keys than Dilithium, reducing the
data that must be transmitted for verification. Table III shows
a high level comparison between Dilithium and FALCON
verification.

The main elements used in verification are integer polyno-
mials of degree 512 or 1024 with coefficients modulo 12289.
The ring of FALCON was chosen such that it supports a full
NTT transformation.

The core operation of FALCON verification is the cal-
culation of s1 = c − h × s2 as shown in line 4 of the
Algorithm 4, where the multiplication between two large
polynomials is computed using NTT. The signature is accepted
or rejected based the norm of (s1, s2), where ||(s1, s2)||2 =∑N−1

i=0 s1(i)
2 + s2(i)

2.

C. Number Theoretic Transform

It is well known that a Discrete Fourier Transform (DFT)
may be used to compute polynomial multiplication. However,

Algorithm 4: FALCON Signature Verification

Input: pk = h̄, M ∈ {0, 1}∗, σ = (r, s̄)
Output: Valid or Invalid

1 c← HashToPoint(r||M)
2 h← Decode(h̄)
3 s2 ← Decompress(s̄)
4 s1 ← c - NTT−1(NTT(h)◦ NTT(s2))
5 if ||(s1, s2)||2 ≤ ⌊β2⌋ then
6 return Valid
7 return Invalid

a straightforward computation of a DFT requires O(n2) mul-
tiplications. This can be reduced using the Fast Fourier Trans-
form (FFT), which computes the same results but only requires
O(n log n) multiplications. Traditionally this is performed on
complex numbers, but it can be applied using integers when
acting on a quotient ring. This variant is called the Number
Theoretic Transform (NTT). A ring is referred to as NTT-
friendly if it is of the form Rq = Zq[x]/(x

n + 1), where n
is power of 2 and q ≡ 1(mod 2n). The first condition allows
an n-point NTT to be used in place of the standard 2n-point,
and the second guarantees that there are primitive roots of
unity with high enough order to perform a full transform.
However, it is worth noting that while these conditions are
optimal for NTT based multiplication, the NTT can still be
applied with looser conditions. As an example, Kyber does not
have a 2nth root of unity but still uses an incomplete NTT to
accelerate polynomial multiplication [20], and through several
clever tricks, the NTT can be applied to NTRU, which has a
power of 2 coefficient modulus and a prime degree reduction
polynomial [21].

Both the Dilithium and FALCON verify operations are
performed over NTT-friendly rings. Polynomial multiplica-
tion can be efficiently calculated using the NTT as follows:
a× b = NTT−1(NTT (a) ◦NTT (b)), where ◦ is point-wise
multiplication of the polynomial coefficients. This approach
reduces the complexity of polynomial multiplication from
O(n2) to O(n log n).

IV. HARDWARE DESIGN

A. Dilithium

1) Design Methodology: We present a combined architec-
ture for Dilithium key generation, signature generation, and
signature verification. The primary difference between security
levels is the dimension of vectors and matrices, which only
causes an increase in BRAM utilization. Therefore we chose to
support all security levels in a single architecture. This section
will discuss the main subcomponents used to implement the
Dilithium algorithms, the high-level implementation, and the
scheduling of the design. The high-level block diagram is
shown in Fig. 2.

Our design decisions were informed by the previous works
on Dilithium as well as the other signature candidates. As seen
previously in Table I, the symmetric-based candidates have
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Fig. 1: CRYSTALS-Dilithium 2× 2 NTT architecture with Address Resolver, 4×FIFO for data, Addr FIFO for indices

received only high-performance RTL implementations. Thus,
for a fair comparison between families of algorithms, our work
also focuses on high-performance RTL implementation. This
allows us to compare using latency as a single objective metric
as opposed to area comparison’s which must compare multiple
different resources.

Based on the previous works on Dilithium [4], [22], we
chose to use the 2 × 2 butterfly approach for our NTT.
However, we limit DSP usage to multiplication as simpler
operations can be implemented using LUTs without impacting
the overall critical path of the design. We also chose to use
multiple Keccak cores to parallelize sampling but were careful
to use only the minimum number of cores required to prevent
sampling from becoming the bottleneck of the design. Our sign
operation is split into several stages, but we focus on splitting
the operation at steps that require minimal data transfer and
hardware duplication.

PolyArith0

PolyArith1

Decomposer

Encoder

SampleC Keccak1

Keccak0

Keccak2

SampleA

SampleS

RAM0

RAM3

RAM2

RAM4

RAM1

RAM5RAM6

64

64

64

64

64

64

SampleY

UseHint

MakeHint
AXI

Stream
In

Decoder

AXI
Stream
Out

Fig. 2: Block diagram of the combined architecture of
CRYSTALS-Dilithium. Bus widths are 96 bits unless shown
otherwise.

2) Polynomial Arithmetic: In our design, the polynomial
arithmetic unit, PolyArith, is used to perform the NTT, point-
wise multiplication, addition, and subtraction. For all integer

multiplications, Barrett reduction is used to perform the mod-
ulo operation as it can be implemented efficiently in hardware
through the use of shifts and additions in place of the constant
multiplications. Our design utilizes four butterfly units, each
capable of performing the basic arithmetic operations needed
as well as the Cooley-Tukey and Gentlemen-Sande butterfly
operations. This design choice was centered around the NTT as
it is the most costly and complex polynomial operation. With
four butterflies, our design can make use of a 2× 2 butterfly
arrangement, which gives the benefits of processing four pairs
of coefficients in parallel but with a lower memory throughput
requirement than processing four pairs of coefficients in a
single layer. This is done by processing two layers of the NTT
per memory access. Between the layers, the NTT pipeline must
be stalled to wait for the write back to complete. However,
using a 2 × 2 arrangement reduces the number of write-
back conflicts and is combined with coefficient rearrangement,
removing the need for stall almost entirely. This is an optimal
trade-off, as it provides better performance than processing a
single layer at once but does not utilize excessive resources.
The next viable arrangement would be to use 16 butterflies in
a 4 × 4 arrangement. However, this would increase the area
by a factor of 4 and provide only minimal improvement to the
overall performance. Since the butterfly hardware is reused
for all polynomial arithmetic, four pairs of coefficients are
processed in parallel for all operations.

Our design for the 2× 2 NTT unit, shown in Fig. 1, builds
upon the pipelined NTT design by Nguyen et al. [23], [24],
which processed four coefficients per clock cycle and 2 NTT
layers at once. The ideal cost of the Forward and Inverse
NTT is n

4 ·
logn
2 clock cycles, where n is the degree of the

polynomial. The BRAM stores 4 coefficients per row and
uses n/4 rows. In case of Dilithium, n = 256. Thus, the
polynomial configuration is 64×4 coefficients, corresponding
to the 64 × 96-bit RAM. Similarly, with Falcon n = 1024,
the configuration is 256 × 4 coefficients and corresponding
to the 256 × 56-bit RAM. Instead of multiplying with n−1

in the last stage of Inverse NTT, we incorporate the divide-
by-2 technique [25] into the four 2 × 2 butterfly units at
every level of the Inverse NTT. Each butterfly unit is deeply
pipelined and uses DSP units for multiplication to improve the
critical path. Please note that the Forward and the Inverse NTT
use Decimation-In-Frequency (DIF) and Decimation-In-Time
(DIT) variants of NTT, respectively. This prevents the need



for the bit-reversal operation. Hence, all butterfly units in our
design must support both DIF and DIT so that a single 2× 2
NTT unit is capable of performing both Forward and Inverse
NTT.

In our design process, we set the constraint that the memory
must be written to in Natural Order from other modules. This
constraint simplifies our design since other modules do not
have to shuffle coefficients in order to prepare them for the
Forward NTT operation, which would delay its commence-
ment. As shown in Fig. 3, the Forward NTT starts with the
memory indices in Natural Order. After Forward NTT, the
memory indices are shuffled in blocks of four coefficients. To
find the True Address, we use a simple mapping (performed
by Address Resolver), so any query to the memory can read
the correct RAM contents. After Inverse NTT, the memory
indices are converted back to Natural Order. By using this
approach, our hardware design becomes concise and easy to
implement.

One challenge of a 2 × 2 butterfly is correctly loading the
coefficients. For the Forward NTT with n = 256, coefficients
are loaded in pairs of distance 27−j at layer j. Thus, for layer
j = 0, (x0, x128) would be the first coefficient pair loaded
into a butterfly. Then (x0, x64) would be the first pair for the
next layer j = 1, and so on. To meet this requirement at full
throughput, while using only a single simple dual-port RAM,
we introduce components called 4xFIFO and Addr_FIFO,
shown in Fig. 1.

The 4xFIFO is used to transpose a 4 × 4 matrix of
coefficients to properly order the coefficients. This transpose
operation must be executed before data enters the butterfly unit
in the Forward NTT (DIF) and after it exits this unit in the
Inverse NTT (DIT). The same 4×FIFO unit, operating in two
different modes shown in Figs. 4 and 5, is used for both of
these operations.

In Fig. 4, we illustrate the operation of this unit at the
start of the Forward NTT. 4xFIFO consists of four shift
registers shown in this figure as rows of adjacent squares. Each
square represents a register capable of holding one polynomial
coefficient. The lengths of these shift registers, considered in
the bottom-up order, are 7, 6, 5, and 4 positions, respectively.
The four leftmost positions of each shift register can be written
to in parallel. The rightmost column of the entire 4xFIFO
component can be read in parallel. Every clock cycle, the
contents of each shift register is shifted by one position to the
right. Every clock cycle, one and only one of these registers
has its four leftmost positions written to in parallel. In Fig. 4,
these positions are marked using blue rectangular frames. After
the initialization, lasting 3 clock cycles, in each subsequent
clock cycle, four coefficients are read from the rightmost
column of the entire 4xFIFO component. These positions
are marked using red rectangular frames. The same 4xFIFO
unit can be reused for the Inverse NTT operation, as shown
in Fig. 5. During this transformation, the 4xFIFO is used
after the butterfly transform, before the writeback to memory.
Rather than write-by-row, read-by-column operation used in
Forward NTT, the 4xFIFO is configured to execute the write-

by-column, read-by-row operation.
The Address Resolver unit, shown in Fig. 1, is responsible

for converting the Representation Address (RAddr) in the
NTT algorithm to True Address (TAddr) to account for
the reordering that occurs in the Forward and Inverse NTT
operation. When n = 256, it does so by using two 64 × 6
ROMs to map the address when required by the operation.
Contents of the respective ROMs, Forward NTT ROM and
Inverse NTT ROM, are shown Fig. 1. To determine the
contents of ROMs, we examined the order of indices before
and after the NTT transform, such that the conversion between
RAddr and TAddr guarantees that the RAM words RAddr
refers to are always correct. The construction of the mapping
tables depends only on the parameter n and the writeback
pattern of the FIFO buffer, which are fixed at runtime. We
decided to use a ROM-based approach for n ≤ 256 since
the entire ROM content is able to fit efficiently into LUTs.
For n > 256, it should be noted that the ROM content can
also be computed on the fly using the Algorithm 5 with bit
shifting and masking. With Address Resolver unit, we
completely eliminate the execution time of a shuffle and re-
ordering at the cost of the negligible amount of extra memory.
The Addr_FIFO unit is responsible for delaying TAddr by
4 clock cycles (which is the depth of the pipeline of the 2× 2
butterfly units).

Algorithm 5: Address Resolver ROM calculation

Input: Representation address (RAddr) i, n = 2k

Output: True address (TAddr)
1 f = n≫ 4 = 2k−4

2 if mode = Forward NTT then
3 return (i mod 4)× f + i/4
4 else if mode = Inverse NTT then
5 return (i mod f)× 4 + i/f
6 else
7 return i

3) BRAM Configuration: As discussed in previous sections,
the polynomial arithmetic modules process four coefficients
per clock cycle. Thus, the bandwidth requirement is 96 =
4 × 24 bits. The smallest dual-port BRAM configuration
that can accommodate this width in today’s Xilinx FPGAs
is composed of three 36-kbit BRAMs, each configured as
1024x36 memory [26]. This configuration can efficiently store
two vectors of polynomials at the security level 5, with the
4 · 24/3 · 36 = 89% utilization of each memory word. This
structure allows us to efficiently utilize BRAM for polynomial
storage, leading to lower BRAM utilization than previously
reported implementations.

4) Keccak and Polynomial Samplers: In Dilithium, the
polynomials composing vectors and matrices are indepen-
dently sampled using a constant seed value and an appended
incrementing nonce as the input to either SHAKE128 or
SHAKE256. This allows parallel sampling of polynomials
if multiple Keccak cores are used. While the Keccak core



0 1 2 3
4 5 6 7

248 249 250 251
252 253 254 255

0 1 2 3
64 65 66 67

188 189 190 191
252 253 254 255

0 1 2 3
4 5 6 7

Natural Order

248 249 250 251
252 253 254 255

Forward  

NTT

Inverse 
 

NTT

Natural Order

Fig. 3: Example of the memory indices during NTT Transform n = 256

03 2 1

1

65 6466

03

67

2 1

2

130 129 128131

65 6466

03

67

2 1

3 195 194 193 192

130 129 128131

65 6466

03

67

2 1

4

195 194 193

130 129131

6566

7 456 3

67

2 1

5 195 194

130131

71 70 6869 66

7 456 3

67

2

6 195

135 134 133 132 131

71 70 6869

7 456 3

67

7 199 198 197

135 134 133

71 70 69

7 56

8 196

132

4

68

Fig. 4: Example of the operation of the reorder FIFO for Forward NTT

1

2

1 0

15

2

3

6

2 4 0

5 19

10 2

711 3

6

3 12 8 4 0

5 19

1014 2

71115 3

6

4

5 113 9

1014 2

71115 3

6

5 16

17

18 1014 2

19 71115 3

6

23

6 20 16

21 17

22 18

19 71115 323

7 28 24 20 16

25 21 17

22 1826

1927 23

8

21

13

73

16

17

18

19

20

22

24

25

26

27

29

30

30

0 4 8

Fig. 5: Example of the operation of the reorder FIFO for Inverse NTT

consumes a substantial amount of resources, a large amount of
pseudorandom data is required in Dilithium. As an example,
at security level 5, the A matrix is of dimensions 8 × 7,
with each sample requiring 24-bits of pseudorandom data.
While the rejection rate is low, this still requires a minimum
of 8*7*256*3=43KB of pseudorandom data. Producing that
amount of pseudorandomness quickly becomes the perfor-
mance bottleneck in high-performance designs. Thus, we use
three Keccak cores in our design. Two are primarily used
for sampling of the A matrix, and the third is used for the
remaining hashing and sampling. To improve the performance
of sampling, multiple coefficients are sampled in parallel to
fully utilize the Keccak core. The Keccak module utilized in
our design is a preexisting implementation [27]. We selected
three Keccak cores because it was the minimum number of
instances that prevented polynomial sampling from becoming
the operational bottleneck of the design.

B. FALCON Verification

As observed earlier, while key and signature generation
in FALCON are complex operations, verification is a much
simpler operation that lends itself to a very efficient hardware
implementation. This work focuses on optimizing FALCON
signature verification in hardware for high performance. Paral-
lelization is possible in the decoding of polynomials as well as
the hashing of the message and sampling of the c polynomial.
The datapath of the architecture is four polynomials wide
to take advantage of the same NTT architecture discussed
previously. The only modification made to the NTT was to
modify the butterfly units for the smaller modulus and to
add a conditional bypass of the last layer since FALCON-512
required an odd number of NTT layers.

Decoding polynomials is simple deserialization that can
be performed using a bus width converter. Decompression
is somewhat more complicated, but it can be performed



simply in hardware using a priority encoder and a conditional
subtraction, as shown in Fig. 6. The least significant 7 bits
are unchanged for each coefficient, and the upper bits are
encoded using a unary encoding. There is also a sign bit prefix
for each coefficient. Each coefficient is mapped to 9-25 bits,
Fig. 7 demonstrates the compression format. The decoded and
decompressed polynomials are multiplied together after being
converted to the NTT domain. The decoder is optimized to
handle four coefficients per cycle so that the first NTT oper-
ation can begin as soon as possible. However, decompression
is performed in parallel with an NTT optimization. Thus, it
only decompresses one coefficient per cycle to minimize area.
The norm is calculated by the modules shown in Fig. 8 and
can handle four coefficient inputs in parallel. The top-level
architecture can be seen in Figure 9.
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V. OPERATION SCHEDULING

Thoroughly designed and optimized scheduling of opera-
tions is crucial for efficient hardware implementations. Cre-
ating a high-performance design with an acceptable design
area is only possible with high utilization of components
and constant progress on the core operation. As such, we

have highly optimized our operation scheduling to maximize
utilization of the polynomial arithmetic units, which are the
core of our design and are responsible for the majority of the
operations in Dilithium.

A. Dilithium Key Generation

The scheduling diagrams of key generation is shown in
Fig. 10. The core operations are matrix multiplication and
vector addition. The first polynomial vector s1 is sampled
immediately in parallel with the sampling of the A matrix.
The vector s1 is encoded as it is sampled. The NTT is applied
to s1 and as soon as NTT completes, the matrix multiplication
with the fully sampled A matrix is performed. The inverse
NTT operation is then performed on the result. The result
of the addition with s2 is immediately split into the MSB
and LSB components, and the MSB components are encoded
and hashed in parallel with the addition. When the hash
computations are finished, the LSB components are encoded,
and the operation is then complete.

B. Dilithium Signature Generation

Signature generation is the most complex operation and
is split between Figs. 11 and 12. As mentioned previously,
to improve performance, we split the design into multiple
sections that run in parallel. In particular, we have two
different groups of modules which are used to complete three
stages: Precomputation, Stage0, and Stage1. Precomputation
is performed only once at the start of signature generation and
consists of sampling and decoding the secret key. Initially, this
is performed by the first group of modules while another group
performs Stage0. Stage0 consists of the operations required to
generate the w vector needed for a signature attempt. This
includes the sampling of y and the matrix multiplication.

Once both of the stages are completed for the first time, the
group of modules initially used for Precomputation use the
results of Stage0 and attempt to create a valid signature. This is
what Stage1 accomplishes. While Stage1 is being performed,
the other group of modules runs again so that if Stage1 fails,
there is another w vector immediately ready for a new attempt.
Essentially, this system is a high-level two-stage pipeline after
the initial precomputation is performed. We split the signature
operation after the w operations because it requires the fewest
dependencies between stages. The polynomial vectors are
large, and transfer between stages will require BRAM buffers.
Splitting at this operation requires only the w and y vectors
to be transferred from Stage0 to Stage1.

C. Dilithium Verify

The scheduling diagrams of verification are shown in
Fig. 13. As with key generation, the decoding of the first vector
and the sampling of A begin immediately. The c polynomial
is also sampled at the start of the operation, after which
the message and ρ seed are hashed. The main polynomial
operation is performed sequentially, with all polynomials being
transformed to the NTT domain, the multiplications being
performed, and the difference of the values taken before
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Fig. 9: Top level verification architecture of FALCON. Default bus width is 54-bit

converting back to the time domain. The hint is applied to the
result after decomposing it. This is then encoded and hashed
and then compared with c̄.

D. FALCON Verification

The scheduling diagrams of FALCON verification are
shown in Fig. 14. The h polynomial is decoded immediately
at the start of the operation and then transformed to the NTT
domain in parallel with decompression of s2. The second NTT
operation, multiplication, and inverse NTT operation are then
performed. In parallel with the main polynomial operation,
hashing of the message and the rejection sampling of c are
executed. The message hash only becomes the bottleneck
for a large message. In particular, if hashing the message is
not complete by the time the inverse NTT operation begins,
the polynomial module will stall. So for level I, hashing the
message can take up to 1,536 cycles and at level V up to 3,072
cycles without slowing down the operation. Since the Keccak
module can ingest and hash 136 bytes in 41 clock cycles, this
corresponds to a message of length 5KB and 10KB for level
I and level V, respectively.

VI. RESULTS

All results were generated using Xilinx Vivado 2020.2.
Maximum clock frequencies were determined using the Min-
erva hardware optimization tool [28]. The critical path of the
design is within the interconnect for the shared Keccak mod-
ules. Since our design targets high performance, we primarily
report our results for Virtex UltraScale+. However, we also
include selected results for the Artix-7 and Kintex-7 FPGAs
to perform a fair comparison with previous work.

The detailed resource utilization of our implementations is
summarized in Tables IV and V. Table IV reports the area
breakdown of the submodules used in our design and the
percentage of the total LUTs they consume in the combined
architecture. The entry ”Other” represents the entire control

TABLE IV: Resource utilization of Dilithium submodules in
the combined architecture

Submodule Resource Utilization % of Total
(LUT)LUT FF DSP BRAM

96× 1024 RAM 0 0 0 3× 6 0
96× 4096 RAM 0 0 0 11 0

MakeHint 2,389 740 0 0 4.5
UseHint 6,453 2,808 0 0 12.1
Encoder 1,626 461 0 0 3.1
Decoder 2,189 239 0 0 4.1

Decomposer 1,437 680 0 0 2.7
NTT/PolyArith 4, 509× 2 3, 146× 2 16 0 16.9

SampleA 1,793 619 0 0 3.4
SampleS 1,755 396 0 0 3.2
SampleY 2,220 630 0 0 4.2
SampleC 1,856 868 0 0 3.5
Keccak 5, 483× 3 4, 451× 3 0 0 30.1
Other 6,002 1,231 0 0 11.3

Combined
Architecture 53,187 28,318 16 29 100.0

logic of the top-level module and minor components of the
datapath not listed explicitly in the table. Table V shows the
results for both our combined architecture and the individual
modules that only perform one major operation.

There is a substantial amount of resource sharing possible
between the implementations of three major operations, with
the combined architecture only consuming 48% of the sum of
the LUTs of the individual modules. The limited area increase
over the most complex signature generation module is due to
specific units only being required for certain operations, such
as the secret sampler, SampleS, which is only utilized by key
generation. However, many modules such as the Keccak cores,
polynomial arithmetic modules, and RAMs can be fully shared
between the different operations.

A. Comparison with Previous Dilithium Works

The performance results and comparison with existing
implementations are detailed in Table VII. For this work
(TW) and the paper by Land et al. [5], we list the best and
average execution times for signing. The grouping by security
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Fig. 10: Schedule of Dilithium key generation for security level 2

TABLE V: Resource utilization of top level modules on Virtex
UltraScale+ FPGA

Algorithm Module LUT FF DSP BRAM

Dilithium

Keygen 29,021 18,952 8 18.5
Sign 42,440 24,419 16 29

Verify 39,341 22,743 8 20
Combined 53,187 28,318 16 29

FALCON-512 Verify 14,500 7,287 4 2
FALCON-1024 Verify 13,956 6,737 4 2

level is based on the NIST-defined PQC security levels. In
Dilithium, the clock cycle cost of each operation generally
increases by 50% as the security level increases due to the
larger vector dimensions. The one exception to this rule is the
average case for signature generation, which largely depends
on the average number of attempts needed to generate a valid
signature. According to the specification [17], on average, level
2 requires 4.25 attempts, level 3 requires 5.1 attempts, and
level 5 requires 3.85 attempts. In our pipelined design, each
additional attempt requires 5.8K cycles for security level 2,
8.1K cycles for level 3, and 10.8K cycles for level 5.

Ricci et al. [4] report the number of clock cycles for all
security levels but the maximum clock frequency and area
only for security level 2. Their results for sign report best-case
results. The area is reported individually for each operation, so
we will compare it against the area results for our individual
modules. Compared to this high-performance implementation,
our implementation achieves performance improvements with
a lower utilization in all metrics except for BRAM in key
generation and verification. In terms of latency, we achieve
1.5-3.7× better performance in terms of latency in microsec-
onds. Our designs utilize 38%-46% fewer LUTs, 25%-72%
fewer FFs, and 96%-98% fewer DSP. Our implementation of
signature generation also uses 80% fewer BRAMs.

Our area and performance improvements are enabled by
our efficient NTT design and optimized operation scheduling.
The NTT design reported in [4] requires 48 DSP units for the

forward NTT and 84 for the inverse NTT, while our design
utilizes only 8. Our splitting of the rejection loop in signing
also leads to a much lower area. Ricci et al. [4] duplicate
modules so that there are 18 components running in parallel,
including 12 NTT instances. This requires a large amount of
BRAM to buffer data between modules and leads to a much
larger implementation of signature generation.

Compared to the mid-range implementation by Land et
al. [5], our design achieves substantially better performance
at the cost of moderate increases in LUTs and FFs. Since
this design includes results reported for modules that perform
all operations at a single security level, we will compare our
combined module implemented for Artix-7 with their module
for security level 5.

The design by Land et al. [5] employs some parallelization,
such as the use of multiple butterfly units in their NTT, but
focuses on keeping a low area. They also utilize different
operation modes of FPGA DSPs in their design, such as
pre-addition and Single Instruction Multiple Data (SIMD)
addition. This allows their NTT to achieve an impressive
maximum frequency of 311 MHz, but also results in very high
DSP usage. However, this high-frequency NTT core is not able
to improve overall performance since it resides in the same
clock domain as the rest of the design, forcing it to run at a
lower clock rate. Our polynomial arithmetic unit is optimized
so that it is not the critical path of the design but also seeks
to minimize DSP usage and cycle latency. This allows our
design to achieve higher NTT performance in the application
of Dilithium with a much lower DSP count. In particular,
their NTT requires 533/536 clock cycles for the forward and
inverse operation, while our design is able to complete the
same operations in 300/294 cycles. The additional cycles on
top of the ideal of 256 cycles are caused by the pipeline depth.
We achieve between 2.2− 3× lower latency in microseconds.
These improvements come at the cost of 19% more LUTs and
100.5% more FFs, but our design uses 64.6% fewer DSP units
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and 6.5% fewer BRAMs.
The work reported in [6] details a unified Dilithium and

Saber architecture fully supporting both algorithms. The two
algorithms are able to fully share the Keccak core and the
polynomial multiplier but otherwise require specialized mod-
ules. Their design focuses on low area, but supporting two
algorithms naturally leads to a larger area than an implemen-
tation supporting only Dilithium. We achieve between 2.9−4×
lower latency in microseconds. These improvements come at
the cost of 2.8× more LUTs, 3× more FFs, 4× more DSP,

and 1.2× more BRAM.
In [9], Zhou et al. report their results for security level 2

of the round 2 Dilithium parameter set. They provide results
for both the Xilinx Zynq-7000 SoC as well as an Altera
Cyclone-IV FPGA using the Nios-II softcore processor. Area
results for the number LUTs, DSPs, and BRAMs are included.
Only the average performance for sign is reported. The au-
thors make performance comparisons between a pure soft-
ware implementation, a HW/SW co-design with Keccak and
polynomial-arithmetic hardware accelerators, and a HW/SW
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Fig. 13: Schedule of Dilithium signature verification for security level 2

Fig. 14: FALCON verify schedule. Cycle count of operations shown for FALCON-512/FALCON-1024

Author Algorithm Design Approach Multiple
operations

Multiple
security levels

Keygen
Included

Reported Results
A7 K7 US+

This Work FALCON High Performance
✓ ✓ ✓Dilithium High Performance ✓ ✓ ✓

[4] Dilithium
(Round 2) High Performance ✓ ✓

[5] Dilithium Mid-Range ✓ ✓ ✓
[6] Dilithium Unified/Lightweight ✓ ✓ ✓ ✓
[12] Picnic High Performance ✓ ✓
[13] SPHINCS+ High Performance ✓ ✓

TABLE VI: Design decisions for investigated algorithms in this and previous work.

co-design using NEON instructions for Keccak and a hardware
accelerator for polynomial arithmetic. The last approach using
NEON instructions for Keccak and a hardware accelerator for
polynomial arithmetic gave the best results with an area of
2.6K LUTs and a speed-up of 1.44-2×. Compared to this
approach, our design is 49-174.4× faster but uses 20.3× more
LUTs, 1.3× more DSP, and 4× more BRAM.

Software implementations of Dilithium for embedded de-
vices are substantially slower than hardware. For exam-
ple, a recent optimized implementation on Cortex-M4 takes
1.35M/3M/1.26M clock cycles for key Generation, Signing,
and Verifying at security level 2 [29]. Their implementation

was tested on an STM32F407 with a 24 MHz clock, so
our hardware implementation has 2961×/1071×/2042× lower
latency.

In comparison with high-end CPUs, the highly optimized
NEON implementation on ARMv8 Apple M1 Firestorm core
at 3.2 GHz, reported by Becker et al. [30] for Dilithium-III
takes 51/36µs for Key generation and Verifying. Our hardware
implementation is 1.60×/0.92× faster in the two mentioned
above operations. Due to rejection in the signing operation,
it takes 149µs for the average case in Apple M1, while our
hardware is 0.77× and 2.36× faster in the average and best
case, respectively.



Fig. 15: Verification performances and transmission overhead

TABLE VII: Full hardware implementations of digital signature schemes qualified as finalists to Round 3 of the NIST PQC
standardization process. Results are grouped by FPGA family, sorted by verification latency. TW denotes This Work. Notation
for FPGA families - A7: Artix-7, K7: Kintex-7, VUS+: Virtex UltraScale+, ZUS+: Zynq UltraScale+

Design Algorithm pk+sig.
(KB)

Max Freq.
(MHz) LUT FF DSP BRAM Keygen Verify Sign Familycycles µs cycles µs cycles µs

Security Level 1
TW FALCON-512 1.5 142 14,500 7,287 4 2 - - 2,399 16.8 - - A7
[13] SPHINCS+-128s-simple 7.9 250 & 5003 48,231 72,514 0 11.5 - - - 70 - 12,400 A7
[13] SPHINCS+-128s-robust 7.9 250 & 5003 49,146 73,069 0 15.5 - - - 110 - 21,100 A7
[13] SPHINCS+-128f-simple 17.1 250 & 5003 47,991 72,505 1 11.5 - - - 160 - 1,010 A7
[13] SPHINCS+-128f-robust 17.1 250 & 5003 48,930 72,505 1 15.5 - - - 230 - 1,640 A7
[12] Picnic-L1-FS 34 125 90,535 23,516 0 52.5 - - 29,600 237 31,300 250 K7
TW FALCON-512 1.5 314 14,327 7,314 4 2 - - 2,399 7.6 - - VUS+
[4] Dilithium-II1,4 3.2 - - - - - 12,600 - 10,546 - 18,338/- - VUS+

Security Level 2
TW Dilithium-II4 3.7 116 53,187 28,318 16 29 4,875 42 6,582 57 10,945/29,876 94/257 A7
[5] Dilithium-II4 3.7 163 27,433 10,681 45 15 18,761 115 19,687 121 29,057/76,613 178/470 A7

TW Dilithium-II4 3.7 256 53,907 28,435 16 29 4,875 19 6,582 26 10,945/29,876 43/117 VUS+
[4] Dilithium-III1,2,4 4.2 350/333/158 54,183/68,461/61,738 25,236/86,295/34,963 182/965/316 15/145/18 18,193 52 15,032 97 21,033/- 63/- VUS+
[6] Dilithium-II5 3.7 200 19,100 9,300 4 24 14,183 71 15,044 75 30,358/- 152/- ZUS+

Security Level 3
TW Dilithium-III4 5.2 116 53,187 28,318 16 29 8,291 71 9,724 84 16,178/49,437 139/426 A7
[13] SPHINCS+-192s-simple 16.3 250 & 5003 48,725 72,514 0 17 - - - 100 - 21,400 A7
[13] SPHINCS+-192s-robust 16.3 250 & 5003 50,064 74,462 0 22.5 - - - 150 - 38,300 A7
[13] SPHINCS+-192f-simple 35.7 250 & 5003 48,398 73,476 1 17 - - - 190 - 1,170 A7
[5] Dilithium-III4 5.2 145 30,900 11,372 45 21 33,102 228 32,050 221 45,068/123,218 310/850 A7
[13] SPHINCS+-192f-robust 35.7 250 & 5003 47,277 74,279 1 22.5 - - - 310 - 2,120 A7
TW Dilithium-III4 5.2 256 53,907 28,435 16 29 8,291 32 9,724 39 16,178/49,437 63/193 VUS+
[6] Dilithium-III5 5.2 200 19,100 9,300 4 24 22,957 115 25,535 128 47,418/- 237/- ZUS+
[4] Dilithium-IV1,4 5.1 - - - - - 22,981 - 20,221 - 22,362/- - VUS+

Security Level 5
TW FALCON-1024 3.1 142 13,956 6,737 4 2 - - 4,687 32.8 - - A7
TW Dilithium-V4 7.2 116 53,187 28,318 16 29 14,037 121 14,642 126 24,358/55,070 210/475 A7
[13] SPHINCS+-256s-simple 29.8 250 & 5003 51,130 74,576 1 22.5 - - - 140 - 19,300 A7
[13] SPHINCS+-256s-robust 29.8 250 & 5003 50,00 75,738 1 30 - - - 200 - 36,100 A7
[13] SPHINCS+-256f-simple 49.9 250 & 5003 51,009 74,539 1 22.5 - - 210 - 2,520 A7
[13] SPHINCS+-256f-robust 49.9 250 & 5003 50,341 75,664 1 30 - - - 340 - 4,680 A7
[5] Dilithium-V4 7.2 140 44,653 13,814 45 31 50,982 363 52,712 377 70,376/145,912 503/1,042 A7

TW Dilithium-V4 7.2 173 54,468 28,639 16 29 14,037 81 14,642 85 24,358/55,070 141/318 K7
[12] Picnic-L5-FS 133 125 167,530 33,164 0 99 - - 146,600 1,173 154,500 1,236 K7
TW FALCON-1024 3.1 314 13,729 6,771 4 2 - - 4,687 14.9 - - VUS+
TW Dilithium-V4 7.2 256 53,907 28,435 16 29 14,037 55 14,642 57 24,358/55,070 95/215 VUS+
[6] Dilithium-V5 7.2 200 19,100 9,300 4 24 38,841 194 45,789 229 68,500/- 342/- ZUS+

1Uses Round 2 parameter set 2Area reported separately for Key Generation, Sign, and Verify 3Split frequency domain: Keccak at 500 MHz, other units at
250 MHz 4Best/average execution times reported for the Sign operation of Dilithium 5Supports both Dilithium and Saber



((a)) Artix-7 Area

((b)) Artix-7 Performance

Fig. 16: Comparison of digital signatures on Artix-7



((a)) Kintex-7 Area
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Fig. 17: Comparison of digital signatures on Kintex-7



((a)) Virtex UltraScale+ Area

((b)) Virtex UltraScale+ Performance

Fig. 18: Comparison of digital signatures on UltraScale+



B. Comparison of Algorithm Families

Previous works on SPHINCS+ and Picnic are also reported.
SPHINCS+ has twelve parameter sets that determine the se-
curity level and trade-offs between sign performance, resource
consumption, and signature size. Picnic also has several pa-
rameter sets, but only a subset have hardware implementations
available for comparison.

Table VII provides some basic insights into the comparison
between the remaining viable digital signature schemes in
terms of performance in hardware. These comparisons are
also illustrated by Figs. 16, 17, 18. The figures show results
for each FPGA family that has results reported in Table VII.
A single security level was chosen for each set of figures
based on whichever security level had the most-complete
results for that family of FPGA. Further, Fig. 15 shows a
comparison of verification latency and the approximate size
of certificates (estimated as the sum of a public key of a
user and digital signature of a certification authority) for all
algorithms. As verification is the most common operation,
this is an interesting metric to consider for digital signature
comparison. It should be noted that Picnic is included in
this figure even though its results are reported for Kintex-
7 and not Artix-7. In the context of this comparison, the
only advantage it gains is lower latency from the higher
performance of the Kintex-7 family of FPGAs. Since it is
the longest latency operation, even with this advantage, we
can still conclude that the lattice-based algorithms give better
verification performance and smaller certificate sizes.

Based on verification performance and on the approximate
size of certificates (which may need to be transmitted to
enable signature verification), FALCON is a strong candidate
with the fastest verification and smallest combined public
key and signature size, as shown in Fig. 15. FALCON also
has a lower area footprint than the equivalent operation for
Dilithium, as shown in Table V. These qualities would reduce
the cost of message transmission and power consumption
on client devices, which are more likely to verify signa-
tures than generate them. However, if the performance of
all operations is equally weighted, then the complexity of
FALCON key generation and signing may make Dilithium a
stronger and much easier to implement candidate. As shown
in Figs. 16(a), 16(b), 17(a), 17(b), the code-based algorithms
both suffer from slow signature generation and large resource
consumption while also have the largest signatures. Even
with SPHINCS+’s verification latency being competitive with
Dilithium, it has a much larger signature size. Thus their
primary benefit is the potentially stronger security claims if
there is doubt in the security of the lattice-based candidates.

VII. CONCLUSIONS

This paper presents a high-performance implementation of
CRYSTALS-Dilithium, which achieves the best-known latency
and a smaller area than the best previously reported high-
performance design. The implementation includes both a com-
bined module capable of performing three major operations at

all security levels and individual modules supporting one oper-
ation each. Additionally, the first hardware work on FALCON
is presented in the form of a full hardware implementation
of FALCON verification. These results are used to provide
a more complete comparison between all remaining viable
digital signature candidates in the NIST PQC competition.

REFERENCES

[1] P. Shor, “Algorithms for quantum computation: Discrete
logarithms and factoring,” in Proceedings 35th An-
nual Symposium on Foundations of Computer Science,
Santa Fe, NM, USA: IEEE Comput. Soc. Press, 1994,
pp. 124–134.

[2] L. Chen, S. Jordan, Y.-K. Liu, et al., “Report on Post-
Quantum Cryptography,” National Institute of Standards
and Technology, Tech. Rep. NIST IR 8105, Apr. 2016,
NIST IR 8105.

[3] W. Beullens, “Improved Cryptanalysis of UOV and
Rainbow,” Tech. Rep. 1343, 2020. [Online]. Available:
https : / / eprint . iacr . org / 2020 / 1343 (visited on
01/10/2022).

[4] S. Ricci, L. Malina, P. Jedlicka, et al., “Implementing
CRYSTALS-Dilithium Signature Scheme on FPGAs,”
in 16th International Conference on Availability, Relia-
bility and Security, ARES 2021, Vienna Austria: ACM,
Aug. 2021, pp. 1–11. [Online]. Available: https : / /dl .
acm . org / doi / 10 . 1145 / 3465481 . 3465756 (visited on
02/06/2022).

[5] G. Land, P. Sasdrich, and T. Guneysu, “A Hard Crystal -
Implementing Dilithium on Reconfigurable Hardware,”
Cryptology ePrint Archive 2021/355, Mar. 2021.

[6] A. C. Mert, D. Jacquemin, A. Das, D. Matthews, S.
Ghosh, and S. S. Roy, “A Unified Cryptoprocessor for
Lattice-based Signature and Key-exchange,” en, p. 7,

[7] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan,
“Sapphire: A Configurable Crypto-Processor for Post-
Quantum Lattice-based Protocols,” IACR Transactions
on Cryptographic Hardware and Embedded Systems,
vol. 2019, no. 4, Aug. 2019.

[8] ——, “Sapphire: A Configurable Crypto-Processor for
Post-Quantum Lattice-based Protocols (Extended Ver-
sion),” Cryptology ePrint Archive 2019/1140, Sep.
2020.

[9] Z. Zhou, D. He, Z. Liu, M. Luo, and K.-K. R.
Choo, “A Software/Hardware Co-Design of Crystals-
Dilithium Signature Scheme,” ACM Transactions on
Reconfigurable Technology and Systems, vol. 14, no. 2,
11:1–11:21, Jun. 2021. [Online]. Available: https://doi.
org/10.1145/3447812 (visited on 06/10/2021).

[10] A. Basso, F. Aydin, D. Dinu, J. Friel, M. Sastry, and S.
Ghosh, “SABER and Dilithium on the Same Polynomial
Multiplier,” en, p. 21,

[11] A. Ferozpuri and K. Gaj, “High-speed FPGA Imple-
mentation of the NIST Round 1 Rainbow Signature
Scheme,” in 2018 International Conference on ReCon-

https://eprint.iacr.org/2020/1343
https://dl.acm.org/doi/10.1145/3465481.3465756
https://dl.acm.org/doi/10.1145/3465481.3465756
https://doi.org/10.1145/3447812
https://doi.org/10.1145/3447812


Figurable Computing and FPGAs (ReConFig), Cancun,
Mexico: IEEE, Dec. 2018, pp. 1–8.

[12] D. Kales, S. Ramacher, C. Rechberger, R. Walch,
and M. Werner, “Efficient FPGA Implementations of
LowMC and Picnic,” in The Cryptographers’ Track at
the RSA Conference 2020, CT-RSA 2020, San Fran-
cisco: Springer, Feb. 2020.

[13] D. Amiet, L. Leuenberger, A. Curiger, and P. Zbinden,
“FPGA-based SPHINCS+ Implementations: Mind the
Glitch,” en, in 2020 23rd Euromicro Conference on
Digital System Design (DSD), Kranj, Slovenia: IEEE,
Aug. 2020, pp. 229–237.

[14] L. Beckwith, D. T. Nguyen, and K. Gaj, “High-
performance hardware implementation of crystals-
dilithium,” in 2021 International Conference on Field-
Programmable Technology (ICFPT), 2021, pp. 1–10.

[15] L. Ducas, E. Kiltz, T. Lepoint, et al., “CRYSTALS-
Dilithium: Algorithm Specifications and Supporting
Documentation,” NIST Round 2, Mar. 2019.

[16] P.-A. Fouque, J. Hoffstein, P. Kirchner, et al., “Falcon:
Fast-Fourier Lattice-based Compact Signatures over
NTRU,” p. 67,

[17] S. Bai, L. Ducas, E. Kiltz, et al., “CRYSTALS-
Dilithium: Algorithm Specifications and Supporting
Documentation (Version 3.1),” Tech. Rep., Feb. 2021.
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