
Half-Aggregation of Schnorr Signatures
with Tight Reductions

Yanbo Chen and Yunlei Zhao

Fudan University
{ybchen,ylzhao}@fudan.edu.cn

Abstract. An aggregate signature (AS) scheme allows an unspecified
aggregator to compress many signatures into a short aggregation. AS
schemes can save storage costs and accelerate verification. They are de-
sirable for applications where many signatures need to be stored, trans-
ferred, or verified together, like blockchain systems, network routing, e-
voting, and certificate chains. However, constructing AS schemes based
on general groups, only requiring the hardness of the discrete logarithm
problem, is quite tricky and has been a long-standing research question.

Recently, Chalkias et al. [8] proposed a half-aggregate scheme for Schnorr
signatures. We observe the scheme lacks a tight security proof and does
not well support incremental aggregation, i.e., adding more signatures
into a pre-existing aggregation. Chalkias et al. also presented an aggre-
gate scheme for Schnorr signatures whose security can be tightly re-
duced to the security of Schnorr signatures in the random oracle model
(ROM). However, the scheme is rather expensive and does not achieve
half-aggregation. It is a fundamental question whether there exists half-
aggregation of Schnorr signatures with tight reduction in the ROM, of
both theoretical and practical interests.

This work’s contributions are threefold. We first give a tight security
proof for the scheme in [8] in the ROM and the algebraic group model
(AGM). Second, we provide a new half-aggregate scheme for Schnorr
signatures that perfectly supports incremental aggregation, whose secu-
rity also tightly reduces to Schnorr’s security in the AGM+ROM. Third,
we present a Schnorr-based sequential aggregate signature (SAS) scheme
that is tightly secure as Schnorr signature scheme in the ROM (without
the AGM). Our work may pave the way for applying Schnorr aggregation
in real-world cryptographic applications.

1 Introduction

The notion of aggregate signatures (AS) was proposed by Boneh et al. [6]. As
a type of signature scheme, an AS scheme additionally allows an aggregator to
compress an arbitrary number of individual signatures into a short aggregation.
One can verify the validity of all those individual signatures by verifying the
aggregate signature. The signers do not need to interact, and the aggregator
can be an arbitrary one. AS schemes are very useful in applications where many

2 Y. Chen and Y. Zhao

signatures need to be stored, transferred, or verified together, like blockchain
and e-voting.

Lysyanskaya et al. [16] proposed a useful variant of aggregate signatures,
sequential aggregate signatures (SAS). In an SAS scheme, the signatures can
only be compressed sequentially. Specifically, a signer additionally gets a pre-
existing aggregation as its input and directly produces a new aggregation based
on the pre-existing one. Unlike traditional AS schemes, the signature aggregation
cannot be made publicly by anyone but the signers involved in the SAS scheme.
SAS schemes are suitable for applications like certificate chains and routing
protocols. They also have applications in blockchain systems, e.g., in Bitcoin’s
lightning network. In these scenarios, the signatures are produced and passed in
order, and a signer always knows the previous aggregation.

Boneh et al. pointed out in their seminal work [6] that the aggregation can
be incrementally performed in their scheme. That is, the aggregator can add
individual signatures into a pre-existing aggregation. In this work, we refer to AS
schemes with such a feature as incremental aggregate signature (IAS) schemes.

In SAS schemes, the aggregation is naturally performed incrementally one-
by-one. However, the feature of incremental aggregation is unspecified in the
definition of AS schemes. Hence, AS schemes are not strictly stronger than SAS
schemes, but IAS schemes can serve as both of them.

Most of the previous AS schemes are based on bilinear maps [4, 6, 14, 15]
and trapdoor permutations [16]. Some designs also require the synchronized
model [1,12]. Constructing AS schemes based on general groups, only requiring
the hardness of discrete logarithm problem (DLP), is quite tricky and is a long-
standing question.

Recently, Chalkias et al. [8] provided an aggregate scheme for Schnorr sig-
natures. We refer to their scheme as ASchnorr and Schnorr signature scheme as
Schnorr for presentation simplicity. ASchnorr achieves “half-aggregation” rather
than “full-aggregation”, i.e., the total size is compressed a half, rather than to a
constant size. The authors provided some evidence of the impossibility of fully
aggregating Schnorr signatures. Anyhow, half-aggregation of Schnorr signatures
significantly reduces the storage at basically no cost. Hence, it is still very useful
and timely as Schnorr signature will be enforced in Bitcoin (and many other
blockchain systems) in November of 2021 with the Taproot update.

We observe two problems of ASchnorr. In [8], ASchnorr’s security is reduced
to Schnorr’s security in the random oracle model (ROM), and hence can be fur-
ther reduced to the hardness of DLP. The first problem is that the reduction
has a quadratic loss, due to the reliance on rewinding. The authors suggested
ignoring the quadratic loss when setting parameters for ASchnorr in practice,
just as people do for Schnorr. But for deploying ASchnorr in reality, particularly
in cryptocurrency systems like Bitcoin, we may want more confidence in its secu-
rity. They also designed another aggregate scheme, referred to as TightASchnorr.
TightASchnorr permits a tight security reduction in the ROM but is relatively
expensive in both space and time. Specifically, it achieves (half+ε)-aggregation
rather than half-aggregation, where ε = O(λ/ log λ) with λ as the security pa-

Half-Aggregation of Schnorr Signatures with Tight Reductions 3

rameter. It also has a costly aggregating procedure and makes the verification
slower than verifying the batch of individual signatures one by one. Whether
there exists half-aggregate schemes for Schnorr signatures that is tightly secure
as Schnorr is a fundamental question to explore.

Second, ASchnorr does not support incremental aggregation well. In partic-
ular, it suffers from ambiguity and redundant operations. By “ambiguity” we
mean the verifier cannot correctly verify an aggregation without knowing how it
was produced (namely, whether and when incremental aggregation happened).
Without the feature of incremental aggregation, only when all the signatures
are received the aggregator can start the aggregation. In reality, particularly
in asynchronous distributed systems, signatures are usually not produced and
transferred at the same time. It is more convenient to perform the aggregation
with part of the signatures and incrementally aggregate the others when they
arrive. Moreover, non-incremental AS schemes cannot serve as SAS schemes, so
they may not applicable in scenarios like certificate chains and network routing.
Hence, incremental aggregation is crucial for practical use. Many schemes based
on bilinear maps naturally support incremental aggregation, so the property is
rarely mentioned explicitly in the previous works. However, this is not the case
when aggregating Schnorr signatures.

1.1 Contribution

The contributions of this work are threefold. For the first problem of ASchnorr,
we further justify its security. We reduce the security of ASchnorr to the security
of Schnorr with a tight bound in the ROM and the algebraic group model (AGM)
[10]. The AGM is a weaker ideal model than the generic group model (GGM)
[17,22]. In the AGM, we only consider adversaries as algebraic algorithms. This
is reasonable, for no attack is so far known to be significantly more efficient than
such algorithms on elliptic curve groups. The AGM is widely applied to security
proofs for cryptographic schemes [2, 3, 11,19].

For the second problem, our solution is a new half-aggregation scheme, re-
ferred to as IASchnorr. IASchnorr perfectly supports incremental signature ag-
gregation. It no more suffers from ambiguity and redundant operations. It also
permits a tight security reduction in the AGM+ROM.

Our third contribution is an SAS scheme, referred to as SASchnorr. We tightly
reduce its security to Schnorr’s security in the ROM (without the AGM). Com-
pared to tightASchnorr proposed in [8], SASchnorr achieves half-aggregation, and
it does not increase the verification time. On one hand, SASchnorr is the first
to achieve half-aggregation of Schnorr signatures with a tight security proof in
the ROM. On the other hand, as ASchnorr cannot serve as an SAS scheme while
keeping secure in the ROM, SASchnorr is also the first to achieve sequential half-
aggregation of Schnorr signatures with an (even non-tight) security proof in the
ROM. The key point is that SASchnorr uses an aggregating method completely
different from the other schemes. In particular, the aggregation does not rely on
group homomorphism, and the verifier can recovers all the individual signatures.

4 Y. Chen and Y. Zhao

Tight security analysis of ASchnorr and the construction of IASchnorr pave
the way for applying Schnorr aggregation in distributed ledger systems like
Bitcoin, and IASchnorr may be best applicable in these application scenarios.
SASchnorr may not be appropriate directly for permissionless blockchain sys-
tems in general, but it is useful in many other applications like network routing,
certificate chains, and Bitcoin’s lighting network. It achieves (sequential) half-
aggregation of Schnorr signatures with a tight security reduction in the ROM,
which is of theoretical interest. Meanwhile, getting rid of loose security bounds
and the AGM could also be desirable for real-world cryptography.

1.2 Overview of Constructions

Here we give the main ideas of our three schemes, ASchnorr, IASchnorr, and
SASchnorr.

ASchnorr. It is a natural idea to half-aggregate Schnorr signatures utilizing the
property of group exponentiation. Take the case of aggregating two signatures
as an example. Suppose we have two Schnorr signatures σ1 = (R1, s1) and σ2 =
(R2, s2), respectively on messages m1 and m2 under public keys X1 and X2.
Let c1 = H1(R1,m1) and c2 = H1(R2,m2). It must hold that gs1 = R1X

c1
1

and gs2 = R2X
c2
2 for these two signatures to be valid. The most direct way to

half-aggregate them is to compress s1 and s2 into s̃ = s1 + s2. It thus holds
that gs̃ = R1X

c1
1 R2X

c2
2 . However, this aggregating method is insecure, for the

challenge of one signature, say c1, does not depend on the commitment of another
signature, namely R2. A forger may not know the discrete logarithm of X1 and
hence can not produce the response s1, i.e., the discrete logarithm of R1X

c1
1 ,

but it can easily eliminate this term with R2. It lets R2 = gr2/(R1X
c1
1) instead

of normally gr2 and thus only needs to produce a normal signature under X2 to
forge the aggregation.

The solution in ASchnorr is using “outer coefficients” depending on all indi-
vidual signatures. Let

L = {(R1, X1,m1), (R2, X2,m2)},

a1 = H2(L, 1), and a2 = H2(L, 2). The aggregated response becomes s̃ =
a1s1 + a2s2, and the aggregate verification becomes checking whether gs̃ =
(R1X

c1
1)a1(R2X

c2
2)a2 . The term Xc1a1

1 depends on the second signature and the
corresponding message and public key, so we prevent the above attack.

This aggregating method is indeed provably secure if H2 is modeled as a
random oracle. The random oracle H2 provides a forking point so that the
reduction can rewind a forger to extract a forged individual signature. How-
ever, the rewinding-based proof in the ROM suffers from a quadratic loss. In
the AGM+ROM, the reduction goes relatively straightforward. It can extract a
forged signature running the forger once and hence achieve a tight bound.

Half-Aggregation of Schnorr Signatures with Tight Reductions 5

IASchnorr. Things seem to go well so far. However, as we have explained, in-
cremental aggregation is desired in practice. An aggregate scheme that supports
incremental aggregation does not require the aggregator to store whole individ-
ual signatures when waiting for unreceived signatures, so it saves the storage
and balances the time overhead. Now let us evaluate how ASchnorr supports
incremental aggregation. Continue our two-signature example. Suppose we are
going to add one more signature, σ3 = (R3, s3), on message m3 under public
key X3, into the existing aggregation. We can use the same aggregate method,
treating the aggregation as a normal signature. We let

L′ = {L, (R3, X3,m3)},

a′1 = H2(L′, 1), and a′2 = H2(L′, 2). The new aggregated response is thus s̃′ =
a′1s̃+ a′2s3.

The first problem is ambiguity. The same three signatures may be com-
pressed into different aggregations, depending on whether the third signature is
aggregated together with the first two signatures or incrementally. To make an
aggregate signature correctly verifiable, we also need information about how it
is aggregated.

The second problem is redundant operations. We need three coefficients,
respectively for s1, s2, and s3, but we compute four hash values to obtain a1a

′
1,

a2a
′
1, and a′2 as those coefficients. Generally, whenever we do an incremental

aggregating, the hash value for the pre-existing aggregation is redundant and
brings extra multiplications.

We may prevent the redundant operations when using ASchnorr to do in-
cremental aggregating by omitting the hashing for the pre-existing aggregation,
but the ambiguity is intrinsic for ASchnorr. When we use ASchnorr to aggregate
σ1 and σ2, the outer coefficient a2 is H2(L2, 2) with

L2 = {(R1, X1,m1), (R2, X2,m2)}.

When we aggregate σ1, σ2, and σ3, we have a different coefficient a′2 = H2(L3, 2)
with

L3 = {(R1, X1,m1), (R2, X2,m2), (R3, X3,m3)}.
We can thus see the essential problem: different ways of aggregation yield differ-
ent coefficients a2 and a′2. Hence, we need to know whether the third signature
is incrementally aggregated, otherwise we cannot always verify it correctly.

In IASchnorr, we solve the problems by letting the outer coefficients only
depend on earlier signatures, rather than all individual signatures. Precisely, let

Li = {(R1, X1,m1), . . . , (Ri, Xi,mi)},

and the i-th coefficient becomes ai = H2(Li). Note that now a2 is always H2(L2),
no matter whether more signatures are aggregated. When we add more signa-
tures into a pre-existing aggregation, we only compute the outer coefficients for
the new ones.

In IASchnorr, a signature only influences the coefficients for itself and those
signatures aggregated later. Compared with ASchnorr, this seems a security loss,
but we can prove IASchnorr is actually as secure as ASchnorr in the AGM+ROM.

6 Y. Chen and Y. Zhao

SASchnorr. What prevents ASchnorr’s security to tightly reduce to Schnorr’s se-
curity in the ROM? An important observation is that ASchnorr compresses the
response parts of individual signatures unrecoverably. The aggregate verifier can
not see the whole individual signatures. The reduction can extract an individual
signature in the ROM, but only by rewinding, which makes the bound untight.
Furthermore, it takes many times of rewinding to extract an individual signature
when trying proving IASchnorr’s security in the ROM, making the security loss
unacceptably big. In light of this, we consider a completely different aggregat-
ing method that aggregates the signatures recoverably. It can be implemented
sequentially, so we obtain an SAS scheme SASchnorr as a result.

In SASchnorr, we aggregate the commitments instead of the responses. When
the i-th signer produces a signature, it already knows an existing aggregation
that contains an aggregated commitment R̃i−1 and the response from the last
signer si−1. Instead of hashing its own commitment Ri to get the challenge, the
signer hashes the new aggregated commitment R̃i = R̃i−1 ·Ri together with si−1.
To verify the sequential aggregate signature, the verifier computes the hash value
ci and gets Ri = gsi/Xci

i . It then recovers the earlier aggregation R̃i−1 = R̃i/Ri
and iteratively runs the procedure. Compared with aggregating responses, the
verifier here can recover all the individual signatures.

We can indeed prove that SASchnorr is as secure as Schnorr in only the ROM.
In the textbook security proof for Schnorr, the random oracle H(R,m) provides a
forking point that “anchors” R in two executions of the forgery. For SASchnorr,
we make an interesting argument that hashing R̃i and si−1 is also sufficient to
anchor Ri.

We summarize our schemes’ performance in Table 1. Our results, including
the new security result for ASchnorr and new schemes IASchnorr and SASchnorr,
are shown in bold. We refer to Schnorr and TightASchnorr for comparison.

1.3 Related Work

The associations and differences between aggregate signatures and multi-signatures
are worth mentioning, especially considering the great research interest in Schnorr-
based multi-signatures these years [2, 9, 18, 19]. A multi-signature (MS) scheme
allows multiple signers to produce a signature on a message interactively. All the
signers authenticate the message, while the storage and verification overhead is
as little as an individual signature.

We stress that the real-time interactivity of multi-signatures is an important
difference from aggregate signatures. In an AS scheme, the signers normally
produce individual signatures without knowing the existence of each other, and
then an unspecified aggregator aggregates those signatures. In an SAS scheme,
the current signer receives the earlier aggregation, but the communication is not
real-time. AS can be viewed as a very restricted version of multi-signature.

The non-interactivity of AS makes it difficult to compress multiple signatures
into constant size, especially for signatures following the Fiat-Shamir paradigm.
In a Schnorr-based multi-signature scheme, the signers agree on a common com-
mitment and then respond to a common challenge, which can only be realized

Half-Aggregation of Schnorr Signatures with Tight Reductions 7

Scheme AS? SAS? Size
Security

ROM AGM+ROM

Schnorr × × 2n · 2λ
ASchnorr

√
× (n+ 1)2λ O(

√
εSch) O(εSch)

TightASchnorr
√

× (n+ r)2λ+ rl O(εSch)

IASchnorr
√ √

(n+ 1)2λ O(εSch)

SASchnorr ×
√

(n+ 1)2λ O(εSch)
Table 1. A summarization of our results. We show whether the schemes are AS schemes
or SAS schemes, and we regard IAS schemes as both. We compare these schemes in
the size of the aggregation of n individual signatures and their security in ROM and
AGM+ROM, separately. Here λ is the security parameter. We assume these schemes
work on a group where the representation of elements is compact (such as elliptic
curve groups), so both the commitment and the response of a Schnorr signature are
of about 2λ bits. Note that TightASchnorr not only suffers from larger aggregation
sizes, but also has more expensive aggregating and verification procedure. In particular,
TightASchnorr has scheme parameters r and l, which are typically set to r = O(λ/ log λ)
and l = O(log λ). Its aggregation (resp. verification) time is longer by a factor r2l

(resp. r). We refer to non-aggregate scheme Schnorr as a baseline. We suppose Schnorr
is (t, εSch)-secure, and we show the upper bounds of the success probabilities breaking
these schemes in the ROM or the AGM+ROM in t time. In particular, O(

√
εSch) means

the security reduction is untight, while O(εSch) means it is tight.

with real-time interactions. Note that even with real-time interactions, com-
pressing multiple signatures into constant size is not easy. In Schnorr-based MS
schemes [2,19], a signer has to broadcast more than a normal Schnorr signature
to other signers.

If we allow real-time interactions for AS schemes, we will get the notion of
interactive aggregate signatures. Interactive AS schemes are generalized from
multi-signature schemes by allowing the signers to sign different messages. Bel-
lare and Neven [5] pointed out that we can trivially transform a MS scheme
into an interactive AS scheme. In particular, we make the signers exchange their
messages and let the concatenation of those messages be the actual message to
be signed. This idea is recently used to construct a lattice-based interactive AS
scheme [7].

2 Preliminaries

Notation. If x and y are variables, y := x denotes that we assign x’s value to
y. If y is a variable and S is a set, y←$S denotes that we uniformly choose an
element from S at random and assign it to y. If S is a set, |S| denotes the order
of S. By log x we mean the length of x’s bit-representation (so it is always an
integer).

8 Y. Chen and Y. Zhao

2.1 Aggregate Signatures

An aggregate signature (AS) scheme AS consists of five algorithms KGen, Sign,
Vf, Agg, and AggVf. The first three algorithms KGen, Sign, and Vf constitute a
traditional signature scheme. The signature scheme must be complete (correct)
for AS to be complete. Algorithm Agg takes as inputs an arbitrary number of
signatures σ1, ..., σn, corresponding messages m1, ..., mn and public keys pk1,
..., pkn and outputs an aggregate signature σ̃. Algorithm AggVf takes as inputs
an aggregate signature σ̃, messages m1, ..., mn, and public keys pk1, ..., pkn and
outputs 0 or 1, representing σ̃ is valid or not. The completeness requirement
here is that: if some signatures are correctly generated with Sign, then their
aggregation must be verified as valid on/under corresponding messages/public
keys.

An incremental aggregate signature (IAS) scheme is an AS scheme that ad-
ditionally contains an algorithm IncrAgg. Algorithm IncrAgg takes as inputs an
existing aggregate signature σ̃, corresponding messages m1, . . . , mn and public
keys pk1, . . . , pkn, an arbitrary number of individual signatures σn+1, . . . , σn′ ,
and corresponding messages mn+1, . . . , mn′ and public keys pkn+1, . . . , pkn′
and outputs a new aggregation σ̃′. The completeness requirement here is that:
if some signatures are correctly generated with Sign, then their aggregation, no
matter how they are aggregated (incrementally or not), must be verified as valid
on/under corresponding messages/public keys.

Security. Boneh et al. [6] brought the existential unforgeability under chosen-
message attacks (EUF-CMA) [13] of normal signature schemes into the context
of aggregate signatures. In particular, they defined the EUF-CMA security of
AS schemes in the aggregate chosen-key model. We abbreviate the EUF-CMA
security in this model as CK-AEUF-CMA. In the CK-AEUF-CMA game, a
forger F is given a target public key, and its goal is to forge an aggregate signature
under a list of public keys including the target one. The forger can choose the
messages to sign and all the public keys except the target one. Precisely, the
CK-AEUF-CMA game consists of three stages defined as follows:

Setup. The forger F is given a public key pk∗ generated by KGen.
Queries The forger F is provided the access to a signing oracle. It can adaptively

requests signatures under pk∗ on messages of its choice. Precisely, on F ’s
query m, the signing oracle returns σ given by Sign(sk∗,m), where sk∗ is the
secret key corresponding to pk∗.

Response. The forger F outputs an arbitrary number n of public keys pk1, ...,
pkn, n messages m1, ..., mn, and an aggregate signature σ̃ .

We say F wins this game if σ̃ is a valid aggregate signature on m1, ..., mn under
pk1, ..., pkn, there exists k ∈ {1, . . . , n} such that pkk = pk∗, and F has not
queried mk to the signing oracle.

In this work, we only consider the security in the ROM. We say a forger
F (t, qH1

, . . . , qHl
, qS, N, ε)-breaks the CK-AEUF-CMA security of an aggregate

Half-Aggregation of Schnorr Signatures with Tight Reductions 9

signature scheme AS in the ROM if: F runs in time at most t; F makes at most
qH1

, . . . , qHl
queries respectively to the random oracles H1, . . . , Hl modeling the

hash functions used in AS; F makes at most qS queries to the signing oracle;
F gives a forged aggregate signature of length at most N ; and F wins the CK-
AEUF-CMA game with probability at least ε. In particular, the security results
for AS schemes in this work are independent of N , so we simply say the forger
(t, qH1 , . . . , qHl

, qS, ε)-breaks the security.

2.2 Sequential Aggregate Signatures

A sequential aggregate signature (SAS) scheme SAS consists of three algorithm
KGen, SeqSign, and Vf. Algorithms KGen and Vf are the same as the ones in
a normal signature scheme. Algorithm SeqSign takes an existing aggregate sig-
nature σ̃n−1, corresponding messages m1, . . . , mn−1 and public keys pk1, . . . ,
pkn−1, a secret key skn, and a message mn as inputs and outputs a new aggre-
gation σ̃n. With n = 1, the behavior of SeqSign is the same as algorithm Sign in
a normal signature scheme, and it indeed constitutes a normal scheme together
with KGen and Vf. The completeness requirement is that: if a sequential aggre-
gate signature is generated correctly by sequentially running SeqSign multiple
times, then it must be verified as valid on/under corresponding messages/public
keys.

Similar to the CK-AEUF-CMA security of AS schemes, Lysyanskaya et al.
[16] defined the EUF-CMA security in the sequential aggregate chosen-key model
of SAS schemes, abbreviated as CK-SAEUF-CMA. The three-stage CK-SAEUF-
CMA game is defined as follows:

Setup. The forger F is given a public key pk∗ generated by KGen.

Queries The forger F has access to a signing oracle. It can adaptively requests
signatures under pk∗ on messages, existing aggregations, and previous public
keys and messages of its choice.

Response. The forger F outputs an arbitrary number n of public keys pk1, ...,
pkn, n messages m1, ..., mn, and a sequential aggregate signature σ̃ .

We say F wins this game if σ̃ is a valid aggregate signature on m1, ..., mn under
pk1, ..., pkn, there exists k such that pkk = pk∗, and F has not queried mk

together with previous public keys and messages {(pk1,m1), . . . , (pkk−1,mk−1)}.
Note it is allowed to query mk with another set of previous public keys and
messages.

We say a forger F (t, qH1
, . . . , qHl

, qS, N, ε)-breaks the CK-SAEUF-CMA se-
curity of an SAS scheme SAS in the ROM if: F runs in time at most t; F makes
at most qH1

, . . . , qHl
queries respectively to the random oracles H1, . . . , Hl mod-

eling the hash functions used in SAS; F makes at most qS queries to the signing
oracle; F gives a forged sequential aggregate signature of length at most N ; and
F wins the CK-SAEUF-CMA game with probability at least ε.

10 Y. Chen and Y. Zhao

2.3 Algebraic Group Model

The algebraic group model (AGM) is an ideal model proposed in [10]. In the
AGM, we require the adversary to provide the representations of any group
elements it outputs as a product of the elements it received. The AGM lies
between the generic group model (GGM) [17,22] and the realistic world. While
the GGM is useful for proving information-theoretical bounds, the AGM is useful
for making reductions.

To be more specific, consider a multiplicative group. Let X1, . . . , Xn be
group elements provided to the adversary as inputs or from oracles. For any
group element Y it outputs or queries to oracles, it also gives a representation
of Y , i.e., a vector (α1, . . . , αn) satisfying that Y =

∏n
i=1X

αi
i .

3 Half-Aggregation of Schnorr Signatures, Revisited

3.1 Scheme Description

In this section, we analyze the security of ASchnorr, the half-aggregate scheme
for Schnorr signatures in [8], in the AGM+ROM. Fig. 1 describes the scheme,
where H1 and H2 are hash functions on Zp. We use H2 to denote the range of
H2. The first three algorithms KGen, Sign, and Vf exactly constitutes Schnorr.

On signatures (R1, s1), . . . , (Rn, sn), respectively on messages m1, . . . , mn

under public keys X1, . . . , Xn , algorithm Agg computes n coefficients a1, . . . ,
an and aggregates the responses into s̃ =

∑n
i=1 aisi. To be precise, Agg lets

L = {(R1, X1,m1), . . . , (Rn, Xn,mn)}

and computes hash values ai = H2(L, i) for i = 1, . . . , n as the coefficients. To
verify an aggregate signature, algorithm Vf also computes these coefficients and
checks whether gs̃ =

∏n
i=1(RiX

ci
i)ai , where ci = H1(Ri,mi).

3.2 Security in the AGM+ROM

We prove the CK-AEUF-CMA security of ASchnorr with a tight bound in the
AGM+ROM, where the hash function H2 is modeled as a random oracle, based
on the EUF-CMA security of Schnorr. In comparison, the bound in the ROM
suffers from a quadratic loss, for the proof is based on rewinding. In the CK-
AEUF-CMA game against ASchnorr, a forger has accesses to a signing oracle
Sign and a random oracle H2. We will briefly discuss the case when H1 is also
modeled as a random oracle after the proof.

Theorem 1. If there exists a forger that (t, qH2 , qS, ε)-breaks the CK-AEUF-
CMA security of ASchnorr in the AGM+ROM with H2 modeled as a random
oracle, then there exists an algorithm that (t′, qS, ε

′)-breaks the EUF-CMA secu-
rity of Schnorr with

t′ = O(t)

and

ε′ ≥ ε− qH2
+ 1

|H2|
.

Half-Aggregation of Schnorr Signatures with Tight Reductions 11

KGen()

x←$Zp

X := gx

sk := x

pk := X

return (sk, pk)

Sign(sk,m)

x := sk;X := gx

r←$Zp;R := gr

c := H1(R,m)

s := r + cx

return σ := (R, s)

Vf(pk,m, σ)

X := pk

(R, s) := σ

c := H1(R,m)

return Jgs = RXcK

Agg({(pk1,m1, σ1), . . . , (pkn,mn, σn)})

for i = 1, . . . , n do

Xi := pki

(Ri, si) := σi

L := {(R1, X1,m1), . . . , (Rn, Xn,mn)}
for i = 1, . . . , n do

ai := H2(L, i)

s̃ :=
n∑

i=1

aisi

return σ̃ := ({R1, . . . , Rn}, s̃)

AggVf({(pk1,m1), . . . , (pkn,mn)}, σ̃)

for i = 1, . . . , n do

Xi := pki

({R1, . . . , Rn}, s̃) := σ̃

L := {(R1, X1,m1), . . . , (Rn, Xn,mn)}
for i = 1, . . . , n do

ci := H1(Ri,mi)

ai := H2(L, i)

return Jgs̃ =

n∏
i=1

(RiX
ci
i)aiK

Fig. 1. Description of ASchnorr. The cyclic group G, of order p with a generator g, and
the hash functions H1 and H2 are scheme-level parameters. The range of H2 is denoted
by H2.

Proof. Suppose that F is the forger that (t, qH2
, qS, ε)-breaks the CK-AEUF-

CMA security of ASchnorr. We construct an algorithm A to break the EUF-
CMA security of Schnorr. On the target public key X∗, A first initializes an
empty table T [·, ·] for simulating random oracle H2. After that, it runs F with
X∗ as the target public key. Algorithm A handles queries from F as follows:

– Signing queries. On the j-th signing query Sign(m) from F , A queries m
to the signing oracle in the EUF-CMA game it is playing. It then receives
a signature (R̂j , ŝj) on m under X∗. Let ĉj = H1(R̂j ,m). It holds that

R̂j = gŝj/X∗ĉj from the validity of the signature. Algorithm A records the

pair (ŝj , ĉj) and returns (R̂j , ŝj) to F .
– H2 queries. On query H2(L, k) from F , A assigns T [L, k]←$H2 if T [L, k] is

undefined and then returns T [L, k] to F .

As the AGM requires, whenever F queries or outputs a group element, it
should also provide the representation of the element as a product of those
elements given to it, i.e., the generator g, the target public key X∗, and the
commitment parts R̂1, . . . , R̂qS of the signatures returned by the signing oracle.
Meanwhile, A can also represent those commitments by g and X∗. Thus, A can
represent every group element F queries or outputs by g and X∗. Precisely, when

12 Y. Chen and Y. Zhao

F queries or outputs a group element, it additionally provides (α, β, γ1, . . . , γqS)

such that the element equals gαX∗β
∏qS
j=1 R̂

γj
j . Let

α′ = α+

qS∑
j=1

γj ŝj and β′ = β −
qS∑
j=1

γj ĉj .

It can be verified that the element also equals gα
′
X∗β

′
, which A can compute

from the pairs (ŝ1, ĉ1), . . . , (ŝqS , ĉqS) it recorded.1 We assume A never gets two
different representations of the same element, otherwise it can directly compute
the discrete logarithm of X∗.

At last, F outputs a forged aggregate signature ({R1, . . . , Rn}, s̃) together
with the corresponding messages m1, . . . , mn and public keys X1, . . . , Xn it
chooses. Note that A can represent all the group elements F outputs by g and
X∗. Precisely, A knows 2n pairs (α1,1, β1,1), . . . , (α1,n, β1,n), (α2,1, β2,1), . . . ,
(α2,n, β2,n) satisfying

Ri = gα1,iX∗β1,i and Xi = gα2,iX∗β2,i

for i = 1, . . . , n. Let ci = H1(Ri,mi) for i = 1, . . . , n. If Xk = X∗ and
β1,k + ckβ2,k = 0, then we have

RkX
∗ck = gα1,k+ckα2,k .

Thus, A obtains a forged Schnorr signature (Rk, α1,k + ckα2,k) on mk and wins
the EUF-CMA game if mk is fresh (i.e., has not been queried to the signing
oracle).

We further consider the case that A does not win in the above way. Let

L = {(R1, X1,m1), . . . , (Rn, Xn,mn)}

and ai = H2(L, i) for i = 1, . . . , n. It must hold that gs̃ =
∏n
i=1(RiX

ci
i)ai for F

to win. Let

α∗ =

n∑
i=1

ai(α1,i + ciα2,i) and β∗ =

n∑
i=1

ai(β1,i + ciβ2,i).

It can be verified that
∏n
i=1(RiX

ci
i)ai = gα

∗
X∗β

∗
, and consequently gs̃ =

gα
∗
X∗β

∗
. Therefore, A can extract the discrete logarithm (s̃ − α∗)/β∗ of X∗

as long as β∗ 6= 0. It can further produce signatures on any message it chooses
and certainly win the EUF-CMA game.

To be exact, to compute α∗ and β∗, A only needs to let ai = T [L, i] for every
i satisfying RiX

ci
i 6= g0 (otherwise ai is irrelevant). If anyone of those items is

undefined, then A just aborts. Here we show that F is almost impossible to win
in such a case. Suppose T [L, i] was undefined when F decides its forgery. We

1 Forger F may have not received R̂j when it queries the element. In this case we can
regard γj as always 0, and the undefined R̂j , ĉj , and ŝj are irrelevant.

Half-Aggregation of Schnorr Signatures with Tight Reductions 13

regard it as the last one to be determined. Since RiX
ci
i 6= g0, there is at most

one value of ai = T [L, i] in H2 can make gs̃ =
∏n
i=1(RiX

ci
i)ai . Hence, F wins

with probability at most 1/|H2|.
Now let us show that A can win the EUF-CMA game in one of the above two

ways (extracting a forged signature or directly computing the discrete logarithm
of X∗) with high probability. To do so, we define an event AggElim, explain how
it relates to A’s winning, and bound its probability.

We say AggElim occurs if there exists L = {(R1, X1,m1), . . . , (Rn, Xn,mn)}
satisfying the following conditions:

– Let I be the set of those i satisfying RiX
ci
i 6= g0, where ci = H1(Ri,mi).

The condition is that for each i ∈ I, T [L, i] has been defined.

– Let (α1,i, β1,i) and (α2,i, β2,i) be the representations of Ri and Xi respec-
tively. Let β∗i = β1,i + ciβ2,i. The condition is that there exists k ∈ I such
that β∗k 6= 0.

–
∑
i∈I T [L, i]β∗i = 0.

If F wins, but A does not win in the first way (by extracting a forged sig-
nature), does not abort because of undefined table items, and also does not win
in the second way (by directly computing the discrete logarithm of X∗), then
AggElim must happen. Conditioned on F ’s winning, there must exist k such that
X∗ = Xk and mk is fresh. Since A does not win in the first way, it must hold
that βi,k + ckβ2,k 6= 0, and hence the second condition is true. That A does not
abort because of undefined table items implies the first condition. Recall the
definition of β∗, and we can see if A does not win in the second way (only when
β∗ = 0), the third condition is true.

Among those i ∈ I satisfying β∗i 6= 0, consider the last one to be determined.
There is at most one value from H2 can make L satisfy the third condition. This
means AggElim happens with probability at most 1/|H2| for each L occurring in
table T . The total probability of AggElim is thus upper bounded by qH2

/|H2|.
Now we can bound the probability ε′ that A wins the EUF-CMA game.

Consider the case F wins. We assume A does not win in the first way. It then
loses the game only if it aborts for undefined table items or β∗ = 0, respectively
bounded by 1/|H2| and qH2

/|H2|. Therefore, we have ε′ ≥ ε− (qH2
+ 1)/|H2|.

It remains to bound the running time t′ of A. Except the running time t of
F , there are two significant parts of t′ we need to consider: maintaining table T
and handling H2 queries and the final forgery. Assuming that a table operation
takes constant time, the first part takes O(qH2

) which is also O(t). The second
part of time is O(t), for the forger needs to write the queries and the forgery all.
In conclusion, we have t′ ≤ O(t). ut

Remark 1 (running time of A). The second part of this time can be bounded
by O(qH2

N), and the third part can be bounded by O(qSN), where N is the
maximum length of each H2 query and the final forgery. However, we deliber-
ately avoid doing so. While qH2 , qS, and N are all bounded by t, there is no
guarantee that their products are still smaller than t. Therefore, our bound may

14 Y. Chen and Y. Zhao

be asymptotically better. In the ROM, the reduction’s running time is approxi-
mately bounded by 2Nt [8]. We can see that we remove not only the quadratic
loss but also a factor N in the AGM.

Remark 2 (if H1 is also modeled as a random oracle). The proof keeps basically
unchanged when the EUF-CMA game is also in the ROM, but we should consider
the number of H1 queries. If F queries H1 at most qH1

times, then A queries H1

at most qH1 + qS times. It makes one extra query for each signing query from
F to obtain the pair (ŝj , ĉj) and no extra query for the forgery. We have an
argument analogous to the one for H2. Precisely, in the final forgery, if A has
never queried H1(Ri,mi) for any i ∈ {1, . . . , n}, then F is virtually impossible
to win (unless Xi = g0, in which case H1(Ri,mi) is irrelevant).

Remark 3 (if 0 /∈ H2). We can obtain a slightly better bound if 0 /∈ H2. Recall
the three conditions of event AggElim. Since there exists β∗k 6= 0, if T [L, i] can
not be 0, then the condition

∑
i∈I T [L, i]β∗i = 0 can only be true with I of size

at least 2. This means that event AggElim happens with probability at most
1/|H2| for each two H2 queries. It follows that

ε′ ≥ ε− qH2
/2 + 1

|H2|
.

On the other hand, the original bound ε′ ≥ ε− (qH2
+ 1)/|H2| is closely matched

by a forger that expects to eliminate X∗ with 0 from H2.

Remark 4 (fix a1 = 1). We can slightly optimize ASchnorr by fixing a1 = 1. This
may reduce the verification time a bit and make the verification consistent for
individual signatures and aggregate signatures. Namely, we can omit algorithm
Vf and use AggVf to verify an individual signature as a special case of aggregate
signatures. The security proof will be almost unchanged. A subtle difference is
that when we fix a1 = 1, we can not obtain the above improved bound even
though 0 /∈ H2. The forger can expect to eliminate X∗ with an L of length 2,
while it only needs one H2 query. Note that this small optimization is also secure
without the AGM.2

4 Incremental Aggregation of Schnorr Signatures

4.1 Scheme Description

In the real world, it is common that we need to store more signatures after we
produce an aggregation, which leads to the demand for incremental aggregation.

2 Since we will not go deep in the security of ASchnorr in the ROM, we briefly explain
this here. In the ROM, A runs F twice. If Xk = X∗ and mk is fresh, it makes ak
different in the two executions of F to extract a forged individual signature on mk.
While we fix a1 = 1 in the scheme, A still keeps an internal a1 but divides a2, . . . ,
an all by a1 as the returned values from H2. Thus, A can still “make a1 different in
two executions”.

Half-Aggregation of Schnorr Signatures with Tight Reductions 15

However, ASchnorr does not support incremental aggregation well. The proce-
dure of incremental aggregating is not explicitly defined at the scheme level.
We can implement it by treating a pre-existing aggregation as a normal signa-
ture, but this causes ambiguity and redundant operations. We can omit some
redundant computations, but the ambiguity comes from the scheme intrinsically.
Following ASchnorr, if we aggregate n′ signatures, we will compute coefficients
a1, . . . , an′ . If we aggregate the first n signatures among them, we will compute
coefficients a′1, . . . , a′n. The scheme-level ambiguity is reflected by that usually
ai 6= a′i for i = 1, . . . , n. Hence, a verifier has to know whether the first n signa-
tures are aggregated first, or aggregated together with the others. Otherwise, it
can not correctly verify the aggregation of the n′ signatures.

For such a problem, we provide a modified scheme IASchnorr, described in
Fig. 2. See how we remove the ambiguity: the coefficient ai for the i-th signature
only depends on the first i signatures. As a result, whether the first n signatures
are aggregated first or together with the others does not affect the value of the
coefficients. The normal scheme Schnorr (i.e., algorithms KGen, Sign, and Vf) is
unchanged, so Fig. 2 only describes algorithms IncrAgg and AggVf. The aggregate
algorithm Agg can be seen as a special case of IncrAgg when n = 0.

4.2 Security

We prove almost the same security result for IASchnorr as ASchnorr in the
AGM+ROM.

Theorem 2. If there exists a forger that (t, qH2
, qS, ε)-breaks the CK-AEUF-

CMA security of aggregate signature scheme IASchnorr in the AGM+ROM with
H2 modeled as a random oracle, then there exists an algorithm that (t′, qS, ε

′)-
breaks the EUF-CMA security of Schnorr with

t′ = O(t)

and

ε′ ≥ ε− qH2
+ 1

|H2|
.

Proof. This proof is almost identical to the proof of Theorem 1 up to event
AggElim. In this proof, we say event AggElim happens if there exists

Ln = {(R1, X1,m1), . . . , (Rn, Xn,mn)}

satisfying the following conditions:

– Let I be the set of those i ∈ {1, . . . , n} satisfying RiX
ci
i 6= g0, where ci =

H1(Ri,mi). Let

Li = {(R1, X1,m1), . . . , (Ri, Xi,mi)}.

The condition is that for each i ∈ I, T [Li] has been defined.

16 Y. Chen and Y. Zhao

IncrAgg({(pk1,m1), . . . , (pkn,mn)}, σ̃, {(pkn+1,mn+1, σn+1), . . . , (pkn′ ,mn′ , σn′)})

for i = 1, . . . , n′ do Xi := pki

({R1, . . . , Rn}, s̃) := σ̃

for i = n+ 1, . . . , n′ do

(Ri, si) := σi

Li := {(R1, X1,m1), . . . , (Ri, Xi,mi)}
ai := H2(Li)

s̃′ := s̃+

n′∑
i=n+1

aisi

return σ̃′ := ({R1, . . . , Rn′}, s̃′)

AggVf({(pk1,m1), . . . , (pkn,mn)}, σ̃)

for i = 1, . . . , n do Xi := pki

({R1, . . . , Rn}, s̃) := σ̃

a1 := 1; c1 := H1(R1,m1)

for i = 2, . . . , n do

ci := H1(Ri,mi)

Li := {(R1, X1,m1), . . . , (Ri, Xi,mi)}
ai := H2(Li)

return Jgs̃ =

n∏
i=1

(RiX
ci
i)aiK

Fig. 2. Algorithms IncrAgg and AggVf of IASchnorr. The cyclic group G, of order p
with a generator g, and the hash functions H1 and H2 are scheme-level parameters.
The range of H2 is denoted by H2. The aggregate algorithm Agg is a special case of
IncrAgg.

– Let (α1,i, β1,i) and (α2,i, β2,i) be the representations of Ri and Xi respec-
tively. Let β∗i = β1,i + ciβ2,i. The condition is that there exists k ∈ I such
that β∗k 6= 0.

–
∑
i∈I T [Li]β

∗
i = 0.

Same as in the proof of Theorem 1, if F wins, but A does not win by extract-
ing a forged signature, does not abort because of undefined table items, and also
does not win by directly computing the discrete logarithm of X∗, then AggElim
must happen.

AggElim happens with probability at most 1/|H2| for each Ln occurring in
table T . The total probability of AggElim is thus upper bounded by qH2/|H2|.
The probability A aborts for undefined table items is also at most 1/|H2|. It

Half-Aggregation of Schnorr Signatures with Tight Reductions 17

follows that

ε′ ≥ ε− qH2
+ 1

|H2|
.

We can bound the running time of A as in the proof of Theorem 1. ut

Remark 5 (comparison). The security loss of IASchnorr compared with ASchnorr
is subtle, since Theorem 1 and Theorem 2 give the same bound. Here we explain
the differences.

For ASchnorr, the probability bound ε′ ≥ ε − (qH + 1)/|H2| can only be
matched by a forger that tries to obtain 0 from H2. This can be easily prevented
by a range H2 excluding 0. The forger thus has to eliminate X∗ with a list
of at least two individual signatures. Hence, we achieve a better bound ε′ ≥
ε− (qH/2 + 1)/|H2|.

In contrast, for IASchnorr, a forger can match the bound even if 0 /∈ H2.
When a forger fails to eliminate X∗ with Ln, it can just append Ln by one more
individual signature or replace the last one in it. In ASchnorr the forger needs
one H2 query for each signature in the modified list, while in IASchnorr it only
needs one more query for another opportunity to eliminate X∗. We hence can
not obtain the improved bound for IASchnorr.

Remark 6 (another perspective). Here we provide another perspective to under-
stand IASchnorr. We can consider we get IASchnorr by modifying ASchnorr in
two steps. First, we fix a1 = 1. Second, we require the aggregation to be per-
formed one by one. The first modification removes redundant operations, and
the second removes ambiguity. From this perspective, we can better understand
the security of IASchnorr. The first modification keeps the security in the ROM,
as we discussed at the end of Section 3. The second modification is a benefit
the AGM brings. In the AGM+ROM, the security of ASchnorr is tight, which
permits the one-by-one aggregation. By contrast, in merely the ROM, one-by-
one aggregation forces the reduction to rewind the forger at most n times for an
aggregation of n signatures and hence exponentially expands the security loss to
an unacceptable level.

5 Sequential Aggregation of Schnorr Signatures with
Tight Reduction in the ROM

So far, we see neither a tightly secure half-aggregate scheme for Schnorr signa-
tures nor a (maybe non-tightly) provably secure sequential half-aggregate scheme
for Schnorr signatures in the ROM without the AGM. By contrast, ASchnorr is
non-tightly secure in the ROM. ASchnorr and IASchnorr both lack security proofs
in the ROM when serving as an SAS scheme.

In this section, we present SASchnorr, an SAS scheme based on Schnorr sig-
natures, and reduces its security tightly to that of Schnorr in the ROM. We
also propose a new security model for SASchnorr together with justification.
SASchnorr is provably secure in both the new security model and in the original
model given in [16].

18 Y. Chen and Y. Zhao

5.1 Scheme Discription

SeqSign({(pk1,m1), . . . , (pkn−1,mn−1)}, σ̃n−1, skn,mn)

for i = 1, . . . , n− 1 do Xi := pki

(R̃n−1, {s1, . . . , sn−1}) := σ̃n−1

xn := skn; Xn := gxn

rn ←$Zp; Rn := grn

R̃n = R̃n−1 ·Rn

cn := H(R̃n, Xn,mn, sn−1, n)

sn := rn + cnxn

return σ̃n := (R̃n, {s1, . . . , sn})

Vf({(pk1,m1), . . . , (pkn,mn)}, σ̃n)

for i = 1, . . . , n do Xi := pki

(R̃n, {s1, . . . , sn}) := σ̃n

cn := H(R̃n, Xn,mn, sn−1, n)

if n = 1 then

return Jgs1 = R̃1X
c1
1 K

else

Rn := gsn/Xcn
n

R̃n−1 := R̃n/Rn

σ̃n−1 := (R̃n−1, {s1, . . . , sn−1})
return Vf({(pk1,m1), . . . , (pkn−1,mn−1)}, σ̃n−1)

Fig. 3. Description of SASchnorr. The cyclic group G, of order p with a generator g,
and the hash function H are scheme-level parameters. The range of H is denoted by
H. The key generation algorithm KGen is the same as Schnorr’s, as described in Fig. 1.
We define s0 as always 0.

We describe SASchnorr in Fig. 3. The aggregation is implemented in a very
different way in SASchnorr compared with the other schemes: we aggregate the
commitment parts of the individual signatures rather than the response parts.
Provided an pre-existing sequential aggregate signature (R̃n−1, {s1, . . . , sn−1})
on messagesm1, . . . ,mn−1 under public keysX1, . . . ,Xn−1, what the signer does
in SeqSign is basically producing a normal Schnorr signature. The difference is
what it hashes to get its challenge cn. Instead of its own commitment Rn = grn ,
it hashes the aggregate commitment R̃n = R̃n−1 ·Rn. It additionally hashes its
public key Xn, the response sn−1 from the last signer, and the current length n.

Half-Aggregation of Schnorr Signatures with Tight Reductions 19

To verify an aggregate signature, the verifier sequentially recovers the indi-
vidual commitments from the n-th to the first one. Provided the aggregation
of j commitments R̃j , the verifier can compute cj . It then obtains Rj , the j-th

individual commitment, by Rj = gsj/X
cj
j . After that, it knows R̃j−1 and iter-

atively continues the procedure. In Fig. 3, we write algorithm Vf in a recursive
way. The verification of an n-long aggregation is just computing R̃n−1 and then
recursively calling Vf on the (n− 1)-long prefix.

Note that a signer can simply hash all relevant things, namely

{(X1,m1), . . . , (Xn,mn)}, (R̃n, {s1, . . . , sn−1})

to get its challenge cn. In Fig. 3, we minimize what the signer needs to hash.
As a result, many inputs are irrelevant to the signing procedure. There are
some potential optimizations can be made in practice. For example, consider the
scenario where a fixed destination is public known to all signers, and they do
not care the validity of the partial aggregations. A signer can choose to not pass
redundant information to the next one. Instead, the j-th signer can pass only R̃j
and sj to the next signer and directly pass Xj , mj , and sj to the destination.
Thus, the signers can keep their messages secret between each other, and the
total communication complexity is significantly reduced.

For consistency, we require the first signer also hashes s0, which we define as
0, and the current length 1. This can be omitted without ambiguity.

5.2 A New Security Model for SAS Schemes

Rather than the security model presented in [16] for SAS schemes, we analyze
the security of SASchnorr in a new model. Note that the signature produced by
SeqSign only depends on xn, mn, and part of σ̃n−1, i.e., R̃n−1 and sn−1. We only
take them as the arguments of the signing oracle. Precisely, the adversary can
query Sign(R̃n−1, sn−1,mn, n) and receive (R̃n, sn).

The adversary’s goal is to forge an aggregation (R̃n, {s1, . . . , sn}) on/under
corresponding messages/public keys m1, . . . , mn, pk1, . . . , pkn on its choice.
The adversary is said to win if the forgery is valid, and it has not queried
Sign(·, sk−1,mk, k) for some k such that Xk = X∗, where X∗ is the target
public key.

The reason why we introduce the new model is not that we cannot achieve
security in the original one. Actually, simpler designs can already make the
scheme secure in the original model. If we require each signer to verify the previ-
ous aggreation, or we let cn be instead H(R̃n, X1, . . . , Xn,m1, . . . ,mn), then our
scheme can be proved secure in the original model. See more detailed discussion
in Remark 9. We introduce our new security model for SAS schemes to show the
possibility of signing without knowing so much information. This feature allows
essential bandwidth/storage saving.

We make some comparisons between our new security model and the original
model defined in [16]. On the one hand, the adversary does not need to give
a valid aggregation in order to request a subsequent aggregation. Specifically,

20 Y. Chen and Y. Zhao

the signing oracle cannot verify the validity of the previous aggregation, as it
doesn’t know the corresponding public keys and messages. In this aspect, our
model allows for a more powerful adversary. On the other hand, our model is
incomparable with the original model in the success condition of attack.

In more details, we start with the original model and consider our model as
the result of a three-step modification, where two steps strengthen the model
while one weakens it. In the original model, the adversary makes a signing query
in the form of Sign({(X1,m1), . . . , (Xn−1,mn−1)},mn, σ̃n−1), where σ̃n−1 =
(R̃n−1, s1, . . . , sn−1), in order to obtain a subsequent signature σ̃n. The oracle
can verify σ̃n−1 and return σ̃n only if σ̃n−1 is valid. The first step is to forbid
the oracle to do so, which strengthens the model.

However, after removing the verification of intermediate aggregation, the
signing oracle’s behaviors only depend on R̃n−1, sn−1, and mn. This gives rise to
a type of trivial attack as follows: querying Sign((X ′1,m

′
1),m2, σ1) with arbitrary

m′1 and X ′1 to get a forged aggregate signature on m1, m2 under X1, X∗. Hence,
our second step is to remove the redundant arguments of the signing oracle (i.e.,
X1, . . . , Xn−1, m1, . . . , mn−1, and s1, . . . , sn−2), leaving only R̃n, sn−1, mn, and
n. The success condition thus requires the adversary not to query Sign(·, ·,mk, k)
for some k such that Xk = X∗. This makes the condition stricter and excludes
the above trivial forgeries.

Finally, the third step loosens the success condition in another dimension. We
can allow the adversary to query Sign(·, sk−1,mk, k) with sk−1 that is different
from the one appeared in the forgery. This strengthens the model in a way that
the original model does not consider. In particular, the original model requires
the set of X1, . . . , Xk−1, m1, . . . , mk has not been queried, no matter whether
σ̃k−1 queried together is different from the one corresponds to the final forgery.
By contrast, some differences in σ̃k−1 can make the forgery non-trivial in our
model.

5.3 Security

We prove that the security of SASchnorr reduces to the EUF-CMA security of
Schnorr in the ROM, with only an additive security loss. Note that we can directly
reduce the security of SASchnorr to the DLP based on the forking lemma [5,20],
but we intentionally avoid doing so. Improving the proof techniques and finding
tighter bounds for Schnorr signatures in the ROM are popular research topics,
and some great results were achieved in a recent work [21]. We prove a relatively
modular result which is compatible with any previous or future improvements
on the security results for Schnorr.

Theorem 3. If there exists a forger that (t, qH, qS, N, ε)-breaks the CK-SAEUF-
CMA security of SASchnorr in the ROM, then there exists an algorithm that
(t′, qH + qS, qS, ε

′)-breaks the EUF-CMA security of Schnorr in the ROM, with

t′ ≤ t+ 2Ntexp +O(qS + qH)

Half-Aggregation of Schnorr Signatures with Tight Reductions 21

and

ε′ ≥ ε− (qH + qS)(qH + 3qS)

2p
− (qH + qS + 1)2 + 1

2|H|
,

where texp is the time of an exponentiation in G.

We give some intuition before the actual proof. Let X∗ be the target public
key. In a valid forgery, there must exist a k ∈ {1, . . . , n} such that Xk = X∗,
and it holds that RkX

∗ck = gsk . The equality is in form of the verification of
an individual signature, so intuitively, we would like to take (Rk, sk) as a forged
Schnorr signature.

Let H and H′ denote the random oracles in the CK-SAEUF-CMA game
against SASchnorr and the EUF-CMA game against Schnorr, respectively. For
the reduction to win the latter game, it should hold that ck = H′(Rk,m

∗) for
some m∗. On the other hand, ck = H(R̃k,mk, X

∗, sk−1, k) in the former game.
Therefore, to use (Rk, sk) as its own forgery, the reduction has to find out Rk
when handling the forger’s hash query, given only R̃k.

The key point is to retrieve R̃k−1 with sk−1 (and then obtainRk = R̃k/R̃k−1).
We do so by setting the exponent of the expected response sn as the index of
each query H(R̃n,mn, Xn, sn−1, n). It takes most of our effort to show this works.
Simply speaking, we present a mathematical induction: we can retrieve unique
R̃1 with s1; given that we can retrieve R̃i−1 with si−1, we can successfully figure
out Ri = R̃i/R̃i−1 and set the index of query H(R̃i,mi, Xi, si−1, i), and thus we
can retrieve R̃i with si.

Following Fig. 3, we define s0 as always 0. Moreover, we define R̃0 as g0,
which simplifies the discussion a bit.

Proof (Theorem 3). Suppose F is the forger that breaks the CK-SAEUF-CMA
security of SASchnorr. We construct an algorithm A that breaks the EUF-CMA
security of Schnorr. In the EUF-CMA game, it has access to a signing oracle
Sign′, and the hash function is modeled as a random oracle H′.

On target public keyX∗, algorithmA first initializes an empty table T [·, ·, ·, ·, ·]
for simulating the random oracle H. Each table item may have an index I[·, ·, ·, ·, ·]
which is a group element. For any group element, A can efficiently locate the
table item with an index equal to the element. Algorithm A runs F with the
same target public key. It handles queries from F as follows:

– Hash queries. On a hash query H(R̃j , Xj ,mj , sj−1, j), algorithm A returns

T [R̃j , Xj ,mj , sj−1, j]. If the item is undefined, A first defines it as follows.
Algorithm A checks the following two conditions:
C1 Xj = X∗;
C2 j = 1; or among all defined items with the last arguments being j − 1,

there exists a unique one T [R̃j−1, Xj−1,mj−1, sj−2, j − 1] whose index
is gsj−1 .

If C2 is not true, A assigns c←$H to T [R̃j , Xj ,mj , sj−1, j]. If only C2 is
true, A additionally sets the index

I[R̃j , Xj ,mj , sj−1, j] = (R̃j/R̃j−1)Xc
j .

22 Y. Chen and Y. Zhao

If both conditions hold, A instead assigns c = H′(R̃j/R̃j−1,m
∗), with m∗

uniformly chosen from {0, 1}log p, to T [R̃j , Xj ,mj , sj−1, j]. It sets the index

in the same way. We say A retrieves R̃j−1 here.

– Signing queries. To answer a signing query Sign(R̃n−1, sn−1,mn, n), A uni-
formly chooses m∗ from {0, 1}log p and queries m∗ to Sign′. It receives a
Schnorr signature (R, s) on m∗ under X∗. Let R̃n = R̃n−1 · R. Algorithm
A aborts if T [R̃n, X

∗,mn, sn−1, n] has been defined. Otherwise, A assigns
H′(R,m∗) to T [R̃n, X

∗,mn, sn−1, n]. It returns (R̃n, s) to F . It also checks
condition C2 defined above and sets index I[R̃n, X

∗,mn, sn−1, n] = gs if C2
is true.

At last, F outputs a forgery with messages and public keys it chooses:

{(X1,m1), . . . , (Xn,mn)}, (R̃n, {s1, . . . , sn}).

Algorithm A runs the verification procedure. Namely, for i = n, . . . , 2, it lets
ci = T [R̃i, Xi,mi, si−1, i] and then computes R̃i−1 = R̃i/(g

si/Xci
i). It finally lets

c1 = T [R̃1, X1,m1, 0, 1] and determines whether the forgery is valid by checking
whether gs1 = R̃1X

c1
1 . In this verification procedure, A aborts if it meets an

undefined table item. This behavior is different from the verification algorithm
Vf, since the item would be defined now if we run Vf. However, we will later
show that the forgery is unlikely to be valid with such an undefined table item.

There must exist k ∈ {1, . . . , n} such that Xk = X∗, and F has not queried
Sign(·, sk−1,mk, k) for F to win the CK-SAEUF-CMA game. From the forgery’s
validity, we know

(R̃k/R̃k−1)X∗ck = gsk ,

where ck = T [R̃k, X
∗,mk, sk−1, k]. If ck = H′(R̃k/R̃k−1,m

∗), and m∗ is fresh
in the EUF-CMA game (i.e., has not been queried to the signing oracle Sign′),
then A wins the game with a forged signature (R̃k/R̃k−1, sk) on message m∗.
Our main task below is to prove this is exactly the case with high probability,
guaranteed by how A handles the queries from F .

To do so, we consider a list of events. We define them, explain how they relate
to A’s winning, and bound their probabilities. They are defined as follows:

E1 Algorithm A aborts when handling a signing query. We also use SimFail to
denote this event.

E2 Algorithm A chooses some duplicate random messages from {0, 1}log p. We
also use MsgCol to denote this event.

E3 Forger F succeeds. We also use AccF to denote this event.
E4 Algorithm A meets an undefined table item in the above verification proce-

dure we described. We also use UnDef to denote this event.
E5 When T [R̃k, X

∗,mk, sk−1, k] was defined, condition C2 was not true, or the
aggregate commitment that A retrieved was not R̃k−1.

As long as E3 happens while E2, E4, and E5 do not happen, A finds a
forged Schnorr signature (R̃k/R̃k−1, sk) on a fresh message m∗ (for the EUF-
CMA game) and wins. Excluding E2 guarantees the freshness of m∗, excluding

Half-Aggregation of Schnorr Signatures with Tight Reductions 23

E4 guarantees A does not abort in the verification procedure, and excluding E5
guarantees ck was indeed set to H′(R̃k/R̃k−1,m

∗). If E1 and E2 do not happen,
then the simulated game is identical to the real CK-SAEUF-CMA game, and we
know E3 happens with probability at least ε on such a condition. Here we also
exclude E2 to avoid one hash value H′(R,m∗) being assigned to different table
items. Below we separately consider the probabilities of these events.

E1 For every signing query from F , R̃n to be returned is uniformly distributed
on a set of order p. This is because R̃n = R̃n−1 ·R with R uniformly distributed
on G, since R is the commitment of a Schnorr signature from Sign′. This R̃n may
collide with the at most qH + qS aggregate commitments occurring in T . Hence,
SimFail happens in every signing query with probability at most (qH + qS)/p. In
total, we have Pr[SimFail] ≤ qS(qH + qS)/p.

E2 Algorithm A needs to choose at most one message from {0, 1}log p for every
signing query and hash query from F . The total number of the chosen messages
is bounded by qH + qS, and it follows that Pr[MsgCol] ≤ (qH + qS)2/(2p).

E4 To bound the probability of this event, we need Lemma 4 below. Note
that when one verifies a forgery with Vf, all the recursive calls return equal
values. Hence, as long as A meets an undefined table item, the probability of
the whole forgery’s validity is bounded by (qH + qS + 1)/|H|. Namely, we have
Pr[AccF |UnDef] ≤ (qH + qS + 1)/|H|.

Lemma 4. For any {(X1,m1), . . . , (Xj ,mj)}, (R̃j , {s1, . . . , sj}), if table item

T [R̃j , Xj ,mj , sj−1, j] is undefined, then the probability that

Vf({(X1,m1), . . . , (Xj ,mj)}, (R̃j , {s1, . . . , sj})) = 1

is upper-bounded by (qH + qS + 1)/|H|.

E5 We consider condition C2 in two aspects. First, it requires that there exists an
item T [R̃j−1, Xj−1,mj−1, sj−2, j− 1] with index being gsj−1 . Second, it requires
the item to be unique. Lemmas 5 and 6 relate to the uniqueness and existence
requirements respectively.

Lemma 5. Let qj be the number of defined entries in T with the last argument
being j. Define Dup as the event that there exist two different table items

T [R̃j , Xj ,mj , sj−1, j] and T [R̃′j , X
′
j ,m

′
j , s
′
j−1, j]

with the last arguments being equal, such that

I[R̃j , Xj ,mj , sj−1, j] = I[R̃′j , X
′
j ,m

′
j , s
′
j−1, j].

It holds that Pr[Dup] ≤ (
∑∞
i=1 q

2
i)/(2|H|).

24 Y. Chen and Y. Zhao

Lemma 6. Let qj be the number of defined entries in T with the last argument
being j. Define BadOrder as the event that there exists a valid chain in T , namely
a set of items

c1 = T [R̃1, X1,m1, 0, 1], . . . , cj = T [R̃j , Xj ,mj , sj−1, j]

satisfying (R̃i/R̃i−1)Xci
j = gsi for i = 1, . . . , j − 1, while these items were not

defined in order. It holds that Pr[BadOrder | ¬Dup] ≤ (
∑∞
i=1 qiqi+1)/|H|.

We now show the link between E5 and these two lemmas. For a valid chain
described in Lemma 6, suppose the items in it are defined in order. We use an
induction to show the following statement is true for every item in the chain if
Dup does not happen: for the item T [R̃i, Xi,mi, si−1, i] in the chain, condition
C2 was true when it is defined, and A exactly retrieved R̃i−1 at that time.

For the first item in the chain, the statement is true directly from the def-
inition of C2, and its index is gs1 from the validity of the chain. Assume the
statement is true for the (i − 1)-th item, and its index is gsi−1 . When the i-th
item in the chain is going to be defined, the (i−1)-th has been defined. From the
assumption, the index of the (i− 1)-th item has been defined and equals gsi−1 .
That Dup does not happen guarantees there does not exist another item with
the last argument being i − 1 and equal index. Thus, condition C2 for the i-th
item holds, and A retrieves R̃i−1. The index of the i-th item is thus gsi from the
validity of the chain. This means that the statement is true for the i-th item. By
induction, the statement is true for every item in the chain.

Obviously, the forgery must correspond with a valid chain for it to be valid,
conditioned on that E4 does not happen. The above statement means that E5 is
impossible if none of BadOrder and Dup happen. The probability of E5 is hence
bounded by

Pr[Dup ∨ BadOrder] = Pr[Dup] + Pr[BadOrder | ¬Dup]

≤
∑∞
i=1 q

2
i +

∑∞
i=1 2qiqi+1

2|H|

≤ (qH + qS)2

2|H|
,

where the last inequality follows from qH + qS =
∑∞
i=1 qi.

Half-Aggregation of Schnorr Signatures with Tight Reductions 25

Put all these bounds together, and we have

ε′ ≥ Pr[AccF ∧ ¬MsgCol ∧ ¬UnDef ∧ ¬Dup ∧ ¬BadOrder]
≥ Pr[AccF ∧ ¬MsgCol]− Pr[UnDef]− Pr[Dup ∨ BadOrder]

≥ Pr[AccF ∧ ¬SimFail ∧ ¬MsgCol]

− Pr[AccF ∧ UnDef]− Pr[Dup ∨ BadOrder]

≥ Pr[AccF | ¬SimFail ∧ ¬MsgCol] · Pr[¬SimFail ∧ ¬MsgCol]

− Pr[AccF ∧ UnDef]− Pr[Dup ∨ BadOrder]

≥ Pr[AccF | ¬SimFail ∧ ¬MsgCol]− Pr[SimFail]− Pr[MsgCol]

− Pr[AccF |UnDef]− Pr[Dup ∨ BadOrder]

≥ ε− (qH + qS)(qH + 3qS)

2p
− (qH + qS + 1)2 + 1

2|H|

It only remains for us to bound the running time of A. We assume a table
operation takes constant time with enough space and a hash table implemented
properly. We also assume retrieving a table item as described in condition C2 also
takes constant time with an index structure implemented properly. In total, the
time A spends on handling queries from F and maintaining table T is bounded
by O(qS + qH).

Note that A runs a verification procedure on F ’s forgery in order to obtain
R̃k/R̃k−1, the commitment part of its own forged Schnorr signature. This takes
at most 2N exponentiation operations. In conclusion, we have

t′ ≤ t+ 2Ntexp +O(qS + qH). ut

We defer the proofs of Lemmas 4 to 6 to the end of this section.

Remark 7 (use bit-wise XOR instead of multiplication). Note that in SASchnorr
we do not rely on group homomorphism in the verification (opposite to the
case in ASchnorr and IASchnorr). Instead, all the individual commitments will be
recovered, and we verify an equality for each of them. The method of aggregating
the commitments is only required to be reversible. Hence, we can actually use
bit-wise XOR rather than group multiplication to aggregate the commitments,
which will slightly optimize the scheme.

Remark 8 (binding security). The work [8] introduced the binding security of
AS schemes. It means that an aggregate signature is bound to a set of public
keys and messages, in the sense that it is hard to find two sets of public keys
and messages w.r.t. the same valid aggreate signature. As the related public
keys and messages are all hashed to generate the coefficients in ASchnorr and
IASchnorr, the two scheme obviously satisfy the binding security. Here, we clar-
ify that SASchnorr also enjoys the binding security, though with only partial
information being hashed. Specifically, Lemma 5 and Lemma 6 actually imply
the binding security. Lemma 6 guarantees that the table items corresponding
to a valid aggregation were defined in order, so every such item has its index.

26 Y. Chen and Y. Zhao

Therefore, a valid signature for two different sets of public keys and messages
means that the Dup event defined in Lemma 5 happens somewhere among those
items.

Remark 9 (Security in the original security model). As mentioned, if we let the
signer verify the previous aggregation σk−1 (with k ≥ 2),3 then our scheme is
also provably secure in the original security model [16]. In the security proof,
we need the table item T [R̃k, X

∗,mk, sk−1, k] (corresponding to the forgery) not
to be assigned in a signing query. With the security result we already have, we
only need to consider one more case in the original model: F has made a sign-
ing query with previous public keys and messages (X1,m1), . . . , (Xk−1,mk−1)
and aggregation (R̃k−1, {s1, . . . , sk−1}) on mk where T [R̃k, X

∗,mk, sk−1, k] was
assigned; and F outputs a forgery with different (X ′1,m

′
1), . . . , (X ′k−1,m

′
k−1).

This immediately contradicts the binding security just clarified above.
There is another way to make the scheme secure in the original model: simply

hashing all the previous public keys and messages to generate the challenge, i.e.,
letting cn = H(R̃n, X1, . . . , Xn,m1, . . . ,mn). In this case, the signer does not
need to verify the previous aggregation any longer. As required in the original
model, the set of public keys and messages corresponding to the forgery has
not been queried to the signing oracle. This immediately implies the table item
corresponding to the forgery was not assigned in a signing query.

Proofs of Lemmas 4 to 6.

Proof (Lemma 4). Let f(j) be the bound for a fixed j. Namely, for any forgery
of length j, if T [R̃j , Xj ,mj , sj−1, j] is undefined, algorithm Vf determines the
forgery to be valid with probability at most f(j). It is sufficient for us to show
that (qH + qS + 1)/|H| is the common bound of f(j) for all j ∈ N.

First we consider f(1). If j = 1, then Vf returns 1 iff gs1 = R̃1X
c1
1 , with

c1 = T [R̃1, X1,m1, 0, 1]. Here, c1 is uniformly chosen from H after s1, R̃1, X1 are
fixed, and only at most one value of c1 is sufficient. Hence, we have f(1) ≤ 1/|H|.

Now we consider f(j) for j ≥ 2. When j ≥ 2,

Vf({(X1,m1), . . . , (Xj ,mj)}, (R̃j , {s1, . . . , sj})) = 1

iff

Vf({(X1,m1), . . . , (Xj−1,mj−1)}, (R̃j−1, {s1, . . . , sj−1})) = 1,

where R̃j−1 = R̃j/(g
sj/X

cj
j) for cj = T [R̃j , Xj ,mj , sj−1, j]. Note that there

are at most qj−1 items with the last argument being j − 1 in T . Since cj is

uniformly chosen from H at last, R̃j−1 is uniformly distributed on a set of size

|H|. Hence, the probability that T [R̃j−1, Xj−1,mj−1, sj−2, j − 1] is defined is at

3 This implies that, as in the traditional case of sequential aggregate signatures, the
whole aggregation (R̃k−1, {s1, . . . , sk−1}) and all the related information {m1, . . . ,
mk−1, pk1, . . . , pkk−1} need to be sent to the signer.

Half-Aggregation of Schnorr Signatures with Tight Reductions 27

most qj−1/|H|. On the condition that it is undefined, the probability that Vf
returns 1 is bounded by f(j − 1). Therefore, we have

f(j) ≤ 1− (1− qj−1
|H|

)(1− f(j − 1)) ≤ qj−1
|H|

+ f(j − 1).

Combining with that f(1) ≤ 1/|H|, we have

f(j) ≤
1 +

∑j−1
i=1 qi
|H|

≤ qH + qS + 1

|H|
. ut

Proof (Lemma 5). Define Dup(j) as the event that there exist two different table
items with the last arguments being both j and equal indices. It holds that

Pr[Dup] ≤
∞∑
i=1

Pr[Dup(i)].

It is sufficient for us to separately bound the terms on the right.
First we consider Dup(1). For every table item c = T [R̃1, X1,m1, 0, 1], we

have

I[R̃1, X1,m1, 0, 1] = R̃1X
c
1 .

If the item is defined when A handles a signing query, the index is uniformly
distributed on G. If it is defined whenA handles a hash query, since c is uniformly
chosen from H after R̃1 and X1 are fixed, the index is uniformly distributed on
a set of size |H|. Therefore, for every pair of items with the last arguments both
being 1, their indices collide with probability at most 1/|H|. The number of such
pairs is q1(q1 − 1)/2, and it follows that

Pr[Dup(1)] ≤ q1(q1 − 1)

2|H|
.

Now consider Dup(i) for i ≥ 2. For every table item c = T [R̃i, Xi,mi, si−1, i]
with i ≥ 2, its index I[R̃i, Xi,mi, si−1, i] can be defined only when there exists
a unique item T [R̃i−1, Xi−1,mi−1, si−2, i− 1] with index being gsi−1 . The index
is then set to

I[R̃i, Xi,mi, si−1, i] = (R̃i/R̃i−1)Xc
i .

Similarly, the index is also distributed on G or a set of size |H|. We thus have

Pr[Dup(i)] ≤ qi(qi − 1)

2|H|
.

Put the above results together, we have

Pr[Dup] ≤
∞∑
i=1

qi(qi − 1)

2|H|
≤

∑∞
i=1 q

2
i

2|H|
. ut

28 Y. Chen and Y. Zhao

Proof (Lemma 6). Define BadOrder(j) as the event that there exists a valid chain
of length j that is not defined in order. It holds that

Pr[BadOrder | ¬Dup] ≤ Pr[BadOrder(2) | ¬Dup]

+

∞∑
i=3

Pr[BadOrder(i) | ¬Dup ∧ ¬BadOrder(i− 1)].

We bound the terms on the right separately.
First we consider BadOrder(2). For every pair of items

c1 = T [R̃1, X1,m1, 0, 1] and c2 = T [R̃2, X2,m2, s1, 2],

if they are not defined in order, i.e., c1 is defined later, then (R̃2/R̃1)Xc1
1 is

uniformly distributed on G or a set of size |H| (depending on whether c1 is defined
in a signing query or a hash query, as in the proof of Lemma 5), and determined
after s1 is fixed. On the other hand, it is necessary that gs1 = (R̃2/R̃1)Xc1

1 for
such a pair to be a valid chain of length 2. Hence, every pair that are not defined
in order forms a 2-long valid chain with probability at most 1/|H|. There are at
most q1q2 such pairs in T , so in total we have

Pr[BadOrder(2) | ¬Dup] ≤ q1q2
|H|

.

Now we consider BadOrder(i), conditioned on that BadOrder(i− 1) does not
happen. Consider a valid chain

c1 = T [R̃1, X1,m1, 0, 1],

...

ci = T [R̃i, Xi,mi, si−1, i].

Since BadOrder(i− 1) does not happen, we know c1, . . . , ci−1 are defined in
order. Hence, if the items in this chain are not defined in order, ci−1 must be
the last one to be defined.

We consider every pair of items

ci−1 = T [R̃i−1, Xi−1,mi−1, si−2, i− 1] and ci = T [R̃i, Xi,mi, si−1, i]

with the last arguments being i − 1 and i respectively. For them to be in a
valid chain of length i, ci−1 must be the last item of a valid chain of length
i− 1. Conditioned on that BadOrder(i− 1) does not happen, the (i− 1) items in
the valid chain are defined in order. Moreover, since Dup does not happen, the
indices of these (i− 1) items are also defined.4 Hence, when ci−1 is going to be
defined, there exists a unique item with an index being gsi−2 , which is exactly

ci−2 = T [R̃i−2, Xi−2,mi−2, si−3, i− 2],

4 This can be precisely shown by the induction we make in the proof of Theorem 3.

Half-Aggregation of Schnorr Signatures with Tight Reductions 29

the (i − 2)-th item in the chain. For these items to form a valid chain, it must
hold that

gsi−1 = (R̃i−1/R̃i−2)X
ci−1

i−1 .

On the other hand, (R̃i−1/R̃i−2)X
ci−1

i−1 is uniformly distributed on G or a set of
size |H| and determined after si−1 is fixed. Hence, this pair occurs in a i-long
valid chain with probability at most 1/|H|. There are at most qi−1qi such pairs.
It follows that

Pr[BadOrder(i) | ¬Dup ∧ ¬BadOrder(i− 1)] ≤ qi−1qi
|H|

.

Put the above results together, and we have

Pr[BadOrder | ¬Dup] ≤
∑∞
i=1 qiqi+1

|H|
. ut

References

1. Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new
definitions, constructions and applications. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) ACM CCS 2010. pp. 473–484. ACM Press (Oct 2010).
https://doi.org/10.1145/1866307.1866360

2. Alper, H.K., Burdges, J.: Two-round trip schnorr multi-signatures via delin-
earized witnesses. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I.
LNCS, vol. 12825, pp. 157–188. Springer, Heidelberg, Virtual Event (Aug 2021).
https://doi.org/10.1007/978-3-030-84242-0 7

3. Bellare, M., Dai, W.: Chain reductions for multi-signatures. Cryptology ePrint
Archive, Report 2021/404 (2021), https://ia.cr/2021/404

4. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signa-
tures. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 411–422. Springer, Heidelberg (Jul 2007).
https://doi.org/10.1007/978-3-540-73420-8 37

5. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a
general forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimer-
cati, S. (eds.) ACM CCS 2006. pp. 390–399. ACM Press (Oct / Nov 2006).
https://doi.org/10.1145/1180405.1180453

6. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifi-
ably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (May 2003).
https://doi.org/10.1007/3-540-39200-9 26

7. Boneh, D., Kim, S.: One-time and interactive aggregate signatures from lattices
(2021), https://crypto.stanford.edu/∼skim13/agg ots.pdf

8. Chalkias, K., Garillot, F., Kondi, Y., Nikolaenko, V.: Non-interactive half-
aggregation of EdDSA and variants of Schnorr signatures. In: Paterson, K.G. (ed.)
CT-RSA 2021. LNCS, vol. 12704, pp. 577–608. Springer, Heidelberg (May 2021).
https://doi.org/10.1007/978-3-030-75539-3 24

9. Drijvers, M., Edalatnejad, K., Ford, B., Kiltz, E., Loss, J., Neven, G., Stepanovs,
I.: On the security of two-round multi-signatures. In: 2019 IEEE Symposium on
Security and Privacy. pp. 1084–1101. IEEE Computer Society Press (May 2019).
https://doi.org/10.1109/SP.2019.00050

https://doi.org/10.1145/1866307.1866360
https://doi.org/10.1007/978-3-030-84242-0_7
https://ia.cr/2021/404
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/3-540-39200-9_26
https://crypto.stanford.edu/~skim13/agg_ots.pdf
https://doi.org/10.1007/978-3-030-75539-3_24
https://doi.org/10.1109/SP.2019.00050

30 Y. Chen and Y. Zhao

10. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-
96881-0 2

11. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind schnorr signatures and signed El-
Gamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 63–95. Springer, Heidelberg
(May 2020). https://doi.org/10.1007/978-3-030-45724-2 3

12. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273.
Springer, Heidelberg (Apr 2006). https://doi.org/10.1007/11745853 17

13. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(Apr 1988)

14. Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures with short public
keys: Design, analysis and implementation studies. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 423–442. Springer, Heidelberg (Feb / Mar
2013). https://doi.org/10.1007/978-3-642-36362-7 26

15. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EU-
ROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (May / Jun
2006). https://doi.org/10.1007/11761679 28

16. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate sig-
natures from trapdoor permutations. In: Cachin, C., Camenisch, J. (eds.) EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (May 2004).
https://doi.org/10.1007/978-3-540-24676-3 5

17. Maurer, U.M.: Abstract models of computation in cryptography (invited paper).
In: Smart, N.P. (ed.) 10th IMA International Conference on Cryptography and
Coding. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (Dec 2005)

18. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple schnorr multi-signatures
with applications to bitcoin. Des. Codes Cryptogr. 87(9), 2139–2164 (2019).
https://doi.org/10.1007/s10623-019-00608-x

19. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: Simple two-round Schnorr multi-
signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS,
vol. 12825, pp. 189–221. Springer, Heidelberg, Virtual Event (Aug 2021).
https://doi.org/10.1007/978-3-030-84242-0 8

20. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M.
(ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (May
1996). https://doi.org/10.1007/3-540-68339-9 33

21. Rotem, L., Segev, G.: Tighter security for schnorr identification and signatures:
A high-moment forking lemma for Σ-protocols. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 222–250. Springer, Heidelberg, Vir-
tual Event (Aug 2021). https://doi.org/10.1007/978-3-030-84242-0 9

22. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(May 1997). https://doi.org/10.1007/3-540-69053-0 18

https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/11745853_17
https://doi.org/10.1007/978-3-642-36362-7_26
https://doi.org/10.1007/11761679_28
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/978-3-030-84242-0_9
https://doi.org/10.1007/3-540-69053-0_18

	Half-Aggregation of Schnorr Signatures with Tight Reductions

