
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 0, No. 0, pp. 0–0. DOI:10.46586/tosc.v0.i0.0-0

Towards Low-Latency Implementation of Linear
Layers

Qun Liu1,2, Weijia Wang1,2, Yanhong Fan1,2, Lixuan Wu1,2, Ling Sun1,2 and
Meiqin Wang(B)1,2,3

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,
Shandong University, Jinan, China

2 School of Cyber Science and Technology, Shandong University, Qingdao, China
3 Quan Cheng Shandong Laboratory, Jinan, China

{qunliu,fanyh,lixuanwu}@mail.sdu.edu.cn, {wjwang,lingsun,mqwang}@sdu.edu.cn

Abstract. Lightweight cryptography features a small footprint and/or low com-
putational complexity. Low-cost implementations of linear layers usually play an
important role in lightweight cryptography. Although it has been shown by Bo-
yar et al. that finding the optimal implementation of a linear layer is a Shortest Linear
Program (SLP) problem and NP-hard, there exist a variety of heuristic methods to
search for near-optimal solutions. This paper considers the low-latency criteria and
focuses on the heuristic search of lightweight implementation for linear layers. Most
of the prior approach iteratively combines the inputs (of linear layers) to reach the
output, which can be regarded as the forward search. To better adapt the low-latency
criteria, we propose a new framework of backward search that attempts to iteratively
split every output (into an XORing of two bits) until all inputs appear. By bounding
the time of splitting, the new framework can find a sub-optimal solution with a
minimized depth of circuits.
We apply our new search algorithm to linear layers of block ciphers and find many
low-latency candidates for implementations. Notably, for AES Mixcolumns, we
provide an implementation with 103 XOR gates with a depth of 3, which is among
the best hardware implementations of the AES linear layer. Besides, we obtain better
implementations in XOR gates for 54.3% of 4256 Maximum Distance Separable (MDS)
matrices proposed by Li et al. at FSE 2019. We also achieve an involutory MDS
matrix (in M4(GL(8,F2))) whose implementation uses the lowest number (i.e., 86,
saving 2 from the state-of-the-art result) of XORs with the minimum depth.
Keywords: Lightweight cryptography · Linear layers · Low latency · AES

1 Introduction
In recent years, lightweight cryptography has been applied in many fields, such as the
Internet of Things (IoTs) and Radio-Frequency IDentification (RFID) tags. Their security
has been the central area of focus for researchers because various restrictions lead to new
security threats [DGB19]. Generally, lightweight cryptography ensures secure encryption
and expands cryptography applications to devices with limited resources in circuit size,
power consumption, and latency.

There are many criteria for designing lightweight cryptographic primitives, and the most
popular one should be the gate equivalents (GE) required to implement a cryptographic
algorithm. As it nicely approximates the complexity of digital electronic circuits, there is
a growing body of work solely concentrating on decreasing the GE (see [BP10, BMP13,
KLSW17, DL18, BFI19, TP19, XZL+20, LXZZ21] for an incomplete list). Meanwhile,

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/10.46586/tosc.v0.i0.0-0
mailto:qunliu@mail.sdu.edu.cn, fanyh@mail.sdu.edu.cn, lixuanwu@mail.sdu.edu.cn
mailto:wjwang@sdu.edu.cn, lingsun@sdu.edu.cn, mqwang@sdu.edu.cn
http://creativecommons.org/licenses/by/4.0/


Qun Liu et al. 1

another criterion called latency is also crucial and has been attracting more and more
attention, since it not only impacts the throughput of encryption/decryption, but plays an
important role in the low-energy consideration of ciphers [BBI+15].

Generally speaking, research on lightweight cryptography falls in two directions. The
first direction focuses on designing new ciphers that suppose to be efficient in either
hardware (i.e., by logical gates) or software (i.e., on microprocessors) implementations. The
community has devoted a lot to this direction and proposes plenty of structures [BKL+07,
BSS+13, BBI+15, ZBL+15, BJK+16, BPP+17, DL18, LMMR21].

The second direction tries to optimize the implementation of given ciphers, which
has drawn a lot of attention as well. On the one hand, it is somewhat of more practical
significance. For example, the Advanced Encryption Standard (AES) [DR20] has been
widely used in practice, and its round function has been frequently used in the design of
other cryptographic primitives (e.g., AEGIS [WP13] and ForkAES [ARVV18]); thus, an
efficient implementation will directly reduce the cost of deploying AES and the primitives
that employ its round function. On the other hand, the optimizing approach can aid the
designing of lightweight ciphers. For example, Li et al. applied a heuristic optimization tool
to the cost evaluation of the proposed lightweight Maximal Distance Separable (MDS) ma-
trices for linear layers [LSL+19]. This paper follows the second line of work and focuses on
the hardware implementation of linear layers that provide diffusion for many cryptographic
primitives.

The linear layer of a cryptography cipher can be represented as the multiplica-
tion (over F2) between a matrix and a vector. For an m× n binary matrix A, given inputs
~x = (x0, x1, ..., xn−1)T , the outputs ~y = (y0, y1, ..., ym−1)T can be calculated by ~y = A~x.
We give an example with a matrix A:1 1 1 1 1

0 1 1 1 1
0 0 0 1 1

 ,
inputs ~x = (x0, x1, x2, x3, x4)T , and the outputs ~y = (y0, y1, y2)T . For the worst case
w.r.t. the cost, the implementation can be performed by the procedure described by Figure 1-
left, requiring 8 XOR gates. An optimized implementation is given in Figure 1-right,
saving half of the number of XOR gates. The above optimization can be formulated as a
problem of finding the smallest number of linear operations necessary to compute a set of
linear forms, which is called the Shortest Linear Program (SLP) problem. Although
it has been shown that the SLP problem is NP-hard [BMP08], in practice, we can build
circuit implementations of linear layers using a variety of heuristics [Paa97, BP10, BMP13,
KLSW17, BFI19, LSL+19, TP19, XZL+20, BFI21, LXZZ21].

y0 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4

y1 = x1 ⊕ x2 ⊕ x3 ⊕ x4

y2 = x3 ⊕ x4

y2 = x3 ⊕ x4

y1 = x1 ⊕ x2 ⊕ y2

y0 = x0 ⊕ y1

Figure 1: Two implementations of (y0, y1, y2)T = A× (x0, x1, x2, x3, x4)T

The first heuristic approach employs the strategy originated in Paar’s work [Paa97]
and can be regarded as the forward search. Paar’s method encodes input bits by one-hot
encoding.1 Paar optimized the matrix by iteratively combining different columns in the
matrix. Paar’s method has been improved in a number of follow-up works. Boyar et al.
proposed a new algorithm called BP algorithm in [BP10]. It uses a set Base to save all the

1One-hot encoding encodes each bit into a group of bits among which the legal combinations of values
are only those with a single high (1) bit and all the others low (0).



2 Towards Low-Latency Implementation of Linear Layers

values which have been generated by the algorithm. It repeatedly picks two values from
Base according to some rules, adds them together as a new value, and puts this new value
into Base. It further optimizes the procedure of route searching by dedicatedly choosing
values to combine. BP algorithm has a series of variants (see [VSP18, RTA18, TP19]).
Then, Xiang et al. decomposed the matrix A into the product of several elementary
matrices, based on which the search can be significantly improved [XZL+20].

However, the above algorithms cannot solve another problem: how to take circuit
depth into account and optimize the matrices with respect to achieving the minimum
depth. Li et al. provided a solution by adding a depth constraint in BP algorithm called
LSL algorithm [LSL+19], which is further improved by Banik et al. called BFI algorithm
[BFI21]. When executing BP algorithm, they give a bound of depth and only pick the
choices that are not beyond the bound. In the selection, some choices which have the low
priority in their heuristics may lead to a better implementation. We illustrate the case
with the following example. Suppose that the objective matrix is MP :

1 1 1 1 1 1 0
1 1 1 1 0 1 0
1 1 1 1 0 0 1
1 1 1 0 1 1 0
1 1 1 1 0 0 0
1 1 1 0 0 0 0
1 1 0 0 0 0 0


.

As shown in Table 1-left, Li et al. find the implementation by 11 XOR gates with depth
3. Based on their heuristics, y4 is always generated with depth 3. This disables y4 from
being used in subsequent calculations. Otherwise, it will be beyond the bound of minimum
depth. However, we find that y4 can be generated with depth 2 and be used in subsequent
implementation to reduce the number of XOR gates (see Table 1-right). This shows that
there is a gap between existing algorithms and the lowest number of XOR gates with
respect to the minimum depth.

Table 1: The implementations of MP (left: forward algorithm; right: backward algorithm).

No. Operation Depth No. Operation Depth
0 t1 = x0 ⊕ x1//y6 1 0 y0 = y4 ⊕ t7 3
1 t2 = x2 ⊕ t1//y5 2 1 y1 = y4 ⊕ x5 3
2 t3 = x3 ⊕ t2//y4 3 2 y2 = y4 ⊕ x6 3
3 t4 = x3 ⊕ x5 1 3 y3 = y5 ⊕ t7 3
4 t5 = t2 ⊕ t4//y1 3 4 y4 = t8 ⊕ y6 2
5 t6 = x3 ⊕ x6 1 5 y5 = x2 ⊕ y6 2
6 t7 = t2 ⊕ t6//y2 3 6 y6 = x0 ⊕ x1 1
7 t8 = x4 ⊕ x5 1 7 t7 = x4 ⊕ x5 1
8 t9 = t2 ⊕ t8//y3 3 8 t8 = x2 ⊕ x3 1
9 t10 = x3 ⊕ t8 2 - - -
10 t11 = t2 ⊕ t10//y0 3 - - -

Therefore, we propose the backward framework. It has completely different heuristics.
Actually, our method is inspired by the Constant Matrix Multiplication (CMM) problem.
The CMM problem is defined as finding a solution using additions, subtractions, and
shifts to compute the multiplication of an m× n constant matrix M over Z. Kumm et al.
proposed an algorithm called RPAG-CMM in [KHZ17] to solve the CMM problem with the
minimum depth. It catches our attention. However, in our experiment for binary matrix,
the XOR gates generated by RPAG-CMM are more than LSL algorithm. Therefore, we



Qun Liu et al. 3

study the special version of RPAG-CMM for binary matrix and propose a new heuristic
algorithm based on the backward framework for binary matrices. The main algorithm will
be introduced in Algorithm 2, which is more relevant to the SLP problem.

1.1 Our Contributions
In this paper, we investigate a new strategy of backward search. Concretely, rather than
combining the inputs to reach the outputs, our new method attempts to iteratively split
the outputs until all the input values appear. As shown in Table 1-right, for the matrixMP ,
the minimum depth of y0, y1, y2, y3 is 3, but others are less than 3. We give the method to
compute the minimum depth in Subsection 2.1. Thus, we first consider the four values.
We have y0 = y4 ⊕ t7, y1 = y4 ⊕ x5, y2 = y4 ⊕ x6, and y3 = y5 ⊕ t7. Because y4, y5, t7 are
not input values, we split them into t8, y6, x2, x4, x5. Finally, we split t8, y6 by t8 = x2⊕x3
and y6 = x0 ⊕ x1. The complete processes can be seen in Subsection 3.1. The above
process leads to a new implementation with 9 XOR gates and the depth (that is defined
by the longest path from the input to the output) 3. It should be noted that the new
method can bound the depth in the search, which contributes to the solutions that take
both latency and GE into consideration. For some matrices, the framework can cover
more implementations than previous algorithms with minimum depth in a limited time, as
illustrated in details in Subsection 3.4.

Then, we apply the strategy to linear layers of block ciphers and find many low-latency
candidates for implementations. The results can be seen in Table 2 and Table 3. For
the 11 linear layers that we analyzed, we find 8 matrices that have the same XOR gates
with minimum depth and optimize 3 matrices in XOR gates. For the 26 lightweight
matrices proposed, we find 9 matrices that have the same XOR gates with minimum depth
and optimize 8 matrices in XOR gates. Notably, for AES Mixcolumns, we achieve an
implementation with 103 XOR gates and depth 3. This is the same as the best low-latency
result recently reported in [BFI21]. We also apply the algorithm to 4256 MDS matrices
proposed by Li et al. in [LSL+19], and achieve better implementations in XOR gates
for 54.3% of them (see Table 8). The smallest matrix among them can be implemented
with 86 XOR gates and depth 3, while the previous result is 88 XOR gates in [LSL+19].

Last but not least, we synthesize the above results using two different ASIC libraries,
namely TSMC 90 nm and NanGate 45 nm. Our implementation of the AES MixColumns
has lower power and latency in the two libraries than those in [LSL+19, XZL+20, LXZZ21,
BFI21]. All the source codes and results of this paper are available at

https://github.com/QunLiu-sdu/Towards-Low-Latency-Implementation.

1.2 Organization
In Section 2, we give some basic notations and metrics. Moreover, in Section 3, we formally
propose our algorithm and give some examples using our algorithm. All the results and
implementations in hardware are given in Section 4. Finally, we conclude and propose
future research directions in Section 5.

2 Preliminaries
2.1 Notations
Let F2 be a field with two elements and its additive and multiplicative identities are
respectively denoted as 0 and 1. Let Fn

2 be the vector space of all n-dimensional vectors
over F2 and Fn`

2 be the vector space of all `-dimensional vectors over Fn
2 . We use M`(Fn

2 )
to denote the set of all `× ` matrices over Fn

2 , and use M`(GL(n,F2)) to denote the set

https://github.com/QunLiu-sdu/Towards-Low-Latency-Implementation


4 Towards Low-Latency Implementation of Linear Layers

Table 2: The XOR number/depth of implementation cost of matrices. Except for the last
row, every matrix is consistent with the choice in [KLSW17].

Matrixa [KLSW17]b [XZL+20]b [LXZZ21]b [LSL+19]c [BFI21]c Oursc

AES [DR20] 97/8 92/6 91/7 105/3 103/3 103/3
SMALLSCALE AES [CMR05] 47/7 43/5 43/5 49/3 49/3 47/3
JOLTIK [JNP15] 48/4 44/7 43/8 51/3 50/3 48/3
QARMA128 [Ava17] 48/3 48/3 48/3 48/2 48/2 48/2
MIDORI [BBI+15] 24/4 24/3 24/3 24/2 24/2 24/2
PRINCE M0,M1 [BCG+12] 24/4 24/6 24/6 24/2 24/2 24/2
PRIDE L0,L3 [ADK+14] 24/4 24/3 24/3 24/2 24/2 24/2
PRIDE L1,L2 [ADK+14] 24/3 24/3 24/3 24/2 24/2 24/2
QARMA64 [Ava17] 24/3 24/5 24/5 24/2 24/2 24/2
SKINNY64 [BJK+16] 12/2 12/2 12/2 12/2 12/2 12/2
CAMELLIA [AIK+00] 16/4 16/4 16/4 20/3 - 19/3
[SKOP15](Hadamard) 48/3 44/7 44/7 51/3 50/3 49/3
[LS16](Circulant) 44/3 44/6 43/4 47/3 44/3 44/3
[LW16](Circulant) 44/5 44/8 43/4 47/3 44/3 44/3
[BKL16](Circulant) 42/5 41/6 40/5 47/3 43/3 45/3
[SS16](Toeplitz) 43/5 41/7 40/7 44/3 43/3 45/3
[JPST17] 43/5 41/6 40/6 45/3 45/3 45/3
[SKOP15](Involutory) 48/4 44/8 43/8 51/3 49/3 48/3
[LW16](Involutory) 48/4 44/6 43/8 51/3 49/3 48/3
[SS16](Involutory) 42/4 38/8 37/7 48/3 46/3 45/3
[JPST17](Involutory) 47/7 41/6 41/10 47/3 47/3 47/3
[SKOP15](Hadamard) 100/5 90/6 91/7 102/3 99/3 100/3
[LS16](Circulant) 112/5 121/11 107/6 114/3 113/3 113/3
[LW16] 102/3 104/6 99/4 102/3 103/3 102/3
[BKL16](Circulant) 110/5 114/10 105/7 112/3 110/3 111/3
[SS16](Toeplitz) 107/5 114/12 100/9 107/3 107/3 107/3
[JPST17](Subfield) 86/5 82/7 80/6 90/3 90/3 93/3
[SKOP15](Involutory) 100/6 91/6 89/8 102/3 100/3 100/3
[LW16](Involutory) 91/6 87/6 86/9 99/3 95/3 94/3
[SS16](Involutory) 100/6 93/8 92/8 104/4 102/4 109/4
[JPST17](Involutory) 91/7 83/6 84/6 94/3 94/3 97/3
[KLSW17] 84/4 - - 96/3 - 92/3
[LSL+19](Involutory) - - - 88/3 - 86/3d

a For the block cipher, we optimize the matrix used in the linear layer.
b The results only take the number of XOR gates into account.
c The results take the number of XOR gates into account with respect to the minimum depth.
d We show the lowest one from all the results.

Table 3: The XOR number/depth of implementation cost of matrices with depth 3
in [DL18].

Matrix Instantiation Const
[DL18]

BP
[BP10]

Paar2
[Paa97]

RSDF
[RTA18]

RNBP
[TP19]

A1
[TP19]

A2
[TP19] Ours

M9,5
4,3 A4 41/3 40/4 43/4 43/7 40/5 41/7 40/5 40/3

M9,5
4,3 A−1

4 41/3 43/5 44/3 44/10 41/6 41/7 40/6 41/3
M9,5

4,3 A8 77/3 76/7 86/4 87/10 76/6 77/7 76/6 82/3
M9,5

4,3 A−1
8 77/3 79/5 86/4 91/14 77/6 77/7 77/5 81/3



Qun Liu et al. 5

of all ` × ` matrices whose elements are taken from the general linear group GL(n,F2)
formed by all invertible n× n matrices over F2. Note that we abuse M`(Fn

2 ) or Mn`(F2)
to denote the set of all n`× n` binary matrices.

For a vector x ∈ Fn`
2 , let ωn(x) be the number of non-zero n-bit chunks. Particularly,

if n = 1, ω1(x) is the Hamming weight of x. For a matrix A ∈ Mn`(F2), the branch
number Bn(A) is defined as minx∈Fn`

2 \{0}{ωn(x) + ωn(Ax)}. Then, an invertible matrix A
is an MDS matrix if and only if Bn(A) = `+ 1. Moreover, A is an involutory MDS matrix,
if A is MDS and A = A−1.

For any linear layer of a cipher associated to an m × n binary matrix A, given
inputs ~x = (x0, x1, ..., xn−1)T , the outputs ~y = (y0, y1, ..., ym−1)T of the linear layer can
be calculated by ~y = A~x, and yi can be computed by

yi = ai0x0 ⊕ ai1x1 ⊕ . . .⊕ ai(n−1)xn−1,

where each coefficient aij is the entry of matrix A at i-th row and j-th column. We can
then associate yi with a binary vector:

[ai0, ai1, . . . , ai(n−1)].

We use “node” to define such binary vector. That is, the node Nyj

def= [ai0, ai1, ..., ai(n−1)].
Nxi

is the unit node and Nyj
is the target node. For three nodes Nyi1

, Nyi2
and Ny′

i
,

we say Nyi1
and Nyi2

generate Ny′
i
, if Ny′

i
= Nyi1

⊕Nyi2
with ⊕ element-wise plus. For

a node Nyi
, we define its depth D(Nyi

) as the maximum number of XOR operations
of a path from unit nodes to Nyi . Obviously, the depth of D(Ny′

i
) ≥ D(Nyi1

) + 1 and
D(Ny′

i
) ≥ D(Nyi2

) + 1. We define the minimum depth of a node Nyi as:

dlog2(ω1(Nyi))e. (1)

Given an m× n binary matrix A over F2, the minimum depth of A is defined as:

max
yi∈A
{dlog2(ω1(Nyi

))e}, where Nyi
= [ai0, ai1, . . . , ai(n−1)]. (2)

Note that we can treat the implementation of the matrix A as a graph. Thus, the depth
of the implementation is the critical path length of the graph.

2.2 Metrics
In this sub-section, we recall some metrics for a matrix over F2, which are helpful in the
proposed solver of minimum depth SLP problem.
The direct-XOR (d-XOR) [KPPY14]. Given an m × n binary matrix A over F2,
the d-XOR count is defined as ω1(A)−m, where we define ω1(A) as the Hamming weight
of A, i.e., the number of 1’s in A.
The sequential-XOR (s-XOR) [JPST17]. Let A ∈ GL(n,F2) be an invertible matrix.
Assume x0, x1, ..., xn−1 are the n input values of A. It is always possible to perform a
sequence of XOR instructions xi = xi ⊕ xj with 0 ≤ i, j ≤ n− 1, such that the n input
values are updated to the n output values. The s-XOR count of A is defined as the minimal
number of XOR instructions to update the inputs to the outputs.
The general-XOR (g-XOR) [XZL+20]. Given an m× n binary matrix A over F2,
the implementation of A can be viewed as a sequence of XOR operations xi = xj1 ⊕ xj2

where 0 < xj1 , xj2 < i and i = n, n + 1, . . . , t − 1. The g-XOR count is defined as the
minimal number of operations xi = xj1 ⊕ xj2 that compute the m outputs completely.

Since the d-XOR is intuitive and easy to compute, it has been adopted in the design of
new lightweight diffusion layers. For further optimization, the s-XOR and the g-XOR are



6 Towards Low-Latency Implementation of Linear Layers

used in evaluating matrices. The difference is that the g-XOR can generate new values
while the s-XOR always renews original values. For example, for computing x0 ⊕ x1, the
s-XOR performs x0 = x0 ⊕ x1 or x1 = x0 ⊕ x1. While the g-XOR can generate t2 with
t2 = x0 ⊕ x1.

Global optimization. For anm×n binary matrix A over F2, we can obtain an estimation
of its hardware cost by finding a good linear straight-line program corresponding to A with
state-of-the-art automatic tools based on certain SLP heuristics [BMP13]. Using different
heuristics, global optimization leads to better results than local optimization [KLSW17].
And in this paper, the global optimization corresponds to optimizing with respect to the
g-XOR metric.

3 Backward Search
In this section, we formally present the new search framework and algorithm. The new
framework provides another intuitive perspective to solve the SLP problem with respect
to achieving the minimum depth. We find that other methods always ignore some choices
because of their rules. Our new framework can keep such choices (ignored by other
methods) and potentially can achieve better solutions. We only use the g-XOR metric in
our framework.

First, we introduce the backward search framework and provide an example in Subsec-
tion 3.1. The example using our strategy can help readers to understand our framework.
We begin with the example and then formalize the process. Then, we propose five heuristics
rules of splitting nodes for the low-area backward strategy in Subsection 3.2, and discuss
their priorities (i.e., to determine which rule will be used if multiple ones can be matched)
in Subsection 3.3. Finally, we compare LSL algorithm with our framework in Subsection 3.4,
to explain the advantages of the backward search for low-latency implementation compared
to the forward one.

The notations used in this section are as follows. For convenience, we use node y
instead of Ny.

• A: An m× n binary matrix to be implemented.

• xi: The unit node with the i-th bit set.

• yi: The target node of A.

• X : A set of unit nodes.

• dyi : The minimum depth of yi.

• dA: The maximum value of the depth of each row in A.

• Ld: A set of all the nodes with minimum depth d.

• W: The working set containing target nodes.

• P: The predecessor set containing the predecessor nodes.

• E : The edge set containing the edges used to generate the graph.

• s: The current depth of W used to determine which nodes will be considered.



Qun Liu et al. 7

3.1 The Backward Strategy
The backward strategy can be regarded as the search from outputs to inputs by iteratively
splitting the nodes. Given an implementation of a matrix A : {xi = xj1 ⊕ xj2} with
0 < j1, j2 < i and i = n, n + 1, . . ., every non-unit node xi(i ≥ n) can be split into two
nodes xj1 and xj2 . If we use new nodes to split the target nodes into unit nodes, we can
also find an implementation of A. For convenience, we call p and q the predecessors of w,
if and only if w = p⊕ q holds. The backward strategy is given in Algorithm 2. We bring
the example MP in Section 1 to cast some light on our framework:

1 1 1 1 1 1 0
1 1 1 1 0 1 0
1 1 1 1 0 0 1
1 1 1 0 1 1 0
1 1 1 1 0 0 0
1 1 1 0 0 0 0
1 1 0 0 0 0 0


.

Initialization. In MP , yi represents the i-th row of the matrix, and xi is the unit
node with the i-th bit set. We put each row in MP into the working set W. The
unit set X contains all the unit nodes. Thus, we have the predecessor set P = φ,
W = {y0, y1, y2, y3, y4, y5, y6}, and X = {x0, x1, x2, x3, x4, x5, x6}. The nodes in W need
to be split. Then, we use Equation (1) to give the minimum depth of each node:

dy0 = 3, dy1 = 3, dy2 = 3, dy3 = 3, dy4 = 2, dy5 = 2, dy6 = 1.

And we calculate the minimum depth of MP is dMP
= 3 by Equation (2).

Step 1. The current depth s is dMP
= 3. For yi ∈ W, if the minimum depth dyi

of yi

meets dyi
< s, we put it from W to P. Therefore, W = {y0, y1, y2, y3}. P = {y4, y5, y6}.

Step 2. s = dMP
= 3. We split y0, y1, y2, y3 ∈ W . If the nodes in P can split one node in

W , we will not generate new nodes. We first use y4 to split y0, y1, y2. We have to generate
new nodes t7 = [0, 0, 0, 0, 1, 1, 0], x5, and x6, as we have y0 = y4 ⊕ t7, y1 = y4 ⊕ x5, and
y2 = y4 ⊕ x6. Then, we find that y3 can be split into y5 and t7 without any new nodes.
Now, W = φ, and P = {y4, y5, y6, t7, x5, x6}.

Step 3. Because of W = φ, we set W ← P, P ← φ, and s = s− 1 = 2. Like Step 1, we
put y6, t7, x5, x6 to P.

Step 4. s = 2. W = {y4, y5}. P = {y6, t7, x5, x6}. We generate t8 = [0, 0, 1, 1, 0, 0, 0]
and x2. y4 and y5 can be split into t8, y6 and x2, y6 respectively. Thus, W = φ, and
P = {y6, t7, t8, x2, x5, x6}.

Step 5. Because of W = φ, we set W ← P, P ← φ, and s = s− 1 = 1. Like Step 1, we
put x2, x5, x6 to P.

Step 6. s = 1. W = {y6, t7, t8}. P = {x2, x5, x6}. New nodes x0, x1, x3, and x4 are
generated to split y6, t7, and t8. Therefore, W = φ, and P = {x0, x1, x2, x3, x4, x5, x6}.

Step 7. Because of W = φ, we set W ← P, P ← φ, and s = s − 1 = 0. Now,
W = {x0, x1, x2, x3, x4, x5, x6}. All the target nodes are split into unit nodes. We finish
the search.

Now, we formalize our framework. First, we state the problem that we focus on. The
SLP problem is defined as follows.



8 Towards Low-Latency Implementation of Linear Layers

Definition 1 ([BMP08]). The Shortest Linear Program (SLP) problem is defined as
finding a solution with the minimum number of XORs to compute the multiplication of an
m× n constant matrix A over F2.

Then, we extend the SLP problem by considering the depth of the solution. The
backward framework aims at solving the SLP problem as well as achieving the minimum
depth. In other words, we give the solution of the SLP problem, where the depth of each
node is not greater than the minimum depth of A.

Definition 2. The backward framework is an approach to search for a solution for the
SLP problem that starts from target nodes, chooses a node iteratively, and splits it into
two ones until all the nodes are unit ones.

Our framework returns a directed graph formed by nodes and by edges connecting
pairs of nodes. In the case of a directed graph, each edge has an orientation, from one
node to another. If there exists an edge from p to q, we say that q has a predecessor node
p. And the in-degree of a node is defined as the number of edges whose origins are the
node. As our framework always splits one node into two predecessor nodes, the in-degree
of every node is either 0 or 2. This gives rise to the following property.

Property 1. The backward framework returns a directed graph. In the graph, the in-
degree of each node is 0 or 2. Every unit node has the in-degree 0. And every non-unit
node has the in-degree 2 and can represent an XOR gate.

We use the set E to save the graph. The implementation is encoded in E in the form
(p, u), which means that there exists an edge from p to u. Normally, a graph is defined by
a tuple of sets, one for edges and one for vertices (i.e., the nodes). However, for the sake
of brevity, we omit the set of vertices since every edge (p, u) explicitly implies that the
graph contains two nodes p and u. For each non-unit node, there exist two nodes p and q
such that (p, u) and (q, u) are saved in E . In Step 2 of the example, we have y0 = y4 ⊕ t7.
Thus, we put (y4, y0) and (t7, y0) into E .

For a non-unit node u, the splitting method uses two predecessor nodes a and b to split
u by u = a⊕ b. The depth of a graph is defined as the number of non-unit nodes involved
in its critical path. If we choose the appropriate predecessors, we can ensure that the SLP
problem is solved with respect to achieving the minimum depth.

Proposition 1. For any y ∈ Ld (d ≥ 1), there exist y1 and y2 with y1 ∈ Ld−1 or y2 ∈ Ld−1
such that y1 ⊕ y2 = y.

Proof. Based on Equation (1) and the definition of Ld, we have

dlog2(ω1(y))e = d.

Therefore, we obtain that
2d−1 < ω1(y) ≤ 2d.

For d = 1, Proposition 1 holds obviously. We consider the case of d ≥ 2. If the minimum
depth d(yi) (i ∈ {0, 1}) of y1 or y2 meets d(yi) ≥ d, y ∈ Ld does not hold. To ensure that
each node reaches the minimum depth, we only consider the case of dy1 , dy2 < d. Assume
that y1 /∈ Ld−1 and y2 /∈ Ld−1. Without loss of generality, let y1, y2 ∈ Lk (0 ≤ k < d− 1),
we have

0 < ω1(y1), ω1(y2) ≤ 2k ≤ 2d−2.

Since y1 /∈ Ld−1 and y2 /∈ Ld−1, we have

0 < ω1(y) ≤ ω1(y1) + ω1(y2) ≤ 2k + 2k ≤ 2d−1.

This contradicts to 2d−1 < ω1(y). Therefore, we must have y1 ∈ Ld−1 or y2 ∈ Ld−1.



Qun Liu et al. 9

Proposition 1 can help us to execute the splitting process. We use an example to
illustrate it. Suppose that y ∈ L3. The Hamming weight ω1(y) of y is 5, 6, 7, or 8. If
y1, y2 ∈ L1, ω1(y1) and ω1(y2) are not greater than 2. y = y1 ⊕ y2 is impossible. Thus,
we must have y1 ∈ L2 or y2 ∈ L2. We use W to save the nodes which need to be split.
Note that the splitting method may generate new nodes. We put them into P. We
recommend reusing the nodes in P for reducing the number of XOR gates. Our heuristics
in Subsection 3.2 aim to reuse non-unit nodes based on the current states of W and P.
And if we cannot match any heuristics, a function DefaultSplit() is used to split the nodes
by a default method (see Algorithm 1).

Algorithm 1 DefaultSplit()
Input: A target set W
Output: The target node w and suitable predecessor nodes p and q
w

select←− W
s ← dlog2(ω1(w))e
p

select←− Ls−1
q ← w ⊕ p
return w, p, q

In the function DefaultSplit(), we use an operation “select←− ”. The operation selects an
element from the set randomly. Algorithm 1 shows the selection based on Proposition 1.
The selection of p is a random process. Suppose that we need to split y = [1, 1, 1, 1, 1].
Because of y ∈ L3, we first select predecessor node y1. ω1(y1) can only be one of {2, 3, 4}.
We randomly choose ω1(y1) = 3. Then, we randomly set the three bits of y1 to 1 and
others to 0. Thus, in this selection, we select y1 = [1, 1, 1, 0, 0] in L2. And y2 can be
generated by y2 = y ⊕ y1 = [0, 0, 0, 1, 1].

Proposition 2. Given an m × n binary matrix A and its minimum depth dA, we can
always find a graph based on the backward framework where each target node yi can be split
into unit nodes and the depth of each node is not greater than dA.

Proof. The target nodes are y0, y1, ..., ym−1. We put them into the working set W and
initialize the predecessor set P ← φ. Based on Proposition 1, for each node yi in W, if yi

is not unit node, we can always find two predecessors tp and tq where dtp
and dtq

are less
than dyi

. Through repeating the process, we split all the nodes in W into P. Next, we
treat P as W and continue to split the nodes in W. The above process stops only when
no nodes need to be split. Finally, every target node will be split into unit nodes.

Proposition 2 ensures that our framework can always work. Note that the proof of the
proposition implies the processes of the backward framework. It is simple to see that this
method is suitable for low-latency implementation. For an m× n binary matrix A, the
minimum depth of A is dA. If using the backward strategy, we can use dyi to represent
the minimum depth of each target node yi (0 ≤ i ≤ m − 1) and have yi ∈ Ldyi

. When
selecting predecessor nodes, we always choose them from Lk (k < dyi

), which can reach
the bound of minimum depth easily. We can give the following steps and the complete
process is in Algorithm 2.

1. Initialize the target set W and the predecessor set P.
2. If X ∪W = X , return the implementation E .
3. If W = φ, treat P as the target set to split, s← s− 1, go to Step 2.
4. Use heuristics to split. If it is successful, go to Step 3.
5. Use the default method to split. Go to Step 3.



10 Towards Low-Latency Implementation of Linear Layers

Algorithm 2 backward search framework
Input: An m× n binary matrix A
Output: The implementation E of A
W ← {yi}(0 ≤ i ≤ m− 1) . The target set
X ← {xj}(0 ≤ j ≤ n− 1)
P ← φ
E ← φ
dyi
← dlog2(ω1(yi))e

dA ← max{dyi}
s← dA

while X ∪W 6= X do
while W 6= φ do

if Search(W,P, s) = True then . Using heuristics to reduce circuit area
continue

end if
w, p1, p2 = DefaultSplit(W) . Default method
W ←W\{w}, P ← P ∪ {p1, p2}
E ← E ∪ {(p1, w), (p2, w)}
continue

end while
s← s− 1 . Deal with the depth
W ← P
P ← φ

end while
return E

As the processes of splitting and generating nodes are randomized, recalling the
computations at different times would lead to different results. Hence, it is difficult to
determine how long we wait to achieve the best solution. We execute the algorithm in a
limited and reasonable time (several days) to collect many implementations and select the
best one among them. This strategy is quite similar to many previous search approaches
in, e.g., [KLSW17, TP19, XZL+20, BFI21].

For a matrix, the initial information includes the target nodes and unit nodes. All the
target nodes will be put into W . Next, we generate new predecessor nodes or use existing
nodes to split the nodes in W . Which predecessor nodes will be used depends on different
strategies. Since the selection of the predecessors is randomized, it is possible that we
cannot find a good implementation taking a long time. Thus, we provide five rules of
heuristics (see Subsection 3.2). The rules can help us to find the sub-optimal result. It is
easy to transform our implementation to a circuit. The depiction “a is split into b and c”
means a = b⊕ c.

Given the current depth s, we only search the predecessor nodes from Lk(0 ≤ k < s).
Lk is a set of all the nodes with minimum depth k. The loop condition in Algorithm 2
X ∪W 6= X indicates that there is at least one non-unit node in W, which will be split
according to our strategy. In Step 7 of the example, the loop condition does not hold,
and it returns the result. In addition, for splitting the nodes with fewer XOR gates, we
give a function Search() to describe how the algorithm uses the heuristics to split nodes
and update parameters. We can view more details in Algorithm 3. The purpose of the
heuristics is to reduce the XOR gates in a reasonable time.



Qun Liu et al. 11

3.2 Heuristics of Splitting Nodes
In this section, we present our heuristic algorithm that takes the working set W, the
predecessor set P, and the current depth s in Algorithm 2 and output the best candidate
node to be split and the splitting scheme. We present several splitting rules of W , P , and
s and the corresponding action of splitting. The heuristic search is performed by matching
one of the rules and conducting the corresponding actions. Most examples are from MP .

Algorithm 3 Search()
Input: W, P, and s in the framework
Output: True or False
if ∃w1 ∈ W meets dw1 < s then
W ←W\{w1}, P ← P ∪ {w1} . Rule 1
return True

end if
if ∃p, q ∈ P, ∃w ∈ W s.t. w = p⊕ q then
W ←W\{w} . Rule 2
E ← E ∪ {(p, w), (q, w)}
return True

end if
if ∃p ∈ P, ∃w ∈ W, ∃q ∈ Lk(0 ≤ k < s) s.t. w = p⊕ q then
W ←W\{w} . Rule 3
P ← P ∪ {q}
E ← E ∪ {(p, w), (q, w)}
return True

end if
if ∃p1, p2, p3 ∈ Lk(0 ≤ k < s), ∃w1, w2 ∈ W s.t. w1 = p1 ⊕ p2, w2 = p2 ⊕ p3 then
W ←W\{w1, w2} . Rule 4
P ← P ∪ {p1, p2, p3}
E ← E ∪ {(p1, w1), (p2, w1), (p2, w2), (p3, w2)}
return True

end if
return False

Rule 1:
Match: There is w1 ∈ W which meets dw1 < s.
Operation: Put w1 from W to P. (see Figure 2(a)).
Example: In Step 1 of the example in Subsection 3.1, W = {y0, y1, y2, y3, y4, y5, y6} and
s = 3. The minimum depth of y4, y5, y6 is less than s. Thus, we set W ←W\{y4, y5, y6}
and P ← P ∪ {y4, y5, y6}.
Rule 2:
Match: ∃p1, p2 ∈ P, ∃w1 ∈ W s.t. w1 = p1 ⊕ p2.
Operation: Delete w1. (see Figure 2(b)).
Example: In Step 2 of the example in Subsection 3.1, after splitting y0, y1, y2, W = {y3},
P = {y4, y5, y6, t7, x5, x6}. We find that y3 can be split directly into y5 and t7. Thus, we
set W ←W\{y3}.
Rule 3:
Match: ∃p1 ∈ P, ∃w1 ∈ W, ∃p2 ∈ Lk(0 ≤ k < s) s.t. w1 = p1 ⊕ p2.
Operation: W ←W\{w1},P ← P ∪ {p2} (see Figure 2(c)).
Example: In Step 4 of the example in Subsection 3.1, W = {y4, y5}, P = {y6, t7, x5, x6}
and s = 2. We use y6 to split y5. We need to generate a new node x2 to meet y5 = y6⊕x2,
in which y5 ∈ L2, y6 ∈ L1, and x2 ∈ L0. Thus, we set W ←W\{y5} and P ← P ∪ {x2}.



12 Towards Low-Latency Implementation of Linear Layers

Rule 4:
Match: ∃p1, p2, p3 ∈ Lk(0 ≤ k < s), ∃w1, w2 ∈ W s.t. w1 = p1 ⊕ p2, w2 = p2 ⊕ p3.
Operation: W ←W\{w1, w2},P ← P ∪ {p1, p2, p3} (see Figure 2(d)).
Example: Suppose that s = 2 and W has two nodes y0 and y1. We can split them to three
new predecessors p1 = [0, 0, 0, 0, 1, 1, 0], p2 = [1, 1, 1, 1, 0, 0, 0], and p3 = [0, 0, 0, 0, 0, 1, 0] by
y0 = p1 ⊕ p2 and y1 = p2 ⊕ p3, in which y0 ∈ L3, y1 ∈ L3, p1 ∈ L1, p2 ∈ L2, and p3 ∈ L0.
We set W ←W\{y0, y1},P ← P ∪ {p1, p2, p3}.
Rule 5:
Match: This is the default splitting rule.
Operation: Using the default method to split. (see Figure 2(e)).
Example: In Step 6 of the example in Subsection 3.1, W = {y6, t7, t8}. P = {x2, x5, x6}.
After splitting t7, t8, we use DefaultSplit() to split y6. We generate x0 and x1, then,
y6 = x0 ⊕ x1. We set W ←W\{y6},P ← P ∪ {x0, x1}.

w1The working set:

The predecessor set:

(a) Rule 1

w1

p1 p2

(b) Rule 2

w1

p1 p2

(c) Rule 3

The working set:

The predecessor set: p1 p2

w1 w2

p3

(d) Rule 4

p1 p2

w1

(e) Rule 5

Figure 2: The different splitting rules

3.3 Discussion on the Priority
Another problem is to decide which rule takes precedence. If we make bad choices, the
number of nodes in P will increase, which may lead to a worse implementation. Our
strategy is a greedy one to choose the best candidate in the current state rather than the
global optimal choice. The method helps us return a feasible solution in a reasonable time.

Thus, we need to investigate the priority between different rules. For this problem, we
make a series of experiments. We try to modify the order of different rules, give them a
hierarchical priority, and compare their results. Meanwhile, we give the theoretical costs
of each rule in Table 4. Ideally, the output nodes can be generated without any cost.
However, this case cannot happen. Each non-unit node has two predecessors with one
XOR gate.

Rule 1 will be matched first because it reduces one node in W and adds one node in P
without additional XOR operations. In Rule 2, we need one XOR gate. Besides, we don’t
generate new predecessors in Rule 2, while Rule 3 generates a new predecessor. Thus, we
prefer Rule 2 to Rule 3 if both of them can be matched.

In the worst case, i.e., Rule 5, a node will be split into two predecessor nodes. Rule 4
is preferred than Rule 5 because two nodes in W are only split into 3 new predecessors.
Actually, Rule 4 can be regarded as the combination of Rule 3 and Rule 5. Thus, in some
cases, Rule 3 and Rule 4 can be regarded as the same. Therefore, the relation of rules’
priorities is

Rule 1 > Rule 2 > Rule 3 ≥ Rule 4 > Rule 5.

Candidates with the same priority. In the running of our strategy, it is inevitable
that several candidates with the same priority may be chosen. For the case of a tie, one



Qun Liu et al. 13

Table 4: The costs of predecessors

Rule Output nodes1 Gates2 predecessors3

Rule 1 1 0 1
Rule 2 1 1 0
Rule 3 1 1 1
Rule 4 2 2 3
Rule 5 1 1 2
1 The number of nodes we deal with.
2 The number of XOR gates we use.
3 The number of new predecessors we generate.

possible solution is to record all the candidates and try them sequentially. However, this
may lead to a large memory requirement. Sometimes, we even cannot exhaust search all
possible candidates in a reasonable time. We use an alternative method. It takes a random
selection and randomly selects a candidate to speed up the search process.

3.4 Comparison of Backward and Forward Search for Low-latency
Implementation

In this section, we explain the advantage of the backward searching for low-latency imple-
mentation beyond the forward one. The advantage is that the backward framework ensures
that each node reaches the minimum depth, which holds for all matrices. However the
forward algorithm cannot (see Section 1). This feature will affect whether the node can
be used to generate new nodes. Thus, for some matrices, the framework can cover more
implementations than previous algorithms with minimum depth in a limited time. Then,
we give a further explanation as follows.

First, we review the very effective forward search algorithm proposed by Boyar et al. in
[BP10]. Given a set of unit nodes and target nodes as a binary matrix, for generating every
row yi (0 ≤ i ≤ m−1) in matrix, BP algorithm places all unit nodes {x0, x1, ..., xn−1} into
the Base set B and initialize an m-integer vector Dist which keeps track of the distances
of each target node from B. The Dist is [δ(B, y0), δ(B, y1), ..., δ(B, ym−1)], where δ(B, yi)
indicates the minimum number of XOR gates required that can obtain yi from B. Then,
Boyar repeatedly picks two nodes from B according to some rules, adds them together as
a new node, and puts this new node into B. The rules are described as follows:

1. Perform XOR on every unique pair of nodes in B to generate a new node. The node
is used to re-evaluate the Dist vector, and calculate the new distance

∑m−1
i=0 Dist[i].

2. Select the smallest distance and put the corresponding node into B. Meanwhile, if a
pair can generate the target node, then choose it first.

3. In the case of a tie, use the Euclidean norm of Dist to determine which candidate is
better.

Intuitively, after each iteration, the Base set becomes closer to the target nodes
according to the reduction of Dist. The algorithm stops executing if and only if the
Dist is a zero vector. That is, the Base set can compute all the target nodes. In the
following, LSL algorithm enhances BP algorithm with circuit depth awareness in [LSL+19].
It proposes a new set that keeps track of the circuit depth of Base. At each iteration, LSL
algorithm only picks two different elements from Base and generates a new node that will



14 Towards Low-Latency Implementation of Linear Layers

never be out of depth bound.
However, there are some noteworthy issues in the above algorithms with circuit depth

awareness. Based on the LSL algorithm, we always choose the pair of nodes in Base
which can reduce the maximum distance. In other words, if one pair cannot reduce
the distance or it only reduces fewer distance, it is the bad choice, and may never be
chosen. We surprisingly find that the known forward search approaches for low-latency
always omit some good implementations. While backward approach can cover them. Of
course, our approach also abandons the choice that appeared to be not good in the current
state. It might miss good implementations since it cannot achieve the exhaustive search.
Nevertheless, from the experimental results, this new strategy enables us to find better
implementations in multiple cases.

We take a more comprehensive example to illustrate it. For the matrix MC used in
Camellia [AIK+00], 

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0


,

we provide two implementations. The first is generated by LSL algorithm with 20 XOR
gates produced. Table 5 shows the depth, new nodes and dist. It can be seen that the
distance reduces faster in the first half of the execution, which is related to the heuristic
rules. Next, we use our backward framework to generate the implementation, which is
shown in Table 6 and only needs 19 XOR gates, thanks to our new strategy.

For LSL algorithm, the Base of MC is {x0, x1, x2, x3, x4, x5, x6, x7}, and the Dist =
[5, 5, 5, 5, 4, 4, 4, 4]. The initial distance is

∑7
i=0 Dist[i] = 36. We have four choices {x0 ⊕

x5, x1 ⊕ x7, x2 ⊕ x4, x3 ⊕ x6} which can reduce the distance 4 continuously (see Table 5).
Now, we consider a new choice:

x0 ⊕ x3.

Only y0, y1, and y7 are included this combination. Meanwhile, x3 ⊕ x6 is also included in
y0, y1, y7 and y3. In this case, the priority of x0 ⊕ x3 is always lower than x3 ⊕ x6. We
will explain that x0 ⊕ x3 will never be chosen in MC by LSL algorithm. After choosing
x3 ⊕ x6, the distance is 32. The distance of y0, y1, y3, y7 is reduced. When performing
the next XOR, x0 ⊕ x3 will not reduce any distance. x3 ⊕ x6 limits the effect of x0 ⊕ x3.
Actually, no heuristics based on BP algorithm will choose this choice even though it leads
to fewer XOR gates.

Our framework can avoid such an issue. For a target node y, we calculate its minimum
depth dy, and choose predecessors from Ldy−1. Thus, the choice x0 ⊕ x3 can be used.

Moreover, there is another good feature of our algorithm from that of LSL. A reusable
node means that we need not generate it again. This kind of node can be found by backward
framework easily based on our splitting Rule 2 and Rule 3. It hopes that fewer nodes are
used to split nodes in the working set W . While LSL algorithm does not pay attention to
the above feature. It tries to find the nodes which make the Base closer to the target. It
is not to say that LSL algorithm will not reuse nodes. The difference may explain why for
some matrices, our algorithm performs well, for others, we do not. For example, in MC ,
t8 = [0, 1, 0, 0, 1, 0, 1, 1] is more suitable for the implementation. In Table 6, t8 is used four
times. Therefore, we use only four nodes in L2 to split all the target nodes. There are six
nodes in L2 in Table 5.



Qun Liu et al. 15

Table 5: The implementation of MC using LSL algorithm

No. Operation Depth New Node New Dist
0 t1 = x0 ⊕ x5 1 t1 = [1, 0, 0, 0, 0, 1, 0, 0] [4, 5,4, 5,3, 4, 4,3] = 32
1 t2 = x1 ⊕ x7 1 t2 = [0, 1, 0, 0, 0, 0, 0, 1] [4,4,3, 5,2,3, 4, 3] = 28
2 t3 = x2 ⊕ x4 1 t3 = [0, 0, 1, 0, 1, 0, 0, 0] [4, 4,2,4, 2,2,3, 3] = 24
3 t4 = x3 ⊕ x6 1 t4 = [0, 0, 0, 1, 0, 0, 1, 0] [3,3, 2,3, 2, 2, 3,2] = 20
4 t5 = x6 ⊕ t2 2 t5 = [0, 1, 0, 0, 0, 0, 1, 1] [3, 3, 2, 3,1,1, 3, 2] = 18
5 t6 = t1 ⊕ t5//y4 3 t6 = [1, 1, 0, 0, 0, 1, 1, 1] [3, 3, 2, 3,0, 1, 3, 2] = 17
6 t7 = t3 ⊕ t5//y5 3 t7 = [0, 1, 1, 0, 1, 0, 1, 1] [3, 3, 2, 3, 0,0, 3, 2] = 16
7 t8 = x4 ⊕ t4 2 t8 = [0, 0, 0, 1, 1, 0, 1, 0] [3,2, 2, 3, 0, 0, 3,1] = 14
8 t9 = t1 ⊕ t8//y7 3 t9 = [1, 0, 0, 1, 1, 1, 1, 0] [3, 2, 2, 3, 0, 0, 3,0] = 13
9 t10 = x5 ⊕ t3 2 t10 = [0, 0, 1, 0, 1, 1, 0, 0] [3, 2, 2,2, 0, 0,2, 0] = 11
10 t11 = x0 ⊕ t2 2 t11 = [1, 1, 0, 0, 0, 0, 0, 1] [3,1,1, 2, 0, 0, 2, 0] = 9
11 t12 = t8 ⊕ t11//y1 3 t12 = [1, 1, 0, 1, 1, 0, 1, 1] [3,0, 1, 2, 0, 0, 2, 0] = 8
12 t13 = t10 ⊕ t11//y2 3 t13 = [1, 1, 1, 0, 1, 1, 0, 1] [3, 0,0, 2, 0, 0, 2, 0] = 7
13 t14 = x1 ⊕ t4 2 t14 = [0, 1, 0, 1, 0, 0, 1, 0] [3, 0, 0,1, 0, 0, 2, 0] = 6
14 t15 = t10 ⊕ t14//y3 3 t15 = [0, 1, 1, 1, 1, 1, 1, 0] [3, 0, 0,0, 0, 0, 2, 0] = 5
15 t16 = x3 ⊕ x7 1 t16 = [0, 0, 0, 1, 0, 0, 0, 1] [3, 0, 0, 0, 0, 0,1, 0] = 4
16 t17 = t10 ⊕ t16//y6 3 t17 = [0, 0, 1, 1, 1, 1, 0, 1] [3, 0, 0, 0, 0, 0,0, 0] = 3
17 t18 = x2 ⊕ x6 1 t18 = [0, 0, 1, 0, 0, 0, 1, 0] [2, 0, 0, 0, 0, 0, 0, 0] = 2
18 t19 = t1 ⊕ t16 2 t19 = [1, 0, 0, 1, 0, 1, 0, 1] [1, 0, 0, 0, 0, 0, 0, 0] = 1
19 t20 = t18 ⊕ t19//y0 3 t20 = [1, 0, 1, 1, 0, 1, 1, 1] [0, 0, 0, 0, 0, 0, 0, 0] = 0

Table 6: The implementation of MC using our framework

No. Operation Depth New Node New Dist
0 t12 = x3 ⊕ x6 1 t12 = [0, 0, 0, 1, 0, 0, 1, 0] [4,4, 5,4, 4, 4, 4,3] = 32
1 t9 = x0 ⊕ x3 1 t9 = [1, 0, 0, 1, 0, 0, 0, 0] [4, 4, 5, 4, 4, 4, 4, 3] = 32
2 t18 = x3 ⊕ x5 1 t18 = [0, 0, 0, 1, 0, 1, 0, 0] [4, 4, 5, 4, 4, 4,3, 3] = 31
3 t17 = x2 ⊕ x7 1 t17 = [0, 0, 1, 0, 0, 0, 0, 1] [3, 4,4, 4, 4,3,2, 3] = 27
4 t14 = x1 ⊕ x4 1 t14 = [0, 1, 0, 0, 1, 0, 0, 0] [3,3,3,3, 4,2, 2, 3] = 23
5 t16 = x0 ⊕ x5 1 t16 = [1, 0, 0, 0, 0, 1, 0, 0] [2, 3,2, 3,3, 2, 2,2] = 19
6 t15 = x6 ⊕ x7 1 t15 = [0, 0, 0, 0, 0, 0, 1, 1] [2,2, 2, 3,2, 2, 2, 2] = 17
7 t10 = t16 ⊕ x4 2 t10 = [1, 0, 0, 0, 1, 1, 0, 0] [2, 2, 2, 3, 2, 2, 2,1] = 16
8 t13 = t16 ⊕ t17 2 t13 = [1, 0, 1, 0, 0, 1, 0, 1] [1, 2,1, 3, 2, 2, 2, 1] = 14
9 t11 = t17 ⊕ t18 2 t11 = [0, 0, 1, 1, 0, 1, 0, 1] [1, 2, 1,2, 2, 2,1, 1] = 12
10 t8 = t14 ⊕ t15 2 t8 = [0, 1, 0, 0, 1, 0, 1, 1] [1,1, 1,1,1,1, 1, 1] = 8
11 y4 = t8 ⊕ t10 3 y4 = [1, 1, 0, 0, 0, 1, 1, 1] [1, 1, 1, 1,0, 1, 1, 1] = 7
12 y7 = t10 ⊕ t12 3 y7 = [1, 0, 0, 1, 1, 1, 1, 0] [1, 1, 1, 1, 0, 1, 1,0] = 6
13 y0 = t13 ⊕ t12 3 y0 = [1, 0, 1, 1, 0, 1, 1, 1] [0, 1, 1, 1, 0, 1, 1, 0] = 5
14 y2 = t13 ⊕ t14 3 y2 = [1, 1, 1, 0, 1, 1, 0, 1] [0, 1,0, 1, 0, 1, 1, 0] = 4
15 y3 = t8 ⊕ t11 3 y3 = [0, 1, 1, 1, 1, 1, 1, 0] [0, 1, 0,0, 0, 1, 1, 0] = 3
16 y6 = x4 ⊕ t11 3 y6 = [0, 0, 1, 1, 1, 1, 0, 1] [0, 1, 0, 0, 0, 1,0, 0] = 2
17 y5 = t8 ⊕ x2 3 y5 = [0, 1, 1, 0, 1, 0, 1, 1] [0, 1, 0, 0, 0,0, 0, 0] = 1
18 y1 = t8 ⊕ t9 3 y1 = [1, 1, 0, 1, 1, 0, 1, 1] [0,0, 0, 0, 0, 0, 0, 0] = 0



16 Towards Low-Latency Implementation of Linear Layers

4 Applications
4.1 XOR Gates of Many Proposed Matrices
In this subsection, we first apply our algorithm to several linear layers from the literature
including

• matrices that have been already used in many ciphers [DR20, CMR05, JNP15, Ava17,
BBI+15, BCG+12, ADK+14, Ava17, BJK+16, AIK+00], and

• matrices that are independently proposed in many previous works [SKOP15, LS16,
LW16, BKL16, SS16, JPST17, KLSW17].

All the results are listed in Table 2. For comparison, we also list the results from [KLSW17],
LSL algorithm [LSL+19], and BFI algorithm [BFI21]. The last two are based on BP
algorithm and thus use the forward strategy. Experimental results reveal that our algorithm
can always find the minimum depth implementations and generally outperforms LSL and
BFI algorithm in many cases. For the results provided by Kranz et al., we can get some
implementations with lower latency. We takes 12 hours and 5 days to run our algorithm
for each 16 × 16 and 32 × 32 binary matrix respectively. The time is for one matrix.
Notably, on 16× 16 binary matrices, we find many better results, indicating that even in
small-scale cases, there is still a room for improvements with low latency. Particularly,
for AES Mixcolumns, we achieve the implementation with 103 XOR gates with a depth
of 3, which is equal to the result from [BFI21], while the other best previous result is
105 from [LSL+19]. This shows the effectiveness of our strategy. We show the 103-XOR
implementation in Table 7, where x0, x1, x2, ..., x31 are the 32 inputs and y0, y1, y2, ..., y31
are the 32 outputs. The above implementation has a lower power consumption than those
in [LSL+19] and [XZL+20]. We will introduce the details in Subsection 4.3.

Then, we apply our algorithm to other matrices with low latency. Duval and Leurent
proposed many matrices with different depths in [DL18]. As [LSL+19] emphasized, for the
matrices with branch number 5 in M4(GL(8,F2)), the minimum depth is 3. Actually, the
minimum depth of matrices in M4(GL(4,F2)) with branch number 5 is also 3. Therefore,
we test all of the matrices with depth 3 (see Table 3). The column “Const” is from [DL18].
Duval and Leurent constructed the matrices by choosing optimal paths in order to minimize
the number of XOR required. BP, Paar2, RSDP, RNBP, A1, A2 are different algorithms
to find optimistic implementations of matrices. Notably, we get a better implementation
for matrix M9,5

4,3 with A4. It only needs 40 XOR gates with depth 3.

4.2 XOR Gates of More MDS Matrices
As Li et al. proposed a new algorithm and many MDS matrices [LSL+19], we also apply
our algorithm to these matrices for comparison. There are 4256 matrices with depth 3,
which reach the minimal depth, and we only consider them in our experiments. We ran
the algorithm 60 minutes for each matrix and compare the obtained implementation with
the results from [LSL+19]. It is listed in Table 8.

From the results, we can see that the results from LSL algorithm has a significant
room for improvement. We find that about 54.3% matrices have fewer XOR gates with
the minimum depth. The maximum number of XOR gates we can reduce is 12 (from 98
to 86 XOR gates). Meanwhile, we check all the implementations and find some interesting
results. In [LSL+19], the minimal implementation with depth 3 needs 88 XOR gates.
Using our algorithm, some matrices can be implemented by 86 XOR gates with the same
depth. We show a representative matrix that we call matrix R. It is the 483-rd matrix
with Hamming weight 168, generated by the parameter [6, 10, 4,−4,−2,−6] from [LSL+19]
using 98 XOR gates. We implement matrix R with only 86 XOR gates with depth 3. The



Qun Liu et al. 17

Table 7: An implementation of AES MixColumns with 103 XOR operations

No. Operation Depth No. Operation Depth
0 t32 = x5 ⊕ x13 1 52 t49 = t85 ⊕ t86 2
1 t43 = x21 ⊕ x29 1 53 t87 = x2 ⊕ x10 1
2 t44 = x15 ⊕ x30 1 54 t55 = t87 ⊕ x25 2
3 t46 = x7 ⊕ x16 1 55 t18 = t55 ⊕ t57//y18 3
4 t47 = x23 ⊕ x24 1 56 t26 = t55 ⊕ t56//y26 3
5 t56 = x1 ⊕ x18 1 57 t88 = x3 ⊕ x26 1
6 t57 = x17 ⊕ x26 1 58 t66 = t88 ⊕ x31 2
7 t70 = x6 ⊕ x22 1 59 t19 = t69 ⊕ t66//y19 3
8 t35 = t70 ⊕ t43 2 60 t89 = x12 ⊕ x27 1
9 t71 = x14 ⊕ x31 1 61 t61 = t89 ⊕ x31 2
10 t42 = t71 ⊕ t70 2 62 t28 = t64 ⊕ t61//y28 3
11 t72 = x7 ⊕ x15 1 63 t90 = x8 ⊕ x15 1
12 t37 = t72 ⊕ t71 2 64 t48 = x24 ⊕ t90 2
13 t73 = x0 ⊕ x17 1 65 t0 = t48 ⊕ t46//y0 3
14 t51 = x7 ⊕ t73 2 66 t8 = t49 ⊕ t48//y8 3
15 t74 = x6 ⊕ x23 1 67 t91 = x9 ⊕ x25 1
16 t39 = x7 ⊕ t74 2 68 t53 = t90 ⊕ t91 2
17 t7 = t39 ⊕ t37//y7 3 69 t1 = t53 ⊕ t51//y1 3
18 t15 = t42 ⊕ t39//y15 3 70 t92 = x1 ⊕ x17 1
19 t31 = t44 ⊕ t39//y31 3 71 t54 = t90 ⊕ t92 2
20 t75 = x12 ⊕ x28 1 72 t9 = t54 ⊕ t52//y9 3
21 t76 = x3 ⊕ x7 1 73 t93 = x4 ⊕ x28 1
22 t63 = t75 ⊕ t76 2 74 t33 = t93 ⊕ x21 2
23 t77 = x13 ⊕ x29 1 75 t5 = t36 ⊕ t33//y5 3
24 t36 = t75 ⊕ t77 2 76 t29 = t32 ⊕ t33//y29 3
25 t38 = x30 ⊕ t77 2 77 t94 = x19 ⊕ x23 1
26 t14 = t38 ⊕ t35//y14 3 78 t60 = t93 ⊕ t94 2
27 t78 = x14 ⊕ x22 1 79 t20 = t60 ⊕ t61//y20 3
28 t34 = t78 ⊕ x30 2 80 t95 = x10 ⊕ x26 1
29 t6 = t32 ⊕ t34//y6 3 81 t59 = x9 ⊕ t95 2
30 t22 = t35 ⊕ t34//y22 3 82 t2 = t59 ⊕ t56//y2 3
31 t23 = t37 ⊕ t34//y23 3 83 t96 = x2 ⊕ x18 1
32 t79 = x4 ⊕ x20 1 84 t58 = x9 ⊕ t96 2
33 t64 = t79 ⊕ t76 2 85 t10 = t58 ⊕ t57//y10 3
34 t80 = x12 ⊕ x20 1 86 t97 = x10 ⊕ x27 1
35 t41 = x5 ⊕ t80 2 87 t67 = x15 ⊕ t97 2
36 t13 = t43 ⊕ t41//y13 3 88 t11 = t68 ⊕ t67//y11 3
37 t21 = t41 ⊕ t36//y21 3 89 t98 = x11 ⊕ x20 1
38 t81 = x14 ⊕ x21 1 90 t62 = x15 ⊕ t98 2
39 t40 = x5 ⊕ t81 2 91 t4 = t63 ⊕ t62//y4 3
40 t30 = t40 ⊕ t35//y30 3 92 t12 = t60 ⊕ t62//y12 3
41 t82 = x18 ⊕ x23 1 93 t99 = x11 ⊕ x19 1
42 t83 = x11 ⊕ x27 1 94 t100 = x2 ⊕ x7 1
43 t69 = t82 ⊕ t83 2 95 t65 = t99 ⊕ t100 2
44 t84 = x3 ⊕ x19 1 96 t3 = t65 ⊕ t67//y3 3
45 t68 = t82 ⊕ t84 2 97 t27 = t65 ⊕ t66//y27 3
46 t85 = x16 ⊕ x23 1 98 t101 = x9 ⊕ x31 1
47 t52 = t85 ⊕ x25 2 99 t102 = x1 ⊕ x24 1
48 t86 = x0 ⊕ x8 1 100 t50 = t101 ⊕ t102 2
49 t45 = x31 ⊕ t86 2 101 t17 = t50 ⊕ t52//y17 3
50 t16 = t45 ⊕ t47//y16 3 102 t25 = t50 ⊕ t51//y25 3
51 t24 = t45 ⊕ t46//y24 3



18 Towards Low-Latency Implementation of Linear Layers

implementation is shown in Table 10. R has three advantages: it is involutory; its depth is
3; and its area footprint and power consumption are lower than AES Mixcolumns.

Table 8: The optimized results of matrices with depth limitation from [LSL+19]

HWa Size Depth Number of matrices Optimizationsb Maximumc

148 32 3 18 0 0
149 32 3 48 0 0
150 32 3 72 0 0
151 32 3 48 0 0
152 32 3 60 3 1
153 32 3 72 0 0
154 32 3 84 0 0
155 32 3 24 6 2
156 32 3 48 6 1
157 32 3 72 16 2
158 32 3 84 34 3
160 32 3 162 114 6
161 32 3 96 88 6
162 32 3 132 108 6
163 32 3 120 95 8
164 32 3 144 97 7
165 32 3 240 207 9
166 32 3 228 190 9
167 32 3 218 153 8
168 32 3 528 355 12
169 32 3 360 233 9
170 32 3 432 246 7
171 32 3 432 182 10
172 32 3 534 177 12
Total - - 4256 2310 -

a The Hamming weight of matrices.
b The number of matrices that have fewer XOR gates than the results from [LSL+19].
c It represents the maximum number of reduced XOR gates.

4.3 Hardware Implementation

Our algorithm aims at finding optimized implementation in circuit size, power consumption,
and latency. In this subsection, we synthesize existing implementations and show their per-
formance in hardware. We first provide the implementations of AES Mixcolumns. Through
three metrics (area, power, and latency), we can discuss which is the better implementation.
The AES results are synthesized using two different ASIC libraries, namely TSMC 90 nm
and NanGate 45 nm (in Table 9). The logic synthesis is performed with Synopsys Design
Compiler version D-2010.03-SP1(using the compile_ultra -no_autoungroup command),
and simulation is done in Mentor Graphics ModelSim SE v10.2c. From the above tables,
we can find our AES Mixcolumns result has more advantages than the results from LSL
and BFI algorithms in hardware, and ours has less power and latency than the results from
[XZL+20] and [LXZZ21], which is crucial in devices with limited resources. Besides, we syn-
thesize the result about R using the ASIC library NanGate 45 nm. Results are also shown
in Table 9. Notably, the results are better than the results from [LSL+19] and [BFI21]. As
the best matrix found by [LSL+19] with 88 XOR gates and depth 3 needs 176 GE while R
we find has 172 GE.



Qun Liu et al. 19

Table 9: Synthesized results using two different ASIC libraries

Results of AES MixColumns for TSMC 90 nm library
Result Cost Depth Area(GE) Power(uw) Latency(ns)
[LXZZ21] 91 7 182 135.3 0.45
[XZL+20] 92 6 184 130.0 0.38
[LSL+19] 105 3 210 124.4 0.22
[BFI21] 103 3 206 122.6 0.23
Ours 103 3 206 116.3 0.21
Results of AES MixColumns for NanGate 45 nm library

Result Cost Depth Area(GE) Power(uw) Latency(ns)
[LXZZ21] 91 7 182 142.5 0.42
[XZL+20] 92 6 184 139.3 0.37
[LSL+19] 105 3 210 127.0 0.22
[BFI21] 103 3 206 125.5 0.22
Ours 103 3 206 122.1 0.20

Result of R for NanGate 45 nm library
Result Cost Depth Area(GE) Power(uw) Latency(ns)
Ours 86 3 172 101.6 0.20

5 Conclusion
In this paper, we investigate a new framework of heuristic search for the implementation of
a given linear layer. Our new approach takes the strategy that iteratively splits the output
bits until all the input bits appear, which is very suitable to the low-latency criteria. Our
new framework contributes to

• an implementation of AES Mixcolumns with 103 XOR gates with a depth of 3, which
is among the best hardware implementations of AES linear layer with minimum
depth;

• better implementations for 54.3% of matrices proposed in [LSL+19], in which we find
an involutory MDS with fewer XOR gates (i.e., 86, saving 2 from the state-of-the-art
result) of XORs with minimum depth.

Though backward framework can solve the low-latency problem easily, it is still important
to further reduce the number of XOR gates without any constraints (i.e. no depth limitation).
In addition, our research provides a new tool for the construction of lightweight MDS
matrices. There should exist some matrices more compatible with our algorithm and thus
have better implementations with minimum depth, which we leave as a promising future
work.

Acknowledgements
The authors would like to thank the anonymous reviewers and the shepherd for their
valuable comments and suggestions to improve the quality of the paper. The research
leading to these results has received funding from the National Natural Science Foundation
of China (Grant No. 62032014, Grant No. 62002201, Grant No. 62002204), the National
Key Research and Development Program of China (Grant No. 2018YFA0704702, Grant
No. 2021YFA1000600), the Major Basic Research Project of Natural Science Foundation of
Shandong Province, China (Grant No. ZR202010220025), and the Program of Qilu Young
Scholars (Grant No. 61580082063088) of Shandong University.



20 Towards Low-Latency Implementation of Linear Layers

References
[ADK+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander,

Christof Paar, and Tolga Yalçin. Block ciphers - focus on the linear layer
(feat. PRIDE). In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of
Lecture Notes in Computer Science, pages 57–76. Springer, 2014.

[AIK+00] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho
Moriai, Junko Nakajima, and Toshio Tokita. Camellia: A 128-bit block cipher
suitable for multiple platforms - design and analysis. In Douglas R. Stinson
and Stafford E. Tavares, editors, Selected Areas in Cryptography, 7th Annual
International Workshop, SAC 2000, Waterloo, Ontario, Canada, August 14-15,
2000, Proceedings, volume 2012 of Lecture Notes in Computer Science, pages
39–56. Springer, 2000.

[ARVV18] Elena Andreeva, Reza Reyhanitabar, Kerem Varici, and Damian Vizár. Forking
a blockcipher for authenticated encryption of very short messages. IACR
Cryptol. ePrint Arch., 2018:916, 2018.

[Ava17] Roberto Avanzi. The QARMA block cipher family. almost MDS matrices over
rings with zero divisors, nearly symmetric even-mansour constructions with
non-involutory central rounds, and search heuristics for low-latency s-boxes.
IACR Trans. Symmetric Cryptol., 2017(1):4–44, 2017.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors, Ad-
vances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume
9453 of Lecture Notes in Computer Science, pages 411–436. Springer, 2015.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications
- extended abstract. In Xiaoyun Wang and Kazue Sako, editors, Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer
Science, pages 208–225. Springer, 2012.

[BFI19] Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. More results on shortest
linear programs. In Nuttapong Attrapadung and Takeshi Yagi, editors, Ad-
vances in Information and Computer Security - 14th International Workshop
on Security, IWSEC 2019, Tokyo, Japan, August 28-30, 2019, Proceedings,
volume 11689 of Lecture Notes in Computer Science, pages 109–128. Springer,
2019.

[BFI21] Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. Further results on
efficient implementations of block cipher linear layers. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., 104-A(1):213–225, 2021.



Qun Liu et al. 21

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes
in Computer Science, pages 123–153. Springer, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007.

[BKL16] Christof Beierle, Thorsten Kranz, and Gregor Leander. Lightweight multipli-
cation in gf(2ˆn) with applications to MDS matrices. In Matthew Robshaw
and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part I, volume 9814 of Lecture Notes in Computer
Science, pages 625–653. Springer, 2016.

[BMP08] Joan Boyar, Philip Matthews, and René Peralta. On the shortest linear
straight-line program for computing linear forms. In Edward Ochmanski and
Jerzy Tyszkiewicz, editors, Mathematical Foundations of Computer Science
2008, 33rd International Symposium, MFCS 2008, Torun, Poland, August
25-29, 2008, Proceedings, volume 5162 of Lecture Notes in Computer Science,
pages 168–179. Springer, 2008.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques
with applications to cryptology. J. Cryptol., 26(2):280–312, 2013.

[BP10] Joan Boyar and René Peralta. A new combinational logic minimization
technique with applications to cryptology. In Paola Festa, editor, Experimental
Algorithms, 9th International Symposium, SEA 2010, Ischia Island, Naples,
Italy, May 20-22, 2010. Proceedings, volume 6049 of Lecture Notes in Computer
Science, pages 178–189. Springer, 2010.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards reaching
the limit of lightweight encryption. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
volume 10529 of Lecture Notes in Computer Science, pages 321–345. Springer,
2017.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. IACR Cryptol. ePrint Arch., 2013:404, 2013.

[CMR05] Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. Small scale variants
of the AES. In Henri Gilbert and Helena Handschuh, editors, Fast Software
Encryption: 12th International Workshop, FSE 2005, Paris, France, Febru-
ary 21-23, 2005, Revised Selected Papers, volume 3557 of Lecture Notes in
Computer Science, pages 145–162. Springer, 2005.



22 Towards Low-Latency Implementation of Linear Layers

[DGB19] Indira Kalyan Dutta, Bhaskar Ghosh, and Magdy A. Bayoumi. Lightweight
cryptography for internet of insecure things: A survey. In IEEE 9th Annual
Computing and Communication Workshop and Conference, CCWC 2019, Las
Vegas, NV, USA, January 7-9, 2019, pages 475–481. IEEE, 2019.

[DL18] Sébastien Duval and Gaëtan Leurent. MDS matrices with lightweight circuits.
IACR Trans. Symmetric Cryptol., 2018(2):48–78, 2018.

[DR20] Joan Daemen and Vincent Rijmen. The Design of Rijndael - The Advanced
Encryption Standard (AES), Second Edition. Information Security and Cryp-
tography. Springer, 2020.

[JNP15] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik v1. 3. CAESAR Round,
2, 2015.

[JPST17] Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade Tourteaux. Optimiz-
ing implementations of lightweight building blocks. IACR Trans. Symmetric
Cryptol., 2017(4):130–168, 2017.

[KHZ17] Martin Kumm, Martin Hardieck, and Peter Zipf. Optimization of constant
matrix multiplication with low power and high throughput. IEEE Trans.
Computers, 66(12):2072–2080, 2017.

[KLSW17] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer. Shorter
linear straight-line programs for MDS matrices. IACR Trans. Symmetric
Cryptol., 2017(4):188–211, 2017.

[KPPY14] Khoongming Khoo, Thomas Peyrin, Axel York Poschmann, and Huihui Yap.
FOAM: searching for hardware-optimal SPN structures and components with a
fair comparison. In Lejla Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems - CHES 2014 - 16th International Workshop,
Busan, South Korea, September 23-26, 2014. Proceedings, volume 8731 of
Lecture Notes in Computer Science, pages 433–450. Springer, 2014.

[LMMR21] Gregor Leander, Thorben Moos, Amir Moradi, and Shahram Rasoolzadeh.
The SPEEDY family of block ciphers engineering an ultra low-latency cipher
from gate level for secure processor architectures. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(4):510–545, 2021.

[LS16] Meicheng Liu and Siang Meng Sim. Lightweight MDS generalized circulant
matrices. In Thomas Peyrin, editor, Fast Software Encryption - 23rd Interna-
tional Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised
Selected Papers, volume 9783 of Lecture Notes in Computer Science, pages
101–120. Springer, 2016.

[LSL+19] Shun Li, Siwei Sun, Chaoyun Li, Zihao Wei, and Lei Hu. Constructing
low-latency involutory MDS matrices with lightweight circuits. IACR Trans.
Symmetric Cryptol., 2019(1):84–117, 2019.

[LW16] Yongqiang Li and Mingsheng Wang. On the construction of lightweight
circulant involutory MDS matrices. In Thomas Peyrin, editor, Fast Software
Encryption - 23rd International Conference, FSE 2016, Bochum, Germany,
March 20-23, 2016, Revised Selected Papers, volume 9783 of Lecture Notes in
Computer Science, pages 121–139. Springer, 2016.



Qun Liu et al. 23

[LXZZ21] Da Lin, Zejun Xiang, Xiangyong Zeng, and Shasha Zhang. A framework to
optimize implementations of matrices. In Kenneth G. Paterson, editor, Topics
in Cryptology - CT-RSA 2021 - Cryptographers’ Track at the RSA Conference
2021, Virtual Event, May 17-20, 2021, Proceedings, volume 12704 of Lecture
Notes in Computer Science, pages 609–632. Springer, 2021.

[Paa97] Christof Paar. Optimized arithmetic for reed-solomon encoders. In Proceedings
of IEEE International Symposium on Information Theory, page 250. IEEE,
1997.

[RTA18] Arash Reyhani-Masoleh, Mostafa M. I. Taha, and Doaa Ashmawy. Smashing
the implementation records of AES s-box. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(2):298–336, 2018.

[SKOP15] Siang Meng Sim, Khoongming Khoo, Frédérique E. Oggier, and Thomas
Peyrin. Lightweight MDS involution matrices. In Gregor Leander, editor,
Fast Software Encryption - 22nd International Workshop, FSE 2015, Istanbul,
Turkey, March 8-11, 2015, Revised Selected Papers, volume 9054 of Lecture
Notes in Computer Science, pages 471–493. Springer, 2015.

[SS16] Sumanta Sarkar and Habeeb Syed. Lightweight diffusion layer: Importance of
toeplitz matrices. IACR Trans. Symmetric Cryptol., 2016(1):95–113, 2016.

[TP19] Quan Quan Tan and Thomas Peyrin. Improved heuristics for short linear
programs. IACR Cryptol. ePrint Arch., page 847, 2019.

[VSP18] Andrea Visconti, Chiara Valentina Schiavo, and René Peralta. Improved upper
bounds for the expected circuit complexity of dense systems of linear equations
over GF(2). Inf. Process. Lett., 137:1–5, 2018.

[WP13] Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption
algorithm. In Tanja Lange, Kristin E. Lauter, and Petr Lisonek, editors,
Selected Areas in Cryptography - SAC 2013 - 20th International Conference,
Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume
8282 of Lecture Notes in Computer Science, pages 185–201. Springer, 2013.

[XZL+20] Zejun Xiang, Xiangyong Zeng, Da Lin, Zhenzhen Bao, and Shasha Zhang.
Optimizing implementations of linear layers. IACR Trans. Symmetric Cryptol.,
2020(2):120–145, 2020.

[ZBL+15] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang,
and Ingrid Verbauwhede. RECTANGLE: a bit-slice lightweight block cipher
suitable for multiple platforms. Sci. China Inf. Sci., 58(12):1–15, 2015.



24 Towards Low-Latency Implementation of Linear Layers

A The Low-latency Implementation

Table 10: The implementation of R with 86 XOR operations and depth of 3

No. Operation Depth No. Operation Depth
0 t42 = x1 ⊕ x25 1 43 t25 = t42 ⊕ t39//y25 3
1 t43 = x0 ⊕ x24 1 44 t69 = x19 ⊕ x27 1
2 t45 = x20 ⊕ x26 1 45 t19 = t68 ⊕ t69//y19 2
3 t48 = x21 ⊕ x27 1 46 t70 = x7 ⊕ x31 1
4 t52 = x1 ⊕ x15 1 47 t35 = t70 ⊕ x15 2
5 t15 = t52 ⊕ t48//y15 2 48 t71 = x15 ⊕ x23 1
6 t53 = x9 ⊕ x17 1 49 t23 = t71 ⊕ t70//y23 2
7 t17 = t53 ⊕ t42//y17 2 50 t29 = t33 ⊕ t23//y29 3
8 t54 = x8 ⊕ x16 1 51 t72 = x0 ⊕ x8 1
9 t16 = t54 ⊕ t43//y16 2 52 t73 = x6 ⊕ x18 1
10 t55 = x0 ⊕ x14 1 53 t32 = t72 ⊕ t73 2
11 t14 = t55 ⊕ t45//y14 2 54 t6 = t32 ⊕ t14//y6 3
12 t56 = x5 ⊕ x23 1 55 t74 = x15 ⊕ x19 1
13 t57 = x17 ⊕ x31 1 56 t75 = x13 ⊕ x25 1
14 t40 = t56 ⊕ t57 2 57 t37 = t74 ⊕ t75 2
15 t58 = x11 ⊕ x13 1 58 t5 = t40 ⊕ t37//y5 3
16 t36 = t56 ⊕ t58 2 59 t13 = t37 ⊕ t35//y13 3
17 t27 = t48 ⊕ t36//y27 3 60 t76 = x22 ⊕ x28 1
18 t59 = x13 ⊕ x29 1 61 t77 = x0 ⊕ x2 1
19 t33 = t59 ⊕ t57 2 62 t47 = t76 ⊕ t77 2
20 t11 = t36 ⊕ t33//y11 3 63 t0 = t47 ⊕ t41//y0 3
21 t60 = x5 ⊕ x21 1 64 t8 = x8 ⊕ t47//y8 3
22 t21 = t60 ⊕ t59//y21 2 65 t78 = x22 ⊕ x30 1
23 t61 = x12 ⊕ x28 1 66 t79 = x6 ⊕ x14 1
24 t62 = x4 ⊕ x20 1 67 t22 = t78 ⊕ t79//y22 2
25 t20 = t61 ⊕ t62//y20 2 68 t28 = t38 ⊕ t22//y28 3
26 t63 = x16 ⊕ x30 1 69 t46 = x30 ⊕ t79 2
27 t38 = t61 ⊕ t63 2 70 t30 = t46 ⊕ t32//y30 3
28 t64 = x4 ⊕ x22 1 71 t80 = x3 ⊕ x23 1
29 t51 = t64 ⊕ t63 2 72 t81 = x1 ⊕ x29 1
30 t65 = x10 ⊕ x12 1 73 t49 = t80 ⊕ t81 2
31 t44 = t65 ⊕ t64 2 74 t1 = t49 ⊕ t39//y1 3
32 t10 = t44 ⊕ t38//y10 3 75 t9 = x9 ⊕ t49//y9 3
33 t26 = t45 ⊕ t44//y26 3 76 t82 = x18 ⊕ x24 1
34 t66 = x2 ⊕ x10 1 77 t83 = x12 ⊕ x14 1
35 t41 = t66 ⊕ x20 2 78 t50 = t82 ⊕ t83 2
36 t2 = t41 ⊕ t38//y2 3 79 t4 = t51 ⊕ t50//y4 3
37 t24 = t43 ⊕ t41//y24 3 80 t12 = t50 ⊕ t46//y12 3
38 t67 = x18 ⊕ x26 1 81 t84 = x1 ⊕ x19 1
39 t18 = t66 ⊕ t67//y18 2 82 t85 = x7 ⊕ x9 1
40 t68 = x3 ⊕ x11 1 83 t34 = t84 ⊕ t85 2
41 t39 = t68 ⊕ x21 2 84 t7 = t34 ⊕ t15//y7 3
42 t3 = t39 ⊕ t33//y3 3 85 t31 = t35 ⊕ t34//y31 3


	Introduction
	Our Contributions
	Organization

	Preliminaries 
	Notations
	Metrics

	Backward Search
	The Backward Strategy
	Heuristics of Splitting Nodes
	Discussion on the Priority
	Comparison of Backward and Forward Search for Low-latency Implementation

	Applications
	XOR Gates of Many Proposed Matrices
	XOR Gates of More MDS Matrices
	Hardware Implementation

	Conclusion
	The Low-latency Implementation

