
HEAD: an FHE-based Privacy-preserving Cloud Computing Protocol
with Compact Storage and Efficient Computation

Lijing Zhou†, Ziyu Wang†,Hongrui Cui‡, Xiao Zhang†, Xianggui Wang†, Yu Yu‡

†Huawei Technology, Shanghai, China, {zhoulijing,wangziyu13,zhangxiao81,wangxianggui1}@huawei.com,
‡Shanghai Jiao Tong University, Shanghai, China, {rickfreeman,yuyu}@cs.sjtu.edu.cn

Abstract—Fully homomorphic encryption (FHE) provides a
natural solution for privacy-preserving cloud computing, but a
straightforward FHE protocol may suffer from high computa-
tional overhead and a large ciphertext expansion rate, especially
for computation-intensive tasks over large data, which are the
main obstacles toward practical privacy-preserving cloud com-
puting. In this paper, we present HEAD, a generic privacy-
preserving cloud computing protocol that can be based on
most mainstream (typically a BGV or GSW style scheme) FHE
schemes with more compact storage and less computational costs
than the straightforward FHE counterpart. In particular, our
protocol enjoys a ciphertext/plaintext expansion rate of 1 (i.e.,
no expansion) in a cloud computing server, instead of a factor of
hundreds of thousands. This is achieved by means of “pseudoran-
domly masked” ciphertexts, and the efficient transformations of
them into FHE ciphertexts to facilitate privacy-preserving cloud
computing. Depending on the underlying FHE in use, our HEAD
protocol can be instantiated with the three masking techniques,
namely modulo-subtraction-masking, modulo-division-masking,
and XOR-masking, to support the decimal integer, real, or
binary messages. Thanks to these masking techniques, various
homomorphic computation tasks are made more efficient and
less prone to noise accumulation. Furthermore, our multi-input
masking and unmasking operations are more flexible than the
FHE SIMD-batching, by supporting an on-demand configuration
of FHE during each cloud computing request.

We evaluate the performance of HEAD protocols on BFV,
BGV, CKKS, and FHEW schemes based on the PALISADE
and SEAL libraries, which confirms the theoretical analysis of
the storage savings, the reduction in terms of computational
complexity and noise accumulation. For example, in the BFV
computation optimization, the sum or product of eight ciphertexts
overhead is reduced from 336.3 ms to 6.3 ms, or from 1219.4 ms
to 9.5 ms, respectively. We also embed HEAD into a mainstream
database, PostgreSQL, in a client-server cloud storage and
computing style. Compared with a straightforward FHE protocol,
our experiments show that HEAD does not incur ciphertext
expansion, and exhibits at least an order of magnitude saving
in computing time at the server side for various tasks (on a
hundred ciphertexts), by paying a reasonable price in client pre-
processing time and communication. Our storage advantage not
only gets around the database storage limitation but also reduces
the I/O overhead.

I. INTRODUCTION

With the broad and rapidly growing need for big-data
driven applications, the privacy protection of personal data is
increasingly receiving social awareness and legal enforcement
(e.g., see the policies and regulations in GDPR [48]). As
an advanced form of encryption, fully homomorphic encryp-
tion (FHE) allows anyone not in possession of the decryp-
tion key to perform computations (typically by evaluating a
Boolean/arithmetic circuit) on ciphertexts, and produces the
desired computation result in an encrypted form. In other

words, FHE can protect the user data without interrupting
the original data-processing flow at the server side, offering
a theoretically seamless integration with the current privacy-
preserving cloud computing applications. Despite the promis-
ing features, FHE is not readily used in many real-life appli-
cations due to its heavy performance overhead in both storage
and computation.

The storage issue lies in the high ciphertext expansion rate
(CER) of FHE, which is especially relevant in the context of
big-data storage where the plaintext data is already gigantic
and a client has to outsource the data to a cloud computing
server. In a typical setting1, the CER of the CKKS scheme
ranges from dozens to hundreds of thousands, so that 1TiB
of real numbers costs a storage space of hundreds of PiB
for CKKS ciphertexts. Even batching these messages, the
ciphertext size is still dozens of TiB. For 1 TiB of binary
numbers, an FHEW ciphertext spends the space of dozens of
PiB.2

Another FHE disadvantage is the high computational cost
which would be amplified in privacy-preserving cloud com-
puting applications since the operations applied on plaintexts
are typically complicated in the first place. The huge FHE
ciphertexts also affect the computation since the I/O overhead
cannot be omitted. For evaluating a circuit, an FHE computa-
tion is typically six orders of magnitude slower than the one
in plaintext from our experiment experience.

Motivated by the performance bottleneck of applications
with FHE, we aim to address the two problems by designing
a protocol that combines the benefits of compact storage and
homomorphic encryption.

A. Our Contribution

We present HEAD3, an FHE-based privacy-preserving
cloud computing protocol, which aims to address/mitigate the
ciphertext expansion and computational overheads (due to the
use of FHE) in a cloud computing server. In particular, instead
of storing the FHE ciphertext directly at the server side, we
instead store pseudo-randomly masked plaintexts, and then we
can flexibly transform any part of these masked plaintexts
into FHE ciphertexts at the query phase, via paying reason-
able costs in computation and communication on demand.

1The ciphertext size comes from the PALISADE library experiments, in
which the CKKS setting supports 3 computation levels, 128-bit security, and
the ciphertext dimension is 16,384, and the FHEW setting is 128-bit security.

2Batching is a useful technique to mitigate these FHE problems to some
extent but cannot solve them, especially not for terabyte data. Batching is not
flexible enough when messages come at different times. Moreover, a GSW-
style FHE scheme like FHEW does not support batching.

3The name is a portmanteau of HE and PAD.

Table I: HEAD contributions. (Ciphertext expansion rate abbreviated as CER)

HEAD protocols ModSub masking ModDiv masking XOR masking XOR masking
Input type Decimal integer Decimal integer Real Binary

Scheme BFV/BGV BFV/BGV CKKS FHEW
Storage optimization CER = 1 CER = 1 CER = 1 CER = 1

Computation Many Adds or ScalarMult Many Mults
N.A.

Many XORs/XNORs
optimization → one pt + ct → one ScalarMult → one NOT

Additionally, by utilizing the homomorphism at the masking
level we achieve a computational efficiency boost for various
computational operations on the ciphertexts.

Our protocol is more generic and supports the transforma-
tion from many typical mask-with-pseudorandom encryptions
to mainstream FHE (e.g., BGV or GSW-style) ciphertexts with
IND-CPA security (as expected from FHEs). The practical
experiments, i.e., by integrating HEAD in PostgreSQL, demon-
strate the advantage of these transformations. Concretely, we
summarize the protocol properties as follows.

• Generic. The protocol can be instantiated with many
FHE schemes. We apply the corresponding suitable masking
methods leading to the modulo-subtraction-masking (Mod-
Sub), modulo-division-masking (ModDiv), and XOR-masking
protocols, supporting different data types (integer, real or
binary) of an underlying FHE.

• Compact. All FHE instantiations of the protocol achieve
a ciphertext expansion rate of 1 for a long-term outsourced
storage in a cloud computing server.

• Efficient. Our protocol optimizes various outsourced
computing tasks (as summarised in Table I). These optimiza-
tions reduce a large amount of time and/or noise. Reducing
noise for an FHE scheme eliminates the need for a heavy
bootstrapping, potentially reducing computation time, too.
◦ The ModSub protocol optimizes one/more ciphertext-

wise additions (Adds), or a scalar multiplication
(ScalarMult) to only a single plaintext-ciphertext ad-
dition, i.e., many Adds or ScalarMult → one pt + ct.

◦ The ModDiv protocol optimizes one/more ciphertext-
wise multiplications (Mults) to only a single scalar
multiplication, i.e., many Mults → one ScalarMult.

◦ The XOR-masking protocol optimizes one/more
ciphertext-wise XOR and XNOR operations
(XORs/XNORs) to a single plaintext-ciphertext XOR,
which is further optimized to a single ciphertext-wise
NOT, i.e., many XORs/XNORs → one NOT.

• Flexible. Our flexibility lies in two aspects.
◦ It is flexible to configure the FHE encryption param-

eters of a transformed FHE ciphertext according to
(and just before) a cloud computing query. That is, the
parameter choices do not need to be decided prior to
the masking operation, i.e., the storage phase.

◦ When a cloud computing task involves several stored
masked messages, the retrieval flexibly selects masked
messages and transforms them into a single batched
FHE ciphertext (if batching is supported by the under-
lying FHE scheme) for subsequent evaluations. This is

quite useful when the data amount is huge, since the
unrelated data does not need to be read.

Implementation. We implement our protocols with the BFV,
BGV, CKKS, and FHEW FHE schemes in PALISADE and
SEAL libraries and compare them with a straightforward FHE
protocol (without our techniques) as a baseline. We show that a
masked ciphertext with the expansion rate of 1 occupies much
less space compared with a straightforward FHE ciphertext,
and the computation optimizations are significant. For exam-
ple, in a typical encryption parameter setting, we decrease the
expansion rate of a BFV ciphertext from several hundreds of
thousands to 1, and ModSub or ModDiv optimizes the sum or
product of eight BFV ciphertexts from 336.3 ms to 6.3 ms, or
from 1219.4 ms to 9.5 ms, respectively.

Database Integration. We integrate HEAD in a PostgreSQL
database to evaluate the trade-offs and advantages of the
HEAD protocols in a practical privacy-preserving cloud com-
puting case. The 1,500 masked ciphertexts could be easily
stored in a row of a database table, while the corresponding
FHE ciphertexts should be split into several rows since one
row could not bear the huge ciphertext size. Moreover, the
I/O overhead saving is also exhibited in our texts. We evaluate
the sum, average, inner product, and variance tasks for 100
numbers. By paying a reasonable client pre-processing time
and communication overhead, all our tasks could be an order
of magnitude faster than the ones in a straightforward FHE
protocol at a cloud computing server, respectively.

We note that the above performance advantages are
achieved at the cost of deviating from the straightforward
FHE protocol. In particular, to transform the pseudorandomly
masked messages to FHE encrypted ones, the client needs
to send FHE encryption of the corresponding masks at the
query phase, which is not required by a straightforward FHE
protocol. In essence, we trade the query phase communication
complexity for the ciphertext expansion rate at the server side.
Nevertheless in the setting of cloud computing of big data
storage, the trade-off is worthwhile.

B. Related Works

1) Homomorphic Encryption: An HE is called additively
(resp., multiplicatively or fully) homomorphic if addition
(resp., multiplication or both) is supported over ciphertexts.
For instance, Paillier [41] is an additive HE that supports
only homomorphic additions and scalar multiplications (but
not multiplications between ciphertexts). A leveled FHE is a
slightly weaker form of FHE that supports arbitrary computa-
tions up to a certain depth that must be specified in advance
for parameter configurations.

2

In a leveled FHE scheme, a ciphertext would accumulate
some noise during homomorphic computations, and may not
be correctly decrypted when the computations are beyond
the preset level, since the introduced noise is too large and
conceals the plaintext. In order to avoid a decrypt-then-re-
encrypt naive noise reduction, a mechanism named bootstrap-
ping is proposed, which generally evaluates a decryption cir-
cuit homomorphically [26], [28]. However, the bootstrapping
operation incurs considerable overhead. Currently, a learning-
with-errors (LWE) based leveled FHE with a relatively efficient
bootstrapping is the mainstream to achieve FHE when the
system parameters are decoupled with the functions to be
evaluated [35]. The rest of the paper views a leveled FHE
scheme with bootstrapping as an FHE scheme.

Except for the FHE schemes based on the approximate
greatest common division problem [15], the mainstream FHE
construction relies on the LWE assumption. The FHE standard-
ization procedure [7] and outstanding open-source libraries [3],
[42], [34], [18], [1], [4], [2] mainly focus on the LWE path.
Different LWE-based schemes can be categorized according to
the supported input message types into two main classes, BGV
style and GSW style. A BGV-style scheme, e.g., BGV [11] or
BFV [24], [12], aims to handle the integer inputs (word-wise).
CKKS [16] further extends an FHE to a real number input
message. The GSW style copes with bit-wise binary messages,
such as the GSW [32], FHEW [23], and TFHE [17] schemes.
The homomorphic computation results in these schemes (ex-
cept for CKKS) are precise, while CKKS may approximately
evaluate a computation at a preset precision.

Although these mainstream schemes [11], [24], [16], [23]
are implemented in open-source libraries [42], [3], [18], an
FHE scheme is usually regarded as impractical in storage
and computation. The storage problem lies in the notable
FHE ciphertext expansion. An LWE-based FHE ciphertext,
corresponding to an integer input, occupies several hundreds
of kilobytes storage, since the hardness of the LWE problem
requires a large enough lattice dimension. Hence, the ciphertext
expansion rate, i.e., the ratio of the FHE ciphertext size to the
input message size, is quite large in an FHE scheme, which
vastly limits an FHE application in terms of communication
and storage. Another focus for an FHE scheme is the ineffi-
cient computation concern. For a software implementation, a
ciphertext-wise multiplication is usually the slowest operation
in an integer FHE scheme, taking more than 100 ms. For
a binary FHE scheme, the slowest computation unit is a
ciphertext-wise XOR/XNOR, taking more than 1 second.

2) Storage optimization: Packing [10] is a useful compres-
sion technique when the FHE encryption parameters satisfy
some conditions. A bunch of input messages could be embed-
ded in one ciphertext, rendering a relatively small ciphertext
expansion rate via amortization. The state-of-the-art packing
works achieve the minimum ciphertext expansion rate of
around a dozen or a hundred for a BGV-style or a GSW-style
FHE scheme [10], [38], respectively, which is not compact.

Gentry and Halevi [27] and Brakerski et al. [9] innovate
some mechanisms to compress many GSW-style ciphertexts
(occupying a large storage space) to a small-size ciphertext.
The resulting ciphertext expansion rate for a compressed
ciphertext is almost 1, at a price of losing some homomorphic
functionalities in the compressed ciphertext.

The key-switching and modulus-switching are other two
techniques related to decreasing the ciphertext size [31].
After multiplying two FHE ciphertexts, the dimension of
the resulting ciphertext is increased, which requires a re-
linearization operation, i.e., a key-switching operation [29],
to recover the ciphertext dimension. However, the size of
a key-switched ciphertext does not decrease compared with
the original size. Modulus-switching, proposed by Brakerski
and Vaikuntanathan [12], is a noise management technique
intentionally. Generally, when the noise of a ciphertext is re-
duced via modulus-switching, the ciphertext size gets smaller.
However, the switched ciphertext still keeps a large expansion
rate and the computation depth it could support is decreased.

Chen et al. [14] present a unidirectional transformation
from an LWE-based FHE ciphertext to a Ring LWE-based
one, which supports packing and has an amortized ciphertext
size. Still, the ciphertext expansion rate remains large.

3) Computation optimization: Based on packing, the work
from Smart and Vercauteren [46] enhances the evaluation
strength for one packed ciphertext, i.e., the SIMD (single
instruction, multiple data) batching. Besides storage optimiza-
tion, the evaluation on a batched FHE ciphertext is equally
acting on each element in that batch. A heavy computation
burden is amortized to each message, which is an acceleration
in some sense. A batched FHE scheme already offers both the
storage and computation optimization in a practical application
like password-leakage searching [39]. However, some FHE
schemes, such as TFHE [17], only support compress-used
packing instead of SIMD-batching. Moreover, the packing or
SIMD-batching solution incurs a trade-off between amortized
storage and computation optimization.

Lu et al. [40] apply the batching technique to acceler-
ate statistical analysis on encrypted categorical, ordinal, and
numerical data as a privacy-preserving cloud computing case
study. They propose a novel batch greater-than primitive and
a layout consistent matrix primitive, and their protocol can
evaluate statistical computation, e.g., histogram, on several
thousands of data in several minutes.

Aubry et al. [8] propose a circuit re-writer to highly
decrease the depth of a Boolean/arithmetic circuit, which
optimizes the computation, since the computational overhead
of an FHE scheme highly relies on the circuit depth.

Another technique for computation optimization of an FHE
scheme is based on a hardware accelerator. There are a line of
FPGA-based works [21], [20], [22], [45], [47] and some ASIC-
based works [36], [44]. Especially, the hardware accelerator
proposed by Feldmann et al. [25] outperforms state-of-the-art
software implementations by up to 17,000 times.

4) HE transformation: Another way of FHE optimization
is to process an HE ciphertext transformed from another
“ciphertext”, e.g., of secret sharing [43], [5] and AES [30],
[31], to avoid heavy (fully) homomorphic ciphertext operations
and obtain some storage advantages.

Rane et al. [43] and Akavia et al. [6], [5] 4 optimize the
FHE storage in a one-client-two-server outsourcing scenario

4We were not aware of the compact storage solution for FHE via secret
sharing until the event [6]. In some sense, our work could be seen as a variant
of [5] with only one single cloud computing server.

3

using additive secret sharing, under the assumption that these
two servers do not collude. In this case, a client first shares
its confidential data (a secret) between the two servers. When
the client makes a computation request, one server homomor-
phically encrypts its shares and sends the HE ciphertext to the
other server. Then, the other server recovers the ciphertext of
the secret to process the subsequent evaluation.

Gentry et al. [30], [31] transform an AES-128 ciphertext
to a BGV FHE ciphertext, which could be utilized in a one-
client-one-server outsourcing scenario. The AES ciphertext
enjoys a compact storage, i.e., a ciphertext expansion rate of
almost 1 when the input message size is a multiple of 128
bits. However, even with hardware acceleration optimizations,
transforming a 120-block AES-128 ciphertext costs more than
four minutes. In addition, the transformed FHE ciphertext
corresponds to the elements in GF(2d) which may not be an
efficient representation for many practical applications.

Cho et al. [19] proposes a Real-to-Finite-field framework
to avoid the high CER for the CKKS scheme when encrypting
real numbers. They use the FV FHE scheme to encrypt
the plain modulus and a stream cipher scheme is used to
mask the original message. They accomplish a CER of 1.23
∼ 1.54 (larger than ours) and the encryption throughput is
optimized a lot at both client and server sides when the batch
size is quite large (e.g., 65,535). However, to recover the
target ciphertext, two times of transformation is involved with
a heavy bootstrapping, which is not as efficient as our protocol.

Enlightened by the previous works [30], [31], we pursue
a different way to optimize FHE storage and computation,
without relying on non-colluding cloud computing servers
or introducing high overheads of conversion. Moreover, the
transformation is generic enough to support as many FHE
schemes and input data types as possible.

Paper organization. Section II introduces the notations, pseu-
dorandom function (PRF) and FHE definitions, and a straight-
forward FHE cloud computing scenario. Section III introduces
our generic HEAD protocol while Section IV instantiates it by
three different masking techniques, i.e., modulo-subtraction,
modulo-division, and XOR. We show that these instantiated
protocols not only achieve a ciphertext expansion rate of 1, but
also optimize various computations in different FHE schemes.
Section V evaluates the performance of HEAD protocols
based on the BFV, BGV, CKKS, and FHEW FHE schemes.
Section VI shows some practical cloud computing experiments
when integrating HEAD protocols in a PostgreSQL database.
Finally, Section VII concludes this paper.

II. PRELIMINARIES

A. Notation

x←$ X or x← X refers to drawing an element x from the
space X uniformly at random, or according to the distribution
of X , respectively. {xi} represents a set having I messages,
and each message in this set xi has an index i. The m-bit
message x could be represented in binary as x0, · · · , xm−1. x̃
represents the masked message of x, using a pseudorandom r.
⊕ or � is an XOR or XNOR operation, respectively.

In an FHE scheme, let sk, pk, ct(·), M, and CT denote a
secret key, a public key, and a ciphertext, a message space, and

a ciphertext space, respectively. Γ is a circuit to be evaluated
in an FHE-based privacy-preserving cloud computing. λ is the
security parameter. n, t, and Q are FHE encryption parameters
for the ciphertext ring dimension, the plaintext modulus, and
the ciphertext modulus, respectively.

B. Pseudorandom Function

Let PRF: K × X → Y be an efficiently computable func-
tion. PRF is a pseudorandom function if for any probabilistic
polynomial time (PPT) adversary A the advantage AdvPRF

A (λ)∣∣∣∣Pr[b = 1|key←$ K; b← APRF(key,·)]− Pr[b = 1|b← ARF(·)]

∣∣∣∣
is negligible (negl), where RF(·) is a random function RF :
X → Y . We use ri ← PRF(key, i) to denote the instantiation
of the PRF function, which takes inputs on key ∈ K and an
index i ∈ X , and outputs a pseudorandom number ri ∈ Y . We
denote Y as same as the message space M.

C. Fully Homomorphic Encryption

We summarize the key components of an FHE scheme in-
cluding four PPT algorithms, i.e., FHE = (KeyGen, Encrypt,
Decrypt, Eval) in a high level.

• (sk, pk)← KeyGen(1λ): This algorithm inputs a security
parameter λ and outputs a secret key sk and a public key pk. pk
implicitly refers to a public encryption key, a public relinear
key5, and a public Galois key for rotating a SIMD-batched
ciphertext [37].

• ct(x) ← Encrypt(pk/sk, x) and x ← Decrypt(sk, ct(x)):
The encryption and decryption algorithms convert a message
x ∈ M to a ciphertext ct(x) ∈ CT and vice versa. Note that
an FHE scheme may support a symmetric or an asymmetric
encryption mode, so that the encryption algorithm would
require a secret key or a public key, respectively.

• ct(Γ(x)) ← Eval(pk,Γ, ct(x)): A circuit Γ to be evalu-
ated in an FHE scheme generally applies to the input ct(x)
rendering ct(Γ(x)).

Definition 1 (Correctness): A fully homormophic Encryp-
tion scheme FHE is correct if for all x ∈M, and (sk, pk)←
KeyGen(1λ), the following probability is overwhelming (close
to 1 except for negligible error):

Pr

[
Decrypt

(
sk,Encrypt(pk/sk, x)

)
= M ;

Decrypt
(
sk,Eval(pk,Γ,Encrypt(pk/sk, x))

)
= Γ(x)

]

Informally, an encryption scheme is indistinguishable secure
under chosen plaintext attacks (IND-CPA, Appendix A) if
no substantial information about the plaintext can be feasibly
extracted from the ciphertext. In other words, for a given
ciphertext, the distribution of the corresponding plaintext is
still random in the view of any PPT adversary.

5After a ciphertext multiplication, the dimension of the ciphertext may
increase. A relinearization is to recover the initial ciphertext dimension.

4

1) Encoding: Roughly speaking, the encryption algorithm
of an LWE-based FHE scheme implicitly consists of an
encoding process to convert a message to an element in a
special plaintext space, and the decryption also includes a
reversed decoding process. In the BFV scheme, a plaintext is
defined by an element in a ring Rt = Zt[x]/(xn + 1), whose
element is a polynomial having a degree smaller than n and the
coefficients come from the field Zt. t is named as the plaintext
modulus, which affects the correctness of an FHE scheme. A
bigger t value may allow a larger message space to keep the
computation correctness without data-type overflow. However,
a too-big t value may introduce too much noise during the
homomorphic computations. CKKS additionally requires an
integer scale factor ∆ to convert real inputs to integers. In the
following paper, we do not specify the encoding algorithm and
regard the encoding and decoding processes as the parts of the
encryption and decryption algorithms, respectively.

2) Encryption parameters: A BGV-style FHE ciphertext
typically contains two polynomials defined in a ring RQ =
ZQ[x]/(xn + 1), in which n is the ring dimension and Q is
the ciphertext modulo. Selecting a big enough n value would
guarantee the security level specified by the security parameter
λ [7]. A small Q value cannot support too many computation
levels in homomorphic encryption, while a too big ciphertext
modulo Q value would introduce more noise. A too big n or
Q value would add the storage and computational overhead.
Hence, the encryption parameters should be carefully selected
to fit a computation task without losing neither security,
efficiency, nor correctness.

3) SIMD batching: An FHE encryption scheme has a large
computational overhead and a large ciphertext storage size.
SIMD is a typical trick used in parallel computing, which is
widely used in FHE schemes [10], [46]. When N messages
are embedded into a batched ciphertext, the computational
overhead of an encryption/decryption or an evaluation, and the
storage usage of the ciphertext, are all divided by N , i.e., an
amortization operation. Hence, batching could be regarded as a
computation acceleration or a ciphertext compression operation
in some sense. Sect. V would compare the storage difference
between batching and unbatching.

Roughly speaking, when the plaintext modulus t satisfies
t ≡ 1 mod 2n, BFV and BGV support an N = n batching
at maximum [37]. In CKKS, the maximum batching size is n

2 .
Popular FHE libraries, e.g., PALISADE [42] and SEAL [3],
already widely follow this batching technique and highly
recommend that the developers should batch their messages
as much as possible, although batching does not fit all FHE
applications as we discuss in Sect. I.

D. A Straightforward FHE Privacy-preserving Cloud Comput-
ing Protocol

Fig. 1 introduces a straightforward FHE protocol used in a
privacy-preserving cloud computing scenario. At first, a client
sets an FHE system by generating secret and public keys
according to a set of encryption parameters. Then, the client
encrypts its confidential messages by the FHE scheme, and
sends several ciphertexts to a cloud computing server, together
with the generated public key. The server stores the ciphertexts
on behalf of the client. We name this the storage phase. When

the client requests the server to conduct some computations
on its encrypted data, the client proposes a computation task
(generally a circuit Γ), i.e., a query phase. Next, the server
computes this task without knowing the message. Finally, the
server returns the target ciphertext to the client side, and the
client decrypts it to obtain the results.

However, directly using an FHE scheme in this scenario
faces the storage and computation obstacles. The FHE ci-
phertext expansion rate is significant. Even when batching
is acceptable, the expansion rate of a ciphertext having the
maximum batch size is still more than one.

In addition, the number of ciphertext-wise operations re-
strains this application from the computation time and intro-
duced noise. Usually, the computation time for a ciphertext-
wise multiplication is much higher than an addition or a scalar
multiplication. A ciphertext-wise multiplication also introduces
a large amount of noise compared with other computations.
An addition or a scalar multiplication accumulates much less
noise. Since bootstrapping is a heavy computational burden to
eliminate noise, a noise optimization is implicit a computation
time optimization.

III. THE HEAD PROTOCOL

In this section, we propose our generic HEAD protocol
and delay to prove its security in a simulation-based model in
Appendix A.

Definition 2: The generic HEAD protocol is depicted in
Fig.2, consisting of six PPT algorithms, namely HEAD =
(KeyGen, Encrypt, Decrypt, Eval, NewEval, Trans).

• The KeyGen, Encrypt, Decrypt, and Eval algorithms
follow the original ones in an FHE scheme as we introduced
in Sect. II. In addition, ct(ri) is an encryption of a random
mask ri, i.e., ∀i ∈ I, ri ←$ M, ct(ri) ← Encrypt(pk, ri) for
an index set I .

• The transformation algorithm Trans(x, r) returns a
masked ciphertext x̃ upon input of a message x ∈ M and
a randomness r ∈M. {x̃i} = {x̃i | x̃i ← Trans(xi, ri)}.

• The new evaluation algorithm defined in our HEAD proto-
cols, NewEval(pk,Γ, ct(r), x̃), outputs a ciphertext ct(Γ(x)) ∈
CT on input a public key pk, a circuit Γ, an FHE ciphertext
ct(r) and a masked ciphertext x̃.

Definition 3 (Correctness): The generic HEAD protocol
is correct if ∀x, r ∈ M and (sk, pk) ← KeyGen(1λ), the
following probability is overwhelming (close to 1 except for
negligible error):

Pr

Decrypt

(
sk,Encrypt(pk, x)

)
= x ∧

Decrypt
(
sk,Eval

(
pk,Γ,Encrypt(pk, x)

))
=

Decrypt
(
sk,NewEval

(
pk,Γ,Encrypt(pk, r),

Trans(x, r)
))

= Γ(xi)

It is obvious that our generic HEAD protocol (Fig. 2)

does not change the process of a straightforward FHE cloud
computing protocol (Fig. 1), no matter whether an FHE scheme
supports SIMD-batching or not. The masked ciphertexts spend

5

Client Server
1) (sk, pk)← KeyGen(1λ)

2) ct(xi)← Encrypt(pk, xi)
ct(xi)

3) Storing ct(xi)

4) Request
pk and Γ

5) ct(Γ(xi))← Eval(pk,Γ, ct(xi))
ct(Γ(xi))

6) Γ(xi)← Decrypt(sk, ct(Γ(xi)))

Figure 1: A straightforward FHE privacy-preserving cloud computing protocol

Client Server
1) x̃i ← Trans(xi, ri)

{x̃i}
2) Storing {x̃i}

3) (sk, pk)← KeyGen(1λ), ct(ri)← Encrypt(pk, ri)

or ct(ri)← Encrypt(pk, ri)

4) Request
ct(ri), pk and Γ

5) ct(Γ(xi))← NewEval(pk,Γ, ct(ri), x̃i)
ct(Γ(xi))

6) Γ(xi)← Decrypt(sk, ct(Γ(xi)))

Figure 2: The generic HEAD protocol in the privacy-preserving cloud computing scenario

much less space achieving compact storage, i.e., the ciphertext
expansion rate is 1. Moreover, our protocol offers some com-
putation optimization and higher flexibility. We will describe
how we achieve compact storage and efficient computation,
and discuss the advantages (including the flexibility) and
limitations in Sect. IV.

IV. VARIOUS HEAD INSTANTIATIONS

In this section, we instantiate our generic HEAD proto-
col with three protocols, i.e., a modulo-subtraction-masking
protocol, a modulo-division-masking protocol, and an XOR-
masking protocol. All instantiations achieve compact storage,
i.e., decreasing the masked ciphertext expansion rate to 1,
and optimize some computation types, in the FHE-based
privacy-preserving cloud computing scenario (Sect. II-D). Our
NewEval function includes two parts, i.e., an unmasking
operation and an evaluation. The evaluation may point to
many computation steps. Moreover, our optimization would
be described in corresponding subsections and figures. The
concrete computation time and noise reduction of the protocols
would be exhibited in Sect. V.

A. Modulo Subtraction Masking

Fig. 3 instantiates Trans by modulo-subtraction-masking.
In addition to a ciphertext expansion rate of 1, the compu-
tation optimization lies in a reduction from arbitrary times
of ciphertext-wise additions or a scalar multiplication to a
single ciphertext-plaintext addition, significantly reducing the
computation time or noise, respectively. We describe this
protocol for an integer input vector, which is suitable for an
integer FHE scheme such as BFV [24] or BGV [11].

1) Storage optimization for an integer number FHE
scheme: We consider an application based on a message space
M, whose length is a factor of the word length (e.g., 16 bits)
and is slightly smaller than Zt. For Trans in step 1 in Fig. 3,
a client firstly masks {xi ∈ M} by element-wise modulo
subtracting an integer pseudorandom vector {ri} (generated

from PRF(key, i)), i.e., Trans(xi, ri) = xi−ri mod t, ∀i ∈ I .
Since the length ofM is a factor of a word length, the size of
the masking results {x̃i} could be stored in the same size as
the one of the original messages, i.e., |{x̃i}| = |{xi}| and the
ciphertext expansion rate is 1. The client transfers the masked
set {x̃i} to a cloud computing server. Then, the client stores
the small-size PRF key for a long time as needed, until a
computation request is raised.

Next, we show how this modulo-subtraction-masking could
be unmasked using the FHE homomorphic properties, i.e.,
step 5.1 in Fig. 3. When the client wants to launch a cloud
computing query on its ciphertexts, the client re-generates the
pseudorandom vector {ri} from the PRF using the same key,
and generates the FHE scheme (e.g., BFV or BGV) secret and
public keys. The FHE scheme should be configured by the
same plaintext modulus t as the one in the masking process,
while other configurations could be flexible according to the
proposed computation circuit Γ. The masking set is encrypted
into ct(ri) in a SIMD-batching style, and ct(ri) would be
sent to the server along with the public key and Γ. After
receiving the request, the server picks up the ciphertext x̃i
from its storage. The server would obtain ct(xi) by computing
ct(x̃i) ← x̃i + ct(ri) = ct(x̃i + ri). Note that the unmasking
could be a SIMD-batched addition between a batched plaintext
and a batched ciphertext.

The cloud server then computes the task according to the
circuit description Γ, and returns a result ciphertext ct(Γ(xi))
to the client. Finally, the client decrypts it to have Γ(xi).

2) Computation optimization for one or more ciphertext-
wise additions and a scalar multiplication: Since this modulo-
subtraction-masking is linear, the masked message still keeps
the linear homomorphic properties, which could move a linear
FHE ciphertext evaluation to the masking side. The masking
side operations are much easier than the ones in the FHE
ciphertext side. In step 2 of Fig. 3, the client may preprocess
ct(
∑k
i=1 ri) or ct(c ·ri) if the cloud computing task Γ requires

a large number of additions or a scalar multiplication.

6

Client Server
1) ri ← PRF(key, i), x̃i ← Trans(xi, ri) = xi − ri mod t

{x̃i}
2) Storing {x̃i}

3) (sk, pk)← KeyGen(1λ), Encrypt for ri,
∑k
i=1 ri, or c · ri

4) Request ct(ri), ct(
∑k
i=1 ri), or ct(c · ri); pk and Γ

5) ct(Γ(xi))← NewEval(pk,Γ, ct(ri), x̃i):

5.1) ct(xi)← x̃i + ct(ri),

5.2) Computing ct(Γ(xi)), in which:∑k
i=1 ct(xi)←

∑k
i=1 x̃i + ct(

∑k
i=1 ri),

c · ct(xi)← c · x̃i + ct(c · ri)
ct(Γ(xi))

6) Γ(xi)← Decrypt(sk, ct(Γ(xi)))

Figure 3: The modulo-subtraction-masking HEAD protocol for an integer number FHE scheme

Client Server
1) ri ← PRF(key, i), x̃i ← Trans(xi, ri) = xi · r−1

i mod t
{x̃i}

2) Storing {x̃i}

3) (sk, pk)← KeyGen(1λ), Encrypt for ri, rki , or Πki=1ri

4) Request ct(ri), ct(rki), ct(Πki=1ri); pk and Γ

5) ct(Γ(xi))← NewEval(pk,Γ, ct({ri}), {x̃i}):

5.1) ct(xi)← x̃i · ct(ri)

5.2) Computing ct(Γ(xi)), in which:

ct(xi)
k ← x̃i

k · ct(rki), Πki=1ct(xi)← Πki=1x̃i · ct(Πki=1ri)
ct(Γ(xi))

6) Γ(xi)← Decrypt(sk, ct(Γ(xi)))

Figure 4: The modulo-division-masking HEAD protocol for an integer number FHE scheme

Step 5.2 in Fig. 3 reduces the sum of k FHE ciphertexts∑k
i=1 ct(xi) to a single FHE ciphertext-plaintext addition∑k
i=1 x̃i + ct(

∑k
i=1 ri). This is a significant optimization

since the computational overhead for the sum of k masked
ciphertexts or k pseudorandoms is much small. Furthermore,
when the inputs are batched in one FHE ciphertext, the
straightforward FHE computation for the sum of k ciphertexts
(
∑k
i=1 ct(xi)) should be accompanied with needed rotations

or evaluations at indexes, while our technique does not need
rotation. This transformation also decreases noise a little.

The optimization also works for an FHE scalar multiplica-
tion c·ct(xi) by computing the scaling on the masking side and
the pseudorandom side, i.e., c·x̃i and c·ri, and then computing
a plaintext-ciphertext addition c · x̃i + ct(c · ri). Although this
optimization decreases a little computation time, the reduction
in noise volume is significant.

B. Modulo Division Masking

Fig. 4 introduces the modulo-division-masking HEAD pro-
tocol, i.e., instantiating Trans by a modulo division for integer
number inputs. Still, this protocol not only achieves compact
storage, but also decreases the FHE ciphertext multiplication
consumptions in a cloud server. The computation optimiza-
tion reduces arbitrary times of ciphertext multiplications to a
single scalar multiplication, significantly decreasing both the
computation time and noise.

1) Storage optimization for a non-zero integer number FHE
scheme: This protocol has similar requirements for M and t
to the ones in the modulo-subtraction-masking HEAD protocol
(Sect. IV-A). For non-zero integer inputs xi, Trans invokes
xi·r−1i mod t, ∀i ∈ I , in which non-zero ri comes from a PRF.
The unmasking operation inside NewEval only consumes one
scalar multiplication to unmask the maskings, i.e., ct(xi) ←
x̃i · ct(ri). This unmasking also supports the SIMD-batching.

2) Computation optimization for one or more ciphertext-
wise multiplications: Step 5.2 in Fig. 4 introduces the modulo-
division-masking computation optimization. If a computation
request Γ includes the k power of an FHE ciphertext, the client
in HEAD would prepare rki by computing the k power of
each element ri, then send the ciphertext ct(rki) in a cloud
computing query. The cloud server computes x̃k and then only
consumes one scalar multiplication to compute ct(xi)

k.

If Γ requires a k-degree cross term from k variables, i.e.,
Πk
i=1xi. The straightforward FHE protocol requires rotations

or evaluations at different indexes to achieve the product of
k ciphertexts Πk

i=1ct(xi). Our optimization also works in this
case, by firstly computing Πk

i=1x̃i and Πk
i=1ri then computing

one scalar multiplication of Πk
i=1x̃i · ct(Πk

i=1ri).

These optimizations decrease both a large amount of com-
putation time and noise, compared with the heavy homomor-
phic operations in the straightforward FHE usage.

7

C. XOR Masking

The XOR-masking HEAD protocols (in Fig. 5 and Fig. 6)
work for a real or binary number input. Both protocols achieve
compact storage.

1) Storage optimization for a real number FHE scheme:
We describe the positive case here to simplify the expression,
and extend it to the general case in Appendix C when keeping
one bit to indicate a positive or negative number. We consider a
fixed-point positive real number x occupying m bits in Fig. 5,
and xj stands for the j-th bit for j ∈ [0,m− 1]. Specifically,
the first mfrac bits represent the fraction part of this message,
i.e., x0, · · · , xmfrac−1, while the remaining m − mfrac bits
indicate the integer part, i.e., xmfrac , · · · , xm−1. Hence, the
binary representation of x satisfies x =

∑mfrac−1
j=0 xj ·2j−mfrac +∑m−1

j=mfrac
xj · 2j−mfrac =

∑m−1
j=0 xj · 2j−mfrac .

The Trans operation masks each bit of the input xji by an
XOR operation with another random bit ri generated from a
PRF, i.e., x̃ji ← xji ⊕ r

j
i , ∀j ∈ [0,m− 1], ∀i ∈ I .

Since a real number FHE scheme like CKKS supports
SIMD-batching, NewEval may execute the unmasking oper-
ations in a batching style. For each bit of each element xji ,
the binary XOR could be converted to a decimal relation, i.e.,
xji = x̃ji ⊕ r

j
i = x̃ji + rji − 2 · x̃ji · r

j
i . For an m-bit fixed-point

decimal real number, we have

xi =

m−1∑
j=0

(
x̃ji · 2

j−mfrac + rji · 2
j−mfrac − 2 · x̃ji · r

j
i · 2

j−mfrac

)
=

m−1∑
j=0

(
x̃ji · 2

j−mfrac + (1− 2 · x̃ji) · r
j
i · 2

j−mfrac

)
Hence, the relation in ciphertexts keeps,

ct(xi) =

m−1∑
j=0

(
x̃ji · 2

j−mfrac + (1− 2 · x̃ji) · ct(r
j
i · 2

j−mfrac)
)
,

ct(xi) =

m−1∑
j=0

x̃ji · 2
j−mfrac +

m−1∑
j=0

(1− 2 · x̃ji) · ct(r
j
i · 2

j−mfrac).

Before a request, the client prepares ct(rji · 2j−mfrac) for
∀j ∈ [0,m − 1], ∀i ∈ I , then transfers these ciphertexts
(or one single batched ciphertext) to the cloud server in a
cloud computing query. After unmasking and computations,
the CKKS ciphertext ct(Γ(xi)) is transferred to the client. Note
that the client could embed all encrypted bits in one batched
ciphertext. With necessary rotations, the unmasking could be
efficiently processed.

2) Storage optimization for a binary input FHE scheme:
The XOR-masking HEAD protocol (Fig. 6) works for a binary
GSW-style FHE scheme, in which the message space is M =
{0, 1}. For masking an binary xi, the client runs a bit-wise
XOR by another pseudorandom bit ri in Trans, rendering the
same size bit x̃i, which also prevents the ciphertext expansion.
For unmasking, this XOR HEAD protocol transfers ct(ri) to
the cloud server, and the unmasking process computes x̃i ⊕
ct(ri) to recover ct(xi).

3) Computation optimization for one or more ciphertext-
wise XOR or XNOR operations for a binary FHE scheme:
Step 5.2 in Fig. 6 introduces our computation optimization
for this protocol. If a computation request Γ requires the
XOR or XNOR sum of k ciphertexts (i.e., ⊕ki=1ct(xi) or
�ki=1ct(xi)), the client would prepare and send the ciphertext
ct(⊕ki=1ri) or ct(�ki=1ri) along with a cloud computing query,
respectively. Since the XOR operation is transitive, we have
⊕ki=1ct(xi) ← (⊕ki=1x̃i) ⊕ ct(⊕ki=1ri), which is a single
ciphertext-wise XOR operation. One XOR operation based on
two FHE ciphertexts is very slow as the exhibition in Sect. V.
Hence, our optimization is significant since we reduce the
heavy burden of computing k−1 times of XOR for ⊕ki=1ct(xi)
to a single XOR.

The optimization also works for XNOR. From a � b =
¬(a ⊕ b) and a � b � c = a ⊕ b ⊕ c, we could induce
that �ki=1ri equals to ⊕ki=1ri or ¬(⊕ki=1ri) if k is odd or
even, respectively. Hence, the XNOR sum of k ciphertexts
�ki=1ct(xi) could be optimized to (�ki=1x̃i) ⊕ ct(�ki=1ri) or
(�ki=1x̃i)⊕¬ct(�ki=1ri) for an even k or odd k, respectively.
Similarly, the ciphertext-wise XNOR operation is heavy, so
that our optimization is also significant.

4) Supporting a symmetric binary FHE scheme: From
our implementation experience, two famous FHE open-source
libraries PALISADE [42] and TFHE [18] only support the
symmetric version of FHE schemes, which do not support a
plaintext-ciphertext XOR or an encryption before a ciphertext-
wise XOR at the server side in an FHE-based privacy-
preserving cloud computing scenario.

In order to apply this XOR-masking protocol in practice,
we design another method at the server side (step * in Fig. 6).
For computing x̃i ⊕ ct(ri), the operation is to reverse ct(ri)
(an NOT ciphertext operation) in essence, according to the bit
value of the x̃i. Since xi ← x̃i⊕ri, xi ← 0⊕ri = ri if x̃i = 0,
and xi ← 1⊕ ri = ¬ri if x̃i = 1. Hence, the server could set
ct(xi)← ct(ri) if x̃i = 0, or ct(xi)← ¬ct(ri) if x̃i = 1. An
NOT ciphertext operation takes a much less time (the level of
microseconds) than other ciphertext-wise Boolean operations
(the level from hundreds of milliseconds or seconds).

D. Discussion

1) Compact storage: the masked ciphertext expansion rate
of one: Similar to Gentry et al.’s work [30], [31], a server in
our HEAD protocols stores compact ciphertexts in an FHE-
based privacy-preserving cloud computing scenario. When the
client requests a computation, the AES ciphertexts in [30], [31]
and the masked ciphertexts are transferred to high-expansion
FHE ciphertexts. Both [30], [31] and ours have an expansion
rate of one in the storage phase. However, our protocol is more
generic and extra offers computation optimizations than [30],
[31], by paying a little communication overhead.

We regard an FHE scheme as a black box in our protocols,
which offers us more generality without relying on a specific
FHE scheme. The works [30], [31] only could store the AES
ciphertext and transfer it to a BGV FHE ciphertext. Our pro-
tocols support various masking techniques and FHE schemes
depending on the data type computing in a cloud server. In
addition, a masked ciphertext could be transformed faster and
could support different representations other than GF (2d) or

8

Client Server
1) ri ← PRF(key, i), x̃ji ← Trans(xji , r

j
i) = xji ⊕ r

j
i , ∀j ∈ [0,m− 1]

{x̃i}
2) Storing {x̃i}

3) (sk, pk)← KeyGen(1λ), Encrypt for rji · 2
j−mfrac , ∀j ∈ [0,m− 1]

4) Request ct(rji · 2
j−mfrac); pk and Γ

5) ct(Γ(xi))← NewEval(pk,Γ, ct(rji · 2
j−mfrac), x̃i):

ct(xi)←
∑m−1
j=0 x̃ji · 2

j−mfrac

+
∑m−1
j=0 (1− 2 · x̃ji) · ct(r

j
i · 2

j−mfrac)
ct(Γ(xi))

6) Γ(xi)← Decrypt(sk, ct(Γ(xi)))

Figure 5: The XOR-masking HEAD protocol for a real number FHE scheme

Client Server
1) ri ← PRF(key, i), x̃i ← Trans(xi, ri) = xi ⊕ ri

{x̃i}
2) Storing {x̃i}

3) (sk, pk)← KeyGen(1λ), Encrypt for ri, ⊕ki=1ri, or �ki=1ri

4) Request ct(ri), ct(⊕ki=1ri), ct(�ki=1ri); pk and Γ

5) ct(Γ(xi))← NewEval(pk,Γ, ct(ri), x̃i):

5.1) ct(xi)← x̃i ⊕ ct(ri)

5.2) Computing ct(Γ(xi)), in which:

⊕ki=1ct(xi)← (⊕ki=1x̃i)⊕ ct(⊕ki=1ri);

�ki=1ct(xi)← (�ki=1x̃i)⊕ ct(�ki=1ri) for even k,

�ki=1ct(xi)← (�ki=1x̃i)⊕ ¬ct(�ki=1ri) for odd k

*) For x̃i ⊕ ct(ri), set ct(xi)← ct(ri) if x̃i = 0,

ct(xi)← ¬ct(ri) if x̃i = 1
ct(Γ(xi))

6) Γ(xi)← Decrypt(sk, ct(Γ(xi)))

Figure 6: The XOR-masking HEAD protocol for a binary FHE scheme

even optimize some computation, compared with an AES
ciphertext. While the computation of an AES ciphertext is
limited in the field GF (2d).

2) Supporting different computation types: The three
HEAD protocols optimize different computations depending
on the masking technique used in a storage phase. Since the
masked ciphertext expansion rate is 1 in all the three instan-
tiations, a client may outsource long-term storage for all the
three types (modulo-subsection, modulo-division, and XOR)
of masked messages, using three different pseudorandom keys,
without occupying too much space. No matter what kind of
computation task, the corresponding maskings are picked up
and used in the following computation.

3) The flexibility of HEAD protocols: It is worth noticing
that the server may store the masked ciphertexts during the
life-cycle of the outsourced cloud storage and computing
application. Our protocol is not of one-time use. After one-
time outsourced storage, the client may propose multiple
cloud computing queries on its outsourced ciphertexts without
changing the pseudorandom maskings.

A client may upload its I1 masked messages at the begin-
ning, while each following requested computation may only re-
quire I2 messages and I2 << I1, i.e., a shorter pseudorandom
array as needed, which would further save the communication
overhead for the corresponding FHE ciphertext(s). Also, the

indexes included in I2 are not limited. The retrieved messages
could be transformed to one or more FHE ciphertexts as
required if the selected FHE scheme supports SIMD-batching.

What’s more, the encryption parameters of a transformed
FHE ciphertext could be configured just before a computation
task is proposed. The client configures an FHE scheme flexibly
according to a cloud computing task.

4) The value of a plaintext modulus t: As we introduced
in Sect. II, an FHE evaluation result is t-modulo after several
computations. Different applications have different require-
ments of the t value. However, no matter what the t value
is, our ModSub and ModDiv protocols keep compact storage
in an FHE-based privacy-preserving cloud computing scenario.

5) The extra costs of HEAD: As we depicted in Fig. 1
and Fig. 2, the HEAD protocols do not change the procedure
of a straightforward FHE privacy-preserving cloud computing
protocol too much. In exchange for compact storage and com-
putation optimization, the HEAD protocols may sacrifice some
communication overhead to transfer some FHE ciphertexts of
(the variants of) the pseudorandom maskings. Since, BFV,
BGV, and CKKS support SIMD-batching, the ModDiv and
ModSub communication overheads are small, only transferring
a batched ciphertext. The XOR-masking protocol for CKKS
could also transfer one n · m batched ciphertext when the
computation task requires n real numbers and each number has

9

m bits. Since FHEW (or other GSW-style FHE schemes) does
not support batching, both our XOR-masking protocol and
a straightforward FHEW privacy-preserving cloud computing
protocol would transfer unbatched FHEW ciphertexts.

For the unmasking operations, the computational overhead
is small or reasonable in different HEAD protocols, as we
discussed in the previous subsections.

6) The trade-off between compact storage and computation
optimization for CKKS: Our HEAD XOR protocol for CKKS
(Fig. 5) achieves the extremely compact ciphertext storage.
However, the ModSub protocol also supports CKKS, and
similarly optimizes additions and scalar multiplications, with
a small ciphertext expansion.

For a real number x, a scale-round-modulo operation
renders (bx ·∆e mod Q) ∈ M. The scale factor ∆ would
be the same as the one used in the following CKKS scheme.
Implementing Trans by x̃i = bxi · ∆e − ri mod Q and
selecting ri ←$ ZQ render the masking size expansion, since
usually the value of Q is not small. Considering a double-type
input x and log2Q = 150, the expansion rate is 150

64 ≈ 3.

For the unmasking operation inside NewEval, each element
in {x̃i} would be multiplied by the scale factor inverse, i.e.,
x̃i ·∆−1. The client prepares ct(ri ·∆−1) and then the server
computes x̃i · ∆−1 + ct(ri · ∆−1). The masked messages in
this way still keep the similar computation optimizations as
the ones in the integer case, i.e., step 5.2 in Fig. 3.

7) The open question whether a real input could be division
masked to enhance the ciphertext multiplication strength:
According to our security proof for the HEAD protocol in
Sect. III, a masking method is secure when a mask and
the resulting masked message are indistinguishable. The ratio
x̃ = x

r would be too small or too large if the double-precision
type variables x and r come from the same space, which is
beyond the precision of an FHE scheme like CKKS. Hence,
how to use the HEAD protocol to mask a real number input
in a division form would is left as future work.

V. EVALUATING THE HEAD IMPLEMENTATION
PERFORMANCE

This section evaluates the performance of our three HEAD
protocols in storage and computation aspects, including the
BFV, BGV, CKKS, and FHEW schemes. The straightforward
usage of the FHE schemes without our protocols is also
exhibited as a baseline. We mainly evaluate the performance
using the PALISADE library [42]6, while also obtaining the
introduced noise volume from the SEAL library [3]. The
testing environment is based on Intel Xeon Gold 6266C
CPU @ 3.00GHz and 64 GB memory, with Ubuntu 18.04.2
operating system and GCC 7.5.0 compiler.

A. ModSub for BFV and BGV

We first examine the capabilities of the modulo-subtraction-
masking (ModSub) protocol in Fig. 3. We choose the batch
size as 8, 192 and sets the ring dimension accordingly. The
plaintext and ciphertext modulus are chosen as t = 65, 537
and log2Q = 180, i.e., we use 16-bit unsigned integer to

6Currently, the PALISADE library supports most FHE schemes.

represent input messages. We denote this setting as Setting
I and summarize the ciphertext size (ctsize), the ciphertext
expansion rate (CER), and the transformation cost for BGV
and BFV in Table II.

ModSub generates {ri} and computes {xi − ri mod t}
for 510 µs while a later re-generation of {ri} from the PRF
costs 279 µs, which is a very small computation overhead. If
a cloud computing query requires all stored messages, one
batched unmasking computation for all masked ciphertexts
costs only 9.4 ms for necessary encodings combined with
one plaintext-ciphertext addition (Step 5.1 in Fig. 3). One
straightforward unbatched BFV ciphertext takes 386.97 KiB,
and the CER is around 396,261 B

2 B ≈ 198, 130.5. Then, 8,192
unbatched BFV ciphertexts occupy a considerable space of
3.02 GiB. The 8,192-batched BFV CER is 396,261 B

2 B·8,192 ≈ 24.2.
The BGV experiment keeps the same order of magnitude.

Table III exhibits the ModSub computation optimization,
which reduces one or more (k − 1 times of) ciphertext-wise
additions (ct+ct) or a scalar multiplication (ct ·pt) to a single
plaintext-ciphertext addition (ct + pt). We take a sum case
to reflect the computation optimization. For a straightforward
FHE protocol, when computing the sum of k = 8 ciphertexts,
it is obvious that equally computing pt(8) · ct(x) is the fastest
way if the eight ciphertexts are identical, consuming a scalar
multiplication for 6.4 ms. When the accumulated items are
dispersed in one ciphertext batch, there are extra 7 operations
for “evaluation at index” and 7 additions, leading to around
336.3 ms to compute

∑8
i=1 ct(xi) in total. For our ModSub

protocol, both the tasks of pt(8)·ct(x) and
∑8
i=1 ct(xi), could

be computed for 6.3ms. No matter how many numbers of
additions (k−1 additions takes (k−1)·6.3 ms) could be reduce
to a single plaintext-ciphertext addition (taking 6.3 ms).

For BGV, the PALISADE library release 1.11.5 extra offers
the rotation functionality. The sum could be accomplished in
a straightforward FHE protocol by rotations if x1, · · · , x8 are
arranged in order in a batch7 for 183.8 ms, which is denoted
by
∑8
i=1 ct(xi)

∗
in Table III. However, ModSub only takes

3.2 ms for the sum of eight ciphertexts, faster than both an
evaluation-at-index sum and a rotation sum for the case of
batched items in order or not respectively.

Table V exhibits our BFV noise optimization from the
SEAL library [3]. Since a ciphertext-wise addition introduces
not much noise to the ciphertext, the optimization is slight for
several bits when the sum size k is not large8. However, the
noise of a scalar multiplication is 21 bits in our setting. It
makes our optimization noticeable since a plaintext-ciphertext
addition introduces tiny noise.

B. ModDiv for BFV and BGV

In order to support a deeper circuit in the experiments,
we set the encyption parameters by n = 8, 192, t =
65, 537, log2Q = 180 for BFV and n = 16, 384, t =

7At first, left-rotate the batch once, then compute an addition to get
ct(x1)+ct(x2). Next, left-rotate the result by 2 slots, and an addition renders
ct(x1) + · · ·+ ct(x4). Finally, a 4-slot left-rotation and an addition lead to∑8
i=1 ct(xi). The PALISADE library release 1.11.5 only supports ciphertext

rotations for BGV and CKKS.
8The SEAL library release 3.7 does not offer the evaluation-at-index

functionality, and only supports the noise value evaluation for BFV.

10

Table II: Storage optimization for ModSub HEAD (Ciphertext expansion rate abbreviated as CER)

Scheme
Straightforward FHE (Unbatch) Straightforward FHE (Batch) ModSub HEAD

ctsize CER ctsize CER ctsize CER Transtime Unmasktime

BFV 3,246,170,112 B (3.02 GiB) 198,130.5 396,261B (386.97 KiB) 24.2 16 KiB 1
510 µs

9.4 ms
BGV 4,320,976,896 B (4.02 GiB) 363,731.5 527,463 (515.10 KiB) 32.2 16 KiB 1 6.3 ms

Table III: Computation optimization for ModSub and ModDiv HEAD

Scheme
Setting I Setting II

Operation Straightforward FHE time ModSub time Operation Straightforward FHE time ModDiv time

BFV

ct + pt 6.3 ms

6.3 ms

(k − 1) · (ct× ct) (k − 1)·131.5 ms

9.5 ms
(k − 1) · (ct + ct) (k − 1)·6.3 ms (k − 1) · (ct× ct)∗ (k − 1)·132.1 ms

ct · pt 6.4 ms ct(x)8 398.1 ms∑8
i=1 ct(xi) 336.3 ms Π8

i=1ct(xi) 1,219.4 ms

BGV

ct + pt 3.2 ms

3.2 ms

(k − 1) · (ct× ct) (k − 1)·93.8 ms

9.8 ms
(k − 1) · (ct + ct) (k − 1)·6.4 ms (k − 1) · (ct× ct)∗ (k − 1)·100.8 ms

ct · pt 9.7 ms ct(x)8 357.8 ms∑8
i=1 ct(xi) 423.6 ms Π8

i=1ct(xi) 1,311.4 ms∑8
i=1 ct(xi)

∗
183.8 ms Π8

i=1ct(xi)
∗ 585.0 ms

Table IV: Storage optimization for XOR HEAD (Ciphertext expansion rate abbreviated as CER)

Scheme
Straightforward FHE (Unbatch) Straightforward FHE (Batch) XOR-masking HEAD

ctsize CER ctsize CER ctsize CER Transtime Unmasktime

CKKS 8,615,895,040 B (8.02 GiB) 525,872.5 1,051,745 B (1,027.09 KiB) 64.2 16 KiB 1
253 µs

289.3 ms
FHEW 33,923,072 B (32.35 MiB) 33,128 N.A. N.A. 8,192×1 bit 1 8,192×2 µs

Table V: Noise Introduction for ModSub and ModDiv HEAD
(BFV parameters: n = 8, 192, t = 65, 537, log2Q = 180)

Scheme Operation
Straightforward ModSub or

FHE noise ModDiv noise

BFV

ct + pt < 1 bit < 1 bit
ct + ct < 1 bit

< 1 bit
pt · ct 21 bit∑8
i=1 ct(x) 3 bits∑8
i=1 ct(xi)

∗
5 bits

ct(x)8 86 bits
21 bits

Π8
i=1ct(xi)

∗ 87 bits

Table VI: Computation optimization for XOR-masking HEAD
protocol (128 bits security for FHEW; XORs or XNORs: the
computations for ⊕ki=1ct(xi) or �ki=1ct(xi), respectively)

Scheme XORs XNORs
Straightforward FHEW (k − 1)×1.71 s (k − 1)×1.70 s
XOR-masking HEAD 2 µs 2 µs

65, 537, log2Q = 225 for BGV, respectively, which is denoted
as Setting II in Table III.

The modulo-division-masking (ModDiv) protocol also of-
fers a ciphertext expansion rate of 1. The difference lies in the
masking and unmasking overhead. The masking takes 4.1 ms
for 8,192 integers, and a scalar-multiplication-based unmask-
ing costs 9.5 ms or 9.8 ms for BFV or BGV, respectively.

Table III exhibits the multiplication saving owing to Mod-
Div in BFV and BGV. For k-1 times of ciphertext-wise mul-
tiplications (or multiplication then relinearization, denoted by
(k−1)·(ct× ct)∗ in Table III), a straightforward BFV protocol
takes (k − 1)·131.5 ms (or (k − 1)·132.1 ms, respectively),
which is reduced to 9.5 ms by ModDiv.

In addition, we compute the eighth power of a ciphertext
ct(x)

8 and the product of eight ciphertexts Π8
i=1ct(xi). These

two tasks are common in any one or k variables, k degree
polynomials in an FHE-based cloud computing query. In the
straightforward BFV protocol, invoking log2(k) = 3 times of
multiplication renders the 8 power of the ciphertext, which
takes 398.1 ms in total. When x1, . . . , xk are stored in a
size-8 batch, 7 times of evaluation at indexes and 7 multi-
plications cost 1219.4 ms in total. The straightforward BGV
protocol could take the rotation way to compute Π8

i=1ct(xi)
if the messages are arranged in order in a batch, denoted by
Π8
i=1ct(xi)

∗ in Table III. The multiplication production tasks
in the straightforward BGV protocol take several hundreds of
milliseconds or seconds.

ModDiv prepares masked x̃k or Πk
i=1x̃

i outside an FHE

11

scheme. The optimized computation (a single plaintext-
ciphertext multiplication) overhead is 9.5 ms or 9.8 ms for
computing both ct(x)

8 and Π8
i=1ct(xi) in BFV or BGV,

respectively. The time reduction is considerable.

Similarly, Table V shows the noise level introduction of
the straightforward FHE operations and our protocol. A scalar
multiplication requires 21 bits noise in our protocol, which is
much smaller than the one to compute ct(x)

8 (86 bits) and
Π8
i=1ct(xi) (87 bits) in BFV. For a larger k value, the noise

reduction by our protocol would also increase.

C. XOR-masking for CKKS and FHEW

We implement our XOR-masking HEAD protocol for
CKKS and FHEW and select an 8,192-size batch and 8,192
unbatched ciphertexts as in the previous two cases.

Table IV shows our storage optimization compared with the
straightforward CKKS usage. The CKKS encryption parame-
ters are configured by n = 16, 384, log2Q = 150, and we
consider 16-bit fixed-point numbers with 8 bits representing
the fraction part. When the batch size is 8,192, Trans (Step
1 in Fig. 5), i.e., generating {ri} and computing xji ⊕ rji ,
costs 253 µs in total. The straightforward CKKS unbatched or
batched ciphertext expansion rates are 1,051,745 B

2 B ≈ 525, 872.5

and 1,051,745 B
2 B·8,192 ≈ 64.2, respectively. While XOR-masking

for CKKS still keeps a ciphertext expansion rate of 1. The
computational overhead to unmask the 8,192 masked messages
is relatively higher than the operations in other protocols, but
is still reasonable, which consumes around 289.3 ms in total9.

The implemented FHEW scheme in PALISADE only sup-
ports unpacked computations and symmetric encryption10. We
configure the 128 bits security and leave other parameters as
automatic recommendations. Table IV shows that our protocol
decreases the ciphertext expansion rate from 4141 B

1 bit = 33, 128
to 1. The unmasking operation in the symmetric version of
the XOR-masking protocol (step * in Fig. 6) reverses the
value of ct(ri) according to the value of the masking x̃i. Each
ciphertext NOT operation takes 2 µs. If an 8,192-size masked
vector {x̃i} are all value 1, Table IV shows the worst case that
the unmasking operations take 8,192×2 µs. Our XOR-masking
protocol also has a significant computation optimization for
one or more ciphertext-wise XOR and XNOR operations. For
the tasks of ⊕ki=1ct(xi) and �ki=1ct(xi), the overhead reduces
from (k − 1)·1.7 s to 2 µs.

VI. HEAD PRACTICAL EXPERIMENTS IN POSTGRESQL

In this section, we embed the SEAL FHE library into a
mainstream database system, PostgreSQL, and compare our
HEAD protocols with straightforward FHE usages in practice.
PostgreSQL is deployed in a localhost network as a server,
and a client is to outsource its storage and computation with
or without HEAD. We focus on the BFV ModSub and CKKS
XOR-masking protocol. The encryption parameters are n =

9The computations include sixteen times of encodings, sixteen times of
scalar multiplications, and fifteen times of additions.

10Another Boolean FHE library, tfhe [18] also only supports unpacked
computations and symmetric encryption in the 1.0 version (https://tfhe.github.
io/tfhe/releases.html).

8, 192, log2Q = 130, t = 65535 and n = 8, 192, log2Q =
180, ∆ = 230 for BFV and CKKS, respectively.

Before launching a cloud computing query, the client in
all HEAD protocols needs to run a pre-process and then
send a ciphertext (under different encryption schemes) to
the server which is not required in the straightforward FHE
protocol. We thus view our protocol as trading the ciphertext
expansion rate for a bit more computation (at the client
side) and communication overhead. Considering the case of
a big-data storage setting, each query request only queries a
small portion of the large database. Hence, we argue that the
storage (i.e., ciphertext expansion rate) constitutes a significant
performance bottleneck rather than a pre-processing time and
some communication accompanied with a request. Moreover,
our practical experiment results (Tab. VII and VIII) show that
these extra overhead is reasonable.

A. Cloud Storage in a database

We select 1,500 numbers (16 bits for an unsigned integer
or a fixed point real number) as a typical example, since
the default limit of the column number in PostgreSQL is
1,600. In our HEAD ModSub and XOR-masking protocols,
the 1,500 masked ciphertexts could be easily stored in a row
in a database table. If these numbers are encrypted by a
straightforward FHE scheme (BFV or CKKS), the size of these
1,500 ciphertexts (276MiB or 487MiB, resp.) is larger than
the row size limitation in PostgreSQL11. Therefore, the data
should be divided into 4 rows and each row consumes 375
columns. Batching is another choice and 1,500 numbers could
be encrypted in only one straightforward ciphertext. However,
batching is not flexible when the client would like to select
part of outsourced numbers to do a cloud computing query.
The encrypted numbers in a batched ciphertext have to be
selected all or nothing.

We also evaluate the pre-processing time and the stor-
ing time observed at the client side in Tab. VII. Masking
1,500 unsigned integers or real numbers only spends several
milliseconds. The pre-process includes generating masks and
masking the messages in HEAD ModSub and XOR-masking
protocols, or encrypting the messages by a straightforward
FHE protocol. The storing time is recorded as the interval
of a storage SQL instruction. As the experiment results show,
the HEAD protocols not only decrease the database storage
overhead, but also significantly reduce the writing overhead
since the masked ciphertext size is much smaller than the
straightforward ones.

B. Cloud Computing from a database

For examining the HEAD protocol performance in a practi-
cal cloud computing scenario, we implement the tasks of sum,
avarage, innerProduction, and variance on 100
numbers. We consider a practical case in which all numbers
may be stored at a different time so that a straightforward
FHE protocol has to be used in an unbatched way. These
100 numbers would firstly be read from the database and

11The row size limitation in PostgreSQL is 8,160 KiB. Each serialized
FHE ciphertext could be stored in a TOAST data structure while the size
of a TOAST pointer costs 18Byte. Hence, each row could store around 453
ciphertexts at maximum.

12

Table VII: HEAD Storage Experiment in PostgreSQL (1500 numbers to be stored)

Scheme Setting Arrangement Storage Pre. Time Storing Time

BFV
HEAD ModSub 1 row× 1,500 col. 5.9KiB 3.7ms 15.3ms

Straightforward Unbatch 4 rows× 375 col. 276MiB 29.7s 15.0s
Straightforward Batch 1 row× 1 col. 189KiB 21.8ms 14.3ms

CKKS
HEAD XOR 1 row× 1,500 col. 5.9KiB 6.6ms 15.8ms

Straightforward Unbatch 4 rows× 375 col. 487MiB 54.4s 28.2s
Straightforward Batch 1 row× 1 col. 330KiB 44.7ms 23.1ms

Table VIII: HEAD Computation Experiment in PostgreSQL (100 numbers)

Scheme Task Protocol Pre. Time SQL Payload Reading Time Processing Time

BFV
sum

HEAD ModSub 0.02s 0.18MiB 3ms 0.06s
Straightforward N.A. 0.2s 2.2s

innerProduct
HEAD ModSub 0.02s 0.18MiB 3ms 0.1s
Straightforward N.A. 0.2s 2.8s

CKKS

sum
HEAD XOR 0.04s 0.32MiB 3ms 0.3s

Straightforward N.A. 0.4s 4s

innerProduct
HEAD XOR 0.04s 0.32MiB 3ms 0.3s

Straightforward N.A. 0.4s 4s

avarage
HEAD XOR 0.04s 0.32MiB 3ms 0.3s

Straightforward N.A. 0.4s 4s

variance
HEAD XOR 0.04s 0.32MiB 3ms 0.4s

Straightforward N.A. 0.4s 5s

input into the computation. We regard the pre-processing time
recorded at the client side and the payload size of a SQL
instruction (communication overhead) as the trade-offs of our
HEAD protocols, while the time savings of reading data from
the database and the following computing in a cloud server
is our advantages. We choose a practical setting in which the
same FHE encryption setting and keys are used several times
so that the relinearization and Galois keys are sent only once,
whose generation time and communication overhead are not
counted.

In the HEAD BFV ModSub experiments, the SQL instruc-
tion in the sum task includes an FHE ciphertext, ct(

∑
ri), so

that the server only spends one ciphertext-plaintext addition
(0.06 s) to unmasking the stored masked ciphertexts (Fig. 3).
While the SQL instruction in the innerProduct task has
a batched FHE ciphertext for {ri}. By unmasking, multipli-
cations, rotations, and additions, the cloud server could easily
computer the inner product of two 50-element vectors for only
0.1 s. Correspondingly, a straightforward FHE protocol would
cost 2.2 s or 2.8 s in these two tasks respectively.

In the HEAD CKKS XOR-masking experiments, we ar-
range the ciphertexts of all bits of messages in one batch,
i.e., the batch size is 1,600 for 100 16-bit-fixed-point real
numbers. Similarly, the cloud server would read the masked
ciphertexts {x̃ji} from the database and unmask them using
the payload in the SQL instruction (the ciphertext for the
batch {rji · 2j−mfrac}, Fig. 5). Then, the instructed task is
processed to compute the result. The tasks of sum, avarage,
innerProduction, and variance are particularly de-
signed to combine multiplications, rotations, and additions

FHE operations for better performance. The computing time
in the cloud server is reduced from 4 s, 4 s, 4 s, and 5 s to
0.3 s, 0.3 s, 0.3 s and 0.4 s, respectively. Appendix B details
the variance task.

Tab. VIII shows the trade-off and advantage in reality. The
client would pay 20 ms (or 40 ms) computation and 0.18 MiB
(or 0.32 MiB) communication overhead (only transferring one
FHE ciphertext) in HEAD BFV Modsub (or CKKS XOR-
masking, respectively) protocol. However, these costs could
trade a lot of storage and computation advantages at the server
side. Both the reading and the processing computation time are
saved to an order magnitude by our protocols.

VII. CONCLUSION

In this paper, we present HEAD, a generic FHE-based
privacy-preserving cloud computing protocol with compact
storage and efficient computation. We provide three instanti-
ations of HEAD for different types of input messages. Our
protocols accomplish a ciphertext expansion rate of 1 for
storage and our experiments show the significant computation
time and/or noise optimization for several evaluation functions.
To demonstrate its advantage and utility, we incorporate the
HEAD protocol into the PostgreSQL database system and
conduct experiments compared to straightforward FHE-based
privacy-preserving cloud computing protocols. The results
show the compact storage with at least an order of magnitude
saving in computation time, at a slight cost of query phase
communication and preprocessing. Our design and practical
experiment show that the FHE becomes feasible to be applied
in privacy-preserving cloud computing.

13

REFERENCES

[1] Fv-NFLlib. https://github.com/CryptoExperts/FV-NFLlib, May 2016.
CryptoExperts.

[2] HEAAN. Online: https://github.com/snucrypto/HEAAN, September
2018. snucrypto.

[3] Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL,
September 2021. Microsoft Research, Redmond, WA.

[4] Lattigo v2.4.0. Online: https://github.com/ldsec/lattigo, January 2022.
EPFL-LDS.

[5] Adi Akavia, Neta Oren, Boaz Sapir, and Margarita Vald. Compact
storage for homomorphic encryption. Cryptology ePrint Archive, Report
2022/273, 2022. https://ia.cr/2022/273.

[6] Adi Akavia, Neta Oren, Boaz Sapir, and Margarita Vald. Compact
storage for homomorphic encryption. The 2nd joint EUCN-Haifa
Workshop on Cryptography, November 17th, 2021.

[7] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Gold-
wasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine,
Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody, Travis
Morrison, Amit Sahai, and Vinod Vaikuntanathan. Homomorphic
encryption security standard. Technical report, Toronto, Canada,
November 2018.

[8] Pascal Aubry, Sergiu Carpov, and Renaud Sirdey. Faster homomorphic
encryption is not enough: Improved heuristic for multiplicative depth
minimization of boolean circuits. In CT-RSA 2020, pages 345–363.

[9] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta.
Leveraging linear decryption: Rate-1 fully-homomorphic encryption and
time-lock puzzles. In TCC 2019, pages 407–437.

[10] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in
lwe-based homomorphic encryption. In PKC 2013, pages 1–13.

[11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)
fully homomorphic encryption without bootstrapping. ACM Trans.
Comput. Theory, 6(3):13:1–13:36, 2014.

[12] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomor-
phic encryption from (standard) LWE. SIAM J. Comput., 43(2):831–
871, 2014.

[13] Ran Canetti. Security and composition of multiparty cryptographic
protocols. J. Cryptol., 13(1):143–202, 2000.

[14] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient
homomorphic conversion between (ring) LWE ciphertexts. In ACNS
2021, pages 460–479.

[15] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee,
Tancrède Lepoint, Mehdi Tibouchi, and Aaram Yun. Batch fully
homomorphic encryption over the integers. In EUROCRYPT 2013,
pages 315–335.

[16] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song.
Homomorphic encryption for arithmetic of approximate numbers. In
ASIACRYPT 2017, volume 10624, pages 409–437.

[17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: fast fully homomorphic encryption over the torus.
J. Cryptol., 33(1):34–91, 2020.

[18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: Fast fully homomorphic encryption library, August
2016. https://tfhe.github.io/tfhe/.

[19] Jihoon Cho, Jincheol Ha, Seongkwang Kim, ByeongHak Lee, Joohee
Lee, Jooyoung Lee, Dukjae Moon, and Hyojin Yoon. Transciphering
framework for approximate homomorphic encryption. In Mehdi Ti-
bouchi and Huaxiong Wang, editors, ASIACRYPT 2021, volume 13092,
pages 640–669.

[20] David Bruce Cousins, John Golusky, Kurt Rohloff, and Daniel
Sumorok. An FPGA co-processor implementation of homomorphic
encryption. In IEEE HPEC 2014, pages 1–6.

[21] David Bruce Cousins, Kurt Rohloff, and Daniel Sumorok. Designing
an fpga-accelerated homomorphic encryption co-processor. IEEE Trans.
Emerg. Top. Comput., 5(2):193–206, 2017.

[22] Yarkin Doröz, Erdinç Öztürk, and Berk Sunar. Accelerating fully homo-
morphic encryption in hardware. IEEE Trans. Computers, 64(6):1509–
1521, 2015.

[23] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomor-
phic encryption in less than a second. In EUROCRYPT 2015, pages
617–640.

[24] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive, Report 2012/144,
2012. https://ia.cr/2012/144.

[25] Axel Feldmann, Nikola Samardzic, Aleksandar Krastev, Srini Devadas,
Ronald G. Dreslinski, Karim Eldefrawy, Nicholas Genise, Chris Peikert,
and Daniel Sánchez. F1: A fast and programmable accelerator for fully
homomorphic encryption (extended version). arXiv, 2109.05371, 2021.

[26] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
STOC 2009, pages 169–178.

[27] Craig Gentry and Shai Halevi. Compressible FHE with applications to
PIR. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, pages
438–464.

[28] Craig Gentry and Shai Halevi. Implementing gentry’s fully-
homomorphic encryption scheme. In EUROCRYPT 2011, pages 129–
148.

[29] Craig Gentry, Shai Halevi, Chris Peikert, and Nigel P. Smart. Field
switching in bgv-style homomorphic encryption. J. Comput. Secur.,
21(5):663–684, 2013.

[30] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation
of the AES circuit. In CRYPTO 2012, volume 7417, pages 850–867.

[31] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation
of the aes circuit (updated implementation). Cryptology ePrint Archive,
Report 2012/099, 2012. https://ia.cr/2012/099.

[32] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In CRYPTO 2013, pages 75–92.

[33] Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic
Applications. Cambridge University Press, 2004.

[34] Shai Halevi and Victor Shoup. Algorithms in helib. In CRYPTO 2014,
pages 554–571.

[35] Shai Halevi and Victor Shoup. Bootstrapping for helib. J. Cryptol.,
34(1):7, 2021.

[36] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha P. Chandrakasan.
GAZELLE: A low latency framework for secure neural network in-
ference. In William Enck and Adrienne Porter Felt, editors, USENIX
Security 2018, pages 1651–1669.

[37] Kim Laine. Simple encrypted arithmetic library 2.3.1.
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/
sealmanual-2-3-1.pdf, November 2017. Microsoft Research, Redmond,
WA.

[38] KangHoon Lee and Ji Won Yoon. Efficient adaptation of TFHE for
high end-to-end throughput. In WISA 2021, pages 144–156.

[39] Jie Li, Yamin Liu, and Shuang Wu. Pipa: Privacy-preserving password
checkup via homomorphic encryption. In ASIA CCS 2021, pages 242–
251.

[40] Wenjie Lu, Shohei Kawasaki, and Jun Sakuma. Using fully homo-
morphic encryption for statistical analysis of categorical, ordinal and
numerical data. In NDSS 2017.

[41] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In EUROCRYPT 1999, pages 223–238. Springer.

[42] PALISADE (release 1.11.5). https://gitlab.com/palisade/
palisade-release, September 2021.

[43] Shantanu Rane, Wei Sun, and Anthony Vetro. Secure function eval-
uation based on secret sharing and homomorphic encryption. In An-
nual Allerton Conference on Communication, Control, and Computing
(Allerton) 2009, pages 827–834, 2009.

[44] Brandon Reagen, Wooseok Choi, Yeongil Ko, Vincent T. Lee, Hsien-
Hsin S. Lee, Gu-Yeon Wei, and David Brooks. Cheetah: Optimizing
and accelerating homomorphic encryption for private inference. In IEEE
HPCA 2021, pages 26–39.

[45] Sujoy Sinha Roy, Furkan Turan, Kimmo Järvinen, Frederik Vercauteren,
and Ingrid Verbauwhede. Fpga-based high-performance parallel archi-
tecture for homomorphic computing on encrypted data. In IEEE HPCA
2019, pages 387–398.

[46] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD
operations. Des. Codes Cryptogr., 71(1):57–81, 2014.

14

[47] Furkan Turan, Sujoy Sinha Roy, and Ingrid Verbauwhede. HEAWS: an
accelerator for homomorphic encryption on the amazon AWS FPGA.
IEEE Trans. Computers, 69(8):1185–1196, 2020.

[48] Paul Voigt and Axel von dem Bussche. The EU general data pro-
tection regulation (GDPR) A Practical Guide. Springer International
Publishing, 2017.

APPENDIX

A. HEAD Security Analysis

We consider the HEAD security under a semi-honest ad-
versary who has corrupted Server, which means the adversary
will honestly execute the protocol with Client but still could
not extract any substantial information of Client’s messages.

The proof is according to the standard simulation paradigm
with the real/ideal model [13], [33]. Informally speaking, for
a semi-honest adversary A, we would construct a simulator S
to simulate Client and execute the protocol with A. However,
the distribution in the view of A is indistinguishable from the
one in a real execution, which means no leakage about the
information of Client’s messages.

Definition 4 (IND-CPA security): A fully homomorphic
encryption scheme FHE is indistinguishable secure under
chosen plaintext attacks, if for any PPT adversary A, the
following probability holds:∣∣∣∣Pr

[
ExptIND-CPA

FHE = 1
]
− 1

2

∣∣∣∣ = negl(λ),

where the security game ExptIND-CPA
FHE is defined in Fig. 7.

Theorem 1: Assume that the underlying fully homomor-
phic scheme FHE is IND-CPA secure, then our generic HEAD
protocol is secure in the presence of a semi-honest adversary.

Proof: Let A be an adversary who has corrupted the
Server; we construct a simulator S to simulate the Client in
the HEAD protocol as follows.

• Upon input of a public security parameter λ, a simulator
S invokes sk, pk← KeyGen(1λ) and receives back (sk, pk).

• S invokes A upon input of pk.

• S randomly chooses xi, ri ←$ M, ∀i ∈ I , generates
x̃i ← Trans(xi, ri), and computes ct(ri)← Encrypt(pk, ri).

• S ramdomly generates a circuit Γ and invokes A upon
input of (Γ, ct(ri), x̃i).

• S receives ct(Γ(xi)) and outputs the plaintext Γ(xi) ←
Decrypt(sk, ct(Γ(xi)).

We prove that the distribution of A’s view in the simulation
is indistinguishable from the distribution in a real protocol ex-
ecution. The main difference between the simulation by A and
a real execution with an honest Client is the way that x̃i is gen-
erated: the Client internally decides its own message x′i inM,
chooses random r′i and computes x̃′i ← Trans(x′i, r

′
i); whereas

S chooses random xi and computes x̃i ← Trans(xi, ri).
Since the underlying fully homormophic encyption scheme
FHE is IND-CPA secure, and ri, r′i are chosen randomly, the
distributions over the outputs of Trans(xi, ri) and Trans(x′i, r

′
i)

are indistinguishable in A’s view on receiving ct(ri). Other-
wise, we could construct a distinguisher D for the IND-CPA

ExptIND-CPA
FHE (1λ) :

b←$ {0, 1},
(sk, pk)← KeyGen(1λ) OEnc(·) :

(x0, x1)← AOEnc Return ⊥ if x ∈ {x0, x1}
ct∗ ← Encrypt(pk/sk, xb) Otherwise return
b′ ← AOEnc(·)(ct∗) Encrypt(pk/sk, x).
Return(b′ = b)

Figure 7: Security game ExptIND-CPA
HE

security experiment ExptIND-CCA
FHE naturally. Thus, we conclude

that the distribution of the semi-honest adversary A’s view is
indistinguishable from the distribution in a real execution, and
finish the proof.

B. HEAD CKKS XOR variance Protocol in PostgreSQL

The HEAD CKKS XOR variance protocol (Alg. 1) in
PostgreSQL aims to pursue less communication overhead in a
SQL instruction and decrease the computation overhead in a
cloud computing server. Since the variance computation is

1

n− 1
·
n∑
i=1

(xi − x̄)
2

=

n∑
i=1

x2i
n− 1

− n

n− 1
· x̄2,

=

n∑
i=1

(
xi√
n− 1

)
2
− (

∑n
i=1 xi√

n(n− 1)
)
2

,

the server would construct two ciphertexts for xi√
n−1 and

xi√
n(n−1)

. Then, the square sum minus the sum square leading

to the result.

The client firstly recovers the n ·m masking bits (rji) using
the same PRF seed as the one it uses to store the data. These
bits would multiply corresponding scales 2j−mfrac in each slot.
Especially, the client would extra arrange n ·m zero numbers
after that n · m slots. Finally, the client encrypts this batch
leading to a ciphertext ctr having 2 · n · m messages. The
client sends only one ciphertext ctr in a variance SQL
instruction.

After receiving the variance SQL instruction, the server
reads the corresponding n·m masked ciphertexts {x̃ji} from the
database. The server constructs four vector as the description
in the step 3 of Alg. 1. After two encoding (step 4), two
scalar multiplication (step 5), two rotate-then-sum (step 6-10),
and two addition (step 11) operations, the ciphertexts ct0 and
ct1 are corresponding to the batches of xi√

n−1 and xi√
n(n−1)

,

respectively. Next, the step 12&13-17 and the step 13-17& 18
put the

∑n
i=1 (xi√

n−1)
2 and (

∑n
i=1 xi√
n(n−1)

)
2

in the first slot of ct3
and ct4, respectively. Note that the final n · m zeros in ctr
ensures the correctness of the step 13-17.

In total, our HEAD CKKS XOR variance protocol
(Alg. 1) in PostgreSQL consumes two encoding, two mul-
tiplication, two scalar multiplication, 2 · (log2(m) + log2(n))
left rotation and addition, one substraction, and two ciphertext-
plaintext addition operations.

15

Algorithm 1 variance task for n m-bit real numbers in
PostgreSQL HEAD CKKS XOR protocol.

// Client recovers rji using the same PRF seed.
1: Construct vector {rji · 2j−mfrac} from rji , ∀i ∈ n, j ∈

[0,m− 1].
2: Append mn zeros in the end of {rji ·2j−mfrac}, then encrypt

it to ctr).
// Server receives ctr in a SQL instruction and reads {x̃ji}
from the database.

3: Construct four 2mn-element vector {aji}, {b
j
i}, {c

j
i}, {d

j
i}

as follows. For ∀i ∈ n, j ∈ [0,m− 1],

the (i ·m+ j)-th element is (1−2x̃j
i)√

n(n−1)
in {aji},

the (i ·m+ j)-th element is (1−2x̃j
i)√

n−1 in {bji},

the (i ·m)-th element is x̃j
i ·2

j−mfrac√
n(n−1)

in {cji},

the (i ·m)-th element is x̃j
i ·2

j−mfrac
√
n−1 in {cji}.

The remained elements in {aji}, {b
j
i}, {c

j
i}, {d

j
i} are zero.

4: Encode {aji}, {b
j
i}, {c

j
i}, {d

j
i} to pta, ptb, ptc, ptd, respec-

tively.
5: Set ct0 ← ct({rji })× pta, ct1 ← ct({rji })× ptb, then do

two rescalizations.
6: for k in [1,dlog2(m)e] do
7: ct′0 ← LeftRotate(2k−1, ct0),
8: ct0 ← ct′0 + ct0,
9: ct′1 ← LeftRotate(2k−1, ct1),

10: ct1 ← ct′0 + ct1.
11: Set ct2 ← ct0 + ptc, ct3 ← ct1 + ptd.
12: Set ct3 ← ct1 × ct1, do a relinearization and a rescaliza-

tion.
13: for k in [1,dlog2(n)e] do
14: ct′2 ← LeftRotate(m× 2k−1, ct2),
15: ct2 ← ct′2 + ct2,
16: ct′3 ← LeftRotate(m× 2k−1, ct3),
17: ct3 ← ct′1 + ct3.
18: Set ct4 ← ct2 × ct2, do a relinearization and a rescaliza-

tion.
19: Set ctres ← ct3 − ct4, and return ctres.

Client receives ctres.
20: Decrypt then decode ctres, output the first element.

C. Expressing Both Positive and Negative Numbers in HEAD
CKKS XOR Protocol

Sect. IV-C describe how to express a positive fixed-point
real number in the HEAD CKKS XOR-masking protocol.
Here, we extend the protocol to support both positive and
negative fixed-point real numbers, i.e., using a complement
to express a negative fixed-point real number. Therefore, a
positive number follows the original binary expression, while
the binary expression of a negative number takes complements
of all bits. For an m-bit real number, we take the first bit
as the sign symbol. 0 or 1 means a positive or a negative
number, respectively. Next, the second to the (mfrac + 1)-th
bits represent the fraction part. The remained m −mfrac − 1

bits are the integer part. We use xj to denote the j-th bit
of a fixed-point real number x. Hence, for j ∈ [0,m − 1],
x = x0 · (2−mfrac − 2m−mfrac−1) +

∑m−1
j=1 xj · 2j−mfrac−1.

The masking way is similar to the positive case as we
describe in Sect. IV-C, i.e., x̃j ← Trans(xj , rj) = xj ⊕ rj .
The server would follow a different way to unmask it, by extra
considering the sign symbol. Since, xj = x̃j ⊕ rj = x̃j + rj −
2 · x̃j · rj , we have

x =(x̃0 + (1− 2 · x̃0) · r0) · (2−mfrac − 2m−mfrac−1)

+

m−1∑
j=1

(
x̃j · 2j−mfrac−1 + (1− 2 · x̃j) · rj · 2j−mfrac−1

)
.

The server computes the following steps to do unmasking,

ct(x) =
(
x̃0 + (1− 2 · x̃0) · ct(r0)

)
· (2−mfrac − 2m−mfrac−1)

+

m−1∑
j=1

(
x̃j · 2j−mfrac−1 + (1− 2 · x̃j) · ct(rj · 2j−mfrac−1)

)
.

16

