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Abstract

Subversion attacks undermine security of cryptographic protocols by replacing a legitimate
honest party’s implementation with one that leaks information in an undetectable manner. An
important limitation of all currently known techniques for designing cryptographic protocols
with security against subversion attacks is that they do not automatically guarantee security
in the realistic setting where a protocol session may run concurrently with other protocols.

We remedy this situation by providing a foundation of reverse firewalls (Mironov and
Stephens-Davidowitz, EUROCRYPT’15) in the universal composability (UC) framework
(Canetti, FOCS’01 and J. ACM’20). More in details, our contributions are threefold:

• We generalize the UC framework to the setting where each party consists of a core
(which has secret inputs and is in charge of generating protocol messages) and a firewall
(which has no secrets and sanitizes the outgoing/incoming communication from/to the
core). Both the core and the firewall can be subject to different flavors of corruption,
modeling different kinds of subversion attacks. For instance, we capture the setting
where a subverted core looks like the honest core to any efficient test, yet it may leak
secret information via covert channels (which we call specious subversion).

• We show how to sanitize UC commitments and UC coin tossing against specious
subversion, under the DDH assumption.

• We show how to sanitize the classical GMW compiler (Goldreich, Micali and Wigderson,
STOC 1987) for turning MPC with security in the presence of semi-honest adversaries
into MPC with security in the presence of malicious adversaries. This yields a com-
pleteness theorem for maliciously secure MPC in the presence of specious subversion.

Additionally, all our sanitized protocols are transparent, in the sense that communicating
with a sanitized core looks indistinguishable from communicating with an honest core.
Thanks to the composition theorem, our methodology allows, for the first time, to design
subversion-resilient protocols by sanitizing different sub-components in a modular way.
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1 Introduction
Cryptographic schemes are typically analyzed under the assumption that the machines run by
honest parties are fully trusted. Unfortunately, in real life, there are a number of situations in
which this assumption turns out to be false. In this work, we are concerned with one of these
situations, where the adversary is allowed to subvert the implementation of honest parties in a
stealthy way. By stealthy, we mean that the outputs produced by a subverted machine still look
like honestly computed outputs, yet, the adversary can use such outputs to completely break
security. Prominent examples include backdoored implementations [DGG+15, DPSW16, FJM18]
and algorithm-substitution (or kleptographic) attacks [YY96, YY97, BPR14, BJK15, BL17]. The
standardization of the pseudorandom number generator Dual_EC_DRBG, as exposed by
Snowden, is a real-world instantiation of the former, while Trojan horses, as in the case of the
Chinese hack chip attack, are real-world instantiations of the latter.

1.1 Subversion-Resilient Cryptography

Motivated by these situations, starting from the late 90s, cryptographers put considerable effort
into building cryptographic primitives and protocols that retain some form of security in the
presence of subversion attacks. We review the state of the art in more details in Section 1.4.

Yet, after nearly 30 years of research, all currently known techniques to obtain subversion
resilience share the limitation of only implying standalone security, i.e. they only guarantee
security of a protocol in isolation, but all bets are off when such a protocol is used in a
larger context in the presence of subversion attacks. This shortcoming makes the design of
subversion-resilient cryptographic protocols somewhat cumbersome and highly non-modular.
For instance, Ateniese, Magri, and Venturi [AMV15] show how to build subversion-resilient
signatures, which in turn were used by Dodis, Mironov and Stephens-Davidowitz [DMS16] to
obtain subversion-resilient key agreement protocols, and by Chakraborty, Dziembowski and
Nielsen [CDN20] to obtain subversion-resilient broadcast; however, the security analysis in
both [DMS16] and [CDN20] reproves security of the construction in [AMV15] from scratch.
These examples bring the fundamental question:

Can we obtain subversion resistance in a composable security framework?

A positive answer to the above question would dramatically simplify the design of subversion-
resilient protocols, in that one could try to first obtain security under subversion attacks for
simpler primitives, and then compose such primitives in an arbitrary way to obtain protocols for
more complex tasks, in a modular way.

1.2 Our Contributions

In this work, we give a positive answer to the above question using so-called cryptographic
reverse firewalls, as introduced by Mironov and Stephens-Davidowitz [MS15]. Intuitively, a
reverse firewall is an external party that sits between an honest party and the network, and
whose task is to sanitize the incoming/outgoing communication of the party it is attached to, in
order to annhilate subliminal channels generated via subversion attacks. The main challenge
is to obtain sanitation while maintaining the correctness of the underlying protocol, and in a
setting where other parties may be completely under control of the subverter itself.

While previous work showed how to build reverse firewalls for different cryptographic protocols
in standalone security frameworks (see Section 1.4), we provide a foundation of reverse firewalls
in the framework of universal composability (UC) of Canetti [Can01, Can00]. More in details,
our contributions are threefold:
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• We generalize the UC framework to the setting where each party consists of a core (which
has secret inputs and is in charge of generating protocol messages) and a firewall (which
has no secrets and sanitizes the outgoing/incoming communication from/to the core). Both
the core and the firewall can be subject to different flavors of corruption, modeling different
kinds of subversion attacks. For instance, we capture the setting where a subverted core
looks like the honest core to any efficient test, yet it may leak secret information via covert
channels (which we call specious subversion).

• We show how to sanitize UC commitments and UC coin tossing against specious subversion,
under the decisional Diffie-Hellman (DDH) assumption in the common reference string
(CRS) model. Our sanitized commitment protocol is non-interactive, and requires 2λ group
elements in order to commit to a λ-bit string; the CRS is made of 3 group elements.

• We show how to sanitize the classical compiler by Goldreich, Micali and Wigderson
(GMW) [GMW87] for turning multiparty computation (MPC) with security against semi-
honest adversaries into MPC with security against malicious adversaries. This yields a
completeness theorem for maliciously secure MPC in the presence of specious subversion.

Additionally, all our sanitized protocols are transparent, in the sense that communicating with a
sanitized core looks indistinguishable from communicating with an honest core. Thanks to the
composition theorem, our methodology allows, for the first time, to design subversion-resilient
protocols by sanitizing different sub-components in a modular way.

1.3 Technical Overview

Below, we provide an overview of the techniques we use in order to achieve our results, starting
with the notion of subversion-resilient UC security, and then explaining the main ideas behind
our reverse firewalls constructions.

1.3.1 Subversion-resilient UC Security

At a high level we model each logical party Pi of a protocol Π as consisting of two distinct parties
of the UC framework, one called the core Ci and one called the firewall Fi. These parties can be
independently corrupted. For instance, the core can be subverted and the firewall honest, or the
core could be honest and the firewall corrupted. The ideal functionalities F implemented by
such a protocol will also recognize two UC parties per virtual party and can let their behavior
depend on the corruption pattern. For instance, F could specify that if Ci is subverted and
Fi honest, then it behaves as if Pi is honest on F . Or it could say that if Ci is honest and Fi
corrupt, then it behaves as if Pi is honest but might abort on F . This is a reasonable choice as
a corrupt firewall can always cut Ci off from the network and force an abort. We then simply
ask that Π UC-realizes F . By asking that Π UC-realizes F we exactly capture that if the core is
subverted and the firewall is honest, this has the same effect as Pi being honest. See Table 1
for all possible corruption combinations for Ci and Fi at a glance, and how they translate into
corruptions for Pi in an ideal execution with functionality F .

Unfortunately, it turns out that for certain functionalities it is just impossible to achieve
security in the presence of arbitrary subversion attacks. For instance, a subverted prover
in a zero-knowledge proof could simply output an honestly computed proof or the all-zero
string depending on the first bit of the witness. Since the firewall would not know a valid
witness, these kind of subversion attacks cannot be sanitized. For this reason, following previous
work [MS15, DMS16, GMV20, CDN20], we focus on classes of subversion attacks for which a
subverted core looks like an honest core to any efficient test, yet it may signal private information
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to the subverter via subliminal channels. We call such corruptions specious. We note that testing
reasonably models a scenario in which the core has been built by an untrusted manufacturer
who wants to stay covert, and where the user tests it against a given specification before using it
in the wild.

By defining subversion resilience in a black-box way, via the standard notion of UC im-
plementation, we also get composition almost for free via the UC composition theorem. One
complication arises to facilitate modular composition of protocols. When doing a modular
construction of a subversion-resilient protocol, both the core and the firewall will be built by
modules. For instance, the core could be built from a core for a commitment scheme and the core
for an outer protocol using the commitment scheme. Each of these cores will come with their
own firewall: one sanitizes the core of the commitment scheme; the other sanitizes the core of
the outer protocol. The overall firewall is composed of these two firewalls. It turns out that it is
convenient that these two firewalls can coordinate, as it might be that some of the commitments
sent need to have the message randomized, while others might only have their randomness
refreshed. The latter can be facilitated by giving the firewall of the commitment scheme a
sanitation interface where it can be instructed by the outer firewall to do the right sanitation.
Note that the protocol implementing the commitment ideal functionality now additionally needs
to implement this sanitation interface.

We refer the reader to Section 2 for a formal description of our model. Note that another
natural model would have been to have Pi split into three parts (or tiers), Ci, Ui, and Fi, where:
(i) Ui is a user program which gets inputs and sends messages on the network; (ii) Ci is a core
holding cryptographic keys and implementations of, e.g., signing and encryption algorithms;
and (iii) Fi is a firewall used by Ui to sanitize messages to and from Ci in order to avoid covert
channels. The above better models a setting where we are only worried that some part of
the computer might be subverted. The generalisation to this case is straightforward given the
methodology we present for the case with no user program Ui. Since we only look at subversions
which are indistinguishable from honest implementations, having the “unsubvertable” Ui appears
to give no extra power. We therefore opted for the simpler model for clarity. Further discussion
on the three-tier model can be found in Appendix A.

Strong sanitation. The main challenge when analyzing subversion security of a protocol in
our framework is that, besides maliciously corrupting a subset of the parties, the adversary can,
e.g., further speciously corrupt the honest parties. To overcome this challenge, we introduce
a simple property of reverse firewalls which we refer to as strong sanitation. Intuitively, this
property says that no environment, capable of doing specious corruptions of an honest core in
the real world, can distinguish an execution of the protocol with one where an honest core is
replaced with a so-called incorruptible core (that simply behaves honestly in case of specious
corruption). The latter, of course, requires that the firewall of the honest core is honest.

We then prove a general lemma saying that, whenever a firewall has strong sanitation, it
is enough to prove security in our model without dealing with specious corruptions of honest
parties. This lemma significantly simplifies the security analysis of protocols in our model.

1.3.2 Commitments

In Section 3, we show how to obtain subversion-resilient UC commitments. First, we specify
a sanitizable string commitment functionality F̂sCOM. This functionality is basically identical
to the standard functionality for UC commitments [CF01], except that the firewall is allowed
to sanitize the value s that the core commits to, using a blinding factor r; the effect of this
sanitation is that, when the core opens the commitment, the ideal functionality reveals ŝ = s⊕ r.
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Note that this is the sanitation allowed by the sanitation interface. An implementation will
further have to sanitise the randomness of outgoing commitments to avoid covert channels.

Second, we construct a protocol Π̂sCOM that UC realizes F̂sCOM in the presence of subversion at-
tacks. Our construction borrows ideas from a recent work by Canetti, Sarkar and Wang [CSW20],
who showed how to construct efficient non-interactive UC commitments with adaptive security.
The protocol, which is in the CRS model and relies on the standard DDH assumption, roughly
works as follows. The CRS is a tuple of the form (g, h, T1, T2), such that T1 = gx and T2 = hx

′

for x 6= x′ (i.e., a non-DH tuple). In order to commit to a single bit b, the core of the committer
encodes b as a value u ∈ {−1, 1} and outputs B = gα · T u1 and H = hα · T u2 , where α is the
randomness. The firewall sanitizes a pair (B,H) by outputting B̂ = B−1 · gβ and Ĥ = H−1 · hβ ,
where β is chosen randomly; note that, upon receiving an opening (b, α) from the core, the
firewall can adjust it by returning (1− b,−α+ β). Alternatively, the firewall can choose to leave
the bit b unchanged and only refresh the randomness of the commitment; this is achieved by
letting B̂ = B · gβ and Ĥ = H · hβ; in this case, the opening is adjusted to (b, α + β). In the
security proof, we distinguish two cases:

• In case the committer is maliciously corrupt, the simulator sets the CRS as in the real
world but additionally knows the discrete log t of h to the base g. Such a trapdoor allows
the simulator to extract the bit b corresponding to the malicious committer by checking
whether H/T2 = (B/T1)t (in which case b = 1) or H · T2 = (B · T1)t (in which case b = 0).
If none of the conditions hold, no opening exists.

• In case the committer is honest, the simulator sets the CRS as a DH-tuple. Namely, now
T1 = gx and T2 = hx for some x known to the simulator. The latter allows the simulator
to fake the commitment as B = gα and H = hα, and later adjust the opening to any given
u ∈ {−1, 1} (and thus b ∈ {0, 1}) by letting α′ = α− u · x.

The above ideas essentially allow to build a simulator for the case of two parties, where one is
maliciously corrupt and the other one has an honest core and a semi-honest firewall. These ideas
can be generalized to n parties (where up to n − 1 parties are maliciously corrupt, while the
remaining party has an honest core and a semi-honest firewall) using an independent CRS for
each pair of parties. Finally, we show that the firewall in our protocol is strongly sanitizing and
thus all possible corruption cases reduce to the previous case. In particular, strong sanitation
holds true because a specious core must produce a pair (B,H) of the form B = gα · T ũ1 and
H = hα ·T ũ2 for some ũ ∈ {−1, 1} (and thus b̃ ∈ {0, 1}), as otherwise a tester could distinguish it
from an honest core by asking it to open the commitment; given such a well-formed commitment,
the firewall perfectly refreshes its randomness (and eventually blinds the message).

As we show in Section 3, the above construction can be extended to the case where the input
to the commitment is a λ-bit string by committing to each bit individually; the same CRS can
be reused across all of the commitments.

1.3.3 Coin Tossing

Next, in Section 4, we show a simple protocol that UC realizes the standard coin tossing
functionality FTOSS in the presence of subversion attacks. Recall that the ideal functionality
FTOSS samples a uniformly random string s ∈ {0, 1}λ and sends it to the adversary, which can
then decide which honest party gets s (i.e., the coin toss output).

Our construction is a slight variant of the classical coin tossing protocol by Blum [Blu81];
the protocol is in the F̂sCOM-hybrid model, and roughly works as follows. The core of each party
commits to a random string si ∈ {0, 1}λ through the ideal functionality F̂sCOM. Then, the firewall
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of the coin toss instructs the firewall of the commitment to blind si using a random blinding
factor ri ∈ {0, 1}λ which is revealed to the core. At this point, each (willing) party opens the
commitment, which translates into F̂sCOM revealing ŝj = sj ⊕ rj , and each party finally outputs
s = si ⊕ ri ⊕

⊕
j 6=i ŝj .

In the security proof, the simulator can fake the string si of an honest party so that it
matches the output of the coin tossing s (received from FTOSS), the strings sj received from the
adversary (on behalf of a malicious core), and the blinding factor ri received from the adversary
(on behalf of a semi-honest firewall). This essentially allows to build a simulator for the case
where up to n − 1 parties are maliciously corrupt, while the remaining party has an honest
core and a semi-honest firewall. Finally, we show that the firewall in our protocol is strongly
sanitizing and thus all possible corruption cases reduce to the previous case. Strong sanitation
here holds because any string si chosen by a specious core is mapped to a uniformly random
string ŝi via the sanitation interface of the functionality F̂sCOM.

1.3.4 Completeness Theorem

Finally, in Section 5, we show how to sanitize the GMW compiler, which yields a completeness
theorem for UC subversion-resilient MPC. Recall that in the classical GMW compiler one starts
with an MPC protocol Π tolerating t < n semi-honest corruptions and transforms it into an
MPC protocol tolerating t malicious corruptions as follows. First, the players run an augmented
coin-tossing protocol, where each party receives a uniformly distributed string (to be used as its
random tape) and the other parties receive a commitment to that string. Second, each party
commits to its own input and proves in zero knowledge that every step of the protocol Π is
executed correctly and consistently with the random tape and input each party is committed to.

As observed by Canetti, Lindell, Ostrovsky and Sahai [CLOS02], the above compilation
strategy cannot immediately be translated in the UC setting, as the receiver of a UC commitment
obtains no information about the value that was committed to. Hence, the parties cannot prove
in zero knowledge statements relative to their input/randomness commitment. This issue is
resolved by introducing a commit-and-prove ideal functionality, which essentially allows each
party to commit to a witness and later prove arbitrary NP statements relative to the committed
witness.

In order to sanitize the GMW compiler in the presence of subversion attacks, we follow a
similar approach. Namely, we first introduce a sanitazable commit-and-prove functionality F̂C&P.
This functionality is very similar in spirit to the standard commit-and-prove functionality, except
that the firewall can decide to blind the witness that the core commits to. In Appendix B, we
show how to realize the sanitizable commit-and-prove functionality in the CRS model from
the DDH assumption, using re-randomizable non-interactive zero-knowledge arguments for all
of NP [CKLM12]. In fact, there we exhibit a much more general construction that can be
instantiated from any so-called malleable mixed commitment, a new notion that we introduce
and that serves as a suitable abstraction of our DDH-based construction from Section 3.

In the actual protocol, we use both the coin tossing functionality FTOSS and the sanitizable
commit-and-prove functionality F̂C&P to determine the random tape of each party as follows.
Each core commits to a random string si via F̂C&P; the corresponding firewall blinds si with a
random ri that is revealed to the core. Thus, the players use FTOSS to generate public randomness
s∗i that can be used to derive the random tape of party Pi as s∗i ⊕ (si ⊕ ri). Moreover each core
commits to its own input xi, which however is not blinded by the firewall. The above allows each
party, during the protocol execution, to prove via F̂C&P that each message has been computed
correctly and consistently with the committed input and randomness derived from the public
random string s∗i received from FTOSS.
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The security analysis follows closely the one in [CLOS02], except that in our case we show
that any adversary corrupting up to t parties maliciously, and the firewall of the remaining
honest parties semi-honestly, can be reduced to a semi-honest adversary attacking Π. Since we
additionally show that our firewall is strongly sanitizing, which essentially comes from the ideal
sanitation interface offered by F̂C&P, all possible corruption cases reduce to the previous case.

1.4 Related Work

Below, we review state-of-the-art tools for obtaining subversion resilience and compare them
to our approach, also explaining why they fall short of obtaining any composable security
guarantees.

Reverse firewalls. In their original paper, Mironov and Stephens-Davidowitz [DMS16] show
how to construct reverse firewalls for oblivious transfer (OT) and two-party computation with
semi-honest security. Follow-up research showed how to construct reverse firewalls for a plethora
of cryptographic primitives and protocols including: secure message transmission and key
agreement [DMS16, CMY+16, BBF+20], interactive proof systems [GMV20], and maliciously
secure MPC for both the case of static [CDN20] and adaptive [CGPS21] corruptions.

Most of these constructions are highly non-modular, as the security of each firewall is proven
in isolation and thus it does not carry over when the firewall is composed with other firewalls in
a larger protocol. For instance, Mironov and Stephens-Davidowitz [DMS16] combine reverse
firewalls for re-randomizable garbled circuits with reverse firewalls for OT in order to obtain
a reverse firewall for two-party computation with semi-honest security; however, the security
analysis of their two-party protocol re-proves security of the OT reverse firewall from scratch.

Exceptions are the works by Dodis, Mironov and Stephens-Davidowitz [DMS16], Chakraborty,
Dziembowski and Nielsen [CDN20], and Chakraborty, Ganesh, Pancholi and Sarkar [CGPS21].
In particular, these works do construct reverse firewalls for certain primitives and then combine
those firewalls in larger protocols without re-proving their security from scratch. However, this
is achieved each time by proving a composition theorem which is protocol specific, and thus only
works for a particular way in which reverse firewalls are combined. This is in sharp contrast
with our generalization of the UC composition theorem, which instead allows a protocol designer
to construct subversion-resilient protocols for a given functionality and then use that protocol as
a sub-component of any larger protocol, even when run concurrently with other protocols, and
while still guaranteeing security in the presence of subversion attacks.

Watchdogs. The line of research on cliptography [RTYZ16, RTYZ17, RTYZ18, CRT+19,
AFMV19, CHY20, BCJ21] shows how to clip the power of subversion attacks without the need
for reverse firewalls, and assuming only that a watchdog algorithm can perform a black-box test
to decide whether a (possibly subverted) implementation is compliant to its specification. All of
these works only consider game-based security, and thus provide no composition guarantee.

A watchdog can be offline (meaning that testing only happens before a scheme is deployed),
online (meaning that testing is executed in parallel to the deployment of the scheme), or
omniscient (meaning that testing additionally depends on the implementation’s secret state).
Unfortunately, offline watchdogs alone are not powerful enough to detect pretty natural classes
of subversion attacks such as input-triggered attacks [DFP15, AMV15]. In contrast, reverse
firewalls allow to annihilate input-triggered attacks via offline testing and sanitation.

Note that offline watchdogs are similar in spirit to our testing algorithm in the definition of
specious corruption; one difference is that in the watchdog model one additionally assumes that
an algorithm is decomposed into several functional components (e.g., one component for key
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generation, one for sampling randomness, and etc.), whereas we consider a party of an MPC
protocol as consisting of a single core. Online watchdogs and omniscient watchdogs, instead, are
both incomparable to reverse firewalls as the former needs to test a running implementation,
and the latter needs access to secret inputs, but none of them sanitizes the protocol transcript.

Self-guarding. Fischlin and Mazaheri [FM18] proposed another defense mechanism called
self-guarding, which requires users to have a trusted initialization phase to generate genuine
outputs of a given cryptographic primitive. These outputs can later be used in order to sanitize
the outputs produced by a possibly tampered implementation. The main advantage of this
model is that it does not require an active party (such as the reverse firewall or the watchdog).
The main disadvantage is that security depends on the number of samples collected during the
initialization phase. Moreover, this notion does not come with any composition guarantee.

Further related work. Additional work related to subversion security includes research
on parameters subversion [BFS16, ABLZ17, Fuc18, ALSZ20], collusion-free protocols [LMs05,
AsV08], subliminal channels [Sim84, Sim86], and divertible protocols [OO90, BDI+99]. We refer
the reader to [MS15] for a comprehensive comparison of these works with reverse firewalls.

2 A UC Model of Reverse Firewalls
In this section we propose a foundation of reverse firewalls in the UC model [Can01]. We use the
UC framework for concreteness as it is the de facto standard. However, we keep the description
high level and do not depend on very particular details of the framework. Similar formalizations
could be given in other frameworks defining security via comparison to ideal functionalities, as
long as these ideal functionalities are corruption aware: they know which parties are corrupted
and their behavior can depend on it.

2.1 Quick and Dirty Recap of UC

A protocol Π consists of code for each of the parties P1, . . . ,Pn. The parties can in turn make
calls to ideal functionalities G. More precisely, the code of the program is a single machine.
As part of its input, it gets a party identifier pid which tells the code which party it should
be running the code for. This allows more flexibility for dynamic sets of parties. Below, we
will only consider programs with a fixed number of parties. We are therefore tacitly identifying
n parties identifiers pid1, . . . , pidn with the n parties P1, . . . ,Pn, i.e., Pi = pidi. We prefer the
notation Pi for purely idiomatic reasons.

A party Pi can call an ideal functionality. To do so it will specify which G to call (technically
it writes down the code of G and a session identifier sid distinguishing different calls), along with
an input x. Then, (sid, pid, x) is given to G. If G does not exists, then it is created from its code.

There is an adversary A which attacks the protocol. It can corrupt parties via special
corruption commands. How parties react to these corruptions is flexible; the parties can in
principle be programmed to react in any efficient way. As an example, in response to input
active-corrupt, we might say that the party in the future will output all its inputs to the
adversary, and that it will let the adversary specify what messages the party should send. The
adversary can also control ideal functionalities, if the ideal functionalities expose an interface for
that. It might for instance be allowed to influence at what time messages are delivered on an
ideal functionality of point-to-point message transmission.

There is also an environment E which gives inputs to the parties and sees their outputs.
The environment can talk freely to the adversary. A real world execution ExecΠ,A,E is driven
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by the environment which can activate parties or ideal functionalities. The parties and ideal
functionalities can also activate each other. The details of activation are not essential here, and
can be found in [Can01].

The protocol Π is meant to implement an ideal functionality F . This is formulated by
considering a run of F with dummy parties which just forward messages between E and F .
In addition, there is an adversary S, called the simulator, which can interact with F on the
adversarial interface, and which can interact freely with E as an adversary can. The simulation is
the process ExecF ,S,E , where we do not specify the dummy protocol but use F for the dummy
protocol composed with F . We say that Π UC-realizes F if there exists an efficient simulator
which makes the simulation look like the real world execution to any efficient environment:

∃S∀E : ExecΠ,A,E ≈ ExecF ,S,E ,

where A is the dummy adversary (that simply acts as a proxy for the environment), and where
the quantifications are over poly-time interactive Turing machines.

Consider a protocol Π that realizes an ideal functionality F in a setting where parties can
communicate as usual, and additionally make calls to an unbounded number of copies of some
other ideal functionality G. (This model is called the G-hybrid model.) Furthermore, let Γ
be a protocol that UC-realizes G as sketched above, and let ΠG→Γ be the composed protocol
that is identical to Π, with the exception that each interaction with the ideal functionality G is
replaced with a call to (or an activation of) an appropriate instance of the protocol Γ. Similarly,
any output produced by the protocol Γ is treated as a value provided by the functionality G.
The composition theorem states that in such a case, Π and ΠG→Γ have essentially the same
input/output behavior. Namely, Γ behaves just like the ideal functionality G even when composed
with an arbitrary protocol Π. A special case of this theorem states that if Π UC-realizes F in
the G-hybrid model, then ΠG→Γ UC-realizes F .

2.2 Modeling Reverse Firewalls

To model reverse firewalls, we will model each party Pi as two separate parties in the UC model:
the core Ci and the firewall Fi. To be able to get composability for our framework via UC
composition, we model them as separate parties each with their own party identifier (pid, F) and
(pid, C). We use pid to denote the two of them together. Below we write, for simplicity, Pi to
denote the full party, Ci to denote the core, and Fi to denote the firewall. Being two separate
parties, the core and the firewall cannot talk directly. It will be up to the ideal functionality G
used for communication to pass communication with the core through the corresponding firewall
before acting on the communication. It might be that when G gets a message from Ci it will
output this message to Fi and allow Fi to change the message, possibly under some restrictions.
We say that Fi sanitizes the communication, and we call the interface connecting Fi for G the
sanitation interface of G. We call such an ideal functionality a “sanitizable” ideal functionality.

Consider a party (Ci,Fi) with core Ci and firewall Fi connected to a sanitizing ideal function-
ality G. The idea is that the firewall gets to sanitize all communication of the core Ci. The UC
model seemingly allows a loophole, as the core could make a call to some other ideal functionality
H instead of talking to G. As we discuss later, this behavior is ruled out if Ci is specious, so we
will not explicitly disallow it. If our model is later extended to allow stronger (non-specious)
types of subversion, then one would probably have to explicitly forbid Ci to use this loophole.

When using a sanitizable ideal functionality, it is convenient to be able to distinguish the
interface of the ideal functionality from the parties using the interface. We call the interface of G
to which the core of Pi is connected the input-output interface, IO. We call the party connected
to it Ci. We call the interface of G to which the firewall of Pi is connected the sanitation interface,
S. We call the party connected to it Fi. This is illustrated in Fig. 1.
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Figure 1: Implementing a normal functionality F using a sanitizable hybrid functionality G and
a sanitizing protocol Π = (C,F). Cores and firewalls talk to sanitizable functionalities directly.
Cores can additionally talk to the environment to exchange inputs and outputs. Firewalls only
talk to ideal functionalities. We think of ideal functionalities as sanitizing the communication
with the core via the firewall. This is illustrated in the figure by information from the core
going to the firewall, and information to the core coming via the firewall. There is no formal
requirement to what extent this happens; it is up to the ideal functionality to decide what type
of sanitation is possible, if any.

2.3 Specious Corruptions

A major motivation for studying subversion resilience is to construct firewalls which ensure that
security is preserved even if the core is subverted. In this section, we describe and discuss how
we model subversion in the UC framework.

In a nutshell, we let the adversary replace the code of the core. Clearly, if the core is arbitrarily
corrupted, it is impossible to guarantee any security. We therefore have to put restrictions on the
code used to subvert the core. One can consider different types of subversions. In this work, we
will consider a particularly “benign” subversion, where the subverted core looks indistinguishable
from the honest core to any efficient test. This is a particularly strong version of what has been
called “functionality preservation” in other works [MS15, DMS16, GMV20, CDN20]. As there
are slightly diverting uses of this term we will coin a new one to avoid confusion.

The central idea behind our notion is that we consider corruptions where a core Ci has been
replaced by another implementation C̃i which cannot be distinguished from Ci by black-box
access to C̃i or Ci. We use the term specious for such corruptions, as they superficially appear
to be honest, but might not be.

More in details, we define specious corruptions via testing. Imagine a test T which is given
non-rewinding black-box access to either Ci or C̃i, and that tries to guess which one it interacted
with. We say that a subversion is specious if it survives all efficient tests. This is a very strong
notion. One way to motivate this notion could be that C̃i might be built by an untrusted entity,
but the buyer of C̃i can test it up against a specification. If the untrusted entity wants to be
sure to remain covert, it would have to do a subversion that survives all tests. We assume
that the test does not have access to the random choices made by C̃i. This makes the model
applicable also to the case where C̃i is a blackbox or uses an internal physical process to make
random choices. We will allow the entity doing the subversion to have some auxiliary information
about the subversion and its use of randomness. This will, for instance, allow the subversion
to communicate with the subverter in a way that cannot be detected by any test (e.g., using a
secret message acting as a trigger).

For a machine T and an interactive machine C̃, we use TC̃ to denote that T has non-rewinding
black-box access to C̃. If during the run of TC̃ the machine C̃ requests a random bit, then a
uniformly random bit is sampled and given to C̃. Such randomness is not shown to T. We define
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the following game for an efficiently sampleable distribution D and a test T.

• Sample (C̃, a)← D, where a is an auxiliary string.

• Sample a uniformly random bit b ∈ {0, 1}:

– If b = 0, then run TC̃ to get a guess g ∈ {0, 1}.
– If b = 1, then run TC to get a guess g ∈ {0, 1}.

• Output c = b⊕ g.

Let TestD,T denote the probability that c = 0, i.e., the probability that the guess at b is correct.

Definition 1 (Specious subversion). We say that D is computationally specious if for all PPT
tests T it holds that TestD,T − 1/2 is negligible.

We return to the discussion of the loophole for specious cores of creating other ideal
functionalities H that are not sanitizing. Note that if a core creates an ideal functionality that
it is not supposed to contact, then this can be seen by testing. Therefore, such a core is not
considered specious. Hence, the notion of specious closes the loophole.

The notion of specious is strong, as it requires that no test T can detect the subversion. At
first glance it might even look too strong, as it essentially implies that the subversion is correct.
However, as we show next, a specious subversion can still signal to the outside in an undetectable
manner. To formalize this notion, we define the following game for an efficiently sampleable
distribution D, an adversary A and a decoder Z.

• Sample (C̃, a)← D, where a is an auxiliary string.

• Sample a uniformly random bit b ∈ {0, 1}:

– If b = 0, then run AC̃ to get a signal s ∈ {0, 1}∗.
– If b = 1, then run AC to get a signal s ∈ {0, 1}∗.

• Run Z(a, s) to get a guess g ∈ {0, 1}.

• Output c = b⊕ g.

Let SignalD,A,Z denote the probability that c = 0, i.e., the probability that the guess at b is
correct.

Definition 2 (Signaling). We say that D is computationally signalling if there exists a PPT
adversary A and a PPT decoder Z such that SignalD,A,Z − 1/2 is non-negligible.

Lemma 1. There exist a machine C, and an efficiently sampleable distribution D, such that D
is both computationally specious and signaling.

Proof sketch. Consider a machine C that when queried outputs a fresh uniformly random
y ∈ {0, 1}λ. Let Φ = {φκ : {0, 1}λ → {0, 1}λ}κ∈{0,1}λ be a family of pseudorandom permutations.
Consider the subversion C̃ of C that hardcodes a key κ ∈ {0, 1}λ and: (i) when initialised samples
a uniformly random counter x ∈ {0, 1}λ; (ii) when queried, it returns φκ(x) and increments x.
Moreover, let D be the distribution that picks κ ∈ {0, 1}λ at random and outputs (C̃, a = κ).

Note that the distribution D is specious, as the key κ is sampled at random after T has
been quantified. In particular, the outputs of φκ are indistinguishable from random to T. The
distribution D is also clearly signaling, as it can be seen by taking the adversary A that queries
its target oracle twice and sends the outputs y1 and y2 as a signal to the decoder. The decoder
Z, given a = κ, computes xi = φ−1

κ (yi) (for i = 1, 2) and outputs 0 if and only if x2 = x1 + 1.
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We can also define what it means for a set of subversions to be specious.

Definition 3 (Specious subversions). Given an efficiently sampleable distribution D with outputs
of the form (C̃1, . . . , C̃m, a) ← D, we let Di be the distribution sampling (C̃1, . . . , C̃m, a) ← D
and then outputting (C̃i, (i, a)). We say that D is specious if each Di is specious.

We now define the notion of a specious corruption. In this paper, we assume that all specious
corruptions are static.

Definition 4 (Specious corruption). We say that a party accepts specious corruptions if,
whenever it gets input (Specious, C̃) from the adversary, it replaces its code by C̃. If the
input (Specious, C̃) is not the first one received by the party, then it ignores it. We say
that an environment E prepares specious corruptions if it operates as follows. First, it writes
(Specious,D) on a special tape, where D is specious. Then, it samples (C̃1, . . . , C̃m, a)← D and
writes this on the special tape too. Finally, it inputs (Specious, C̃1, . . . , C̃m) to the adversary.
The above has to be done on the first activation, before any other communication with protocols
or the adversary. We call this a specious environment.

In case of emulation with respect to the dummy adversary, we further require that if the
environment instructs the dummy adversary to input (Specious, C̃) to a party, then C̃ is from the
list in (Specious, C̃1, . . . , C̃m). We say that an adversary interacting with a specious environment
does specious corruptions if whenever the adversary inputs (Specious, C̃) to a party, then C̃ is
from the list (Specious, C̃1, . . . , C̃m) received from the specious environment. We call such an
adversary specious. In particular, an adversary which never inputs (Specious, C̃) to any party
is specious. We also call an environment specious if it does not write (Specious,D) on a special
tape as the first thing, but in this case we require that it does not input anything of the form
(Specious, C̃1, . . . , C̃m) to the adversary, and that it never instructs the dummy adversary to
input (Specious, C̃) to any party.

In addition we require that specious environments and adversaries only do static corruptions
and that all corruptions are of the form.

• Core Malicious and firewall Malicious.
• Core Honest and firewall SemiHonest.
• Core Specious and firewall Honest.
• Core Honest and firewall Malicious.

We assume that all cores accept specious corruptions, and no other parties accept specious
corruptions.

We add a few comments to the definition. First, let us explain why we only require security
for the above four corruption patterns. Of all the corruption patterns shown in Table 1 giving
rise to a Malicious party, the one with core Malicious and firewall Malicious gives the
adversary strictly more power than any of the other ones, so we only ask for simulation of that
case. Similarly, of the 3 corruption patterns giving rise to an Honest party, the ones with
the core Honest and Specious and the firewall SemiHonest and Honest respectively are
different, as neither gives powers to the adversary which are a subset of the other, so we ask for
simulation of both. The remaining case of Honest core and Honest firewall we can drop, as it
is a special case of the Honest core and SemiHonest firewall. The only corruption pattern
giving rise to an Isolate party is when the core is Honest and the firewall is Malicious; we
therefore ask to simulate this case too.

Second, note that it might look odd that we ask the environment to sample the subversion
C̃i. Could we not just ask that, when it inputs (Specious, C̃i) to a core, then C̃i is specious? It
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Core C Firewall F Party P in F

Honest Honest Honest
Honest SemiHonest Honest

Specious Honest Honest
Honest Malicious Isolate

Specious SemiHonest Malicious
Specious Malicious Malicious

Malicious Honest Malicious
Malicious SemiHonest Malicious
Malicious Malicious Malicious

Table 1: Corruption patterns for cores and firewalls in our model, and their translation in the
ideal world. The highlighted rows are the cases that one needs to consider when proving security
using our framework.

turns out that this would give a trivial notion of specious corruption. Recall that in the notion
of specious, we quantify over all tests. If we first fix C̃, and then quantify over all tests when
defining that it is specious, then the universal quantifier could be used to guess random values
shared between C̃ and the adversary, like the key κ used in Lemma 1 (demonstrating that a
specious subversion can still be signaling). Therefore, a single C̃ specious subversion cannot
be signalling. Hence, asking for a specific subversion to be specious would make the notion of
specious corruption trivial. By instead asking that a distribution D is specious, we can allow C̃
and the adversary to sample joint randomness (like a secret key κ) after the test T has already
been quantified. Namely, recall that in the test game we first fix a T, and only then do we sample
D. This allows specious corruptions which can still signal to the adversary, as demonstrated
above. The reason why we ask the environment to sample D and not the adversary has to do
with UC composition, which we return to later.

2.4 Sanitizing Protocols Implementing Regular Ideal Functionalities

For illustration, we first describe how to implement a regular ideal functionality given a sanitizing
ideal functionality. Later, we cover the case of implementing a sanitizing ideal functionality
given a sanitizing ideal functionality, see Fig. 1.

Consider a sanitizing protocol Π, using a sanitizable ideal functionality G, that implements
a regular ideal functionality F with n parties P1, . . . ,Pn. By regular, we mean that F itself
does not have a sanitation interface. Note that it makes perfect sense for a sanitizing protocol
Π, using a sanitizable ideal functionality G, to implement a regular ideal functionality. The
firewall is an aspect of the implementation Π and the sanitizable hybrid ideal functionality G.
In particular, this aspect could be completely hidden by the implementation of Π. However,
typically the behavior when the firewall is honest and corrupted is not the same. A corrupted
firewall can isolate the core by not doing its job. We therefore call a party Pi where Ci is honest
and Fi is corrupt an “isolated” party. We insist that if Ci is specious and Fi is honest, then
it is as if Pi is honest. Hence, F should behave as if Pi is honest. We would therefore like
the behavior of F to depend only on whether Pi is honest, isolated, or corrupt. To add some
structure to this, we introduce the notion of a wrapped ideal functionality and a wrapper.

A wrapped ideal functionality F should only talk to parties Pi. The wrapper Wrap will talk
to a core Ci and a firewall Fi. The wrapper runs F internally, and we write Wrap(F). The
inputs to and from Ci on Wrap(F) are forwarded to the interface for Pi on F . The only job of
Wrap is to introduce the same parties as in the protocol and translate corruptions of Ci and Fi
into corruptions on Pi. We say that parties Pi in an ideal execution with F can be Honest,
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Malicious or Isolate. The wrapped ideal functionality Wrap(F) translates corruptions using
the following standard corruption translation table.

Honest: If Ci is Honest and Fi Honest, let Pi be Honest on F .

Malicious: If Ci is Malicious, corrupt Pi as Malicious on F .

Isolated: If Ci is Honest and Fi is Malicious, corrupt Pi as Isolate on F .

Sanitation: If Ci is Specious and Fi is Honest, let Pi be Honest on F .

No Secrets: If Ci is Honest and Fi is SemiHonest, let Pi be Honest on F .

We discuss the five cases next. The Honest and Malicious cases are straightforward; if
both the core and the firewall are honest, then treat Pi as an honest party on F . Similarly, if the
core is malicious, then treat Pi as a malicious party on F . The Isolated case corresponds to the
situation where the core is honest and the firewall is corrupted, and thus the firewall is isolating
the core from the network. This will typically correspond to a corrupted party. However, in some
cases, some partial security might be obtainable, like the inputs of the core being kept secret. We
therefore allow an Isolate corruption as an explicit type of corruption. The standard behavior
of F on an Isolate corruption is to do a Malicious corruption of Pi in F .

The Sanitation case essentially says that the job of the firewall is to turn a specious core
into an honest core. This, in particular, means that the firewall should remove any signaling.
We add the No Secrets case to avoid trivial solutions where the firewall is keeping, e.g., secret
keys used in the protocol. We want secret keys to reside in the core, and that firewalls only
sanitize communication of the core. We also do not want that the core just hands the inputs
to the firewall and lets it run the protocol. A simple way to model this is to require that the
protocol should tolerate a semi-honest corruption of the firewall when the core is honest. We do
not require that we can tolerate a specious core and a semi-honest firewall. Removing signaling
from a core will typically require randomizing some of the communication. For this, the firewall
needs to be able to make secret random choices. Note that, with this modeling, a core and a
firewall can be seen as a two-party implementation of the honest party, where one can tolerate
either a specious corruption of the core or a semi-honest corruption of the firewall.

Definition 5 (Wrapped subversion-resilient UC security). Let F be an ideal functionality for
n parties P1, . . . ,Pn. Let Π be a sanitizing protocol with n cores C1, . . . ,Cn and n firewalls
F1, . . . ,Fn. Let G be a sanitizable ideal functionality which can be used by Π as in Fig. 1. We say
that Π wsrUC-realizes F in the G-hybrid model if Π UC-realizes Wrap(F) in the G-hybrid model
with the restriction that we only quantify over specious environments and specious adversaries.

The typical behavior of a sanitizing ideal functionality is that, when it receives a message
from the core, it will output the received message to the firewall, or output some partial
information about the message to the firewall. Later, it will receive some new message or
sanitation instruction from the firewall. Given this, it constructs the actual information to pass
to the core functionality of G. This might later end up at a firewall of another party, and after
sanitation end up at the core of that party. The latter is illustrated in Fig. 1, and an example is
given below. Note that this is not a formal requirement, but just a description of idiomatic use
of sanitation to give an intuition on the use of the model.

To illustrate the use of sanitizable ideal functionalities, we specify an ideal functionality FSAT

for sanitizable authenticated communication. The communication between cores goes via the
firewall which might change the messages. Note that firewalls can be sure which other firewall
they talk to, but corrupted firewalls can lie to their local core about who sent a message. In
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Figure 2: Implementing F via protocol Π = (CF ,FF ) using G.

fact, they can pretend a message arrived out of the blue. We also equip FSAT with the possibility
for distributing setup, as this is needed in some of our protocols. We assume a setup generator
Setup which samples the setup and gives each party their corresponding value. The firewalls
also get a value. This, e.g., allows to assume that the firewalls know a CRS. Since we do not
want firewalls to keep secrets, we leak their setup values to the adversary. This would not be a
problem if the setup values is a CRS.

Functionality FSAT

• Initially sample ((v1, w1), . . . , (vn, wn)) ← Setup() and output vi on IOi and wi on Si. Leak wi to the
adversary.

• On input (Send, a,Pj) on IOi, output (Send, a,Pj) on Si. To keep the description simple we assume
honest parties sends the same a at most once. Adding fresh message identifiers can be used for this in an
implementation.

• On input (Send, b,Pk) on Si, leak (Send,Pi, b,Pk) to the adversary and store (Send,Pi, b,Pk).
• On input (Deliver, (Send,Pi, b,Pk)) from the adversary, where (Send,Pi, b,Pk) is stored, delete this

tuple and output (Receive,Pi, b) on Sk.
• On input (Receive,Pm, c) on Sk, output (Receive,Pm, c) on IOi.

Remark 1 (on FSAT). We note that all protocols in this work, even if not explicitly stated, are
described in the FSAT-hybrid model. Moreover, whenever we say that the core sends a message
to the firewall (or vice-versa) we actually mean that they communicate using FSAT.

2.5 General Case

We now turn our attention to implementing sanitizable ideal functionalities. When a protocol Π
implements a sanitizable ideal functionality, we call Π a sanitizable protocol. Notice the crucial
difference between being a sanitizable protocol and a sanitizing protocol. A sanitizable protocol
Π implements the sanitization interface Si of F . Whereas a sanitizing protocol Π would have a
firewall using the sanitization interface Si of G.

When implementing a sanitizable ideal functionality F , the protocol should implement the
sanitation interface SF for F. This means that the protocol will be of the form Π = (IO, S) where
IO = (IO1, . . . , IOn) and S = (S1, . . . , Sn). Notice that Ci and Fi formally are separate parties, so
they cannot talk directly.

It is natural that it is the firewall of the implementation Π = (IO, S) which handles this. The
firewall has access to the sanitation interface of G, which it can use to sanitize Π. This means
that F gets what could look like a double role now. First, it sanitizes Π using SG . Second, it has
to implement the sanitation interface SF of Π (matching that of F). Note, however, that this
is in fact the same job. The sanitation interface SF of Π is used to specify how Π should be
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Figure 4: Implementing G via protocol Γ = (CG ,FG) using H.

sanitized. It is natural that FF needs to knows this specification. It then uses SG to implement
the desired sanitation. This is illustrated in Fig. 2.

When defining security of a protocol implementing a sanitizable ideal functionality, we do
not need to use a wrapper as when implementing a normal ideal functionality, as F already has
the same parties as in the protocol. It is however still convenient to use a wrapper to add some
structure to how we specify a sanitizable ideal functionality. We assume a central part which
does the actual computation, and outer parts which sanitize the inputs from Pi before they are
passed to the central part.

Definition 6 (Well-formed sanitizing ideal functionality). A well-formed sanitizing ideal func-
tionality consists of an ideal functionality F , called the central part, with an interface Pi for
each party. The interface Pi can be Honest, Malicious, or Isolate. There are also n outer
parts L1, . . . ,Ln where Li has an interface IOi for the core and Si for the firewall. The outer
part Li can only talk to the central part on Pi and the outer parts cannot communicate with
each other. The interface IOi can be Honest, Malicious, or Specious. The interface Si can
be Honest, Malicious, or SemiHonest. The corruption of F .IOi is computed from that of
Li.IOi and Li.Si using the standard corruption translation table.

Definition 7 (Subversion-resilient UC security). Let F be an ideal functionality for n cores
CF1 , . . . ,CFn and n firewalls FF1 , . . . ,FFn , and let Π be a sanitizing protocol with n cores CF1 , . . . ,CFn
and n firewalls FF1 , . . . ,FFn . Let G be a sanitizable ideal functionality which can be used by Π
as in Fig. 2. We say that Π srUC-realizes F in the G-hybrid model if F can be written as a
well-formed sanitizing ideal functionality, and Π UC-realizes F in the G-hybrid model with the
restriction that we only quantify over specious environments and specious adversaries.

2.6 Composition

We now address composition. In Fig. 2, we illustrate implementing F in the G-hybrid model.
Similarly, in Fig. 4, we implement G given H. In Fig. 5, we illustrate the effect of composition. We
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Figure 5: Implementing F via protocol ΠG→Γ using H.

can let Ci = CFi ◦CGi and Fi = FFi ◦FGi . Then, we again have a sanitizing protocol ΠG→Γ = (C,F).
For composition to work, we need that specious corruptions respect the composition of a core.

Definition 8 (Specious corruption of a composed core). We say that an adversary does a
specious corruption of a composed core Ci = CFi ◦ CGi if it inputs (Specious, C̃Fi , C̃Gi ), where
both CFi and CGi are specious. In response CFi replaces its code with C̃Fi , and CGi replaces its
code with C̃Gi .

Note that one could imagine a specious corruption of a composed core Ci which could not be
written as the composition of specious subversions C̃Fi and C̃Gi .

Theorem 1 (srUC Composition). Let F and G be ideal functionalities, and let Π and Γ be
protocols. Assume that all are subroutine respecting and subroutine exposing as defined in [Can00].
If Π srUC-realizes F , and Γ srUC-realizes G, then ΠG→Γ srUC-realizes F .

Proof sketch. Recall that UC composition gives us that if Π UC-realizes F and Γ UC-realizes G,
then ΠG→Γ UC-realizes F , which would imply that ΠG→Γ srUC-realizes F . However, we cannot
directly use this result, as in srUC we only quantify over specious environments and specious
adversaries. Thus, we cannot conclude that Π UC-realizes F from the fact that Π srUC-realizes
F . We therefore have to white-box inspect the proof of the UC theorem to ensure that it still
goes through for specious environments and adversaries. We do that next.1

Recall that the crucial point in the proof of general UC composition [Can00, Theorem 22]
is proving that if two protocols Φ and Π are such that Φ UC-emulates Π and Ψ is a protocol
using Φ, and ΨΦ→Π is Ψ with Φ replaced by Π, then Ψ UC-emulates ΨΦ→Π. The crucial proof
step is to construct from an environment E talking to a dummy adversary A, and attacking
Ψ or ΨΦ→Π, a new environment EΠ which is an environment for a single instance of Φ or Π,
as illustrated in [Can00, Fig. 9]. Environment EΠ attacking Φ will have the same effect as E
attacking Ψ. Environment EΠ attacking Π will have the same effect as E attacking ΨΦ→Π. One
can then appeal to the fact that Φ UC-emulates Π to prove that Ψ UC-emulates ΨΦ→Π. When
proving srUC security, it is crucial in the last step that if E is specious then EΠ is specious, as
we only quantify over specious environments.

To see that EΠ is specious note that it is constructed blackbox from E , and that it runs
E as the first thing. Therefore, it will correctly sample and write (C̃1, . . . , C̃m, a) to a special
tape as the first thing it does. Furthermore, since E runs with a dummy adversary, all specious
corruptions are instructed by E . The environment EΠ will by construction only do specious
corruptions which E instructed. Therefore, whenever EΠ does a corruption (Specious, C̃), then
C̃ is from the list in (C̃1, . . . , C̃m, a), as required. Hence, EΠ is again specious.

Since the UC composition proof [Can00, Theorem 22] assumes a dummy adversary, com-
position also depends on universality of dummy adversaries [Can00, Claim 11] which allows to
turn an environment E and an adversary A into an equivalent new adversary EA which talks

1The remainder of the proof requires some familiarity with the proof of the UC composition theorem [Can00].
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Figure 6: A core with its matching firewall or with the identity firewall.

to a dummy adversary. A dummy adversary is one which just acts as a channel between the
environment and the protocol. The environment EA just runs E and A, and instructs the dummy
adversary to forward the messages implementing the attack of A. It is easy to see that, if E is a
specious environment and A is a specious adversary, then EA is a specious environment.

Note that if, e.g., G in the composition is well-formed and therefore wrapped, then it is the
wrapped functionality which is considered at all places. Therefore, in Fig. 4 the ideal functionality
G being implemented will be the wrapped ideal functionality, and in Fig. 2 the hybrid ideal
functionality G being used would again be the wrapped one. There is no notion of “opening
up the wrapping” during composition. If F is a regular ideal functionality then Wrap(F) can
be written as a well-formed sanitizing ideal functionality. Therefore wsrUC security relative to
F implies srUC security relative to Wrap(F). During composition it would be Wrap(F) which
is used as a hybrid functionality. This is basically the same as having F under the standard
corruption translation.

2.7 Computational Transparency

A central notion in the study of reverse firewalls is the notion of transparency. The firewall is
only supposed to modify the behavior of a subverted core. If the firewall is attached to an honest
core, it must not change the behavior of the core. We define transparency in line with [MS15],
namely, an honest core without a firewall attached should be indistinguishable from an honest
core with a firewall attached.

Notice that this does not make sense if the party is implementing a sanitizable ideal
functionality, like in Fig. 2. Without a firewall FF1 , no entity would implement the interface
SF1 , which would make a core without a firewall trivially distinguishishable from a core with
a firewall. Presumably, the interface SF1 is present because different inputs on this interface
will give different behaviors. We therefore only define transparency of firewalls implementing a
regular ideal functionality, as in Fig. 1. Note also that if G in Fig. 1 has a complex interaction
with Fi, then an execution without Fi might not make sense. Therefore, we additionally only
consider transparency in the FSAT-hybrid model. In this model we can let Fi be an identity
firewall which does not modify the communication. This has the desired notion of no firewall
being present.

Definition 9 (Transparency). Let (Ci,Fi) be a party for the FSAT-hybrid model. Let Πi be the
protocol for the FSAT-hybrid model where party number i is (Ci,Fi), and all other parties are
dummy parties. Let ID be the firewall which always outputs any message it receives as input.
Let Π′i be the protocol for the FSAT-hybrid model where party number i is (Ci, ID), and all other
parties are dummy parties. These two protocols are illustrated in Fig. 6. We say that Fi is
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Figure 7: An honest core with its matching firewall or a specious core with the same firewall.

computationally transparent if, for all poly-time environments E which do not corrupt Ci or
Fi/ID, it holds that ExecE,Πi,A ≈ ExecE,Π′i,A, where A is the dummy adversary.

2.8 Strong Sanitation

Another central notion in the study of reverse firewalls is the notion that we call sanitation.
Namely, if you hide a specious core behind a firewall, then it looks like an honest core behind
a firewall. So far, we have defined this implicitly by saying that a specious corruption of a
core plus an honest firewall should be simulatable by having access to an honest party on the
ideal functionality being implemented. This actually does not imply that the network cannot
distinguish between a specious core or an honest core behind the firewall. It only says that the
effect of a specious core behind a firewall are not dire enough that you cannot simulate given an
honest party in the ideal world.

In this section, we give a game-based definition of sanitation capturing the stronger notion
that, behind a firewall, a specious core looks like an honest core. Recall that a core Ci is capable
of receiving a specious corruption (Specious, C̃) from the environment, in which case it replaces
its code by C̃. For such a core, let Ĉ be the incorruptible core which when it receives a specious
corruption (Specious, C̃) will ignore it and keep running the code of C.

Definition 10 (Strong sanitation). Let (Ci,Fi) by a party for the G-hybrid model. Let Ĉi be
the corresponding incorruptible core. Let Πi be the protocol for the FSAT-hybrid model where
party number i is (Ci,Fi), and all other parties are dummy parties. Let Π′i be the protocol for
the FSAT-hybrid model where party number i is (Ĉi,Fi), and all other parties are dummy parties.
Note that if the environment does a (Specious, C̃) corruption of core number i, then in Πi core
i will run C̃, whereas in Π′i it will run Ci. These two outcomes are illustrated in Fig. 7. We
say that Fi is strongly sanitising if, for all poly-time environments E which do not corrupt Fi,
but which are allowed a specious corruption of the core, it holds that ExecE,Πi,A ≈ ExecE,Π′i,A,
where A is the dummy adversary.

It is easy to see that the definition is equivalent to requiring that, for all poly-time environ-
ments E which do not corrupt Ci or Fi/ID, it holds that ExecE,Πi,A ≈ ExecE,Π′i,A, where A is
the dummy adversary.

Lemma 2. Consider a protocol Π where for all parties (Ci,Fi) it holds that Fi has strong
sanitation. Then it is enough to prove security for these cases:

• Core Malicious and firewall Malicious.
• Core Honest and firewall SemiHonest.
• Core Honest and firewall Malicious.
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If in addition we assume the standard corruption behavior for Isolate, it is enough to prove the
cases:

• Core Malicious and firewall Malicious.
• Core Honest and firewall SemiHonest.

If in addition the protocol Π is for the FSAT-hybrid model and has computational transparency,
then it is enough to prove the case:

• Core Malicious and firewall Malicious.
• Core Honest and firewall Honest.

Proof. We prove the first claim. Note that relative to Definition 7 we removed the case with
the core Specious and the firewall Honest. We show that this reduces to the case with core
Honest and the firewall Honest. First replace each Ci by Ĉi. This cannot be noticed due to
strong sanitation. Then notice that we can replace an environment E doing specious corruption
by E ′ which just internally do not pass on (Specious, C̃) to the core. Namely, it does not matter
if Ĉi ignores the commands or we let E ′ do it. Then, we can replace Ĉi by Ci as there are no
commands to ignore. So it is enough to prove security for the core Honest and the firewall
Honest. This case follows from the case with the core Specious and the firewall Honest as
being honest is a special case of being specious.

The second claim follows from the fact that under standard corruption behavior for Isolate
the party Pi on the ideal functionality is Malicious when the firewall is Malicious. So the
simulator has the same power when simulating an honest core and malicious firewall as when
simulating a malicious core and a malicious firewall. Then note that being an honest core is a
special case of being a malicious core.

In the last claim, we have to prove that assuming computational transparency one does
not have to prove the case with the core Honest and the firewall SemiHonest. One can
instead prove the case with the core Honest and the firewall Honest. To see this note that,
by definition of transparency, we can replace the firewall with the identity firewall ID. For this
firewall, an Honest corruption is as powerful as a SemiHonest corruption. This is because
the only effect of a semi-honest corruption of ID is to leak the internal value wi from the setup
and the communication sent via ID. The ideal functionality FSAT already leaks that information
when ID is honest.

3 String Commitment
In this section, we show how to build UC string commitments with security in the presence of
subversion attacks. In particular, after introducing the sanitizable commitment functionality, we
exhibit a non-interactive commitment (with an associated reverse firewall) that UC realizes this
functionality in the CRS model, under the DDH assumption.

3.1 Sanitizable Commitment Functionality

The sanitazable commitment functionality F̂sCOM, which is depicted below, is an extension of the
standard functionality for UC commitments [CF01]. Roughly, F̂sCOM allows the core of a party
to commit to a λ-bit string si; the ideal functionality stores si and informs the corresponding
firewall that the core has sent a commitment. Hence, via the sanitation interface, the firewall of
that party is allowed to forward to the functionality a blinding factor ri ∈ {0, 1}λ that is used
to blind si, yielding a sanitized input ŝi = si ⊕ ri. At this point, all other parties are informed
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by the functionality that a commitment took place. Finally, each party is allowed to open the
commitment via the functionality, in which case all other parties learn the sanitized input ŝi.

Functionality F̂sCOM

The sanitizable string commitment functionality F̂sCOM runs with parties P1, . . . ,Pn (each consisting of a
core Ci and a firewall Fi), and an adversary S. The functionality consists of the following communication
interfaces for the cores and the firewalls respectively.

Interface IO

• Upon receiving a message (Commit, sid, cid,Ci, si) from Ci, where si ∈ {0, 1}λ, record the tuple
(sid, cid,Ci, si) and send the message (Receipt, sid, cid,Ci) to Fi. Ignore subsequent commands of
the form (Commit, sid, cid,Ci, ·).

• Upon receiving a message (Open, sid, cid,Ci) from Ci, proceed as follows: If the tuple (sid, cid,Ci, ŝi)
is recorded and the message (Blind, sid, cid,Ci, ·) was sent to F̂sCOM, then send the message
(Open, sid, cid,Ci, ŝi) to all Cj 6=i and S. Otherwise, do nothing.

Interface S

• Upon receiving a message (Blind, sid, cid,Ci, ri) from Fi, where ri ∈ {0, 1}λ, proceed as follows: If the
tuple (sid, cid,Ci, si, ·) is recorded, then modify the tuple to be (sid, cid,Ci, ŝi = si ⊕ ri) and send the
message (Blinded, sid, cid,Ci, ri) to Ci, and (Receipt, sid, cid,Ci) to all Cj 6=i and S; otherwise do nothing.
Ignore future commands of the form (Blind, sid, cid,Ci, ·).

3.2 Protocol from DDH

Next, we present a protocol that UC-realizes F̂sCOM in the FSAT-hybrid model. For simplicity, let
us first consider the case where there are only two parties. The CRS in our protocol is a tuple
crs = (g, h, T1, T2) satisfying the following properties:

• The element g is a generator of a cyclic group G with prime order q, and h, T1, T2 ∈ G.
Moreover, the DDH assumption holds in G.2

• In the real-world protocol, the tuple (g, h, T1, T2) corresponds to a non-DH tuple. Namely,
it should be the case that T1 = gx and T2 = hx

′ , for x 6= x′.

• In the security proof, the simulator will set the CRS as (g, h, T1, T2), where T1 = gx and
T2 = hx. By the DDH assumption, this distribution is computationally indistinguishable
from the real-world distribution. In addition, the simulator will be given the trapdoor
(x, t) for the CRS crs = (g, h, T1, T2), such that h = gt and T1 = gx.

As explained in Section 1.3, the above ideas can be generalized to the multiparty setting by
using a different CRS for each pair of parties. We proceed below to the formal description of the
full protocol.

Protocol Π̂sCOM (Sanitizable UC Commitment Protocol)

The protocol is executed between parties P1, . . . ,Pn each consisting of a core Ci and a firewall Fi. In what
follows, let party Pj = (Cj ,Fj) be the committer, and all other parties Pk 6=j act as verifiers.
Public inputs: Group G with a generator g, field Zq, and crs = (crsj,k)j,k∈[n],k 6=j = (gj,k, hj,k, T1,j,k,
T2,j,k)j,k∈[n],k 6=j .

2Recall that the DDH assumption states that the distribution ensembles {g, h, gx, hx : x ← Zq} and
{g, h, gx, hx

′
: x, x′ ← Zq} are computationally indistinguishable.
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Private inputs: The committer (or core) Cj has an input s ∈ {0, 1}λ which we parse as s = (s[1], · · · , s[λ]).
We will encode each bit s[i] ∈ {0, 1} with a value u[i] ∈ {−1, 1}, so that u[i] = 1 if s[i] = 1 and u[i] = −1 if
s[i] = 0. The firewall Fj has an input r = (r[1], · · · , r[λ]) ∈ {0, 1}λ (i.e., the blinding factor).
Commit phase: For all i ∈ [λ], the core Cj samples a random αj,k[i] ← Zq and computes the values
Bj,k[i] = g

αj,k[i]
j,k ·Tu[i]

1,j,k and Hj,k[i] = h
αj,k[i]
j,k ·Tu[i]

2,j,k. Hence, it sends cj,k = (cj,k[1], · · · , cj,k[λ]) to the firewall
Fj where cj,k[i] = (Bj,k[i], Hj,k[i]). For all i ∈ [λ], the firewall Fj picks random βj,k = (βj,k[1], · · · , βj,k[λ]) ∈
Zλq and does the following:

• If r[i] = 0, it lets B̂j,k[i] = Bj,k[i] · gβj,k[i]
j,k and Ĥj,k[i] = Hj,k[i] · hβj,k[i]

j,k ;

• Else if r[i] = 1, it lets B̂j,k[i] = Bj,k[i]−1 · gβj,k[i]
j,k and Ĥj,k[i] = Hj,k[i]−1 · hβj,k[i]

j,k .

Hence, Fj sends ĉj,k = (ĉj,k[1], · · · , ĉj,k[λ]) to all other parties Pk 6=j , where ĉj,k[i] = (B̂j,k[i], Ĥj,k[i]).
Opening phase: The core Cj sends (s, αj,k) to the firewall Fj , where s ∈ {0, 1}λ and αj,k ∈ Zλq . Upon
receiving (s, αj,k) from Cj , the firewall Fj parses s = (s[1], · · · , s[λ]) and αj,k = (αj,k[1], · · · , αj,k[λ]). Thus,
for all i ∈ [λ], it does the following:

• If r[i] = 0, it lets ŝ[i] = s[i] and α̂j,k[i] = αj,k[i] + βj,k[i];
• Else if r[i] = 1, it lets ŝ[i] = −s[i] and α̂j,k[i] = −αj,k[i] + βj,k[i].

Hence, Fj sends (ŝ, α̂j,k) to all other parties Pk 6=j , where ŝ = (ŝ[1], · · · , ŝ[λ]) and α̂j,k = (α̂j,k[1], · · · , α̂j,k[λ]).

Verification phase: Upon receiving (ĉj,k, (ŝ, α̂j,k)) from Pj , each party Pk 6=j parses ĉj,k = ((B̂j,k[1],
Ĥj,k[1]), · · · , (B̂j,k[λ], Ĥj,k[λ])), α̂j,k = (α̂j,k[1], · · · , α̂j,k[λ]), and encodes ŝ = (ŝ[1], · · · , ŝ[λ]) ∈ {0, 1}λ as
û = (û[1], · · · , û[λ]) ∈ {−1, 1}λ. Hence, for all i ∈ [λ], it verifies whether B̂j,k[i] = g

α̂j,k[i]
j,k · T û[i]

1,j,k and
Ĥj,k[i] = h

α̂j,k[i]
j,k · T û[i]

2,j,k. If for any i ∈ [λ], the above verification fails, party Pk aborts; otherwise Pk accepts
the commitment.

Theorem 2. The protocol Π̂sCOM srUC-realizes the F̂sCOM functionality in the FSAT-hybrid model
in the presence of up to n− 1 static malicious corruptions.

Proof. To simplify notation, let Π̂ := Π̂sCOM and F̂ := F̂sCOM. Recall that by definition of
subversion resilience, we need to show that Π̂ UC-realizes F in the FSAT-hybrid model, and that
F can be written as a well-formed sanitizing ideal functionality. Towards this, we first build a
simulator (communicating with F̂) that simulates an execution of Π̂ for the case where n− 1
parties are malicious, and the remaining party has an honest core and a semi-honest firewall.
Note that, strictly speaking, one should also prove security for the case where there are less
than n− 1 malicious corruptions. It is, however, easy to see that proving the case with maximal
corruption is complete. When the committer is honest then F̂ gives the simulator the same
power no matter how many receivers are corrupted, so assuming maximal corruption gives the
adversary more power (without giving the simulator more power). When the committer is
malicious, we need to simulate the view of at least one honest verifier (with a semi-honest core).
Since the verifiers all act independently, it suffices to consider the case of maximal corruption.

Lemma 3. For every malicious adversary A corrupting n−1 parties maliciously and the firewall
of the remaining honest party semi-honestly in an execution of the protocol Π̂ in the FSAT-hybrid
model, there exists a simulator S such that for all environments E:

ExecFSAT
Π̂,A,E

≈ ExecF̂ ,S,E .

Proof. We consider two cases, depending on the core of the committer being corrupt or not.

Case 1: Malicious committer. This corresponds to the case where the honest core Ck is
the core of an honest verifier in an execution of the protocol Π̂. Denote with Cj and Fj the core
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and firewall corresponding to the maliciously corrupt committer. Here, the simulator S proceeds
as follows.

Setup: Set up the CRS crs as in the real-world protocol. Additionally, the simulator S knows
the trapdoor tj,k such that hj,k = g

tj,k
j,k .

Commit phase: Upon receiving a commitment ĉj,k = (ĉj,k[1], · · · , ĉj,k[λ]) from A, parse
ĉj,k[i] = (B̂j,k[i], Ĥj,k[i]). Thus, for all i ∈ [λ], do:

• If Ĥj,k[i] · T2,j,k = (B̂j,k[i] · T1,j,k)tj,k , set û[i] = −1.
• Else if Ĥj,k[i]/T2,j,k = (B̂j,k[i]/T1,j,k)tj,k , set û[i] = 1.

Decode û ∈ {−1, 1}λ into ŝ ∈ {0, 1}λ. Finally, send (Commit, sid, cid,Cj , ŝ) to F̂ on behalf
of Cj and send (Blind, sid, cid,Cj , 0λ) to F̂ on behalf of Fj .

Verification phase: Upon receiving an opening (s′, α′j,k) from A, verify the opening as an
honest verifier would do. If the verification succeeds send (Open, sid, cid,Cj) to F̂ ; else,
simulate A aborting and terminate.

We claim that the above simulation is perfect. In fact, the CRS crs is distributed exactly like in
the real-world protocol. Moreover, since the tuple crsj,k = (gj,k, hj,k, T1,j,k, T2,j,k) is a non-DH
tuple, the extraction procedure run by S always succeeds, which yields a perfect simulation of
the commit phase. Finally, the verification phase is run exactly like in the real-world protocol.

Case 2: Honest committer. This corresponds to the case where Cj is the core of the honest
committer, so that Fj is semi-honestly corrupt. Here, the simulator S proceeds as follows.

Setup: Set the CRS crs in such a way that the tuples crsj,k = (gj,k, hj,k, T1,j,k, T2,j,k) is a
DH tuple. Namely, the simulator knows the trapdoor xj,k such that T1,j,k = g

xj,k
j,k and

T2,j,k = h
xj,k
j,k .

Commit phase: Sample a random αj,k = (αj,k[1], · · · , αj,k[λ]) ∈ Zλq , and, for all i ∈ [λ], let
Bj,k[i] = g

αj,k[i]
j,k , Hj,k[i] = h

αj,k[i]
j,k and cj,k[i] = (Bj,k[i], Hj,k[i]). Furthermore, sample a ran-

dom βj,k = (βj,k[1], · · · , βj,k[λ]) ∈ Zλq and sanitize each cj,k[i] to get ĉj,k[i] = (B̂j,k[i], Ĥj,k[i])
computed as follows:3 If r[i] = 0, let B̂j,k[i] = Bj,k[i] · g

βj,k[i]
j,k = g

αj,k[i]+βj,k[i]
j,k and Ĥj,k[i] =

Hj,k[i]·hβj,k[i]
j,k = h

αj,k[i]+βj,k[i]
j,k . Else if r[i] = 1, let B̂j,k[i] = Bj,k[i]−1 ·gβj,k[i]

j,k = g
−αj,k[i]+βj,k[i]
j,k

and Ĥj,k[i] = Hj,k[i]−1 · hβj,k[i]
j,k = h

−αj,k[i]+βj,k[i]
j,k . Finally, send ĉj,k = (ĉj,k[1], · · · , ĉj,k[λ]) to

A.

Opening phase: Upon receiving (Open, sid, cid,Cj , ŝ), where ŝ = (ŝ[1], · · · , ŝ[λ]) ∈ {0, 1}λ,
from F̂ , the simulator computes the corresponding encoding û = (û[1], · · · , û[λ]) ∈ {−1, 1}λ
and adjusts the randomness by letting α̂′j,k[i] = α̂j,k[i] − û[i] · xj,k for all i ∈ [λ]. Here,
α̂j,k[i] = αj,k[i] + βj,k[i] if r[i] = 0, whereas α̂j,k[i] = −αj,k[i] + βj,k[i] if r[i] = 1. Thus, the
simulator sends (ŝ, α̂′j,k) to A, where α̂′j,k = (α̂′j,k[1], · · · , α̂′j,k[λ]).

3Note that the following steps can indeed be performed by the simulator since the firewall of Fj is semi-honestly
corrupt, and thus S receives the blinding factor r from the ideal functionality, as inputs of semi-honest parties are
revealed.
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There are two main differences between the above simulation and a real-world execution: (i)
in the real world, the CRS crs is distributed like a sequence of non-DH tuples, whereas in the
ideal world the simulator samples each crsj,k as being a DH-tuple; (ii) in the real world, the
sanitized commitment ĉj,k is such that (B̂j,k[i], Ĥj,k[i]) is a non-DH tuple for all i ∈ [λ], whereas
in the ideal world the simulated pair (B̂j,k[i], Ĥj,k[i]) is a DH-tuple for all i ∈ [λ]. Note that
nevertheless, the simulator can always adjust the randomness to match the string ŝ used by Cj
in the ideal world using the trapdoor xj,k (as described above). Hence, indistinguishability of
the simulation follows by a standard hybrid argument using the DDH assumption. This finishes
the proof of the lemma.

Next, we show that the firewall Fj of the committer is strongly sanitizing (see Definition 10),
meaning that a specious core behind the firewall looks like an honest core.

Lemma 4. The firewall Fj of the committer Cj in Π̂ is strongly sanitizing.

Proof. We need to show that for all poly-time environments E which do not corrupt the firewall
Fj , but which are allowed a specious corruption of the core Cj , it holds that

ExecFSAT
Π̂,A,E

≈ ExecFSAT
Π̂′,A,E

,

where A is the dummy adversary and where Π̂ and Π̂′ run with dummy parties except for Pj
that is either taken to be (Cj ,Fj) or (Ĉj ,Fj) for an incorruptible core Ĉj . Recall that when
an incorruptible core receives a specious corruption (Specious, C̃j) from the environment, it
ignores it and keeps running the code of Cj .

Note that, in a real execution, the honest core Cj samples each value αj,k[i] uniformly at
random from Zq, and hence each cj,k[i] = (Bj,k[i], Hj,k[i]) is uniformly random in G2, and so is the
sanitized commitment ĉj,k[i] = (B̂j,k[i], Ĥj,k[i]]). Moreover, we claim that for any commitment
c̃j,k = (c̃j,k[1], · · · , c̃j,k[λ]) output by a specious core Cj , except with negligible probability, there
must exist values ũ[i] ∈ {−1, 1} (and thus bits s̃[i] ∈ {0, 1}) such that c̃j,k can be opened to
s̃ = (s̃[1], · · · , s̃[λ]). This is because otherwise, we can build a poly-time test T that tells apart
non-rewinding black-box access to either C̃j or Cj by asking it to first compute and then open a
commitment. This shows that a specious core, except with negligible probability, still outputs a
well-formed commitment c̃j,k; given such a commitment, the firewall Fj produces a sanitized
committed that is uniformly random in G2. The lemma follows.

The theorem statement now follows by looking at the standard corruption transition table
used by the well-formed sanitizing ideal functionality F̂ . Since the adversary maliciously corrupts
up to n− 1 verifiers, there is at least one party which is the committer for which either (i) the
core is honest and the firewall is semi-honest, or (ii) the core is specious and the firewall is
honest. By Lemma 2, since an honest firewall is strongly sanitizing (as shown in Lemma 4), the
core in case (ii) can be taken to be honest. Hence, the statement follows directly by Lemma 3.
Note that here we are assuming that F̂ treats a corruption with flavor Isolate as a Malicious
corruption.

4 Coin Tossing
In this section, we build a sanitizing protocol that implements the regular coin tossing functionality.
Our protocol is described in the F̂sCOM-hybrid model, and therefore must implement the firewall
that interacts with the F̂sCOM functionality.
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4.1 The Coin Tossing Functionality

We start by recalling the regular FTOSS functionality below. Intuitively, the functionality waits
to receive an initialization message from all the parties. Hence, it samples a uniformly random
λ-bit string s and sends s to the adversary. The adversary now can decide to deliver s to a
subset of the parties. The latter restriction comes from the fact that it is impossible to toss
a coin fairly so that no adversary can cause a premature abort, or bias the outcome, without
assuming honest majority [Cle86].

Functionality FTOSS

The coin tossing functionality FTOSS runs with parties P1, . . . ,Pn, and an adversary S. It consists of the
following communication interface.

• Upon receiving a message (Init, sid,Pi) from Pi: If this is the first such message from Pi then record
(sid,Pi) and send (Init,Pi) to S. If there exist records (sid,Pj) for all (Pj)j∈[n], then sample a uniformly
random bit string s ∈ {0, 1}λ and send s to the adversary S.

• Upon receiving a message (Deliver, sid,Pi) from S (and if this is the first such message from S), and if
there exist records (sid,Pj) for all (Pj)j∈[n], send s to Pi; otherwise do nothing.

4.2 Sanitizing Blum’s Protocol

Next, we show how to sanitize a variation of the classical Blum coin tossing protocol [Blu81]. In
this protocol, each party commits to a random string si and later opens the commitment, thus
yielding s = s1 ⊕ · · · ⊕ sn. The firewall here samples an independent random string ri which is
used to blind the string si chosen by the (possibly specious) core.

Protocol Π̂TOSS (Sanitizing Blum’s Coin Tossing)

The protocol is described in the F̂sCOM-hybrid model, and is executed between parties P1, . . . ,Pn each
consisting of a core Ci and a firewall Fi. Party Pi = (Ci,Fi) proceeds as follows (the code for all other parties
is analogous).

1. The core Ci samples a random string si ∈ {0, 1}λ and sends (Commit, sidi, cidi,Ci, si) to F̂sCOM.

2. Upon receiving (Receipt, sidi, cidi,Ci) from F̂sCOM, the firewall Fi samples a random string ri ∈ {0, 1}λ

and sends (Blind, sidi, cidi,Ci, ri) to F̂sCOM.

3. Upon receiving (Blinded, sidi, cidi,Ci, ri) from F̂sCOM, as well as (Receipt, sidj , cidj ,Cj) for all other
cores Cj 6=i, the core Ci sends the message (Open, sidi, cidi,Ci) to F̂sCOM.

4. Upon receiving (Open, sidj , cidj ,Cj , ŝj) from F̂sCOM, for each core Cj 6=i, the core Ci outputs s := si ⊕ ri ⊕⊕
j 6=i ŝj . (If any of the cores Cj do not open its commitment, then Ci sets ŝj = 0λ.)

Theorem 3. The protocol Π̂TOSS wsrUC-realizes the FTOSS functionality in the (FSAT, F̂sCOM)-hybrid
model in the presence of up to n− 1 malicious corruptions.

Proof. To simplify notation, let Π̂ := Π̂TOSS and F := FTOSS. Recall that by definition of wrapped
subversion resilience, we need to show that Π̂ UC-realizes Wrap(F) in the (FSAT, F̂sCOM)-hybrid
model. Towards this, we first build a simulator (communicating with Wrap(F)) that simulates
an execution of Π̂ for the case where n− 1 parties are malicious, and the remaining party has
an honest core and a semi-honest firewall. Note that, strictly speaking, one should also prove
security for case where there are less than n− 1 malicious corruptions. It is, however, easy to
see that proving the case with maximal corruption is complete in the present case. The ideal
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functionality F̂ gives the simulator the same powers no matter how many parties are corrupted,
so assuming full corruption gives the adversary more powers (without giving the simulator more
powers).

Lemma 5. For every malicious adversary A corrupting n−1 parties maliciously and the firewall
of the remaining honest party semi-honestly in an execution of Π̂ in the (FSAT, F̂sCOM)-hybrid
model, there exists a simulator S such that for all environments E:

ExecFSAT,F̂sCOM
Π̂,A,E

≡ ExecWrap(F),S,E .

Proof. Note that the coin tossing functionality has no inputs. Hence, the goal of the simulator
is to make the output of the execution it simulates equal to the output that it receives from the
coin tossing functionality. In what follows, we let i ∈ [n] be the index corresponding to the only
party with an honest core. We build the simulator S below.

Commitment phase: Upon receiving (Commit, sidj , cidj ,Cj , sj) from A, for each Cj 6=i, send
(Receipt, sidj , cidj ,Cj) to A and (Init, sidj ,Pj) to F . Upon receiving (Blind, sidj , cidj , rj)
from A, for each Cj 6=i, send (Blinded, sidj , cidj ,Cj , rj) and (Receipt, sidj , cidj ,Cj), to A.

Opening phase: Upon receiving s ∈ {0, 1}λ from F , let ŝi :=
⊕

j 6=i(sj ⊕ rj)⊕ ri ⊕ s and send
(Open, sidi, cidi,Ci, ŝi) to A. Upon receiving (Open, sidj , cidj ,Cj) from Cj , for each Cj 6=i,
send (Open, sidj , cidj ,Cj , sj ⊕ rj) to A and (Deliver, sidj ,Pj) to F .

We now argue that the simulation is perfect. The simulator S plays the role of the F̂sCOM

functionality, and hence it receives the inputs the malicious cores and firewalls send to F̂sCOM.
Furthermore, after receiving the coin tossing output s, the simulator can extract the sanitized
input ŝi of the honest core Ci by computing the xor between s, the sanitized strings (sj ⊕ rj) for
each malicious core, and the blinding factor ri received from the semi-honest firewall Fi. Let
ŝ :=

⊕
j 6=i(sj ⊕ rj)⊕ ri.

In a real execution, the honest core Ci would sample a uniformly random string si ∈ {0, 1}λ,
independently of ŝ. In contrast, in an ideal execution, s ∈ {0, 1}λ is chosen uniformly and then
si is set to be ŝ⊕ s. Since s is chosen independently of ŝ, we have that ŝ⊕ s is also uniformly
distributed in {0, 1}λ. This concludes the proof.

Next, we show that the firewall Fi of each party is strongly sanitizing (see Definition 10),
meaning that a specious core behind the firewall looks like an honest core.

Lemma 6. For each i ∈ [n], the firewall Fi in Π̂ is strongly sanitising.

Proof. We will show that for all environments E which do not corrupt the firewall Fi, but which
are allowed a specious corruption of the core Ci, it holds that

ExecFSAT,F̂sCOM
Π̂,A,E

≡ ExecFSAT,F̂sCOM
Π̂′,A,E

,

where A is the dummy adversary and where Π̂ and Π̂′ run with dummy parties except for Pi
that is either taken to be (Ci,Fi) or (Ĉi,Fi) for an incorruptible core Ĉi. Recall that when an
incorruptible core receives a specious corruption (Specious, C̃i) from the environment, it ignores
it and keeps running the code of Ci.

Looking at Π̂, it is easy to see that ŝi = si ⊕ ri is uniformly distributed in {0, 1}λ as both Ci
and Fi are honest. Now, a specious core C̃i can sample si from a biased distribution. However,
since Fi is honest, and it samples ri uniformly and independently of si, we have that ŝi = si ⊕ ri
is also uniformly distributed in {0, 1}λ.
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The theorem statement now follows by looking at the standard corruption transition table
used by the functionality Wrap(F). Since the adversary maliciously corrupts up to n− 1 parties,
there is at least one party for which either (i) the core is honest and the firewall is semi-honest,
or (ii) the core is specious and the firewalls is honest. By Lemma 2, since an honest firewall is
strongly sanitizing (as shown in Lemma 6), the core in case (ii) can be taken to be honest. Hence,
the statement follows directly by Lemma 5. Note that here we are assuming that Wrap(F)
treats a corruption with flavor Isolate as a Malicious corruption; this is necessary, as if Pi is
isolated and all other Pj 6=i are malicious the adversary can bias the output of the coin.

5 Completeness Theorem
In this section, we show how to sanitize the classical compiler by Goldreich, Micali and Wigderson
(GMW) [GMW87], for turning MPC protocols with security against semi-honest adversaries
into ones with security against malicious adversaries. On a high level, the GMW compiler
works by having each party commit to its input. Furthermore, the parties run a coin tossing
protocol to determine the randomness to be used in the protocol; since the random tape of
each party must be secret, the latter is done in such a way that the other parties only learn
a commitment to the other parties’ random tape. Finally, the commitments to each party’s
input and randomness are used to enforce semi-honest behavior: Each party computes the next
message using the underlying semi-honest protocol, but also proves in zero knowledge that this
message was computed correctly using the committed input and randomness.

5.1 Sanitizable Commit & Prove

The GMW compiler was analyzed in the UC setting by Canetti, Lindell, Ostrovsky and
Sahai [CLOS02]. A difficulty that arises is that the receiver of a UC commitment obtains
no information about the value that was committed to. Hence, the parties cannot prove in
zero knowledge statements relative to their input/randomness commitment. This issue is
solved by introducing a more general commit-and-prove functionality that essentially combines
both the commitment and zero-knowledge capabilities in a single functionality. In turn, the
commit-and-prove functionality can be realized using commitments and zero-knowledge proofs.

In order to sanitize the GMW compiler, we follow a similar approach. Namely, we introduce
a sanitazable commit-and-prove functionality (denoted F̂C&P and depicted below) and show that
this functionality suffices for our purpose. Intuitively, F̂C&P allows the core Ci of each party Pi
to (i) commit to multiple secret inputs x, and (ii) prove arbitrary NP statements y (w.r.t. an
underlying relation R that is a parameter of the functionality) whose corresponding witnesses
consist of all the values x. Whenever the core Ci commits to a value x, the firewall Fi may decide
to blind x with a random string r (which is then revealed to the core). Similarly, whenever the
core proves a statement y, the firewall Fi may check if the given statement makes sense, in which
case, and assuming the statement is valid, the functionality informs all other parties that y is
indeed a correct statement proven by Pi.

Functionality F̂C&P

The sanitizable commit-and-prove functionality F̂C&P is parameterized by an NP relation R, and runs with
parties P1, . . . ,Pn (each consisting of a core Ci and a firewall Fi) and an adversary S. The functionality
consists of the following communication interfaces for the cores and the firewalls respectively.

Interface IO

• Upon receiving a message (Commit, sid, cid,Ci, x) from Ci, where x ∈ {0, 1}∗, record the tuple
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(sid, cid,Ci, x) and send the message (Receipt, sid, cid,Ci) to Fi. Ignore future commands of the form
(Commit, sid, cid,Ci, ·).

• Upon receiving a message (Prove, sid,Ci, y) from Ci, if there is at least one record (sid, cid,Ci, ·) and a
corresponding (Blind, sid, cid,Ci, ·) message was sent to F̂C&P, then send the message (Sanitize, sid,Ci, y)
to Fi.

Interface S

• Upon receiving a message (Blind, sid, cid,Ci, r) from Fi, where r ∈ {0, 1}∗, proceed as follows: if the
tuple (sid, cid,Ci, x) is recorded, modify the tuple to be (sid, cid,Ci, x̂ = x ⊕ r) and send the message
(Blinded, sid, cid,Ci, r) to Ci, and (Receipt, sid, cid,Ci) to all Cj 6=i and S; otherwise do nothing. Ignore
future commands of the form (Blind, sid, cid,Ci, ·).

• Upon receiving a message (Continue, sid,Ci, y) from Fi, retrieve all tuples of the form (sid, ·,Ci, x̂) and
let x be the list containing all (possibly sanitized) witnesses x̂. Then compute R(y, x): if R(y, x) = 1
send the message (Proved, sid,Ci, y) to all Cj 6=i and S, otherwise ignore the command.

In Appendix B, we show how to realize the sanitazable commit-and-prove functionality from
malleable dual-mode commitments, a primitive which we introduce, and re-randomizable NIZKs
for all of NP. Our commitment protocol from Section 3 can be seen as a concrete instantiation
of malleable dual-mode commitments based on the DDH assumption.

5.2 Sanitizing the GMW Compiler

We are now ready to sanitize the GMW compiler. Let Π be an MPC protocol. The (sanitized)
protocol Π̂GMW is depicted below and follows exactly the ideas outlined above adapted to the UC
framework with reverse firewalls.

Protocol Π̂GMW (Sanitizing the GMW compiler)

The protocol is described in the (F̂C&P,FTOSS)-hybrid model, and is executed between parties P1, . . . ,Pn each
consisting of a core Ci and a firewall Fi. Party Pi = (Ci,Fi) proceeds as follows (the code for all other parties
is analogous).
Random tape generation: When activated for the first time, party Pi generates its own randomness
with the help of all other parties:

1. The core Ci picks a random si ∈ {0, 1}λ and sends (Commit, sidi, cidi, si) to F̂C&P.

2. Upon receiving (Receipt, sidi, cidi,Ci) from F̂C&P, the firewall Fi picks a random ri ∈ {0, 1}λ and sends
(Blind, sidi, cidi,Ci, ri) to F̂C&P.

3. All the cores interact with FTOSS in order to obtain a public random string s∗i that is used to determine
the random tape of Ci. Namely, each core Cj , for j ∈ [n], sends (Init, sidi,j ,Pj) to FTOSS and waits to
receive the message (Delivered, sidi,j ,Pj , s∗i ) from the functionality.

4. Upon receiving (Blinded, sidi, cidi,Ci, ri) from F̂C&P, the core Ci defines r̂i = s∗i ⊕ (si ⊕ ri).

Input commitment: When activated with input xi, the core Ci sends (Commit, sidi, cid′i, xi) to F̂C&P and
adds xi to the (initially empty) list of inputs xi (containing the inputs from all the previous activations of the
protocol). Upon receiving (Receipt, sidi, cid′i,Ci) from F̂C&P, the firewall Fi sends (Blind, sidi, cid′i,Ci, 0|xi|)
to F̂C&P.
Protocol execution: Let τ ∈ {0, 1}∗ be the sequence of messages that were broadcast in all activations of
Π until now (where τ is initially empty).

1. The core Ci runs the code of Π on its input list xi, transcript τ , and random tape r̂i (as determined
above). If Π instructs Pi to broadcast a message, proceed to the next step.

2. For each outgoing message µi that Pi sends in Π, the core Ci sends (Prove, sidi,Ci, (µi, s∗i , τ)) to F̂C&P,
where the relation parameterizing the functionality is defined as follows:

R := {((µi, s∗i , τ), (xi, si, ri)) : µi = Π(xi, τ, s∗i ⊕ (si ⊕ ri))} .
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In words, the core Ci proves that the message µi is the correct next message generated by Π when the
input sequence is xi, the random tape is r̂i = s∗i ⊕ (si ⊕ ri), and the current transcript is τ . Thus, Ci
appends µi to the current transcript τ .

3. Upon receiving (Sanitize, sidi,Ci, (µi, s∗i , τ)) from F̂C&P, the firewall Fi verifies that s∗i is the same string
obtained via FTOSS and that τ consists of all the messages that were broadcast in all the activations
up to this point. If these conditions are not met, Fi ignores the message and otherwise it sends
(Continue, sidi,Ci, (µi, s∗i , τ)) to F̂C&P and appends µi to the current transcript τ .

4. Upon receiving (Proved, sidj ,Cj , (µj , s∗i , τ)) from F̂C&P, both the core Ci and the firewall Fi append µj
to the transcript τ and repeat the above steps.

Output: Whenever Π outputs a value, Π̂GMW generates the same output.

A few remarks are in order. First, and without loss of generality, we assume that the
underlying protocol Π is reactive and works by a series of activations, where in each activation,
only one of the parties has an input; the random tape of each party is taken to be a λ-bit string
for simplicity. Second, each party needs to invoke an independent copy of F̂C&P; we identify
these copies as sidi, where we can for instance let sidi = sid||i. Third, we slightly simplify the
randomness generation phase using the coin tossing functionality FTOSS. In particular, each core
Ci commits to a random string si via F̂C&P; the corresponding firewall Fi blinds si with a random
string ri. Thus, the parties obtain public randomness s∗i via FTOSS, yielding a sanitized random
tape r̂i = s∗i ⊕ (si ⊕ ri) for party Pi. Note that it is crucial that the parties obtain independent
public random strings s∗i in order to determine the random tape of party Pi. In fact, if instead
we would use a single invocation of FTOSS yielding common public randomness s, two malicious
parties Pi and Pj could pick the same random tape by choosing the same values si, ri, sj , rj .
Clearly, the latter malicious adversary cannot be reduced to a semi-honest adversary.
The theorem below states the security of the GMW compiler with reverse firewalls.

Theorem 4. Let F be any functionality for n parties. Assuming that Π UC realizes F in the
presence of up to t ≤ n− 1 semi-honest corruptions, then the compiled protocol Π̂GMW wsrUC
realizes F in the (FSAT, F̂C&P,FTOSS)-hybrid model in the presence of up to t malicious corruptions.

Proof. Recall that, by definition of wrapped subversion resilience, we need to show that Π̂GMW

UC realizes Wrap(F) in the (FSAT, F̂C&P,FTOSS)-hybrid model. Towards this, we first prove that
every adversary attacking Π̂GMW in the (FSAT, F̂C&P,FTOSS)-hybrid model by corrupting up to t
parties maliciously, and the firewall of the remaining n− t parties semi-honestly, can be simulated
by an adversary attacking Π by corrupting t semi-honest parties.

Lemma 7. For every adversary B that corrupts up to t parties maliciously and the firewall of the
remaining honest parties semi-honestly in an execution of Π̂GMW in the (FSAT, F̂C&P,FTOSS)-hybrid
model, there exists an adversary A that corrupts up to t parties semi-honestly in an execution of
Π, such that for all environments E:

ExecΠ,A,E ≡ ExecFSAT,F̂C&P,FTOSS
Π̂GMW,B,E

.

Proof. We construct a semi-honest adversary A from the malicious adversary B that also
corrupts semi-honestly the firewalls of the honest cores. The adversary A runs Π while internally
simulating an execution of Π̂GMW for B in the hybrid model. In particular, the adversary A runs
B and proceeds as follows.

Communication with the environment: The input values received by A from E are written
on B’s input tape, and the output values of B are copied to A’s own output tape.
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Randomness generation phase: When the first activation of Π takes place, A simulates
the random tape generation phase of Π̂GMW for B. In particular, the simulation below is
repeated for every party Pi = (Ci,Fi).

• Honest Ci and semi-honest Fi: The adversary A internally hands B the message
(Receipt, sidi, cidi,Ci) from F̂C&P. Upon receiving (Blind, sidi, cidi,Ci, ri) from Fi,
the adversary A internally hands B the message (Blinded, sidi, cidi,Ci, ri) from F̂C&P.
In addition, A simulates all the (Receipt, sidj , cidj ,Cj) messages that B expects to
receive from F̂C&P.

• Malicious Pi: Upon receiving (Commit, sidi, cidi, si) from B, the adversary A in-
ternally hands B the message (Receipt, sidi, cidi,Ci) from F̂C&P. Upon receiving
(Blind, sidi, cidi,Ci, ri) from B, the adversary A internally hands B the message
(Blinded, sidi, cidi,Ci, ri) from F̂C&P. In addition, A simulates all the (Receipt, sidj ,
cidj ,Cj) messages that B expects to receive from F̂C&P. Finally, upon receiving
(Init, sidi,j ,Pi) from B, for all indexes j ∈ [n] corresponding to a party Pj under
control of B, the adversary A hands (Deliver, sidi,j ,Pi, s∗i ) to B (on behalf of FTOSS),
where s∗i ∈ {0, 1}λ is a random string.

Input commitment: When the first message of an activation of Π is sent, A internally simulates
for B the appropriate stage in Π̂GMW. This is done as follows. Let Pi be the activated party
with a new input.

• Honest Ci and semi-honest Fi: The adversary A internally hands B the message
(Receipt, sidi, cid′i,Ci) from F̂C&P. Upon receiving (Blind, sidi, cid′i,Ci, 0|xi|) from Fi,
the adversary A internally hands B the message (Blinded, sidi, cid′i,Ci, 0|xi|) from
F̂C&P. In addition, A simulates all the (Receipt, sidj , cid′j ,Cj) messages that B expects
to receive from F̂C&P.

• Malicious Pi: Upon receiving (Commit, sidi, cid′i, xi) from B, the adversary A in-
ternally hands B the message (Receipt, sidi, cid′i,Ci) from F̂C&P. Upon receiving
(Blind, sidi, cid′i,Ci, r′i) from B, the adversary A internally hands B the message
(Blinded, sidi, cid′i,Ci, r′i) from F̂C&P. In addition, A simulates all the (Receipt, sidj ,
cid′j ,Cj) messages that B expects to receive from F̂C&P. Finally, A adds xi ⊕ r′i to its
list xi of inputs received from Pi and sets Pi’s input tape to xi ⊕ r′i.

Protocol execution: When an honest party Pi sends a message µi in Π to a corrupted party
(controlled by A), then A prepares a simulated message for Π̂GMW to give to B. In particular,
A passes B the message (Sanitize, sidi,Ci, (µi, s∗i , τ)) on behalf of F̂C&P, where τ is the
current transcript of the protocol. Upon receiving (Continue, sidi,Ci, (µi, s∗i , τ)) from B,
the adversary A sends B the message (Proved, sidi,Ci) on behalf of F̂C&P.
When B sends a message µi from a malicious party, A translates this to the appropriate
message in Π. In particular, A obtains a message (Prove, sidi,Ci, (µi, s∗i , τ)) from B on
behalf of a corrupted party Pi to which A replies with (Sanitize, sidi,Ci, (µi, s∗i , τ)). Then,
upon receiving (Continue, sidi,Ci, (µi, s∗i , τi)), adversary A checks that τ is indeed the
current transcript, that s∗i is the random string sent earlier on behalf of FTOSS, and that
R((µi, s∗i , τ), (xi, si, ri)) = 1. Note that A can evaluate the relation R as it received the
values xi, si, ri from B (on behalf of malicious party Pi). If all the checks pass, then A
delivers B the message (Proved, sidi,Ci, (µi, s∗i , τ)) and finally writes µi on semi-honest
party Pi’s outgoing communication tape in Π. Otherwise, A does nothing.

We now claim that E ’s view in an interaction with A and Π is distributed identically to its
view in an interaction with B and Π̂GMW in the F̂C&P-hybrid model. The key points are as follows:
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• Adversary A sets the randomness of each party Pi in an internal emulation of Π̂GMW to
r̂i = s∗i ⊕ (si ⊕ ri). In case Ci is honest and Fi is semi-honest, the distribution of r̂i is
uniform from the point of view of E because si is uniform and independent of both ri, s
(which are known by E). In case Pi is malicious, the distribution of r̂i is uniform from the
point of view of E because s∗i is uniform and independent of both ri, si (which are chosen
by E). Hence, A forces the randomness of each party Pi in an internal emulation of Π̂GMW

to be identically distributed to the randomness of a semi-honest party Pi in a run of Π.

• Adversary A modifies the input tape of each semi-honest party Pi to be the same input as
committed to by B. Note that this adjustment accounts for any non-zero blinding factor r′i
that a malicious firewall may forward in Π̂GMW. As a consequence, the input and random
tapes that the malicious B committed to on behalf of malicious Pi are exactly the same as
the input and random tapes used by A on behalf of semi-honest Pi.

• Adversary A is able to verify at every step if the message µi sent by B, on behalf of
malicious Pi, is according to the protocol specification. If the check goes through, then
it is guaranteed that Pi generates the exact same message µi in the external execution
of Π. Thus, the other parties receive the same message in the execution of Π (where
the adversary A is semi-honest) and in the execution of Π̂GMW (where the adversary B is
malicious). Note that A does not need to make this check in case the core Ci is honest and
the firewall Fi is semi-honest, as an honest core always proves a true statement and the
semi-honest firewall sanitizes it (via F̂C&P) without modifying the statement. Furthermore,
it is guaranteed that whenever A delivers a message µi in the external execution of Π, the
simulated B generated and delivered a valid corresponding message to F̂C&P.

We conclude that the ensembles ExecΠ,A,E and ExecFSAT,F̂C&P,FTOSS
Π̂GMW,B,E

are identical. This completes
the proof.

Next, we show that the firewall Fi of each party is strongly sanitizing (see Definition 10),
meaning that a specious core behind the firewall looks like an honest core.

Lemma 8. For each i ∈ [n], the firewall Fi in Π̂GMW is strongly sanitizing.

Proof. We need to show that for all poly-time environments E which do not corrupt the firewall
Fi, but which are allowed a specious corruption of the core Ci, it holds that

ExecFSAT,F̂C&P,FTOSS
Π̂GMW,B,E

≈ ExecFSAT,F̂C&P,FTOSS
Π̂′GMW,B,E

,

where B is the dummy adversary and where Π̂GMW and Π̂′GMW run with dummy parties except for
Pi that is either taken to be (Ci,Fi) or (Ĉi,Fi) for an incorruptible core Ĉi. Recall that when
an incorruptible core receives a specious corruption (Specious, C̃i) from the environment, it
ignores it and keeps running the code of Ci.

The proof is by contradiction. Namely, assume that there exists a poly-time environment E
that can tell apart the above two ensembles using a specious corruption C̃i. We show how to
build a poly-time test T that tells apart non-rewinding black-box access to either C̃i or Ci. This
contradicts the fact that C̃i is specious. The test T simply uses its target oracle to emulate a
run of the protocol with dummy parties and honest firewall Fi; in particular, since Fi is honest,
the values si received from the target oracle as part of (Commit, sidi, cidi,Ci, si) messages are
always blinded with uniformly random values ri, yielding a uniform random tape r̂i. This yields
a transcript that is either distributed according to Π̂GMW or to Π̂′GMW depending on the target
being C̃i or Ci. Hence,T runs E on the simulated transcript and outputs whatever E outputs.
This finishes the proof.
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The theorem statement now follows by looking at the standard corruption transition table
used by the functionality Wrap(F). Since the adversary maliciously corrupts up to t parties, there
are at most n− t parties for which either (i) the core is honest and the firewall is semi-honest,
or (ii) the core is specious and the firewalls is honest. By Lemma 2, since honest firewalls are
strongly sanitizing (as shown in Lemma 8), the cores in case (ii) can be taken to be honest.
Hence, the statement follows directly by Lemma 7. Note that here we are assuming that Wrap(F)
treats a corruption with flavor Isolate as a Malicious corruption; this is necessary, as there
are examples of protocols Π and functionalities F for which Π̂GMW simply becomes insecure
if t parties are malicious and n − t parties are isolated (the Blum’s protocol with the FTOSS

functionality from Section 4 is such an example).

6 Conclusions and Future Work
We have put forward a generalization of the UC framework by Canetti [Can01, Can00], where
each party consists of a core (which has secret inputs and is in charge of generating protocol
messages) and a reverse firewall (which has no secrets and sanitizes the outgoing/incoming
communication from/to the core). Both the core and the firewall can be subject to different
flavors of corruption, modeling the strongly adversarial setting where a subset of the players
is maliciously corrupt, whereas the remaining honest parties are subject to subversion attacks.
The main advantage of our approach is that it comes with very strong composition guarantees,
as it allows, for the first time, to design subversion-resilient protocols that can be used as part of
larger, more complex protocols, while retaining security even when protocol sessions are running
concurrently (under adversarial scheduling) and in the presence of subversion attacks.

Moreover, we have demonstrated the feasibility of our approach by designing UC reverse
firewalls for cryptographic protocols realizing pretty natural ideal functionalities such as commit-
ments and coin tossing, and, in fact, even for arbitrary functionalities. Several avenues for further
research are possible, including designing UC reverse firewalls for other ideal functionalities
(such as oblivious transfer and zero knowledge), removing (at least partially) trusted setup
assumptions, and defining UC subversion-resilient MPC in the presence of adaptive corruptions.
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Figure 8: Illustration of a three tier model.

A The Three-Tier Model
In this work we have assumed sanitisable authenticated transfer FSAT as the underlying com-
munication network. One can further imagine implementing FSAT on top of unauthenticated
transfer and a firewall sanitizing the communication. In this case, our simple two-tier model
with just a core and a firewall would however come to its limit. The purpose of this section is to
discuss this limit, sketch a way to mitigate it, and discuss why we have anyway chosen to study
the two-tier model.

We have chosen the two-tier model as our main model of study as it is the minimal model
having both interesting aspects of subversion resilience, namely a core with secrets and a sanitizing
firewall without secrets. However, in the case of authenticated transfer as the communication
network we get the problem that the firewall would isolate the core from the unauthenticated
network. To ensure communication is not manipulated in transfer between parties we need to
authenticate. We cannot let the firewall authenticate alone as it should not keep secret keys. We
cannot let the core do the authentication as we need that the firewall can change the messages.
It therefore becomes more natural to assume a three-tier model where there is also an operative
component Oi coordinating communication between core, firewall and network. It is then natural
to say that the operative handles inputs and outputs and communication with the network. The
firewall would then sit between the core and the operative. The operative could also need to
have direct access to the core. This is illustrated in Fig. 8.

The intended use would be to let the core keep secret keys of cryptographic algorithms
and offer an API to use them. The firewall would sanitize outgoing messages to protect the
keys. The operative would handle the “non-cryptographic” part of the protocol. One could
again study different combinations of corruptions. It is natural to assume that the operative
is honest or malicious, that the core is honest, specious or malicious, and that the firewall is
honest, semi-honest or malicious.

We note that, in the three-tier model, we could implement FSAT using subversion-resilient
signatures as follows.

• Assume that G models a PKI plus unauthenticated communication, i.e., it offers a PKI
which initially allows all parties to broadcast a public key and after that it allows unau-
thenticated transfer where the adversary can manipulate the communication.

• Assume that the core is a box which given a secret key sk will produce signatures σ under
this secret key.

• The operative will initially generate a key pair (pk, sk) for a signature scheme, put sk inside
the core and broadcast pk using the PKI.
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• Upon input a message µ on IOFSAT
i , the operative will then give µ to the firewall. The

firewall will ask on its sanitation interface if µ should be changed to some µ′. Otherwise
let µ′ = µ.

• The firewall asks the core to sign µ′ to get σ. The firewall might re-randomize σ into σ′.
If not let σ′ = σ. The firewall hands (µ′, σ′) to the operative.

• The operative sends (Pi, µ′, σ′) via G.

• On receiving (Pj , µ, σ) from G, the operative drops the message if σ is not a signature on
µ by Pj . Otherwise, it hands (Pj , µ) to Fi which asks on its interface Si if µ should be
changed to µ′. If not let µ′ = µ. It hands µ′ back to the operative which outputs (Pj , µ′)
on IOFSAT

i .

The above is merely meant as a justification that FSAT can be implemented in a natural
model given for instance subversion-resilient signatures. No formal claims are being made, and
the three-tier model would obviously need more details worked out to prove anything formally.
The aim of the present paper is to assume that FSAT has somehow already been implemented,
and then study what other tasks can be securely implemented in the two-tier model.

Note that, in the three-tier model, proving completeness results is trivial as we could in
principle let the operative run the protocol alone without talking to a core or firewall. This
makes the model somewhat less interesting than the two-tier model. One motivation for studying
the two-tier model is that it allows no “easy way out”. It only has two components, the firewall
and the core. The firewall can be semi-honestly corrupted and the core can be specious, so there
is a priori no safe place for secrets to hide.

B Sanitizable Commit & Prove

B.1 Ingredients

B.1.1 Malleable Dual-Mode Commitments

A malleable dual-mode commitment scheme consists of the following polynomial-time algorithms
(Setup,KGen,Com,Ext,TCom,TOpen,MaulCom,MaulOpen). The probabilistic setup algorithm
Setup takes as input the security parameter λ and outputs the setup parameters par. Depending
upon the mode (either extraction mode or equivocation mode), the key generation algorithm
KGen can be split into two parts: (i) KGen0, which on input par generates a commitment key
ck along with an extraction trapdoor key extk; and (ii) KGen1, which on input par generates a
commitment key ck along with a equivocation trapdoor key tk. When the context is clear, we
will just write KeyGenb as KeyGen. For simplicity, we assume the message space to be {0, 1}∗,
and the randomness space to be {0, 1}λ. The algorithm Com takes as input the commitment key
ck, a message x ∈ {0, 1}∗, and “encodes” x to produce a commitment string c in the commitment
space.

Additionally, we require the commitment scheme to satisfy equivocability, extractability and
malleability properties, as specified below. The equivocability property ensures that, given the
trapdoor key tk, it is possible to open the commitment c to any message. For this purpose,
one can use the algorithms TCom and TOpen. In particular, TCom takes the trapdoor key tk
as input and produces an equivocal commitment c and an equivocation key ek; on the other
hand, TOpen upon input ek, c, and a message x creates an opening ρ of the commitment, so
that c = Comck(x; ρ). Extractability requires that, as long as the commitment c is valid, the
PPT algorithm Ext can extract the underlying message x given the extraction key extk. Finally,
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malleability requires that, given a commitment c corresponding to a message x, one can maul
it (using algorithm MaulCom) to output a new commitment ĉ to a related message x⊕ r, for
some given r. Further, given the decommitment (x, ρ) corresponding to c one can output (using
algorithm MaulOpen) a related decommitment (x ⊕ r, ρ̂) such that ĉ can be explained as a
commitment to x⊕ r using randomness ρ̂.

• Key Generation. One can efficiently generate par by running the setup algorithm Setup(1λ).
Given par, one can efficiently generate a commitment key ck along with a random extraction
trapdoor extk running the algorithm KeyGen0. Given par, one can also efficiently generate
an equivocable key ck′ along with a trapdoor tk running the algorithm KeyGen1.

• Key Indistinguishability. Key indistinguishability requires that random extraction keys ck
and equivocation keys ck′ are both computationally indistinguishable from random keys,
as long as the corresponding trapdoors are not known. In other words, the first outputs of
KeyGen0 and KeyGen1 are computationally indistinguishable.

• Equivocability. For all PPT stateful adversaries A, we have:

P

[
A(c, ρ) = 1 : par← Setup(1λ); (ck, tk)← KGen(par);

x← A(par, ck); ρ← {0, 1}λ; c := Comck(x; ρ)

]

≈c P

[
A(c, ρ) = 1 : par← Setup(1λ); (ck, tk)← KGen(par);x← A(par, ck);

(c, ek)← TComck(tk); ρ← TOpenek(x, c)

]
.

• Extractability. For all PPT stateful adversaries A, we have:

P
[
c 6= Comck(x; ρ) : par← Setup(1λ); (ck, extk)← KGen(par);

c← A(par, ck); (x, ρ)← Ext(extk, c)
]
≤ negl(λ).

• Malleability. The commitment scheme is malleable if the following holds: (i) given
c ← Comck(x; ρ), input r and randomness ρ′, there exists an algorithm MaulCom such
that MaulComck((c, r); ρ′) outputs a commitment ĉ that is uniformly distributed in the
set {c : c ← Comck(x ⊕ r)}; and (ii) given (x, ρ), input r and randomness ρ′, algorithm
MaulOpen((x, ρ), r, ρ′) outputs randomness ρ̂ such that ĉ := Comck((x⊕ r); ρ̂)

Remark 2. Note that the extractability property above implies that the commitment scheme
is perfectly binding. On the other hand, the equivocability property above implies that the
commitment scheme is computationally hiding. This is because a well-formed commitment is
computationally indistinguishable from an equivocal commitment, that can later be opened to
any message.

Instantiation. It is easy to see that the DDH-based commitment scheme from Section 3.2
satisfies all the above requirements defining a malleable dual-mode commitment scheme.

B.1.2 Re-randomizable NIZK Arguments

A re-randomizable NIZK argument system for a language L, associated with an NP-relation
R, consists of four (probabilistic) polynomial-time algorithms (CRSGen,Prove,Ver,RProof) such
that the following conditions hold:

• Completeness. For all crs ∈ CRSGen(1λ), and (y, x) ∈ R, it holds that Ver(crs, y, π) = 1
with probability one over the choice of π ← P(crs, y, x).
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• Adaptive Soundness. For all PPT malicious provers A, we have that the following is
negligible:

P
[
crs← CRSGen(1λ); (y, π)← A(crs) : Ver(crs, y, π) = 1 and y /∈ L

]
.

• Re-randomizability. For all PPT adversaries A, the probability of the event b′ = b (where
b ∈ {0, 1} is sampled uniformly at random) in the following game is at most 1/2 + negl(λ):

– crs← CRSGen(1λ)
–
(
y, x, π)← A(crs)

– If Ver(crs, y, π) = 0, or (y, x) /∈ R, output ⊥. Otherwise let

π′ ←
{

Prove
(
crs, y, x

)
if b = 0

RProof(crs, y, π) if b = 1

– b′ ← A(crs, π′)

• Adaptive multi-theorem zero-knowledge. There exists a PPT simulator S = (S1,S2) that
satisfies the following. For all stateful PPT adversaries A that only send to its oracle
queries (y, x) such (y, x) ∈ R, we have that the following is negligible:

∣∣P[RealA(λ) = 1]− P[SimuA,S(λ) = 1]
∣∣,

where the experiments RealA(λ) and SimuA,S(λ) are defined below:

RealA(λ)

– crs← CRSGen(1λ)

– b′ ← AProve(crs,·,·)(crs)

– Return b′

SimuA,S(λ)

– (crs, st)← S1(1λ)

– b′ ← AS2(st,·,·)(crs)

– Return b′

B.2 The Sanitizing Commit & Prove Protocol

We are now ready to describe our protocol Π̂C&P and show that it srUC-realizes the F̂C&P

functionality.

Protocol overview. The protocol Π̂C&P uses a malleable dual-mode commitment ΠCOM, and a
re-randomizable NIZK argument system ΠNIZK for proving statements related to the committed
values. The protocol is run between a party Pi = (Ci,Fi) that acts as the committer/prover,
and parties Pj 6=i that act as verifiers. The party Pi is allowed to commit to multiple values
during a session of the protocol, and then can prove a statement about the list of all values
previously committed within that session. The core Ci takes a message x as input and produces
a commitment c by running the Com algorithm of the ΠCOM scheme with randomness ρ; then,
this commitment is delivered to the firewall Fi, that mauls the commitment c and creates ĉ, i.e.
a commitment to message x⊕ r, using algorithm MaulCom. The sanitized commitment ĉ is then
sent to all the verifiers Pj 6=i. Additionally, the firewall sends back to Ci the randomness ρ′ used
to maul the commitment and the blinding factor r. The core Ci can now compute the opening
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value ρ̂ of the mauled commitment ĉ, using algorithm MaulOpen, and re-compute ĉ itself. All
those values are saved in lists.

When the core Ci wants to prove a statement y, where the witnesses for y are in the list
of committed values, Ci produces a proof π for the statement (y, ĉ), where ĉ is the list of all
(mauled) commitments produced in the current session. The witnesses for producing this proof
are the messages contained inside each commitment ĉ in the list, namely the xor of the messages
x and r in the lists x and r, respectively. The proof π and statement (y, ĉ) are delivered to the
firewall Fi that first checks if the list ĉ in the statement matches the list of mauled commitments
it produced previously in the current session, and then checks the validity of the proof π against
the statement received. If both checks pass, Fi re-randomizes the proof π into π̂ to remove any
possible bias in the distribution of π. The sanitized proof π̂ is then sent to all the verifiers Pj 6=i.

Note that, in contrast to previous works that built reverse firewalls for MPC [CDN20], we
dispense the need of controlled malleability for the NIZK. The reason is that in our protocol the
core Ci learns from Fi the blinding factor r and the randomness ρ′ used to maul the commitment
c. Hence, Ci can already produce the proof π for the correct statement, i.e., the mauled
commitments ĉ (and not c). Thus, it is not necessary for Fi to maul the proof π for a different
statement.

Protocol Π̂C&P (Realizing Sanitizable Commit and Prove)

Let ΠCOM be a malleable dual-mode commitment scheme, and let ΠNIZK be a re-randomizable NIZK argument
system for the relation R′ (defined below). Let R be the relation parameterizing the sanitizable commit-and-
prove functionality. Then, R′ is defined as

R′ = {((y, c), (x, ρ)) : ∀i, ci = Com(xi; ρi) ∧R(y, x) = 1} .

The protocol is executed between parties P1, . . . ,Pn, each consisting of a core Ci and a firewall Fi. W.l.o.g,
let, party Pi = (Ci,Fi) be the committer & prover and all other parties Pj 6=i act as verifiers.

Setup. Generate public parameters and keys for the commitment and NIZK argument system.

1. Commitment scheme: All parties are given public parameters par and the commitment key ck corre-
sponding to ΠCOM, where par and ck are obtained by running the Setup and KGen0 algorithms of ΠCOM

respectively.
2. NIZK: All parties are given crs for the NIZK argument system, which is obtained by running the algorithm

CRSGen of ΠNIZK.

Commitment phase. In order to generate a commitment, the following steps are performed.

1. Commit: Upon input a string x ∈ {0, 1}λ, the core Ci commits to x by sampling ρ ← {0, 1}λ and
computing a commitment c = Comck(x; ρ). The commitment c is then forwarded to the firewall Fi. The
input x and the randomness ρ are saved in lists x, ρ respectively (that are initially empty).

2. Sanitization of commitment: Upon input a commitment c and a blinding factor r ∈ {0, 1}λ, the firewall
Fi performs the sanitization of the commitment c as follows: It samples ρ′ ← {0, 1}λ and computes a
mauled commitment ĉ← MaulComck(c, r; ρ′). The commitment ĉ is then sent to all parties Pj 6=i. The
values r and ρ′ are returned to Ci and saved in lists r and ρ′ respectively (that are initially empty). The
sanitized commitment ĉ is saved by all parties Pj 6=i in a list ĉ (that is initially empty).

Proving phase. In order to generate a proof, the following steps are performed.

1. Proving statement: Upon input a statement y:
• The core Ci computes new lists ρ̂ and ĉ as follows. Let ` be the size of all the lists maintained by

Ci until now. For all k ∈ [`], the core computes ρ̂[k] ← MaulOpenck((x[k], ρ[k]), (r[k], ρ′[k])) and
ĉ[k]← Comck((x[k]⊕ r[k]); ρ̂[k]), where ρ[k] denotes the k-th item in the list ρ.

• Finally, Ci computes the proof π ← Prove(crs, (y, ĉ), ((x⊕ r), ρ̂)). The statement (y, ĉ) and the proof
π are forwarded to the firewall Fi.
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2. Sanitization of proof: On input a statement (y, ĉ) and a proof π, the firewall Fi first checks if
V(crs, (y, ĉ), π) = 1 and if the list ĉ is equal to the list of mauled commitments produced so far: If
yes, then it proceeds to sanitize the proof by computing π̂ ← RProof(crs, (y, ĉi), π), and it outputs π̂ to
all parties Pj 6=i. Otherwise the firewall Fi ignores the message from Ci.

3. Verification of proof: Upon input a statement (y, ĉ) and a proof π̂, a core Cj 6=i checks if V(crs, (y, ĉ), π̂) = 1
and if the list ĉ is equal to the list of mauled commitments received so far: If yes, then the core Cj 6=i
accepts the proof, otherwise it rejects it.

Theorem 5. The sanitizing protocol Π̂C&P srUC-realizes the F̂C&P functionality in the FSAT-hybrid
model in the presence of up to n− 1 static malicious corruptions.

Proof. To simplify notation, let Π̂ := Π̂C&P and F̂ := F̂C&P. Recall that by definition of
subversion resilience, we need to show that Π̂ UC-realizes F̂ in the FSAT-hybrid model, and F̂
can be written as a well-formed sanitizing ideal functionality. Towards this, we first build a
simulator (communicating with F̂) that simulates an execution of Π̂ for the case where n− 1
parties are malicious, and the remaining party has an honest core and a semi-honest firewall.
Note that, strictly speaking, one should also prove security for the case where there are less
than n− 1 malicious corruptions. It is, however, easy to see that proving the case with maximal
corruption is complete in the present case. When the commiter/prover is corrupted, then F̂ gives
the simulator the same powers no matter how many verifiers are corrupted, so assuming full
corruption gives the adversary more powers (without giving the simulator more powers). If the
prover is malicious we are simulating a non-malicious verifier. Since they all act independently,
they can all be simulated as we describe next.

Lemma 9. For every malicious adversary A corrupting n−1 parties maliciously and the firewall
of the remaining honest party semi-honestly in an execution of the protocol Π̂ in the FSAT-hybrid
model, there exists a simulator S such that for all environments E:

ExecFSAT
Π̂,A,E

≡ ExecF̂ ,S,E .

Proof. In what follows, we let j ∈ [n] be the index corresponding to the only party with an
honest core Cj and semi-honest firewall Fj . We consider two cases (depending on whether the
committer/prover is maliciously corrupted or not):

Case 1: Malicious committer/prover. This corresponds to the case when the core Cj is
one of the (honest) verifiers in the protocol Π̂. In this case the simulation proceeds as follows.

Setup: The simulator S runs the Setup and KGen algorithms of ΠCOM to get the public parameters
par and the commitment key ck and extraction key extk for ΠCOM. Additionally, S runs
the algorithm CRSGen of ΠNIZK to obtain the crs for the NIZK scheme.

Commitment phase: Here, the adversary commits to one or more witnesses on behalf of the
committer.

• Upon receiving a commitment ĉ from A, the simulator S can extract the input
x̂ = x ⊕ r from the commitment by computing x̂ = Ext(extk, ĉ). The simulator S
saves ĉ in a list of received commitments c (that is initially empty).

• The simulator S then invokes F̂ with x̂ as the input of the core C∗ by sending
(Commit, sid, cid,C∗, x̂) to F̂ . Additionally, S also sends the message (Blind, sid,
cid,F∗, 0λ) to F̂ as the input of the firewall F∗. Note that since C∗ is malicious, the
functionality F̂ will send the message (Blinded, sid, cid,C∗, 0λ) to the simulator S.
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Proving phase: Here, the adversary proves a statement on behalf of the prover.

• Upon receiving a statement (y, ĉ) and a proof π̂ from A, the simulator S sends the
message (Prove, sid,C∗, y) to F̂ on behalf of C∗.

• Upon message (Sanitize, sid,C∗, y) from F̂ , the simulator S sends the message
(Continue, sid,C∗, y) to F̂ on behalf of F∗.

Note that the setup phase is perfectly simulated, as the CRS and the commitment parameters
are generated honestly (although the simulator keeps the corresponding extraction trapdoor).
The commitment phase is also perfectly simulated, unless the algorithm Ext fails to extract the
correct input x̂ from the commitment.; the latter, however, happens with negligible probability
only. Finally, observe that during the proving phase, the simulation only fails if the proof π̂
sent by the adversary is a valid proof of a false statement (y, ĉ); a standard reduction to the
soundness property of the NIZK argument system shows that this only happens with negligible
probability.

Case 2: Honest commiter/prover. This corresponds to the case when the core Cj is the
(honest) committer/prover and Fj is the semi-honest firewall in the protocol Π̂. In this case the
simulation proceeds as follows.

Setup: The simulator S runs the Setup and KGen1 algorithms of ΠCOM to get the public
parameters par, the commitment key ck, and trapdoor key tk for ΠCOM. Additionally, S
runs the algorithm CRSGen of ΠNIZK to obtain the crs for the NIZK scheme and a trapdoor
st for simulating proofs.

Commitment phase: Here, the simulator must fake a commitment sent by the honest com-
mitter.

• Upon receiving the message (Receipt, sid, cid,Cj) from F̂ , the simulator computes
an equivocable commitment (c, ek)← TComck(tk).

• Since the firewall Fj is semi-honest, the simulator S knows the input string r ∈ {0, 1}λ
of Fj . Hence, the simulator S can sanitize the commitment c by computing ĉ =
MaulComck(c, r; ρ′) for a random ρ′ ∈ {0, 1}λ. The simulator S then sends ĉ to all
parties Pj 6=i, and saves ĉ in a list ĉ.

Proving phase: Here, the simulator must fake a proof sent by the honest prover.

• Upon receiving the message (Proved, sid,Ci, y) from F̂ , the simulator S can simulate
a valid proof π for statement (y, ĉ) by running the simulator of the NIZK scheme
with trapdoor st.

To show that the simulation above is indistinguishable from the real world, we define a
series of hybrids. We start with Hyb0 that is the ideal world, and from there define a few
intermediate hybrids that are exactly the same as the previous, except for the changes described
below. Finally, we end with Hyb3 which is the real world. We then argue that adjacent hybrids
are indistinguishable.

Hybrid 0: This is the ideal world with the above described simulator.

Hybrid 1: The simulator S receives the input x of the honest committer Cj . After producing
the equivocable commitment c, the simulator immediately equivocates the commitment
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c for the input message x.4 Note that the difference between hybrids Hyb0 and Hyb1 is
just syntactic, as in both hybrids the equivocable commitment c does not change. Hence,

Hyb0 ≡ Hyb1.

Hybrid 2: The simulator S now produces the real commitment c (instead of an equivocable
commitment as in the previous hybrid) to message x by computing c← Comck(x; ρ) for
a random ρ ∈ {0, 1}λ. The difference between hybrids Hyb1 and Hyb2 is that in the
former the commitment c is produced as an equivocable commitment, and in the latter the
commitment c is a real commitment to message x. Any adversary with a non-negligible
advantage in distinguishing Hyb1 and Hyb2 can be used to build an adversary with
a non-negligible advantage in violating the equivocability property of the commitment
scheme ΠCOM. Hence,

Hyb1 ≈c Hyb2.

Hybrid 3: The simulator S now, instead of simulating proofs π, it runs π ← P(crs, (y, ĉ),
((x⊕ r), ρ̂)) to produce real proofs for the statement (y, ĉ). Note that the simulator keeps
all lists x, r, ρ̂ and ĉ. This hybrid is exactly the same as an execution of the real-world
protocol. The difference between hybrids Hyb2 and Hyb3 is that in the former the proof
π is simulated, and in the latter the proof π is a real proof. Any adversary with a non-
negligible advantage in distinguishing Hyb2 and Hyb3 can be used to build an adversary
with a non-negligible advantage in violating the zero-knowledge property of the NIZK
argument system ΠNIZK. Hence,

Hyb2 ≈c Hyb3.

This finishes the proof.

Next, we show that the firewall Fj of the committer/prover is strongly sanitizing (see
Definition 10), meaning that a specious core behind the firewall looks like an honest core.

Lemma 10. The firewall Fj of the committer/prover Cj in Π̂ is strongly sanitizing.

Proof. We need to show that for all poly-time environments E which do not corrupt the firewall
Fj , but which are allowed a specious corruption of the core Cj , it holds that

ExecFSAT
Π̂,A,E

≈ ExecFSAT
Π̂′,A,E

,

where A is the dummy adversary and where Π̂ and Π̂′ run with dummy parties except for Pj
that is either taken to be (Cj ,Fj) or (Ĉj ,Fj) for an incorruptible core Ĉj . Recall that when
an incorruptible core receives a specious corruption (Specious, C̃j) from the environment, it
ignores it and keeps running the code of Cj .

Note that, in a real execution, the honest core Cj produces a commitment c (to input x) that
is uniformly distributed in the space of commitments to x. Thus, the sanitized commitment ĉ
produced by the firewall by mauling c with r ∈ {0, 1}λ is also uniformly distributed in the space
of commitments to x⊕ r. Moreover, any commitment c̃ output by a specious core C̃j must be
well-formed, i.e., there must exist an opening ρ ∈ {0, 1}λ and a message x ∈ {0, 1}λ such that c̃
opens to x using ρ, as otherwise we can build a poly-time text T that tells apart non-rewinding
black-box access to either C̃j or Cj by asking it to first compute and then open a commitment.

4We stress that in the actual simulation, S can never receive the inputs of honest parties. However, since the
hybrids can be seen as “mental experiments”, we are allowed to do that.
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This shows that a specious core, except with negligible probability, still outputs a well-formed
commitment c̃; given such a commitment, the firewall Fj produces a sanitized committent ĉ (by
mauling c with r ∈ {0, 1}λ) that is uniformly random in the space of commitments to the string
x⊕ r.

Analogously, the honest core Cj produces a proof π for statement (y, ĉ) that is uniformly
distributed in the space of proofs for that statement. Thus, the sanitized proof π̂ produced
by the firewall by rerandomizing π is still uniformly distributed in the space of proofs for that
statement. Moreover, any proof π̃ output by a specious core C̃j must be valid w.r.t the statement
(y, ĉ), as otherwise we can build a poly-time text T that tells apart non-rewinding black-box
access to either C̃j or Cj by asking it to first compute a proof for (y, ĉ) and then try to verify it.
This shows that a specious core, except with negligible probability, still outputs a valid proof c̃;
given such a proof, the firewall Fj produces a sanitized proof π̂ (by rerandomizing π) that is
uniformly random in the space of proofs for statement (y, ĉ). The lemma follows.

The theorem statement now follows by looking at the standard corruption transition table
used by the well-formed sanitizing ideal functionality F̂ . Since the adversary maliciously corrupts
up to n− 1 verifiers, there is at least one party which is the committer & prover for which either
(i) the core is honest and the firewall is semi-honest, or (ii) the core is specious and the firewall is
honest. By Lemma 2, since an honest firewall is strongly sanitizing (as shown in Lemma 10), the
core in case (ii) can be taken to be honest. Hence, the statement follows directly by Lemma 9.
Note that here we are assuming that F̂ treats a corruption with flavor Isolate as a Malicious
corruption.
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