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Abstract. Distributed secret sharing techniques, where a specific se-
cret is encoded into its shares which are conveyed to the IoT device or
its user via storage nodes, are considered. A verifiably distributed secret
sharing (VDSS) provides a way for a legitimate user to verify the secret
he reconstructs through the downloaded shares while the secrecy condi-
tion is satisfied in a weak or a perfect sense. This article examines the
impact of minimizing verification information in a VDSS on the commu-
nication complexity and storage overhead, and achieves the verifiability
in resource-limited IoTs by aggregating the verification information of
different devices/users. Then, two secure VDSS are proposed. The first
VDSS attains the lower bound on the communication complexity while
providing the fault tolerance. The second VDSS simultaneously achieves
the lower bounds of both communication complexity and storage over-
head while providing the balanced storage load, thus showing the scheme
that is optimal in terms of both parameters.

1 Introduction

Secret sharing is an important cryptographic primitive and it is used in many
real-world applications,such as electronic voting [1], cloud computing [2], key
management in sensor networks [3], and secure storage [4]. Secret sharing is
a method by which a dealer distributes shares to participants such that only
authorized subsets of participants can reconstruct the secret. It offers a real
information-theoretic security with simplest usability. In a distributed secret
sharing (DSS), all communication between the dealer and a user who is not
directly connected to it, must pass through storage nodes in the network [5].
In the resource-limited applications, such as IoTs based distributed healthcare
system [6], the design of a DSS faces the challenge of achieving efficient resource
utilization while satisfying the secrecy condition in a weak or a perfect sense. In
addition, the ability to verify the correctness of both secrets and their shares is
desirable for users in [7] and [8].

In this article, we extend the distributed multi-user secret-sharing schemes [4]
and present a notion of VDSS. The notion of a VDSS differs from a DSS protocol
[4], in that the secret is recognizable and that the shares should be verifiable as



authentic. In a VDSS, the dealer has no direct communication with users and
conveys the shares of a secret and its verification information (VI) to a user via
storage nodes, while not only storage nodes do not communicate with each other
but also the users neither communicate with each other. The benefit of a VDSS
is that a user can check the correctness of a reconstructed secret. Providing this
benefit for resource-limited users in a DSS is composed of two problems: the
VI generation problem and its storage allocation problem. These schemes are
computationally secure since the ability to detect and identify cheaters is based
on computational intractability assumptions. There are some schemes which are
information-theoretically secure. Pedersen [12] used a commitment scheme to
remove the assumption in Feldman’s scheme [9] to propose a VSS scheme which
is information-theoretically secure. Based on an error-correcting code, Bhndo et
al. [13] proposed their schemes in which fake shares can be detected as error codes
and corrected based on coding technique. McEliece and Sarwate [14] suggested
constructing a secret sharing scheme based on Reed-Solomons code. The two-
type schemes need to set different verification information (VI) for different users.
This makes it infeasible for a VDSS to attain their optimal storage overheads
defined in Section 2.2.

In a multi-user environment, the efficiency of a VDSS is one of the most
important issues in its applications. There are two general types of efficiency
measures: storage overhead and communication complexity (see Section 2.2). In
a communication-optimal VDSS, each user downloads exactly one symbol from
the storage nodes in its access set. Note that a short VI can reduce the storage
requirements at the storage nodes. In particular, by aggregating VI of differ-
ent users, resulting storage overhead can be orders of magnitude smaller than
approaches shortening the size of VI to reduce the storage overhead. We have
investigated a Nyberg’s one-way accumulator (NOWA, see Section 4.1) having
the property of absorbency in addition to the one-way and quasi-communicative
properties [15]. The structure of a NOWA is very suitable for the aggregation
of VI since it needs only one secret key of the sealer and accumulated items are
dynamic, without the shared key between parties. Then, the efficient schemes
related to VDSS are proposed in this article.

1.1 Our Results

We first consider the problem of VDSS through a generalized distributed secret
sharing (GDSS) scheme under a certain number of storage nodes. Then, given
m users and n − 1 storage nodes, we provide a GDSS scheme with the fault
tolerance when m is a binomial coefficient of n − 1, and prove that it is per-
fectly secure. By combining GDSS with a NOWA, we further construct a secure
VDSS that is communication-optimal, that is, it achieves the minimum possible
communication complexity. Finally, we present a secure VDSS which yields op-
timality of both the communication complexity and the storage overhead while
providing the balanced storage load.

The rest of the article is structured as follows. The problem statement is
presented in Section 2. Section 3 proposes a GDSS scheme. Section 4 describes



a communication-optimal VDSS. Section 5 presents a secure VDSS achieving
optimality of both the communication complexity and the storage overhead with
the balanced storage load. The article is concluded in Section 6.

2 Problem Statement

2.1 Model Constituents

Let q be a large integer, Zq = {0, 1, · · · , q−1}, and Z∗
q = Zq \{0}. We denote by

[n− 1] the set {1.2. · · · , n− 1}, and we denote by k the secret key of the dealer,
where n, k ∈ Z∗

q . Assume that ⌊x⌋ is the integer part of the rational number x,
and ⌈x⌉ is the smallest integer not less than x. Let |x| denote the length of the
string x, and |S| be the number of elements in the set S. We consider a VDSS
system whose principal constituents are depicted in Figure 1.
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Fig. 1. The system model, where a block arrow denotes a secure channel, and the line
denotes an authentic channel.

Parties. Consider a dear, a set of n storage nodes, and a set of m users,
where m > n. The goal of this system is to enable the dealer to securely convey
a specific secret to the user via storage nodes. The dealer has access to all the
storage nodes but it does not have direct access to the users. Storage nodes
are passive, that is, these nodes do not communicate with each other. The n-th
storage node is designed for public access, which stores the VI of users to check
the authenticity of both secret shares and the secrets. The remaining storage
nodes, [n−1], form the access structure A according to the access set Aj of user
j. That is,

A = {Aj ⊆ [n− 1] : j, j′ ∈ [m], Atj ,j * Aj′ , ∀j ̸= j′}. (1)



where Atj ,j is any tj-subset of Aj associated with the threshold value tj . Also,
all users do not communicate with each other.

Communication Channel. In the system, there are two types of channels:
an authentic channel and a secure channel. The shares of a secret are transmitted
via secure channels between the storage nodes and either the dealer or the user,
while the VI is sent over authentic channels between them. Note that secure
channels guarantee both the authenticity and confidentiality of shares, and au-
thentic channels only guarantee the authenticity of transmitted information but
not its confidentiality. For instance, the classic telephone channel is an authentic
channel, and the secure socket layer (SSL) which uses port 443 provides a secure
channel.

Secret Storage. Let sj be the secret of user j, and nj be the number, |Aj |, of
elements in Aj . We consider a (tj , nj) Shamir’s secret sharing scheme consisting
of a pair of efficient algorithms (E(Aj , sj , tj),Dj), which is used for user j. Here,
E(Aj , sj , tj) is a probabilistic algorithm that is invoked by the dealer outputting
the shares, uj , of sj ; and Dj is a deterministic algorithm that is invoked by
the user j as sj ← Dj(uj) to recover sj . To model the secret storage of a user
about how the dealer is associated with the different inputs of the storage nodes
in [n − 1], we introduce a storing matrix Z = [zi,j ](n−1)×m such that zi,j = 1
if the share ui,j of user j is stored in the i-th storage node, otherwise zi,j =
0. For instance, when n = 6, m=10, A5={a1,5, a2,5, a3,5}={5, 1, 2}, t5=3, define

E(A5, s5, 3) , (ua1,5,5, ua2,5,5, ua3,5,5) = (u5,5, u1,5, u2,5). Then, u5,5, u1,5 and u2,5

are stored in the 5th, 1st and 2nd storage nodes, respectively. We thus have that
the fifth column of the matrix [zi,j ]5×10 is (1, 1, 0, 0, 1)T .

Download Verification. Let d be a positive integer. For the purpose of
verifying the shares downloaded from storage nodes, we introduce a pair of
algorithms (Prfj , V erj) as follow: Prfj : Z∗

q × Zh
q → Zd

q is invoked by the
dealer to generate a proof of symbols outputted by algorithm E , and V erj :
Zq × Zc

q → {0, 1} is invoked by the user j to validate the downloaded symbols
and the reconstructed secret. For instance, for j=5, A5={5, 1, 2} and t5=3, let

u=(u5,5, u1,5, u2,5)
$←− E(A5, s5, 3), and I ← Prf(k, (s5,u)). Here, the proof I

satisfies that V er
(1)
5 (u, I)=1 and V er

(2)
5 (s′5, I)=1, where s′5 = D5(u).

2.2 Definition and Related Concepts

Definition of a VDSS We first defines a GDSS scheme, which can be viewed
as an extension of DSSP in [4]. Then it is extended to describe a VDSS scheme.

Definition 1. A GDSS scheme is a bundle of (A , E ,Z,D), where

i) A is the access structure as defined in (1). Let t =(t1, t2, · · · , tm)T be the
vector of all threshold values.

ii) E : A ×Zm
q × [n−1]m → Zh

q is an encoding function, for some h ≥ m, which
relates to the storage overhead of the system. The inputs to the encoding
function E consist of A , t, and s = (s1, s2, · · · , sm)T as the vector of all
secrets. The output u = E(A , s, t) is the vector of all shares, also called



the encoding symbols or symbols, to be distributed and stored in the storage
nodes. Here, u = (u1, u2, · · · , uh)

T .
iii) Z = [zi,r](n−1)×h, where zi,r = 1 if ur is stored in the i-th storage node,

otherwise zi,r = 0. The storing matrix Z specifies which the symbols are
stored at each storage node, is referred to as the storage profile. Let utj ,j

denotes the vector of all data stored in nodes indexed by elements of the
subset Atj ,j in Aj.

iv) D is a collection of m decoding algorithms Dj : Z
utj ,j

q → Zq for j ∈ [m],
such that Dj(utj ,j) = sj. In other words, each user is able to successfully
reconstruct its own secret. This is referred to as the correctness condition.

Again, the weak secrecy condition in (2) or perfect secrecy condition in (3) is also
satisfied in an information-theoretic sense, where s−j = (s1, · · · , sj−1, sj+1, · · · , sm).

∀j, j′ ∈ [m], j′ ̸= j : H(sj′ |uj) = H(sj′), (2)

∀j ∈ [m] : H(s−j |uj) = H(s−j), or I(s−j ,uj) = 0 (3)

where H(·) denotes Shannon entropy and I(·, ·) denotes the mutual information
3.

We now define the verifiability of all secrets and their shares. To achieve the
verifiability, we define a proof function and its output by a vector in Zd

m for a
positive integer d.

Definition 2. Let d be a positive integer. A verifiably distributed secret sharing
(VDSS) scheme is a tuple (A , E ,Z,D, n, Prf, V er), where

i) (A , E ,Z,D) is a GDSS.
ii) Prf : Zq×Zm+h

q → Zd
q is a proof generation algorithm. The input to Prf is

k, s = (s1, s2, · · · , sm)T and u = E(A , s, t). The output I← Prf(k, (s,u))
is the vector in Zd

q and stored in the n-th storage node.

iii) V er is a collection of 2m verification algorithms V er
(1)
j : Zuj

q × Zd
q → {1, 0}

and V er
(2)
j : Zq×Zd

q → {1, 0} for j ∈ [m], such that V er
(1)
j (utj ,j , I) = 1 and

V er
(2)
j (sj , I) = 1. In other words, each user is able to successfully verify its

downloaded symbols and the reconstructed secret. This is referred to as the
verifiability condition.

The attack model An adversary can choose an arbitrary subset Atj ,j =
{a1,j , a2,j , · · · , atj ,j} of Aj ∈ A and initiate one of the following attacks.

– Impersonation attack: An adversary tries to create a valid message pair
(ūtj ,j , Ī) without seeing any messages from the storage nodes.

3 The Shanon entropy of a random variable X is defined by H(X)
=Ex←X [log 1

Pr[X=x]
]. The mutual information between two discreet random

variables X, Y jointly distributed according to p(x, y)=Pr[(X,Y ) = (x, y)] is given

by I(X,Y ) =
∑

x,y p(x, y) log(
p(x,y)

Pr[X=x]Pr[Y =y]
).



– Substitution attack: An adversary substitutes (utj ,j , I) with a different
message pair (ūtj ,j , I).

An impersonation or a substitution attack is successful if the secret reconstructed
by the legitimate user associated with Atj ,j differs from the secret sent by the
dealer.

Under the attack model described above, it is required that in a VDSS, an
impersonation or a substitution attack will successfully pass the test of V er with
negligible probability. This is referred to as the soundness condition. The authors
in [16] suggest the use of a one-way function h to handle the problem. For an
adversary whose computational power is unbounded, V er through the use of a
universal hash function h : K×M→ T in [17] can achieve maximal security in
an information-theoretic sense , i.e.,

Pr[Successful deception] ≤ 1

|T |
.

In the presence of a computationally bounded adversary, V er that uses (t, q̂, ϵ̂)-
pseudorandom function family F = {h : K × M → T } in [17] can ensure
computational security against all t-time adversaries if q̂ ≥ 1, that is,

Pr[Successful deception] ≤ 1

|T |
+ ϵ̂.

The cost of a VDSS To evaluate the efficiency of the proposed VDSSs, the no-
tions of storage overhead as well as communication complexity are defined next.
The communication complexity is the total number of Zq-symbols exchanged
between the users and the storage nodes, which is defined as

C =

m∑
j=1

(dj + cj). (4)

Here, dj , cj denote the total number of symbols that the user j downloads
from the n-th storage node and the storage nodes in any subset Atj ,j of Aj ,
respectively. A VDSS with minimum communication complexity C, defined in
(4), is called a communication-optimal VDSS.

The storage overhead is the ratio between the total number of symbols stored
on all the storage nodes and the number of users in the system. That is, the
storage overhead, called SO, of a VDSS is defined as

SO =
k′

m
. (5)

where k′ = d+
∑n−1

i=1

∑m
j=1 zi,j , zi,j is specified in Definition 1, and d is the total

number of symbols in I.
Note that the correctness condition must be satisfied for m mutually inde-

pendent and uniformly distributed secrets. Therefore, k′ ≥ d+m ≥ 1 +m and,



consequently, SO ≥ 1 + 1
m . we show that the lower bound SO = 1 + 1

m can
be achieved under the weak secrecy condition for a certain set of parameters,
thereby providing a scheme with weak secrecy and the optimal SO equal to
1 + 1

m .

3 GDSS With Maximum Number of Users

3.1 The Access Structure of a GDSS

In a GDSS with weak secrecy, we present a necessary condition on access sets
which relates to Sperner families in combinatorics. In particular, if tj=nj , it is
shown in [4] that this condition is necessary and sufficient for the existence of
both weakly secure and perfectly secure DSSPs. The condition not only repre-
sents the relation between Sperner families and GDSS, it also provides a method
for constructing GDSSs that serve maximum number of users.

Lemma 1. For a weakly secure GDSS with access structure A defined in (1),
we have

Atj ,j * Atj′ ,j
′ , (6)

for all j, j′ ∈ [m] with j ̸= j′, where Atj ,j ⊆ Aj and Atj′ ,j
′ ⊆ Aj′ .

Proof. Now assume to the contrary that Atj ,j ⊆ Atj′ ,j
′ for some j ̸= j′. From

the model constituents in Section 2.1, we know that the entire accessible data
by user j can also be accessed by user j′. This means that user j′ can retrieve sj
which user j can retrieve by the correctness condition. Hence, the weak secrecy
condition is violated and the scheme is not a GDSS as defined in Definition 1,
which is a contradiction.

Define Â associated with A as follows.

Â = {Atj ,j ⊆ Aj : j ∈ [m], Aj ∈ A }. (7)

It is easy see that Â is a collection of subsets satisfying the condition of Lemma
1. A collection such as Â is called a Sperner family in [4] and [18]. More generally,

for any Sperner family Â , from [18] we have

|Â | ≤
(

n− 1

⌊(n− 1)/2⌋

)
, (8)

where n − 1 is the number of storage nodes stored shares. Again, the number
of users in a GDSS is m. The number of tj-subset in Aj is

(
nj

tj

)
, and |Â | =∑

j∈[m]

(
nj

tj

)
, where 1 ≤ tj ≤ nj ≤ n− 1. Hence, n− 1, m and (tj , nj) for j ∈ [m]

must satisfy the following relation.∑
j∈[m]

(
nj

tj

)
≤

(
n− 1

⌊(n− 1)/2⌋

)
. (9)

In particular,
(

n−1
⌊(n−1)/2⌋

)
is the maximum number of users servered in a GDSS

when tj = nj .



3.2 The construction of a GDSS

The bases of proposed GDSS are a (tj , nj) Shamir’s secret sharing scheme [19].
Hence, we briefly recall the definition and known results concerning it. Then,
our construction is described.

Secret sharing scheme A secret sharing scheme of Â as (7) consists of a pair
of probabilistic algorithms (E ,D). E gets as input a secret sj (from a domain of
secrets S), Aj and tj , and then generates nj shares uj,1, uj,2, · · · , uj,nj . D gets
as input the shares of a subset Atj ,j and outputs a string. The requirements are:

– For every secret sj and every qualified set Atj ,j ⊆ Aj ∈ A , it holds that
Pr[D({uj,i}i∈Atj ,j

, Aj) = sj ] = 1.

– For every unqualified set Atj ,j /∈ Â and every two different secrets sj , sj′ ∈
S, it holds that the distributions {uj,i}i∈Atj ,j

and {uj′,i}i∈Atj ,j
are identical.

The (tj , nj) secret sharing scheme is proposed by Shamir [19]. Let Pj(x) be
a (tj − 1)-degree polynomial, where

Pj(x) = sj +

tj−1∑
l=1

pj,lx
l, (10)

and pj,l’s are i.i.d (independent and identically distributed) and are selected
uniformly at random from Zq. Assume that r1, r2, · · · , rnj

denote nj distinct
non-zero elements in Zq. The secret shares are then constructed by evaluating
Pj(x) at ri’s, i.e.,

uj,i = Pj(ri), ∀i ∈ [nj ]. (11)

We refer to the encoder E : Zq → Znj
q that takes sj as the input and out-

puts uj,1, uj,2, · · · , uj,nj as described above as a (tj , nj) Shamir’s secret encoder.
Again, D is called a (tj , nj) Shamir’s secret decoder.

Proposed GDSS we use Shamir’s secret sharing scheme to construct a GDSS
with perfect secrecy when Â associated with A is a Sperner family. In other
words, the condition in Lemma 1 is a sufficient condition for existence of a
perfectly secure GDSS. The proposed GDSS is constructed as follows:

i) Â associated with A is a Sperner family consisting of subsets of [n− 1].
ii) E = (E1, E2, · · · , Em), where Ej is a (tj , nj) Shamir’s secret encoder, nj=|Aj |,

j ∈ [m].
iii) Initially, let all entries of Z be zero. Then, the values of Z are updated by

using Z[ai,j , zj−1 + i]=1 for j ∈ [m] if i ∈ [nj ], where zj=zj−1 + nj , z0=0,
and Aj={a1,j , a2,j , · · · , anj ,j}.

iv) Dj is the (tj , nj) Shamir’s secret decoder, for j ∈ [m].



Theorem 1. The proposed scheme is a perfectly secure GDSS satisfying all
properties in Definition 1.

Proof. The proposed scheme assigns a access set, Aj , of [n− 1] with a threshold
value tj to user j. By using a (tj , nj) Shamir’s scheme, the dealer generates a
random polynomial, Pj(x), independently from other users, and then encodes
sj into nj secret shares uj . Then, each element of uj is stored on the storage
node in Aj as specified by Z. It is easy to see that the user j can reconstruct its

secret by running the (tj , nj) Shamir’s secret decoder Dj . Since Â associated
with A is a Sperner family and Pj(x) is a random polynomial independently
from other users, we have that I(s−j ,uj)=0. Therefore, the proposed scheme is
a GDSS with perfect secrecy, and satisfies all properties in Definition 1.

For the design of a GDSS, we can pick a Sperner family Â with the max-
imum size

(
n−1

⌊(n−1)/2⌋
)
and then construct A . As above, the proposed scheme

is a perfectly secure GDSS satisfying all properties in Definition 1, and uses a
appropriate threshold vector to serve the maximum possible number of users
given a certain number of storage nodes in [n− 1]. These is demonstrated in an
example as follows.

Example 3.1 : Let n=6, m=8. Compute
(
5
2

)
= 10. Suppose that Â with the

maximum size 10 is a collection of all 3-subsets of [5] given as follows:

Â1 = {1, 2, 3}, Â2 = {2, 3, 4}, Â3 = {3, 4, 5}, Â4 = {4, 5, 1},
Â5 = {5, 1, 2}, Â6 = {1, 2, 4}, Â7 = {1, 3, 5}, Â8 = {2, 3, 5},

Â9 = {2, 4, 5}, Â10 = {3, 4, 1}.

Then, A = {Aj ⊆ [5] : j ∈ [8]}, where the threshold values of all users are 3,

Aj=Âj+1 for j ≥ 2, and A1={1, 2, 3, 4} which includes three 3-subsets: Â1, Â2

and Â10. For the secret reconstruction of user 1, it provides the fault tolerance.

4 Communication-Optimal VDSS

In this section, we propose a secure VDSS which is based on a GDSS in Section
3 and a Nyberg’s one-way accumulator. We also study the correctness, strong
secrecy, and soundness constraints. Then, we show the tight VDSS that achieves
a communication-optimal VDSS under certain conditions.

4.1 Nyberg’s one-way accumulator

Hence, we briefly recall the definition and known results concerning a Nyberg’s
one-way accumulator (NOWA).

Definition 3 (NOWA [15]). A family of one-way accumulators is a family of
one-way hash functions with quasi-commutativity. The one-way accumulator by
Nyberg [15] is constructed based on the generic symmetry-based hash function



(e.g., SHA) and simple bit-wise operations. Compared to Benaloh’s scheme [20],
Nyberg’s scheme is more efficient without employing asymmetric cryptographic
operations.

Assume that N = 2θ is an upper bound to the number of items to be accumu-
lated and r is an integer. Let s1, s2, · · · , sm be the accumulated items with dif-
ferent string sizes, and m ≤ N . Let h(·, ·) denote a NOWA from {0, 1}γ×{0, 1}∗
to {0, 1}γ , and ⊙ be the bitwise operation AND. The NOWA is based on the

one-way hash function ĥ : {0, 1}∗ → {0, 1}γθ. All that is required to specify
a NOWA is hashing process and AND operation. The heart of NOWA is the
hashing process. The hashing process applies a hash function ĥ to the input
to produce a γ-bit output. The hashing process is composed of the following
operations.

– Hashing operation: hash accumulated item sj of the input and output a γθ

bits binary string vj=ĥ(sj).
– Transfer α: NOWA does a transfer operation on the binary string vj which

is divided into γ blocks, (vj,1, · · · , vj,γ), of length θ. The transfer of a block
from a θ-bit input to a bit output is performed as follows: If vj,l is a string of
zero bits, it is replaced by 0; otherwise, vj,l is replaced by 1. That is, α(vj)
=(bj,1, · · · , bj,γ), where bj,l ∈ {0, 1}, l=1, · · · , γ.

In this way, we can transfer an accumulated item sj to a bit string, bj=α(ĥ(sj)) ∈
{0, 1}γ , which can be considered as a value of γ independent binary random

variable if ĥ is an ideal hash function.
The NOWA on an accumulated item sj ∈ S with an accumulated key k ∈

{0, 1}γ can be implemented using the AND operation described as h(k, sj) =

k ⊙ α(vj) = k ⊙ α(ĥ(sj)). And it also can be represented as X = h(k, sj) =

k ⊙ α(vj) = k ⊙ α(ĥ(sj)) (j ∈ [m]) if S is a set of accumulated items S =
{s1, s2, · · · , sm}. h(·, ·) has the following properties:

– Quasi-commutativity: h(h(k, s1), s2) = h(h (k, s2), s1).

– Absorbency: h(h(k, sj), sj) = k ⊙ α(ĥ(sj)) = h (k, sj).
– An item sj within the accumulated value X can be verified by h(X, sj) =

X ⊙ α(ĥ(sj)) = X.

4.2 Proposed VDSS with Perfect Secrecy

Here, by using a GDSS and a NOWA, one can construct a VDSS with perfect
secrecy when Â associated with A is a Sperner family consisting of subsets of
[n− 1]. The proposed VDSS with perfect secrecy is constructed as follows:

i) Â associated with A in (7) is a Sperner family with the threshold vector t.
ii) u = E(A , s, t) for s = (s1, s2, · · · , sm)T , where E is the encoder of the GDSS.
iii) Let u=(u1, u2, · · · , uh). Initially, let all entries of Z be zero. Then, the values

of Z are updated by zi,r = 1 if ur of u is stored in i-th storage node,



iv) Prf = (Prf1, P rf2, · · · , P rfm), where Prfj defines as

Prfj(k, (sj ,uj)) = h(· · ·h(h(k, sj), u1,j), · · · , unj ,j). (12)

Here, j ∈ [m], k is a secret key of the dealer, h is a NOWA generated from a

one-way hash function ĥ : {0, 1}∗ → {0, 1}γθ, and (m+h) ≤ 2θ. By abuse of
notation, we will often refer to a proof algorithm by Prfj(sj ,uj), and omit
k when clear from the context.

v) For j ∈ [m], the output Ij = Prfj(sj ,uj) is stored in the n-th storage node.

vi) Given j ∈ [m], V er
(1)
j (utj ,j , Ij) = 1 if and only if h(Ij , ui,j) = Ij for all

i ∈ Atj ,j ⊆ Aj , where utj ,j =(u1,j , · · · , utj ,j) and Ij are downloaded by the
user j.

vii) Dj(utj ,j) is the decoder of the GDSS.

viii) Given j ∈ [m], V er
(2)
j (s′j , Ij) = 1 if and only if h(Ij , s

′
j) = Ij , where s

′
j=Dj(utj ,j).

Lemma 2. Assume that h is a secure Nyberg’s one-way accumulator. The pro-
posed VDSS satisfies the soundness condition under a computationally bounded
adversary.

Proof. Let B be an impersonation adversary. Assume that pia denotes the fol-
lowing probability

Pr[k
$←− Zq, ((s̄j , ūtj ,j)← B((sj ,utj ,j), P rfj(sj ,utj ,j)) :

Prfj(s̄j , ūtj ,j) = Īj ∧ ((s̄j , ūtj ,j), Īj) ̸= ((sj ,utj ,j), Ij)]

where Prfj(sj ,utj ,j) is computed as (12). Thus, we need to bound the value pia.
Note that h is constructed based on the generic symmetry-based hash function
ĥ and simple bit-wise operations, that is, h(k, sj) = k ⊙ α(h(sj)). When k is
chosen uniformly from Zq, the corresponding hash values h(k, (sj ,utj ,j)) =Ij
and h(k, (s̄j , ūtj ,j))=Īj are independent and have a uniform distribution over
Zq. Therefore, pia is negligible from [15] and [21] when h is a secure Nyberg’s
one-way accumulator. For a substitution adversary, we assume that psa denotes
the following probability

Pr[k
$←− Zq, ((s̄j , ūtj ,j)← B((sj ,utj ,j), P rfj(sj ,utj ,j)) :

Prfj(s̄j , ūtj ,j) = Prfj(sj ,utj ,j) ∧ (s̄j , ūtj ,j) ̸= (sj ,utj ,j)].

Due to the collision resistance of h, we have that psa is negligible. This completes
the proof.

Theorem 2. The proposed scheme in this section is a secure VDSS satisfying
all properties in Definition 2.

Proof. In the proposed scheme, each user j has access to all data stored in a
subset Atj ,j of Aj Hence, the correctness and perfect secrecy conditions are
satisfied by invoking the secret encoder and decoder of a GDSS. Also, note
that from Lemma 2 it satisfies the soundness condition under a computationally



bounded adversary since h is a secure Nyberg’s one-way accumulator. What
remains to show is that the verifiability condition is also satisfied.

The proof of sj and uj is provided by computing Ij through (12). From
the quasi-commutativity and absorbency properties in Section 4.1, we have that
h(Ij , sj)=Ij and h(Ij , ui,j)=Ij , where ui,j is the element of uj . This together

with the definitions of V er
(1)
j implies that V er

(1)
j (utj ,j , Ij) = 1 if and only

if h(Ij , ui,j) = Ij for all i ∈ Atj ,j ⊆ Aj . Furthermore. the reconstructed se-
cret as s′j=Dj(utj ,j), can be checked through h(Ij , s

′
j) = Ij . This is because

V er
(2)
j (s′j , Ij) = 1 if and only if h(Ij , s

′
j) = Ij . Therefore, the proposed scheme

also satisfies the verifiability condition. This completes the proof.

Theorem 3. The proposed scheme is a communication-optimal VDSS.

Proof. For each user j, Atj ,j is a subset of Aj with the minimum size such that
user j can reconstruct its secret sj . Note that at least one symbol in Zq has to be
download by user j from each node in Atj ,j and the n-th storage node. From the
definition of communication complexity in (4), we have that

∑
j∈[m](1+tj) ≤ C.

Define

C0 =
∑
j∈[m]

(1 + tj). (13)

That is, C0 is a lower bound on the communication complexity of VDSSs.

In the proposed scheme of Â as (7), its communication complexity is
∑

j∈[m](|Ij |+
|Atj ,j |). Again, each user downloads exactly one data symbol from the nodes in
its access subset Atj ,j , and |Ij |=1. This shows that the proposed VDSS attains
the lower bound in (13). This completes the proof.

The proposed scheme together with the storage nodes is demonstrated in an
example, discussed next.

Example 4.1: Let n = 6, m = 8. The access structure A is defined as
Example 3.1. Also, let q=31, and non-zero and distinct evaluation values r1=1,
r2=2, r3=3 and r4=4 are chosen from Zq. Then, the encoded data of sj about
Aj ∈ A are generated by using (11), where n1 = 4, nj=3 for 2 ≤ j ≤ 8. Note

that ⌈|q|⌉=5, and
∑8

j=1(nj + 1) = 33. Let θ =32 satisfying
∑m

j=1(nj + 1) < 2θ.

SHA-1 is chosen as ĥ, and then a NOWA h : Zq × {0, 1}∗ → Zq is constructed.
Thus, Ij is computed for the access set Aj as

I1 = h(h(h(h(h(k, s1), ua1,1
), ua2,1

), ua3,1
), ua4,1

),

Ij = h(h(h(h(k, sj), ua1,j
), ua2,j

), ua3,j
), j = 2, · · · , 8.

The storage profile is shown in Table 2. The communication complexity of the
proposed communication-optimal VDSS is 32. Note that d=8, which is equal to
m. In the next section, we discuss approaches to generate the proof with only
one data symbol in a more structured way such that d = 1.



Table 1. Storage Profile in Example 4.1.

User Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

1 u1,1 u2,1 u3,1 u4,1 I1
2 u3,2 u4,2 u5,2 I2
3 u5,3 u4,3 u5,3 I3
4 u1,4 u2,4 u5,4 I4
5 u1,5 u2,5 u4,5 I5
6 u1,6 u2,6 u5,6 I6
7 u2,7 u3,7 u5,7 I7
8 u2,8 u4,8 u5,8 I8

5 VDSS With Optimal Storage Overhead

In this section, a VDSS is proposed to attain the optimal storage overhead
equal to 1 + 1

m . The basis of proposed VDSS is a distributed secret sharing
protocol (DSSP) in [4]. Hence, we briefly recall the definition and known results
concerning this DSSP. We then describe our scheme.

5.1 The Definition and Known Results for DSSP

The definition of DSSP in [4] is a special case of GDSS in Definition 1. In the
case when tj = |Aj | in the access structure A defined in (1), a GDSS is a
DSSP. Assume that there are m users and n̄ storage nodes storing the shares.
For convenience, the access sets for the first n̄ users are specified as follows:

Aj = {j, j + 1, · · · , j + k̄ − 1}, j = 1, 2, · · · , n̄. (14)

where k̄ ∈ [n̄] is a parameter. The remaining access sets, Aj (j = n̄+ 1, · · · ,m),
can be arbitrary as long as A form a Sperner family. The indices of storage
nodes are considered modulo n̄, i.e., n̄+ l = l.

A DSSP is said to be a tight DSSP if every user downloads exactly one Zq-
symbol from each node in its access set. Then, To find a communication-optimal
DSSP, the parameter k̄ in (14) is determined by Theorem 5 in [4] as follows.

Theorem 4. For a given number of users m and storage nodes n̄, a communication-
optimal DSSP is constructed by any tight DSSP with the following access struc-
ture A : A is a Sperner family that contains α∗

i of i-subsets of n̄ and α∗
i+1 of

(i+ 1)-subsets of n̄, where i is the maximum integer that satisfies
(
n̄
i

)
≤ m, and

α∗
i and α∗

i+1 are calculated as

α∗
i =

(
(

n̄
i+1

)
−m) ·

(
n̄
i

)(
n̄

i+1

)
−
(
n̄
i

) , α∗
i+1 =

(m−
(
n̄
i

)
) ·

(
n̄

i+1

)(
n̄

i+1

)
−
(
n̄
i

) .



To encode the secrets, sj ’s, of the users j ∈ [n̄], their (k̄ − 1) degree polyno-
mials Pj(x)’s in (10) are constructed by the following system of linear equations:

P1(r1) = u1, P2(r1) = u2, · · · , Pn̄(r1) = un−1,
P1(r2) = u2, P2(r2) = u3, · · · , Pn̄(r2) = u1,

...,
..., · · · ,

...,
P1(rk̄) = uk̄, P2(rk̄) = uk̄+1, · · · , Pn̄(rk̄) = uk̄−1.

(15)

under certain conditions, the system has a unique solution for pj,l’s and uj ’s,
j ∈ [n̄] and l ∈ [k̄ − 1]. Note that uj is the encoding symbol of the secret sj .
To simplify such conditions and also for ease of calculation, let r be a primitive
element of Zq, and ri = ri for i ∈ [k̄]. The following corollary means that there
is a non-singular matrix E such that

(u1, u2, · · · , un̄)
T = E(s1, s2, · · · , sn̄)T . (16)

Corollary 1. If (p− 1) - in̄ for i ∈ [k̄], then (16) defines a one-to-one mapping
between (s1, s2, · · · , sn̄) and (u1, u2, · · · , un̄).

Consider user j for j=n̄+ 1, · · · ,m. Without loss of generality suppose that
Aj = (a1,j , a2,j , · · · , ak̄,j). Note that Aj ⊆ [n̄]. To encode the secret sj , a (k̄− 1)
degree polynomial Pj(x)’s in (10) is constructed by the dealer considering a
system of linear equations for the case(a) in (17).

(a)


Pj(r1) = ua1,j ,
Pj(r2) = ua2,j ,

...,
Pj(rk̄−1) = uak̄−1,j

.

(b)


Pj(r2) = ua2,j ,
Pj(r3) = ua3,j ,

...,
Pj(rk̄) = uak̄,j

.

(17)

Since the coefficient matrices of them are a Vandermonde matrix,(pj,1, pj,2, · · · , pj,k̄−1)
has a unique solution in the case. That is, Pj(x) in (10) is determined since sj is
known. Then, sj is encoded as Pj(rk̄) which is stored in the remaining node, ak̄,j ,
of Aj . Similarly, a polynomial Pj(x) for the case (b) in (17) can be obtained, and
then Pj(r1) is computed as the encoding data of sj and stored in the remaining
node, a1,j , of Aj .

5.2 Proposed VDSS with weak secrecy

In the proposed VDSS with weak secrecy, the optimal storage overhead equal
to 1 + 1

m is attained without the need to the external randomness. The idea is
to modify the proposed DSSP with weak secrecy in [4]. In particular, the proof
with only one symbol in Zq is achieved by using a NOWA in a structured way. In
addition, an efficient strategy is found which makes the storage profile balanced
when considering individual storage loads across the storage nodes in [n− 1].

For generating the parameters and a Sperner family A , an algorithm Init(n,m)
is proposed. Then, an algorithm Prf(k, (s,u)) is constructed to output a proof
with only one symbol in Zq. They are presented as follows.

(Zq, r, p, h,A )← Init(n,m): It first checks if m ≤
(

n−1
⌊(n−1)/2⌋

)
. If true, it then

runs all the following operations.



– The parameter k̄ is determined by using Theorem 4, where n̄=n− 1.

– Choose an integer p > k̄m such that a multiplicative subgroup of Zp forms
a cyclic group, U(q), of order p, where (p− 1) - i(n− 1) for i ∈ [k̄]. Let r be
the primitive element of the cyclic group.

– Select a one way hash function ĥ with the output length γθ, and generate a
NOWA h : Zq×{0, 1}∗ → Zq. Here, θ is an integer which satisfies (k̄+1)m <
2θ, and γ=|q|.

– A is a Sperner family with at least m subsets of size k̄ of [n− 1]. First, for
j ∈ [n−1], the access set Aj is defined as (14). Second, the remaining access
sets, Aj for j = n, n+1, · · · ,m, can be partitioned into balanced collections
of size at most n − 1. In a balanced collection of size n − 1, the union of
the first elements of all sets with even subscripts and the last elements of all
sets with odd subscripts is [n− 1]. This is referred to as the balanced storage
strategy.

I ← Prf(k, (s,u)): By inputting k, s and u, algorithm transfer them into an
element I ∈ Zq, where

I = h(· · ·h(h(· · ·h(k, s1), · · · , sm), u1), · · · , uh), (18)

= h(· · ·h(Prf(k, s), u1), · · · , uh)

= Prf(Prf(k, s),u). (19)

Here, Prf(k, s) = h(· · ·h(h(k, s1), s2), · · · , sm), and u =(u1, u2, · · · , uh) is the
output of E . Note that h(I, sj)=I and h(I, ui)=I from the quasi-commutativity
and absorbency properties in Section 4.1.

Let Aj = {j1, j2, · · · , ujk̄}, j ∈ [m]. Based on the results in Section 5.1, where
n̄ = n− 1, the proposed VDSS with weak secrecy is constructed as follows:

i) The dealer runs algorithm Init(n,m) to output (Zq, r, p, h,A ).

ii) (u1, u2, · · · , un−1)
T ← E(s1, s2, · · · , sn−1)

T , where E is the encoder of the
DSSP defined as (15) and (16). Then, uj is stored in the storage node j for
j ∈ [n− 1].

iii) For Aj (j ≥ n) in a balanced collection, sj is encoded as uj=E(sj) via
the balanced storage strategy in Init(n,m). Specifically, if j mod 2 = 1,
uj=Pj(rk̄) defined as (a) in (17) and it is stored in the last node, ujk̄ , of Aj ;
otherwise, uj=Pj(r1) and is stored in the first node, j1, of Aj , where Pj(r1)
is computed as (b) in (17).

iv) I ← Prf(k, s,u), where Prfj defines as (18) and (19), and u= (u1, u2, · · · , um).
Then, the output, I, is stored in the n-th storage node.

v) V er
(1)
j =(V er

(1)
j1

, V er
(1)
j2

, · · · , V er
(1)
jk̄

) for j ∈ [m], where V er
(1)
jl,

(ujl , I) = 1

if and only if h(I, ujl) =I, l ∈ [k̄]. Here, uj =(uj1 , uj2 · · · , ujk̄) and I are
downloaded by the user j.

vi) Dj(uj) is the decoder of the DSSP.

vii) V er
(2)
j (s′j , I) = h(I, s′j), and V er

(2)
j (s′j , I) = 1 if and only if h(I, s′j) = I for

j ∈ [m], where s′j=Dj(uj).



Theorem 5. The proposed scheme in this section is a weakly secure VDSS sat-
isfying all conditions in Definition 2 and has the storage overhead, defined in
(5), equal to 1 + 1

m .

Proof. It is easy to prove that the proposed scheme satisfies the verifiability
condition. Similar to the proof of Theorem 6, we have that the proposed scheme
satisfies the soundness condition. Note that the number of symbols generated in
this scheme is m and each symbol is stored exactly once. Again, the proof has
only one symbol in Zq. The storage overhead is m+1

m , which is the optimal value.
Then, the rest of the proof is similar to the proof of Theorem 11 in [4].

For certain parameters m and n, the proposed scheme in this section satisfies
the soundness condition, and is also a communication-optimal VDSS. This is
summarized in the following theorem.

Theorem 6. Let m=
(
n−1
k̄

)
for some k̄ ≤ ⌈n−1

2 ⌉, and the access structure A be
picked as the set of all k̄-subsets of [n− 1]. The proposed scheme simultaneously
attains the optimal value for both the communication complexity and the storage
overhead under the weak secrecy and soundness conditions

Proof. Let B be an impersonation adversary. Assume that pia denotes the fol-
lowing probability

Pr[k
$←− Zq, (s̄, ū)← B((s,u), P rf(k, (s,u))) :

Prf(k, (s̄, ū)) = Ī ∧ ((s̄, ū), Ī) ̸= ((s,u), I)]

where Prf(k, (s,u)) is defined as (18) and (19). Again, for a substitution adver-
sary, we assume that psa denotes the following probability

Pr[k
$←− Zq, ((s̄j , ūtj ,j)← B((s,u), P rf(k, (s,u))) :

Prf(k, (s̄, ū)) = Prf(k, (s,u))) ∧ (s̄, ū) ̸= (s,u)].

Similar to the proof of Theorem 2, we have that pia and psa are negligible when
h is a secure Nyberg’s one-way accumulator. Then, the rest of the proof is similar
to the proof of Theorem 12 in [4].

Example 5.1: Let n = 6, m = 10. From Theorem 4, i = 3 is the maximum
integer that satisfies

(
5
i

)
≤ 10, α∗

3=10 and α∗
4=0. This means that A is a Sperner

family that contains 10 of 3-subsets of [n− 1] as follows.

A1 = {1, 2, 3}, A2 = {2, 3, 4}, A3 = {3, 4, 5}, A4 = {4, 5, 1},
A5 = {5, 1, 2}, A6 = {1, 3, 5}, A7 = {1, 2, 4}, A8 = {2, 3, 5},

A9 = {2, 4, 5}, A10 = {3, 4, 1}.

Obviously, for j ∈ [5], the elements of Aj satisfy the relation in (14). Again,
a balanced collection of size 5 is composed of access sets Aj , 6 ≤ j ≤ 10.
Note that the union of the first elements of all sets with even subscripts and



the last elements of all sets with odd subscripts is [5]. Therefore, a Sperner
family outputted by Init(n,m) is described as A = {Aj : j ∈ [10]}, where k̄
= 3. Let also q=31, r=15, and p=10, which satisfy the condition of Corollary
1 as 9 - 5i for i ∈ [3]. Here, U(31)={15, 8, 27, 2, 30, 16, 23, 4, 29, 1}⊆ Z∗

31 and
1510 mod 31 = 1. In the encoding secret phase, it involves encoding s1, · · · , s5
as the random seed. Let r1=15, r2=8, and r3=27. Then, a one-to-one mapping
between (s1, s2, · · · , sn−1) and (u1, u2, · · · , un−1) is defined as follows.

15u1 + 13u2 + 16u3 = 13s1,
15u2 + 13u3 + 16u4 = 13s2,

15u3 + 13u4 + 16u5 = 13s3,
16u1 + 15u4 + 13u5 = 13s4,
13u1 + 16u2 + 15u5 = 13s5.

Hence, uj is computed from s1, s2, · · · , s5 as
u1 = 18s1 + 16s2 + 16s4 + 13s5,
u2 = 13s1 + 18s2 + 16s3 + 16s5,
u3 = 16s1 + 13s2 + 18s3 + 16s4 ,
u4 = 16s2 + 13s3 + 18s4 + 16s5,
u5 = 16s1 + 16s3 + 13s4 + 18s5.

For the remaining secrets sj (j ≥ 6), their encoded data symbols are generated
by (17). Furthermore, I is computed through (18). The resulting encoded secrets
and their verification information together with the storage profile are shown in
Table 2. It is clear that from (5), SO=1.1, which is the optimal SO, where
d=1,k′=d + 10=11, and m=10. Observe that it has a balanced storage profile,
and attains the lower bound, 40, of the communication complexity in (13).

Table 2. Storage Profile in Example 5.1.

Storage node Random symbol Generated data symbol

Node 1 u1 u6=5s6 + 26u2 + u5

Node 2 u2 u8=5s8 + 26u3 + u5

Node 3 u3 u10=5s10 + u1 + 26u4

Node 4 u4 u7=26s7 + 5u1 + u2

Node 5 u5 u9=26s9 + 5u2 + u4

Node 6 I

5.3 The complexity of two VDSS shcemes

The encoding computation complexity is determined by how many times the
dealer has to generate the encoding symbols of secrets and their VI for m user.
In the VDSS with optimal SO, the computation complexity of encoding the first
n − 1 secrets is O((n − 1)2), due to the multiplication of the (n − 1) × (n − 1)



seed encoding matrix as specified in (16) by the vector (s1, s2, · · · , sn−1)
T . Let k̃

be the average size of access sets of the remaining m− (n− 1) users. Notes that
the computation of a vector inner product, as specified in [4], is needed for each
of the m− (n− 1) remaining users. Again, the number of NOWA operations in
(18) is (k̃ + 1)m. Hence, the encoding complexity of VDSS with optimal SO is
O((n− 1)2 + k̃m). Similarly, the computation complexity of the encoder in the
VDSS with nearly optimal SO is O(k̃m), where k̃ is the average size of access
sets of all m users.

Regarding the decoding computation complexity, each user j utilizes (tj , nj)
Shamir’s decoder after receiving tj correct shares, where a polynomial is inter-
polated to reconstruct sj . Note that for the decoding of sj , the user j needs
to perform tj NOWA operations and tj multiplication operations. Hence, the

decoding computation complexity of both schemes is O(k̃m), where k̃ is the
average size of threshold values of all m users.

6 Conclusion

We have considered a VDSS, where the dealer conveys a specific secret to the
user via storage nodes. Our design examines the impact of minimizing VI in a
VDSS on the communication complexity and storage overhead. Our main result
is the design of two secure VDSS schemes, where the first scheme attains the
lower bound on the communication complexity while providing the fault toler-
ance, and the second scheme simultaneously achieves the lower bounds of both
communication complexity and storage overhead while providing the balanced
storage load.
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