
We Can Make Mistakes: Fault-tolerant Forward Private Verifiable Dynamic
Searchable Symmetric Encryption

1st Dandan Yuan
The University of Auckland

dyua568@aucklanduni.ac.nz

2nd Shujie Cui
Monash University

Shujie.Cui@monash.edu

3rd Giovanni Russello
The University of Auckland
g.russello@auckland.ac.nz

Abstract—Verifiable Dynamic Searchable Symmetric En-
cryption (VDSSE) enables users to securely outsource
databases (document sets) to cloud servers and perform
searches and updates. The verifiability property prevents
users from accepting incorrect search results returned by a
malicious server. However, we discover that the community
currently only focuses on preventing malicious behavior from
the server but ignores incorrect updates from the client, which
are very likely to happen since there is no record on the
client to check. Indeed most existing VDSSE schemes are
not sufficient to tolerate incorrect updates from the client.
For instance, deleting a nonexistent keyword-identifier pair
can break their correctness and soundness.

In this paper, we demonstrate the vulnerabilities of a
type of existing VDSSE schemes that fail them to ensure
correctness and soundness properties on incorrect updates.
We propose an efficient fault-tolerant solution that can
consider any DSSE scheme as a black-box and make them
into a fault-tolerant VDSSE in the malicious model. Forward
privacy is an important property of DSSE that prevents the
server from linking an update operation to previous search
queries. Our approach can also make any forward secure
DSSE scheme into a fault-tolerant VDSSE without breaking
the forward security guarantee.

In this work, we take FAST [1] (TDSC 2020), a forward
secure DSSE, as an example, implement a prototype of our
solution, and evaluate its performance. Even when compared
with the previous fastest forward private construction that
does not support fault tolerance, the experiments show that
our construction saves 9× client storage and has better
search and update efficiency.

Index Terms—Security and Privacy Protection, Verification,
Database Management, Information Search and Retrieval

1. Introduction

Searchable symmetric encryption (SSE) is a tech-
nique that enables a data owner to securely outsource
its database to a remote server and search the database
efficiently and confidentially. In a common model of SSE,
the database is composed of a set of documents, each
of which owns a unique identifier and contains a set of
keywords. An important research line of SSE focuses
on the honest-but-curious adversarial model, where the
adversary is assumed to follow the specified protocol
honestly, which is not necessarily always true. Once the
cloud server is compromised, the attacker could control

the protocol arbitrarily, e.g., return incorrect results to
the client. Verifiable SSE (VSSE) [2]–[10] is a line of
research that aims to ensure the client always receives all
the correct documents that match the searched keyword
and rejects incorrect ones. These properties are referred to
as correctness and soundness in [6], respectively. These
properties are in addition to data confidentiality and are
relevant when considering the server as (under the control
of) a malicious actor that could mount active attacks.

In VSSE schemes, an additional data structure, called
proof, is required to verify the correctness of search
results. For dynamic SSE (DSSE), the client can in-
sert/delete a keyword into/from a document’s keywords
set. For Verifiable DSSE (VDSSE), updating the database
requires updating the proofs as well. For instance, when
adding a new keyword into a document, the proof of the
keyword should be changed to cover the identifier of the
document. Updating the proofs can be easily achieved.
However, we observe that the community currently only
focuses on preventing malicious behaviours from the
server with the proof but ignores whether the proof still
works when the misbehaviour comes from a careless
client.

In particular, we discover that incremental-hash-based
VDSSE schemes, such as [6]–[9], [11], [12], fail to toler-
ate incorrect updates from the client, such as adding the
same keyword-identifier pair multiple times or deleting
nonexistent data. For instance, when the client adds the
same keyword-identifier pair multiple times, even when
the server returns the correct search result, their proofs
can not pass the verification and the client will reject the
result.

We define the ability of tolerating incorrect updates
as fault tolerance property for VDSSE scheme. Ensuring
this property is necessary as in the setting of outsourced
databases there is no local record on the client to check
if the updates are correct. Moreover, the collision could
happen among the updates issued from different devices.
Since all the queries are encrypted, the collision cannot
be detected or prevented on the server side with synchro-
nization or locking mechanisms. A trivial solution is to
search the keyword (or the document) to be updated and
check if the keyword-identifier pair exists in the returned
result before executing the update query, which needs 2
rounds of communication and increases the overhead for
update queries significantly. Moreover, this solution could
leak which keyword (or document) is to be updated. We
need a more secure and efficient way to address the issue.

Informally, we say a DSSE scheme is forward private

TABLE 1. COMPARISON WITH EXISTING VDSSE SCHEMES

Scheme Computation Communication Client Storage Forward
Private

Fault
TolerantSearch Update Search Update

Kurosawa and Ohtaki [4] O(|W||D|) O(|W|) O(m) O(1) O(1) 7 -
Kurosawa et al. [5] O(m) O(|W|) O(m) O(|W|) O(1) 7 -

Kamara and Papamanthou [21] O(m log |D|) O(log(|D|)) O(m·
log |D|) O(log(|D|)) O(1) 7 -

Bost et al.’ generic solution [6] O(u+ log |W|) O(log |W|) O(m+
log |W|) O(log |W|) O(1) 7 7

Bost et al.’ verifiable SPS [6]
SPS [18] O(min{u + log2 N

m log3 N
}) O(log2 N)

O(m+
logN)

O(logN) O(λ logN) 3 3

Bost [11] O(u) O(1) O(m) O(1)
O(|W|(log |D|

+λ))
3 7

Zhu et al. [12] O(m+ log |W|) O(log |W| O(m+
log |W|) O(log |W|) O(1) 7 7

Etemad and Küpçü [22] O(m log |W|) O(log |W|
+ log ||D||)

O(m·
log |W|)

O(log |W|
+ log ||D||) O(1) 7 3

Ge et al. [8] O(|D|) O(|W|) O(m) O(|W|) O(1) 7 7

Zhang et al. [7] O(u) O(1) O(m) O(1)
O(|W|(log |D|

+λ))
3 7

Ours O(u) O(1) O(u) O(1) O(|W|(log |D|)) 3 3

|W| and |D| are respectively the numbers of keywords and documents in the database. ‘−’ represents that the property of fault tolerance does not need to be considered
in the scheme of the row. m is the size of the search result, N denotes the total number of keyword-document pairs that exist in the database, u is the number of updates
related to the searched keyword, and λ is the security parameter. ‘Computation‘ refers to the consumed computational complexity, ‘Communication‘ is the consumed
communication complexity, and ‘Client Storage‘ specially refers to the permanent client storage.

if the server cannot link the updates to previous queries.
For DSSE, ensuring forward privacy is fundamental to
hamper the file injection attack [13]. A large number
of DSSE schemes with forward privacy have been pro-
posed [1], [11], [14]–[17]. However, only a few forward
private DSSE schemes are verifiable in the malicious
model. In [6], Bost et al.make the forward private DSSE
scheme in [18] into a fault-tolerant VDSSE by employing
verifiable hash table [19] to generate proofs. However,
their scheme is not efficient for large databases. To make
the schemes in [11] and [7] verifiable, Bost and Zhang
et al. adopt incremental hash [20] to map the identifiers
matched by each keyword to a hash value. However, to
achieve sub-linear search and constant update efficiency,
the two schemes store the hash values on the client
side, resulting in heavy storage overhead on the client.
Moreover, they are not fault-tolerant.

Our Contributions. In this work, we propose a
solution to make DSSE and forward secure DSSE schemes
fault-tolerant and verifiable in the malicious model by
only using two simple cryptographic primitives: pseu-
dorandom function (PRF) and authenticated encryption
(AE). A comparison with previous work is shown in Table
1. Among existing VDSSE schemes, only when applying
Bost et al.’ solution [6] to Stefanov et al.’ scheme [18], it
achieves both forward privacy and fault tolerance property,
however, with heavy computation and communication
overhead for both search and update queries. In contrast,
our scheme not only is fault-tolerant and forward private,
but also achieves acceptable search and update efficiency.

Our contributions can be summarized as below:
• We are the first to demonstrate that incremental-hash-

based VDSSE schemes, including [6]–[9], [11], [12],
can no longer ensure correctness and soundness when
there are incorrect updates from the client.

• We propose a generic solution that can consider
any DSSE scheme as a black-box and make them
verifiable and fault-tolerant in the malicious model.
Moreover, our solution can also make any forward
secure DSSE scheme verifiable and fault-tolerant
without breaching its forward privacy guarantee.

• We implemented a prototype of our solution on
the top of a forward secure DSSE scheme called
FAST [1] and evaluated its performance. Our exper-
imental results show that our solution has practical
performance.

• Last but not least, we prove the soundness and con-
fidentiality of our solution.

2. Related Work

SSE and DSSE. The first feasible SSE was pro-
posed by Song et al. [23] in 2000. Since then, a great
deal of literature has contributed to this direction in terms
of security, performance, and functionalities. In the early
stages, almost all SSE work, such as [24]–[26], only
considers static databases. In 2012, Kamara et al. [27]
present the first DSSE scheme with sub-linear search
efficiency. Two subsequent works in [21], [28] present
more secure and efficient DSSE schemes.

Forward Private DSSE. Forward privacy of
DSSE has been started to be discussed in the community
since 2014, and Stefanov et al. [18] present the first for-
ward secure DSSE scheme using ORAM-like technique.
Since the file-injection attack [13] has been proposed,
forward privacy is becoming an imperative property for
DSSE; otherwise previously queried keywords can be
recovered easily when the attacker injects well-designed
records into the database. Forward privacy was first for-
mally defined by Bost in [11], and he constructs a
practical forward private dynamic DSSE scheme using
public-key-based trapdoor permutation. After that, several
pure symmetric-key-based DSSE schemes proposed in [1],
[14]–[17] also ensure forward privacy and achieve better
performance.

VSSE and VDSSE. All the schemes discussed
above work in the honest-but-curious adversarial model.
VSSE schemes are designed to protect outsourced data
from malicious adversaries. Early VSSE schemes [2], [3],
[29], [30] also just focus on static databases. The works in
[4], [5], [21] extend VSSE to support dynamic databases,
but the three schemes do not support updating the index

entries (i.e., keywords set) of a document. Instead, the
client has to first delete the document and then add the
index entries of the document from scratch.

Bost et al. [6] and Zhu et al. [12] solve the problem
by letting the server store incremental hash values of the
identifiers matched by every keyword with a verifiable
structure. Ge et al. [8] also introduce an incremental-hash-
like structure to generate the proof of document identifiers
and document content matched by every keyword. Etemad
and Küpçü [22] achieve a VDSSE scheme by using multi-
level authenticated skip list [31].

Amongst, the work in [6], [8], [12] all utilizes the
incremental-hash-based method to generate a proof for a
keyword, yet they fail to tolerate incorrect updates. Only
the scheme presented in [22] allows the client to check
incorrect updates and achieves fault tolerance property.

Forward Private VDSSE. To hamper the file-
injection attack in the malicious model, the VDSSE needs
to achieve forward security as well. Stefanov et al. [18]
briefly demonstrate how to extend their forward secure
DSSE construction to be secure in the malicious model
using MAC [32], but as analyzed by Bost et al. [6],
their method is not effective enough to guarantee security
against a malicious adversary. Bost et al. [6] propose
to use verifiable hash table and AE, whereas their solu-
tion withstands high computational and communication
complexity. The forward secure VDSSE schemes in [11]
and [7] achieve better performance by letting the client
hold the incremental hash values of identifiers matched
by every keyword as proofs. In [9], Guo et al. lever-
age blockchain [33] and smart contract [34] to preserve
forward-secure updates and verify the updated results, re-
spectively. The construction in [6] is fault-tolerant because
every step of the server can be verified by the client.
However, the incremental-hash-based methods [7], [9],
[11] are not fault-tolerant.

3. Preliminaries

We use {0, 1}l to denote the set of all binary strings of
length l. 0l denotes a string of length l where every bit is
0. {0, 1}∗ stands for the set of arbitrary length strings.
|| denotes the concatenation of two strings. A ← B
represents that the value of B is assigned to A. Finally,
A

$← X means that A is sampled uniformly at random
from the set X.

3.1. Authenticated Encryption

An AE scheme [35], [36] consists of a Proba-
bilistic Polynomial-Time (PPT) algorithm (AE.Gen) and
two deterministic polynomial-time algorithms (AE.Enc,
AE.Dec). Among them, AE.Gen takes as input 1λ and
outputs a private key k. AE.Enc takes as input a key k, a
nonce non, a message mes, and outputs a ciphertext C.
Part of the ciphertext C is a tag. AE.Dec takes a key k, a
nonce non, a ciphertext C as input and outputs a message
mes or a string “invalid”.

The correctness of AE requires that AE.Dec(
k, non,C) = mes if C ← AE.Enc(k, non,mes), for
every k ← AE.Gen(1λ), every non← {0, 1}∗, and every
mes← {0, 1}∗.

We say that an AE scheme guarantees privacy if for
all PPT adversaries A, there exists a negligible function
negl such that

Pr[k $← AE.Gen(1λ) : AAE.Enc(k,.,.) = 1] - Pr[A$(.,.) = 1] ≤

negl(λ)

where AAE.Enc(k,.,.) represents that A has oracle access
to AE.Enc (k, ., .), A$(.,.,.) means that A can query
$(., .) with a nonce non and a plaintext message mes
as input that returns a uniformly random string of length
|AE.Enc(k, non,mes)|, and A is not allowed to ask two
queries with the same nonce.

An AE scheme satisfies authenticity if for all PPT
adversaries A, there exists a negligible function negl such
that

Pr[k $← AE.Gen(1λ) : AAE.Enc(k,.,.) successfully forges] ≤

negl(λ)

where we say thatAAE.Enc(k,.,.) successfully forges if it is
able to forge a pair (non, C) such that AE.Dec(k, non,C)
6= “invalid” but the query with non as the input and C as
the output has never happened before, and the adversary
A is not allowed to ask two queries with the same nonce.

3.2. Verifiable Dynamic Searchable Symmetric
Encryption

We assume that the database is DB = {(idi,Wi)}|D|i=1
where idi ∈ {0, 1}λ is a document identifier and Wi ⊆
{0, 1}∗ is a set of keywords contained in the document
idi. We use W = ∪|D|i=1Wi to denote the collection of all
keywords and DB(w) = ∪|D|i=1{idi|w ∈ Wi} to stand for
the set of document identifiers matched by the keyword
w. Formally, a VDSSE scheme (Setup, Search, Update)
is composed of three protocols executed by the client and
the server.
• (K, s; EDB) ← Setup(λ,DB;⊥): On input the se-

curity parameter λ and a database DB, the client
outputs a secret key K and a secret state s. The server
outputs an encrypted database EDB.

• (s′,DB(w) or “Reject”; EDB′) ←
Search(K, s,w; EDB): The input of the client
includes the secret key K, the current state s, and a
keyword w. The server has EDB as input. Finally,
the client outputs a possibly updated secret state
s′. If the search result returned by the server is
verified to be correct, the client also outputs DB(w),
otherwise it outputs the string “Reject”. The server
outputs a possibly updated encrypted database
EDB′.

• (s′; EDB′) ← Update(K, s, op, id, w; EDB): The
client has five parameters as input that includes the
secret key K, the secret state s, an operator op ∈
{add, del}, a document identifier id,, and a keyword
w. The server’s input is the encrypted database EDB.
Finally, this protocol outputs a secret state s′ (to
be stored by the client) and an updated encrypted
database EDB′ (to be stored by the server).

A VDSSE scheme should at least achieve three ba-
sic properties: correctness, soundness, and confidentiality.

Before defining each property, we want to define our ad-
versarial model. As in [6], we denote with P ↔ A that the
execution of the protocol P involves interactions with the
malicious adversary A that may deviate from the protocol
arbitrarily to break the soundness and confidentiality of
P .

3.2.1. Correctness. We say a VDSSE scheme is correct
if, when the server executes all the protocols honestly, the
search result for each keyword w is DB(w) and passes
the verification on the client. The formal definition can be
referred to [6].

3.2.2. Soundness. Soundness guarantees that if the server
is malicious, the client will not be tricked by the server
into accepting incorrect search results. In other words, the
client is able to detect the malicious behavior of the server
returning invalid search results.
Definition 3.1 (Soundness of VDSSE). Let Σ = {Setup,

Search, Update} denote a VDSSE scheme. We say
Σ satisfies soundness if for all PPT adversaries A,
there exist a negligible function negl such that:

Pr[VDSSESound
Σ
A(λ) = 1] 6 negl(λ)

where the game VDSSESound
Σ
A(λ) is defined as:

VDSSESound
Σ
A(λ): A chooses a database DB and

is given EDB ← Setup(1λ, DB; ⊥) ↔ A. Then
it adaptively makes search or update queries. For a
search query, A chooses a keyword w and receives the
output of Search(K, s, w; EDB)↔ A. For an update
query, it chooses (op, id, w) and is given the output of
Update(K, s, op, id, w; EDB)↔ A. Note that when
running any of the above queries, besides choosing
the input and receiving the output, A could control
the operations on the server side arbitrarily, such as
replying with forged information. The game outputs 1
if the result of a search query on a keyword w ∈ W
is neither the set DB(w) nor the string “Reject.”

3.2.3. Confidentiality. Intuitively, confidentiality de-
mands that the server cannot learn any useful information
from the outsourced data and queries. According to most
of the existing SSE schemes, such as [26] and [27], it can
be formally defined through the leakage functions L =
(LSetup(DB),LSearch(DB, w),LUpdate(DB, op, id, w)).
For the simulation-based definition, we can say a VDSSE
scheme is L-secure if anything that can be computed by
the scheme, can also be computed by a simulator taking
only the corresponding L as the input.
Definition 3.2 (Adaptive security of VDSSE). Let Σ =
{Setup, Search, Update} denote a VDSSE scheme.
We say Σ is L-adaptively-secure if for any PPT
adversary A, there exist a simulator S and a negligible
function negl such that:

|Pr[VDSSEREAL
Σ
A(λ) = 1]− Pr[VDSSEIDEAL

Σ
A,S,L(λ) =

1]| 6 negl(λ)

where VDSSEREAL
Σ
A(λ) and VDSSEIDEAL

Σ
A,S,L(λ) are

defined as:
• VDSSEREAL

Σ
A(λ): A first chooses a database DB,

and obtains EDB by calling Setup(1λ,DB; ⊥)↔ A.
Then it repeatedly performs searches Search(K, s,
w; EDB)↔ A and updates Update(K, s, op, id, w;

EDB)↔ A in an adaptive way. In the end, A outputs
a bit b.

• VDSSEIDEAL
Σ
A,S,L(λ): A chooses a database DB,

and calls S(LSetup(DB)) ↔ A to obtain the en-
crypted database EDB. After that, it adaptively per-
forms search/update queries by calling S(LSearch(
DB, w)) ↔ A/ S(LUpdate(DB, op, id, w)) ↔ A.
Finally, A outputs a bit b.

The typical leakage of VDSSE includes search pat-
tern, access pattern, and database size. Specifically,
search pattern refers to the repetition of search queries
(which search queries were on the same keywords). Ac-
cess pattern represents the matching identifiers received
in a search query and the identifiers added/deleted in
an update query. The number of keyword-identifier pairs
existing in the database is denoted as database size. This
typical leakage implies forward privacy. In brief, forward
privacy ensures that any information about the updated
keyword will not be leaked to the adversary during update
operations. The first formal definition of forward privacy
is presented in [11].

Definition 3.3 (Forward privacy of VDSSE). A L −
adptively − secure VDSSE scheme Σ = {Setup,
Search, Update} is forward private iff the update
leakage function LUpdt can be written as:

LUpdate(DB, op, id, w) = L′(op, id)

where L′ is a stateless function.

Definition 3.4 (Incorrect updates). We say an update
query (op, id, w) to be executed is incorrect in the
following 2 cases:

1) if op = del, id /∈ DB(w).
2) if op = add, id ∈ DB(w).

4. Incremental-Hash-Based VDSSE Vulnera-
bilities

In this section, we first introduce how different types
of incremental multi-set hash work and then illustrate
their vulnerabilities when used in VDSSE schemes. To
the best of our knowledge, we are the first to report these
vulnerabilities.

4.1. Incremental Multi-set hash

Incremental multi-set hash is introduced by Clarke
et al. in [20]. A multi-set is a finite unordered group of
elements where an element can occur as a member more
than once. Multi-set hash H takes a multi-set as the input
and outputs a fixed-length string. When an element, say
x, is added (deleted) to (from) the input multi-set X , we
say the multi-set hash is incremental if we can efficiently
compute H(X ∪ {x}) (H(X \ {x})) from H(X) and
H({x}) with an arithmetic within a field, rather than com-
puting the hash from scratch. H could be MSet-Add-Hash,
MSet-XOR-Hash, and MSet-Mu-Hash when the arithmetic
is addition (subtract), XOR, and multiplication (inverse),
respectively. For instance, when H is MSet-XOR-Hash,
H(X) = HK(r) ⊕ ⊕|X|i=1HK(xi), where HK is a keyed

hash function, r is a random number, and xi is the i-
th element of X . HK(r) is also required for MSet-Add-
Hash. r should be recorded for both cases. For MSet-Mu-
Hash, H(X) =

∏|X|
i=1H(xi), where H is a hash function:

H : X → Fq.
In incremental-hash-based VDSSE schemes, for each

keyword w, H(I) is used as the proof, where I is the
set of identifiers matched by w. During a search on w,
with the received result R (and r when MSet-Add-Hash
or MSet-XOR-Hash is used), the client computes H(R)
and checks if it equals to H(I). When an update comes,
e.g., (add,w, id), either the client or the server can quickly
update the proof by computing H(I ∪ {id}).

The advantage of using incremental multi-set hash is
that the size of the proof does not increase with updates
and it can be updated efficiently with simple arithmetic.
To update the index entries of a document, almost all the
existing VDSSE schemes (excluding the one proposed
in [22] and the forward private solution in [6]) employ
collision-resistant incremental hash [20]. Precisely, the
scheme in [6], [12] uses MSet-Mu-Hash, MSet-XOR-
Hash are employed in [7] and [9], and the solution in
[8] adopts a technique similar to MSet-Add-Hash. All the
three incremental hash algorithms work for Bost’s solution
in [11]. Unfortunately, they are not sufficient to tolerate
incorrect updates from the client.

4.2. Correctness Vulnerabilities

Here we first highlight one type of incorrect updates
that can break the correctness guarantee of incremental-
hash-based VDSSE schemes: deleting a nonexistent
keyword-identifier pair. In this case, the incremental multi-
set hash will generate wrong proofs. Specifically, assume
the client wrongly sends a delete query (del, id1) over w,
where (w, id1) does not exist in the database, the proof
will be modified into H(I)−HK(id1) mod Z (where Z
is a big integer), H(I)⊕HK(id1), and H(I) ·H(id1)−1,
when MSet-Add-Hash, MSet-XOR-Hash, and MSet-Mu-
Hash are used, respectively. However, the correct search
result is I in this case, and the correct proof should be
H(I).

Another scenario that can break the correctness
is to add the same keyword-identifier pairs multi-
ple times. Assume the update sequence associated
with w is ((add, id1), (add, id1)). When the MSet-
Add-Hash is used, the proof of w will be H(I) +
HK(id1) + HK(id1) mod Z, i.e., H({I, id1, id1}). For
result-revealing schemes, the server will return R =
{I, id1} during a search on w, yet H(R) 6= H({I, id1}).
Similarly, MSet-XOR-Hash and MSet-Mu-Hash will up-
date the proof of w to H(I) 1 and H(I) ·H(id1) ·H(id1),
whereas the correct proof should be H(I)⊕HK(id1) and
H(I) ·H(id1), respectively.

4.3. Soundness Vulnerabilities

Incremental-hash-based VDSSE schemes also fail to
ensure their soundness, for instance, when the client
wrongly delete a nonexistent keyword-identifier pair
(w, id1) beforehand when he/she indeed wants to add it,

1. H(I)⊕HK(id1)⊕HK(id1) = H(I)

i.e. conducts ((del, id1), (add, id1)) update sequence for
w. In this case, the correct search result of w should
be {I, id1}, but its proof is still H(I) for all the three
incremental hash structures. Thus, the server can just
return I , which is indeed not complete without id1. There
are more scenarios that can break their soundness. Due
to the page limit, here we will not give more specific
examples.

Ge et al. [8] use a method similar to MSet-Add-
Hash to generate and update proofs, i.e. add or subtract
a value derived from the update into or from the original
proof. The difference is that in their scheme, the value is
derived from both the ciphertext and identifiers of the up-
dated document. Moreover, they use a semantically secure
algorithm to encrypt the document. As a result, for each
update, the value appended into the proof is unique and
cannot be canceled out when there are incorrect updates.
Therefore, their solution does not have the soundness
vulnerabilities introduced above. However, they fail to
ensure the correctness. For instance, when the client adds
a keyword-identifier pair multi-times, multiple values of
the pair will be appended into the proof, yet only one
value of this pair will be included in the proof generated
by the client, resulting in failure of verification.

4.4. Discussion

Based on the above discussion, we can find that
the vulnerabilities of incremental-hash-based VDSSE are
caused mainly due to 3 reasons: ¶ the majority of existing
SSE schemes reveal the search result to the server, thus
the server can slightly amend the result, such as removing
repeated identifiers. For sure, we can ask the server not
to amend the result in any way, yet it can just prevent
one type of incorrect updates: adding the same keyword-
identifier multi-times. As shown in the first scenario given
in Section 4.2, the server does nothing over the result;
deleting a nonexistent keyword-identifier pair can still
break the correctness guarantee in this case. · The client
cannot get the update history to check if he or she updates
the database properly. ¸ The incremental multi-set hash
does not care about the updates sequence and it only
records the final proof result. Moreover, it can cancel
out conflicting updates. For instance, MSet-Add-Hash will
cancel out a pair of add and delete updates on the same
keyword-identifier no matter what the update order is, and
MSet-XOR-Hash cancels out all the updates on the same
keyword-identifier no matter whether the update is add or
del and no matter what the order is.

Hiding the search result effectively and efficiently
from the server is non-trivial, which is still an open
problem in the community. In this work, we still focus
on response-revealing schemes and aim to propose a fault-
tolerant VDSSE scheme by addressing the last two issues.

5. Overview of Our Approach

In this section, we provide the system model and the
threat model we consider, our design goals, and the main
idea of our approach.

5.1. System Model

We consider the typical scenario of data-outsourcing,
which encompasses two roles: a client and a server. As
defined in Section 3.2, the client and the server set up the
system, and interactively perform the search and update
protocols over time. Specifically, the client defines the
keywords set for each document, generates the index and
proofs used to verify search results, and encrypts the
documents. The server holds the encrypted index, the
proofs, and encrypted documents. For search operation,
the client sends a search token of the keyword to the
server, and the server returns both the result and associated
proofs to the client. The client first verifies the authenticity
of the proofs and then verifies if the search result is correct
and complete with the proofs. Only when the proofs pass
the authenticity and the result passes the verification, the
client will accept the search result, otherwise reject it.

5.2. Threat Model

We assume the server is a malicious adversary who is
curious about the documents as well as the corresponding
index and keywords and tries to collect more information
than the permitted leakage. Moreover, the server may also
delete or forge data and only return partial or wrong
search results. Note that the Denial-of-Service (DoS) and
Distributed DoS (DDoS) behavior on the server is out of
the scope of this work.

The client is assumed to be trusted. However, con-
sidering there is no information stored on the client side,
it might carelessly send incorrect updates to the server.
For instance, the client might wrongly add a keyword-
identifier pair already existing in the database or delete a
document that has been deleted.

Note that in this work, we focus on verifying the cor-
rectness and completeness of indices. We assume there is a
mechanism available to ensure the integrity and freshness
of documents, i.e. their contents are not tampered with
and they are the latest version. For instance, the method
proposed in [4], [5] can be leveraged to achieve both
integrity and freshness of document content in our scheme.

5.3. Design goal and requirements

In this work, we aim to design a VDSSE scheme that
can tolerate incorrect updates and has forward privacy
guarantee in the malicious server model if the original
DSSE is forward private. To achieve these goals, the
scheme should satisfy the following requirements: (R1)
the client should be able to verify if the search result is
correct and complete in the presence of a malicious server;
(R2) the client should be still able to verify if the search
result is correct and complete even when the database has
ever been updated incorrectly; and (R3) the server should
not be able to link the updates over any data structure,
including the index or proofs, to previous searches.

5.4. Our approach

To achieve R1, the main technique used in previous
work [6], [7], [9]–[12] is to append a proof to each

keyword and update the proof accordingly whenever it
is affected by an update operation. As demonstrated in
Section 4, those approaches fail to achieve R2, i.e., the
proof in their designs cannot ensure the correctness and
soundness when the database is updated incorrectly. To
meet all of our requirements, our main idea is to securely
record the update history that happened to each
keyword on the server side and append a proof to
each update operation, rather than to each keyword.
There are 4 key points we highlight here to show how
our approach achieves the goal. ¶ We encrypt each proof
with AE to ensure all the proofs returned by the server
are associated with the searched keyword and are not
tampered with. If the server tampers the proofs, then they
cannot be decrypted. · Whether an update operation is
incorrect is determined by the order of the updates that
ever occurred to the keyword. For instance, deleting a
keyword-identifier pair must occur after the pair has been
added. The client keeps track of the order of updates by
storing a counter for each keyword. The counter stores the
number of updates that have occurred to the corresponding
keyword. The client also stores a sequence number into
each update record and proof. ¸ We include the update
operation to the proof, e.g., add w into id′. By doing so,
the client gets all the updates that ever happened to w
and can keep track of the order in which updates occurred
based on the associated sequence numbers. In this way, the
client is able to identify incorrect operations and figure out
the correct search result. ¹ In our scheme, all the updates
are actually first recorded on the server side and then
committed later during a search query. Moreover, all the
update records, including the proof part, are semantically
secure, and are stored in a location independent of previ-
ous queries. In this way, our scheme achieves the forward
privacy property because the server cannot link any newly
added records with previous searches, therefore satisfying
requirement R3. In our approach, during a search query,
the client will receive the entire history of the updates
related to the searched keyword. The idea of searching
for the update history is based on the concept of lazy
deletions and keeping duplicates, which is used by many
DSSE schemes, such as [1], [11], [14], [16], [17], [28],
where the server can obtain the update history associated
with the searched keyword. The innovative part achieved
by our approach is that we also achieve the verifiability
of the update history on top of that.

5.5. Approach Optimization

The basic version of our approach has a drawback in
terms of performance: the number of index entries and
proofs increases linearly with the updates that happened
to the database. As mentioned, we append a proof to
each update record, and all the proofs related to the
searched keyword should be returned to the client for
the verification, which means the overhead on the client
also increases linearly with the updates. In the design
for achieving forward privacy, the update history stored
on the server side also affects the performance of search
operation. If the searched keyword has been updated for
c times, the server must make c disk accesses during the
search. The work proposed in [1], [14] solves the problem
by letting the server cache the search result. Inspired by

the above approaches, we have borrowed the idea to cache
the search result and renew the proofs, i.e., integrate all
the proofs and update records of the searched keyword
into a new proof and a new update record. There are two
concerns for renewing the proofs: (i) renewing the proofs
adds computational overhead on the client; and (ii) after
renewing the proof, our scheme should still meet all of
our requirements (R1, R2, and R3).

To address the first concern, we set a configurable
threshold for renewing the proofs. In this work, we set
the threshold to |DB(w)| as an example, i.e., the client
only renews the proofs of w when the number of as-
sociated proofs is greater than |DB(w)|. For the second
concern, when renewing the proofs, the client performs
the following operations: first, it checks the completeness
and correctness of the result; then it includes the current
correct and complete result into the new proof; this update
proof is encrypted with AE and a new key; finally, the
client resets the counter of the search keyword to 1.

Setup(λ,⊥;⊥)

Client:
1: ks, kt, kp

$← {0, 1}λ
2: K ← {ks, kt, kp}
3: WC ← empty map

4: return K,WC

Server:
5: T ← empty map
6: return T

Figure 1. Setup protocol

Update(K,WC, op, w, id;T)

Client:
1: (c1, c2)← WC[w]
2: if WC[w] does not exist then
3: c1 ← 0, c2 ← 0
4: end if
5: sw ← F1(ks, w)
6: c1 ← c1 + 1
7: st← F2(kt, w||c1||c2)
8: if c1 = 1 then
9: e← H2(sw||st)⊕

0λ||op||id
10: else
11: oldst← F2(kt, w||c1−

1||c2)

12: e← H2(sw||st)⊕
oldst||op||id

13: end if
14: kw ← F3(kp, w||c2)
15: proof ← AE.Enc(kw, c1,

op||id)

16: WC[w]← (c1, c2)
17: ut← H1(sw||st)
18: send (ut, e, proof) to the

server
19: return WC

Server:
20: T [ut]← (e, proof)
21: return T

Figure 2. Update protocol

6. Solution Details

Our approach can be easily integrated with any for-
ward private DSSE or normal DSSE schemes to make
them into fault-tolerant VDSSE schemes. To the best of
our knowledge, FAST [1] is the state-of-art forward secure
DSSE solution. Here we take the FAST scheme as an
example to show how our approach can make it a fault-
tolerant VDSSE scheme in the malicious model without
breaking its forward privacy guarantee.

To achieve forward privacy, the main idea of FAST and
most other existing forward secure DSSE schemes [11],
[14], [16], [17], is to store a chain of update records for
each keyword. Moreover, when a new update happens to

Search(K,WC, w; T)

Client:
1: sw ← F1(ks, w)
2: (c1, c2)← WC[w]
3: if WC[w] is empty then
4: return
5: end if
6: st← F2(kt, w||c1||c2)
7: send (sw, st, c1, c2) to the

server

Server:
8: P ← empty list
9: Del,R, Uts← empty set

10: i← c1
11: while i>1 do
12: ut← H1(sw||st)
13: Uts← Uts ∪ {ut}
14: (e, proof)← T [ut]
15: P [i]← proof
16: st||op||id← e⊕

H2(sw||st)
17: if op = add and id /∈

Del then
18: R← R ∪ {id}
19: else if op = del then
20: Del← Del ∪ {id}
21: end if
22: i← i− 1
23: end while
24: ut← H1(sw||st)
25: Uts← Uts ∪ {ut}
26: (e, proof)← T [ut]
27: P [i]← proof

28: if c2>0 then
29: old R← Sym.Dec(st, e)
30: for each id in old R do
31: if id /∈ Del then
32: R← R ∪ {id}
33: end if
34: end for
35: else
36: 0λ||op||id← e⊕

H2(sw||st)
37: if op = add and id /∈

Del then
38: R← R ∪ {id}
39: end if
40: end if
41: if |P |>|R| then
42: for each ut in Uts do
43: delete T [ut]
44: end for
45: end if
46: send R and P to the client

Client:
47: v ← Verify(kp,WC,w,R, P)
48: if v = “Reject” then
49: return ”Reject”
50: else
51: if |P | 6 |R| then
52: return R
53: else
54: ReProof(K,WC,R)
55: return R
56: end if
57: end if

Figure 3. Search protocol

Verify(kp,WC,w,R, P)

1: R′ ← empty set
2: (c1, c2)←WC[w]
3: if |P | 6= c1 then
4: return ”Reject”
5: end if
6: kw ← F3(kp, w||c2)
7: r ← AE.Dec(kw, 1, P [1])
8: if r = “invalid” then
9: return “Reject”

10: else
11: if c2 > 0 then
12: R′ ← R′ ∪ r
13: else
14: op||id← r
15: if op = add then
16: R′ ← R′ ∪ {id}
17: end if
18: end if

19: end if
20: for i = 2→ c1 do
21: r ← AE.Dec(kw, i, P [i])
22: if r = “invalid” then
23: return “Reject”
24: else
25: op||id← r
26: if op = add then
27: R′ ← R′ ∪ {id}
28: else
29: R′ ← R′ \ {id}
30: end if
31: end if
32: end for
33: if R = R′ then
34: return “Accept”
35: else
36: return “Reject”
37: end if

Figure 4. Verify algorithm

a keyword, the new update records will be inserted in a
way that the server cannot link it with previous update
records and queries. FAST [1] is a very efficient forward
private DSSE scheme as it builds only with symmetric
cryptographic primitives. However, FAST does not work
in a malicious model.

6.1. Our Construction

Our construction uses 3 PRFs (F1 F2, F3 : {0, 1}λ ×
{0, 1}∗ → {0, 1}λ), two hash functions (H1 : {0, 1}∗ →
{0, 1}ζ , H2 : {0, 1}∗ → {0, 1}2λ+1), an authenticated

ReProof(K,WC,R)

Client:
1: (c1, c2)← WC
2: c1 ← 1, c2 ← c2 + 1
3: st← F2(kt, w||c1||c2)
4: e← Sym.Enc(st, R)
5: kw ← F3(kp, w||c2)
6: proof ← AE.Enc(kw, 1, R)

7: WC[w]← (c1, c2)
8: ut← H1(sw||st)
9: send (ut, e, proof) to the server

10: return WC

Server:
11: T [ut]← (e, proof)
12: return T

Figure 5. ReProof algorithm

encryption scheme AE (AE.Enc : {0, 1}λ × {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗; AE.Dec : {0, 1}λ × {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗), and a symmetric encryption scheme
(Sym.Enc : {0, 1}λ × {0, 1}∗ → {0, 1}∗; Sym.Dec :
{0, 1}λ × {0, 1}∗ → {0, 1}∗). In the following, we show
how the Setup, Update, and Search protocols are con-
structed in our scheme. The details of the three protocols
are shown in Fig. 1, Fig. 2, and Fig. 3, respectively.
Particularly, the pseudocode highlight in blue is the parts
we add or modify to support fault-tolerant verification for
FAST in the malicious model.
• (K,WC;T) ← Setup(λ,⊥;⊥): This phase aims to

initialize the data structures that should be stored on
the client and the server. With input λ, the client
randomly selects three keys ks, kt, and kp from
{0, 1}λ in a uniform way, and creates an empty
map WC, i.e. the secret state s. The secret keys
K = {ks, kt, kp} will be used to encrypt different
data structures. WC is used to map each keyword
w to two counters (c1, c2), where c1 represents the
number of proofs of w that are stored on the server
side, and c2 records the number of times the proofs
of w have been renewed.
This phase also outputs the storage on the server side,
i.e. EDB, which is an initialized empty hash table T .
T is used to store the encrypted update history and
proofs.

• (WC ′;T ′) ← Update(K,WC, op, id, w;T): When
the client needs to add/delete a document or
add/delete a keyword to/from a document’s keyword
set, it needs to run the Update protocol. As men-
tioned, any update operation is first uploaded into
the server as a new record and is indeed committed
later during search operations.
Basically, when the client needs to add or delete
a keyword-identifier pair (w, id), it takes the tuple
(op, w, id) as input, where op = add or del, and
sends the output: the update token ut, the encrypted
update record e, and the proof proof , to the server.
The server stores (e, proof) in T [ut].
Compared with the FAST scheme, the main differ-
ence is that we add a new data structure proof .
As shown in line 15 in Fig. 2, proof contains the
counter c1, the operation type op, and the associated
document identifier id, and it is encrypted with AE
and the key kw derived from w and c2. By storing
c1 and c2 on the client and including them into
proof , the client can check if the returned proofs
are complete and correct; and by encrypting proof
with AE the client can check if the server generates

the proof properly.
Another difference with FAST is that our approach
generates the search token st from w, c1 and c2 (line
7 in Fig 2), whereas FAST derives st from its pre-
vious version stored on the client. This modification
just aims to reduce the client storage overhead.

• (WC,DB(w) or “Reject”; T ′) ←
Search(K,WC,w;T): When searching for a
keyword w, the client generates a label sw for w
with F1 and ks, generates the search token st with
F2 and kt, and sends them to the server. As done in
Update protocol, the generation of st also involves
the latest values of c1 and c2. Moreover, both c1
and c2 are sent to the server for searching.
With the received query (sw, st, c1, c2), the server
searches over T and returns the result R and proof
list P to the client. This process can be virtually
divided into 2 parts: getting R and P (line 11–40)
and updating the database when renewing proofs is
necessary (line 41–45).
For getting R and P , the server generates c1 update
tokens with H1 and fetches their (e, proof) pairs
from T . With sw and st, the server also can recover
the plaintext of e, which is st||op||id, and obtain the
update history of the searched keyword. Based on op
of each update record, the server constructs the search
result R, i.e. adds id into R (Del) if the associated op
is add (del). However, no matter what the operation
type is, the server needs to send the proof of each
matching record to the client, which is a new process
added into FAST. Due to the proof renew operation,
the way to process the first matching record is also
different from FAST (line 28–40). Recall that c2
represents the times the proofs have been renewed.
If c2 > 0, the first matching record must contain a
set of matching identifiers that have been verified,
i.e. old R, and will be added into R (line 28–34);
otherwise, the first record should be a normal update
record and is processed in the same way as others
(line 35–40).
The database is updated over time, the size of P
increases with update operations, which increases the
overhead on the client and the server. To improve
the performance of our scheme, the client renews the
proofs when |P | > |R| by integrating the matching
update records that have been verified into one. To
save storage on the server side, in the second part of
the search protocol the server removes those update
records as they will never be used.
After getting R and P from the server, the client
verifies P and R with Verify, and renews the proofs
with ReProof if necessary.

Proof and Result Verification. In the malicious
model, the client could verify the proofs and results in
case the server returns wrong data. The details of the ver-
ification process are given in Fig. 4. The proofs are used
to verify if the returned result is correct and complete.
However, the malicious server might tamper with the
proofs in order to bypass the verification. Thus, the client
first needs to verify the integrity of P . In our approach,
P is verified in 2 aspects: the client firstly verifies if P
contains c1 proofs and secondly verifies if each proof can

be decrypted with AE. From the pseudocode in line 7 and
line 21, we can see that the proof P [i] is decrypted with
both i and kw. Thus, there are 2 requirements to decrypt
each proof successfully: the proof never be tampered with
and the proof is in the right order. If P contains c1 proofs
and each proof can be decrypted successfully with AE,
then the client can collect the right identifiers and check
if R is correct and complete.

Renew Proofs. To improve the performance of
the scheme, when |P | > |R|, the client integrates the
matching records that have passed the verification into one
and inserts it into T . The details of renewing the proofs
are given in ReProof in Fig. 5. As the number of proofs
associated with w will be reduced to 1, the client first
resets c1 = 1 and increases c2 by 1. Second, the client
generates the new update record e, the new proof proof ,
and the new update token ut. The difference with a normal
update record is that op||id is replaced with R in renewed
e and proof . Moreover, the key kw used to generate the
new proof is also refreshed with the latest counter c2. This
operation can prevent the server from returning expired
proofs, such as those that should be removed after proof
renewing.

6.2. Generalization of Our Approach

Our solution is generic, which can treat any (forward
secure) DSSE scheme as a black-box and make them fault-
tolerant and verifiable in the malicious model. From the
above description and the details shown in Fig. 2 and
3, we see that the dependency between our construction
with FAST is minor. We mainly insert additional oper-
ations and data into FAST for achieving fault-tolerance
and verifiability, rather than modifying operations of the
original scheme. Specifically, the Verify and ReProof
algorithms and the verification process on the client (line
47-57 in Fig. 3) are totally new processes, and they can
be added into any DSSE scheme. The only combination
between our approach and FAST is in Update and Search
protocols. The pseudocode in blue presents all new things
added into FAST, which are also independent of the
original FAST. In terms of the data storage, we just need
to add WC to the client. On the server side, our approach
requires a hash table T to store the update history. If the
original scheme has such structure, like FAST, we just
need to induce a proof to each record. On the contrary,
if the original scheme does not store update history, we
just need to add T into it to store the proofs. For FAST,
the only thing we modify is the generation of search token
st. As mentioned, this modification only aims to save the
storage on the client. Moreover, this minor change can
also be easily conducted in any other DSSE schemes.
In Appendix C, we analyze the security of our generic
solution.

7. Security Analysis
In this section, we provide the analysis of correctness,

soundness, and security achieved by our solution.

7.1. Correctness

Theorem 1. If there is no collision in the hash table T ,
and the authenticated encryption scheme AE and the

symmetric encryption scheme Sym satisfy correctness,
our scheme achieves correctness even when there are
incorrect updates.

The VDSSE scheme is correct if for each keyword w
the search result returned by the server is DB(w) when
the server honestly follows the designed search and update
protocols, and the client accepts the search result. In our
scheme, as shown in Fig. 2, for each update, the update
record and the corresponding proof are uploaded to the
server. Both the update record e and the proof contain the
values op and id related to the update operation. When
the proofs related to a keyword w have not been renewed
yet, and there is no collision in the hash table T , all the
updates related to w are stored in T properly. For a search
on w, by following the Search protocol, the server obtains
all the update records related to w in the correct order. By
decrypting all the obtained update records, the server gets
the full update history for keyword w. In this way, the
server is able to detect any incorrect updates and recover
DB(w). The server also obtains all proofs associated with
the searched keyword w and returns them to the client.
Recall that each proof also contains op and id. Thus, when
the client decrypts the proofs it is able to recover the
full update and correct update history of w as long as
the scheme AE is correct. From this, the client computes
DB(w). Since each (e, proof) pair related to w contains
the same op and id, the search result recovered from the
proofs must be equal to the one received from the honest
server.

The correctness is also ensured when the proofs are
renewed. In this case, the server obtains the search result
from the packaged search result and the update records
inserted after renewing the proofs. The matching identi-
fiers included in update records must be correct as they
are processed in the same way as before. The packaged
search result included in the renewed index and proof
must be correct as well because the index and proof are
renewed after the verification. As long as the scheme Sym
is correct, the server can obtain the packaged result. The
client can also get the packaged result from the renewed
proof as long as AE is correct and the returned proofs
match the latest kw.

7.2. Soundness

Theorem 2. If AE satisfies authenticity defined in Section
3.1 and our scheme Σ satisfies correctness, then our
scheme Σ achieves soundness even when there are
incorrect updates.

The VDSSE scheme is sound when the client can
detect malicious behavior from the server. Our approach
achieves soundness by appending a proof to each update
record, ensuring the integrity of each proof with AE,
numbering each proof, and recording the total number
of proofs on the client. When the server forges a proof,
returns out-of-order or incomplete proofs, due to the au-
thenticity of AE, the client can detect these malicious
behaviours and reject the results. In particular, for the i-th
update (op, w, id) related to w, the proof is generated by
computing AE.Enc(kw, i, op||id). Recall that only when
both the key kw and the nonce i are correct can AE decrypt
successfully. Therefore, only when the server returns all

the correct proofs in the correct order, the client can
decrypt them with AE. In any other case, such as a
forged proof, a proof associated with another keyword, a
tampered proof, and a proof in the wrong order, it will all
be rejected because AE cannot decrypt correctly. If the
returned proofs are verified to be correct and complete,
from Section 7.1, we know that the client can obtain
DB(w) after decrypting all the proofs such that it can
detect whether the server returns an invalid search result
by comparing if the search result is equal to DB(w).

We provide the formal soundness proof in Appendix
A.

7.3. Security proof

We use Q to represent the list of the performed
queries, each of which is in the form of (t, w) (search) or
(t, op, id, w) (update) where t is the timestamp and define
two leakage functions sp(w), UpdHis(w). The search
pattern on w is denoted as sp(w) and the update history
related to w are denoted as UpdHis(w). Formally,

sp(w) = {t|(t, w) ∈ Q}
UpdHis(w) = {(t, op, id)|(t, op, id, w) ∈ Q}

Theorem 3. If F1, F2, F3 are PRFs, AE satisfies the
privacy and authenticity defined in Section 3.1, and
H1, H2 are two hash functions modeled as two
random oracles outputting ζ and λ bits respectively,
then our construction Σ is LΣ-adaptively-secure
where

(A) LSetupΣ (λ) =⊥
(B) LSearchΣ (DB, w) = (sp(w),UpdHis(w))
(C) LUpdateΣ (DB, op, id, w) =⊥

The proof for Theorem 3 is presented in Appendix
B.

8. Performance Analysis

In this section, we analyze the performance overhead
of our scheme in terms of computation, communication,
and storage. Table 1 shows the comparison between our
solution and other VDSSE schemes that support single-
keyword search queries.

8.1. Computation and Communication Overhead

Update. For an update query, as shown in Fig. 2,
our scheme only requires the client to generate an en-
crypted update record and a proof with O(1) computa-
tional cost, and upload them to the server at the cost of
O(1) communication overhead.

Search. For a search query, the main overhead
occurs due to the search process on the server side and
the verification process on the client side. Assume there
are u updates for the searched keyword w. The compu-
tational complexity on the server, on the client, and the
communication overhead between them are all linear with
the number of (e, proof) pairs associated with w.

In our scheme, each (e, proof) pair is stored in a
hash table and indexed with an update token. The server
has to return to the client all the related (e, proof) pairs

and the search result DB(w). When the proofs related
to w have not been renewed, the main operation on the
server side is to generate u update tokens and decrypt u
encrypted update records. The computation overhead on
the server is thus O(u). The client is required to verify the
proofs. Unlike incremental-hash-based VDSSE schemes,
our scheme has u proofs associated with w and it requires
the client to verify each proof separately. This takes O(u)
computational cost. The server sends the search result and
u proofs to the client, thus the communication overhead
between the server and client is O(u).

When u > |DB(w)|, the (e, proof) pairs of w stored
in the hash table will be significantly reduced by renewing
proofs. However, in this case, decrypting the packaged e
and proof is more expensive than decrypting a normal
one as the length of them is much longer which is linear
to |old R|. In the best case, there is no new update after
renewing the proofs, old R = DB(w), and only the
packaged (e, proof) pair matches w. In this case, the main
overhead on the server and the client will be decrypting
the packaged e and proof , respectively. In this case, the
computation overhead on both the server and the client
is O(m), where m = |DB(w)|. Likewise, the server just
needs to send the search result and one packaged proof to
the client, thus the communication overhead is also O(m)
in this case.

8.2. Storage Overhead

Our scheme requires the client to permanently store
two counters for every keyword, resulting in the per-
manent client storage of O(|W| log |D|). In addition,
the client also needs to store search results and proofs
temporarily. Proofs are additional compared with DSSE
schemes, which is O(uλ) in the worst case. Precisely, dur-
ing a search query, the client needs to keep m document
identifies and u proofs. This can be reduced to O(mλ) by
letting the client process the proofs in a stream fashion
while renewing or decrypting proofs.

Assuming that the total number of document/keyword
pairs that are historically added and deleted from the
database is N+, the server at most needs O(N+) storage
space, which happens when there are no renewed proofs.

TABLE 2. STORAGE OVERHEAD

Scheme Number of keywords
5× 104 2× 105 8× 105 32× 105

Zhang et al.’
Client 4.0MB 16MB 61MB 224MB
Server 124MB 321MB 1.1GB 4.1GB

Ours
Client 536KB 1.7MB 6.1MB 21MB
Server 179MB 488MB 1.7GB 6.2GB

9. Performance Evaluation

We implemented a prototype of our scheme and eval-
uated its performance with diverse datasets.

Experiment setting. Our prototype is imple-
mented in C++ with Crypto++ library [37]. In our im-
plementation, F1, F2, F3, and symmetric encryption are
implemented with AES-CTR-128, H1 and H2 are im-
plemented with SHA-256. AE is implemented with the

project of OCB3 from [38]. RocksDB [39] is used to store
the data on the client and the server. gRPC [40] is used
for implementing the communication between the client
and the server.

We ran our experiments on two desktops in two
isolated LANs that are connected with VPN [41]. The
bandwidth of the VPN during the test ranges between
about 200KB/s and 900KB/s. Note that the performance
of our scheme will be much better when the server and
the client are located in the same LANs, as the bandwidth
of the network will be much larger and more stable. The
desktop that plays as the server is deployed with 16 cores
(Intel Core i9-9900 CPU 3.10 GHz), 31 GB memory, and
483 GB SSD disk space, and the client desktop has 4 cores
(Intel Core i5-6600 CPU 3.30GHz), 7.7 GB memory, and
984 GB HDD disk space. Both of them run on Ubuntu
18.04. We also ran our experiments in a local setting
where both the client and the server are deployed on the
former desktop. For each test case in the following, we
test 10 times and take the average.

Datasets. We used five diverse datasets for the test.
The first one is a real-world dataset from Wikimedia [42].
It consists of 470,483 keywords and 8,388,608 keyword-
identifier pairs. We created another four datasets with dif-
ferent numbers of keywords.The keywords and keyword-
identifier pairs contained by each of them are 5×104 and
1,019,750, 2×105 and 4,079,000, 8×105 and 16,316,000,
and 32× 105 and 65,264,000, respectively.

Comparison. In order to better show the per-
formance of our scheme, we also compared the per-
formance of our scheme with the scheme proposed by
Zhang et al. [7]. To the best of our knowledge, Zhang
et al. present the fastest forward secure VDSSE despite
its failure to support fault tolerance. For the comparison,
we downloaded their source code [43] and evaluated their
performance with the same datasets on the same testbed.
Since the code of OCB3 is optimized with AES-NI, for
fairness, we also optimized the implementation of MSet-
XOR-Hash in Zhang et al.’ work with AES-NI.

Bost et al. [6] do not implement the prototype of
their solution and evaluate the performance. Therefore,
we cannot provide the specific performance comparison
with the only exiting VDSSE scheme that achieves fault
tolerance and forward privacy.

9.1. Storage Overhead

We measured the storage overhead on the client and
the server in our scheme and Zhang et al.’s scheme,
and the results are shown in Table 2. It is measured
after creating the encrypted database of the four synthetic
datasets. From Table 2, we can see that our scheme saves
nearly 9× storage on the client compared with Zhang
et al.’s scheme and approximately adds 0.5 times more
storage than Zhang et al.’s scheme on the server side due
to the proofs.

9.2. Update Efficiency

We evaluated the performance of the update protocol
by measuring the time of inserting different numbers of
(add,w, id) records into an empty database in batch, and
the results are shown in Fig 6. From Fig. 6(a), we can

0

20

40

60

80

100

120

140

215 216 217 218 219 220 221 222 223

U
pd

at
e

ti
m

e
(s

)

Number of the updated keyword-document pairs

Zhang et al.’s
Ours

(a) Without network latency

0

200

400

600

800

1000

1200

215 216 217 218 219 220 221 222 223

U
pd

at
e

ti
m

e
(s

)

Number of the updated keyword-document pairs

Zhang et al.’s
Ours

(b) With network latency

Figure 6. Performance of the update protocol

see that Zhang et al.’s scheme takes about 0.5 times
longer than ours to complete batch updates in the local
setting. The main reason is that Zhang et al.’s scheme
needs to perform 3 hashes to update the proof while our
scheme only requires 1 AE encryption, which is more
efficient. However, when considering network latency, our
update speed is about 0.4 times slower than theirs. This is
because our update protocol requires more communication
overheads to convey proofs. The required communication
overheads in batch updates are displayed in Table 3, from
which we can see our batch update protocol needs to
transmit approximately 0.7 times more data than Zhang
et al.’s scheme.

9.3. Search Efficiency

The search efficiency of our scheme is linear to the
matching (e, proof) entries. Renewing proofs periodically
is our method to improve search efficiency. In this part, we
measured the time for search queries when the proofs are
not renewed and when the proofs are renewed to show the
performance of our solution. Moreover, we also evaluated
the overhead of ReProof.

To test search performance comprehensively, we first
tested the time consumed by the client and the server
respectively in the local setting. The time on the client is
mainly spent on computing the search token and verifying
search results, and the time on the server is for searching
the encrypted database. Then we measured the search
efficiency in our network setting to test the impact of
network latency.

TABLE 3. COMMUNICATION OVERHEADS IN BATCH UPDATES

Scheme Number of keyword-document pairs
215 216 217 218 219 220 221 222 223

Zhang et al.’ 1.8MB 3.6MB 7.2MB 15MB 29MB 57MB 115MB 228MB 457MB
Ours 3.1MB 6.2MB 13MB 25MB 49MB 98MB 196MB 392MB 783MB

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

102 103 104 105 106

T
im

e
on

cl
ie

nt
pe

r
m

at
ch

in
g

do
cu

m
en

t(
m

s)

Size of search result

Zhang et al.’s
Ours

(a) d = 0% (client)

0

0.005

0.01

0.015

0.02

102 103 104 105 106

T
im

e
on

se
rv

er
pe

r
m

at
ch

in
g

do
cu

m
en

t(
m

s)

Size of search result

Zhang et al.’s
Ours

(b) d = 0% (server)

0

0.1

0.2

0.3

0.4

0.5

0.6

102 103 104 105 106

Se
ar

ch
ti

m
e

pe
r

m
at

ch
in

g
do

cu
m

en
t(

m
s)

Size of search result

Zhang et al.’s
Ours

(c) d = 0% (with network latency)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

99 990 9900 99000 990000

T
im

e
on

cl
ie

nt
pe

r
m

at
ch

in
g

do
cu

m
en

t(
m

s)

Size of search result

Zhang et al.’s
Without renewed proofs

With renewed proofs

(d) d = 1% (client)

0

0.005

0.01

0.015

0.02

99 990 9900 99000 990000

T
im

e
on

se
rv

er
pe

r
m

at
ch

in
g

do
cu

m
en

t(
m

s)

Size of search result

Zhang et al.’s
Without renewed proofs

With renewed proofs

(e) d = 1% (server)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

99 990 9900 99000 990000

Se
ar

ch
ti

m
e

pe
r

m
at

ch
in

g
do

cu
m

en
t(

m
s)

Size of search result

Zhang et al.’s
Without renewed proofs

With renewed proofs

(f) d = 1% (with network latency)

0

0.0005

0.001

0.0015

0.002

0.0025

70 700 7000 70000 700000

T
im

e
on

cl
ie

nt
pe

r
m

at
ch

in
g

do
cu

m
en

t(
m

s)

Size of search result

Zhang et al.’s
Without renewed proofs

With renewed proofs

(g) d = 30% (client)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

70 700 7000 70000 700000

T
im

e
on

se
rv

er
pe

r
m

at
ch

in
g

do
cu

m
en

t(
m

s)

Size of search result

Zhang et al.’s
Without renewed proofs

With renewed proofs

(h) d = 30% (server)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

70 700 7000 70000 700000

Se
ar

ch
ti

m
e

pe
r

m
at

ch
in

g
do

cu
m

en
t(

m
s)

Size of search result

Zhang et al.’s
Without renewed proofs

With renewed proofs

(i) d = 30% (with network latency)

Figure 7. Performance of the search protocol

TABLE 4. COMMUNICATION OVERHEADS IN SEARCHES (d = 0%)

Scheme Size of search result
102 103 104 105 106

Zhang et al.’ 4KB 8KB 80KB 784KB 7.7MB
Ours 8KB 48KB 480KB 4.7MB 47MB

Search without renewed proofs. Fig. 7(a),
Fig. 7(b), and Fig. 7(c) show the performance of our
search protocol when there are no deletion operations
related to the searched keywords. There is no renewed
proof in this case as the client only renews the proofs

TABLE 5. COMMUNICATION OVERHEADS IN SEARCHES (d = 1%),
WHERE ”WITHOUT” REFERS TO ”WITHOUT RENEWED PROOFS” AND

”WITH” REFERS TO ”WITH RENEWED PROOFS”

Scheme Size of search result
99 990 9900 99000 990000

Zhang et al.’ 4KB 8KB 80KB 776KB 7.6MB
Ours (without) 8KB 48KB 480KB 4.7MB 47MB

Ours (with) 16KB 28KB 276KB 2.7MB 27MB

when |P | > |R|. The tested queries match 102, 103, 104,
105, and 106 documents, respectively. From Fig.7(a), we
can see that the average time consumed by the client on

TABLE 6. COMMUNICATION OVERHEADS IN SEARCHES (d = 30%),
WHERE ”WITHOUT” REFERS TO ”WITHOUT RENEWED PROOFS” AND

”WITH” REFERS TO ”WITH RENEWED PROOFS”

Scheme Size of search result
70 700 7000 70000 700000

Zhang et al.’ 4KB 8KB 56KB 548KB 5.4MB
Ours (without) 8KB 60KB 576KB 5.6MB 56MB

Ours (with) 4KB 20KB 196KB 1.9MB 19MB

0.0001

0.001

0.01

0.1

1

50 500 5000 50000 990000

T
im

e
of

re
ne

w
in

g
pr

oo
fs

pe
r

do
cu

m
en

t(
m

s)

Size of search result

Without network latency
With network latency

Figure 8. Performance of renewing proofs

a single matching document drops first and then rises as
the size of the search results increases. The reason for
the decrease is that the start-up time is distributed to
more searched entries. For example, the client computes
a search token for a search query regardless of the size of
the search result, so when the size of the search result in-
creases, the time allocated to each matching document for
computing the search token will be less. However, when
the size of the search result is large, frequent construction
and destruction of data structures cause a negative impact
on the performance. Fig.7(a) also shows that Zhang et al.’s
scheme is more efficient than ours in terms of the compu-
tation on the client. That is because, for the verification,
the AE decryption algorithm used in our protocol is more
expensive than their MSet-XOR-hash technique. Besides,
when the client verifies the search result in our protocol,
after decrypting all the proofs, it also needs to traverse
all the proofs to restore the matching documents, which
is not required by Zhang et al.’s scheme.

Fig. 7(b) shows the time consumed by the server to
obtain matching documents and the related proofs. In this
case, our search protocol is slightly less efficient than
Zhang et al.’s scheme. This is because the server in our
protocol also needs to find the related proofs. Instead, in
Zhang et al.’s scheme, the proofs are only stored on the
client side. By comparing Figure. 7(a) and Fig.7(b), we
can discover that the overhead of the server accessing the
database is the main bottleneck of the search efficiency in
the local setting. This point is also emphasized in several
forward secure SSE works [1], [11], [14].

Fig. 7(c) shows the total search overhead when in-
troducing network latency. In our settings, all the com-
munication is encrypted and needs to be relayed by the
VPN server; the network latency is a dominant perfor-
mance factor in our experiments. In addition, our protocol
also requires more communication overheads than Zhang

et al.’s scheme due to the need to transmit the proofs from
the server to the client. The comparison of communication
overheads in the search queries is shown in Table 4.

Search with renewed proofs. We also tested the
search performance of our scheme when there are two dif-
ferent rates of delete operations. With delete queries, the
ReProof process will be triggered. The results are shown
in Fig. 7(d) – Fig. 7(i). In these figures, d represents the
percentage of documents that are marked with del among
the matching documents. For example, when d = 30%,
the numbers of matching documents after the deletion
operations for the five queries are 70, 700, 7000, 70000,
and 700000, respectively. In this case, the proofs will be
renewed as |P | > |R|. To show how the performance is
improved with proof renewing, we also tested the search
time without renewed proofs as a baseline.

In the case of d = 1%, from Fig. 7(d), we can see
that with renewed proofs, we reduced the time spent by
the client per matching document by approximately 30% -
40%, compared to the case without renewed proofs, when
the size of the search result ranges from 990 - 990000.
When the size of the search result is 99, which means that
only one matching document was deleted, the operation
of renewing proofs slightly reduces verification efficiency.
Fig. 7(e) shows the time spent on the server side per
matching document. With renewed proofs, the number
of times the server accesses the database is reduced to
1, making our scheme very efficient. In general, with
renewed proofs, the efficiency on the client and server of
our solution is 7-9 times faster than Zhang et al.’s solution.
However, as shown in Fig.7(f), this advantage has been
greatly weakened when including network latency. Our
search performance with renewed proofs is only slightly
better than Zhang et al.’s scheme. The reason is that,
as shown in Table 5, even if the proofs were renewed,
our communication overheads are still greater than Zhang
et al.’s scheme, which caused an increase in network delay
in our solution.

When d = 30%, the impact of renewing proofs on the
search performance of our solution is more obvious. We
can see from Fig. 7(g) that for our solution, the search
efficiency was improved by 50% - 65% after renewing
proofs. Similar to Fig. 7(e), Fig. 7(h) also shows that the
search time spent by the server is reduced significantly.
The total time spent on the client and server is 7-12 times
less than Zhang et al.’s scheme needs. When counting
network latency, as shown in Fig. 7(i), our solution has
more obvious advantages than when d = 1% and is 0.2-
0.7 times faster than Zhang et al.’s scheme. The commu-
nication overheads consumed by our solution and Zhang
et al.’s scheme can be seen in Table 6.

9.4. Renewing proofs

Fig. 8 displays the average time per document when
renewing the proof without and with network latency,
respectively. To do this experiment, we first deleted part
(1%, 10%, 30%, 50%) of the documents matched by the
keywords searched in the above paragraph, then measured
the time to renew the proofs in the next search, and divided
the obtained time by the size of the search result. From
Fig. 8, we can see that the overheads of renewing proofs
are very small without network latency. If network latency

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100000 200000 300000 400000 500000

Se
ar

ch
ti

m
e(

m
s)

Sequence number of queries

Zhang et al.’s
Ours

(a) β = 5% (without network latency)

0

5000

10000

15000

20000

25000

30000

0 100000 200000 300000 400000 500000

Se
ar

ch
ti

m
e(

m
s)

Sequence number of queries

Zhang et al.’s
Ours

(b) β = 5% (with network latency)

0

500

1000

1500

2000

2500

3000

3500

0 100000 200000 300000 400000 500000

Se
ar

ch
ti

m
e(

m
s)

Sequence number of queries

Zhang et al.’s
Ours

(c) β = 20% (without network latency)

0

5000

10000

15000

20000

25000

0 100000 200000 300000 400000 500000

Se
ar

ch
ti

m
e(

m
s)

Sequence number of queries

Zhang et al.’s
Ours

(d) β = 20% (with network latency)

Figure 9. Performance of the search protocol by trace simulation

is considered, the consumed time mainly depends on the
network bandwidth between the client and the server.

9.5. Trace simulation

To better measure the search performance, we tested
the search time for Zhang et al.’s scheme and our solution
in the dynamic setting through producing traces of search
and update queries. Specifically, we chose a keyword and
produced two traces with different deletion frequencies for
the keyword. Each trace contains 500000 queries on the
chosen keyword, where the frequency of search, deletion,
and addition queries is 1%, β (β is 5% or 20%), 99%−
β, respectively. In the experiment, for each trace, we ran
every query in the trace and recorded the time consumed
by each search query in the local and network setting,
respectively. Fig.9(a) and 9(b) show the results for the
trace with 5% deletion frequency. The results for the other
trace are presented in Fig.9(c) and 9(d).

Through observing the four figures, we first can con-
firm again that the procedure of renewing proofs helps
improve the search performance of our solution a lot. Sec-
ond, the trend also demonstrates that our scheme exhibits
more competitive efficiency as the number of queries
increases. Third, from Fig.9(b) and 9(d), we can see that
network instability has a considerable impact on search
time. Besides, the overall search performance gap between
our scheme and Zhang et al.’s solution is relatively small.
When β = 5%, the average search time consumed by
Zhang et al.’s scheme is 20% and 34% less than our

scheme without and with network latency, respectively.
In the case that β = 20%, our average search efficiency
is 13% faster than Zhang et al.’s scheme without network
latency, and is almost equal to their scheme when network
latency is considered.

10. Conclusion and Future Work

In this paper, we demonstrate that most of the VDSSE
schemes cannot guarantee the correctness and soundness
when the client updates the database improperly. We
propose an efficient VDSSE scheme that can tolerate in-
correct updates with forward privacy guarantee. However,
our solution currently only supports single-keyword search
in the single-user scenario. In our future work, we will
consider complex queries and extend our scheme to the
multi-user scenario.

11. Acknowledgement

Yuan and Russello would like to acknowledge the
MBIE-funded programme STRATUS (UOWX1503) for
its support and inspiration for this research.

References

[1] X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao, “Forward private
searchable symmetric encryption with optimized i/o efficiency,”
IEEE Transactions on Dependable and Secure Computing, vol. 17,
no. 5, pp. 912–927, 2020.

[2] K. Kurosawa and Y. Ohtaki, “Uc-secure searchable symmet-
ric encryption,” in 16th International Conference on Financial
Cryptography and Data Security, FC 2012, Kralendijk, Bonaire,
Februray 27-March 2, 2012, pp. 285–298.

[3] Q. Chai and G. Gong, “Verifiable symmetric searchable encryption
for semi-honest-but-curious cloud servers,” in IEEE International
Conference on Communications, ICC 2012, Ottawa, ON, Canada,
June 10-15, 2012, pp. 917–922.

[4] K. Kurosawa and Y. Ohtaki, “How to update documents verifi-
ably in searchable symmetric encryption,” in 12th International
Conference on Cryptology and Network Security, CANS 2013,
Paraty, Brazil, November 20-22. 2013, pp. 309–328.

[5] K. Kurosawa, K. Sasaki, K. Ohta, and K. Yoneyama, “Uc-
secure dynamic searchable symmetric encryption scheme,” in 11th
International Workshop on Security, IWSEC 2016, Tokyo, Japan,
September 12-14, 2016, pp. 73–90.

[6] R. Bost, P.-A. Fouque, and D. Pointcheval, “Verifiable dynamic
symmetric searchable encryption: Optimality and forward security,”
https://eprint.iacr.org/2016/062, 2016.

[7] Z. Zhang, J. Wang, Y. Wang, Y. Su, and X. Chen, “Towards efficient
verifiable forward secure searchable symmetric encryption,” in
24th European Symposium on Research in Computer Security,
ESORICS 2019, Luxembourg, September 23-27, 2019, pp. 304–
321.

[8] X. Ge, J. Yu, H. Zhang, C. Hu, Z. Li, Z. Qin, and R. Hao,
“Towards achieving keyword search over dynamic encrypted cloud
data with symmetric-key based verification,” IEEE Transactions on
Dependable and Secure Computing, vol. 18, no. 1, pp. 490–504,
2021.

[9] Y. Guo, C. Zhang, and X. Jia, “Verifiable and forward-secure en-
crypted search using blockchain techniques,” in IEEE International
Conference on Communications, ICC 2020, Dublin, Ireland, June
7-11, 2020, pp. 1–7.

[10] M. Miao, Y. Wang, J. Wang, and X. Huang, “Verifiable database
supporting keyword searches with forward security,” ELSEVIER
Computer Standards & Interfaces, vol. 77, p. 103491, 2021.

[11] R. Bost, “Σoϕoς–forward secure searchable encryption,” in 23rd
ACM SIGSAC Conference on Computer and Communications
Security, CCS 2016, Vienna, Austria, October 24-28, 2016, pp.
1143–1154.

[12] J. Zhu, Q. Li, C. Wang, X. Yuan, Q. Wang, and K. Ren, “Enabling
generic, verifiable, and secure data search in cloud services,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 8,
pp. 1721–1735, 2018.

[13] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are
belong to us: The power of file-injection attacks on searchable
encryption,” in 25th USENIX Security Symposium, USENIX
Security 2016, Austin, TX, USA, August 10-12, 2016, pp. 707–
720.

[14] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and back-
ward private searchable encryption from constrained cryptographic
primitives,” in 24th ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pp. 1465–1482.

[15] R. W. Lai and S. S. Chow, “Forward-secure searchable encryp-
tion on labeled bipartite graphs,” in 15th International Conference
on Applied Cryptography and Network Security, ACNS 2017,
Kanazawa, Japan, July 10-12, 2017, pp. 478–497.

[16] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim, “Forward
secure dynamic searchable symmetric encryption with efficient
updates,” in 24th ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pp. 1449–1463.

[17] M. Etemad, A. Küpçü, C. Papamanthou, and D. Evans, “Effi-
cient dynamic searchable encryption with forward privacy,” in
18th Privacy Enhancing Technologies Symposium, PETS 2018,
Barcelona, Spain, July 24–27, 2018, pp. 5–20.

[18] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic
searchable encryption with small leakage,” in 21st Annual Network
and Distributed System Security Symposium, NDSS 2014, San
Diego, California, USA, February 23-26, 2014.

[19] C. Papamanthou, R. Tamassia, and N. Triandopoulos,
“Cryptographic accumulators for authenticated hash tables,”
https://eprint.iacr.org/2009/625, 2009.

[20] D. Clarke, S. Devadas, M. van Dijk, B. Gassend, and G. E.
Suh, “Incremental multiset hash functions and their application to
memory integrity checking,” in 9th International Conference on the
Theory and Application of Cryptology and Information Security,
ASIACRYPT 2003, Taipei, Taiwan, November 30 - December 4,
2003, pp. 188–207.

[21] S. Kamara and C. Papamanthou, “Parallel and dynamic search-
able symmetric encryption,” in 17th International Conference on
Financial Cryptography and Data Security, FC 2013, Okinawa,
Japan, April 1-5, 2013, pp. 258–274.

[22] M. Etemad and A. Küpçü, “Verifiable dynamic searchable en-
cryption,” Turkish Journal of Electrical Engineering & Computer
Sciences, vol. 27, no. 4, pp. 2606–2623, 2019.

[23] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in 21st IEEE Symposium on Security
and Privacy, S&P 2000, Berkeley, CA, USA, May 14-17, 2000,
pp. 44–55.

[24] E. J. Goh, “Secure indexes,” http://eprint.iacr.org/2003/216, 2003.

[25] Y. C. Chang and M. Mitzenmacher, “Privacy preserving key-
word searches on remote encrypted data,” in 13th International
Conference on Applied Cryptography and Network Security,
ACNS 2005, New York, NY, USA, June 7-10, 2005, pp. 442–455.

[26] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Search-
able symmetric encryption: improved definitions and efficient
constructions,” in 13th ACM Conference on Computer and
Communications Security, CCS 2006, Alexandria, Virginia, USA,
October 30-November 3, 2006, pp. 79–88.

[27] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in 19th ACM conference on Computer
and communications security, CCS 2012, Raleigh, North Carolina,
USA, October 16-18, 2012, pp. 965–976.

[28] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, and
M. Steiner, “Dynamic searchable encryption in very-large
databases: Data structures and implementation,” in 21st Annual
Network and Distributed System Security Symposium, NDSS
2014, San Diego, California, USA, February 23-26, 2014, pp. 23–
26.

[29] J. Wang, X. Chen, X. Huang, I. You, and Y. Xiang, “Verifi-
able auditing for outsourced database in cloud computing,” IEEE
Transactions on Computers, vol. 64, no. 11, pp. 3293–3303, 2015.

[30] W. Ogata and K. Kurosawa, “Efficient no-dictionary verifiable
searchable symmetric encryption,” in 21st International Conference
on Financial Cryptography and Data Security, FC 2017, Sliema,
Malta, April 3-7, 2017, pp. 498–516.

[31] M. T. Goodrich, R. Tamassia, and N. Triandopoulos, “Efficient
authenticated data structures for graph connectivity and geometric
search problems,” Algorithmica, vol. 60, no. 3, pp. 505–552, 2011.

[32] O. Goldreich, Foundations of cryptography, 2004.

[33] G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, vol. 151, no. 2014,
pp. 1–32, 2014.

[34] N. Szabo, “Smart contracts,” 1994.

[35] P. Rogaway, M. Bellare, J. Black, and T. Krovetz, “Ocb: A block-
cipher mode of operation for efficient authenticated encryption,”
ACM Transactions on Information and System Security, vol. 6,
no. 3, p. 365–403, 2003.

[36] T. Krovetz and P. Rogaway, “The software performance of
authenticated-encryption modes,” in 18th International Workshop
on Fast Software Encryption, FSE 2011, Lyngby, Denmark,
February 13-16, 2011, pp. 306–327.

[37] W. Dai, “Crypto++ library 8.2,” https://www.cryptopp.com.

[38] T. Krovetz and P. Rogaway, “OCB,” https://www.cs.ucdavis.edu/
∼rogaway/ocb.

[39] Facebook, “Rocksdb 6.6.4,” https://github.com/facebook/rocksdb/
tree/v6.6.4.

https://www.cryptopp.com
https://www.cs.ucdavis.edu/~rogaway/ocb
https://www.cs.ucdavis.edu/~rogaway/ocb
https://github.com/facebook/rocksdb/tree/v6.6.4
https://github.com/facebook/rocksdb/tree/v6.6.4

[40] Google, “grpc,” https://github.com/grpc/grpc.

[41] Fortinet, “Forticlient vpn,” https://www.fortinet.com/.

[42] “Wikimedia dump service,” https://dumps.wikimedia.org/enwiki/.

[43] Z. Zhang, “VFSSSE,” https://github.com/zhangzhongjun/VFSSSE.

Verify(kp,WC,w,R, P∗)

1: R′ ← empty set
2: (c1, c2)←WC[w]
3: if |P∗| 6= c1 then
4: return ”Reject”
5: end if
6: kw ← F3(kp, w||c2)
7: r ← AE.Dec(kw, 1, P

∗[1])
8: if r 6= “invalid” and P∗[1]

is not a ciphertext produced by
AE.Enc with the key kw and
the nonce 1 then

9: return ”Accept”
10: end if
11: if r = “invalid” then
12: return ”Reject”
13: else
14: if c2 > 0 then
15: R′ ← R′ ∪ r
16: else
17: op||id← r
18: R′ ← R′ ∪ {id}
19: end if
20: end if

21: for i = 2→ c1 do
22: r ← AE.Dec(kw, i, P

∗[i])
23: if r 6= “invalid” and

P∗[i] is not a ciphertext produced
by AE.Enc with the key kw and
the nonce i then

24: return ”Accept”
25: end if
26: if r = ”invalid” then
27: return ”Reject”
28: else
29: op||id← r
30: if op = add then
31: R′ ← R′ ∪ {id}
32: else
33: R′ ← R′ \ {id}
34: end if
35: end if
36: end for
37: if R = R′ then
38: return ”Accept”
39: else
40: return ”Reject”
41: end if

Figure 10. Game G∗0

Verify(kp,WC,w,R, P∗)

1: R′ ← empty set
2: (c1, c2)←WC[w]
3: if |P | 6= c1 then
4: return ”Reject”
5: end if
6: kw ← F3(kp, w||c2)
7: if P∗[1] is not a ciphertext pro-

duced by AE.Enc with the key
kw , the nonce 1, and the plaintext
r then

8: return “Reject”
9: else

10: if c2 > 0 then
11: R′ ← R′ ∪ r
12: else
13: op||id← r
14: R′ ← R′ ∪ {id}
15: end if
16: end if

17: for i = 2→ c1 do
18: if P∗[i] is not a ciphertext

produced by AE.Enc with the
key kw , the nonce i, and the
plaintext r then

19: return “Reject”
20: else
21: op||id← r
22: if op = add then
23: R′ ← R′ ∪ {id}
24: else
25: R′ ← R′ \ {id}
26: end if
27: end if
28: end for
29: if R = R′ then
30: return ”Accept”
31: else
32: return ”Reject”
33: end if

Figure 11. Game G∗1

Appendix A.
Soundness Proof

Considering the client can recover the correct and
complete search results from proofs, to deceive the client
into accepting wrong or incomplete search results, the
adversary must be able to forge proofs that can bypass the
authenticity of AE. Thus, as done by Bost et al. in [6],
we reduce the soundness of our scheme to the authenticity
of AE and the correctness of our scheme through a hybrid
of games.

Proof: Game G∗0 : The difference between G∗0 and
VDSSESound

Σ
A (λ) locates at Verify algorithm. The Ver-

ify algorithm in G∗0 is shown in Fig. 10. Compared with
the original algorithm, the newly added part is highlighted
in red colour. Generally speaking, G∗0 outputs 1 as long
as one forged proof passes the authenticity of AE. Here
the forged proof P ∗[i] must not be a ciphertext produced
by AE.Enc with kw and i, where 1 ≤ i ≤ c1. However,
VDSSESound

Σ
A(λ) outputs 1 only when all the proofs pass

the authenticity of AE. Forging one proof successfully is
much easier than forging c1 successful proofs. Thus, the
adversary A has a greater probability of success in G∗0
than in VDSSESound

Σ
A(λ).

Formally,

Pr[VDSSESound
Σ
A(λ) = 1] ≤ Pr[G∗0 = 1]

Game G∗1: The Verify algorithm in G∗1 is shown in
Fig. 11. G∗1 requires that each proof in P ∗ must be a
ciphertext generated from AE.Enc with a nonce and kw.

To distinguish G∗0 and G∗1, the adversary should
be able to forge a proof P ∗[i] which is not a ci-
phertext of AE.Enc(kw, i,) but pass the verification of
AE.Dec(kw, i, P

∗[i]) (1 ≤ i ≤ c1), as G0 outputs 1
but G1 outputs 0 in this case. Thus, we can reduce the
difficulty of distinguishing G∗0 and G∗1 to the authenticity
of AE and construct a reduction C such that

Pr[G∗0 = 1] − Pr[G∗1 = 1] ≤ AdvAuth,AEC

Game G∗2: In G∗2, we assume that the adversary can
successfully find the recently added c1 entries related to
the searched keyword in the hash table T with the latest
search token st related to the searched keyword. This
implies that there is no collision in the hash table T .
The distinguishability between G∗2 and G∗1 can be reduced
to the ability to break the correctness of our scheme.
Formally, there exists a reduction D such that

Pr[G∗1 = 1] − Pr[G∗2 = 1] ≤ AdvCorrect,ΣD

From the three schemes, we can conclude that

Pr[VDSSESound
Σ
A(λ) = 1] ≤ Pr[G∗2 = 1] +

AdvAuth,AEC + AdvCorrect,ΣD

The soundess of G∗2 Here we prove the soundness
of game G∗2. Formally, we will prove that

Pr[G∗2 = 1] = 0

In G∗2, during a search query, the adversary has three
possible malicious behaviours, which are shown below:

1) The adversary returns incomplete proofs.
2) The adversary returns enough proofs, but gives a

forged proof or puts a proof in a wrong position in
P .

3) The adversary returns incorrect or incomplete search
results.

First, because the client uses c1 to record the number
of proofs matched by each keyword, it can determine
whether the number (|P |) of proofs returned by the server
is equal to c1 corresponding to the searched keyword. If
the returned proofs are incomplete (|P | < c1), the client
will return ”Reject.”

Second, if the case 2) happens during a search on a
keyword w, there must exist a proof proof (suppose it is

https://github.com/grpc/grpc
https://www.fortinet.com/
https://dumps.wikimedia.org/enwiki/
https://github.com/zhangzhongjun/VFSSSE

at the k-th position in P) that is not a ciphertext produced
by AE.Enc with the key kw and the nonce k. In this case,
following game G∗1, G∗2 returns ”Reject.”

Third, suppose that neither of the first two situations
happened, the client will obtain correct and complete
proofs associated with the searched keyword w. According
to the correctness of our scheme, the client can decrypt
each proof and finally obtain DB(w). Consequently, if the
case 3) happens, the client will detect that the search result
is not equal to DB(w) and return ”Reject.”

From the above analysis, we can conclude that G∗2
either outputs DB(w) or ”Reject.” Formally,

Pr[G∗2 = 1] = 0

In summary, we can get that

Pr[VDSSESound
Σ
A(λ) = 1] ≤ AdvAuth,AEC +

AdvCorrect,ΣD

where C and D are the adversaries for the authenticity
of AE and the correctness of our scheme Σ, respectively.

Algorithm 1 S.Setup(⊥)
Client:

1: t← 0

Appendix B.
Security Proof

Here we define a new leakage function ReProof(w) ⊂
sp(w) to denote a series of timestamps of renewing the
proof for w. Formally,

ReProof(w) = {t|(t, w) ∈ Q and during the search
query, the proof for w was renewed}

Additionally, we assume the number of bits of a proof
generated in an update query is l and the number of bits
of the renewed proof produced in a search is lR. For a set
S, we use Min(S) to represent the minimal value in S.

Proof: Game G0: The game G0 is just the VDSSE
game of the real world.

Pr[VDSSEREAL
Σ
A(λ) = 1] = Pr[G0 = 1]

Game G1: In G1, we create a mapping table for F1,
F2, and F3, respectively. The difference with G0 is that we
convert the calls to F1, F2, and F3 into choosing outputs
uniformly at random from their ranges {0, 1}λ and storing
the input-output pairs in corresponding mapping tables
if the calls are on new inputs, and otherwise taking the
values mapped by the inputs in the corresponding tables.
Below we use SW and ST to represent the mapping tables
corresponding to F1 and F2. By doing so, we can reduce
the difficulty of distinguishing G0 and G1 to that of the
security of the PRFs. More precisely, a reduction B1 that
can make at most B calls to the PRFs can be constructed
such that

Pr[G0 = 1] − Pr[G1 = 1] ≤ 3 ·AdvprfB1

Game G2: In G2, calls to H1 are replaced by picking
random values, and the random oracle H1 is programmed
during the search protocol. Specifically, the codes that the

Algorithm 2 S.Search(sp(w),UpdHis(w)))
Client:

1: w ← Min(sp(w))
2: sw ← SW[w]
3: if UpdHis(w) = φ then
4: return
5: else
6: {(t1, op1, id1), · · · , (tu, opu, idu)} ← UpdHis(w)
7: Updates(w)← {t1, · · · , tu}
8: end if
9: Obtain ReProof(w) from sp(w) and UpdHis(w)

10: if ReProof(w) = ⊥ then
11: c1 ← u
12: c2 ← 0
13: c3 ← 2
14: st← ST[w||1||0]
15: Program H1, s.t. H1(sw||st)← UT[t1]
16: Program H2, s.t. H2(sw||st)← E[t1]⊕ 0λ||op1||id1

17: else
18: {t′1, · · · , t

′
c2
} ← ReProof(w)

19: c3 ← Min({c|tc ∈ Updates(w) and tc > t′c2
})

20: if c3 6= ⊥ then
21: c1 ← u− c3 + 2
22: else
23: c1 ← 1
24: end if
25: st← ST[w||1||c2]
26: Program H1, s.t. H1(sw||st)← UT[t′c2

]

27: end if
28: for i = 2 to c1 do
29: oldst← ST[w||i− 1||c2]
30: st← ST[w||i||c2]
31: j ← c3 − i+ 2
32: Program H1, s.t. H1(sw||st)← UT[tj]
33: Program H2, s.t. H2(sw||st)← E[tj]⊕ oldst||opj ||idj
34: end for
35: send (sw, st, c1, c2) to the server

Server:
36: send (R, P) to the client

Client:
37: if |P | 6= c1 then
38: return ”Reject”
39: end if
40: if c2 > 0 and ADEC[P [1]] 6= t′c2
41: or c2 = 0 and ADEC[P [1]] 6= t1 then
42: return ”Reject”
43: end if
44: for i = 2 to c1 do
45: if ADEC[P [i]] 6= tc3+i−2 then
46: return ”Reject”
47: end if
48: end for
49: Obtain DB(w) from UpdHis(w)
50: if R 6= DB(w) then
51: return ”Reject”
52: end if
53: if |P |>|R| then
54: UT[t]

$← {0, 1}ζ

55: proof
$← {0, 1}lR

56: ADEC[proof]← t
57: st← ST[w||1||c2 + 1]
58: E[t]← Sym.Enc(st, R)
59: send (UT[t],E[t],PROOF[t]) to the server
60: t← t+ 1
61: end if

Algorithm 3 S.Update(⊥)
Client:

1: UT[t]
$← {0, 1}ζ

2: E[t]
$← {0, 1}2λ+1

3: proof $← {0, 1}l
4: ADEC[proof]← t
5: send (UT[t],E[t], proof) to the server
6: t← t+ 1

client calls H1 (line 17 in Fig.2 & line 8 in Fig.5) are
replaced by:

ut
$← {0, 1}ζ

UT[w||c1||c2]← ut

In the search protocol, the client uses a table h1 to
program the random oracle H1. The relevant pseudocodes
are shown below where 1) should be added to the place
ahead of line 7 in Fig.3 and 2) displays the random oracle
H1.

1)

for i = 1 to c1 do
for j = 0 to c2 do

st← ST[w||c1||c2]
h1(sw||st)←

UT[w||c1||c2]

end for
end for

2) H1(k||x)

v ← h1(k||x)
if v = ⊥ then

v
$← {0, 1}ξ

h1(k||x)← v
end if
return v

However, there exists an event bad that causes incon-
sistency when the client calls H1. Specifically, for a triple
(w, c1, c2), the event bad of H1(sw||ST[w ||c1||c2]) 6=
UT[w||c1||c2] happens in overwhelming probability if,
during an update query or when renewing the proof, the
client selects a value x as ST[w||c1||c2] where sw||x was
used by the adversary as the input to H1. Fortunately, sw
and x are both generated randomly, so for the adversary
that makes η queries to H1, the probability that bad on
(w, c1, c2) occurs is q/22λ. Now assuming that there are a
total of N∗ distinct triples, we can derive the probability
of distinguishing G1 from G2.

Pr[G1 = 1] − Pr[G2 = 1] =
N∗ · η

22λ

Game G3: In G3, we make the same changes for H2

as for H1 in G2. Hence:

Pr[G2 = 1] − Pr[G3 = 1] =
N∗ · η

22λ

Game G4: In G4, we create a mapping table ADEC,
and replace all calls to AE.Enc(k, non,mes) (line 15 in
Fig.2, line 6 in Fig.5) by the following pseudocode.

proof
$← {0, 1}|AE.Enc(k,non,mes)|

ADEC[proof]← (k, non,mes)

Then we replace all the calls to
AE.Dec(k, non, proof) (line 7 and line 21 in Fig.
4) by the following pseudocode.

if ADEC[proof] does not exist then
r ← ”invalid”

else
(k′, non′,mes′)← ADEC[proof]
if k 6= k′ or non 6= non′ then

r ← ”invalid”
else

r ← mes′

end if
end if

In this way, we can build a reduction B2 to reduce the
advantage of distinguishing G4 from G3 to the privacy
and the authenticity of AE:

Pr[G3 = 1] − Pr[G4 = 1] ≤ AdvPriv,Auth,AEB2

The Simulator S: The simulator S is built only with
the leakage function LΣ = (LSetupΣ ,LSearchΣ ,LUpdateΣ) as
the input, which is shown in Algorithm 1, Algorithm 2,
and Algorithm 3. Recall that the leakage functions of our
scheme are:

(A) LSetupΣ (λ) =⊥
(B) LSearchΣ (DB, w) = (sp(w),UpdHis(w))
(C) LUpdateΣ (DB, op, id, w) =⊥

Conclusion: In summary, we can get that:

|Pr[VDSSEREAL
Σ
A(λ) = 1] -

Pr[VDSSEIDEAL
Σ
A,S,L(λ) = 1]| 6

3 ·AdvprfB1
+ 2 · N

∗ · q
22λ

+ Advpriv,auth,AEB2

where B1 and B2 are the adversaries for PRFs and AE
respectively.

Appendix C.
Security proof of the generic solution

For the multi-round VDSSE, as described in [6], the
adversary has the chance to lure the client into sending
messages that reveal private information about queries
and the database by returning forged results to the client
in previous rounds. Owing to the forward private DSSE
instantiation being used as a black-box in our generic
solution, we do not know its implementation details and
thus cannot analyze its security against a malicious adver-
sary if it needs multi-rounds. Here we assume the DSSE
instantiation are implemented in a single-round way. This
assumption is rather reasonable considering that almost
all forward private DSSE schemes [1], [11], [14]–[17] are
implemented with only one round of interaction. For ease
of explanation, we use Π to denote the DSSE instantiation
and GΣ to denote our generic VDSSE solution. We
assume the leakages of Π during setup, search, update
operations are formally captured by LSetupΠ , LSearchΠ ,
and LUpdateΠ , respectively. The simulators of Π and our
generic solution are denotes as SΠ and SGΣ , respectively.
In addition, we define DBt(w) to record the identifiers
matched by the keyword w at the timestamp t, spR(w)
to describe the timestamps and the matching identifiers at
the time of every search query on the keyword w, and
Updates(w) to capture the timestamps of all the update
operations related to the keyword w. Formally, the latter
two leakage functions are shown below.

spR(w) = {(t,DBt(w))|(t, w) ∈ Q}
Updates(w) = {t|∃id : (t, add/del, id, w) ∈ Q

Theorem 4. If F1, F2, F3 are PRFs, AE satisfies privacy
and authenticity defined in Section 3.1, H1, H2 are
two hash functions modeled as two random oracles
outputting ζ and λ bits respectively, and the DSSE
construction Π is LΠ-adaptively-secure, then our
generic solution GΣ is LGΣ-adaptively-secure where

Algorithm 4 SGΣ .Search(LSrchΠ , spR(w),Updates(w)))
Client:

1: Run SΠ.Search(LSrchΠ) to obtain the search result R.
2: Obtain sp(w) from spR(w) by removing DBt(w) from spR(w)
3: w ← Min(sp(w))
4: sw ← SW[w]
5: {t1, · · · , tu)} ← Updates(w)
6: Obtain ReProof(w) from spR(w) and Updates(w)
7: if ReProof(w) = ⊥ then
8: c1 ← u
9: c2 ← 0

10: c3 ← 2
11: st← ST[w||1||0]
12: Program H1, s.t. H1(sw||st)← UT[t1]
13: Program H2, s.t. H2(sw||st)← E[t1]⊕ 0λ

14: else
15: {t′1, · · · , t

′
c2
} ← ReProof(w)

16: c3 ← Min({c|tc ∈ Updates(w) and tc > t′c2
})

17: if c3 6= ⊥ then
18: c1 ← u− c3 + 2
19: else
20: c1 ← 1
21: end if
22: st← ST[w||1||c2]
23: Program H1, s.t. H1(sw||st)← UT[t′c2

]

24: end if
25: for i = 2 to c1 do
26: oldst← ST[w||i− 1||c2]
27: st← ST[w||i||c2]
28: j ← c3 − i+ 2
29: Program H1, s.t. H1(sw||st)← UT[tj]
30: Program H2, s.t. H2(sw||st)← E[tj]⊕ oldst
31: end for
32: send (sw, st, c1, c2) to the server

Server:
33: send (R, P) to the client

Client:
34: if |P | 6= c1 then
35: return ”Reject”
36: end if
37: if c2 > 0 and ADEC[P [1]] 6= t′c2
38: or c2 = 0 and ADEC[P [1]] 6= t1 then
39: return ”Reject”
40: end if
41: for i = 2 to c1 do
42: if ADEC[P [i]] 6= tc3+i−2 then
43: return ”Reject”
44: end if
45: end for
46: Obtain DB(w) from spR(w)
47: if R 6= DB(w) then
48: return ”Reject”
49: end if
50: if |P |>|R| then
51: UT[t]

$← {0, 1}ζ

52: proof
$← {0, 1}lR

53: ADEC[proof]← t
54: st← ST[w||1||c2 + 1]
55: send (UT[t],PROOF[t]) to the server
56: t← t+ 1
57: end if

(A) LSetupGΣ (λ) = LSetupΠ
(B) LSearchGΣ (DB, w) = (LSearchΠ , spR(w),

Updates(w))

(C) LUpdateGΣ (DB, op, id, w) = LUpdateΠ

Proof: The way to prove the security of the
generic solution overlaps mostly with that to prove the
specific solution shown in Appendix B. The games
G1, G2, G3, and G4 are constructed in the same
way as in Appendix B. To construct the simula-
tor SGΣ , we can obtain SGΣ .Setup(LSetupGΣ (λ)) and
SGΣ .Update(LUpdateGΣ (op, w, id)) by simply combining
the execution of SΠ(LSetupΠ) and SΠ(LSetupΠ) and that
of SΣ .Setup(λ) and SΣ .Update(λ), respectively. Besides,
SGΣ .Search(LSearchΠ , spR(w),Updates(w)) can be con-
structed as shown in Algorithm 4.

	Introduction
	Related Work
	Preliminaries
	Authenticated Encryption
	Verifiable Dynamic Searchable Symmetric Encryption
	Correctness
	Soundness
	Confidentiality

	Incremental-Hash-Based VDSSE Vulnerabilities
	Incremental Multi-set hash
	Correctness Vulnerabilities
	Soundness Vulnerabilities
	Discussion

	Overview of Our Approach
	System Model
	Threat Model
	Design goal and requirements
	Our approach
	Approach Optimization

	Solution Details
	Our Construction
	Generalization of Our Approach

	Security Analysis
	Correctness
	Soundness
	Security proof

	Performance Analysis
	Computation and Communication Overhead
	Storage Overhead

	Performance Evaluation
	Storage Overhead
	Update Efficiency
	Search Efficiency
	Renewing proofs
	Trace simulation

	Conclusion and Future Work
	Acknowledgement
	References
	Appendix A: Soundness Proof
	Appendix B: Security Proof
	Appendix C: Security proof of the generic solution

